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Abstract

Motivation

The ability to generate sample-specific protein sequences is a crucial step in neo-antigen
discovery, cancer vaccine development, and proteogenomics. The revolutionary increase in the
throughput of sequencers has fueled large-scale genomic and transcriptomic studies, holding
great promises for the emerging field of personalized medicine. However, most sequencing
projects store their sequencing data in an abbreviated variant calling format (VCF) that is not
immediately amenable to subsequent proteomic and peptidomic analyses. Furthermore, data
processing of such increasingly massive genome-scale datasets calls for parallel and concurrent
programming, and consequently refactoring of existing algorithms and/or the development of
new parallel algorithms.

Results

Here, we introduce sequence intermediate representation (SIR), a novel and generic algorithm
for generating personalized or sample-specific protein sequences from a consequence-called
VCF file and the corresponding reference proteome. An implementation of SIR, named
VCF2Prot, was developed to aid personalized medicine and proteogenomics by generating
personalized proteomes in FASTA format from a collection of consequence-called genomic
alterations stored in a VCF file. Benchmarking VCF2Prot against the recently published
PrecisionProDB showed an ~1000-fold improvement in runtime (depending on the input size).
Furthermore, in a scale-up study VCF2Prot processed a VCF file containing 99,254 variants
observed across 8,192 patients in ~ 11 minutes, demonstrating the massive improvement in the
execution speed and the utility of SIR and VCF2prot in bridging large-scale genomic and
proteomic studies.

Availability and Implementation

VCF2Prot comes with a permissive MIT-license, enabling the commercial and non-
commercial utilization of the tool. The source code along with precompiled versions for
Linux/Mac OS are available at https://github.com/ikmb/vef2prot. The modular units used for
building VCF2Prot are available as a Rust crate at https://crates.io/crates/ppgg with
documentations and examples at https://docs.rs/ppgg/0.1.4/ppgg/ under the same MIT-license.

Introduction

Generating sample-specific proteomes is a fundamental step in proteogenomics and cancer
neoantigen discovery. In the field of proteogenomics, next-generation sequencing is commonly
used to generate a sample-specific protein sequence database for identifying the spectra
obtained through mass spectrometers [1]. Similarly, in neoantigen discovery, generating
sample-specific protein sequences is needed to identify mutated peptides that might generate
an immune response towards cancer [2]. Furthermore, protein and peptide sequences are the
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main input for predicting peptide-HLA interactions [3, 4] and are a corner-stone for unraveling
functional HLA-associations in diseases using peptidome-wide association studies [5].

Different tools have been developed to generate personalized proteomes from sequencing data,
for examples, PrecisionProDB [6], Pypgatk [7], and CustomProDB [8]. These tools differ in
their required input format, the execution logic, the programing language they are implemented
in and the output format they generate. CustomProDB [8] is an R-package specialized in
generating personalized protein sequences from RNA-Seq data, but not from genome sequence
data. Pypgatk [7] is a python library for generating personalized protein databases from
alterations in canonical and non-canonical genes, but it only considers single nucleotide
polymorphisms and no structural variants. PrecisionProDB [6] is a recently published tool
implemented in Python for generating sample-specific protein sequences from genomic
alterations. However, it can only handle one sample at a time and hence it cannot be used for
large scale applications where, thousands of samples need to be analyzed.

With the recent increase in sequencing throughput, decrease in cost, and improvement in mass
spectrometry sensitivity, omics data production is continuously growing. Hence, tools and
algorithms for handling large scale sequencing datasets are urgently needed. To address this
problem, we first developed sequence intermediate representation (SIR), a new inherently
parallel algorithm for generating personalized protein sequences from genomic alterations.
Secondly, we developed VCF2Prot, a freely available command line tool implemented in the
Rust programming language that provides an optimized implementation of SIR.

Material and Methods

I- Problem Formulation and Algorithm Description

We can define any personalized sequence, S,.,,, as the concatenation of a collection of
subsequences, or a collection of blocks, as described in Eq.1.

Spew = Concat(by, by, ...,b,) Eq.1

where by, ..., b, represent a collection of subsequences. These blocks are obtained from two
sources: the first is sequences copied from the reference proteome (for stretches of sequence
without individual alterations) and the second is the alternative sequences due to sample-
specific genomic alterations (Table S1 & Fig. S1). Thus, the first step in generating
personalized sequences is to identify contingent blocks of subsequences from the reference and
the altered stream. To do this, the position relative to the reference, and the type of alteration
must be identified. By using sequencing-technologies, e.g. exome-sequencing, and variant
calling algorithms, e.g. BCFtools/csq [9] (Table S1), the position and type of coding variants
can be obtained proteome-wide. Next, the position and type of alteration are translated into a
representation that describes the generation of sequence blocks, referred to hereafter as
Instruction. Instructions act as intermediate, fixed-size, and uniform representation for a
genomic alteration. It is composite of 5 main components, namely, code which is a one-
character identity for the alteration type (Table S2), position in the reference, position in the
altered sequence, pointer to a char array storing the altered sequence and a number storing the
length of alterations.

Besides acting as a simplified internal representation, /nstructions enable semantic equivalence
where different genetic mutations can have an identical effect on the protein level, i.e. they
result in the same protein end product. For example, a frameshift mutation that causes a
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premature termination of protein translation is synonymous with stop-gain mutation. Hence,
different Instructions can be casted into different types, i.e. Instructions with different
instruction-code and, thus, simplifying the problem for down-stream code. Once instructions
have been created, they are validated and translated into an even more simplified representation
referred to as Tasks and a corresponding string of resulting sequences. Tasks are the simplest
representation used by the algorithm. Structurally, a Task is a tuple t composed of four
elements, first, the stream code ¢, which describes the source of reading data, e.g., reference or
alteration. Second, the position p, which describes the start of the block in the input stream.
Third, the length /, which describes the length of the block and finally, the position in the new

sequence, r (Fig. 1).

A collection of Tasks describing the generation of a collection of sequence blocks is referred
to hereafter as the intermediate representation (IR) of the sequence (Fig. 1 A-B). Fig. S1
describes the translation of a reference sequence and an observed alteration to an IR. First, for
a given collection of alterations, a collection of Tasks is created, through the generation of
Instructions. Once the alterations in each transcript, i.e. genomic alteration in the protein
sequence of a transcript, have been projected into the IR space, they can be combined,
concatenated, and shifted, i.e. moved along the indexing axis. This can be exploited to
concatenate the IR of each sequence to generate a personalized proteome-wide IR.
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Figure 1: A schematic summary for the translation of different genomic alterations as given by BCFTools/csq [9] (changed to
be zero-indexed) into the intermediate representation (IR). A shows the translation of a missense mutation where the amino
acid K is replaced with E. The resulting IR consists therefore of 3 tasks: 1. Take the first three amino acids from the reference.
2. Take the alternate from the genomic alteration. 3. Take the reference from position 4 till the end. B the translation of an
in-frame insertion with the amino acid Q after the 4t amino acid K. C shows the translation of a deletion after the 4th amino
acid where the amino acids KLN are replaced by only the K. D shows the translation of a frameshift mutation where the
subsequence starting from position 25 until the end the of the protein is replaced with the sequence TESTEG. E shows the
translation of a more complex case where two alterations are observed on the protein, the first is a deletion at the 314 amino
acid and the second is a missense mutation of the 148t amino acid. F shows the translation of two alterations: a missense
in the 5t position and a frameshift at the 100t amino acids. All indices in the figure are zero-based to reflect the same
indexing system used by VCF2Prot’s Rust-based implementation.

As shown in Fig. S1, to generate a proteome-wide IR, first, alterations are grouped by
transcript, i.e. all alterations that occurred in the protein sequence of one transcript are grouped
together. Second, each sequence is projected into the IR space. Third, the IR of each sequence
is concatenated and reindexed to generate a proteome-wide representation. As seen in Fig. S1,
each sample is processed independently from other samples, enabling different samples to be
processed in parallel by different threads.

I1- Inspection and Validation of the Translation into Instructions

As stated above, Instructions are the first step toward generating an IR and hence the validity
of translations is of paramount importance to ensure the correct generation of IR. Hence, three
tests were implemented to validate the correctness of input mutations and of translations, first,
position uniqueness, second isolated boundaries, and third prohibited sequences. Position-
uniqueness refers to the requirement that each instruction must have a unique starting position
in the reference and the altered sequence and hence having two mutations at the same position
is prohibited. “Isolated boundaries” refers to the requirement that mutations should not overlap.
Finally, “prohibited sequences” refers to an ‘illegal’ sequence of mutations in a transcript, for
example, after a frameshift, stop-gain, or a stop-loss no independent mutation is allowed. If
any of the three tests fail, the input collection of mutation and the translation is considered
invalid and hence, it is by default ignored, i.e., skipped, and an error message is printed to the
user.

Many reasons can cause such translation failures, for example, software bugs in the encoding,
parsing, and decoding of the bitmask, errors in the consequence calling algorithm due to the
complex genetic architecture of the sample, or due to mismatched references where the
reference used for calling the tool is different from the reference provided to VCF2Prot. These
tests can be turned off by exporting the environment variable NO TEST to minimize their run
time cost especially for a repeated analysis of a well-studied dataset. Further, individual tests
can be switched on by exporting the variable RUN SELECTED TEST followed by the test
name, e.g. INSPECT INS GEN, which applies the above mentioned test to the generated
instruction of each transcript.

III- Inspection and Validation of the Interpretation into Tasks

As discussed above, after translating the mutations observed in a transcript into /nstructions,
the sets of Instructions in a transcript are combined to generate a vector of 7Tasks donated as
the IR of the sample-specific version of the transcript. Different reasons can cause incorrect
generation of IR, for example, incorrect translation of mutations into /nstructions, logical error
in casting Instructions, or logical errors in interpreting instructions. These errors could be
observed in edge-cases which are extremely rare and may have not been covered thoroughly
during unit-testing and development. Hence, we developed two tests to validate the correctness
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of interpretation, first, expected length and second gapped sequences. In the first case, the
expected length of the protein is computed given its set of Instructions and is compared to the
length described by summing the length of each Task. In case the expected and computed length
disagree, the interpretation is considered incorrect, and the transcript is skipped after printing
a detailed error message to the user. The second test makes sure that the Tasks are resulting in
an instruction without interruptions, here the vector of 7Tasks, i.e. the IR of the transcript is
inspected for gaps according to equation 2,

assertoquai(R(T), R(Ti—1) + L(T;_)) Vi € [L,n) (Eq.2)

where R gives the position for a Task (T;) in the resulting protein, L gives the length of the Task
(T;), finally, n is the number of Tasks (T5s) in the IR, the Tasks (T;) are zero-indexed. Hence, in
case the assertion of Eq.2 failed, the interpretation has failed as gaps are present in the resulting
protein. Also, it is worth mentioning that this test is also used after concatenating the IR of each
transcript to generate a haplotype-wide IR, to capture concatenation errors. By default, these
tests are turned on, however, they can be turned off to increase the execution’s speed using the
environmental flag NO TEST. Also, specific test can be run by exporting the flag
RUN SELECTED TEST as described above followed by the test name, e.g.
DEBUG CPU EXEC to inspect the IR before executing it on the CPU.
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Results and Benchmarking

As stated above, available tools are written in different languages and are utilizing different
input formats. Given that VCF2Prot specializes in analyzing genomic variants stored in a VCF
file format, the most commonly used format to store genomic sequence information, we
focused our benchmarking study on PrecisionProDB [6] as it supports the same input type. We
used a python script to benchmark both tools against a VCF file containing an increasing
number of samples ranging from 1 to 128 samples. As PrecisionProDB can only handle one
sample at a time, a for-loop wrapper around the tool was used to measure and store the run time
across all samples. As shown in Fig. 2A, VCF2Prot shows a massive improvement in the
runtime and execution speed.

Next, we were interested in benchmarking the scalability of VCF2Prot against an increasing
number of samples. To this end we utilized a VCF file containing 99,254 variants observed
across 17,138 individuals (Suppl. Materials). We benchmarked the three execution engines
currently available in VCF2Prot, namely, single-threaded execution (st), multithreaded
execution (mt), and GPU-execution (gpu) against an increasing number of samples in the VCF
file (Fig. 2B). As seen in the figure, with a smaller sample size (n<64 =2°) using GPU increase
the runtime. Meanwhile with growing sample sizes, this overhead of using GPUs becomes non-
significant and we achieve a comparable performance between GPU-execution and
multithreaded CPU-based execution. The multithreaded version is on average 4 folds faster
that the single threaded execution (Fig. 2B).
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Figure 2: VCF2Prot performance benchmarking. A) The performance of VCF2Prot against PrecisionProDB using an increasing
number of samples (logarithmic scale). Execution time is recorded in seconds and is shown on a logarithmic scale of base 2
(v-axis) where lower values indicate faster execution. For both VCF2prot and PrcisionProDB the multithreaded execution was
enabled. B) A log-log plot for the execution time of VCF2Prot with an increasing number of samples in the input VCF file using
different execution engines, namely, single-threaded (st), multi-threaded (mt) using a pool of 16 CPU threads, and graphical
processing units (GPUs). Each dot represents the mean execution time over 12 different repetitions. For both A and B, the
benchmarking was conducted on a GPU-node with 512GB of RAM, Twin Intel® Xeon® Gold 6134 CPU at 3.20GHz and using
one Nvidia® Tesla V100-SXM2 32GB GPU.
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Discussion

The ability to generate sample-specific protein sequences is a cornerstone for a plethora of
applications ranging from proteogenomics to neo-epitope discovery and peptidome-wide
association studies. Different tools have been developed to address this task, nevertheless,
most, if not all, of these tools have not been designed to handle large scale datasets, i.e. datasets
with thousands of samples included. One of the challenges in benchmarking the output of
different tools is the algorithm used for filtering and then calling the consequences of the
genomic mutation. VCF2prot decouples the process of calling and identifying the alteration
from the process of applying the alteration to generate the protein sequences. It relies on the
state-of-the-art tool BCFTools/csq [9] for performing the consequence calling in a haplotype-
aware manner and restricts itself to the subsequent processes of applying the genomic
alterations to generate the sample-specific protein sequence. Thus, enabling the user to select
and finetune the upstream processing pipeline, e.g., variant caller and/or consequence calling
parameters.

Benchmarking VCF2Prot against the recently published state-of-the-art tool, PrecisionProDB
shows a clear improvement in terms of execution speed and scalability where thousands of
samples can be executed concurrently. Despite these advantages, the current version of
VCF2Prot has still some limitations. First, it requires a phased and consequence called VCF
file as an input which requires some preprocessing on the user-side and requires a large disk
space to store the VCF file in comparison to the binary compressed BCF format. Second,
VCF2Prot reads the whole file into memory and parses it. Although this improves the
performance it might be challenging for users with large number of samples and a limited
hardware infrastructure.

The simplicity of the internal representation (IR) generated by the SIR algorithm enables the
generated vector of tasks to be executed on CPUs and GPUs. Nevertheless, benchmarking
different execution engines showed a non-significant difference in the run-time of GPUs and
multi-threaded CPU executions. Although it is possible to execute the vector of tasks on the
GPU, it is not the rate-limiting step and hence, a future direction to improve the execution
speed further would be the re-implementation of the preprocessing on the GPU. A second
future direction is to enable VCF2Prot to parse different input format, e.g binary compressed
and Tabix [10] indexed files along with support for writing the output results to an SQL
database to improve down-stream task handling.

Conclusion

SIR is an inherently parallel algorithm for generating personalized proteome sequences, which
is a cornerstone for neoantigen-discovery and proteogenomics. The current implementation in
VCF2Prot can process thousands of samples efficiently using CPUs and/or GPUs. The
documented modular design of the implementation along with the permissive license shall help
in developing other bioinformatics tools using the Rust programming language.

Availability of data and materials

The source code of the library along with the precompiled executable are available at
https://github.com/ikmb/vcf2prot, while the exome data used for characterizing the
performance 1is available at: https:/litdb.ikmb.uni-kiel.de/media/Regeneron csq 1 min-

acS.bcf.gz
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Supplementary Materials
I- Data Preparation and Consequence Calling

The example dataset comprised of whole exome-sequencing data for chromosome 1 of 17,138
samples. This dataset was assembled from different in-house WES projects. Sample
preparation and sequencing as well as the sequence alignment, variant identification and
genotype assignment were performed according to the protocol described in [11]. Additional
genotyping was performed using the Global Screening Array (GSA), version 1.0 (Illumina) on
the same samples. Genotype calling, extracting GSA genotyped data from intensity data files
was performed with Illumina GenomeStudio v. 2.0 software using Cluster File GSAMD-24v1-
0 20011747 A1l. Standard genotype quality control was performed using BIGwas [12] with
default parameters.

To perform haplotype aware consequence calling with BCFTools/csq [9] the data needed to be
phased. To enable phasing with the phasing tool Eagle [13] the WES dataset and the GSA data
needed to be merged in order to increase SNP coverage and enable phasing in otherwise
sparsely covered regions of the exome data. As the WES data was called on genomic build
GRCh38 and the GSA data on genomic build GRCh37, the GSA data was first lifted using
LiftOver from UCSC Genome Browser [14]. All variants that mapped to non-classical
chromosomes were removed (“--chr 1-24), as well as duplicates (‘“--list-duplicate-vars
suppress-first”, followed by “--exclude”) using PLINK, version 1.9 [15]. The variants in the
WES and GSA data were split into overlapping variants and exclusive variants (i.e. present
only in the WES or GSA data). The overlapping variants were merged into a temporary VCF
file using PLINK. The GSA exclusive variants were exported to VCF with PLINK (--extract
<snps> --recode vcf-iid) [15]. Finally, the GSA exclusive variants, exome exclusive variants
and the overlap variants were merged with “bcftools concat” and afterwards sorted with
“beftools sort” [9].

Since multiallelic variants needed to be split into single entries for processing in Eagle, we
applied “beftools norm” to the merged and sorted VCF file [9]. Phasing was then conducted
using Eagle, version 2.4.1, not imputing missing variants [13]. In case of a heterozygous
genotype for an originally multiallelic position, phasing, in some instances, resulted in mapping
of both variations on the same haplotype. Those cases were solved manually by randomly
changing one variant to a valid combination. The multiallelic variants were then merged
together using” beftools norm -m +any” [9]. The variants were finally called using “bcftools
csq -p a” (bcftools version: git 1f1e766)[9]) using the GFF flatfile from the ensemble reference
for build GRCh38, release 100 [16].
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Supplementary Tables

Table S1: Examples of BCFtools/csq consequence string for most common mutational types. It is worth to mention that for
stop-loss the follow up sequence remains unknown as it is not given by bcftools and hence only the sequence provided by
the caller, i.e. BCFtools/csq is included into the resulting sequence.

Mutation type Consequence string

missense missenselSAMD11IENST00000420190Iprotein_codingl+
235G>235S1930248G>A

in-frame insertion inframe_insertionl CCNL2IENST00000481223INMDI-|
8A>8AAAAITI399283AGCC>AGCCGCCGCCGCC

in-frame deletion inframe_deletionl AGRNIENST00000620552Iprotein_coding|+|
59CK>59CI1040744CAAG>C

frameshift frameshiftlC1orf1S9IENST00000379320Iprotein_coding|-I

273QYLLLLEVQLHPRTDAAGLRQALLSSHRFSGAGS
GGPKSQPVRKPRYVRRERPLDRATDPAAFPGEARIS

NV*>273PIPAPP*
stop gain stop_gainedlISAMD1 1IENST00000616016lprotein_codingl+1314W>314*
stop loss stop_lostINPPAIENST00000376476lprotein_coding|-

1102*>102RI11846011A>G
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Table S2: A summary of the supported genomic alteration types and the one letter code of each mutation. Phi is an
introduced mutational type to represent a mutation or an alteration without an effect, e.g. a *missense upstream a
frameshift or a stop-gain. Mutation names are given as described by BCFTools/csq [9].

Q
o
o
o

Mutation Name
*frameshift

*frameshift&stop retained

*inframe_deletion

*inframe_insertion

*missense

*missense&inframe altering

*stop gained

*stop gained&inframe altering

frameshift
frameshift&start lost
frameshift&stop retained

inframe deletion

inframe deletion&stop retained

inframe_insertion

inframe insertion&stop retained

missense

missense&inframe altering

phi
start lost
start lost&splice region

stop gained

stop gained&inframe altering

stop_lost

SO QICleE < ZINTROIwE<T>XAZTO0NR

stop lost&frameshift
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Supplementary Figures
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Fig. S1: A graphical summary of sequence intermediate representation (SIR). The execution starts by reading an input VCF file
and a FASTA file. Next samples are processed in parallel where for each sample the alterations are grouped by transcript-id
and using a pool of threads each altered transcript is translated into an IR in parallel. Finally, the IR of all transcripts are
concatenated and re-indexed for proteome-wide coordinates. It is also worth mentioning that the result array S, is an empty
array that has been only allocated but will be filled when the IR is executed using any of the supported engines.
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