

1 **Dynamics and structural changes of calmodulin upon interaction with its potent
2 antagonist calmidazolium**

3 Corentin Léger¹, Irène Pitard², Mirko Sadi^{1,3}, Nicolas Carvalho^{1,3}, Sébastien Brier², Ariel
4 Mechaly⁴, Dorothée Raoux-Barbot¹, Maryline Davi¹, Sylviane Hoos⁵, Patrick Weber⁴,
5 Patrice Vachette⁶, Dominique Durand⁶, Ahmed Haouz⁴, J. Iñaki Guijarro², Daniel Ladant^{1*},
6 Alexandre Chenal^{1*}

7

8 1: Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and
9 Chemistry, Institut Pasteur, Université de Paris, CNRS UMR3528, 75015 Paris, France

10 2: Biological NMR and HDX-MS Technological Platform, Institut Pasteur, Université de Paris,
11 CNRS UMR3528, 75015 Paris, France

12 3: Université de Paris, Sorbonne Paris Cité, Paris, France

13 4: Plate-forme de Cristallographie-C2RT, Institut Pasteur, Université de Paris, CNRS
14 UMR3528, Paris, France

15 5: Plateforme de Biophysique Moléculaire, Institut Pasteur, Université de Paris, CNRS
16 UMR3528, Paris, France

17 6: Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC),
18 91198, Gif-sur-Yvette, France

19

20 * To whom correspondence and material requests should be addressed:

21 daniel.ladant@pasteur.fr; alexandre.chenal@pasteur.fr

22

23 Keywords: calmodulin; calmidazolium; calmodulin antagonist; protein structure; protein
24 dynamics

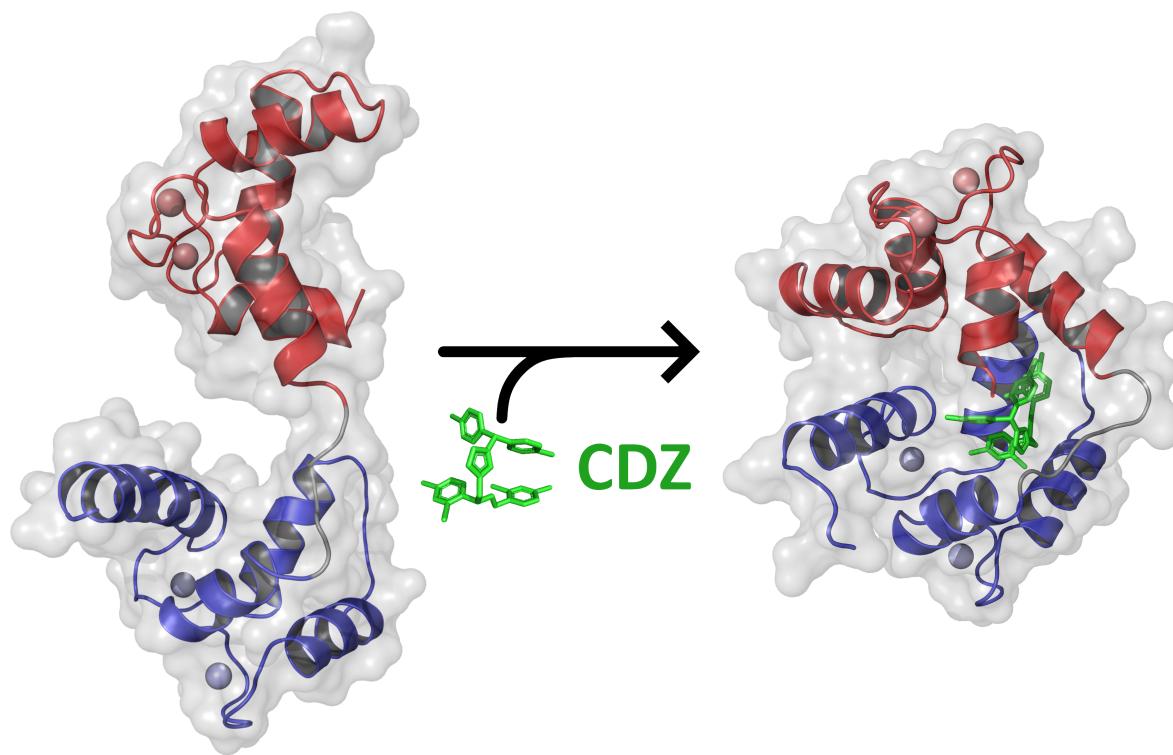
25

26

27

28 **Abstract**

29 Calmodulin (CaM) is a eukaryotic multifunctional, calcium-modulated protein that regulates
30 the activity of numerous effector proteins involved in a variety of physiological processes.
31 Calmidazolium (CDZ) is a potent small molecule antagonist of CaM and one the most widely
32 used inhibitors of CaM in cell biology. Here, we report the structural characterization of
33 CaM:CDZ complexes using combined SAXS, X-ray crystallography, HDX-MS and NMR
34 approaches. Our results provide molecular insights into the CDZ-induced dynamics and
35 structural changes of CaM leading to its inhibition. CDZ-binding induces an open-to-closed
36 conformational change of CaM and results in a strong stabilization of its structural elements
37 associated with a reduction of protein dynamics over a large time range. These CDZ-triggered
38 CaM changes mimic those induced by CaM-binding peptides derived from protein targets,
39 despite their distant chemical nature. CaM residues in close contact with CDZ and involved in
40 the stabilization of the CaM:CDZ complex have been identified. These results open the way to
41 rationally design new CaM-selective drugs.


42

43

44

45 **Figure and text for the Table of Contents (ToC)**

46

47

48

49 Calmidazolium is a potent and widely used inhibitor of calmodulin, a major mediator of calcium-
50 signaling in eukaryotic cells. Structural characterization of calmidazolium-binding to calmodulin
51 reveals that it triggers open-to-closed conformational changes similar to those induced by calmodulin-
52 binding peptides derived from enzyme targets. These results open the way to rationally design new and
53 more selective inhibitors of calmodulin.

54

55

56 **1. Introduction**

57 Calmodulin (CaM) is an essential 148 amino acid-long calcium binding protein that is
58 ubiquitously found in all eukaryotes and one of the most conserved proteins known to date,
59 playing a central role in cell physiology as a key sensor of intracellular calcium signaling ¹⁻³. It
60 regulates a wide variety of biochemical processes by interacting in a calcium-dependent manner
61 with numerous effector proteins to modulate their enzymatic activities and/or their structural
62 properties. Calmodulin has four calcium binding sites, called EF-hand motifs, made of about
63 30 amino acids that adopt a helix-loop-helix fold ⁴. Calcium binds with high affinity to the loop
64 flanked by the two helical segments. CaM has two pairs of EF-hands (N-lobe and C-lobe)
65 connected by a flexible linker. Calcium binding to EF-hands triggers large conformational
66 changes that result in the exposure of hydrophobic patches and promote interaction with target
67 proteins ^{5,6}. Structural studies have highlighted the remarkable plasticity of CaM upon
68 association with its effectors. In many instances, CaM binds its target proteins *via* short, 20–30
69 residues long, CaM-binding sites (CBS) with a positively charged, amphipathic alpha-helical
70 character. Calcium-bound CaM (holo-CaM) generally binds by wrapping its two lobes around
71 the CBS helix, adopting widely diverse configurations that allow it to match the great variability
72 of the primary amino-acid sequences of CBS ^{7,1,8,9}. For many effectors, the CBS sequence is
73 located close to an auto-inhibitory domain that maintains the target enzyme in an inhibited state
74 until holo-CaM binding to the CBS relieves the inhibition ^{10,9}. Alternatively, holo-CaM can
75 interact with targets in a noncanonical fashion in which the N- and C-lobes can simultaneously
76 and independently associate to either distinct sites on the same protein or to the same site on
77 two distinct polypeptide chains, triggering oligomerization ¹⁰⁻¹². Besides, CaM can also
78 associate with various proteins regardless of the presence of calcium, frequently *via* an ‘IQ
79 motif’ (IQXXXRGXXXR) that interacts with both calcium-bound and calcium-free CaM
80 (Apo-CaM) ^{13,10}.

81 CaM mediates many physiological processes such as inflammation, metabolism,
82 proliferation, apoptosis, smooth muscle contraction, intracellular movement, short-term and
83 long-term memory, immune responses, etc ^{14,15,2,9,12}. Given its central role in cell physiology,
84 drugs able to antagonize CaM activity are in dire need for fundamental studies of calcium/CaM
85 signaling as well as for potential therapeutic applications. A variety of molecules with diverse
86 chemical structures were characterized in the 80’s following the initial observations that the
87 phenothiazine family of antipsychotic drugs could inhibit the actions of holo-CaM ¹⁶⁻²¹. Many
88 pharmacologically active drugs (antidepressants, anticholinergics, smooth muscle relaxants,
89 local anesthetics, antiparasitic) were also shown to bind holo-CaM. It was suggested that their

90 therapeutic activity might be, in part, related to their ability to interfere with the calcium/CaM
91 signaling axis, which was therefore seen as a potentially relevant pharmacological target^{21,22}.
92 At a fundamental level, these drugs have also been widely used to probe the role of CaM in cell
93 biology. A major issue with these CaM antagonists is their lack of selectivity as most of them
94 also target multiple additional effectors, making difficult to ascribe specific effects to their
95 calcium/CaM signaling pathway inhibition^{23,24}. Although these CaM antagonists display a
96 variety of chemical structures, they generally share overall hydrophobicity and a net positive
97 charge. Their CaM-binding affinities as well as their stoichiometries are also variable.
98 Structures of several of these antagonists in complex with CaM have revealed the diversity in
99 their protein binding mode, akin to the variability of CaM-CBS complexes²⁵⁻³⁰.

100 Here we provide a detailed characterization of the structural and dynamic changes of
101 holo-CaM induced by the binding of calmidazolium (CDZ), one of the most potent and widely
102 used CaM antagonists^{19,31-33,22,34}. We demonstrate both in crystal and in-solution that the
103 binding of a single CDZ, primarily to the N-lobe of holo-CaM, is enough to induce an open-to-
104 closed conformational reorganization associated with drastic changes of CaM dynamics. This
105 is in marked contrast to prior studies that speculated that multiple CDZ could bind a single CaM
106 molecule. We further delineate the structural rearrangements and changes in internal dynamics
107 triggered by CDZ binding to CaM, as well as the dynamics of the association. These structural
108 data will be instrumental to design CDZ analogs with improved selectivity for CaM.

109

110

111 **2. Results**

112

113 **2.1. CDZ binding to holo-CaM monitored by SRCD and ITC**

114 We first investigated the effect of CDZ on the secondary structure content of CaM using
115 circular dichroism in the far-UV range to determine whether CDZ binding impacts CaM folding
116 (Figure S1). The addition of CDZ does not induce major changes of the far-UV CD spectrum
117 of calcium-loaded calmodulin (holo-CaM), suggesting that CDZ binding does not significantly
118 alter the secondary structure content of holo-CaM. We then investigated the thermodynamics
119 of CDZ binding to holo-CaM by isothermal titration calorimetry (ITC). The data indicated an
120 apparent equilibrium dissociation K_D constant of $3 \pm 2 \mu\text{M}$ with a stoichiometry of 1.2 ± 0.5
121 (Figure S2), in agreement with Dagher et al.³³. An integrative structural biology approach
122 combining SAXS, X-ray crystallography (XR), HDX-MS and NMR was then used to provide
123 molecular insights into the CDZ-induced dynamics and conformational changes of holo-CaM,
124 leading to its inhibition.^{31,19,32,33,22,34,35}

125

126 **2.2. Analysis of CDZ-induced holo-CaM conformational changes by SEC-SAXS**

127 We analyzed the effects of CDZ binding on the molecular shape of holo-CaM by Size
128 exclusion chromatography coupled to small-angle X-ray scattering (SEC-SAXS)
129 measurements.³⁶ The experiments were performed in the presence of 5% DMSO to prevent
130 CDZ aggregation (see Supplementary info for details). The SEC-SAXS patterns recorded for
131 holo-CaM in the absence and in the presence of 5% DMSO were essentially identical,
132 suggesting that 5% DMSO has no detectable effects on holo-CaM (Figure S3).

133 The SEC-SAXS patterns of holo-CaM in the absence and in the presence of CDZ are
134 shown in Figure 1A and the derived structural parameters are reported in Table S1. The SAXS
135 patterns exhibit dramatic differences that are further highlighted by the pair-distance
136 distribution function, $P(r)$, and the dimensionless Kratky analysis (Figures 1B and 1C). The
137 distance distribution functions show that holo-CaM adopts a bi-lobed conformation
138 (SASDNX3) and that CDZ binding induces a compaction of the protein, leading to a globular
139 shape (SASDNY3). The CDZ-induced conformational change of holo-CaM is characterized by
140 a dramatic reduction of the radius of gyration, R_g , from 22.4 to 16.8 Å and of the maximal
141 interatomic distances, D_{\max} , from 72 Å to 52 Å (Figure 1B and Table S1). The dimensionless
142 Kratky plots indicate a significant reduction of the structural flexibility of holo-CaM upon CDZ
143 binding (Figure 1C), with the holo-CaM:CDZ complex exhibiting the archetypical profile of a

144 folded, compact and isometric protein. *Ab initio* models of CaM global conformations were
145 calculated using DENSS³⁷, yielding a bi-lobed extended shape for holo-CaM and a globular
146 shape for the holo-CaM:CDZ complex (Figures 1D and 1E), in agreement with the pair-distance
147 distribution functions and the dimensionless Kratky plots (Figures 1B and 1C). Taken together,
148 the SAXS results indicate that CDZ-binding induces an open-to-closed conformational change
149 and a reduction of holo-CaM flexibility, illustrating the conformational plasticity of holo-CaM.
150

151 **2.3. Structural analysis of holo-CaM by SAXS and X-ray crystallography**

152 The Ensemble Optimization Methods (EOM) suite of programs^{38,39} was used to generate
153 an ensemble of structural models of holo-CaM. Briefly, ten thousand conformations were
154 generated by the Ranch program, starting from the structures of the two calcium-bound lobes
155 of holo-CaM (pdb 1CLL⁴⁰). Residues (76 – 81) in the interlobe linker region were described as
156 dummy residues. These residues were then substituted by a full-atom description with PD2⁴¹
157 and the energy of each linker was minimized using SCWRL4⁴². The scattering pattern of each
158 of the 10000 conformations was then computed using CRY SOL⁴³. Finally, the Gajoe program
159 was used to select ensembles of conformation, the average scattering pattern of each ensemble
160 being fitted against the experimental data using a genetic algorithm. The best ensemble for
161 holo-CaM (SASDNX3) displays the typical conformation of holo-CaM with two well-folded
162 lobes connected by a highly flexible linker (Figure 2A) and shows a good fit to the experimental
163 scattering pattern (Figure 2B) with a χ^2 value of 1.066. The four models in this ensemble fit
164 quite well inside the DENSS³⁷ volume (Figure 2C).

165 The holo-CaM:CDZ complex was investigated using X-ray crystallography. Depending
166 on the molar ratio of holo-CaM and CDZ, we obtained two crystal forms. For the holo-
167 CaM:CDZ complex prepared at a molar ratio of 1:2.2 (1 mM holo-CaM), the unit-cell
168 parameters, merging statistics and systematic absences were consistent with space group
169 C121, while for the holo-CaM:CDZ complex prepared at a molar ratio of 1:10 (1 mM holo-
170 CaM), the parameters were coherent with space group P6₁22. The corresponding structures
171 pdb 7PSZ (holo-CaM:CDZ_A for holo-CaM with one CDZ molecule, CDZ-A) and pdb 7PU9
172 (holo-CaM:CDZ_{BC} for holo-CaM with two CDZ molecules, CDZ-B and CDZ-C) were solved
173 by molecular replacement to 1.9 Å and 2.3 Å, respectively (Figure 2D and Table S2). In the
174 complex prepared at a 1:2.2 molar ratio of holo-CaM:CDZ (pdb 7PSZ), some density was left
175 unattributed inside holo-CaM. This density, which could be assigned to a second CDZ, may

176 arise from partial occupation due to differences between molecules within the unit-cell or
177 random sub-stoichiometric binding.

178 The two crystal structures of holo-CaM:CDZ with one and two CDZ molecules are quite
179 similar with a RMSD of only 1.4 Å over all C α and exhibit compact and globular structures
180 (Figures 2D). CDZ-A and CDZ-B are bound to the same region of holo-CaM and are mostly
181 localized in the N-lobe. The superimposition of the N-lobes of the two crystal structures shows
182 that the conformation of CDZ-A and CDZ-B slightly differ by the rotation of two chlorophenyl
183 groups (Figure 2E). This rotation seems required to accommodate the second CDZ (CDZ-C)
184 inside the holo-CaM:CDZ_{BC} complex. Analysis with LigPlot⁴⁴ indicates that holo-CaM:CDZ
185 interactions are mostly driven by hydrophobic effects (Figure S4), with CDZ-A and CDZ-B
186 mainly interacting with residues from the C-terminal part of the N-lobe and the N-terminal part
187 of the C-lobe of holo-CaM, as shown in Table S3. These residues are similar to those identified
188 by Reid *et al.*⁴⁵. CDZ-C mainly interacts with the N- and C-terminal extremities of CaM.

189 The crystal structures and the SEC-SAXS data of holo-CaM:CDZ were compared using
190 DENSS and Crysolv. Both crystal structures fit well within the envelope of the DENSS model
191 generated with the SEC-SAXS data of the holo-CaM:CDZ complex (Figure 2G). Comparison
192 of the theoretical SAXS patterns of the two crystal structures generated by Crysolv to the
193 experimental SEC-SAXS pattern of the complex indicates that the holo-CaM:CDZ_A crystal
194 structure is in excellent agreement with experimental data with a χ^2 of 1.4, against 9.3 for the
195 holo-CaM:CDZ_{BC} crystal structure (Figure 2F). Taken together, these analyses indicate that the
196 holo-CaM:CDZ complex exhibits a similar conformation in solution and in the crystals and
197 suggest that a single CDZ molecule is sufficient to induce an open-to-closed conformational
198 change of holo-CaM. The part of CDZ_A, which remains solvent-exposed once interacting with
199 the N-lobe of holo-CaM, likely forces the C-lobe to collapse by a hydrophobic effect, closing
200 the two lobes of holo-CaM on themselves, with holo-CaM wrapping around CDZ_A.

201

202 **2.4. HDX-MS analysis of holo-CaM upon CDZ binding**

203 The effect of CDZ binding on the solvent accessibility of holo-CaM was also
204 investigated by HDX-MS. The holo-CaM:CDZ complex used in HDX-MS was performed at a
205 1:32 molar ratio (0.63 μM CaM and 20 μM CDZ) in the presence of 2% DMSO (Table S4,
206 Figures S5 and S6). The excess of CDZ ensures that most of holo-CaM (circa 90 %) remains
207 complexed during labelling (*i.e.*, using a K_D of 3 ± 2 μM and a 1.2 binding stoichiometry). CDZ
208 binding induces similar reductions in solvent accessibility within the N- and C- lobes of holo-
209 CaM (Figures 3A, 3B and 3C), and has no effect on regions covering residues 2-9 (N-ter), 73-

210 84 (interlobe linker region) and 114-124 (helix α 6). The effects of CDZ are best illustrated and
211 visualized in Figure 3D. This figure was generated by plotting on the CaM:CDZ_A crystal
212 structure (pdb 7PSZ, Figure 2D) the average “Differences in Uptake differences” calculated
213 between CDZ-bound and free holo-CaM for all labelling time points (Figure S6). The main
214 reductions in solvent accessibility are located in region 21-45 (calcium binding loop 1, α 2) of
215 the N-lobe, and in regions 84-90 (α 4b), 104-113 (α 5) and 143-149 (α 7) of the C-lobe. The
216 regions with high reductions in solvent accessibility identified by HDX-MS compare well with
217 the residues interacting with CDZ-A and CDZ-B in the crystal structures, as highlighted with
218 Ligplot+ (Table S3). The residues interacting with CDZ-C in the crystal structure experience
219 only a weak reduction in solvent accessibility, suggesting that CDZ-C is essentially absent in
220 holo-CaM:CDZ complexes at the concentrations used for HDX-MS experiments. Finally, a
221 weak reduction in solvent accessibility is measured for the interlobe linker region. The HDX-
222 MS results appear therefore consistent with the crystal structure of the holo-CaM:CDZ_A
223 complex and confirm that CDZ binding to the N-lobe dramatically stabilizes both lobes.

224 The effects of CDZ binding on the exchange behavior of holo-CaM were finally
225 compared to those induced by the binding of CaM-binding peptides: two peptides, the H-helix
226 and P454 derived from the adenylate cyclase toxin CyaA from *Bordetella pertussis*⁴⁶⁻⁴⁹ and
227 MLCK peptides.^{10,49,35} The interlobe linker region (peptide 73-84) remains accessible to the
228 solvent in the absence and in the presence of ligands (Figure S7). Interestingly, CDZ, the MLCK
229 and the H-helix peptides induce similar differences in HDX uptake of holo-CaM (albeit with
230 distinct amplitudes but the global patterns remain very similar). These results indicate that CDZ
231 mimics the effects of biological ligands on holo-CaM. Taken together, HDX-MS data shows
232 that CDZ binding to holo-CaM dramatically reduces the solvent accessibility of both lobes
233 without affecting the interlobe linker region.

234

235 **2.5. Effect of CDZ binding on holo-CaM hydrodynamic parameters monitored by NMR**

236 We evaluated the influence of CDZ binding to holo-CaM on the tumbling correlation
237 time (τ_c) at 37 °C with increasing equivalents of CDZ (Table S5). The observed increase in τ_c
238 indicates that while the N- and C-lobes of holo-CaM tumble independently of each other ($\tau_c =$
239 4.5 ± 0.2 ns), the two lobes tumble together in a more compact holo-CaM:CDZ 1:1 complex
240 (5.2 ± 0.3 ns). The τ_c value of CDZ-bound holo-CaM agrees well with the value calculated for
241 a globular, compact protein of molecular mass and partial specific volume corresponding to
242 holo-CaM (5.2 ns), further confirming the SAXS and X-ray analyses.

243

244 **2.6. Effects of CDZ on holo-CaM NMR spectra and chemical shifts**

245 We recorded ^1H - ^{15}N correlation spectra of holo-CaM in the absence and in the presence
246 of 0.5 and 1 equivalents of CDZ (Figure 4A). CDZ binding dramatically perturbs most holo-
247 CaM signals, indicating that CDZ affects not only the signals of residues at the binding interface
248 but also exhibits long-range effects on the conformations and/or internal motions throughout
249 most of the protein. The spectrum of holo-CaM with a half-equivalent of CDZ (cyan, Figure 4A,
250 right panels) corresponds to the sum of the spectra of the free and the 1:1 molar ratio of holo-
251 CaM:CDZ complex. Thus, (i) the free and bound holo-CaM conformations are in slow
252 exchange on the chemical shift time scale as expected for a high affinity interaction and (ii), at
253 sub-stoichiometric concentrations, one CDZ molecule binds to one holo-CaM. Binding of CDZ
254 also affects the relative intensities of the ^1H - ^{15}N signals and hence the internal motions of holo-
255 CaM (see 130I signal in Figure 4A).

256 As evaluated from the backbone and CB resonances of the free and CDZ-bound holo-
257 CaM using Talos-N, CDZ binding did not alter the secondary structure of holo-CaM, which
258 was consistent with the secondary structure of the crystal structures determined herein and of
259 holo-CaM in solution⁵⁰ (Table S6). Hence, the variations of chemical shifts in ^1H - ^{15}N
260 correlation spectra were due to residues in contact with CDZ, and/or to a modification of the
261 tertiary structure and/or the internal dynamics of the protein.

262 We then performed a quantitative analysis of the chemical shift perturbations (CSPs) of
263 holo-CaM upon binding to CDZ (Figures 4B and 4C). Most of the highly affected residues were
264 localized in regions contacting CDZ. Some strong perturbations were also located far away
265 from the binding interface, for instance in calcium binding loops. Overall, the CSPs are in
266 agreement with the binding interface observed in the holo-CaM:CDZ_A complex (Figure 4C)
267 and further indicate that CDZ binding affects distal regions in holo-CaM. Importantly, of the
268 31 unassigned amide resonances (mainly because of exchange broadening due to
269 conformational exchange on the μs -ms time range), 18 were localized in the C-lobe, 5 on the
270 linker region and neighboring residues and only 8 in the N-lobe, suggesting that exchanges
271 between different conformations in the complex take place on the μs -ms time range, particularly
272 affecting the C-lobe, which establishes less contacts with CDZ, as well as the linker region. In
273 holo-CaM, the backbone and CB chemical shifts of residues 77-81 of the interlobe linker are
274 consistent with a highly dynamic segment, as indicated from chemical shift-derived S² order
275 parameters determined using RCI (Figure S8). However, in the presence of CDZ, we observed
276 a shift and exchange broadening of the corresponding amide signals (as well as those of

277 neighboring residue signals 75-79 and 82-83), with residues 80D, 81S, 84E and 74R displaying
278 very strong CSPs (Figure 4B).

279 Addition of an excess of CDZ to holo-CaM brings only minor modifications to the
280 spectrum of holo-CaM bound to one CDZ, as evidenced by the very low CSP values observed
281 between the holo-CaM:CDZ complexes at a molar ratio of 1:1 and 1:2.9 (Figure 4B). This
282 relatively small effect, that might reflect binding of a second CDZ molecule, can be rationalized
283 considering that (i) the binding sites and residues in contact with CDZ are similar in both
284 complexes for CDZ_A and CDZ_B, (ii) several residue signals close to CDZ_C were exchange
285 broadened and could not be assigned (see Figure 4 legend for details) and (iii) the structures of
286 one- and two-CDZ loaded holo-CaM are similar.

287 Whereas binding of CDZ to holo-CaM is a slow process in the chemical shift time scale,
288 ¹H-¹⁵N spectra indicate that some residues undergo exchange between different conformations
289 on a faster time scale within the complex. This phenomenon, which gives rise to small chemical
290 shift variations that depend on CDZ concentration, implicates residues in the 2nd, 3rd and 4th
291 calcium binding loops, with residues such as 57A (2nd loop) and 137N (4th loop) showing the
292 highest effect.

293

294 **2.7. Influence of CDZ on the internal dynamics of holo-CaM**

295 The internal dynamics of free and CDZ-bound holo-CaM were compared using the ¹⁵N
296 transverse (T_2), longitudinal (T_1) and heteronuclear ¹H-¹⁵N nOe relaxation parameters (Figures
297 S9 and S10). In holo-CaM, the relaxation parameters (high T_2 , low T_1 , low T_1/T_2 and low ¹H-
298 ¹⁵N nOes) of residues in the linker region (77-81) and flanking residues in α -helices H4 and H6
299 are characteristic of high amplitude motions on the ns-ps time scale, with a higher flexibility
300 around its mid-point (T79-D80). In contrast, the relaxation parameters of the α -helical elements
301 of the N- and C-lobes are indicative of ordered regions in a globular protein. Binding of CDZ
302 drastically changes the internal dynamics of holo-CaM.

303 A simple picture of the modification of the amplitude of the fast motions caused by CDZ
304 binding can be obtained from the difference of the nOe values between the bound and free
305 conformations (Figure 5). Most residues with available data displayed higher nOes within the
306 complex, with 44 residues (highlighted in red and orange in Figure 5) showing a significant
307 CDZ-induced effect. These data suggest a global reduction of internal fast motions of holo-
308 CaM within the complex. Albeit residues in all the secondary structure elements and calcium
309 binding loops showed this increase in nOe, the latter was not evenly distributed throughout the
310 structure. Among calcium binding loops, loop 3 had the higher increase in nOe. This stabilizing

311 effect was less pronounced for α -helix H1, which is far away from the CDZ binding site.
312 Importantly, the increase of nOe for residues 80D and 81S in the linker was of 0.4, which
313 indicates that CDZ binding restricts the fast motions in the linker. The fact that residues 77-79
314 in the linker and flanking residues 75-76 (unassigned) were highly impacted by CDZ binding
315 and exchange-broadened, further shows that the linker experiences conformational
316 modifications and motion restrictions also on a slower time scale (μ s-ms). This motion
317 restriction is however modest and the linker region remains dynamic in the complex as
318 evidenced by HDX-MS that probes dynamics on a longer time scale (< minutes). As observed
319 with CSPs, binding of a second CDZ molecule (sample with a three-fold excess of CDZ)
320 resulted in modest modifications in the ^{15}N T₁, T₂ and ^1H - ^{15}N nOe profiles of holo-CaM relative
321 to the 1:1 complex (Figure S10). No clear evidence of different rigidity in the 1:1 or 1:2
322 complexes was detected. Taken together, the sub-nanosecond internal dynamics of holo-
323 CaM:CDZ 1:1 and 1:2 complexes are similar (and reduced relative to the free protein), and
324 holo-CaM experiences slow μ s-ms conformational changes within the complex.
325
326

327 **3. Conclusion**

328 In the present work we have explored the structural basis of holo-CaM interaction with
329 CDZ, one of the most potent CaM antagonists known to date. CDZ has been widely used to
330 probe the role of holo-CaM in various biological processes.^{52,33,22,34} How this molecule interacts
331 with holo-CaM and inhibits its regulatory activity had not been elucidated at the molecular
332 level. Although numerous studies have been carried out to define the biochemical and
333 biophysical parameters of holo-CaM:CDZ interaction, major uncertainties remained regarding
334 the structure, dynamics, affinity, and stoichiometry of the complex.

335 Our present results reveal a main CDZ binding site involving primarily the N-lobe of
336 CaM, although a second CDZ could be detected in crystals grown at high CDZ:holo-CaM ratio
337 and high concentration (10 mM CDZ). Solution structure analysis indicated only a very low
338 proportion of holo-CaM complexed with two CDZ (holo-CaM:CDZ_{BC}), which is unlikely to be
339 of any relevance in physiological conditions, *i.e.*, when CDZ is used to probe the potential
340 implication of CaM in signaling pathways and/or physiological processes (usually at
341 concentrations below 50 μ M). Earlier work, mainly based on indirect measurements using
342 fluorescent probes, had speculated on multiple CDZ binding sites - up to six molecules per
343 CaM³³, but our data clearly rule out such models.

344 Structures of other CaM:inhibitor complexes previously revealed that CaM may
345 accommodate a variable number of antagonists in distinct calcium-loaded conformations, (*e.g.*
346 2 or 4 TFP per CaM or 2 arylalkylamine antagonists, etc.), and even two distinct drugs
347 simultaneously for example, trifluoperazine and KAR-2 or vinblastine and KAR-2, but not
348 trifluoperazine and vinblastine²⁶. This diversity may reflect the somehow artificial conditions
349 of crystallization that use high concentrations of compounds (and CaM) and are likely favoring
350 hydrophobic forces between drugs and the hydrophobic cavities of CaM, a consideration that
351 should be kept in mind when interpreting the corresponding crystal structures.

352 Our integrative structural biology approach indicates that CDZ binding dramatically
353 affects the conformational dynamics of CaM that collapses from a dumbbell-shaped
354 conformation into a compact globular structure. Despite the fact that CDZ mainly contacts the
355 N-lobe, it triggers a complete closing of the two lobes of holo-CaM into a structure that appears
356 very similar to that of CaM bound to classical CBS peptides (*e.g.* MLCK^{53,51,49}). The CDZ-
357 induced compaction was clearly established both in crystal and in solution. The CDZ-induced
358 stabilization of this closed conformation thus locks CaM into an inactive form unable to
359 associate with most CBS of target proteins. Even a target enzyme, such as *B. pertussis* CyaA
360 that is activated by interacting with the CaM C-terminal lobe only,^{54,55,49} can be efficiently

361 inhibited by CDZ.³⁵ This suggests that CDZ, by stabilizing the closed CaM globular
362 conformation, should be capable of blunting all major CaM associations with most enzyme
363 targets. Interestingly, this mode of binding is similar to that of TFP except that this drug, in
364 contrast to CDZ, mainly contacts residues in the C-lobe of CaM.²⁵ Hence, in both cases, drug
365 binding, primarily to one of the two lobes of CaM, is sufficient to trigger drastic open-to-closed
366 conformational changes of the protein.

367 The two crystal structures of holo-CaM:CDZ with one and two CDZ molecules revealed
368 that the key CDZ binding residues, mainly localized within the N-lobe of holo-CaM, are mostly
369 hydrophobic and include several methionines. Interestingly, in the 1:2 complex, one of the two
370 CDZ molecules (CDZ-B) adopts essentially the same binding mode as the single CDZ (CDZ-
371 A) in the 1:1 complex, although with a slightly different arrangement that is likely required for
372 accommodating the second CDZ. NMR studies clearly indicated that, within the 1:1 holo-CaM-
373 CDZ complex, some residues undergo exchange between different conformations on a fast (μ -
374 ms) time scale. It is thus possible that in solution, CDZ is continuously sampling different
375 configurations within the closed holo-CaM-CDZ globular complex, a feature that was also
376 recently observed for another antagonist idoxifene.³⁰ Binding of a second CDZ molecule mainly
377 onto the CaM C-lobe, actually triggers very little changes on the overall conformation of the
378 complex and its internal dynamics. Structural analysis of holo-CaM-CDZ in solution is clearly
379 in favor of a 1:1 stoichiometric complex. Overall, binding of a second CDZ is unlikely to occur
380 in solution in standard physiological assays *in vitro* or in cells (with CDZ below 20 μ M) and it
381 is therefore reasonable to assume that in these tests, binding of a single CDZ can fully block
382 CaM activity. This is important to consider when experimentally probing CaM signaling
383 function with CDZ at a concentration able to match the total CaM concentration in cell
384 (estimated to range from 3 to 10 μ M, depending on cell types³⁵).

385 Collectively, these data highlight the remarkable plasticity of CaM that can adopt highly
386 diverse conformations to precisely fit to widely different antagonist scaffolds as well as to
387 peptidic-binding motifs on target protein effectors. Our present results also open up new
388 opportunities to design CDZ derivatives with substantially higher CaM-affinity, and
389 consequently, better selectivity. Indeed, CDZ is known to affect several cellular targets,
390 including L-type Ca^{2+} , K^+ , Na^+ channels, and sarcoplasmic reticulum (SR) calcium-release
391 channels.⁵² At high concentrations, it may exhibit other pharmacologic effects as well. CDZ is
392 cytotoxic at high concentrations and has been shown to induce apoptosis in breast cancer and
393 hepatoma cells,^{56,2} to inhibit growth of murine embryonal carcinoma cells⁵⁷ and to enhance
394 differentiation of colon cancer cells as well.^{58,2} These adverse effects somehow limit the

395 application of this molecule (as well as that of all other CaM antagonists thus far) in dissecting
396 calcium/CaM signaling. A more selective targeting of CDZ analogs onto holo-CaM could
397 restrict the off-target effects and improve its biological pertinence in fundamental research but
398 also potentially in therapeutic applications.⁵⁹⁻⁶¹ Renewed efforts are currently applied to
399 develop improved CaM-antagonists as illustrated by Okutachi *et al.* who recently described the
400 development of a new covalent CaM inhibitor, called Calmirasone1, to explore the cancer cell
401 biology of K-Ras and CaM associated stemness activities.⁶² Such CaM inhibitors might find
402 straightforward medical applications, as illustrated by Taylor and colleagues,⁶³ who provided
403 evidence that CaM inhibitors could be efficacious in rescuing a genetic disease (Diamond-
404 Blackfan anemia, DBA) that results from increased expression of tumor suppressor. This study
405 suggests that CaM inhibition may offer a potential therapeutic path for treatment of DBA and
406 other diseases characterized by aberrant p53 activity.^{63,64}

407 Taken together, the dynamics and structural data presented herein will be instrumental
408 to design the next generation of CDZ analogs with improved selectivity for CaM and restricted
409 off-target effects.

410

411

412 **4. Experimental Section/Methods**

413 Material and methods are described in the supplementary information file.

414

415 **Supporting Information**

416 Supporting Information is available from the Wiley Online Library. The file contains the
417 materials and methods section, Figures S1 to S11, Tables S1 to S6, and the supplementary
418 references.

419

420 **Acknowledgments:** C.L. was supported by Institut Pasteur (PTR 166-19) and ANR (ANR 21-
421 CE11-0014-01-TransCyaA). I.P. was supported by the ANR grant ANR-16-CE110020-01.
422 M.S. was supported by the Pasteur - Paris University (PPU) International PhD Program. N.C.
423 was supported by Institut Pasteur (DARRI-Emergence S-PI15006-12B). We thank the staff of
424 the Crystallography core facility at the Institut Pasteur for carrying out robot-driven
425 crystallization screenings. We thank SOLEIL and ESRF for provision of synchrotron radiation
426 facilities. We thank the staffs of the DISCO, PROXIMA-1, PROXIMA-2 and SWING
427 beamlines for constant support and help during data collection at Synchrotron SOLEIL (St
428 Aubin, France) and MASSIF at Synchrotron ESRF (Grenoble, France) beamlines for assistance
429 during the X-ray diffraction data collection.

430

431 **Funding sources:** Agence Nationale de la Recherche (ANR 21-CE11-0014-01-TransCyaA,
432 CACSICE Equipex ANR-11-EQPX-0008). CNRS (UMR 3528). Institut Pasteur (PTR 166-19,
433 DARRI-Emergence S-PI15006-12B, PPUIP program). The funders have no role in study
434 design, data collection and analysis, decision to publish, or preparation of the manuscript.

435

436 **Conflict of interests:** The authors declare that they have no conflict of interest.

437

438 **Data Availability:** All relevant HDX-MS, X-ray and SAXS data are available in supporting
439 information. The crystal structures have been deposited on the PDB with the access codes
440 6YNU and 6YNS. The structural models and experimental SAXS data have been deposited on
441 SASBDB (Small Angle Scattering Biological Data Bank,
442 <http://www.sasbdb.org/aboutSASBDB/>) under the SAS codes SASDNX3 (Calcium-bound
443 Calmodulin, including structural models) and SASDNY3 (Calcium-bound Calmodulin
444 complexed with Calmidazolium).

445

446 **Abbreviations:** CaM, calmodulin; C-lobe, C-terminal domain of CaM; CDZ, calmidazolium;
447 HDX-MS, hydrogen/deuterium exchange mass spectrometry; holo-CaM, calcium-loaded
448 calmodulin; MEMHDX, Mixed-Effects Model for HDX experiments; MLCK, myosin light
449 chain kinase; MS, mass spectrometry; N-lobe, N-terminal domain of CaM; NMR, nuclear
450 magnetic resonance; pdb, Protein Data Bank; SASBDB, Small Angle Scattering Biological
451 Data Bank; SAXS, small-angle X-ray scattering; SEC, size exclusion chromatography.

452

453 Received: ((will be filled in by the editorial staff))

454 Revised: ((will be filled in by the editorial staff))

455 Published online: ((will be filled in by the editorial staff))

456

457

458 **References**
459

460 (1) Chin, D., and Means, A. R. (2000) Calmodulin: a prototypical calcium sensor. *Trends Cell Biol.* 10, 322–328.
461
462 (2) Berchtold, M. W., and Villalobo, A. (2014) The many faces of calmodulin in cell
463 proliferation, programmed cell death, autophagy, and cancer. *Biochim. Biophys. Acta BBA - Mol. Cell Res.* 1843, 398–435.
464
465 (3) Jensen, H. H., Brohus, M., Nyegaard, M., and Overgaard, M. T. (2018) Human
466 Calmodulin Mutations. *Front. Mol. Neurosci.* 11, 396.
467
468 (4) Grabarek, Z. (2006) Structural Basis for Diversity of the EF-hand Calcium-binding Proteins. *J. Mol. Biol.* 359, 509–525.
469
470 (5) Babu, Y. S., Sack, J. S., Greenhough, T. J., Bugg, C. E., Means, A. R., and Cook, W. J. (1985) Three-dimensional structure of calmodulin. *Nature* 315, 37–40.
471
472 (6) Zhang, M., Tanaka, T., and Ikura, M. (1995) Calcium-induced conformational transition revealed by the solution structure of apo calmodulin. *Nat. Struct. Biol.* 2, 758–767.
473
474 (7) Crivici, A., and Ikura, M. (1995) Molecular and Structural Basis of Target Recognition by Calmodulin. *Annu. Rev. Biophys. Biomol. Struct.* 24, 85–116.
475
476 (8) Ikura, M., and Ames, J. B. (2006) Genetic polymorphism and protein conformational plasticity in the calmodulin superfamily: Two ways to promote multifunctionality. *Proc. Natl. Acad. Sci.* 103, 1159–1164.
477
478 (9) Marshall, C. B., Nishikawa, T., Osawa, M., Stathopoulos, P. B., and Ikura, M. (2015) Calmodulin and STIM proteins: Two major calcium sensors in the cytoplasm and endoplasmic reticulum. *Biochem. Biophys. Res. Commun.* 460, 5–21.
479
480 (10) Tidow, H., and Nissen, P. (2013) Structural diversity of calmodulin binding to its target sites. *FEBS J.* 280, 5551–5565.
481
482 (11) Li, Z., Zhang, Y., Hedman, A. C., Ames, J. B., and Sacks, D. B. (2017) Calmodulin Lobes Facilitate Dimerization and Activation of Estrogen Receptor- α *. *J. Biol. Chem.* 292, 4614–4622.
483
484 (12) Villalobo, A., Ishida, H., Vogel, H. J., and Berchtold, M. W. (2018) Calmodulin as a protein linker and a regulator of adaptor/scaffold proteins. *Biochim. Biophys. Acta BBA - Mol. Cell Res.* 1865, 507–521.
485
486 (13) Bähler, M., and Rhoads, A. (2002) Calmodulin signaling via the IQ motif. *FEBS Lett.* 513, 107–113.
487
488 (14) Van Eldik, L. J., and Watterson, D. M. (Eds.). (1998) Calmodulin and Signal Transduction, in *Calmodulin and Signal Transduction*, p iii. Academic Press, San Diego.
489
490 (15) Shen, X., Valencia, C. A., Szostak, J., Dong, B., and Liu, R. (2005) Scanning the human proteome for calmodulin-binding proteins. *Proc. Natl. Acad. Sci.* 102, 5969–5974.
491
492 (16) Levin, R. M., and Weiss, B. (1977) Binding of trifluoperazine to the calcium-dependent activator of cyclic nucleotide phosphodiesterase. *Mol. Pharmacol.* 13, 690–697.
493
494 (17) Hidaka, H., Sasaki, Y., Tanaka, T., Endo, T., Ohno, S., Fujii, Y., and Nagata, T. (1981) N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide, a calmodulin antagonist, inhibits cell proliferation. *Proc. Natl. Acad. Sci.* 78, 4354.
495
496 (18) Weiss, B., Prozialeck, W. C., and Wallace, T. L. (1982) Interaction of drugs with calmodulin. *Biochem. Pharmacol.* 31, 2217–2226.
497
498 (19) Gietzen, K. (1983) Comparison of the Calmodulin Antagonists Compound 48/80 and Calmidazolium. *Biochem J* 216, 611–616.
499
500 (20) Norman, J. A., Ansell, J., Stone, G. A., Wennogle, L. P., and Wasley, J. W. (1987) CGS 501 9343B, a novel, potent, and selective inhibitor of calmodulin activity. *Mol. Pharmacol.* 31, 535.
502
503 (21) Veigl, M. L., Klevit, R. E., and Sedwick, W. D. (1989) The uses and limitations of

508 calmodulin antagonists. *Pharmacol. Ther.* 44, 181–239.

509 (22) Audran, E., Dagher, R., Gioria, S., Tsvetkov, P. O., Kulikova, A. A., Didier, B., Villa, P.,
510 Makarov, A. A., Kilhoffer, M.-C., and Haiech, J. (2013) A general framework to characterize
511 inhibitors of calmodulin: Use of calmodulin inhibitors to study the interaction between
512 calmodulin and its calmodulin binding domains. *Biochim. Biophys. Acta BBA - Mol. Cell Res.*
513 1833, 1720–1731.

514 (23) Sengupta, P., Ruano, M. J., Tebar, F., Golebiewska, U., Zaitseva, I., Enrich, C.,
515 McLaughlin, S., and Villalobo, A. (2007) Membrane-permeable Calmodulin Inhibitors (e.g.
516 W-7/W-13) Bind to Membranes, Changing the Electrostatic Surface Potential. *J. Biol. Chem.*
517 282, 8474–8486.

518 (24) Wong, M. H., Samal, A. B., Lee, M., Vlach, J., Novikov, N., Niedziela-Majka, A., Feng,
519 J. Y., Koltun, D. O., Brendza, K. M., Kwon, H. J., Schultz, B. E., Sakowicz, R., Saad, J. S.,
520 and Papalia, G. A. (2019) The KN-93 Molecule Inhibits Calcium/Calmodulin-Dependent
521 Protein Kinase II (CaMKII) Activity by Binding to Ca²⁺/CaM. *J. Mol. Biol.* 431, 1440–1459.

522 (25) Cook, W. J., Walter, L. J., and Walter, M. R. (1994) Drug Binding by Calmodulin:
523 Crystal Structure of a Calmodulin-Trifluoperazine Complex. *Biochemistry* 33, 15259–15265.

524 (26) Vertessy, B. G., Harmat, V., Böcskei, Z., Náray-Szabó, G., Orosz, F., and Ovádi, J.
525 (1998) Simultaneous Binding of Drugs with Different Chemical Structures to Ca²⁺ -
526 Calmodulin: Crystallographic and Spectroscopic Studies. *Biochemistry* 37, 15300–15310.

527 (27) Osawa, M., Swindells, M. B., Tanikawa, J., Tanaka, T., Mase, T., Furuya, T., and Ikura,
528 M. (1998) Solution structure of Calmodulin-W-7 complex: the basis of diversity in molecular
529 recognition. *J. Mol. Biol.* 276, 165–176.

530 (28) Horváth, I., Harmat, V., Perczel, A., Pálfi, V., Nyitrai, L., Nagy, A., Hlavanda, E.,
531 Náray-Szabó, G., and Ovádi, J. (2005) The Structure of the Complex of Calmodulin with
532 KAR-2. *J. Biol. Chem.* 280, 8266–8274.

533 (29) Johnson, C. N., Pattanayek, R., Potet, F., Rebbeck, R. T., Blackwell, D. J., Nikolaienko,
534 R., Sequeira, V., Le Meur, R., Radwański, P. B., Davis, J. P., Zima, A. V., Cornea, R. L.,
535 Damo, S. M., Györke, S., George, A. L., and Knollmann, B. C. (2019) The CaMKII inhibitor
536 KN93-calmodulin interaction and implications for calmodulin tuning of NaV1.5 and RyR2
537 function. *Cell Calcium* 82, 102063.

538 (30) Milanesi, L., Trevitt, C. R., Whitehead, B., Hounslow, A. M., Tomas, S., Hosszu, L. L.
539 P., Hunter, C. A., and Walther, J. P. (2021) High-affinity tamoxifen analogues retain extensive
540 positional disorder when bound to calmodulin. *Magn. Reson.* 2, 629–642.

541 (31) Gietzen, K., Wüthrich, A., and Bader, H. (1981) R 24571: A new powerful inhibitor of
542 red blood cell Ca⁺⁺-transport ATPase and of calmodulin-regulated functions. *Biochem.
543 Biophys. Res. Commun.* 101, 418–425.

544 (32) Tuana, B. S., and MacLennan, D. H. (1984) Calmidazolium and Compound 48/80 Inhibit
545 Calmodulin-Dependent Protein-Phosphorylation and Atp-Dependent Ca-2+ Uptake but Not
546 Ca-2+-Atpase Activity in Skeletal-Muscle Sarcoplasmic-Reticulum. *J Biol Chem* 259, 6979–
547 6983.

548 (33) Dagher, R., Briere, C., Feve, M., Zeniou, M., Pigault, C., Mazars, C., Chneiweiss, H.,
549 Ranjeva, R., Kilhoffer, M. C., and Haiech, J. (2009) Calcium fingerprints induced by
550 Calmodulin interactors in eukaryotic cells. *Biochim. Biophys. Acta-Mol. Cell Res.* 1793,
551 1068–1077.

552 (34) Lübker, C., and Seifert, R. (2015) Effects of 39 Compounds on Calmodulin-Regulated
553 Adenylyl Cyclases AC1 and *Bacillus anthracis* Edema Factor. *PLOS ONE* (Boyaka, P. N.,
554 Ed.) 10, e0124017.

555 (35) Voegele, A., Sadi, M., O'Brien, D. P., Gehan, P., Raoux-Barbot, D., Davi, M., Hoos, S.,
556 Brûlé, S., Raynal, B., Weber, P., Mechaly, A., Haouz, A., Rodriguez, N., Vachette, P.,
557 Durand, D., Brier, S., Ladant, D., and Chenal, A. (2021) A High-Affinity Calmodulin-

558 Binding Site in the CyaA Toxin Translocation Domain is Essential for Invasion of Eukaryotic
559 Cells. *Adv. Sci.* 8, 2003630.

560 (36) O'Brien, D. P., Brier, S., Ladant, D., Durand, D., Chenal, A., and Vachette, P. (2018)
561 SEC-SAXS and HDX-MS: A powerful combination. The case of the calcium-binding domain
562 of a bacterial toxin. *Biotechnol Appl Biochem* 65, 62–68.

563 (37) Grant, T. D. (2018) Ab initio electron density determination directly from solution
564 scattering data. *Nat. Methods* 15, 191–193.

565 (38) Bernado, P., Mylonas, E., Petoukhov, M. V., Blackledge, M., and Svergun, D. I. (2007)
566 Structural characterization of flexible proteins using small-angle X-ray scattering. *J Am Chem
567 Soc* 129, 5656–64.

568 (39) Tria, G., Mertens, H. D. T., Kachala, M., and Svergun, D. I. (2015) Advanced ensemble
569 modelling of flexible macromolecules using X-ray solution scattering. *IUCrJ* 2, 207–217.

570 (40) Chattopadhyaya, R., Meador, W. E., Means, A. R., and Quiocho, F. A. (1992)
571 Calmodulin structure refined at 1.7 Å resolution. *J Mol Biol* 228, 1177–92.

572 (41) Moore, B. L., Kelley, L. A., Barber, J., Murray, J. W., and MacDonald, J. T. (2013)
573 High-quality protein backbone reconstruction from alpha carbons using Gaussian mixture
574 models. *J Comput Chem* 34, 1881–9.

575 (42) Krivov, G. G., Shapovalov, M. V., and Dunbrack, R. L. (2009) Improved prediction of
576 protein side-chain conformations with SCWRL4. *Proteins* 77, 778–95.

577 (43) Franke, D., Petoukhov, M. V., Konarev, P. V., Panjkovich, A., Tuukkanen, A., Mertens,
578 H. D. T., Kikhney, A. G., Hajizadeh, N. R., Franklin, J. M., Jeffries, C. M., and Svergun, D. I.
579 (2017) ATSAS 2.8: a comprehensive data analysis suite for small-angle scattering from
580 macromolecular solutions. *J. Appl. Crystallogr.* 50, 1212–1225.

581 (44) Laskowski, R. A., and Swindells, M. B. (2011) LigPlot+: multiple ligand-protein
582 interaction diagrams for drug discovery. *J Chem Inf Model* 51, 2778–86.

583 (45) Reid, D. G., MacLachlan, L. K., Gajjar, K., Voyle, M., King, R. J., and England, P. J.
584 (1990) A proton nuclear magnetic resonance and molecular modeling study of calmidazolium
585 (R24571) binding to calmodulin and skeletal muscle troponin C. *J. Biol. Chem.* 265, 9744–
586 9753.

587 (46) Karst, J. C., Ntsogo Enguene, V. Y., Cannella, S. E., Subrini, O., Hessel, A., Debard, S.,
588 Ladant, D., and Chenal, A. (2014) Calcium, Acylation, and Molecular Confinement Favor
589 Folding of *Bordetella pertussis* Adenylate Cyclase CyaA Toxin into a Monomeric and
590 Cytotoxic Form. *J Biol Chem* 289, 30702–16.

591 (47) Cannella, S. E., Ntsogo Enguene, V. Y., Davi, M., Malosse, C., Sotomayor Perez, A. C.,
592 Chamot-Rooke, J., Vachette, P., Durand, D., Ladant, D., and Chenal, A. (2017) Stability,
593 structural and functional properties of a monomeric, calcium-loaded adenylate cyclase toxin,
594 CyaA, from *Bordetella pertussis*. *Sci Rep* 7, 42065.

595 (48) O'Brien, D. P., Cannella, S. E., Voegele, A., Raoux-Barbot, D., Davi, M., Douche, T.,
596 Matondo, M., Brier, S., Ladant, D., and Chenal, A. (2019) Post-translational acylation
597 controls the folding and functions of the CyaA RTX toxin. *FASEB J* 33, fj201802442RR.

598 (49) O'Brien, D. P., Durand, D., Voegele, A., Hourdel, V., Davi, M., Chamot-Rooke, J.,
599 Vachette, P., Brier, S., Ladant, D., and Chenal, A. (2017) Calmodulin fishing with a
600 structurally disordered bait triggers CyaA catalysis. *PLoS Biol* 15, e2004486.

601 (50) Chou, J. J., Li, S., Klee, C. B., and Bax, A. (2001) Solution structure of Ca(2+)-
602 calmodulin reveals flexible hand-like properties of its domains. *Nat Struct Biol* 8, 990–7.

603 (51) Gsponer, J., Christodoulou, J., Cavalli, A., Bui, J. M., Richter, B., Dobson, C. M., and
604 Vendruscolo, M. (2008) A Coupled Equilibrium Shift Mechanism in Calmodulin-Mediated
605 Signal Transduction. *Structure* 16, 736–746.

606 (52) Sunagawa, M., Kosugi, T., Nakamura, M., and Sperelakis, N. (2000) Pharmacological
607 actions of calmidazolium, a calmodulin antagonist, in cardiovascular system. *Cardiovasc.*

608 *Drug Rev.* 18, 211–221.

609 (53) Meador, W. E., Means, A. R., and Quiocho, F. A. (1992) Target Enzyme Recognition by
610 Calmodulin: 2.4 Å Structure of a Calmodulin-Peptide Complex. *Science* 257, 1251–1255.

611 (54) Guo, Q., Shen, Y., Lee, Y. S., Gibbs, C. S., Mrksich, M., and Tang, W. J. (2005)
612 Structural basis for the interaction of *Bordetella pertussis* adenylyl cyclase toxin with
613 calmodulin. *EMBO J* 24, 3190–201.

614 (55) Karst, J. C., Sotomayor Perez, A. C., Guijarro, J. I., Raynal, B., Chenal, A., and Ladant,
615 D. (2010) Calmodulin-induced conformational and hydrodynamic changes in the catalytic
616 domain of *Bordetella pertussis* adenylyl cyclase toxin. *Biochemistry* 49, 318–28.

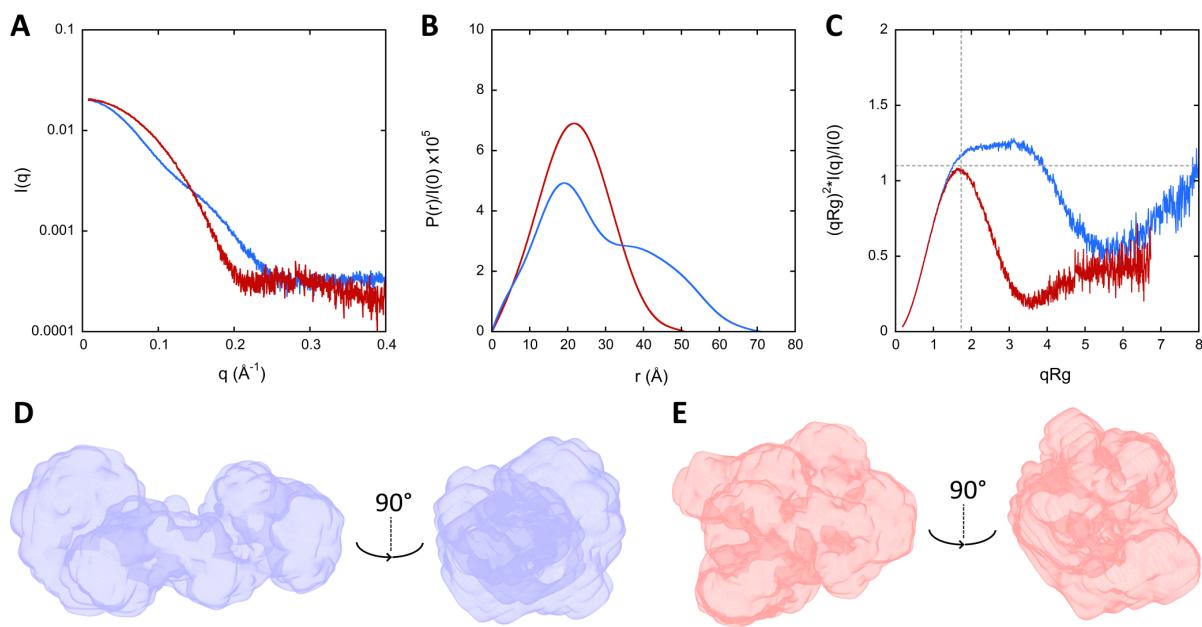
617 (56) Liao, W.-C., Huang, C.-C., Cheng, H.-H., Wang, J.-L., Lin, K.-L., Cheng, J.-S., Chai, K.-
618 L., Hsu, P.-T., Tsai, J.-Y., Fang, Y.-C., Lu, Y.-C., Chang, H.-T., Huang, J.-K., Chou, C.-T.,
619 and Jan, C.-R. (2009) Effect of calmidazolium on [Ca²⁺]_i and viability in human hepatoma
620 cells. *Arch. Toxicol.* 83, 61–68.

621 (57) Lee, J., Kim, M. S., Kim, M. A., and Jang, Y. K. (2016) Calmidazolium chloride inhibits
622 growth of murine embryonal carcinoma cells, a model of cancer stem-like cells. *Toxicol. In
623 Vitro* 35, 86–92.

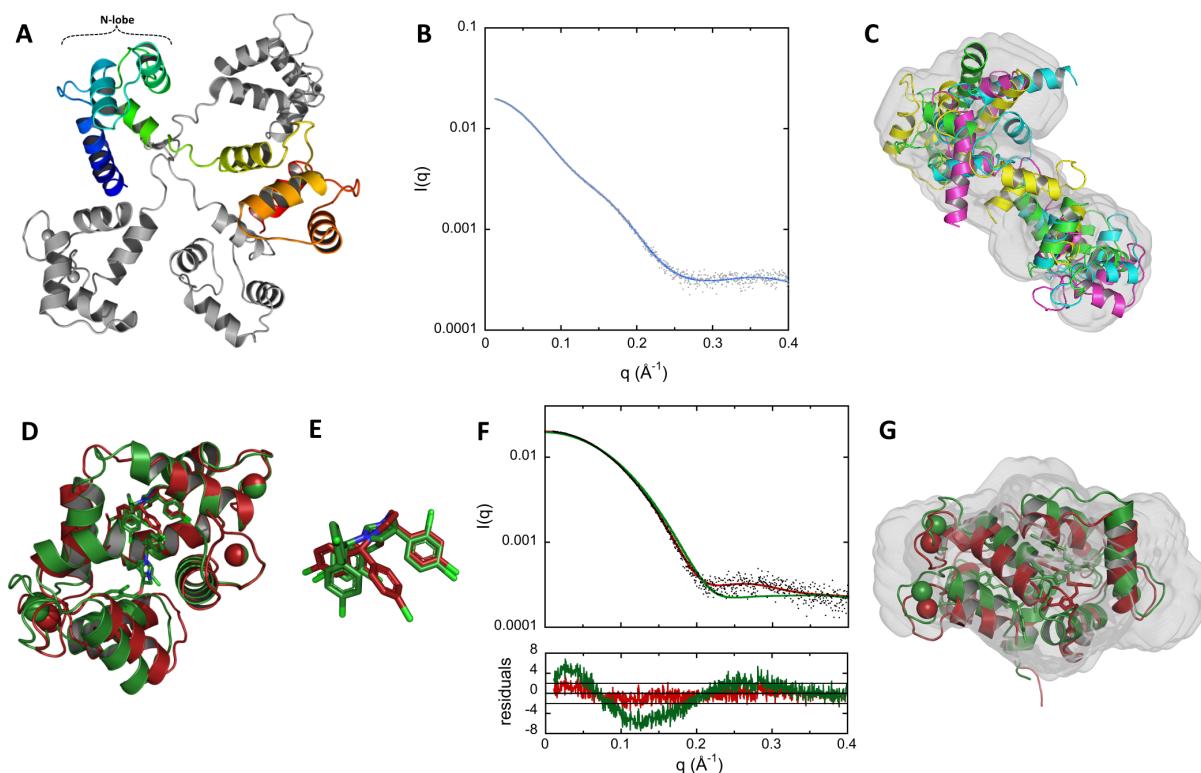
624 (58) Rochette-Egly, C., Kedinger, M., and Haffen, K. (1988) Modulation of HT-29 Human
625 Colonic Cancer Cell Differentiation with Calmidazolium and 12-O-
626 Tetradecanoylphorbol-13-acetate. *Cancer Res.* 48, 6173.

627 (59) Nussinov, R., Muratcioglu, S., Tsai, C.-J., Jang, H., Gursoy, A., and Keskin, O. (2015)
628 The Key Role of Calmodulin in *KRAS* -Driven Adenocarcinomas. *Mol. Cancer Res.* 13,
629 1265–1273.

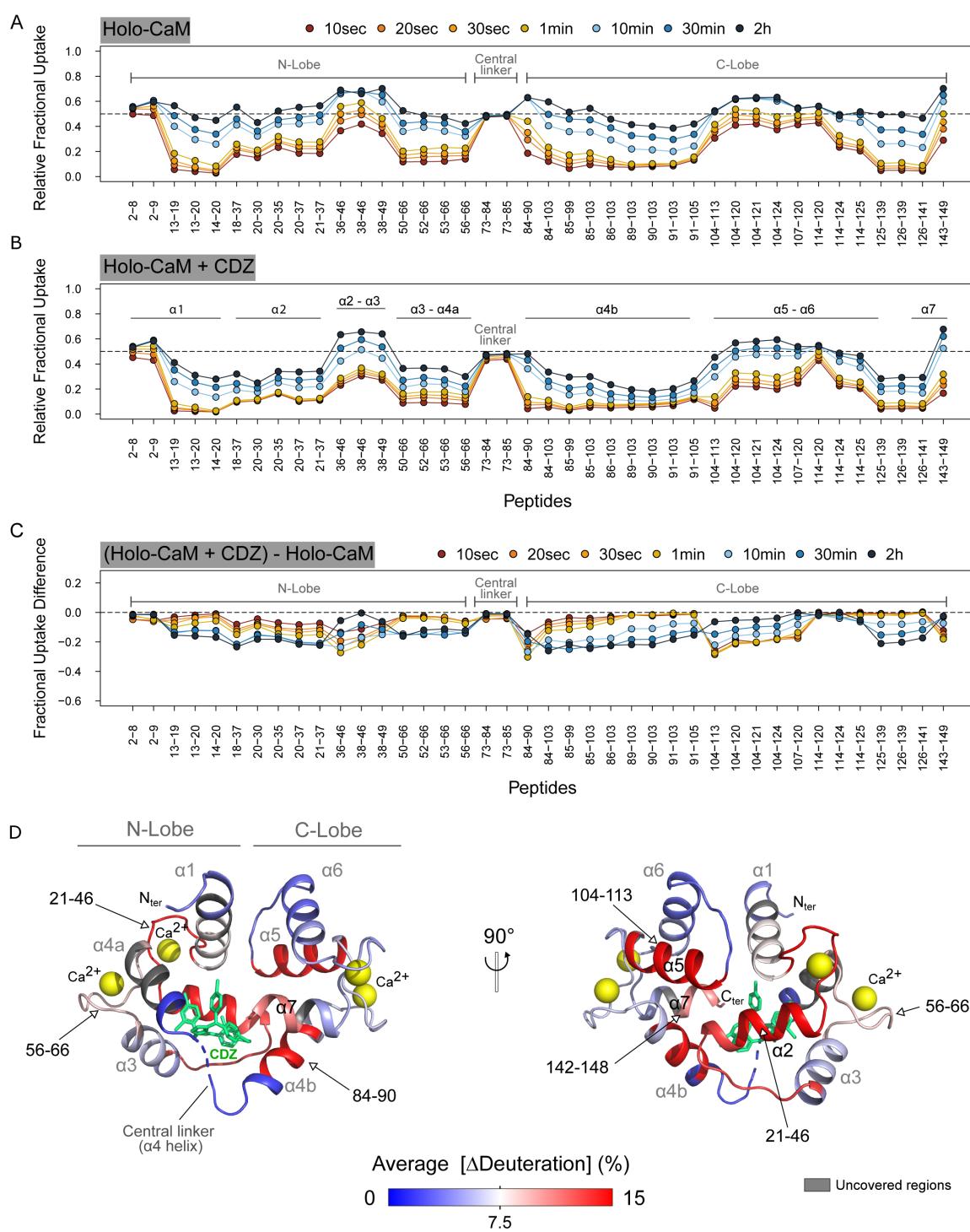
630 (60) Hayes, M. P., Soto-Velasquez, M., Fowler, C. A., Watts, V. J., and Roman, D. L. (2018)
631 Identification of FDA-Approved Small Molecules Capable of Disrupting the Calmodulin–
632 Adenylyl Cyclase 8 Interaction through Direct Binding to Calmodulin. *ACS Chem. Neurosci.*
633 9, 346–357.

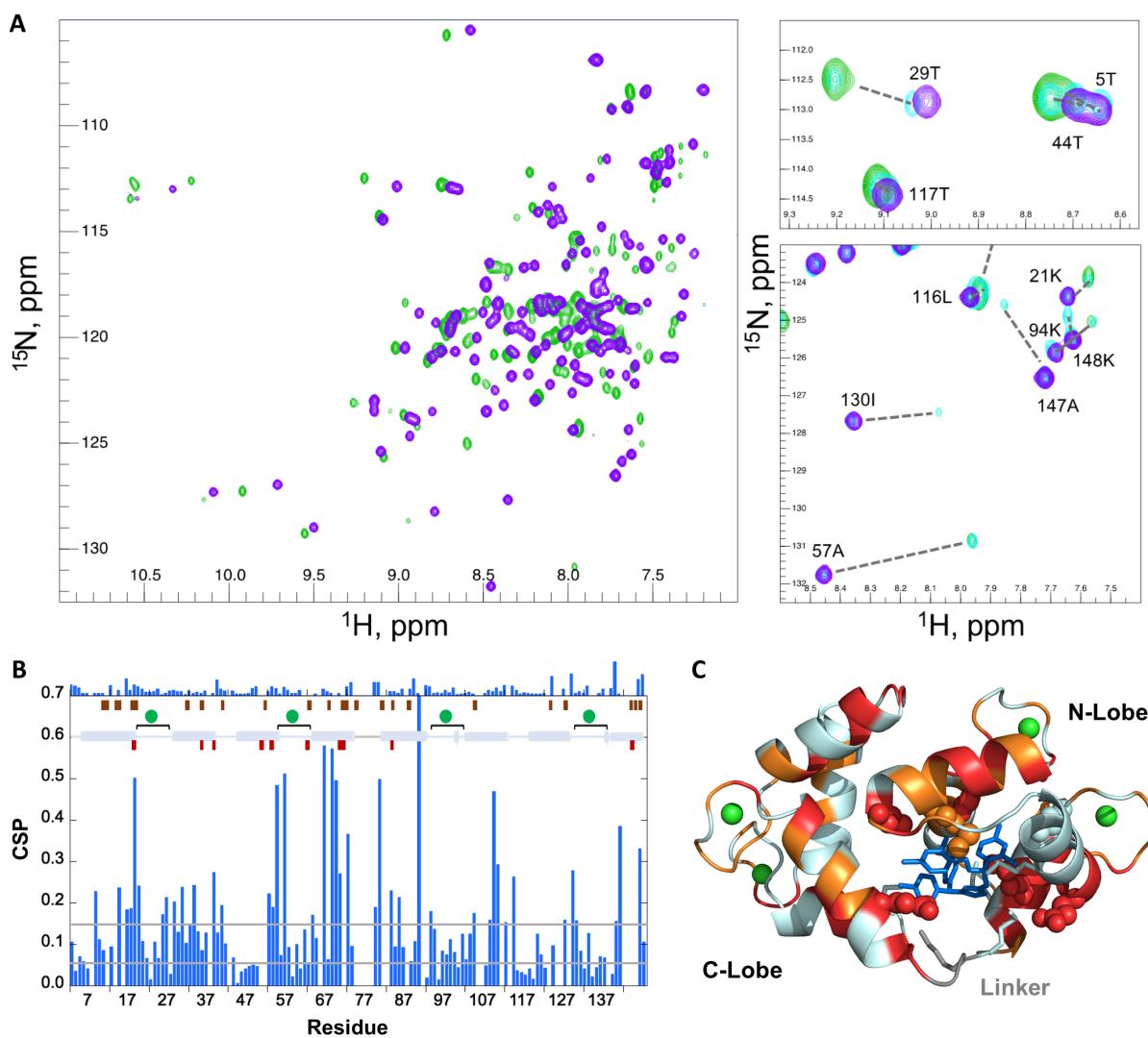

634 (61) Parvathaneni, S., Li, Z., and Sacks, D. B. (2021) Calmodulin influences MAPK signaling
635 by binding KSR1. *J. Biol. Chem.* 296, 100577.

636 (62) Okutachi, S., Manoharan, G. B., Kiriazis, A., Laurini, C., Catillon, M., McCormick, F.,
637 Yli-Kauhaluoma, J., and Abankwa, D. (2021) A Covalent Calmodulin Inhibitor as a Tool to
638 Study Cellular Mechanisms of K-Ras-Driven Stemness. *Front. Cell Dev. Biol.* 9, 665673.


639 (63) Taylor, A. M., Macari, E. R., Chan, I. T., Blair, M. C., Doulatov, S., Vo, L. T., Raiser, D.
640 M., Siva, K., Basak, A., Pirouz, M., Shah, A. N., McGrath, K., Humphries, J. M., Stillman,
641 E., Alter, B. P., Calo, E., Gregory, R. I., Sankaran, V. G., Flygare, J., Ebert, B. L., Zhou, Y.,
642 Daley, G. Q., and Zon, L. I. (2020) Calmodulin inhibitors improve erythropoiesis in
643 Diamond-Blackfan anemia. *Sci. Transl. Med.* 12, eabb5831.

644 (64) Tsai, Y.-Y., Su, C.-H., and Tarn, W.-Y. (2021) p53 Activation in Genetic Disorders:
645 Different Routes to the Same Destination. *Int. J. Mol. Sci.* 22, 9307.


646


Figure 1. SAXS patterns and DENSS analysis of holo-CaM in the absence and in the presence of CDZ. **A.** Scattering patterns of holo-CaM (blue trace) and holo-CaM:CDZ complex (red trace). **B.** Distance distribution function $P(r)$ of holo-CaM in the absence and in the presence of CDZ using GNOM, same color code as in panel A. **C.** Dimensionless Kratky representation of holo-CaM in the absence and in the presence of CDZ, same color code as in panel A. Dash lines crossing x-axis ($\sqrt{3}$) and y-axis (1.104) indicate the characteristic peak for globular proteins. **D. and E.** DENSS models of holo-CaM and holo-CaM:CDZ, respectively.

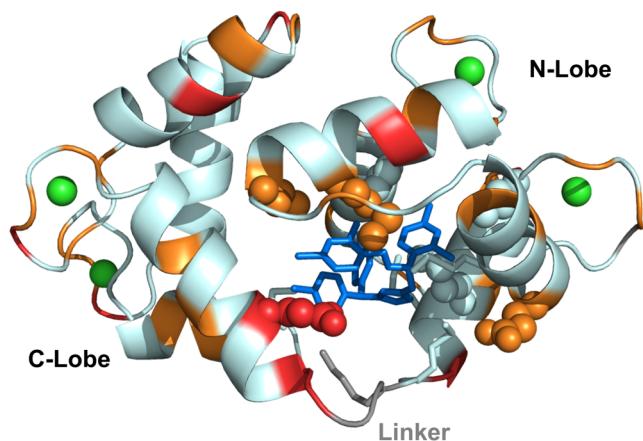

Figure 2. Structural models of holo-CaM using EOM and structures of holo-CaM:CDZ determined by X-ray crystallography. **A.** Final ensemble of SAXS-derived conformations of holo-CaM using EOM. The four structural models (SASDNX3) are superimposed by aligning their N-lobe alpha carbons (residues 6 to 66) using Pymol. One structural model is shown in rainbow, the three others are in grey. **B.** Comparison of experimental data (grey dots) to the calculated scattering pattern (blue curve) of the final EOM ensemble. **C.** Fitting of the four EOM structural models of holo-CaM to the SAXS-derived DENSS volume. **D.** X-ray structures of holo-CaM in complex with one (red, pdb ID: 7PSZ) and two (green, pdb ID: 7PU9) CDZ molecules. **E.** Superimposition of the CDZ molecules of both structures showing the rotation of the chlorophenyl moieties. **F.** Top: Fitting of the calculated scattering patterns of the two crystallographic structures of holo-CaM:CDZ obtained using Crysolv to the experimental SAXS pattern recorded with 333 μ M of CaM and 1050 μ M of CDZ. The χ^2 are 1.4 and 9.3 for the 1:1 (red) and 1:2 (green) holo-CaM:CDZ complexes, respectively. Bottom: Distribution of reduced residuals corresponding to the two fits—presented above. **(G)** Fitting of the two crystallographic structures of holo-CaM:CDZ to the SAXS-derived DENSS volume (SASDNY3).

Figure 3. Effects of CDZ binding on the deuterium uptake profile of holo-CaM. A. and B. Relative fractional uptake plots of holo-CaM measured in the presence and in the absence of 20 μ M CDZ. Each dot corresponds to the average uptake value measured in three independent replicates. **C.** The effects of CDZ binding on holo-CaM are visualized on the Fractional Uptake Difference plot. Negative values indicate a reduction in solvent accessibility induced by CDZ binding. **D.** Cartoon representation of holo-CaM showing the average differences in “Fractional Uptake Differences” between the CDZ-bound and free holo-CaM states. The Fractional Uptake Differences ($[\Delta\text{Deuteration}]$ in %) measured between the CDZ-bound and free states were extracted for each peptide at each labelling time point, averaged, and plotted on the crystal structure of CaM:CDZ_A (pdb 7PSZ). CDZ-A is colored in green. The average $\Delta\text{Deuteration}$ values [Average ($\Delta\text{Deuteration}$)] are colored from blue (no variation) to red (major reductions in uptake).

Figure 4. CDZ binding monitored by CaM ^1H - ^{15}N chemical shift perturbation (CSP). A. (left) ^1H - ^{15}N SOFAST full fingerprint spectra (recorded at 37 °C) of holo-CaM alone (mauve) and in the presence of 1.0 equivalent of CDZ (green). (right) Zoom on two selected regions of the fingerprint spectra. The spectrum of holo-CaM in the presence of 0.5 equivalents (cyan) is also displayed. The assignments of free holo-CaM are shown and the dotted lines indicate the corresponding signal in the 1:1 holo-CaM:CDZ sample. B. CSP values of 1 CDZ equivalent added to holo-CaM as a function of the residue number. The secondary structure (helix=cylinder, strand=arrow), calcium binding loops (spheres and square brackets) and linker region (grey line) are schematized. The CSP values between the 1:1 and 1:2 holo-CaM:CDZ complexes are displayed on the top of the panel, respecting the same scale. The positions of contacting residues in the X-ray 1:1 and 1:2 holo-CaM:CDZ complex structures are represented by wine and maroon rectangles, respectively. Grey lines represent the CSP values chosen as thresholds for very strong and strong CSPs. C. Residues with very strongly perturbed (red, $\text{CSP} \geq 0.14$) and strongly perturbed (orange, $0.07 \leq \text{CSP} < 0.14$) amide resonances are highlighted on the cartoon representation of the 1:1 holo-CaM:CDZ x-ray complex structure. CDZ is shown as blue sticks and Ca^{2+} ions as green spheres. The side chains of the CaM residues in close contact with CDZ as defined by Ligplot+ are highlighted as spheres if assigned (19, 36, 39, 54, 63, 71, 84) or as sticks (51, 72, 76, 77 and 145) if not observed by NMR. Amide resonances of the following residues were not assigned in the holo-CaM:CDZ complexes: 8, 12, 14, 16, 38, 51-52, 72, 75-79, 82-83, 88, 92, 106-107, 112, 114, 124, 126-127, 129-130, 139, 143-146.

Figure 5. Decrease of backbone amide internal motion amplitudes in the nanosecond-picosecond time scale of holo-CaM upon binding to CDZ. The difference of the heteronuclear ^1H - ^{15}N nOe of CDZ bound and free holo-CaM is color-coded on the cartoon representation of the holo-CaM:CDZ 1:1 X-ray structure. Red indicates very high positive nOe differences (≥ 0.18) and orange high nOe differences (between 0.10 and 0.16), denoting a decrease in the amplitude of fast internal motions (ns-ps) in the complex. CDZ is shown as blue sticks, Ca^{2+} ions are displayed as green spheres and the linker residues are shown in grey. The side chains of the CaM residues in close contact with CDZ as defined by Ligplot+ are highlighted as spheres if assigned (19, 36, 39, 54, 63, 71, 84) or as sticks (51, 72, 76, 77 and 145) if not observed by NMR.