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Abstract

Humans’ extraordinary ability to understand speech in noise relies on multiple processes that
develop with age. Using magnetoencephalography (MEG), we characterize the underlying
neuromaturational basis by quantifying how cortical oscillations in 144 participants (aged 5 to
27 years) track phrasal and syllabic structures in connected speech mixed with different types
of noise. While the extraction of prosodic cues from clear speech was stable during
development, its maintenance in a multi-talker background matured rapidly up to age 9 and
was associated with speech comprehension. Furthermore, while the extraction of subtler
information provided by syllables matured at age 9, its maintenance in noisy backgrounds
progressively matured until adulthood. Altogether, these results highlight distinct behaviorally
relevant maturational trajectories for the neuronal signatures of speech perception. In
accordance with grain-size proposals, neuromaturational milestones are reached increasingly

late for linguistic units of decreasing size, with further delays incurred by noise.

Teaser

The neural signature of speech processing in silence and noise features multiple behaviorally

relevant developmental milestones
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Introduction

Understanding speech in noise (SiN) is a challenging task, especially for children (Z, 2).
Paradoxically, noise is ubiquitous in children’s lives (e.g., in classrooms, school cafeterias
and playgrounds) and has deleterious effects on learning and academic performances (3).
Still, how the neural mechanisms involved in SiN comprehension mature across development
is poorly understood. Characterizing these developmental phenomena appears critical to
devise strategies to help children cope with ambient noise in their daily life and to better
understand the etiology of learning disorders.

A large body of literature has examined the neurophysiological correlates of SiN
processing through investigations of the cortical tracking of speech (CTS) (4-16). CTS is the
synchronization between human cortical activity and the fluctuations of speech temporal
envelope at frequencies that match the hierarchical temporal structure of linguistic units such
as phrases/sentences (0.2—1.5 Hz) and syllables/words (2—8 Hz) (/7-25). Functionally, CTS
would subserve the segmentation of these units in connected speech to promote subsequent
speech recognition (18, 19, 24, 26—28). Importantly, school-age children show reliable CTS
(21, 29, 30) that is however lower at the syllabic level compared to adults (5). In SiN
conditions, children’s and adults’ cortical activity preferentially tracks the attended speech
rather than the global sound (4, 6, 10, 31), suggesting that CTS is modulated by endogenous
attentional components and plays a role in segregating the attended linguistic signal (5-8, 10,
12, 13). However, the fidelity of the tracking decreases with increasing noise intensity in
adults and more so in children (4-6), especially when the noise is concurrent speech babble
(32) as opposed to non-speech noise such as white or spectrally-matched noise. Of note, the
visual speech signal (comprising the articulatory movements of a talker) boosts CTS in adults
(33-35), especially in noise conditions (31, 36, 37), and in children, at least in babble noise

conditions (32). Importantly, the modulations of CTS we have just outlined mirror tangible
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behavioral effects. That is, SiN perception and comprehension (i) decline with increasing
noise level (4-6), (ii) are more affected by babble than non-speech noise in adults and
especially in children (38—40), (iii) improve until late childhood, if not until adolescence in
babble noise conditions (2,4,5), and (iv) benefit from visual speech (41, 42) since infancy (43,
44), but increasingly more as age increases (43, 46).

Overall, these data suggest (i) that different aspects of CTS, whose behavioral
relevance is well demonstrated, undergo different developmental trajectories, and (ii) that
these trajectories depend on noise properties and availability of visual speech information.
However, since previous studies focused on restricted age ranges and noise conditions, a
detailed characterization of these trajectories is still lacking. The present
magnetoencephalography (MEG) study aims at filling this gap by outlining the developmental
trajectory of phrasal and syllabic CTS and speech comprehension, from early school age to
early adulthood in various noise conditions, with or without visual speech information. Our
research hypotheses were guided by grain-size proposals according to which children develop
awareness of increasingly smaller phonological units with age (47, 48). Extrapolating these
proposals to supra-phonological units (/9, 49), we hypothesized that the cortical tracking of
large units such as phrases and sentences would mature faster during development compared
with the tracking of smaller units such as syllables. Also, since coping with noise and
leveraging visual speech information require the development and integration of additional
mechanisms subtended by high-order associative neocortical areas that mature during late
childhood (50), we hypothesize that corresponding developmental trajectories would be

further delayed.
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Results

Time-course of a video stimulus (~6-min long)
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Fig. 1. lllustration of the time-course of a video stimulus. Videos lasted approximately 6 min
and were divided into 10 blocks to which experimental conditions were assigned. There were
two blocks of the noiseless condition, and eight blocks of speech-in-noise conditions. one
block for each possible combination of the four types of noise and the two types of visual

display.

We recorded brain activity with MEG in 144 participants (77 females) aged 5.3-27.0
years while they were attending to 4 videos lasting ~6 min each, following the same
experimental procedure as in a previous study by our group (32). Videos consisted of
audiovisual recordings of native French-speaking narrators telling children’s fairy tales. Fig. 1
illustrates the time-course of a video stimulus. Each video featured 9 conditions: 1 noiseless
and 8 SiN with 3 dB signal-to-noise ratio (SNR; for the motivation behind this SNR selection,
see Stimuli subsection in Materials and Methods) resulting from the combination of 4 types of

noises (least-energetic non-speech, most-energetic non-speech, different-gender babble and
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same-gender babble) with 2 visual conditions (with or without visual speech inputs). The
different- and same-gender babble noises introduced informational interferences and a similar
degree of energetic masking (32). Their distinction is however relevant since speech
intelligibility is generally better when attended and interfering speech are uttered by different-
gender talkers compared to same-gender talkers (57, 52), because on average, voice
fundamental frequency and vocal tract length differ between males and females (52, 53). The
least- and most-energetic non-speech noises introduced a degree of energetic masking in
accordance with their naming but no informational interference. Forty yes/no questions (10
per video) assessed participants’ comprehension of the stories in each condition.

For some of the upcoming analyses, participants were arranged in 5 age groups of
roughly equal size (57 years, n = 31; 7-8.5 years, n = 34; 8.5-11.5 years, n = 28; 11.5-18
years, n = 26; and 18-27 years, n = 25). Note that most of our participants were aged below
12, since SiN capacities essentially develop before that age. As a consequence, the 3 age
groups of school-age children (5-7 years, 7-8.5 years and 8.5-11.5 years) span a narrower

age range than the groups of teenagers (11.5-18 years) and young adults (1827 years).

How does the cortical tracking of speech evolve with age in the absence of noise?

For each condition, we regressed the temporal envelope of the attended speech on MEG
signals with several time lags using ridge regression and cross validation (see Methods for
details) (54). The ensuing regression model was used to reconstruct speech temporal envelope
from the recorded MEG signal. Such analysis is known as reconstruction accuracy (54). CTS
was computed as the correlation between the genuine and reconstructed speech temporal
envelopes. We did this for MEG and speech temporal envelope signals filtered at 0.2—1.5 Hz
(phrasal rate, which also englobes sentential rate) (4, 32, 55) and 2—8 Hz (syllabic rate, which

also englobes word rate) (10, 14, 31, 56) and for MEG sensor signals in the left and right
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hemispheres separately. We assessed the left- and right hemispheres separately because CTS
is hemispherically asymmetric both in noiseless and SiN conditions (6). We first evaluated
with an ANOVA if CTS in the noiseless condition depended on the hemisphere and on the
age group. A summary of the results for phrasal and syllabic CTS are presented in
Supplementary material (Table S1). Phrasal CTS was higher in the right (0.44 + 0.09; mean +
SD across subjects) than in the left hemisphere (0.40 + 0.08), and was not modulated by age.
Syllabic CTS was also higher in the right (0.092 + 0.036) than in the left hemisphere (0.079 +
0.034), but a significant interaction with age indicated that left- and right-hemisphere CTS
underwent different developmental trajectories.

We next used Spearman correlations and a model-fitting approach to better understand
how age impacted syllabic CTS. Fig. 2 and Table 1 illustrate the developmental trajectory of
syllabic CTS. While both left- and right-hemisphere CTS were similar in children aged below
7, a maturation process starting at 7.7+1.7 years increased right- but not left-hemisphere CTS
by ~30 %, plateauing at 10.4+1.9 years.
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Figure 2. Dependence on age of syllabic CTS in the noiseless condition. Dashed red lines

indicate the beginning and the end of the maturation process.
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Table 1. Parametric models of the dependence on age of (n)CTS values and speech

comprehension scores. The number of participants (n) on which models were fitted was 144

for (n)CTS values and 142 for speech comprehension scores. Values of normalized CTS

(nCTS) were pooled across conditions with and without visual speech, and across least- and

most-energetic conditions. Values of phrasal nCTS were further pooled across hemispheres.

Constant vs. Linear Linear vs. Logistic | Constant vs. Logistic Model
F(1,n-2) | P F(2,n-4) | P F(3,n-4) | P
Syllabic CTS in noiseless
left hemisphere|  0.17 0.69 1.87 0.16 1.30 0.28 0.080
right hemisphere|  3.98 0.048 4.18 0.017 4.17 0.0073 0.079+0.023/(1+exp(-1.6(age-9.0)))
Phrasal nCTS
non-speech|  2.06 0.15 2.09 0.10 2.09 0.13 —0.01+0.02/(1+exp(-787(age—8.6)))
babble| 31.4 <0.0001 20.5 <0.0001 12.5 <0.0001 —0.37+0.27/(1+exp(-1.1(age-7.3)))
Syllabic nCTS
non-speech, left hem| 4.94 0.028 0.77 0.47 2.15 0.096 —0.035 +0.0039 x age
babble, left hem|  7.99 0.0054 1.51 0.22 3.69 0.014 -0.25 +0.0067 x age
non-speech, right hem 1.86 0.17 0.24 0.79 0.77 0.51 0.027
babble, right hem| 4.18 0.043 0.002 1.00 1.38 0.25 —0.20 + 0.0049 x age
Speech (story) comprehension scores
noiseless|  20.7 <0.0001 18.6 <0.0001 21.0 <0.0001 0.79 + 0.16/(1+exp(-770(age—6.9)))
noise|  35.0 <0.0001 94.3 <0.0001 76.3 <0.0001 | -28755.83 +28756.78/(1+exp(-0.87(age+7.8)))
difference Lip-Vid|  3.07 0.082 2.84 0.062 2.94 0.035 —0.065 + 0.086/(1+exp(—1.2(age—7.3)))

How does noise impact the cortical tracking of speech, and how does this impact evolve

with age?

We first evaluated with an ANOVA whether phrasal and syllabic normalized CTS

(nCTS) in noise conditions depend on noise properties, hemisphere, visibility of the talker’s

lips and whether they evolve with age. The nCTS is a contrast between CTS in SiN and

noiseless conditions (see Methods) that takes values between —1 and 1, with negative values

indicating that the noise reduces CTS (32). Such contrast presents the advantage of being

specific to SiN processing abilities by factoring out the global level of CTS in the noiseless

condition.
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Fig. 3. Impact of the main effects on nCTS at phrasal (A) and syllabic rates (B). Mean and
SEM values are displayed as a function of noise properties. The four traces correspond to
conditions with (connected traces) and without (dashed traces) visual speech (VS), within the
left (blue traces) and right (red traces) hemispheres. nCTS values are bounded between —1
and 1, with values below 0 indicating lower CTS in speech-in-noise conditions than in

noiseless conditions.

Fig. 3 summarizes the results for phrasal and syllabic nCTS (see also Table S2).
Overall, the impact of the different types of background noises was similar for phrasal and
syllabic nCTS: while non-speech noises did not affect much CTS (nCTS was close to zero),
babble noises substantially reduced CTS compared to non-speech and noiseless conditions.
Contrastingly, the level of energetic masking introduced by either type of noise only mildly
affected the nCTS. Such pattern was observed for both hemispheres, and irrespective of the
availability of visual speech information. Nevertheless, phrasal nCTS in babble noise
conditions was higher in the left than right hemisphere (-0.16 + 0.20 vs. -0.20 £ 0.19) while
the reverse was true for syllabic nCTS in all noise conditions (-0.10 + 0.24 vs. -0.07 £ 0.22).

A beneficial effect of visual speech information was observed in all noise conditions
except in the least challenging one (i.e., least-energetic non-speech) for phrasal nCTS, and in

all noise conditions for syllabic nCTS. The way visual speech information modulated nCTS

9


https://doi.org/10.1101/2022.01.20.476739
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.20.476739; this version posted January 21, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

was stable across the age range (ps > 0.2 for interactions involving age and type of visual
input).

Critically, the way different noises impacted both phrasal and syllabic nCTS differed
between age groups (i.e., significant interactions involving age and noise). To better
understand how nCTS evolved with age, we relied on the same approach applied to CTS in
the noiseless condition, which involves Spearman correlations and model fitting.

Fig. 4 and Table 1 present the results for nCTS pooled across least- and most-
energetic noises. The detailed results for all noise conditions separately are presented in
Supplementary material (Fig. S1, and Table S3).

Phrasal nCTS increased with age for both non-speech and babble noises. The
modulation in CTS was however only marginal in non-speech noise conditions (4.2% with a
transition at 8.6 = 0.0 years following a logistic model), to the point that our model-fitting
approach did not deem the age-dependent models better than a constant model. This suggests
a minimal evolution of phrasal nCTS in non-speech noises, at least at a SNR of 3 dB. As a
slight nuance, the evolution was clearer when considering the most-energetic non-speech
noise, and fully absent for the least-energetic non-speech noise (Fig. S1 and Table S3). In
contrast, a clear maturation process starting at 5.4 + 1.6 years increased phrasal nCTS in
babble noises by ~79 %, with a plateau at age 9.3 + 0.9 years.

Syllabic nCTS also increased with age, following linear trajectories, with different
patterns observed for non-speech and babble noises in the left and right hemispheres. That is,
syllabic nCTS increased with age in both hemispheres for babble noise, and only in the left

hemisphere for non-speech noise.

10
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Fig. 4. Dependence on age of phrasal (4) and syllabic (B) nCTS. nCTS was pooled across
conditions with and without visual speech, and across least- and most-energetic conditions.
Phrasal nCTS was further pooled across hemispheres. Dashed red lines indicate the

beginning and end of the maturation process.

How does speech comprehension evolve with age, in noiseless and noise conditions?

Fig. 5 illustrates speech comprehension abilities in the different conditions, which
were assessed using yes/no forced-choice questions after each video. Comprehension scores
were computed as the percentage of correct answers to 4 questions in each noise condition (or
8 in the noiseless condition).

Comprehension of the stories differed between age groups in noiseless (£(4,137) =
14.0, p < 0.0001) and noise conditions (F(4,137) = 26.1, p < 0.0001), improving with age in
both cases. The model fitting approach identified a sharp transition at 6.9 years for
comprehension in silence, and absurd values (negative transition age) for comprehension in

noise. Comprehension in noise conditions was also affected by noise properties (F(3,411) =

11
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7.31, p < 0.0001). It was better when non-speech (92.3 + 15.3 %) compared to babble noises
(88.5 = 17.8 %) were presented in the background. In fact, comprehension in non-speech
noise conditions was similar (#(141) =-0.37, p =0.72) to that in the noiseless condition (92.0
+ 11.2 %), indicating that non-speech noise had no detrimental effect on the comprehension
of the story (for our 3-dB SNR level). Finally, a marginally significant interaction between
visual input and age group (F(4,137) = 2.34, p = 0.059) suggested that the benefit of visual
speech for speech comprehension differed between age groups. The exploration of the boost
in comprehension induced by visual speech is presented in Supplementary Fig. S2. No other

significant effects were disclosed (p > 0.1).

Speech comprehension

94 - _l_
92 - }‘- -------- _.I’.“\
o 90 -
g
7] 'l'
88 | ,
— with VS l
----- without VS
noiseless non-speech babble
Noise type

Fig. 5. Impact of the noise condition and of the presence or absence of concomitant visual
speech on the speech comprehension scores, pooled across age groups. Vertical bars indicate

SEM values.

Behavioral relevance of the cortical tracking of speech
We next appraise the behavioral relevance of the tracking measures showing significant
maturation effects (i.e., syllabic CTS in the right hemisphere, phrasal nCTS in babble noise,

and syllabic nCTS in each hemisphere and in non-speech and babble noise conditions

12
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separately). For this, we correlated (n)CTS measures and comprehension scores, after
removing the—potentially non-linear—effect of age.

In the noiseless condition, this analysis revealed no significant association between
syllabic CTS and speech comprehension (ps > 0.3 for left- and right-hemisphere CTS).

In SiN conditions, this analysis revealed a positive correlation between phrasal nCTS
(averaged across hemispheres) and speech comprehension in babble noise conditions (s =
0.22; p = 0.0074; see Fig. 6), and no significant association between syllabic nCTS and
speech comprehension, neither in non-speech (ps > 0.5 for left- and right- hemisphere CTS)

nor in babble noise conditions (ps > 0.9).
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Fig. 6. Behavioral relevance of phrasal nCTS in babble noise.

Sources of the cortical tracking of speech

We next identified the cortical sources underlying the CTS. Source activity was
reconstructed with minimum norm estimate, and CTS was assessed for each source separately
with a measure of reconstruction accuracy akin to that used in the previous sections (54). For
each combination of age group (below 7, 7-8.5, 8.5-11.5, 11.5-18, and 18-27), condition, and

frequency range (phrasal and syllabic), we retained the coordinates of significant local
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maxima of CTS. Since local maxima indicate the presence of underlying sources (and

colocalize with them), we will term them the sources of CTS.

A. Sources of phrasal CTS

Right

0.25

CTS (correlation)

©
=

0.07

CTS (correlation)

0.03

Fig. 7. Sources of phrasal (A) and syllabic (B) CTS in the left and right hemispheres. The
overlays present the mean CTS values across all conditions and participants (regardless of
age). Values at MNI coordinates |X| > 25 mm were projected orthogonally onto the
parasagittal slice of coordinates | X| = 50 mm. The location of each significant source of CTS
in each condition and age group is indicated with a white star (with the same projection

scheme).

Fig. 7 presents the grand average CTS map (mean across all factors), together with the
location of the significant sources of CTS in all conditions. Globally, sources of phrasal CTS

localized bilaterally in the mid-superior temporal gyrus (STG), in the ventral part of the
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inferior frontal gyrus (IFG; in partes opercularis, triangularis and orbitalis) and precentral
gyrus and, to a lower extent, in posterior temporal regions. Sources of syllabic CTS
essentially localized bilaterally in tight clusters centered around Heschl gyrus and in the
anterior part of the IFG (partes orbitalis and triangularis) and, for few of them, in the
temporoparietal junction (TPJ) and inferior part of the precentral gyrus.

Next, we evaluated for each frequency range if sources of CTS tended to cluster
according to age group, or different noise properties.

First, sources of phrasal CTS had among their 10 closest neighbors 62.9 % more
sources for the same age group than expected by chance (p < 0.0001). To better understand
this effect, Fig. 8A presents the sources of phrasal CTS color-coded by age group. Sources in
the right hemisphere tended to localize more posteriorly with increasing age. Other
differences were more subtle and not characterized by clear age gradients or source presence
from or before a given age (e.g., sources in the right posterior temporal region were not seen
in age groups of 7-8.5 years and 18-27 years; sources in precentral gyri were not seen in age
groups of 5-7 years and 11.5-18 years).

Second, sources of phrasal CTS for (i) babble noise conditions on the one hand, and (ii)
non-speech noise and noiseless conditions on the other hand, had among their 10 closest
neighbors 66.1 % more sources for the same category (i.e., 1 or ii) than expected by chance (p
< 0.0001). Fig. 8B presents the sources of phrasal CTS color-coded for the informational
property of the noise. Sources in bilateral STG and IFG were more anterior for babble noise
conditions than for non-speech noise and noiseless conditions. Sources in bilateral IFG
localized in the pars orbitalis/triangularis for babble noise conditions, and in the pars
triangularis/opercularis as well as in the inferior part of the precentral gyrus for non-speech
noise and noiseless conditions. Finally, all sources in the posterior temporal areas were from

babble noise conditions except for 3 right-sided sources from non-speech noise conditions.
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Third, sources of syllabic CTS had among their 10 closest neighbors 76.8 % more
sources for the same age group than expected by chance (p < 0.0001). To better understand
this effect, Fig. 8C presents the sources of syllabic CTS color-coded by age group. Paralleling
the effect found for phrasal CTS, sources of syllabic CTS in the right hemisphere tended to
localize increasingly more posteriorly with increasing age. Other subtler effects included the
absence of source in TPJ in the oldest age group (18-27), and more scattered source
distributions along the ventrodorsal axis in the left Heschl gyrus in the two oldest age groups
(11.5-18 and 18-27; sources reached the ventral bank of the STG and the ventral part of the

postcentral gyrus).
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A. Sources of phrasal CTS (color-coded for age group and shape-coded for noise type)

age range (years): . 5-7 I 7-8.5 18.5-11.5 =11.5-18 I 18-27
noise type: A noiseless + non-speech noise * babble noise

B. Sources of phrasal CTS (color-coded for noise type and shape-coded for age group)

noise type: [ noiseless [ non-speech noise I babble noise
age range (years): A 5-7 + 7-85 * 8.5-11.5 * 11.5-18 * 18-27

C. Sources of syllabic CTS (color-coded for age group)

age range (years): . 5-7 [ 7-8.5 [18.5-11.5 /1 11.5-18 I 18-27

Fig. 8. Sources of CTS color-coded for age group (4, phrasal; C, syllabic) and for the

informational property of the noise (B, phrasal), the other property being shape-coded.
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Discussion

This study characterizes the maturation of neurophysiological markers of the
perception and understanding of natural connected speech in silence and in noise with or
without visual speech information. Our results highlight that while phrasal CTS in quiet
conditions is adult-like from at least 5 years of age, syllabic CTS matures later in childhood.
We also demonstrated two distinct neuromaturational effects related to the ability to perceive
speech in babble noise: while the ability to maintain phrasal CTS matures rapidly between ~5
and ~9 years, a much slower maturation process improves the ability to maintain syllabic CTS
in babble noise through childhood and into early adulthood. Visual speech information
increased phrasal CTS mainly in babble noise conditions and syllabic CTS similarly in all
noise conditions. These effects were not modulated by age. The results also reveal a limited

impact of age on the cortical sources of phrasal and syllabic CTS.

Increase of syllabic but not phrasal CTS in silence during childhood

Our data revealed different developmental trajectories related to the capacity of the
brain to track the fluctuations of speech temporal envelope at different frequencies, in
noiseless conditions. While phrasal CTS is adult-like from at least 5 years of age, syllabic
CTS matures later, between 7.5 and 10.5 years. This difference in developmental trajectory is
well in line with grain-size proposals (47, 48) extended to linguistic units we have proposed.
Indeed, phrasal CTS is considered to partly reflect prosodic (/7, 57) and linguistic (27, 58)
processing of large speech units. Contrastingly, syllabic CTS would reflect parsing of syllable
rhythms (27), and the sensitivity to this basic unit of speech (59) would be at the basis of
efficient phonemic processing (60). Importantly, syllabic CTS is considered a lower-level

process tightly related to the acoustic features of the auditory input (28, 61).
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Our finding that phrasal CTS is adult-like from at least 5 years of age supports the
view that tracking of slow phrasal and prosodic stress patterns is a foundational process that
might be present since birth (62), and remains stable across middle adulthood (63). This result
is not so surprising if one embraces the view that phrasal CTS partly underpins prosodic
speech processing (/7). Indeed, young infants already use such information to parse speech
into words and phrases (64). Accordingly, other neurophysiological markers of brain
processing of prosody in speech (i.e., closure positive shift) were reported in 6-months old in
relation to brief pause detection but also to pitch variations (65). The result of stable phrasal
CTS from 5 years on is also compatible with the view that phrasal CTS reflects lexical and
syntactic processing. Indeed, typically developing children of that age possess basic syntactic
skills (66) such as the ability to understand relative clauses (67, 68).

We found evidence for a developmental boost in syllabic CTS in quiet conditions in
the right- (but not left-) hemisphere. This boost mostly occurred between the age of 7.5 and
10.5 years, and signified the start of right-hemisphere dominance for syllabic CTS. This
transition suggests that, although operational early in life (62, 69), temporal parsing of the
speech signal at the syllabic level refines with brain maturation. And indeed, children aged
below 10 are less accurate than adults at identifying syllable boundaries when these are
defined only by amplitude modulations in speech temporal envelope (70). The right-
hemispheric dominance in noiseless conditions observed for syllabic CTS after age ~10 and
for phrasal CTS is consistent with previous findings in children and adults (5, /7, 19, 21, 30,
61,71, 72). It is even at the core of the asymmetric sampling in time hypothesis, which argues
that prosodic and syllabic information are preferentially processed in the right hemisphere,
while phonemic information is preferentially processed in the left hemisphere or bilaterally
(73). As previously argued (74), the fact that language brain functions become asymmetric in

the course of development suggests asymmetry is a hallmark of maturity.
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Development of the neurophysiological basis of speech perception in noise

Our results highlight two distinct neuromaturational effects related to the ability to perceive
speech in babble noise. First, the ability to maintain phrasal CTS in babble noise matures
rapidly between ~5 and ~9 years, with a marked transition at age ~7. Second, a much slower
maturation process—best characterized by a linear progression with age—improves the
ability to maintain syllabic CTS in babble noise through childhood and into early adulthood.
Following the rationale developed in the previous subsection, our results indicate a rapid
maturation at age ~7 of the neurophysiological mechanisms at play in processing prosodic
and suprasegmental linguistic information in natural connected speech in babble noise, and a
slower, progressive maturation into early adulthood of the mechanisms involved in the
extraction of hierarchically lower syllabic, phonemic or even acoustic information from
speech in babble noise. This is well in line with our working hypotheses: neuronal processing
of larger linguistic units (words and phrases) develops before that of smaller syllabic units,
and coping with noise necessitates additional processes that mature later on.

The maturational time-course of the ability to maintain phrasal CTS in babble noise
closely parallels that of the ability to recognize words in the presence of two-talker speech.
The latter improves progressively from 5 to 10 years of age, reaching adult-like levels at age
11 (40, 75, 76). This maturation trajectory is specific to informational noise since speech
recognition in speech-shaped noise is close to adult-like already at age 5 (40, 75), as was
phrasal CTS in non-speech noise in our data. This suggests that maintenance of phrasal CTS
reflects a range of processes involved in the ability to perceive and understand linguistic
chunks larger than syllables or words in babble noise. This interpretation is further supported
by the similar developmental trajectory of our measures of SiN comprehension, and by the
finding that CTS resistance to babble noise is positively related to speech comprehension after

having accounted for age.
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The degree of maintenance of phrasal CTS in babble noise could actually underpin the
maturation of auditory stream formation, which is the process of grouping together sounds
from the same source (77). Forming auditory streams is a challenging aspect of speech
perception in noise, and failure in forming streams seems to explain the behavioral difficulties
understanding speech from among two same-gender talkers (52). From the point of view of
development, the ability to form auditory streams based on frequency separation appears to be
immature at age 5-8, and adult-like at age 9—-11 (78). Since these developmental milestones
match well with those found for phrasal CTS in babble noise in our study, the way babble
noise impacts phrasal CTS could represent an electrophysiological signature of the ability to
form auditory streams.

The slow maturation of the ability to maintain syllabic CTS in noise closely parallels
the evolution of phonemic perception in noise. Although such slow evolution was not evident
in our phonemic perception test (see Supplementary Material), it is clearly seen in normative
data for this test where twice more items were used to assess an even larger sample of
participants than ours (79). In that study, phonemic perception in noise improved steadily
from age 5, topped in the 15-19 year group, and then decreased in the subsequent age ranges,
the first of which was overly broad (20-49 years) unfortunately. Our data therefore provide a
neurophysiological ground for the slow maturation of phonemic perception in noise. It also
suggests a more important role of the left hemisphere since maturation was not observed in
the non-speech noise condition in the right hemisphere. This is well in line with the classical

dominant role of the left hemisphere for language comprehension.

Impact of visual speech on CTS
Our data did not reveal any evidence for a maturation of the boost in CTS afforded by

visual speech across the tested age range. This is somewhat surprising since audiovisual
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integration processes mature rather slowly. For some tasks, adult-like performance is reached

after age 12 (45, 46, 80).

The analysis of our comprehension scores hinted at a transition between age 6 and 9 in
the ability to leverage visual speech to enhance comprehension. This is in-line with the
observation that at around 6.5 years of age, children start to benefit from having phonetic
knowledge about severely degraded speech sounds when asked to match such a sound with a
visual speech video (87). Possibly then, a CTS boost induced by visual speech may be driven
by audiovisual congruence detection, an ability that is already observed at 2 months of age
(43, 44). Although this suggestion provides an interesting avenue for future work, it is
currently rather tentative as processing congruence in audiovisual speech seems to start at
around 200 ms (82), can take several hundreds of milliseconds (87, 83) and therefore overlaps
in time with other processes (such as processing of lexico-semantic information) that are
difficult to disentangle.

In the S1 discussion, we elaborate further on the beneficial effects of visual speech on

CTS we observed across all age ranges.

Recruited neural network and impact of maturation and noise

Our results showed that source configuration was affected by age for both phrasal and
syllabic CTS, and by informational noise properties for phrasal CTS.

The effect of age for both phrasal and syllabic CTS appeared to be mainly explained
by an anterior-to-posterior shift (of about 1 cm) of right-hemisphere sources from youngest
(57 years) to oldest (1827 years) age groups. Whether this shift reflects a genuine
developmental effect is difficult to tell since changes in brain anatomy from childhood to
adulthood induce small, but consistent, age-dependent errors in the normalization of

individual brains to a template (84). Besides these unclear effects of age, our results rather
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emphasize the close similarity in location of cortical generators of CTS across the
investigated age range. This is in line with a host of findings indicating that the architecture of
the language network is settled from age 3, with subsequent maturation essentially refining
bottom-up communication and specialization of each node of the network (85).

In S2 Discussion, we discuss the interesting effect of noise properties on the

configuration of CTS sources.

Limitations

We manipulated several properties of the noise but not all of those known to impact
SiN perception. It is therefore worth noting that the developmental trajectories we report for
CTS resistance to noise are valid only for the conditions we explored, and might be affected
by other aspects of the listening condition, much like the maturation timeline of behavioral
effects depends on the number of speakers making up the background noise (86), noise
intensity (87), or availability of spatial cues (8§).

We have used natural connected speech as auditory material. Although this adds to the
ecological validity of our results, it makes it difficult to resolve the development of brain
functions supporting multiple distinct aspects of language. For example, phrasal CTS taps in
brain function supporting linguistic (syntactic, lexical, grammatical) as well as paralinguistic
(prosody) information. Studies relying on carefully synthesized speech in which, e.g., prosody
is removed (27).

Characterization of behavioral performance was suboptimal. We only asked simple
comprehension questions, and comprehension scores suffered ceiling effects. This may
explain why the link between CTS and behavior, which has been well documented in other
studies (78, 20, 22, 89), was either weak (for phrasal nCTS) or non-significant (for syllabic

nCTS) in our study despite having a sample size (n = 144) that largely surpasses that of
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previous studies. A more extensive neuropsychological assessment of language processing
abilities could have further supported the behavioral relevance of the multiple developmental

effects we identified.

Conclusion

This study reveals distinct developmental trajectories for the neuronal processing of
prosodic/syntactic (phrasal CTS) and syllabic/phonemic/acoustic information (syllabic CTS),
and depending on the presence and the type of background noise. Overall, our results indicate
that cortical processing of large linguistic units matures before that of smaller units, and that
additional neuromaturational milestones need reaching for such processing to be optimal in
adverse noise conditions. Unexpectedly, although visual speech information boosted the
ability of the brain to track speech in noise, such boost was not affected by brain maturation.
Finally, the ability to maintain phrasal tracking in noise was positively related to speech
comprehension. These results therefore indicate that CTS tags behaviourally relevant neural
mechanisms that progressively mature with age and experience following the trajectory
presumed by grain-size proposals. Thus, the modulation of CTS by noise provides objective

neurodevelopmental markers of multiple aspects of speech processing in noise.

Material and Methods
Participants

In total, 144 native French-speaking healthy right-handed children and young adults
(age range: 5-27 years, 77 females) participated in this study. For some of the upcoming
analyzes, participants were assigned to 5 age groups: 5-7 years (n = 31, 17 females), 7-8.5
years (n = 34, 17 females), 8.5-11.5 years (n = 28, 13 females), 11.5-18 years (n = 27, 15

females) and 18-27 years (n = 25, 15 females). Of note, the data collected from 73 of them
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was used in a previous study by our team (32). All participants had normal hearing according
to pure-tone audiometry (i.e., hearing thresholds between 0 and 20 dB HL for 125, 250, 500,
1000, 2000, and 4000 and 8000 Hz), and normal dichotic perception, speech, and SiN
perception for their age (data missing for the 20 youngest participants) according to another
test assessing speech perception in noise (79).

The study had prior approval by the ULB-Hopital Erasme Ethics Committee (Brussels,
Belgium). Each participant or their legal representative gave written informed consent before
participation. Participants were compensated with a gift card worth 25 euros for the

neuroimaging assessment reported in the present study.

Stimuli

The stimuli were derived from 12 audiovisual recordings of 4 native French-speaking
narrators (2 females, 3 recordings per narrator) telling a story for ~6-min (mean + SD, 6.0 +
0.8 min) Stories consisted of children’s fairy tales; for more details, see our previous report
(32). In each video, the first 5 s were kept unaltered to enable participants to unambiguously
identify the narrator’s voice and face they were requested to attend to. The remainder of the
video was divided into 10 consecutive blocks of equal size that were assigned to 9 conditions.
Two blocks were assigned to the noiseless condition in which the audio track was kept but the
video was replaced by static pictures illustrating the story (mean + SD picture presentation
time across all videos, 27.7 = 10.8 s). The remaining 8 blocks were assigned to 8 conditions in
which the original sound was mixed with a background noise at 3 dB signal-to-noise ratio
(SNR). This SNR was chosen as we assumed it was high enough to ensure children cope with
the noise and keep their attention to the story, and low enough to introduce non-negligible
interference; both assumptions proved accurate a posteriori. There were 4 different types of

noise, and each type of noise was presented once with visual speech information (the original
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video), and once without visual speech information (static pictures illustrating the story). The
different types of noise differed in the degree of energetic and informational interference they
introduced (90). The least-energetic non-speech (i.e., non-informational) noise was a white
noise high-pass filtered at 10000-Hz. The most-energetic non-speech noise had its spectral
properties dynamically adapted to mirror those of the narrator’s voice ~1 s around. The
different-gender babble (i.e. informational) noise was a 5-talker cocktail party noise recorded
by individuals of gender different from the narrator's (i.e., a 5-male talker for female
narrators, and vice-versa). The same-gender babble noise was a 5-talker cocktail party noise
recorded by individuals of gender identical to the narrator’s. For both babble noises, the 5
individual noise components were obtained from a French audiobook database
(http://www litteratureaudio.com), normalized, and mixed linearly. The assignment of
conditions to blocks was random, with the constraint that each of the 5 first and last blocks
contained exactly 1 noiseless audio and each type of noise, 2 with visual speech and 2
without. Smooth audio and video transitions between blocks was ensured with 2-s fade-in and
fade-out. Ensuing videos were grouped in 3 disjoint sets featuring one video of each of the
narrators (total set duration: 23.0, 24.3, 24.65 min), and there were 4 versions of each set

differing in condition random ordering.

Experimental paradigm

During the imaging session, participants were laying on a bed with their head inside
the MEG helmet. The lying position was chosen to maximize participants’ comfort and
reduce head movements. Participants’ brain activity was recorded while they were attending 4
videos (separate recording for each video) of a randomly selected set and ordering of the
videos presented in a random order, and finally while they were at rest (eyes opened, fixation

cross) for 5 min. They were instructed to watch the videos attentively, listen to the narrators’
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voice while ignoring the interfering noise, and remain as still as possible. After each video,
they were asked 10 yes/no simple comprehension questions. Videos were projected onto a
back-projection screen placed vertically, ~120 cm away from the MEG helmet. The inner
dimensions of the black frame were 35.2 cm (horizontal) and 28.8 cm (vertical), and narrators
face spanned ~15 cm (horizontal) and ~20 cm (vertical). Participants could see the screen
through a mirror placed above their head. In total the optical path from the screen to
participants’ eyes was of ~150 cm. Sounds were delivered at 60 dB (measured at ear-level)
through a MEG-compatible front-facing flat-panel loudspeaker (Panphonics Oy, Espoo,

Finland) placed ~1 m behind the screen.

Data acquisition

During the experimental conditions, participants’ brain activity was recorded with
MEG at the CUB Hopital Erasme. MEG was preferred to electroencephalography for its
higher spatial resolution (97), and for its increased sensitivity to CTS (4). Neuromagnetic
signals were recorded with a whole-scalp-covering MEG system (Triux, Elekta) placed in a
lightweight magnetically shielded room (Maxshield, Elekta), the characteristics of which have
been described elsewhere (92). The sensor array of the MEG system comprised 306 sensors
arranged in 102 triplets of one magnetometer and two orthogonal planar gradiometers.
Magnetometers measure the radial component of the magnetic field, while planar
gradiometers measure its spatial derivative in the tangential directions. MEG signals were
band-pass filtered at 0.1-330 Hz and sampled at 1000 Hz.

We used 4 head-position indicator coils to monitor subjects’ head position during the
experimentation. Before the MEG session, we digitized the location of these coils and at least
300 head-surface points (on scalp, nose, and face) with respect to anatomical fiducials with an

electromagnetic tracker (Fastrack, Polhemus).
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Finally, subjects’ high-resolution 3D-T1 cerebral images were acquired with a
magnetic resonance imaging (MRI) scanner (MRI 3T, Signa, General Electric) after the MEG

session.

Data preprocessing

Continuous MEG data were first preprocessed off-line using the temporal signal space
separation method implemented in MaxFilter software (MaxFilter, Neuromag, Elekta;
correlation limit 0.9, segment length 20 s) to suppress external interferences and to correct for
head movements (93, 94). To further suppress physiological artifacts, 30 independent
components were evaluated from the data band-pass filtered at 0.1-25 Hz and reduced to a
rank of 30 with principal component analysis. Independent components corresponding to
heartbeat, eye-blink, and eye-movement artifacts were identified, and corresponding MEG
signals reconstructed by means of the mixing matrix were subtracted from the full-rank data.
Across subjects and conditions, the number of subtracted components was 3.45 + 1.23 (mean
+ SD across subjects and recordings). Finally, time points at timings 1 s around remaining
artifacts were set to bad. Data were considered contaminated by artifacts when MEG
amplitude exceeded 5 pT in at least one magnetometer or 1 pT/cm in at least one gradiometer.

We extracted the temporal envelope of the attended speech (narrators’ voice) using a
state-of-the-art approach (95). Briefly, audio signals were bandpass filtered using a
gammatone filter bank (15 filters centered on logarithmically-spaced frequencies from 150 Hz
to 4000 Hz), and subband envelopes were computed using Hilbert transform, elevated to the

power 0.6, and averaged across bands.
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CTS quantification with accuracy of speech temporal envelope reconstruction

For each condition and participant, a global value of cortical tracking of the attended
speech was evaluated for all left-hemisphere gradiometer sensors at once, and for all right-
hemisphere gradiometer sensors at once. Using the mTRF toolbox (54), we trained a decoder
on MEG data to reconstruct speech temporal envelope, and estimated its Pearson correlation
with real speech temporal envelope. This correlation is often referred to as the reconstruction
accuracy, and it provides a global measure of cortical tracking of speech (CTS).

The decoder tested on a given condition was built based on MEG data from all the
other conditions. This procedure was preferred over a more conventional cross-validation
approach in which the decoder is trained and tested on separate chunks of data from the same
condition because of the paucity of data (i.e., at most ~2.4 min of data per condition). It is
based on the rationale that the different conditions do modulate response amplitude but not its
topography and temporal dynamics. In practice, electrophysiological data were band-pass
filtered at 0.2—1.5 Hz (phrasal rate) or 2—8 Hz (syllabic rate), resampled to 10 Hz (phrasal) or
40 Hz (syllabic) and standardized. The decoder was built based on MEG data from —500 ms
to 1000 ms (phrasal) or from 0 ms to 250 ms (syllabic) with respect to speech temporal
envelope. Filtering and delay ranges were as in previous studies for phrasal (4, 55), and
syllabic CTS (10, 14, 31, 56). Regularization was applied to limit the norm of the derivative
of the reconstructed speech temporal envelope (54), by estimating the decoder for a fixed set
of ridge values (A = 2710 28 96 o4 22 20). The regularization parameter was determined
with a classical 10-fold cross-validation approach: the data is split into 10 segments of equal
length, the decoder is estimated for 9 segments and tested on the remaining segment, and this
procedure is repeated 10 times until all segments have served as test segment. The ridge value
yielding the maximum mean reconstruction accuracy is then retained. The ensuing decoder

was then used to reconstruct speech temporal envelope in the left-out condition.
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Reconstruction accuracy was then estimated in 10 disjoint consecutive segments. We then
retained the mean of this reconstruction accuracy, leaving us with one value for all
combinations of subjects, conditions, hemispheres, and frequencies of interest.
Normalized CTS in SiN conditions

Based on CTS values, we derived the normalized CTS (nCTS) in SiN conditions as
the following contrast between CTS in SiN (C7Ssin) and noiseless (CTShoiseless) conditions:

nCTS = (CTSsin — CTShoiseless)/ (CTSsin + CTShoiseless)-

Such contrast presents the advantage of being specific to SiN processing abilities by factoring
out the global level of CTS in the noiseless condition. However, it can be misleading when
derived from negative CTS values (which may happen since CTS is an unsquared correlation
value). For this reason, CTS values below a threshold of 10% of the mean CTS across all
subjects, conditions and hemispheres were set to that threshold prior to nCTS computation.
Thanks to this thresholding, the nCTS index takes values between —1 and 1, with negative

values indicating that the noise reduces CTS.

Developmental trajectory of CTS in noiseless and nCTS in SiN conditions

We used repeated measures ANOVA to assess the effect of brain hemisphere (left vs.
right) and age group on CTS in noiseless conditions (dependent variable). This analysis was
run separately for phrasal and syllabic CTS.

We used the same approach to analyze nCTS values in SiN conditions, this time with
two additional factors: type of noise (least-energetic non-speech, most-energetic non-speech,
different-gender babble vs. same-gender babble) and type of visual input (with vs. without
visual speech). For both phrasal and syllabic nCTS, Mauchly sphericity tests indicated non-
sphericity for the effect and interactions including the factor “type of noise” (p < 0.01). For

this reason, Greenhouse-Geisser corrections were applied when needed.
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For statistically significant effects involving age group, we used a model fitting
approach to estimate the developmental trajectory of (n)CTS averaged across irrelevant
factors. This approach is explained here for CTS, but the same was used for nCTS. We fitted
to individual values of CTS three models involving different types of dependence on age:

Constant model: CTS(age) = CTCeonstant

Linear model: CTS(age) = CTS, + slope x age

Logistic model: CTS(age) = CTSmin + (CTSmax — CTSmin)/(1+exp(—k, X (age—ageians)))
The logistic model features an evolution of CTS with age from C7Spin to CTSmax With a
transition at agegwans OCcurring at rate k,. Following this model, the maturation of CTS values
roughly starts at ageians — 2.2/k, and finishes at agegyans + 2.2/k,, corresponding to 10 % and 90
% of the evolution from C7Smin to CTSmax (respectively). We also report on the percentage of
increase in CTS, which is obtained as (CTSmax — CTSmin)/CTSmin X 100 %.

Parameters were estimated with the least-square criterion, so that their values for the
constant and linear models were trivial to obtain. Parameters of the logistic model were
estimated with fminsearch Matlab function.

The models were compared statistically with a classical F test.

Source reconstruction of CTS

As a preliminary step to estimate brain maps of CTS, MEG signals were projected into
the source space. For that, MEG and MRI coordinate systems were co-registered using the 3
anatomical fiducial points for initial estimation and the head-surface points for further manual
refinement. When a participant’s MRI was missing (n = 39), we used that of another
participant of roughly the same age, which we linearly deformed to best match head-surface
points using the CPD toolbox (96) embedded in FieldTrip toolbox (Donders Institute for

Brain Cognition and Behaviour, Nijmegen, The Netherlands, RRID:SCR _004849) (97). The
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individual MRIs were segmented using Freesurfer software (Martinos Center for Biomedical
Imaging, Boston, MA, RRID:SCR _001847) (98). Then, a non-linear transformation from
individual MRIs to the MNI brain was computed using the spatial normalization algorithm
implemented in Statistical Parametric Mapping (SPM8, Wellcome Department of Cognitive
Neurology, London, UK, RRID:SCR _007037) (99, 100). This transformation was used to
map a homogeneous 5-mm grid sampling the MNI brain volume onto individual brain
volumes. For each subject and grid point, the MEG forward model corresponding to three
orthogonal current dipoles was computed using the one-layer Boundary Element Method
implemented in the MNE software suite (Martinos Centre for Biomedical Imaging, Boston,
MA, RRID:SCR _005972) (101). The forward model was then reduced to its two first
principal components. This procedure is justified by the insensitivity of MEG to currents
radial to the skull, and hence, this dimension reduction leads to considering only the
tangential sources. Source signals were then reconstructed with Minimum-Norm Estimates
inverse solution (/02).

We followed a similar approach to that used at the sensor level to estimate source-
level CTS. For each grid point, we trained a decoder on the two-dimensional source time-
series to reconstruct speech temporal envelope. Again, the decoder was trained on the data
from all but one condition, and used to estimate CTS in the left-out condition. To speed up
computation, the training was performed without cross-validation, with the ridge value
retained in a sensor-space analysis run on all gradiometer sensors at once. This procedure
yielded a source map of CTS for each participant, condition, and frequency range of interest;
and because the source space was defined on the MNI brain, all CTS maps were inherently
corregistered with the MNI brain. Hence, group-averaged maps were simply produced as the

mean of individual maps within age groups, conditions and frequency ranges of interest.
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We further identified the coordinates of local maxima in group-averaged CTS maps.
Such local maxima of CTS are sets of contiguous voxels displaying higher CTS values than
all neighbouring voxels. We only report statistically significant local maxima of CTS,
disregarding the extents of these clusters. Indeed, cluster extent is hardly interpretable in view
of the inherent smoothness of MEG source reconstruction (/03—105).

Note that the adult MNI template was used in both children and adults despite the fact
that spatial normalization may fail for brains of small size when using an adult template (706).
However, this risk is overall negligible for the population studied here. Indeed, the brain
volume does not change substantially from the age of 5 years to adulthood (/06). This
assumption has been confirmed by a study that specifically addressed this question in children
aged above 6 years (/07). This said, the precise anatomical location of anterior frontal and
temporal opercular sources might be limited due to the greater deformation in those regions

(84).

Significance of local maxima of CTS

The statistical significance of the local maxima of CTS observed in group-averaged
maps for each age group, condition and frequency range of interest was assessed with a non-
parametric permutation test that intrinsically corrects for multiple spatial comparisons (108).
First, participant and group-averaged null maps of CTS were computed with the MEG signals
and the voice signal in each story rotated in time by about half of story length (i.e., the first
and second halves were swapped, thereby destroying genuine coupling but preserving spectral
properties). The exact temporal rotation applied was chosen to match a pause in speech to
enforce continuity. Group-averaged difference maps were obtained by subtracting genuine
and null group-averaged CTS maps. Under the null hypothesis that CTS maps are the same

whatever the experimental condition, the labeling genuine or null are exchangeable prior to
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difference map computation (/08). To reject this hypothesis and to compute a significance
level for the correctly labeled difference map, the sample distribution of the maximum of the
difference map’s absolute value within the entire brain was computed from a subset of 1000
permutations. The threshold at p < 0.05 was computed as the 95 percentile of the sample
distribution (/08). All supra-threshold local maxima of CTS were interpreted as indicative of
brain regions showing statistically significant CTS and will be referred to as sources of CTS.
Permutation tests can be too conservative for voxels other than the one with the
maximum observed statistic (/08). For example, dominant CTS values in the right auditory
cortex could bias the permutation distribution and overshadow weaker CTS values in the left
auditory cortex, even if these were highly consistent across subjects. Therefore, the
permutation test described above was conducted separately for left- and right-hemisphere

voxels.

Effect of age group and conditions on CTS source location

We evaluated for each frequency range if sources of CTS tended to cluster according to
some categories. Five different categories were considered: (i) age-group category (5 age
groups), (ii) visual category (with vs. without visual input), (iii) 3-noise category (noiseless
vs. non-speech noises vs. babble noises), (iv) 2-noise category (noiseless and non-speech
noises vs. babble noises), and (v) presence of noise category (noiseless vs SiN). For this
analysis, we gathered the coordinates of all sources of CTS in all conditions (8 SiN and 2
instances of noiseless speech). For each (target) source and category we computed the
proportion of the 10 closest sources (excluding those for the same condition within the same
age group as the target source) sharing the same category as the target source, we divided that
proportion by that expected by chance (i.e., the total number of sources sharing the same

category as the target source divided by the total number of sources), subtracted 1, and
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multiplied by 100 %. The mean of these values for a given category across all sources
indicates the increase in chance (in percent; compared with what is expected by chance) of
finding another CTS source of that category in the close vicinity. For statistical assessment,
this mean value was compared with its permutation distribution where the CTS sources were

assigned to random labels (1000 permutations).
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Supplementary Material
Table S1. Results of the ANOVASs run on CTS in the noiseless condition.

Phrasal CTS Syllabic CTS
F df1 df2 P F df1 df2 P
Hemisphere|  33.08 1 139 <0.0001 31.83 1 139 <0.0001
Age 0.94 4 139 0.44 1.76 4 139 0.14
Age x Hemisphere 0.70 4 139 0.59 291 4 139 0.0238

Table S2. Results of the ANOVAs run on nCTS in noisy conditions.

Phrasal CTS Syllabic CTS
F df1 df2 P F df1 df2 P
Noise 218 1.73 241 <0.0001 119 2.77 384 <0.0001
Hemisphere 13.1 1 139 0.0004 3.69 1 139 0.057
Visual input 160 1 139 <0.0001 31.38 1 139 <0.0001
Age 13.3 4 139 <0.0001 1.25 4 139 0.29
Hemisphere x Noise 9.01 2.10 292 <0.0001 0.68 2.80 389 0.55
Visual input x Noise 29.7 2.61 263 <0.0001 0.99 2.82 392 0.40
Age x Noise 11.9 6.92 241 <0.0001 1.36 11.1 384 0.19
Age x Hemisphere x Noise 0.95 8.40 292 0.48 1.87 11.2 389 0.041
Age x Visual input 0.90 4 139 0.47 0.95 4 139 0.44
Age x Visual input x Noise 1.21 10.4 363 0.28 0.72 11.3 392 0.72

Table S3. Parametric models of the dependence on age of phrasal nCTS (averaged across
hemispheres) and syllabic nCTS (averaged across least- and most-energetic conditions or

across different- and same-gender conditions) in conditions with and without visual speech.

Noise type Constant vs. Linear | Linear vs. Logistic | Constant vs. Logistic Model
FL14) [ p F2,140) [ p F3,140) [ p nCTS(age) =
Phrasal nCTS without visual speech
least-energetic non-speech| 1.62 0.21 0.17 0.85 0.64 0.59 —0.003
most-energetic non-speech| 2.43 0.12 1.19 0.31 1.61 0.19 —-0.009
different-gender babble|  20.9 <0.0001 8.76 0.0003 13.57 <0.0001 —0.39+0.25/(1+exp(—1.4(age-7.3)))
same-gender babble|] 34.1 <0.0001 9.12 0.0002 18.74 <0.0001 —0.43+0.28/(1+exp(—1.4(age-7.9)))
Phrasal nCTS with visual speech
least-energetic non-speech| 1.60 0.21 1.07 0.35 1.25 0.29 —0.005
most-energetic non-speech|  4.37 0.038 6.52 0.0020 5.92 0.0008 —0.03+0.06/(1+exp(—1072(age—6.8)))
different-gender babble| 23.6 <0.0001 9.47 0.0001 15.1 <0.0001 —0.39+0.34/(1+exp(—0.89(age—6.7)))
same-gender babble| 22.9 <0.0001 11.6 <0.0001 16.5 <0.0001 —0.33+0.27/(1+exp(—1.1(age-7.3)))
Syllabic nCTS without visual speech
non-speech, left hem|  6.35 0.013 1.22 0.30 2.94 0.035 —0.080 + 0.0054 x age
babble, left hem| 3.00 0.086 2.29 0.11 2.54 0.059 -0.21 [-0.27 + 0.0050 x age]
non-speech, right hem|  0.79 0.38 0.45 0.64 0.56 0.64 0.0035
babble, right hem|  3.66 0.058 0.12 0.89 1.28 0.28 —-0.18 [-0.24 + 0.0052 x age]
Syllabic nCTS with visual speech
non-speech, left hem| 1.94 0.17 0.00 1.00 0.64 0.59 0.025 [-0.009 + 0.0029 x age]
babble, left hem| 8.51 0.0041 0.20 0.82 2.94 0.036 —0.24 + 0.0080 x age
non-speech, right hem| 2.28 0.13 0.00 1.00 0.75 0.53 0.042
babble, right hem| 2.89 0.091 0.40 0.67 1.22 0.30 -0.12 [-0.17 + 0.0045 x age]
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Fig. S1. Dependence on age of phrasal nCTS (averaged across hemispheres) in conditions

without (A) and with visual speech (B), and of syllabic nCTS (averaged across least- and

most-energetic conditions or across different- and same-gender conditions) in conditions

without (C) and with visual speech (D).
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Speech comprehension abilities
with vs. without visual speech
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Fig. S2. Dependence on age of speech comprehension scores contrasted between conditions
with vs. without visual speech information. Although Spearman correlation was not
statistically significant, a non-linear model explained significantly more variance than a
constant model (F(3,138) = 2.94, p = 0.035), and marginally more than a linear model
(F(2,138) = 2.84, p = 0.062), which itself explained marginally more variance than a constant
model (F(1,138) =3.07, p = 0.082). According to the non-linear model (score(age) =—0.065 +
0.086/(1+exp(—1.2(age—7.3)))), the gain in comprehension afforded by visual speech

increased as a function of age, and was positive only from age 8.2.

47


https://doi.org/10.1101/2022.01.20.476739
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.20.476739; this version posted January 21, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

S1 Discussion. Beneficial effect of visual speech on CTS in noise

The beneficial effect of synchronized visual speech for speech perception and
comprehension is largely documented, especially in noise conditions (47, 109). It was also
observed on CTS in adults (34, 37, 110, 111). In our study, visual speech boosted phrasal
CTS mainly in babble noise conditions (but also in the most-energetic non-speech condition)
and syllabic CTS in all noise conditions with no effect of age. This suggests that the brain
would leverage visual speech to parse speech into syllables no matter what the listening
conditions are, while it would use such visual information to parse speech into phrases only
when parsing is made difficult by challenging competing noise. This distinction nicely echoes
the view that audiovisual integration dissociates into two modes, one in which vision and
audition provide complementary information and one in which they provide redundant
information (//2). Given that parsing a continuous speech stream into meaningful units is a
difficult task, the brain would always strive to combine the information from both modalities.
The complementary mode of audiovisual speech integration would be based on the extraction
of relevant features of the mouth configuration to derive phonetic information,
complementing those derived from acoustic speech signals (/12). Parsing of phrases based on
auditory information is typically easier because listeners can rely on three main prosodic cues:
pitch change, final lengthening, and pauses (65). Accordingly, visual speech information
about phrase boundaries, which is at best redundant with auditory speech information, would
be of use for phrasal parsing only when access to these cues is compromised, as in
challenging noise conditions. This complementary mode of audiovisual speech integration
would rather be based on the extraction of the temporal dynamics of lip, jaw and head

movements to support speech parsing (/12).
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S2 Discussion. Impact of noise properties on the neural network for CTS

Overall, sources of phrasal CTS were more widely distributed in language-related
areas (/13) than those of syllabic CTS. This differential recruitment may reflect the increased
reliance on top-down information from higher-order language areas to facilitate speech
processing at the phrasal level compared to syllabic level (174).

The dominant sources of syllabic CTS clustered around Heschel's gyrus bilaterally,
while those of phrasal CTS located in middle and posterior STG, in line with previous reports
(17, 104). Interestingly, STG sources of phrasal CTS extended more anteriorly in the
informational noise condition compared with the other conditions. This is in line with the
existence of a posterior-to-anterior gradient in the STG with increasing complexity of the
auditory stimulus (/195).

Sources of phrasal CTS also located in ventral posterior temporal areas, attributed to
semantic aspects (//3) and sentence-level processing (/16). However, this recruitment of the
ventral stream was essentially restricted to the informational noise condition, probably
reflecting the reliance on semantic processes to correctly parse phrasal boundaries in
challenging conditions.

In the frontal lobe, the reliance on semantic processing in phrasal CTS may be
reflected by the anterior shift of sources towards IFG pars orbitalis in informational noise,
consistent with the functional segmentation of the IFG characterized by a posterior-dorsal
(phonology) to anterior-ventral (semantics) gradient (//7-119). However, the presence of
syllabic CTS sources in the anterior-ventral IFG is somewhat at odds with this functional
segregation of the IFG. Tentatively, it might relate to lower-level semantic processes, such as
those potentially needed to predict plausible syllabic sequences. Finally, the dorsal part of the
pars opercularis was reported to be involved in syntactic processing (//6). Our data fit well

into this perspective, since phrasal but not syllabic CTS sources localized in this region, and
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only in the least-challenging conditions. In more challenging conditions, emphasis is expected
to be placed on semantic rather than syntax, as exemplified by suppressed evoked responses

to syntactic violations in challenging noisy conditions (/20).
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