

1 **Metal cofactor stabilization by a partner protein is a widespread strategy employed for amidase**
2 **activation**

3 **Authors:** Julia E. Page¹, Meredith A. Skiba², Truc Do¹, Andrew C. Kruse², and Suzanne Walker^{1*}

4 **Affiliations:** ¹Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA
5 02115, USA

6 ² Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical
7 School, Boston, MA 02115, USA

8 * email: suzanne_walker@hms.harvard.edu

9
10 **Classifications:** Biological Sciences, Microbiology, Structural Biology

11

12 **Keywords:** Amidase, Cell wall hydrolase, Peptidoglycan, Tetrastricopeptide repeat

13

14 **ABSTRACT**

15 Construction and remodeling of the bacterial peptidoglycan (PG) cell wall must be carefully
16 coordinated with cell growth and division. Central to cell wall construction are hydrolases that cleave
17 bonds in peptidoglycan. These enzymes also represent potential new antibiotic targets. One such
18 hydrolase, the amidase LytH in *Staphylococcus aureus*, acts to remove stem peptides from PG,
19 controlling where substrates are available for insertion of new PG strands and consequently regulating
20 cell size. When it is absent, cells grow excessively large and have division defects. For activity, LytH
21 requires a protein partner, ActH, that consists of an intracellular domain, a large rhomboid protease
22 domain, and three extracellular tetratricopeptide repeats (TPRs). Here we demonstrate that the
23 amidase-activating function of ActH is entirely contained in its extracellular TPRs. We show that ActH
24 binding stabilizes metals in the LytH active site, and that LytH metal binding in turn is needed for stable
25 complexation with ActH. We further present a structure of a complex of the extracellular domains of
26 LytH and ActH. Our findings suggest that metal cofactor stabilization is a general strategy used by
27 amidase activators and that ActH houses multiple functions within a single protein.

28 **SIGNIFICANCE STATEMENT**

29 The Gram-positive pathogen *Staphylococcus aureus* is a leading cause of antibiotic resistance-
30 associated death in the United States. Many antibiotics used to treat *S. aureus*, including the beta-
31 lactams, target biogenesis of the essential peptidoglycan (PG) cell wall. Some hydrolases play
32 important roles in cell wall construction and are potential antibiotic targets. The amidase LytH, which
33 requires a protein partner, ActH, for activity, is one such hydrolase. Here, we uncover how the
34 extracellular domain of ActH binds to LytH to stabilize metals in the active site for catalysis. This work
35 advances our understanding of how hydrolase activity is controlled to contribute productively to cell wall
36 synthesis.

37 **INTRODUCTION**

38 The peptidoglycan cell wall is an essential component of the cell envelope that maintains cell
39 integrity, size, and morphology (1). Its building block, Lipid II, is synthesized inside the cell, flipped

40 across the cell membrane, and then polymerized and crosslinked by peptidoglycan synthases from the
41 penicillin binding protein and SEDS (shape, elongation, division and sporulation) families (2, 3). These
42 enzymes have received much attention, particularly because the penicillin binding proteins are the
43 target of penicillin and other beta-lactams, one of the most successful classes of antibiotics in the clinic
44 (4). However, many other enzymes, including hydrolases, are integral to building mature cell wall (5).
45 Hydrolases are diverse enzymes that cleave bonds in peptidoglycan to allow growth, cell separation,
46 cell wall recycling, and more (5, 6). These enzymes play important roles in bacterial physiology and
47 present novel opportunities for antibiotic development, particularly for use in combination with beta-
48 lactams (7, 8, 9).

49 LytH, a membrane-bound amidase from *Staphylococcus aureus* that acts early in cell wall
50 synthesis, is important in controlling cell growth and division (7). It removes stem peptides from the glycan
51 backbone of membrane-proximal peptidoglycan to control the availability of substrates for insertion of
52 new strands (Fig. 1). When LytH is absent, cells grow excessively large and have misplaced division
53 septa. LytH mutants also display increased sensitivity to beta-lactams. Because excessive cell wall
54 cleavage can lead to lysis, hydrolases must be carefully controlled. For activity, LytH requires another
55 membrane protein called ActH. Knockouts of ActH share phenotypes of Δ lytH mutants, including cell size
56 and division defects as well as oxacillin sensitivity (7). Activators of other cell wall hydrolases have been
57 identified (10-15), but ActH does not share homology with any of them. ActH therefore provides a new
58 opportunity to learn how amidase activity is controlled in Gram-positive organisms.

59 In this work, we combine structural studies with biochemical and cellular experiments to
60 elucidate how LytH and ActH interact to produce amidase activity. Beyond advancing our
61 understanding of the LytH-ActH complex, which serves as a potential target for beta lactam
62 potentiators, this work reveals principles that likely extend to other hydrolase activators beyond *S.*
63 *aureus*.

64 **RESULTS**

65 **The LytH amidase domain and ActH TPRs are sufficient for amidase activity *in vitro*.**

66 We first sought to determine what portions of LytH and ActH are necessary to produce amidase
67 activity. ActH is predicted to contain a cytoplasmic domain, a 7 transmembrane helix (TM) domain with
68 homology to the rhomboid proteases, and an extracellular domain with three tetratricopeptide repeats
69 (TPRs). LytH contains a single transmembrane helix, an SH3 (Src homology 3) domain, and a zinc-
70 dependent amidase domain (Fig. 1, 2A). To identify which domains of these proteins are required for
71 amidase activity, we polymerized fluorophore-labeled Lipid II, treated the peptidoglycan oligomers with
72 pairs of truncated or full-length LytH and ActH proteins, and analyzed the products by SDS-PAGE (Fig.
73 2B). Because the oligomers are labeled on the stem peptide, amidase activity produces tighter spacing
74 of the peptidoglycan ladder with loss of signal intensity; a new band representing the released stem
75 peptide also appears in the middle of the gel. Full-length LytH on its own has a small amount of activity,
76 evidenced by some lightening of the peptidoglycan oligomer ladder and a faint band for the released
77 stem peptide after five hours. When ActH is added, LytH activity increases substantially (compare Fig.
78 2C lanes 4 and 7), producing a strong signal for the released stem peptide and new, low molecular
79 weight ladder bands. Like full-length LytH, LytH constructs lacking either just the TM helix (LytH_{ΔTM}) or
80 both the TM helix and the SH3 domain (LytH_{ami}) have minimal activity in the absence of ActH. However,
81 when combined with ActH, they produce full amidase activity (Fig. 2C), showing that the LytH amidase
82 domain does not require the SH3 domain or TM helix for activity or to be activated.

83 We next wondered what portions of ActH are needed to stimulate LytH activity. Given that the
84 ActH TPRs are located extracellularly in proximity to the LytH amidase domain and that TPRs are
85 known to mediate protein-protein interactions (16), we posited that the TPRs of ActH might be
86 responsible for its activation of LytH. When combined with either full-length LytH or the LytH amidase
87 domain alone, the ActH TPRs (ActH_{TPR}) stimulated amidase activity equivalently to full-length ActH (Fig.
88 2D). The extracellular components of LytH and ActH are therefore sufficient for amidase activity *in vitro*.

89 **The LytH amidase domain and ActH TPRs have an extensive binding interface.**

90 To understand the molecular interactions between LytH and ActH, we desired to crystallize
91 LytH-ActH but were unsuccessful in obtaining a structure of the full-length membrane protein complex.

92 Knowing that the soluble domains are sufficient for activity, we wondered if they might also form a
93 stable complex that could be crystallized. We found that LytH_{ami} and ActH_{TPR} co-purified from *E. coli* as
94 a stable 1:1 complex (Fig. 3A). We were able to crystallize this complex, but pathologies in the crystal
95 lattice impeded refining the structure. We substituted a single amino acid in LytH_{ami} to disrupt a lattice
96 contact and were able to solve the structure of that complex to 1.8 Å resolution (Fig. 3B, 3C,
97 Supplementary Table 1).

98 The structure shows the ActH TPRs binding to the base of the LytH catalytic domain on the
99 opposite side from the active site. Each of the three TPRs demonstrates the classic helical hairpin of
100 these structural elements (16). The TPRs are connected by short loops, forming a halfpipe with
101 concave and convex surfaces. TPRs most commonly bind unstructured peptides in an extended
102 conformation along the concave surface (17). The concave surface of the ActH TPR domain interacts
103 with LytH; however, the bound region of LytH is structured and alpha-helical (Fig. 3D). The ActH TPRs
104 are one of only a handful of TPR domains known to bind globular proteins (17-19).

105 By solvent accessibility analysis (20), LytH and ActH have a large interface with an area of 1024
106 Å² stabilized by twelve hydrogen bonds and two salt bridges. One of these salt bridges is between LytH
107 D264 and ActH R446 (Fig. 3E). To test the importance of the LytH-ActH interface observed in the
108 crystal for protein complex formation, we used a simple *in vitro* pull-down experiment to test mutants
109 disrupting this salt bridge. When we mixed FLAG-tagged LytH_{ami} and His-tagged ActH_{TPR}, incubated
110 them with FLAG resin, washed, and then eluted with FLAG peptide, both proteins were seen in the
111 elution in approximately a 1:1 ratio. However, when LytH_{ami} D264R, ActH_{TPR} R446E, or ActH_{TPR} R446A
112 was combined with the wild-type version of its respective partner, no ActH_{TPR} was observed in the
113 elution (Fig. 3F). This salt bridge is thus an important point of contact in the LytH-ActH binding
114 interface, supporting the functional relevance of the binding orientation between ActH and LytH
115 observed in the crystal structure. This binding is also important for amidase activity. LytH_{ami} D264R had
116 no activity with or without ActH_{TPR}. ActH_{TPR} R446E was also unable to activate LytH_{ami}. ActH_{TPR} R446A
117 modestly activated LytH_{ami} (Fig. 3G), suggesting that this mutant retains some ability to bind to LytH_{ami},

118 although the interaction was too weak to observe in the pull-down. The more dramatic effect of the
119 LytH_{ami} D264R and ActH_{TPR} R446E substitutions is consistent with the direct charge-charge repulsions
120 created by those mutations.

121 **LytH has four amino acids coordinating zinc, but one is dispensable for zinc binding**

122 The LytH amidase domain consists of a twisted six-stranded beta sheet surrounded by six alpha
123 helices. The fold is highly conserved with solved structures of other proteins in the amidase_3 family
124 (21-30; PDB 1JWQ, 3CZX, and 4RN7). In our crystal structure, we observed a metal ion in the active
125 site (initially assumed to be zinc, but see below) with an octahedral coordination sphere made up of
126 four amino acid side chains (H128, E145, H193, D195) and two water molecules (Fig. 3C). The
127 coordinating histidines and glutamate are conserved across this amidase family, but D195 is not strictly
128 conserved (Fig. S1A). In many other amidases, this aspartate is an asparagine that is flipped out
129 toward the solvent (Fig. S1B). In these amidases, only three amino acid side chains (corresponding to
130 H128, E145, and H193) coordinate zinc, and the remaining ligands are water molecules. Like LytH, *E.*
131 *coli* AmiB and AmiC, which also require protein activators, have an aspartate that is positioned similarly
132 to D195 to coordinate zinc (22, 23) (Fig. S1C). In AmiB and AmiC, an alpha helix blocks the active site,
133 and the activators are presumed to cause a conformational change that exposes the active site. In
134 LytH, the active site is already exposed on the surface of the protein, raising the question of why it is
135 inactive without ActH (Fig. S2).

136 Our previous studies have shown that LytH D195 is required for catalytic activity (7). Because it
137 is not strictly conserved, we wanted to test if it is also required for zinc binding. We co-purified ActH_{TPR}
138 with wild-type or D195A LytH_{ami}, as well as with mutants of two of the three other zinc-coordinating
139 residues, H128A and E145A, in buffer without added metal ions. We then used inductively coupled
140 plasma mass spectrometry (ICP-MS) to measure levels of zinc and several other transition metals in
141 these proteins. The wild-type sample contained predominantly zinc and iron in similar amounts, adding
142 up to about 0.4 equivalents of metal per LytH complex. Although LytH is known as a zinc-dependent
143 amidase, we wondered if iron is also bound in the LytH active site. To determine the metals present at

144 the metal binding site in our crystal structure, we used anomalous scattering. Data were recorded at X-
145 ray energies of 9.70 and 7.26 keV. Both energies yielded anomalous difference electron density,
146 indicating that both zinc and iron are found in the active site of the crystallized protein complex, though
147 no metal was added during crystallization (Fig. S3). The E145A and H128A mutants had about 5-7 fold
148 less metal (combined iron and zinc) and 2-3 fold less zinc than the wild-type complex (Fig. 4A, S4B,
149 S4C). However, the D195A complex had as much zinc as the wild-type complex and also contained
150 substantial amounts of iron (Fig. 4A, S4B, S4C). We conclude that D195 is not needed for stable metal
151 binding. Consistent with this observation, in the second complex in the asymmetric unit of the crystal
152 structure, D195 is flipped out towards the solvent, and the metal is instead coordinated by LytH D212
153 from the neighboring complex, which may be a result of crystal packing (Fig. S1D). More studies will be
154 required to understand the role of D195 in catalysis.

155 **ActH stabilizes metals in the LytH active site.**

156 We made an interesting observation while purifying the LytH_{ami}-ActH_{TPR} mutant complexes for
157 ICP-MS. When ActH_{TPR} was co-purified from *E. coli* with either wild-type or mutant LytH_{ami} and
158 submitted to size exclusion chromatography, the LytH_{ami} wild-type and D195A complexes eluted as
159 single peaks. However, only small peaks for the complex were seen for LytH_{ami} H128A and E145A, with
160 the majority of the protein eluting as the individual proteins (Fig. S5). This observation suggested that
161 LytH metal binding is necessary for stable complex formation with ActH.

162 We wondered whether ActH, in turn, stabilizes metal in the active site of LytH. To test this, we
163 measured the amount of zinc and iron in purified samples of the LytH_{ami}-ActH_{TPR} complex or individual
164 proteins alone and found that the molar ratio of metal (combined zinc + iron) to protein was about 15-
165 fold higher in the complex than in LytH_{ami} alone (Fig. 4B, S4B, S4C). The LytH_{ami} D195A-ActH_{TPR}
166 complex similarly had significantly more metal than LytH_{ami} D195A alone (Fig. S4A). Only trace
167 amounts of metal were found in purified samples of the ActH TPRs alone. We conclude that ActH
168 stabilizes the binding of metals in the LytH active site, and LytH metal-binding in turn stabilizes the
169 LytH-ActH interface.

170 **The ActH TPRs are necessary and sufficient for LytH activity in cells.**

171 Knowing that the ActH TPRs are sufficient to activate LytH *in vitro*, we next wondered whether
172 they would also suffice for activating LytH in cells. A knockout of *lytH* has a striking phenotype of
173 unusually large cells with division defects due to poorly controlled growth. This mutant is also
174 particularly sensitive to the beta-lactam oxacillin. ActH mutants have similar morphological defects and
175 increased susceptibility to oxacillin (7). We asked whether supplying just the TPRs tethered to the
176 membrane would be sufficient to rescue these cellular defects. In addition to demonstrating sufficiency,
177 such a result would imply that these Δ *actH* phenotypes are due to loss of LytH activity rather than loss
178 of a function of the rhomboid or intracellular domains of ActH. We introduced several FLAG-tagged
179 truncation mutants of ActH on single copy integrative plasmids into a Δ *actH* background and tested
180 growth on oxacillin. A truncation lacking the TPRs was not able to restore growth to the Δ *actH* mutant.
181 However, when the TPRs were fused to a single TM helix of the ActH rhomboid protease domain,
182 whether the first or last helix, growth was comparable to wild-type (Fig. 5A, S6A). We wondered if a
183 single pass TM-TPR construct would also rescue the morphological defects of Δ *actH*. We stained *S.*
184 *aureus* cells with the membrane dye Nile red and quantified their size. A single pass TM-TPR construct
185 produced cells of wild-type size, whereas the construct lacking the TPRs did not correct the size defect
186 of Δ *actH* cells (Fig. 5B, S7). The chromosomally-integrated FLAG-tagged proteins in all of these strains
187 were undetectable by Western blot. To ensure that the lack of function of the construct lacking the
188 TPRs was not due simply to poor expression, we introduced the same truncations on a plasmid with
189 higher expression levels. All proteins could then be detected by FLAG Western blot (Fig. S6C), but the
190 construct lacking the TPRs still did not restore growth of Δ *actH* on oxacillin (Fig. S6B). Because only
191 the TPRs on a single TM helix are able to restore both normal cell size and resistance to oxacillin, we
192 have concluded that the rhomboid protease and intracellular domains of ActH are dispensable for these
193 phenotypes. Paired with our *in vitro* data, these studies show that the morphological and beta-lactam
194 susceptibility defects of Δ *actH* cells are due to loss of LytH activity and that the ActH TPRs anchored in
195 the membrane are both sufficient and necessary to activate LytH in cells.

196 **The LytH SH3 domain is required for activity in cells.**

197 Like the rhomboid domain of ActH, the SH3 domain of LytH is not required for activity *in vitro*, so
198 we wondered if it would also be dispensable in cells. When we introduced a LytH construct lacking the
199 SH3 domain into a Δ *lytH* background, it was not able to restore growth on oxacillin (Fig. S9C). The SH3
200 domain is thus essential for LytH activity in cells. DeepMind's AlphaFold2 (31) predicted the same
201 binding interface between the LytH amidase domain and ActH TPRs seen in our structure and allowed
202 us to visualize the modeled full-length complex (Fig. S8). The extracellular complex sits atop the ActH
203 rhomboid domain, with the SH3 domain of LytH descending on the back of the amidase domain to the
204 single LytH TM helix. We wondered if the SH3 domain is necessary mainly as a spacer to position the
205 catalytic domain for interaction with ActH. To test this, we replaced the native SH3 domain of LytH with
206 either a linker or an SH3 domain from the *Bacillus subtilis* amidase YrvJ (Fig. S9A, S9B), which is also
207 membrane-bound. All constructs were stably expressed (Fig. S9D), but none was able to restore
208 growth on oxacillin (Fig. S9C). Our inability to replace the SH3 domain with a similar domain from
209 another species suggests that it is not simply a spacer. In bacteria, SH3 domains are known to bind
210 and recognize cell wall substrates (32-35). In eukaryotes, where SH3 domains were first identified, they
211 are found in a variety of signaling and cytoskeletal proteins and classically bind to proline-rich peptides
212 (36, 37). Despite its dispensability *in vitro*, the LytH SH3 domain may be important for *in cellulo*
213 substrate recognition, or it may mediate a protein-protein interaction with a yet unidentified binding
214 partner.

215 **DISCUSSION**

216 This work reveals the mechanism underlying a new class of amidase activators. First, we
217 showed that the extracellular TPR domain of ActH activates LytH both *in vitro* and in cells. The
218 rhomboid and intracellular domains of ActH are dispensable for phenotypes associated with both Δ *lytH*
219 and Δ *actH*, suggesting that ActH has another, unknown function with similar temporal and spatial
220 requirements as LytH activation. Next, we reported a crystal structure of a complex of the extracellular
221 domains of LytH and ActH that shows an unusual mode of TPR binding. We further showed that ActH

222 activates LytH at least in part by stabilizing metals in the LytH active site, a strategy which, as we
223 discuss below, seems to be employed by activators in different structural classes.

224 Hydrolase activity must be carefully tuned to allow cell growth and division but avoid excessive
225 cleavage of the essential cell wall. Bacteria employ diverse strategies to ensure that hydrolases only
226 act in the correct time and place. These strategies include regulating hydrolase expression, modifying
227 hydrolase substrates in the cell wall, and targeting hydrolases to particular cell wall compartments (5).
228 Direct protein regulators of hydrolases have also been identified (10-14, 38), with the first characterized
229 amidase activators being NlpD and EnvC, which activate the cell separation amidases AmiA/B/C in
230 Gram-negative organisms (10, 39-41). Crystal structures of AmiB and AmiC have shown they contain
231 an alpha helix that blocks the active site and is purportedly displaced upon interaction with the activator
232 (22, 23). LytH does not have a blocking helix. Although we were unable to crystallize the LytH amidase
233 domain alone, the structure of LytH observed in the complex is similar to those of amidases that are
234 functional without an activator. However, we have shown that ActH stabilizes metals in the LytH active
235 site, presumably by inducing small conformational changes.

236 Recently, the *Clostridioides difficile* lipoprotein GerS was also found to stabilize zinc binding in
237 the amidase CwID to promote activity (30). Moreover, as with ActH and LytH, metal cofactor binding
238 was found to be important for stable association between GerS and CwID. GerS bears no resemblance
239 to ActH. Instead, it is a lipoprotein tethered to diacylglycerol in the membrane and has a single
240 extracellular domain largely composed of an anti-parallel beta sheet. That GerS and ActH, two
241 structurally different proteins, both act by stabilizing metal binding in their respective amidases
242 suggests that metal cofactor stabilization is a widespread strategy employed for amidase activation.

243 Unexpectedly, we found that LytH can bind iron in its active site in place of zinc, and that this
244 binding is also stabilized by ActH. Scattered reports show that other amidases can use metals other
245 than zinc to promote hydrolysis (25, 42). In one study, CwIV from *Paenibacillus polymyxa* was found to
246 purify predominantly with zinc, but also contained significant amounts of manganese. Moreover, CwIV
247 had robust activity when bound to either cobalt or manganese (42). To our knowledge, iron has not

248 been reported as a cofactor in peptidoglycan amidases. However, there are examples of zinc-
249 dependent hydrolases that can use iron(II) in place of zinc(II) to cleave amide bonds. LpxC, which
250 catalyzes the committed step in Lipid A biosynthesis by hydrolyzing an N-acyl bond, can bind either
251 zinc(II) or iron(II) under native conditions, and although the affinity for zinc is greater than for iron, the
252 enzyme is more active with an iron cofactor (43). Because exchangeable intracellular iron(II) is present
253 in greater abundance than zinc(II) under most conditions, it has been argued that iron is the dominant
254 cofactor. Histone deacetylase 8 (HDAC8) was similarly found to use either iron or zinc and has higher
255 activity when bound to iron (44). Although LpxC, HDAC8, and LytH have different substrates, they all
256 cleave amide bonds. It is thus conceivable that LytH similarly makes use of different metal cofactors
257 depending on the conditions.

258 We have shown that the rhomboid protease domain of ActH is dispensable for the shared
259 phenotypes of Δ *lytH* and Δ *actH*, implying that there is no necessary interaction between the TM helix of
260 LytH and the intramembrane domain of ActH. In contrast, the glucosaminidase SagB, which is also
261 regulated by an intramembrane protein with homology to a family of proteases, forms close contacts
262 through its TM helix with intramembrane helices of the protease, SpdC (38). Protein-protein interactions
263 through membrane domains is a common theme in all cells. That ActH's hydrolase-regulating function
264 is entirely contained in its extracellular TPR domain, yet ActH homologs with both a rhomboid domain
265 and a TPR domain are widespread in Firmicutes (7, 45), suggests there may be some connection
266 between the LytH-activating role of ActH and its unknown other roles. Rhomboid proteases are found in
267 all domains of life and have important roles in eukaryotes (46), but their functions in bacteria have
268 remained more mysterious (45, 47, 48). Our constructs that lack the rhomboid protease domain, yet
269 activate LytH, now allow exploration of phenotypes specifically associated with the rhomboid domain.

270 An unanswered question is what purpose is served by having an activator of LytH. A standard
271 view in the field is that cell wall hydrolase activators are required to prevent excessive cleavage of the
272 cell wall. However, some cell wall hydrolases have intrinsic activity, and temporal or spatial
273 mechanisms are used for regulation. For example, the membrane-bound cell wall hydrolase SagB is

274 intrinsically active but is unable to effect peptidoglycan cleavage when SpdC is deleted, evidently
275 because it cannot access substrate that is partially crosslinked into the cell wall matrix unless it is
276 properly presented atop SpdC (38). Investigating the conditions under which ActH and LytH are
277 expressed, and the levels to which they are natively expressed, could be helpful in elucidating the
278 purpose of requiring complexation for activity and might begin to shed some light on why the LytH
279 activation domain is found in a much larger protein with other functions.

280 **Acknowledgements**

281 We would like to thank Brian Jackson at the Dartmouth Trace Element Analysis Core for help with the
282 elemental analyses. We thank the Microscopy Resources On the North Quad (MicRoN) facility at
283 Harvard Medical School for their training and support. We thank the staff at Advanced Photon Source
284 GM/CA beamlines for support of x-ray data collection. GM/CA@APS is funded by the National Cancer
285 Institute (ACB-12002) and the National Institute of General Medical Sciences (AGM-12006,
286 P30GM138396). The Eiger 16M detector at GM/CA-XSD was funded by NIH grant S10 OD012289.
287 Portions of this research were conducted at the Advanced Photon Source, a U.S. Department of
288 Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne
289 National Laboratory under Contract No. DE-AC02-06CH11357. SBGrid provided structural biology
290 software support. We would like to acknowledge Bailey Plaman for preliminary work on LytH-ActH
291 binding assays during her rotation, and Liz Nolan and Theodore Betley for helpful discussions of
292 metalloenzymes. Funding for this work was provided by National Institutes of Health grants R01
293 AI139011 and R01 AI148752 to S.W. and T32 GM007753 and F30 AI156972 to J.E.P., the National
294 Science Foundation DGE1144152 to T.D., and a Merck Postdoctoral Fellowship from the Helen Hay
295 Whitney Foundation to M.A.S.

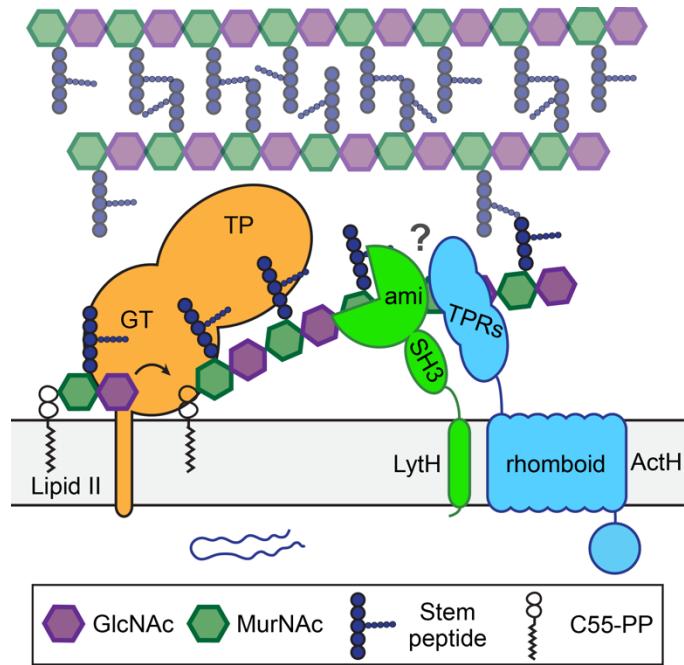
296 **Author Contributions**

297 J.E.P., T.D., and S.W. conceived the project. J.E.P., A.C.K., and S.W. designed and coordinated the
298 overall study. J.E.P. performed the biochemical and cellular experiments. J.E.P. and M.A.S. performed

299 crystallographic experiments. T.D. performed preliminary experiments and constructed several strains.
300 The manuscript was written by J.E.P. and S.W. with input from all authors.

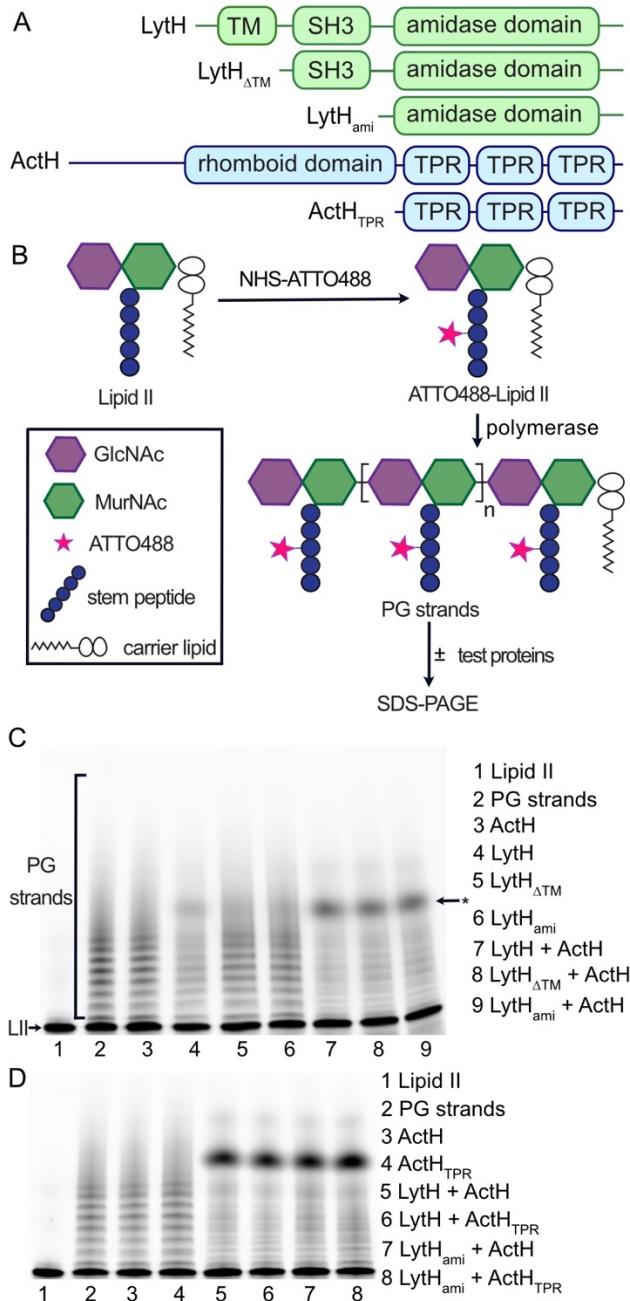
301 **Data availability**

302 Crystallographic data are available from the Protein Data Bank with PDBID 7TJ4.

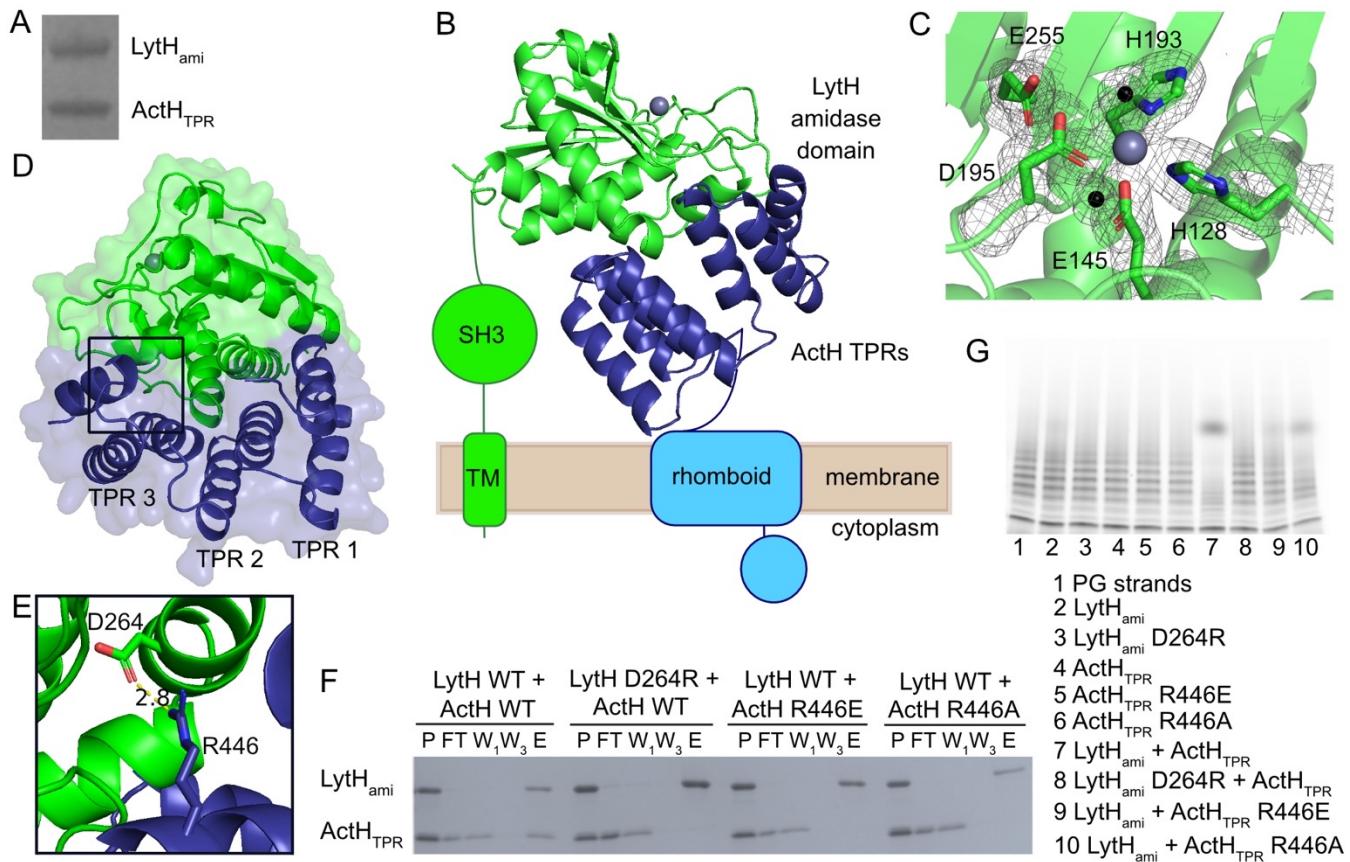

303 **Competing Interests**

304 The authors declare no competing interest.

305

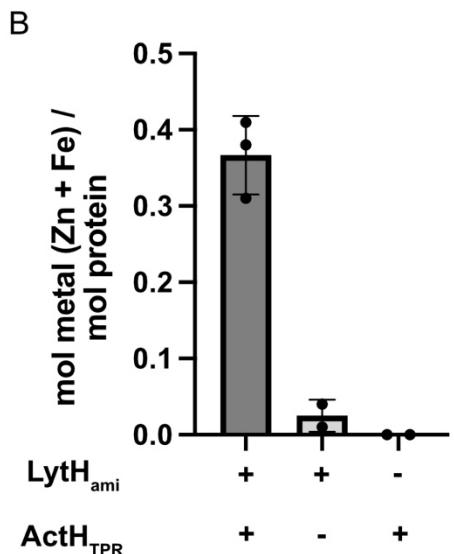
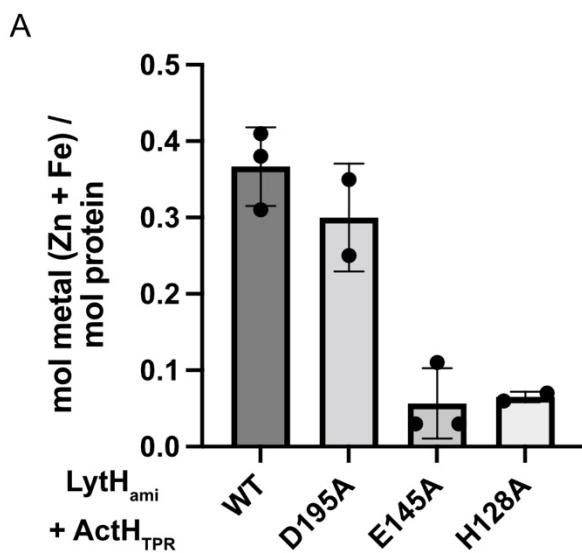

306 **Corresponding author**

307 Suzanne Walker: suzanne_walker@hms.harvard.edu

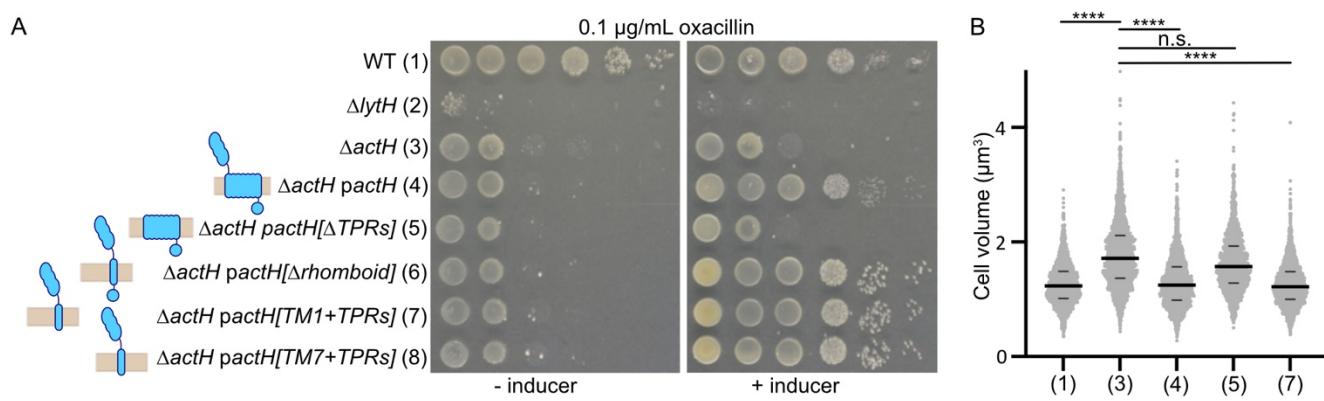

310 **Fig. 1. How ActH stimulates the amidase activity of LytH is unknown.** Glycosyltransferases (GTs)
311 polymerize Lipid II into glycan strands that get crosslinked into the cell wall by transpeptidases (TPs).
312 LytH-ActH cleaves stem peptides off of uncrosslinked nascent peptidoglycan, controlling the availability
313 of stem peptides that can be used as transpeptidation substrates for insertion of new peptidoglycan
314 strands. ActH is required for robust amidase activity of LytH, but how the two proteins interact to
315 produce this activity is unknown. LytH contains a TM helix, an SH3 domain, and a catalytic amidase_3

316 domain (ami). ActH has a predicted intracellular domain of 150 amino acids, a rhomboid protease
317 domain, and an extracellular domain with three tetratricopeptide repeats (TPRs).

318
319 **Fig. 2. The LytH amidase domain and ActH TPRs are sufficient for amidase activity *in vitro*. (A)**
320 Domain structure of LytH and ActH and truncation mutants tested for activity. (B) To detect amidase
321 activity, fluorophore-labeled Lipid II is polymerized into uncrosslinked peptidoglycan strands, treated
322 with the enzyme of interest, and visualized by SDS-PAGE and fluorescence imaging. (C) The LytH



323 amidase domain alone (LytH_{ami} , $\text{LytH}[102-291]$) has minimal activity but can be activated by ActH . *
324 indicates the released fluorophore-labeled stem peptide. (D) The ActH TPRs (ActH_{TPR} , $\text{ActH}[365-487]$)
325 are sufficient to activate LytH .

326


327 **Fig. 3. Structure of the LytH amidase domain in complex with the ActH TPRs shows an**
328 **extensive interface with contacts from LytH alpha helices to the TPRs** (A) The LytH
329 amidase domain ($\text{LytH}[117-291]$) and ActH TPRs ($\text{ActH}[365-479]$) co-purify as a stable 1:1 complex
330 from *E. coli*. (B) A crystal structure of $\text{LytH}[117-291, \text{R245A}]\text{-ActH}[365-479]$ shows the LytH amidase
331 domain atop the ActH TPRs. The rest of LytH and ActH are schematized. (C) Four amino acid side
332 chains (H128, E145, H193, and D195) and two waters (black spheres) coordinate zinc in the active site
333 of LytH . E255 is conserved throughout amidase_3 family proteins. 2Fo-Fc electron density (gray mesh)
334 is contoured at 1σ . (D) There is an extensive interface between alpha helices of the LytH amidase
335 domain and the concave surface of the ActH TPRs. (E) A salt bridge forms between LytH D264 and

336 ActH R446. (F) FLAG-tagged LytH_{ami} (LytH[102-291]) bound to α -FLAG resin pulls down wild-type
337 ActH_{TPR} (ActH[365-487]). LytH_{ami} D264R, ActH_{TPR} R446E, and ActH_{TPR} R446A are no longer able to
338 stably form a complex with their wild-type partner protein. For each sample, P = pre-loading, FT =
339 FLAG resin flow-through, W₁ = wash 1, W₃ = wash 3, and E = elution. WT = wild-type. (G)
340 Fluorescently labeled PG oligos were treated with individual proteins or combinations of LytH_{ami} and
341 ActH_{TPR}. Mutants in ActH and LytH that disrupt complex binding correspondingly diminish amidase
342 activity.

343

344 **Fig. 4. LytH D195 is not required for metal binding, which is stabilized by ActH binding.** (A) Zinc
345 and iron were quantified in co-purifications of wild-type or mutant LytH_{ami} with ActH_{TPR} by ICP-MS. LytH
346 D195 is not required for metal binding, although H128 and E145 are. Each dot represents an
347 independent purification. (B) Zinc and iron were quantified in purifications of the $\text{LytH}_{\text{ami}}\text{-}\text{ActH}_{\text{TPR}}$
348 complex or the single proteins alone by ICP-MS. Each dot represents an independent purification.
349 Significantly more metal is found in the complex than in LytH_{ami} alone.

350 **Fig. 5. The ActH TPRs on a single transmembrane helix anchor are sufficient for LytH activation**
351 **in cells.** (A) *S. aureus* HG003 ΔlytH and ΔactH are both sensitive to oxacillin. This sensitivity is
352 complemented by ActH truncations with the TPR domain on either the first (row 7) or last (row 8)
353 transmembrane helix of the rhomboid protease domain, but not by a construct lacking the TPR domain
354 (row 5). Strains used are HG003 (1) wild-type, (2) ΔlytH , (3) ΔactH , (4) $\Delta\text{actH pactH}$, (5) $\Delta\text{actH pactH}[2-$
355 367], (6) $\Delta\text{actH pactH}[1-178, 365-487]$, (7) $\Delta\text{actH pactH}[151-178, 365-487]$, and (8) $\Delta\text{actH pactH}[337-$
356 487]. All constructs were expressed from pTP63 by induction with 0.4 μM anhydrotetracycline. (B) *S.*
357 *aureus* cells were stained with the membrane dye Nile Red, and the volumes of non-dividing cells were
358 estimated and plotted (7). Complementation of ΔactH with TPR-containing constructs of ActH correct
359 the size defects associated with loss of LytH activity. The numbers on the x-axis correspond to the
360 strains in subfigure A. In each plot, each dot represents an individual cell, the larger horizontal bars
361 mark the median, and the smaller horizontal bars demarcate the interquartile range. Over 1,500 cells
362 were counted for each sample. The sample medians are (1) 1.234 μm^3 , (3) 1.717 μm^3 , (4) 1.252 μm^3 ,

364 (5) $1.573 \mu\text{m}^3$, and (7) $1.220 \mu\text{m}^3$. P-values were determined by two-sided Mann-Whitney U tests. For
365 (1) and (3), $p = 1.8 \times 10^{-204}$; for (3) and (4), $p = 1.9 \times 10^{-162}$; for (3) and (5), $p = 2.0 \times 10^{-15}$; for (3) and
366 (7), $p = 1.7 \times 10^{-298}$; **** signifies $p < 10^{-100}$.

367

368 Methods

369

370 **Materials.** Unless otherwise indicated, all chemicals and reagents were purchased from Sigma-Aldrich.
371 Restriction enzymes, KOD DNA polymerase, Q5 2x Master Mix, Phusion 2x Master Mix, and T4
372 polynucleotide kinase were purchased from New England Biolabs. The In-fusion HD Cloning Plus kit
373 was purchased from Takara Bio USA. Oligonucleotide primers were purchased from Integrated DNA
374 Technologies. Culture media were purchased from Becton Dickinson. *S. pneumoniae* Δ murMN Lipid II
375 was isolated from cells as described previously (49, 50). Lipid II was labeled with ATTO488 as
376 previously described (51). *S. aureus* SgtB^{Y181D} was expressed and purified as previously reported (52).
377 Genomic DNA was isolated using a Wizard Genomic DNA Purification kit (Promega).

378

379 **Bacterial growth conditions.** *E. coli* strains were grown with shaking at 37 °C in lysogeny broth (LB),
380 Terrific Broth (TB), or on agarized LB plates with appropriate antibiotics. *S. aureus* strains were grown
381 with shaking at 30 or 37 °C in tryptic soy broth (TSB) or on agarized TSB plates containing antibiotics
382 as appropriate. Plasmids were cloned using *E. coli* NEB 10-beta cells. *E. coli* Stellar cells were used for
383 cloning with the In-fusion HD Cloning Plus kit. The *E. coli* C43 (DE3) strain was used for
384 overexpression of membrane-anchored proteins, and the BL21 (DE3) strain was used for
385 overexpression of all soluble proteins. The following concentrations of antibiotics were used:
386 carbenicillin, 100 µg/mL; chloramphenicol, 10 µg/mL; erythromycin, 10 µg/mL; kanamycin, 50 µg/mL
387 (neomycin, 50 µg/mL was added as well for kanamycin resistant *S. aureus* strains); tetracycline, 3
388 µg/mL. The bacterial strains, plasmids and oligonucleotide primers used in this study are summarized
389 in Supplementary Tables. Protocols for plasmid construction can be found in the Supplementary
390 Methods.

391

392 **Protein expression:** For each soluble protein, *E. coli* BL21(DE3) containing the expression plasmid of
393 interest was grown in 1-1.5 L LB supplemented with the appropriate antibiotics at 37 °C with shaking
394 until $\text{OD}_{600} \sim 0.6$. The culture was cooled to 16 °C, and protein expression was induced by adding 500
395 µM isopropyl β-D-1-thiogalactopyranoside (IPTG). For each membrane-bound protein, *E. coli* C43(DE3)
396 containing the expression plasmid of interest was grown in 1.5 L TB supplemented with appropriate
397 antibiotics at 37 °C with shaking until $\text{OD}_{600} \sim 0.8$. The culture was cooled to 16 °C, and protein

398 expression was induced by adding 1 mM IPTG. Cells were harvested 18 h post-induction by
399 centrifugation (4,000 x g, 10 min, 4 °C), and the pellet was stored at -80 °C.

400

401 **Purification of soluble His₆-tagged proteins:** Proteins from expression constructs pTD2 and pTD3
402 were purified as previously described (7). For elemental analyses, protein expressed from pTD3 was
403 purified as described here. All steps after cell lysis were performed at 4 °C. Cells were resuspended in
404 30 mL Buffer A (50 mM HEPES pH 7.5, 500 mM NaCl, 10% glycerol) supplemented with 5 mM MgCl₂,
405 1 mM tris(2-carboxyethyl)phosphine (TCEP), 1 mg/mL lysozyme, 250 µg/mL DNase, 1 mM
406 phenylmethylsulfonyl fluoride (PMSF) and Roche cOmplete Protease Inhibitor and stirred to
407 homogenize. The resuspended cells were then passaged through a cell disruptor (EmulsiFlex-C5,
408 Avestin) at 15,000 psi three times to lyse. Cell debris was removed by centrifugation (10,000 x g, 5 min,
409 4 °C), and the membrane fraction was removed by ultracentrifugation of the supernatant (119,000 x g,
410 45 min, 4 °C). The resulting supernatant was supplemented with 1 mL pre-equilibrated Ni-NTA resin
411 (Qiagen) and 10 mM imidazole and stirred for 30 min at 4 °C. The sample was then loaded onto a
412 gravity column and washed with 30 mL Buffer A containing 10 mM imidazole, 30 mL Buffer A
413 containing 20 mM imidazole, and 30 mL Buffer A containing 40 mM imidazole. The protein was then
414 eluted in 20 mL Buffer A containing 300 mM imidazole. The eluate was further purified by size
415 exclusion chromatography (SEC) with a Superdex 75 10/300 GL (for expression constructs pJP62,
416 pJP151, and pJP152) or Superdex 200 Increase 10/300 GL (all others, pJP62 for elemental analysis)
417 equilibrated in Buffer A. Fractions containing the target protein were concentrated by centrifugal
418 filtration. The absorbance at 280 nm was measured using a NanoDrop One Microvolume UV-Vis
419 Spectrophotometer (ThermoFisher Scientific), and the predicted extinction coefficient was used to
420 calculate concentration. Protein samples were then aliquoted and stored at -80 °C.

421

422 **Purification of membrane bound His-tagged proteins:** Full length His₆-ActH (construct pTD52) was
423 purified as previously described (7). Full length LytH-His₆ (construct pTD42) was purified as described
424 for His-tagged soluble proteins with the following modifications. After ultracentrifugation, the membrane
425 fraction was collected and resuspended in 30 mL solubilization buffer (Buffer A + 1% (w/v) n-dodecyl β-
426 D-maltoside (DDM) and 1 mM TCEP). The resulting mixture was stirred for 1 hr at 4 °C before
427 ultracentrifugation (119,000 x g, 35 min, 4 °C). The resulting supernatant was supplemented with 0.75
428 mL pre-equilibrated TALON resin (Takara Clontech) and 1 mM imidazole and stirred for 30 min at 4 °C.
429 The sample was then loaded onto a gravity column and washed with 20 mL each of Buffer A
430 supplemented with 2 mM imidazole/1% DDM, 4 mM imidazole/0.2% DDM, 6 mM imidazole/0.1% DDM,
431 8 mM imidazole/0.05% DDM, 10 mM imidazole/0.05% DDM, and 15 mM imidazole/0.05% DDM. The

432 protein was then eluted in 10 mL Buffer A containing 0.05% DDM and 150 mM imidazole. The eluate
433 was further purified by size exclusion chromatography (SEC) with a Superdex 200 10/300 GL column
434 equilibrated in Buffer A with 0.05% DDM.

435

436 **Purification of soluble FLAG-tagged proteins:** All steps after cell lysis were performed at 4 °C. Cells
437 were resuspended in 30 mL Buffer B (50 mM HEPES pH 7.5, 150 mM NaCl, 10% glycerol)
438 supplemented with 5 mM MgCl₂, 1 mg/mL lysozyme, 250 µg/mL DNase, and 1 mM
439 phenylmethylsulfonyl fluoride (PMSF) and stirred to homogenize. The resuspended cells were then
440 passaged through a cell disruptor (EmulsiFlex-C5, Avestin) at 15,000 psi three times to lyse. Cell debris
441 was removed by centrifugation (10,000 x g, 5 min, 4 °C), and the membrane fraction was removed by
442 ultracentrifugation of the supernatant (119,000 x g, 45 min, 4 °C). The resulting supernatant was then
443 loaded onto a gravity column with 1 mL α-FLAG G1 affinity resin (Genscript), and the flow through was
444 passed through the column four more times. The resin was washed with 3 x 15 mL of Buffer B, and the
445 protein was eluted with 10 mL of Buffer A supplemented with 0.2 mg/mL FLAG peptide (Genscript). The
446 eluate was further purified by size exclusion chromatography (SEC) with a Superdex 200 Increase
447 10/300 GL equilibrated in Buffer A. Fractions containing the target protein were concentrated by
448 centrifugal filtration. The absorbance at 280 nm was measured using a NanoDrop One Microvolume
449 UV-Vis Spectrophotometer (ThermoFisher Scientific), and the predicted extinction coefficient was used
450 to calculate concentration. Protein samples were then aliquoted and stored at -80 °C.

451

452 **In-gel detection of amidase activity:** ATTO488-labeled Lipid II (1.4 µM) was polymerized with 1.8 µM
453 SgtB^{Y181D}, a monofunctional peptidoglycan glycosyltransferase with impaired processivity (52), in 1.1x
454 reaction buffer (1x buffer = 50 mM Hepes pH 7.5, 10 mM CaCl₂, 60 µM Zn(OAc)₂, and 15% DMSO) at
455 room temperature for 2 h. The polymerization reaction was heat-quenched at 95 °C for 5 min. After
456 cooling, the digestion reaction was set up by adding 1 µL of 5 µM enzyme to 9 µL of the polymerization
457 reaction product (total volume 10 µL). For reactions testing pairs of proteins (LytH + ActH), mixes
458 containing 5 µM of each protein were first prepared and incubated on ice for 20 min before addition to
459 the polymerization reaction product. After incubating the reaction mixtures at room temperature for 5
460 hours, the reactions were quenched by adding 10 µL 2x Laemmli sample buffer (Bio-Rad). The
461 samples were then loaded onto a 4-20% Mini-PROTEAN TGX Precast Protein gel (Bio-Rad) and run at
462 180 V. The gels were imaged using a Typhoon FLA 7000 imager.

463

464 **Crystallization and structure determination:** pJP85 was transformed into BL21 cells, and LytH[117-
465 291]-ActH[365-479] was expressed and purified as described for His-tagged soluble proteins except

466 that the final protein was exchanged into 50 mM Hepes pH 7.5, 150 mM NaCl on the Superdex200
467 Increase 10/300 GL column. Final protein was aliquoted and flash frozen. Crystals were obtained in a
468 1:1 ratio of 12.6 mg/mL protein solution to 0.17 M sodium acetate, 0.085 M Tris: HCl pH 8.5, 25.5%
469 (w/v) PEG4000, 15% (v/v) glycerol after 1-2 days at 20 °C. Crystals were harvested with nylon loops
470 and then flash cooled in liquid nitrogen.

471 Diffraction data were collected at 1.033 Å and 100 K at the Advanced Photon Source GM/CA
472 beamline 23ID-B. Data were collected at 1° / second with ten-fold attenuation, and 0.2° oscillation
473 range. Efforts to solve the structure from this data revealed overlapping lattice patterns from twinned
474 crystals, and the data could not be deconvoluted. Preliminary molecular replacement solutions using
475 Phaser (53) through the Phenix Software Suite (54) with an amidase from *C. difficile* (PDB ID: 4RN7)
476 as a search model demonstrated a trimer forming between three units of LytH, with interactions
477 between helices spanning residues 179-185 and 242-247 on one subunit and a loop from residues 196-
478 203 on the other. In order to disrupt this interaction and force the protein to crystallize in a different
479 lattice, we prepared a series of constructs with mutations in these regions, ultimately solving the
480 structure of LytH[117-291, R245A]-ActH[365-479].

481 pJP107 was transformed into BL21 cells, and LytH[117-291, R245A]-ActH[365-479] was
482 expressed and purified as described for His-tagged proteins except that the final protein was
483 exchanged into 50 mM Hepes pH 7.5, 150 mM NaCl on the Superdex200 Increase 10/300 GL column.
484 Final protein was aliquoted and flash frozen. Crystals were obtained in a 2:1 ratio of 12.6 mg/mL protein
485 solution to 0.1 M NH₄NO₃ pH 6.3, 22% (w/v) PEG3350 after 3-7 days at 20 °C. Crystals were harvested
486 with nylon loops after cryoprotection in 0.1 M NH₄NO₃ pH 6.3, 22% (w/v) PEG3350, 15% glycerol and
487 then flash cooled in liquid nitrogen.

488 Diffraction data were collected at 1.033 Å and 100 K at the Advanced Photon Source GM/CA
489 beamline 23ID-D. Data were collected at 1° / second with ten-fold attenuation, and 0.2° oscillation
490 range. Data were processed with XDS (55). A complete dataset was obtained from one crystal and
491 processed in space group P222. The structure was solved by molecular replacement using Phaser (53)
492 through the Phenix Software Suite (54) using a *C. difficile* amidase (PDB ID: 4RN7) as a search model
493 (56). A model of LytH and ActH was built with Phenix AutoBuild (57). Iterative rounds of model building
494 and refinement were carried out using Coot (58) and Phenix.refine (59) with automated
495 translation/liberation/screw group selection. Structures were validated with MolProbity (60). Figures
496 were prepared using Pymol (Schrodinger, LLC. The PyMOL Molecular Graphics System. Version
497 2.3.4). All structural biology software was accessed through SBGrid (61). The protein interface was
498 analyzed using the 'Protein interfaces, surfaces and assemblies' service PISA at the European
499 Bioinformatics Institute (http://www.ebi.ac.uk/pdbe/prot_int/pistart.html).

500 To examine the identity of the metal in the active site of LytH we collected Friedel-pair data at X-
501 ray energies of 9.70 and 7.26 keV. Data for isomorphous crystals was processed with XDS and phased
502 through rigid-body refinement in Refmac5 (62).

503

504 ***In vitro* pull-down binding assay:** Pairs of FLAG-tagged LytH proteins and His-tagged ActH proteins
505 were mixed 1:1 at a final concentration of 11 μ M for each and incubated on ice for 10 min (P, pre-
506 loading). This mix (16 μ L) was then loaded onto 15 μ L of α -FLAG G1 resin (Genscript) pre-equilibrated
507 in FLAG resin buffer (50 mM Hepes pH 7.5, 150 mM NaCl, 10% glycerol) in a microspin column
508 (Pierce), and the flow-through was collected. The resin was then washed three times with 2 CVs of
509 FLAG resin buffer each time, incubating on ice for 5 min with each wash before collecting. The protein
510 was then eluted with 1 CV of FLAG resin buffer supplemented with 0.2 mg/mL FLAG peptide
511 (Genscript) after incubating with the elution buffer for 5 min on ice. A 5x Laemmli buffer was added to
512 each sample, and the samples were then loaded onto a 4-20% Midi-PROTEAN TGX Precast Protein
513 gel (Bio-Rad) and run at 180V. The gel was stained with Instant Blue (abcam) and imaged.

514

515 **Elemental analyses:** SEC-purified proteins at 20 μ M in 50 mM Hepes pH 7.5, 500 mM NaCl, 10%
516 glycerol were diluted 7X in water and analyzed by ICP-MS (8900, Agilent, Santa Clara, CA) in helium
517 mode at the Dartmouth Trace Element Analysis Core.

518

519 ***S. aureus* strain construction:** To construct strains containing pTP63 plasmids, the plasmids were
520 first electroporated into TD011, and transformants were selected on TSA supplemented with 10 μ g/mL
521 chloramphenicol. pTP63 constructs were then transduced into strain TD177 to produce strains JP299,
522 JP331, JP332, JP334, and JP335.

523

524 To construct strains containing ActH or its truncations on pLOW plasmids, the plasmids were
525 first electroporated into RN4220 wild-type, and the transformants were selected on TSA supplemented
526 with 10 μ g/mL erythromycin. pLOW constructs were then transduced into strain TD177 to produce
527 strains JP367, JP368, JP373, JP374, and JP375.

528

529 To construct strains containing pLOW plasmids in a Δ lytH::kan^R background, the plasmids were
530 isolated from *E. coli* DC10B and then directly electroporated into TD024 to produce strains TD156,
531 JP391, JP392, JP400, and JP401.

532

533 **Spot dilution assays:** *S. aureus* cultures in TSB with antibiotics as appropriate were grown overnight
534 at 30 °C with aeration. Overnight cultures were diluted 1:100 into fresh TSB without antibiotics and
535 grown to mid-log phase. The cultures were normalized, five 10-fold dilutions were prepared in TSB, and

534 5 μ L of each dilution were spotted onto TSA plates with or without 0.1 μ g/mL oxacillin and inducer.
535 Plates were incubated overnight at 37 °C. A Nikon D3400 DSLR camera fitted with an AF-S Micro-
536 Nikkor 40 mm 1:2.8G lens was used to take pictures of the plates.

537 **α -FLAG Western blots:** *S. aureus* strains were inoculated in TSB with antibiotics as appropriate and
538 the cultures were grown at 30 °C overnight with aeration. Overnight cultures were diluted 1:100 into
539 fresh TSB with or without 1 mM IPTG and grown for 3.5 hr with aeration at 30 °C. For strains containing
540 pLOW constructs, TSB was supplemented with erythromycin. The cultures were normalized, harvested,
541 and lysed in 1x PBS pH 7.4 supplemented with 100 μ g/mL lysostaphin, 20 μ g/mL DNase, and 5 mM
542 MgCl₂ with incubation at 37 °C for 1 hr. Laemmli buffer was then added, and the samples were
543 incubated at 37 °C for an additional 30 min. The samples were then loaded onto a 4-20% PROTEAN
544 TGX Precast Protein gel (Bio-Rad) and run at 180V, transferred to a nitrocellulose membrane (Bio-
545 Rad), and blocked in 1x TBST containing 5% Blotting Grade Blocker (Bio-Rad) for 1 hr at room
546 temperature. Membranes were then blotted with 1:2000 α -FLAG M2-HRP (Sigma Aldrich A8592) in
547 TBST with 5% Blotting Grade Blocker for 1 hr at room temperature, washed with TBST, and exposed
548 with ECL reagent (Pierce).

549 **Microscopy analysis of *S. aureus* cells:** *S. aureus* cultures were grown overnight at 30 °C in TSB
550 with antibiotics as appropriate. The overnight cultures were then diluted to a starting OD₆₀₀ of 0.02 in 3
551 mL TSB with 0.4 μ M anhydrotetracycline, grown at 37 °C with aeration to mid-log phase, and
552 normalized. Cells (1 mL normalized culture) were then labeled with 5 μ g/mL Nile red for 5 min at 37 °C
553 with shaking (500 rpm). The cells were pelleted (4,000xg, 2 min), most of the supernatant was
554 removed, and the cells were resuspended in the remaining supernatant (about 50 μ L). Cells were
555 spotted onto a thin 2% agarose pad prepared in 1x PBS pH 7.4 and covered with a No. 1.5 cover slip,
556 and sealed with Valap (equal weights of petroleum jelly, lanolin, and paraffin). Brightfield, phase-
557 contrast, and widefield epifluorescence microscopy images were obtained using a Nikon Ti inverted
558 microscope fitted with a custom-made cage incubator set at 30 °C, a Nikon motorized stage with an
559 OkoLab gas incubator and a slide insert attachment, either an Andor Zyla 4.2 Plus sCMOS or a
560 Hamamatsu Orca Flash 4.0 V3 camera, Lumencore SpectraX LED Illumination, Plan Apo lambda
561 x100/1.45 Oil Ph3 DM objective lens, and Nikon Elements 4.30 acquisition software. The microscope
562 was fitted with a 49008 Chroma ET filter cube for detecting Nile red. Exposure times for Nile red
563 labeling were 20-80 ms. Images were analyzed using FIJI (63) and Matlab scripts developed in-house.
564 *S. aureus* cell volumes were estimated using StaphSizer as previously described (7). Only cells without
565 a visible septum were included for this analysis.

566

567 **References**

- 568 1. M. Rajagopal, S. Walker, Envelope Structures of Gram-Positive Bacteria. *Current Top Microbiol Immunol* **404**, 1 (2017).
- 569 2. H. Cho, *et al.*, Bacterial cell wall biogenesis is mediated by SEDS and PBP polymerase families functioning semi-autonomously. *Nat Microbiol* **1**, 1–8 (2016).
- 570 3. A. Taguchi, *et al.*, FtsW is a peptidoglycan polymerase that is functional only in complex with its cognate penicillin-binding protein. *Nat Microbiol* **4**, 587–594 (2019).
- 571 4. E. Sauvage, F. Kerff, M. Terrak, J. A. Ayala, P. Charlier, The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. *FEMS Microbiol Rev* **32**, 234–258 (2008).
- 572 5. T. Do, J. E. Page, S. Walker, Uncovering the activities, biological roles, and regulation of bacterial cell wall hydrolases and tailoring enzymes. *J Biol Chem* **295**, 3347 (2020).
- 573 6. W. Vollmer, B. Joris, P. Charlier, S. Foster, Bacterial peptidoglycan (murein) hydrolases. *FEMS Microbiol Rev* **32**, 259–286 (2008).
- 574 7. T. Do, *et al.*, Staphylococcus aureus cell growth and division are regulated by an amidase that trims peptides from uncrosslinked peptidoglycan. *Nat Microbiol* **5**, 291–303 (2020).
- 575 8. D. Korsak, S. Liebscher, W. Vollmer, Susceptibility to Antibiotics and β -Lactamase Induction in Murein Hydrolase Mutants of Escherichia coli. *Antimicrob Agents Chemother* **49**, 1404 (2005).
- 576 9. D. A. Dik, *et al.*, Slt, MltD, and MltG of Pseudomonas aeruginosa as Targets of Bulgecin A in Potentiation of β -Lactam Antibiotics. *ACS Chem Biol* **14**, 296–303 (2019).
- 577 10. T. Uehara, K. R. Parzych, T. Dinh, T. G. Bernhardt, Daughter cell separation is controlled by cytokinetic ring-activated cell wall hydrolysis. *EMBO J* **29**, 1412–1422 (2010).
- 578 11. D. Mavrici, *et al.*, Mycobacterium tuberculosis FtsX extracellular domain activates the peptidoglycan hydrolase, RipC. *Proc Natl Acad Sci U S A* **111**, 8037 (2014).
- 579 12. L.-T. Sham, S. M. Barendt, K. E. Kopecky, M. E. Winkler, Essential PcsB putative peptidoglycan hydrolase interacts with the essential FtsXSpn cell division protein in Streptococcus pneumoniae D39. *Proc Natl Acad Sci U S A* **108**, E1061–E1069 (2011).

593 13. O. R. Diaz, C. V. Sayer, D. L. Popham, A. Shen, *Clostridium difficile* Lipoprotein GerS Is Required
594 for Cortex Modification and Thus Spore Germination. *mSphere* **3**, e00205-18 (2018).

595 14. C. K. Gurmani Serrano, *et al.*, ActS activates peptidoglycan amidases during outer membrane
596 stress in *Escherichia coli*. *Mol Microbiol* **116**, 329–342 (2021).

597 15. B. E. Rued, *et al.*, Structure of the Large Extracellular Loop of FtsX and Its Interaction with the
598 Essential Peptidoglycan Hydrolase PcsB in *Streptococcus pneumoniae*. *mBio* **10**, e02622-18
599 (2019).

600 16. L. D. D'Andrea, L. Regan, TPR proteins: the versatile helix. *Trends Biochem Sci* **28**, 655–662
601 (2003).

602 17. A. Perez-Riba, L. S. Itzhaki, The tetratricopeptide-repeat motif is a versatile platform that enables
603 diverse modes of molecular recognition. *Curr Opin Struc Biol* **54**, 43–49 (2019).

604 18. J. Yang, *et al.*, Molecular basis for TPR domain-mediated regulation of protein phosphatase 5.
605 *EMBO J* **24**, 1–10 (2005).

606 19. K. Lapouge, *et al.*, Structure of the TPR domain of p67phox in complex with Rac.GTP. *Mol Cell* **6**,
607 899–907 (2000).

608 20. E. Krissinel, K. Henrick, Inference of Macromolecular Assemblies from Crystalline State. *J Mol Biol*
609 **372**, 774–797 (2007).

610 21. F. M. Büttner, M. Renner-Schneck, T. Stehle, X-ray crystallography and its impact on
611 understanding bacterial cell wall remodeling processes. *Int J Med Microbiol* **305**, 209–216 (2015).

612 22. D. C. Yang, K. Tan, A. Joachimiak, T. G. Bernhardt, A conformational switch controls cell wall
613 remodeling enzymes required for bacterial cell division. *Mol Microbiol* **85**, 768 (2012).

614 23. M. Rocaboy, *et al.*, The crystal structure of the cell division amidase AmiC reveals the fold of the
615 AMIN domain, a new peptidoglycan binding domain. *Mol Microbiol* **90**, 267–277 (2013).

616 24. D. M. Prigozhin, D. Mavrici, J. P. Huizar, H. J. Vansell, T. Alber, Structural and Biochemical
617 Analyses of *Mycobacterium tuberculosis* N-Acetylmuramyl-L-alanine Amidase Rv3717 Point to a
618 Role in Peptidoglycan Fragment Recycling. *J Biol Chem* **288**, 31549–31555 (2013).

619 25. A. Kumar, *et al.*, The structure of Rv3717 reveals a novel amidase from *Mycobacterium*
620 tuberculosis. *Acta Cryst D* **69**, 2543–2554 (2013).

621 26. F. M. Büttner, K. Faulhaber, K. Forchhammer, I. Maldener, T. Stehle, Enabling cell–cell
622 communication via nanopore formation: structure, function and localization of the unique cell wall
623 amidase AmiC2 of *Nostoc punctiforme*. *FEBS J* **283**, 1336–1350 (2016).

624 27. A. Usenik, *et al.*, The CWB2 Cell Wall-Anchoring Module Is Revealed by the Crystal Structures of
625 the *Clostridium difficile* Cell Wall Proteins Cwp8 and Cwp6. *Structure* **25**, 514–521 (2017).

626 28. I. P. Korndörfer, *et al.*, The Crystal Structure of the Bacteriophage PSA Endolysin Reveals a
627 Unique Fold Responsible for Specific Recognition of *Listeria* Cell Walls. *J Mol Biol* **364**, 678–689
628 (2006).

629 29. M. J. Mayer, V. Garefalaki, R. Spoerl, A. Narbad, R. Meijers, Structure-Based Modification of a
630 Clostridium difficile-Targeting Endolysin Affects Activity and Host Range. *J Bacteriol* **193**, 5477–
631 5486 (2011).

632 30. C. A. Feliciano, B. E. Eckenroth, O. R. Diaz, S. Doublié, A. Shen, A lipoprotein allosterically
633 activates the CwID amidase during *Clostridioides difficile* spore formation. *PLOS Genetics* **17**,
634 e1009791 (2021).

635 31. J. Jumper, *et al.*, Highly accurate protein structure prediction with AlphaFold. *Nature* **596**, 583–589
636 (2021).

637 32. C. P. Ponting, L. Aravind, J. Schultz, P. Bork, E. V. Koonin, Eukaryotic signalling domain
638 homologues in archaea and bacteria. Ancient ancestry and horizontal gene transfer. *J Mol Biol*
639 **289**, 729–745 (1999).

640 33. T. Baba, O. Schneewind, Target cell specificity of a bacteriocin molecule: a C-terminal signal
641 directs lysostaphin to the cell wall of *Staphylococcus aureus*. *EMBO J* **15**, 4789–4797 (1996).

642 34. J. Z. Lu, T. Fujiwara, H. Komatsuzawa, M. Sugai, J. Sakon, Cell Wall-targeting Domain of
643 Glycylglycine Endopeptidase Distinguishes among Peptidoglycan Cross-bridges. *J Biol Chem*
644 **281**, 549–558 (2006).

645 35. L. S. Gonzalez-Delgado, *et al.*, Two-site recognition of *Staphylococcus aureus* peptidoglycan by
646 lysostaphin SH3b. *Nat Chem Biol* **16**, 24–30 (2020).

647 36. T. Kaneko, L. Li, S. S.-C. Li, The SH3 domain--a family of versatile peptide- and protein-
648 recognition module. *Front Biosci* **13**, 4938–4952 (2008).

649 37. N. Kurochkina, U. Guha, SH3 domains: modules of protein–protein interactions. *Biophys Rev* **5**,
650 29–39 (2012).

651 38. K. Schaefer, *et al.*, Structure and reconstitution of a hydrolase complex that may release
652 peptidoglycan from the membrane after polymerization. *Nat Microbiol* **6**, 34–43 (2021).

653 39. T. Uehara, T. Dinh, T. G. Bernhardt, LytM-Domain Factors Are Required for Daughter Cell
654 Separation and Rapid Ampicillin-Induced Lysis in *Escherichia coli*. *J Bacteriol* **191**, 5094-5107
655 (2009).

656 40. N. T. Peters, *et al.*, Structure–function analysis of the LytM domain of EnvC, an activator of cell
657 wall remodelling at the *Escherichia coli* division site. *Mol Microbiol* **89**, 690–701 (2013).

658 41. J. Cook, *et al.*, Insights into bacterial cell division from a structure of EnvC bound to the FtsX
659 periplasmic domain. *Proc Natl Acad Sci U S A* **117**, 28355–28365 (2020).

660 42. T. Shida, H. Hattori, F. Ise, J. Sekiguchi, Mutational analysis of catalytic sites of the cell wall lytic
661 N-acetylmuramoyl-L-alanine amidases CwlC and CwlV. *J Biol Chem* **276**, 28140–28146 (2001).

662 43. S. G. Gattis, M. Hernick, C. A. Fierke, Active Site Metal Ion in UDP-3-O-((R)-3-Hydroxymyristoyl)-
663 N-acetylglucosamine Deacetylase (LpxC) Switches between Fe(II) and Zn(II) Depending on
664 Cellular Conditions. *J Biol Chem* **285**, 33788–33796 (2010).

665 44. B. Kim, A. S. Pithadia, C. A. Fierke, Kinetics and thermodynamics of metal-binding to histone
666 deacetylase 8. *Protein Sci* **24**, 354–365 (2015).

667 45. J. Began, *et al.*, Rhomboid intramembrane protease YqgP licenses bacterial membrane protein
668 quality control as adaptor of FtsH AAA protease. *EMBO J* **39**, e102935 (2020).

669 46. S. Urban, S. W. Dickey, The rhomboid protease family: a decade of progress on function and
670 mechanism. *Genome Biol* **12**, 231 (2011).

671 47. P. Rather, Role of rhomboid proteases in bacteria. *Biochim Biophys Acta* **1828**, 2849–2854
672 (2013).

673 48. G. Liu, *et al.*, Bacterial rhomboid proteases mediate quality control of orphan membrane proteins.
674 *EMBO J* **39**, e102922 (2020).

675 49. Y. Qiao, *et al.*, Lipid II overproduction allows direct assay of transpeptidase inhibition by β -lactams.
676 *Nat Chem Biol* **13**, 793–798 (2017).

677 50. M. A. Welsh, *et al.*, Identification of a Functionally Unique Family of Penicillin-Binding Proteins. *J
678 Am Chem Soc* **139**, 17727–17730 (2017).

679 51. A. Taguchi, J. E. Page, H.-C. T. Tsui, M. E. Winkler, S. Walker, Biochemical reconstitution defines
680 new functions for membrane-bound glycosidases in assembly of the bacterial cell wall. *Proc Natl
681 Acad Sci U S A* **118** (2021).

682 52. Y. Rebets, *et al.*, Moenomycin Resistance Mutations in *Staphylococcus aureus* Reduce
683 Peptidoglycan Chain Length and Cause Aberrant Cell Division. *ACS Chem Biol* **9**, 459–467
684 (2014).

685 53. A. J. McCoy, *et al.*, Phaser crystallographic software. *J Appl Crystallogr* **40**, 658–674 (2007).

686 54. P. D. Adams, *et al.*, PHENIX: a comprehensive Python-based system for macromolecular
687 structure solution. *Acta Cryst D* **66**, 213–221 (2010).

688 55. W. Kabsch, XDS. *Acta Cryst D* **66**, 125–132 (2010).

689 56. G. Bunkóczki, R. J. Read, Improvement of molecular-replacement models with Sculptor. *Acta Cryst
690 D* **67**, 303–312 (2011).

691 57. T. C. Terwilliger, *et al.*, Iterative model building, structure refinement and density modification with
692 the PHENIX AutoBuild wizard. *Acta Cryst D* **64**, 61–69 (2008).

693 58. P. Emsley, B. Lohkamp, W. G. Scott, K. Cowtan, Features and development of Coot. *Acta Cryst D*
694 **66**, 486–501 (2010).

695 59. P. V. Afonine, *et al.*, Towards automated crystallographic structure refinement with phenix.refine.
696 *Acta Cryst D* **68**, 352–367 (2012).

697 60. V. B. Chen, *et al.*, MolProbity: all-atom structure validation for macromolecular crystallography.

698 *Acta Cryst D* **66**, 12–21 (2010).

699 61. A. Morin, *et al.*, Collaboration gets the most out of software. *eLife* **2**, e01456 (2013).

700 62. G. N. Murshudov, A. A. Vagin, E. J. Dodson, Refinement of macromolecular structures by the

701 maximum-likelihood method. *Acta Cryst D* **53**, 240–255 (1997).

702 63. J. Schindelin, *et al.*, Fiji: an open-source platform for biological-image analysis. *Nat Methods* **9**,

703 676–682 (2012).

704