

1    **Title:** Low diversity and instability of the sinus microbiota over time in adults with cystic fibrosis  
2    **Authors:** Catherine R. Armbruster, PhD MPH<sup>1</sup>, Kelvin Li, MSc<sup>2</sup>, Megan R. Kiedrowski, PhD<sup>3</sup>,  
3    Anna C. Zemke, MD/PhD<sup>4</sup>, Jeffrey A. Melvin, PhD<sup>1</sup>, John Moore, BA<sup>5</sup>, Samar Atteih, MB BCh  
4    BAO<sup>1</sup>, Adam C. Fitch, MS<sup>2</sup>, Matthew DuPont, BA<sup>1</sup>, Christopher D. Manko, BS<sup>1</sup>, Madison L.  
5    Weaver, BS<sup>1</sup>, Jordon R. Gaston, BS<sup>1</sup>, John F. Alcorn, PhD<sup>6</sup>, Alison Morris, MD<sup>2</sup>, Barbara A.  
6    Methé, PhD<sup>2</sup>, Stella E. Lee, MD<sup>5</sup>, Jennifer M. Bomberger, PhD<sup>1\*</sup>

7

8    **Affiliations:**

9    <sup>1</sup> Department of Microbiology and Molecular Genetics, University of Pittsburgh School of  
10    Medicine, Pittsburgh, PA, USA.

11    <sup>2</sup> Center for Medicine and the Microbiome, University of Pittsburgh and University of Pittsburgh  
12    Medical Center, Pittsburgh, PA, USA.

13    <sup>3</sup> Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.

14    <sup>4</sup> Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University  
15    of Pittsburgh School of Medicine, Pittsburgh, PA, USA.

16    <sup>5</sup> Department of Otolaryngology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.

17    <sup>6</sup> Department of Pediatrics, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA.

18

19    \* To whom correspondence should be addressed: [jbomb@pitt.edu](mailto:jbomb@pitt.edu), +1 (412) 624-1963

20

21    **Abstract**

22    *Background*

23    Chronic rhinosinusitis (CRS) is a common, yet underreported and understudied manifestation of  
24    upper respiratory disease in people with cystic fibrosis (CF). There are currently no standard of  
25    care guidelines for the management of CF CRS, but treatment of upper airway disease may  
26    ameliorate lower airway disease. We sought to inform future treatment guidelines by determining  
27    whether changes to sinus microbial community diversity and specific taxa known to cause CF  
28    lung disease are associated with increased respiratory disease and inflammation.

29    *Methods*

30    We performed 16S rRNA gene sequencing, supplemented with cytokine analyses, microscopy,  
31    and bacterial culturing, on samples from the sinuses of 27 adults with CF CRS at the University  
32    of Pittsburgh's CF Sinus Clinic. At each study visit, participants underwent endoscopic paranasal  
33    sinus sampling and clinical evaluation. We identified key drivers of microbial community

34 composition and evaluated relationships between diversity and taxa with disease outcomes and  
35 inflammation.

36 *Findings*

37 Sinus community diversity was low and the composition was unstable, with many participants  
38 exhibiting alternating dominance between *Pseudomonas aeruginosa* and *Staphylococci* over  
39 time. Despite a tendency for dominance by these two taxa, communities were highly  
40 individualized and shifted composition during exacerbation of sinus disease symptoms.  
41 Exacerbations were also associated with communities dominated by *Staphylococcus* spp.  
42 Reduced microbial community diversity was linked to worse sinus disease and the inflammatory  
43 status of the sinuses (including increased IL-1 $\beta$ ). Increased IL-1 $\beta$  was also linked to worse sinus  
44 endoscopic appearance, and other cytokines were linked to microbial community dynamics.

45 *Interpretation*

46 To our knowledge, this is the largest longitudinal study of microbial communities and cytokine  
47 secretion in CF CRS. Our work revealed previously unknown instability of sinus microbial  
48 communities and a link between inflammation, lack of microbial community diversity, and worse  
49 sinus disease.

50 *Funding*

51 Cystic Fibrosis Foundation and US National Institutes of Health.

52

53 **Research in Context**

54 *Evidence before this study*

55 A search of the PubMed database on October 11, 2021 with the terms [cystic fibrosis sinus  
56 microbiome] yielded 16 results, and we have identified seven primary research articles on the CF  
57 CRS microbiome (including re-analyses of existing datasets). Most are cross-sectional cohort  
58 analyses, along with one prior longitudinal study of four adults at the University of Auckland, New  
59 Zealand. Together, these prior studies reveal similarities between CF CRS and CF sputum  
60 microbiomes, including low community diversity associated with sinus disease, the presence of  
61 common CF-associated microbes in the sinuses, and prevalence of sinus communities dominated  
62 by *P. aeruginosa* or *Staphylococcus aureus*. High levels of IL-1 $\beta$  are linked to the presence of  
63 nasal polyps in CF CRS, and polymorphisms in the IL-1 receptor antagonist gene are associated  
64 with risk of CRS outside of the context of CF. Two prior studies of this cohort have been performed  
65 by our laboratory. One describes clinical indicators of CF sinus disease and the other links sinus  
66 infection biogeography to *P. aeruginosa* evolutionary genomics.

67 *Added value of this study*

68 Our study is the first to examine longitudinal relationships between the host immune response  
69 (through cytokine profiling) and microbiota dynamics in CF CRS, including linking elevated IL-1 $\beta$   
70 to worse sinus disease through reduced sinus microbial community diversity. The longitudinal  
71 nature of our study also allowed us to uncover striking temporal instability of microbial  
72 communities in approximately half of our cohort's sinus microbial communities over two years,  
73 including switching between communities dominated by *P. aeruginosa* and *Staphylococcus* spp.  
74 This instability could hinder attempts to link the relative abundance of taxa to clinical outcomes of  
75 interest in cross-sectional studies (e.g., markers of disease progression). We also identified  
76 patterns of synergy and antagonism between specific taxa, and impacts of the host immune  
77 response in the sinuses on community composition.

78 *Implications of all the available evidence*

79 Together with prior CF CRS microbiome studies, our study underscores similarities between sinus  
80 and lower respiratory tract microbial community structure in CF, and we show how community  
81 structure tracks with inflammation and several disease measures. This work strongly suggests  
82 that clinical management of CRS could be leveraged to improve overall respiratory health in CF.  
83 Our work implicates elevated IL-1 $\beta$  in reduced microbiota diversity and worse sinus disease in CF  
84 CRS, suggesting applications for existing therapies targeting IL-1 $\beta$ . Finally, the widespread use  
85 of highly effective CFTR modulator therapy has led to less frequent availability of spontaneous  
86 expectorated sputum for microbiological surveillance of lung infections. A better understanding of  
87 CF sinus microbiology could provide a much-needed alternative site for monitoring respiratory  
88 infection status by important CF pathogens.

89

90 **Introduction**

91 The upper airways are constantly exposed to microbes inhaled from the environment. In healthy  
92 individuals, these microbes are captured by mucus produced by the sinusal epithelium and  
93 removed by mucociliary clearance, but this process is impaired in people with the genetic disorder  
94 cystic fibrosis (CF).<sup>1</sup> The sinusal cavity is thought to be the first site in the respiratory tract to  
95 be colonized by opportunistically pathogenic microbes that may seed downstream lung disease  
96 in CF.<sup>2</sup> Chronic rhinosinusitis (CRS), defined as symptomatic chronic infection and inflammation  
97 of the sinusal cavity, is common among people with CF, yet under-reported and the interactions  
98 between microbes in the upper respiratory tract, local inflammatory responses, and clinical  
99 outcomes are poorly understood. The unified airway hypothesis is a conceptual framework  
100 originating in the field of asthma research that links upper (URT) and lower (LRT) respiratory tract  
disease.<sup>3</sup> This framework proposes that treatment of URT symptoms can improve LRT disease

102 and vice-a-versa. A growing body of literature supports similarities and interplay between CRS  
103 and LRT disease in CF. For example, the microbiota of CF CRS resembles that of the LRT in  
104 terms of taxa present and diversity<sup>4-6</sup>; children harbor comparatively diverse microbes, whereas  
105 adults tend to be dominated by one or very few organisms.<sup>7</sup> Furthermore, medical or surgical  
106 management of sinus disease symptoms may lead to better LRT outcomes in CF.<sup>8,9</sup> Recently,  
107 studies by our team and others have shown that evolved traits and evolutionary strategies of  
108 *Pseudomonas aeruginosa* isolated from the sinuses of people with CF CRS resemble those  
109 previously reported among CF lung populations.<sup>10,11</sup> We have also shown that sinus exacerbation  
110 increases the odds of a subsequent pulmonary exacerbation, and recently others have shown  
111 that sinonasal quality of life worsens during CF LRT exacerbations.<sup>12,13</sup> Together, these studies  
112 strongly suggest that CF CRS impacts LRT disease, yet there are currently no standard of care  
113 guidelines for the management of CF CRS. One gap in the CF CRS literature is our lack of  
114 understanding regarding whether and how CF sinus communities change over time and as the  
115 conditions in the surrounding host environment change (e.g., during periods of increased  
116 inflammation and/or exacerbation of symptoms).

117  
118 The goal of this study was to evaluate how the microbial composition and inflammatory  
119 environment of the sinuses relates to upper and lower airway disease in adults with CF CRS. We  
120 hypothesized that lack of sinus microbial community diversity and changes in relative abundance  
121 of opportunistic pathogens or pathobionts (commensals that can cause disease under certain  
122 circumstances) would be associated with increased sinus disease severity and inflammation. In  
123 addition to revealing similarities between microbiota-related correlates of CF sinus disease and  
124 inflammation to those described for the lower respiratory tract in CF, our study hints at potential  
125 new therapeutic opportunities based on these microbe-immune interactions and highlights the  
126 relevance of sinus disease to overall CF respiratory health.

127  
128 **Results**  
129 *Cohort demographics and association of CF-related diabetes (CFRD) with lower respiratory*  
130 *disease*

131 We performed a longitudinal study of 33 adults with CF and symptomatic CRS who had  
132 undergone prior functional endoscopic sinus surgery (FESS) as treatment for CF CRS (Table 1).<sup>13</sup>  
133 During quarterly clinic visits and unscheduled visits due to exacerbation of clinical symptoms, we  
134 obtained at least one endoscopically guided specimen for 16S amplicon sequencing from 27 of  
135 the 33 study participants (longitudinal microbiota samples collected from 18 of the 27). Additional

136 samples included sinus secretions that were collected for inflammatory cytokine analyses,  
137 bacterial culturing, and microscopy. The following demographic and clinical characteristics of the  
138 cohort (covariates) were controlled for in most of the later analyses: Patient ID (to control for  
139 repeated measures within study participants), age, sex, CFTR mutation class, diagnosis of CF-  
140 related diabetes (CFRD), BMI, and topical antibiotic use. We tested for associations between  
141 these covariates and patient outcomes examined throughout this study (sinus exacerbation,  
142 pulmonary exacerbation, sinus disease score [Sino-nasal Outcome Test, SNOT-22<sup>14</sup>; modified  
143 Lund-Kennedy, mLK<sup>15</sup>], and lung function [FEV<sub>1</sub>]), independent of information on the microbiota.  
144 We found that CFRD was associated with reduced FEV<sub>1</sub> (univariate regression coefficient: -68.3,  
145 Holm-Bonferroni adjusted p < 0.05). No other covariates were significantly associated with the  
146 outcomes of interest.

147

148 *Low diversity and instability of sinus microbial communities in adults with CF CRS*

149 Sinus microbial community diversity in our cohort was low, with the median Shannon diversity  
150 from all participants being 0.35 (IQR 0.11-0.62) and Simpson 0.18 (IQR 0.04-0.86; Figure 1A).  
151 The median evenness was 0.15 (IQR 0.04-0.63), suggesting communities were dominated by a  
152 subset of the taxa present. Finally, the Tail statistic ("τ") is a rank-based diversity measure that is  
153 more sensitive to changes in low-abundance taxa. The median τ was 0.46 (IQR 0.45-0.66) , but  
154 had a fairly large range (from 0.04-5.6), indicating that diverse low-abundance taxa are present  
155 in the sinuses of some, but not all, study participants (Supplemental table 1). We detected a total  
156 of 302 genera (Supplemental table 2).

157

158 While diversity indices of the sequenced sinus microbiotas were low, microbial community  
159 composition was unstable for many study participants (Figure 1B). For individuals that contributed  
160 at least 3 longitudinal microbiota samples, we quantified this instability based on the standard  
161 deviation of the microbiota distance (Manhattan) at later timepoints relative to the first timepoint.  
162 The histogram of these values was bimodal on either side of the median value for the study cohort,  
163 allowing us to classify eight individuals as relatively stable (for example, the individual whose  
164 taxonomic barplots are shown in Figure 1C) and seven as relatively unstable (for example, in  
165 Figure 1D). The most common bacterial taxa were *Staphylococcus* spp. and *Pseudomonadaceae*  
166 (Supplemental table 2), and the relative abundances of these two taxa varied over time in several  
167 study participants from whom we collected longitudinal samples (Figure 1D and Supplemental  
168 figure 1). Based on Sanger sequencing of the 16S rRNA gene following bacterial culture, the  
169 *Pseudomonadaceae* taxon represents *Pseudomonas aeruginosa* and is referred to as such

170 hereafter. We then examined the biogeography of *P. aeruginosa* and/or *S. aureus* in these  
171 communities, using fluorescent *in situ* hybridization (FISH) on explanted obstructive sinus material  
172 that was surgically debrided as part of routine clinical care. We found that both *P. aeruginosa* and  
173 *S. aureus* reside as small aggregated communities in close association with host cells in the  
174 sinuses (Figure 1E). Eubacterial labeling did not fully overlap with species-specific probes,  
175 suggesting other unidentified species were present in mixed-species aggregates. Overall, these  
176 results suggest that while CF CRS microbes can reside in small, sparse aggregates where  
177 diversity is low, the aggregates can contain mixed species in proximity with each other and with  
178 host cells. Furthermore, the overall taxonomic composition of sinus communities can be rather  
179 unstable, especially in individuals co-infected by *P. aeruginosa* and *Staphylococcus* spp.

180

181 While *P. aeruginosa* and *Staphylococcus* spp. were abundant in many study participants, other  
182 microbes were stably present as well. Regarding patterns of co-occurrence among microbes, we  
183 identified positive correlations between the presence of *Corynebacterium* spp. and  
184 *Dolosigranulum* spp., whereas *P. aeruginosa* and *Burkholderia* spp. exhibited an antagonistic  
185 relationship (Supplemental figure 2). In addition to taxa recognized as members of the nasal,  
186 sinus, or oral microbiotas of healthy adults, we identified bacteria known to be present in potable  
187 water and capable of causing opportunistic infections in susceptible populations (e.g.  
188 *Sphingomonas* spp. in 11 out of 27 participants, *Bradyrhizobium* spp. in ten, *Methylobacterium*  
189 spp. in nine, and *Delftia* spp. in six; Supplemental table 2).<sup>16</sup> The composition of environmental  
190 and reagent control samples processed and sequenced alongside our study specimens was  
191 distinct from clinical specimens (PERMANOVA;  $p < 0.0001$ ), and the controls had significantly  
192 lower read counts compared to the study samples (T-test;  $p$ -value  $<0.0001$ ). These controls  
193 suggest that the drinking water taxa were not due to contamination of clinical specimens. Overall,  
194 these findings demonstrate that while most sinus communities were dominated by *P. aeruginosa*  
195 and/or *Staphylococcus* spp., a variety of other taxa were also detected. The presence of bacteria  
196 frequently reported to be present in potable water suggests a potential exposure route of the  
197 sinuses to opportunistically pathogenic microbes that contribute to diversity of low-abundance  
198 taxa.

199

200 *Pseudomonas* spp. and *Staphylococcus* spp. drive community structure and low diversity

201 To further interrogate the drivers of sinus microbial community structure in CF, we performed an  
202 unsupervised cluster analysis (Figure 2A). We found that individual sinus samples grouped into  
203 three clusters (Supplemental figure 3A), with separation of the two largest clusters driven by the

204 relative abundances of *Pseudomonas* spp. and *Staphylococcus* spp. and the third cluster driven  
205 by the relative abundance of a mix of other taxa that were less prevalent in our cohort (Figure  
206 2B). Similarly, these two dominant taxa were also found to unify different groups, with  
207 *Pseudomonas* spp. unifying Cluster 1, whereas *Staphylococcus* spp. unified Cluster 2  
208 (Supplemental figure 3B). Consistent with the instability observed in Figure 1, study participants  
209 did not tend to belong to solely one cluster. Instead, most participants' sinus microbiotas  
210 frequently switched between clusters over time, depending on the relative abundance of  
211 *Pseudomonas* spp. and/or *Staphylococcus* spp. at that time point (Supplemental figure 4).  
212  
213 Using the stability classification from Figure 1B, six of the seven individuals with unstable  
214 microbiotas switched between clusters in Supplemental figure 5, whereas five of the eight  
215 individuals with a stable sinus microbiota exhibited cluster switching. The individual from the  
216 unstable group who did not switch clusters (Patient #1 in Supplemental figure 1) stayed within  
217 Cluster 3 (cluster driven by a mix of taxa other than *Pseudomonas* spp. or *Staphylococcus* spp.),  
218 but their sinus microbiota transitioned from *Streptococcus* spp. to *Burkholderia* spp. dominance,  
219 which is why they were grouped among the "Unstable" population despite not switching clusters.  
220 In contrast, most of the relatively stable individuals who switched clusters were co-infected with  
221 *P. aeruginosa* and *Staphylococcus* spp.; their cluster switching was due to changes in relative  
222 abundance of these two taxa that drove them between Clusters 1 (*Pseudomonas*-driven cluster)  
223 and 2 (*Staphylococcus*-driven cluster), yet did not lead to a high enough variability in Manhattan  
224 distances to categorize them as unstable in Figure 1B because they remained co-infected.  
225 Furthermore, the increased relative abundance of *P. aeruginosa* or *Staphylococcus* spp. tracked  
226 with decreasing Shannon diversity (Figure 2C,D), suggesting that the low sinus community  
227 diversity is attributable to dominance by these two taxa. This reduction in Shannon diversity as  
228 the relative abundance of *Pseudomonas* spp. or *Staphylococcus* spp. increased was most  
229 apparent in samples from Clusters 1 and 2). Interestingly, CFRD was positively associated with  
230 Cluster 1 membership (*Pseudomonas*-driven cluster) and negatively associated with Clusters 2  
231 and 3 (clusters driven by *Staphylococcus* spp. or other taxa) (Figure 2A). In agreement with this  
232 clustering analysis, we found that people with CFRD had a higher relative abundance of  
233 *Pseudomonas* spp. than those without CFRD (univariate regression coefficient: 45.82, Holm-  
234 Bonferroni adjusted p < 0.05). Finally, sinus exacerbation was positively associated with Cluster  
235 2 membership (driven by *Staphylococcus* spp.). These results demonstrate how further clustering  
236 sinus microbiotas of people co-infected by *P. aeruginosa* and *Staphylococcus* spp. based on

237 drivers of community structure can reveal relationships with co-morbidities (CFRD) or disease  
238 status (sinus exacerbation).

239

240 *Sinus microbiotas are highly individualized, but may share a common signature during sinus*  
241 *exacerbation*

242 We used permutational multivariate analysis of variance (PERMANOVA) to determine whether  
243 community-level differences in sinus microbiotas track with any characteristics of our study  
244 participants or clinical outcomes. We measured sinus disease severity through assessment of  
245 symptoms with the validated SNOT-22 questionnaire<sup>14</sup> and scoring of endoscopic exam findings  
246 performed by a clinician (mLK)<sup>15</sup>, and we used FEV<sub>1</sub> as an indicator of lung function. We also  
247 used sinus or pulmonary exacerbation status at the time of the clinic visit as additional indicators  
248 of respiratory disease. We found that the variation in community composition was largely  
249 explained by the study participant who contributed the sample (Supplemental table 3;  
250 PERMANOVA R<sup>2</sup> = 0.483, p < 0.001), suggesting that sinus microbiotas are highly individualized.  
251 However, whether a person was experiencing a sinus exacerbation at the time of the study visit  
252 also explained a small but significant amount of variability (Supplemental table 3; PERMANOVA  
253 R<sup>2</sup> = 0.022, p < 0.05), suggesting that a common signature of disturbance in the CF CRS  
254 microbiota may occur during sinus exacerbations.

255

256 *Worsened sinus disease is associated with reduced microbial community diversity and changes*  
257 *in Gammaproteobacteria relative abundance*

258 Because the PERMANOVA suggested a distinct microbial community associated with sinus  
259 exacerbation and because reduced sputum microbiota diversity is correlated with worse lung  
260 function in CF<sup>17-19</sup>, we next asked whether a similar relationship between microbial community  
261 diversity and disease occurs in the sinuses during CF CRS. We developed a predictor versus  
262 responder test to compare models that use diversity indices or specific taxa as predictors of  
263 respiratory disease outcomes against models that use the same indices or taxa as responders to  
264 disease outcomes. We found that microbial community diversity (Shannon and Simpson) and  
265 evenness decreased in response to increasing mLK score (Figure 3A), suggesting that a more  
266 diverse sinus microbiota, not dominated by one or very few taxa, is associated with less severe  
267 sinus disease. Examining whether any of the top 15 most abundant taxa were associated with  
268 the same disease outcomes (Figure 3B), we found a positive relationship between  
269 *Stenotrophomonas* spp. and physician-scored sinus disease (mLK; overall range of 4-16 across  
270 study participants' visits in our study), in which the relative abundance of *Stenotrophomonas* spp.

271 increases in response to increasing mLK score. In contrast, the relative abundance of two taxa,  
272 *Stenotrophomonas* spp. and *Haemophilus* spp., decreased in response to worse symptomatic  
273 sinus disease (higher SNOT-22 scores). The relative abundance of *Stenotrophomonas* spp.  
274 ranged from 0% in some study participants to over 80% in Patient 35's fourth visit and the relative  
275 abundance of *Haemophilus* spp. ranged from 0 up to 17.6% in Patient 18's second visit (Figure  
276 S1). We did not detect statistically significant relationships between these diversity indices or taxa  
277 and exacerbation (sinus or pulmonary) or FEV<sub>1</sub>. Together these data suggest relationships  
278 between microbial community diversity, and specifically two Gammaproteobacteria  
279 (*Stenotrophomonas* spp. and *Haemophilus* spp.), and upper respiratory disease severity. In the  
280 case of the opportunistic pathogen *Stenotrophomonas* spp., the relationship differs depending on  
281 whether the outcome of interest is patient- or physician-scored disease.

282

283 *Low sinus community diversity and the relative abundance of several taxa are associated with*  
284 *cytokine changes*

285 Both CRS and CF respiratory disease progression are thought to be caused by cycles of infection  
286 and inflammation. Therefore, we sought to identify relationships between the sinus inflammatory  
287 environment and community diversity, as well as specific taxa. Using the same predictor versus  
288 responder approach, we identified a negative relationship between the levels of a pro-  
289 inflammatory cytokine and three microbiota diversity indices. Higher Shannon or Simpson  
290 diversity predicted decreased IL-1 $\beta$  levels (Figure 3C; coefficient [p-value]: Shannon/log[IL-1 $\beta$ ]: -  
291 2.64 [0.0222], Simpson/log[IL-1 $\beta$ ]: -4.2 [0.0223]). Similarly, the diversity of low-abundance taxa  
292 (Tail statistic) decreased in response to higher levels of IL-1 $\beta$  (Figure 3C; -0.233 [0.00058]).  
293 Furthermore, the relative abundances of several taxa exhibited relationships with the host  
294 cytokine response (Figure 3D). The relative abundances of some taxa decreased in response to  
295 increasing levels of cytokines. *Stenotrophomonas* spp. decreased in response to increased levels  
296 of pro-inflammatory IL-6 (-1.09 [0.0186], *Haemophilus* spp. decreased in response to anti-  
297 inflammatory IL-19 (-0.287 [0.000637], and *Fusobacterium* spp. decreased in response to pro-  
298 inflammatory interferon- $\lambda$ 1 (also known as IL-29; -0.342 [0.000653]). The relative abundances of  
299 other taxa exhibited positive correlations with some cytokines. Increased relative abundance of  
300 unclassified taxa within the family Enterobacteriaceae predicted increased levels of the pro-  
301 inflammatory cytokine pentraxin-3 (341.0 [0.0213]), whereas the relative abundance of  
302 unclassified taxa within the phylum Actinobacteria increased in response to increasing  
303 concentrations of interferon- $\lambda$ 1(0.85 [0.0211]). These findings suggest that sinus inflammation is  
304 highest when the microbial community diversity is low.

305

306 **Discussion**

307 The unified airway hypothesis suggests that management of upper airway disease (e.g. CRS)  
308 could benefit the lower airways, yet the understudied nature of CF sinus disease means evidence-  
309 based recommendations for management of CF CRS are currently lacking.<sup>20</sup> In the present study,  
310 we sought to determine how sinus microbial community structure and composition in adults with  
311 CF CRS changes across disease and inflammatory states over time. We found that while  
312 communities lacked diversity and tended to be dominated by *P. aeruginosa* or *Staphylococcus*  
313 spp., many displayed a striking degree of instability over time. Our work also revealed a link  
314 between *Staphylococcus* spp. dominance and sinus exacerbation, as well as potential interplay  
315 among *P. aeruginosa* dominance in the sinuses, CFRD, and reduced lung function. Pro-  
316 inflammatory cytokine responses were associated with decreased sinus microbial community  
317 diversity and changes in relative abundance of several taxa. Together these findings shed light  
318 on potential host-microbe interactions occurring in the sinuses during CF CRS and have  
319 implications for the design of future studies aimed at linking CF CRS phenotypes to disease  
320 outcomes, as well as suggest new therapeutic strategies for CF sinus disease.

321

322 We identified a striking amount of instability in CF CRS communities over time, even among  
323 individuals whose communities were dominated by *P. aeruginosa* or *Staphylococcus* spp. Such  
324 instability has been implicated with worse lung function in a meta-analysis of CF sputum  
325 microbiotas from several cohorts<sup>21</sup> and, similarly, in non-CF CRS and diseases involving other  
326 microbiome-mucosal interfaces, such as in the gut.<sup>22,23</sup> Whether and how the sinus community  
327 instability observed in our study is linked to overall respiratory disease progression warrants future  
328 investigation, but some parallels can be drawn to existing ecological models of CF lung disease.  
329 For example, the climax-attack model of CF pulmonary exacerbation is rooted in the concept of  
330 unstable respiratory communities in which the presence/absence or relative abundance of taxa  
331 associated with “attack” (community associated with exacerbation, inflammation, and tissue  
332 damage) or “climax” (community dominating during periods of clinical stability) communities cycle  
333 over time, leading to repeated periods of inflammation, pulmonary exacerbation, and progressive  
334 tissue damage.<sup>24</sup> It is possible that the most unstable communities in our study could be cycling  
335 between attack and climax communities, similarly driving sinus disease progression. These  
336 communities may also be shifting in response to changing antimicrobial treatments. Another  
337 explanation for this instability could be related to the infection site biogeography, specifically the  
338 size and structure of bacterial aggregates present in the paranasal sinuses. Using an advanced

339 imaging technique called MiPACT-HCR (microbial identification after passive clarity technique  
340 and hybridization chain reaction)<sup>25</sup>, we recently discovered that the size and structure of *P.*  
341 *aeruginosa* populations varied drastically in adults with CF CRS who were also members of the  
342 present cohort, and these varying population sizes impacted ongoing genome evolution and  
343 adaptation.<sup>10</sup> In the present study, we imaged two additional sinus microbial populations (including  
344 one that contained *S. aureus*) and observed small, sparse aggregates of bacteria in both  
345 participants. Therefore, another explanation for the apparent instability could be due to community  
346 compositional differences among isolated aggregates in a structured sinus environment where  
347 different taxa may occupy distinct niches. Notably, our examination of microbial community  
348 instability is limited by the fact that our microbiota analyses are compositional and not quantitative.  
349 Future studies examining the apparent instability of CF CRS microbiotas should endeavor to  
350 quantify changes in the absolute abundance of bacteria present at the sampling site.<sup>26,27</sup> A future  
351 longitudinal study would also benefit from more frequent sample collection with regularly spaced  
352 intervals of time between samples to better assess microbial community stability or instability.  
353 More broadly speaking, CF respiratory disease is chronic and progressive, with cycles of mucus  
354 obstruction, infection, and inflammation driving worsening of respiratory health over an individual's  
355 lifetime.<sup>28</sup> Predictors of exacerbation or biomarkers of disease progression would greatly inform  
356 clinical care, but are currently lacking. The instability identified in our study highlights a potential  
357 hurdle for cross-sectional studies that aim to link relative abundance of taxa to outcome measures  
358 that develop over longer periods of time (rather than outcomes of acute phenomena), and this  
359 limitation should be taken into consideration for future study design.

360  
361 Our findings share similarities and build upon prior microbiota studies of CF CRS and CF sputum  
362 examining diversity and taxonomic drivers of community structure. Consistent with previous adult  
363 CF CRS and sputum studies, microbial community diversity was low<sup>4,5,17,29,30-32</sup>, and  
364 communities were frequently dominated by *P. aeruginosa* or *Staphylococci*.<sup>4-6,32-35</sup> Lucas *et al.*  
365 recently showed that low diversity was associated with dominance by *Pseudomonas* spp. and  
366 was not significantly associated with clinical factors examined<sup>33</sup>, whereas we found that both *P.*  
367 *aeruginosa* and *Staphylococcus* spp. can drive low community diversity and that low diversity is  
368 associated with worse sinus disease as measured by mLK score. Additionally, a recent  
369 longitudinal study of four adults with CF CRS reported marked stability in sinus communities over  
370 time<sup>35</sup>, whereas approximately half of our cohort exhibited instability. These inconsistencies  
371 between studies could be due to differences in study design (e.g. cohort sizes, cross-sectional  
372 versus longitudinal), methodological differences in sequencing or analysis approaches, or

373 potentially differences in the cohorts themselves, all of which were recruited at single, distinct  
374 study centers. While our 16S amplicon sequencing approach did not detect large taxonomic  
375 changes in the group of individuals classified as relatively stable, it is important to note a limitation  
376 of this approach. We are unable to determine whether the metabolic activity, for example, of the  
377 consortia of stable taxa shift over time in ways that would achieve functionally similar changes as  
378 the taxonomic shifts in the relatively “unstable” individuals, as has previously been described in  
379 the oral cavity.<sup>36</sup> On the other hand, taxonomic drivers of the three microbial community clusters  
380 identified in our study share similarities with the five clusters recently identified by Hampton *et al.*  
381 in a meta-analysis of CF sputum microbiomes from multiple adult cohorts.<sup>21</sup> We observed a link  
382 between cluster membership and sinus disease exacerbation, whereas Hampton *et al.* linked  
383 sputum cluster membership to variability in lung function. Specifically, we found that sinus  
384 exacerbation was associated with having a microbial community driven by *Staphylococcus* spp.  
385 (Cluster 2 membership). This result is consistent with a clinical study of nasal lavages from CF  
386 adults which found that colonization of the upper airway by *S. aureus* (as determined by clinical  
387 lab culture) was associated with increased levels of several pro-inflammatory cytokines, whereas  
388 no association was detected for *P. aeruginosa*.<sup>37</sup> It is also consistent with the prior publication  
389 from our research group on clinical indicators of sinus disease, which found a link between sinus  
390 *S. aureus* colonization (as determined by clinical lab culture) and worsening sinus disease.<sup>13</sup>  
391 Together, these studies reveal that beyond resembling each other taxonomically, CF URT and  
392 LRT microbial communities also share similar drivers of their structure, some of which can be  
393 linked to sinus disease.

394  
395 CRS is an inflammatory disease and we found several examples of how cytokine signaling in the  
396 sinuses could shape CF CRS microbial communities. Multiple lines of evidence link elevated  
397 levels of the pro-inflammatory cytokine IL-1 $\beta$  to sinus disease. Polymorphisms in the IL-1 receptor  
398 antagonist gene (IL1RN) are associated with CRS, and in CF, elevated IL-1 $\beta$  is associated with  
399 the presence of nasal polyps.<sup>38-41</sup> We found that lower microbial community diversity was  
400 associated with higher levels of IL-1 $\beta$  and with worse endoscopic appearance of the sinuses (mLK  
401 score). Our findings suggest IL-1 $\beta$  signaling in the sinuses as a therapeutic target to control sinus  
402 inflammation and potentially restore microbial community diversity. Considering a recombinant  
403 IL-1 $\beta$  receptor antagonist is already available to treat rheumatoid arthritis and other inflammatory  
404 diseases, this finding warrants further investigation.<sup>42</sup> These cytokine interactions suggest ways  
405 that the inflammatory environment of the sinuses could reinforce a lack of diversity and dominance  
406 by more abundant taxa, including *P. aeruginosa* and *Staphylococcus* spp.

407  
408 The CF lung environment displays a high degree of interplay between host-microbe and microbe-  
409 microbe interactions that impact bacterial behaviors such as expression of virulence factors and  
410 response to antimicrobials.<sup>43</sup> The strongest signature of microbe-microbe co-occurrence in our  
411 study was a positive correlation between *Corynebacterium* spp. and *Dolosigranulum* spp., which  
412 has previously been observed in the upper respiratory tract of healthy individuals and associated  
413 with relative stability of the microbiota.<sup>44,45</sup> We interpret these findings to suggest that CF CRS  
414 sinuses continue to harbor a commensal subpopulation displaying interactions seen outside of  
415 the context of CF.<sup>44,46,47</sup> We also observed a negative correlation between the relative abundance  
416 of *P. aeruginosa* and *Burkholderia* spp. A type VI secretion-mediated mechanism of antagonism  
417 between these two organisms was recently demonstrated to evolve among CF sputum isolates,  
418 further suggesting similarities between polymicrobial interactions in the URT and LRT.<sup>48</sup> Finally,  
419 we observed a correlation between CFRD and reduced lung function, as was previously  
420 reported<sup>13</sup>. Adding to this finding, here we identified a relationship between CFRD and sinus  
421 communities driven by *P. aeruginosa* (many of which also contained *Staphylococcus* spp.), which  
422 was reminiscent of a report by Limoli *et al.* that LRT co-infection by *P. aeruginosa* and *S. aureus*  
423 is common among people with CFRD.<sup>49</sup> These parallels between our findings and previous  
424 reports from studies of the LRT in CF further underscore the relevance of the URT to overall CF  
425 respiratory disease dynamics. To further examine CF sinus disease in the context of the unified  
426 airway hypothesis, comparison of microbiotas from paired sinus and sputum samples collected  
427 longitudinally is needed to examine how these two populations relate to each other and change  
428 over time, including during disease exacerbations.

429  
430 In the United States, the CF Foundation is currently developing guidelines for the management  
431 of CF CRS and our study advances the growing body of literature establishing the sinuses as an  
432 important site of chronic infection along the respiratory tract of people with CF. More work is  
433 needed in a larger cohort to understand the causes and consequences of sinus microbial  
434 community instability in adults with CF CRS, and how community structure relates to the  
435 inflammatory environment of the sinuses. Furthermore, the CF community has entered the era of  
436 highly effective modulator therapy (HEMT), in which widespread use of HEMT is changing CF  
437 disease in unprecedented ways that will require complementary changes in how CF is managed  
438 for many people<sup>50</sup>. Initiation of HEMT early in life may delay respiratory disease progression and  
439 it is possible that management of sinus disease could offer an additional opportunity to prevent  
440 or delay LRT disease, as well as to relieve the symptomatic quality of life burden for people with

441 CF. As therapeutic options for CF are expanded and life expectancy extended, a comprehensive  
442 understanding of the ecological and evolutionary drivers of CF sinus disease holds promise for  
443 more rational interventions and treatment of chronic respiratory infections in people with CF.

444

#### 445 **Methods**

##### 446 *Study design, participants, sinus sampling, and clinical evaluation*

447 We performed a prospective, longitudinal study of 33 CF adults with symptomatic CRS and prior  
448 functional endoscopic sinus surgery (FESS) following an IRB-approved protocol  
449 (STUDY19100149) between February 2015 and August 2017.<sup>13</sup> Participants were treated in a  
450 CF-focused otolaryngology clinic at the University of Pittsburgh. During quarterly clinic visits and  
451 unscheduled clinic visits, at least two sinus swabs were collected endoscopically for 16S rRNA  
452 gene amplicon sequencing (dry flock swab; Puritan Medical Products, Guilford, Maine) and  
453 bacterial culturing (flocked swab with liquid Amies medium; Copan Diagnostics, Inc. Murrieta,  
454 CA). Samples were collected from the frontal, maxillary, or ethmoid sinuses (Supplemental Table  
455 4). The swab for bacterial culturing was stored on wet ice and cultured within 4 hours of sampling.  
456 Sinus wash was collected for cytokine analysis by flushing 5mL of sterile saline into the sinus  
457 cavity and collecting endoscopically with a sterile trap. Sinus washes and dry swabs were stored  
458 at -80°C. Of the 33 participants enrolled in the study and for whom sinus samples had been  
459 collected, we sequenced microbiota samples on at least two different study visits from 18 people  
460 (i.e. longitudinal samples) and sequenced a single cross-sectional sample from 9 people, for a  
461 total cohort size of 27 people (Table 1). Patient demographics, clinical characteristics including  
462 the criteria for disease outcome variables “sinus exacerbation” and “pulmonary exacerbation”,  
463 and medication use was previously described for the full 33 person cohort and the same  
464 definitions were used in the present study.<sup>13</sup> Briefly, a sinus disease exacerbation was defined as  
465 an unscheduled visit to the sinus clinic (i.e. a visit that was outside of regular study visits) and/or  
466 if the study participant reported an acute increase in symptom severity. A pulmonary exacerbation  
467 occurred if at least two of the following three occurred within four weeks of a study visit: (1) a  
468 greater than 10% drop in percent predicted FEV<sub>1</sub>, (2) institution of a new course of systemic  
469 antibiotics by the pulmonary team, and (3) documentation by the treating pulmonologist that the  
470 study participant was experiencing a pulmonary exacerbation in the medical record. Supplemental  
471 table 4 contains the study’s clinical metadata and Supplemental table 5 is a codebook describing  
472 each variable.

473

##### 474 *DNA extraction and 16S rRNA gene amplicon sequencing*

475 DNA extraction was performed using the Qiagen DNeasy Powersoil Kit (Qiagen Cat#12888,  
476 Germantown, MD) and processed following the manufacturer's protocol. Reagent blanks were  
477 included as negative controls and cells from a microbial community of known composition were  
478 included as positive controls (ZymoBiotics Microbial Community Standards; Zymo Research,  
479 Irvine, CA). The V4 region of the 16S rRNA gene was amplified from approximately 5 ng of  
480 extracted DNA in 25 $\mu$ l reactions using Q5 HS High-Fidelity polymerase (New England BioLabs,  
481 Ipswich, MA) with inline bare primer design as previously described.<sup>51</sup> The following V4-specific  
482 primers were used: 515f 5'-GTGCCAGCMGCCGCGTAA-3' and 806r 5'-  
483 GGACTACHVGGGTWTCTAAT-3'. Cycle conditions were 98°C for 30 seconds, followed by 30  
484 cycles of 98°C for 10 seconds, 57°C for 30 seconds, and 72°C for 30 seconds, then a final  
485 extension step of 72°C for 2 minutes. We used two-sided AMPure XP bead purification at 0.8:1  
486 (left-side) and 0.61:1 (right-side) ratios to remove small and large fragments, respectively. Eluted  
487 DNA was quantified on a Qubit fluorimeter (Life Technologies, Grand Island, NY). Samples were  
488 pooled on ice by combining 40ng of each purified band. For negative controls and poorly  
489 performing samples, 20 $\mu$ l of each sample was used. The sample pool was purified with the  
490 MinElute PCR purification kit (Qiagen, Germantown, MD). The final sample pool underwent two  
491 more purifications: AMPure XP beads at a ratio of 0.8:1 to remove primer dimers and a final  
492 cleanup using the Purelink PCR Purification Kit (Life Technologies Cat #K310001; Grand Island,  
493 NY). The purified pool was quantified in triplicate with a Qubit fluorimeter prior to sequencing.

494 Amplicons of the V4 region were sequenced on a MiSeq (Illumina, San Diego, CA) using  
495 paired-end 2 x 250 reads, deconvolved, and quality checked by dust low complexity filtering,  
496 quality value (QV) trimming, and trimming of primers used for 16S rRNA gene amplification by  
497 the University of Pittsburgh's Center for Medicine and the Microbiome (CMM) using the scripts  
498 fastq\_quality\_trimmer and fastq\_quality\_filter from Hannon's Cold Spring Harbor Laboratory's  
499 FASTAX-Toolkit ([http://hannonlab.cshl.edu/fastx\\_toolkit/](http://hannonlab.cshl.edu/fastx_toolkit/)). Reads were trimmed until the QV was  
500 30 or higher. Trimmed reads shorter than 75bp or those with less than 95% of the bases above a  
501 QV of 30 were discarded. Forward and reversed paired reads were merged with a minimum  
502 required overlap of 25 bp, proportion overlap mismatch > 0.2 bp, maximum N's allowed = 4, and  
503 a read length minimum of 125 bp. Reads were taxonomically classified with Mothur version  
504 1.39.1<sup>16</sup>, using Ribosomal Database Project (RDP v123) reference sequences.<sup>52</sup> Environmental  
505 controls and extraction kit controls, along with *E. coli* and mock community (ZymoBIOMICS  
506 Microbial Community DNA Standard) positive controls, were sequenced alongside clinical  
507 specimens to monitor for contamination and technical performance during the extraction and  
508 sequencing process.

509

510 *Verification of Pseudomonadaceae\_uncl taxon as P. aeruginosa*

511 For every study visit, a sinus swab was streaked onto *Pseudomonas* isolation agar (PIA) and  
512 incubated at 37°C for 48 hours. Genomic DNA from representative isolate(s) for each study  
513 participant was extracted using a QIAGEN DNeasy Blood & Tissue kit (Qiagen, Hilden, Germany)  
514 and the 16S rRNA gene was amplified using the primers 63f and 1387r.<sup>53</sup> Amplicons were purified  
515 enzymatically with ExoSAP-It (Applied Biosystems, Waltham, MA) prior to Sanger sequencing  
516 (Eurofins Genomics, Louisville, KY) to confirm their species identity as *P. aeruginosa*. We did not  
517 detect Pseudomonads other than *P. aeruginosa*. Furthermore, whole genomes were previously  
518 sequenced for all *P. aeruginosa* isolates collected from six study participants (Patients 9, 24, 32,  
519 33, 41, and 52 in Figure S1). We did not detect non-*P. aeruginosa* Pseudomonads among whole  
520 genome sequenced isolates.

521

522 *FISH imaging of explanted obstructive sinus material*

523 When clinically indicated, obstructive sinus material was surgically removed from two study  
524 participants following sinonasal endoscopy and immediately fixed in 10% phosphate-buffered  
525 formalin (Fisher Scientific). Fixed samples were then rinsed and embedded for freezing in O.C.T.  
526 compound (Tissue-Plus, Fisher HealthCare). Cryoprotected samples were sectioned at 10µm on  
527 a Microm HM505E Cryostat Microtome (Microm International, Waldorf, Germany) and  
528 immobilized on poly-L-lysine coated slides. In preparation for staining, slides were removed from  
529 the freezer and thawed at room temperature. Samples were permeabilized by incubating with  
530 lysozyme (10 mg/mL in 0.1M Tris-HCL and 0.05 M EDTA) at 37°C for 3 hours. The lysozyme  
531 solution was removed, and the samples were rinsed briefly with sterile RNase/DNase-free water.  
532 The samples were then dehydrated with increasing concentrations of ethanol (50%, 80% and  
533 100%) for 3 minutes per treatment as previously described<sup>54</sup> and then air dried at room  
534 temperature. FISH was performed using oligonucleotide probes directed toward 16S rRNA  
535 sequences specific to Eubacteria (Eub338; 5'-GCT GCC TCC CGT AGG AGT-3')<sup>55</sup>, *S. aureus*  
536 (Sau16S69; 5'-GAA GCA AGC TTC TCG TCC G-3')<sup>56</sup>, or *P. aeruginosa* (PsaerA; 5'-GGT AAC  
537 CGT CCC CCT TGC-3').<sup>54</sup> Probes were synthesized by IDT (Coralville, IA) and 5' labeled with  
538 the cyanine dye Cy3 (PsaerA and Sau16S69) or Cy5 (Eub338). Samples were incubated in  
539 hybridization buffer (0.9 M NaCl, 20 mM Tris-HCl [pH 7.6], 0.01% sodium dodecyl sulfate, 30%  
540 formamide) with desired probe combinations for 1h at 46°C. Samples were then washed with pre-  
541 warmed washing buffer (20 mM Tris-HCl [pH 7.6], 0.01% sodium dodecyl sulfate, 112 mM NaCl)  
542 and incubated in washing buffer for 15 minutes at 48°C. Slides were then rinsed with sterile water,

543 and the general DNA stain Hoechst trihydrochloride trihydrate was applied (1.0 µg/mL in PBS) for  
544 10 minutes on ice. Slides were rinsed again with sterile water and left to air dry in a vertical position  
545 protected from light. When dry, samples were mounted with ProLong Gold antifade reagent (Life  
546 Technologies) for microscopy. Microscopy was performed on an Olympus FluoView FV1000  
547 inverted confocal microscope using a 60X oil objective.

548

549 *Cytokine panels*

550 Cytokine levels in 54 sinus washes (stored frozen at -80°C) from 22 people were quantified using  
551 a Bio-Plex Pro™ Human Inflammation 24-Plex Panel or a Bio-Plex Pro™ Human Th17 Cytokine  
552 Panel 15-Plex Panel (Bio-Rad, Hercules, CA, USA). Cytokines were omitted from further analyses  
553 if their concentration was close to the lower limit of detection in most samples, based on  
554 manufacturer-specified values and examination of the 5pl standard curves produced by the Bio-  
555 Plex Pro™ software. Seven cytokines were included in the predictor/responder analyses in Figure  
556 3. All cytokine concentrations were log-transformed except pentraxin 3 (PTX3), which was  
557 sufficiently normally distributed according to the Shapiro-Wilks test, without additional log-  
558 transformation.

559

560 *Statistical analyses*

561 Statistical analyses were performed with GraphPad Prism version 9.1.2 or in RStudio version  
562 1.1.456, and significance determined at  $\alpha = 0.05$  unless otherwise specified. Relative abundances  
563 of taxa were transformed using the additive log ratio (ALR) transformation.<sup>57,58</sup> Alpha diversity  
564 values were calculated using the *diversity* function in the R package vegan v2.5-3. The clustering  
565 analyses in Figure 2A, B and Figure S3 were performed with vegan and the R packages *permute*  
566 and *lattice*. The Manhattan distance between each sample was computed, and samples were  
567 hierarchically clustered based on the Ward's minimum variance method. The taxon/taxa driving  
568 cluster formation was determined by calculating  $R^2$  ratios (sum of squares between clusters  
569 divided by sum of squares total) from ANOVA. In Figure 2A, cluster multinomial log linear models  
570 were fit for covariates and clinical outcome variables to determine relationships between any of  
571 these variables with 16S microbiota profile cluster(s). The PERMANOVA in Supplemental table 3  
572 was performed with the *adonis* function in vegan (N = 88 samples; 12000 permutations). Linear  
573 models in the predictor/responder analyses in Figure 3 were calculated as previously described.<sup>59</sup>  
574 Briefly, for both the sinus disease outcome and cytokine analyses, the following covariates were  
575 included Patient ID (to control for repeated measures within patients), age, sex, BMI on  
576 enrollment, CFTR mutation, CFRD diagnosis, and current topical antibiotic use. A p-value < 0.025

577 in both the predictor and responder versions of the versions of the model (i.e., alpha = 0.05 for  
578 two simultaneous tests) was required for relationships to be summarized in Figure 3. Taxon co-  
579 occurrences in Figure S2 were determined for the top 15 taxa by Pearson correlation across all  
580 samples (N=101) and significance was determined after Holm-Bonferroni correction (p < 0.05).  
581 The Rs95 values included with taxon prevalence in Supplemental table 2 provide estimates that  
582 account for unequal sequencing depth using the binomial distribution. For example, in a sample  
583 with a read depth of 3000, if the abundance of the taxon was 0.001, then according to the binomial  
584 distribution, the probability of not detecting this taxon (0 reads) is 0.0497, if the sample was re-  
585 sequenced to the same depth. Therefore, at least 1 read will be associated with this taxon in that  
586 sample, with a probability of 1-0.0497 = 0.9505 or > 95% of the time.

587

#### 588 *Data sharing*

589 All V4 amplicon sequencing reads were deposited in NCBI's SRA under BioProject  
590 PRJNA750353. Further information and requests for resources and reagents should be directed  
591 to and will be fulfilled by the lead contact, Dr. Jennifer Bomberger (jbomb@pitt.edu).

592

#### 593 **Acknowledgements**

594 We thank the people with CF who participated in our study and contributed to this research. We  
595 also thank Bill Goins and Mingdi Zhang for assistance with cryosectioning of clinical samples.  
596 This work was supported by a Cystic Fibrosis Foundation (CFF) Carol Basbaum Memorial  
597 Research Fellowship (ARMBRU19F0) and National Institutes of Health (NIH) T32HL129949 to  
598 CRA, NIH T32AI049820 and CFF MELVIN15F0 to JAM, CFF ZEMKE16A0 and NIH  
599 5K23HL131930 to ACZ, NIH R01HL138630 to AM, NIH R21HL143091 to BAM, University of  
600 Pittsburgh CTSI Pilot Program, NIH NCATS UL1 TR0000005, NIH R61HL137077 and GILEAD  
601 Investigator Sponsored Research Award to SEL and JMB, and NIH R01HL123771,  
602 P30DK072506, CFF BOMBER14G0, and CFF RDP BOMBER19R0 to JMB.

603

#### 604 **References**

- 605 1 Chaaban MR, Kejner A, Rowe SM, Woodworth BA. Cystic fibrosis chronic rhinosinusitis: a  
606 comprehensive review. *Am J Rhinol Allergy* 2013; **27**: 387–95.
- 607 2 Whiteson KL, Bailey B, Bergkessel M, *et al.* The Upper Respiratory Tract as a Microbial  
608 Source for Pulmonary Infections in Cystic Fibrosis. Parallels from Island Biogeography. *Am J  
609 Respir Crit Care Med* 2014; **189**: 1309–15.

610 3 Krouse JH, Brown RW, Fineman SM, *et al.* Asthma and the unified airway. *Otolaryngol Neck*  
611 *Surg* 2007; **136**: S75–106.

612 4 Lucas SK, Yang R, Dunitz JM, Boyer HC, Hunter RC. 16S rRNA gene sequencing reveals  
613 site-specific signatures of the upper and lower airways of cystic fibrosis patients. *J Cyst*  
614 *Fibros Off J Eur Cyst Fibros Soc* 2018; **17**: 204–12.

615 5 Pletcher SD, Goldberg AN, Cope EK. Loss of Microbial Niche Specificity Between the Upper  
616 and Lower Airways in Patients With Cystic Fibrosis. *The Laryngoscope* 2019; **129**: 544–50.

617 6 Cope EK, Goldberg AN, Pletcher SD, Lynch SV. Compositionally and functionally distinct  
618 sinus microbiota in chronic rhinosinusitis patients have immunological and clinically  
619 divergent consequences. *Microbiome* 2017; **5**: 53–53.

620 7 Muhlebach MS, Zorn BT, Esther CR, *et al.* Initial acquisition and succession of the cystic  
621 fibrosis lung microbiome is associated with disease progression in infants and preschool  
622 children. *PLoS Pathog* 2018; **14**: e1006798–e1006798.

623 8 Cheng TZ, Choi KJ, Honeybrook AL, *et al.* Decreased Antibiotic Utilization After Sinus  
624 Surgery in Cystic Fibrosis Patients With Lung Transplantation. *Am J Rhinol Allergy* 2019; **33**:  
625 354–8.

626 9 Khalfoun S, Tumin D, Ghossein M, Lind M, Hayes D, Kirkby S. Improved Lung Function  
627 after Sinus Surgery in Cystic Fibrosis Patients with Moderate Obstruction. *Otolaryngol Neck*  
628 *Surg* 2018; **158**: 381–5.

629 10 Armbruster CR, Marshall CW, Garber AI, *et al.* Adaptation and genomic erosion in  
630 fragmented *Pseudomonas aeruginosa* populations in the sinuses of people with cystic fibrosis.  
631 *Cell Rep* 2021; **37**.

632 11 Bartell JA, Sommer LM, Haagensen JA, *et al.* Evolutionary highways to persistent bacterial  
633 infection. *Nat Commun* 2019; **10**: 629.

634 12 Safi C, DiMango E, Keating C, Zhou Z, Gudis DA. Sinonasal quality-of-life declines in cystic  
635 fibrosis patients with pulmonary exacerbations. *Int Forum Allergy Rhinol* 2020; **10**: 194–8.

636 13 Zemke AC, Nouraei SM, Moore J, *et al.* Clinical predictors of cystic fibrosis chronic  
637 rhinosinusitis severity. *Int Forum Allergy Rhinol* 2019; **9**: 759–65.

638 14 Kennedy JL, Hubbard MA, Huyett P, Patrie JT, Borish L, Payne SC. Sino-nasal outcome test  
639 (SNOT-22): a predictor of postsurgical improvement in patients with chronic sinusitis. *Ann*  
640 *Allergy Asthma Immunol Off Publ Am Coll Allergy Asthma Immunol* 2013; **111**: 246-251.e2.

641 15 Psaltis AJ, Li G, Vaezeafshar R, Cho K-S, Hwang PH. Modification of the lund-kennedy  
642 endoscopic scoring system improves its reliability and correlation with patient-reported  
643 outcome measures. *The Laryngoscope* 2014; **124**: 2216–23.

644 16 Williams MM, Armbruster CR, Arduino MJ. Plumbing of hospital premises is a reservoir for  
645 opportunistically pathogenic microorganisms: a review. *Biofouling* 2013; **29**: 147–62.

646 17 Coburn B, Wang PW, Diaz Caballero J, *et al.* Lung microbiota across age and disease stage in  
647 cystic fibrosis. *Sci Rep* 2015; **5**: 10241.

648 18 Flight WG, Smith A, Paisey C, *et al.* Rapid Detection of Emerging Pathogens and Loss of  
649 Microbial Diversity Associated with Severe Lung Disease in Cystic Fibrosis. *J Clin Microbiol*  
650 2015; **53**: 2022–9.

651 19 Cuthbertson L, Walker AW, Oliver AE, *et al.* Lung function and microbiota diversity in cystic  
652 fibrosis. *Microbiome* 2020; **8**: 45.

653 20 Illing EA, Woodworth BA. Management of the Upper Airway in Cystic Fibrosis. *Curr Opin*  
654 *Pulm Med* 2014; **20**: 623–31.

655 21 Hampton Thomas H., Thomas Devin, van der Gast Christopher, O'Toole George A., Stanton  
656 Bruce A., Oglesby Amanda G. Mild Cystic Fibrosis Lung Disease Is Associated with  
657 Bacterial Community Stability. *Microbiol Spectr*; **9**: e00029-21.

658 22 Frost F, Kacprowski T, Rühlemann M, *et al.* Long-term instability of the intestinal  
659 microbiome is associated with metabolic liver disease, low microbiota diversity, diabetes  
660 mellitus and impaired exocrine pancreatic function. *Gut* 2021; **70**: 522.

661 23 Koutsourelakis I, Halderman A, Khalil S, Hittle LE, Mongodin EF, Lane AP. Temporal  
662 instability of the post-surgical maxillary sinus microbiota. *BMC Infect Dis* 2018; **18**: 441.

663 24 Conrad D, Haynes M, Salamon P, Rainey PB, Youle M, Rohwer F. Cystic fibrosis therapy: a  
664 community ecology perspective. *Am J Respir Cell Mol Biol* 2013; **48**: 150–6.

665 25 DePas WH, Starwalt-Lee R, Van Sambeek L, Ravindra Kumar S, Gradinaru V, Newman DK.  
666 Exposing the Three-Dimensional Biogeography and Metabolic States of Pathogens in Cystic  
667 Fibrosis Sputum via Hydrogel Embedding, Clearing, and rRNA Labeling. *mBio* 2016; **7**:  
668 e00796-16.

669 26 Lin Yajuan, Gifford Scott, Ducklow Hugh, Schofield Oscar, Cassar Nicolas, Stabb Eric V.  
670 Towards Quantitative Microbiome Community Profiling Using Internal Standards. *Appl*  
671 *Environ Microbiol*; **85**: e02634-18.

672 27 Galazzo G, van Best N, Benedikter BJ, *et al.* How to Count Our Microbes? The Effect of  
673 Different Quantitative Microbiome Profiling Approaches. *Front Cell Infect Microbiol* 2020;  
674 **10**: 403–403.

675 28 Caverly LJ, LiPuma JJ. Cystic fibrosis respiratory microbiota: unraveling complexity to  
676 inform clinical practice. *Expert Rev Respir Med* 2018; **12**: 857–65.

677 29 Rogers GB, Carroll MP, Serisier DJ, Hockey PM, Jones G, Bruce KD. Characterization of  
678 Bacterial Community Diversity in Cystic Fibrosis Lung Infections by Use of 16S Ribosomal

679 42 DNA Terminal Restriction Fragment Length Polymorphism Profiling. *J Clin Microbiol* 2004;  
680 **42**: 5176.

681 30 Whelan FJ, Heirali AA, Rossi L, Rabin HR, Parkins MD, Surette MG. Longitudinal sampling  
682 of the lung microbiota in individuals with cystic fibrosis. *PLOS ONE* 2017; **12**: e0172811.

683 31 Fodor AA, Klem ER, Gilpin DF, *et al.* The Adult Cystic Fibrosis Airway Microbiota Is Stable  
684 over Time and Infection Type, and Highly Resilient to Antibiotic Treatment of Exacerbations.  
685 *PLOS ONE* 2012; **7**: e45001.

686 32 Hoggard M, Biswas K, Zoing M, Wagner Mackenzie B, Taylor MW, Douglas RG. Evidence  
687 of microbiota dysbiosis in chronic rhinosinusitis. *Int Forum Allergy Rhinol* 2017; **7**: 230–9.

688 33 Lucas SK, Feddema E, Boyer HC, Hunter RC. Diversity of cystic fibrosis chronic  
689 rhinosinusitis microbiota correlates with different pathogen dominance. *J Cyst Fibros* 2021;  
690 **20**: 678–81.

691 34 Hoggard M, Waldvogel-Thurlow S, Zoing M, *et al.* Inflammatory Endotypes and Microbial  
692 Associations in Chronic Rhinosinusitis. *Front Immunol* 2018; **9**: 2065.

693 35 Wagner Mackenzie B, Dassi C, Vivekanandan A, Zoing M, Douglas RG, Biswas K.  
694 Longitudinal analysis of sinus microbiota post endoscopic surgery in patients with cystic  
695 fibrosis and chronic rhinosinusitis: a pilot study. *Respir Res* 2021; **22**: 106.

696 36 Jorth P, Turner KH, Gumus P, Nizam N, Buduneli N, Whiteley M. Metatranscriptomics of the  
697 human oral microbiome during health and disease. *mBio* 2014; **5**: e01012-e1014.

698 37 Janhsen WK, Arnold C, Hentschel J, *et al.* Colonization of CF patients' upper airways with *S.*  
699 *aureus* contributes more decisively to upper airway inflammation than *P. aeruginosa*. *Med*  
700 *Microbiol Immunol (Berl)* 2016; **205**: 485–500.

701 38 Cheng Y-K, Lin C-D, Chang W-C, *et al.* Increased Prevalence of Interleukin-1 Receptor  
702 Antagonist Gene Polymorphism in Patients With Chronic Rhinosinusitis. *Arch Otolaryngol  
703 Neck Surg* 2006; **132**: 285–90.

704 39 Van Zele T, Claeys S, Gevaert P, *et al.* Differentiation of chronic sinus diseases by  
705 measurement of inflammatory mediators. *Allergy* 2006; **61**: 1280–9.

706 40 Derycke L, Eyerich S, Van Crombruggen K, *et al.* Mixed T helper cell signatures in chronic  
707 rhinosinusitis with and without polyps. *PloS One* 2014; **9**: e97581–e97581.

708 41 Derycke L, Zhang N, Holtappels G, Dutré T, Bachert C. IL-17A as a regulator of neutrophil  
709 survival in nasal polyp disease of patients with and without cystic fibrosis. *J Cyst Fibros*  
710 2012; **11**: 193–200.

711 42 Furst DE. Anakinra: Review of recombinant human interleukin-I receptor antagonist in the  
712 treatment of rheumatoid arthritis. *Clin Ther* 2004; **26**: 1960–75.

713 43 Armbruster CR, Coenye T, Touqui L, Bomberger JM. Interplay between host-microbe and  
714 microbe-microbe interactions in cystic fibrosis. *ECFS Cyst Fibros Res* 2020; **19**: S47–53.

715 44 Brugger SD, Eslami SM, Pettigrew MM, *et al.* Dolosigranulum pigrum Cooperation and  
716 Competition in Human Nasal Microbiota. *mSphere* 2020; **5**: e00852-20.

717 45 Bomar L, Brugger SD, Lemon KP. Bacterial microbiota of the nasal passages across the span  
718 of human life. *Host-Pathog Interact Evol Host Pathog Interact* 2018; **41**: 8–14.

719 46 Prevaes SMPJ, de Winter-de Groot KM, Janssens HM, *et al.* Development of the  
720 Nasopharyngeal Microbiota in Infants with Cystic Fibrosis. *Am J Respir Crit Care Med* 2016;  
721 **193**: 504–15.

722 47 Biesbroek G, Tsivtsivadze E, Sanders EAM, *et al.* Early Respiratory Microbiota Composition  
723 Determines Bacterial Succession Patterns and Respiratory Health in Children. *Am J Respir  
724 Crit Care Med* 2014; **190**: 1283–92.

725 48 Perault AI, Chandler CE, Rasko DA, Ernst RK, Wolfgang MC, Cotter PA. Host Adaptation  
726 Predisposes *Pseudomonas aeruginosa* to Type VI Secretion System-Mediated Predation by the  
727 *Burkholderia cepacia* Complex. *Cell Host Microbe* 2020; **28**: 534–547.e3.

728 49 Limoli DH, Yang J, Khansaheb MK, *et al.* *Staphylococcus aureus* and *Pseudomonas*  
729 *aeruginosa* co-infection is associated with cystic fibrosis-related diabetes and poor clinical  
730 outcomes. *Eur J Clin Microbiol Infect Dis* 2016; **35**: 947–53.

731 50 Dave K, Dobra R, Scott S, *et al.* Entering the era of highly effective modulator therapies.  
732 *Pediatr Pulmonol* 2021; **56**: S79–89.

733 51 Caporaso JG, Lauber CL, Walters WA, *et al.* Ultra-high-throughput microbial community  
734 analysis on the Illumina HiSeq and MiSeq platforms. *ISME J* 2012; **6**: 1621–4.

735 52 Cole JR, Wang Q, Cardenas E, *et al.* The Ribosomal Database Project: improved alignments  
736 and new tools for rRNA analysis. *Nucleic Acids Res* 2009; **37**: D141–5.

737 53 Marchesi JR, Sato T, Weightman AJ, *et al.* Design and evaluation of useful bacterium-specific  
738 PCR primers that amplify genes coding for bacterial 16S rRNA. *Appl Environ Microbiol*  
739 1998; **64**: 795–9.

740 54 Hogardt M, Trebesius K, Geiger AM, Hornef M, Rosenecker J, Heesemann J. Specific and  
741 rapid detection by fluorescent in situ hybridization of bacteria in clinical samples obtained  
742 from cystic fibrosis patients. *J Clin Microbiol* 2000; **38**: 818–25.

743 55 Odenyo A A, Mackie R I, Stahl D A, White B A. The use of 16S rRNA-targeted  
744 oligonucleotide probes to study competition between ruminal fibrolytic bacteria: pure-culture  
745 studies with cellulose and alkaline peroxide-treated wheat straw. *Appl Environ Microbiol*  
746 1994; **60**: 3697–703.

747 56 Lawson TS, Connally RE, Iredell JR, Vemulpad S, Piper JA. Detection of *Staphylococcus*  
748 *aureus* with a fluorescence in situ hybridization that does not require lysostaphin. *J Clin Lab*  
749 *Anal* 2011; **25**: 142–7.

750 57 Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egoscue JJ. Microbiome Datasets Are  
751 Compositional: And This Is Not Optional. *Front Microbiol* 2017; **8**: 2224.

752 58 Tarabichi Y, Li K, Hu S, *et al.* The administration of intranasal live attenuated influenza  
753 vaccine induces changes in the nasal microbiota and nasal epithelium gene expression  
754 profiles. *Microbiome* 2015; **3**: 74.

755 59 Stapleton AL, Shaffer AD, Morris A, Li K, Fitch A, Methé BA. The microbiome of pediatric  
756 patients with chronic rhinosinusitis. *Int Forum Allergy Rhinol* 2021; **11**: 31–9.

757

758

759 **Figure legends**

760 **Figure 1. Sinus microbial community diversity is low and the composition can be unstable**  
761 **in adults with CF chronic rhinosinusitis, with most study participants' sinuses dominated**  
762 **by *P. aeruginosa* or *Staphylococcus* spp.** **A)** Boxplots depicting the median Shannon or  
763 Simpson diversity indices, evenness, or Tail statistic per study participant. Overlaid are the  
764 cohort's median and interquartile range. N = 27 participants. **B)** Study participants' sinus microbial  
765 communities were categorized as being relative stable or unstable over time. Histogram binning  
766 of study participants based on the standard deviation (SD) of each of their study visits' Manhattan  
767 distances from the first microbiota sample sequenced. The dotted line indicates the median SD  
768 across all participants. N = 15 study participants with 3 or more visits. **C)** An example of a study  
769 participant (Patient 41), categorized as relatively stable based on the results in Figure 1B, whose  
770 sinus microbiota was consistently dominated by *P. aeruginosa* over time. Taxonomic bar plots  
771 depict the relative abundance of *Pseudomonadaceae* (*P. aeruginosa*; peach). The overlaid line  
772 plotted on the right y-axis is the Manhattan distance of each sample from their first microbiota  
773 sample. **D)** An example of a study participant (Patient 33), categorized as unstable based on the  
774 results in Figure 1B, who exhibited switching between *P. aeruginosa* and *Staphylococcus* spp.  
775 dominance over time. Taxa bar plots depicting the relative abundance of *Pseudomonadaceae* (*P.*  
776 *aeruginosa*; peach), *Staphylococcus* spp. (red), *Corynebacterium* spp. (purple), and other low  
777 abundance taxa. The overlaid line plotted on the right y axis is the Manhattan distance of each  
778 sample from their first microbiota sample. **E)** Representative FISH images of CF CRS microbial  
779 communities from explanted obstructive sinus debris sampled by endoscope from two study  
780 participants. On the left, red = *S. aureus* probe, green = Eubacterial (universal) probe, blue =  
781 Hoechst stain (mostly host cell nuclei). On the right, red = *P. aeruginosa*, green = Eubacterial  
782 (universal) probe, blue = Hoechst stain. Scale bars = 50  $\mu$ m. The macroscopic image at the top  
783 left of each FISH image depicts the mucopurulent sinus sample prior to processing for  
784 microscopy.

785

786 **Figure 2. Relative abundance of *Staphylococcus* spp. or *P. aeruginosa* almost exclusively**  
787 **drives low microbial diversity and community structure.** **A)** Dendrogram depicting individual  
788 patient samples hierarchically clustered using Ward's minimum variance method on the inter-  
789 sample Manhattan distance. Individual microbiota samples are colored based on their cluster (1  
790 = red, 2 = green, 3 = blue). Covariates or sinus disease outcome measures that significantly  
791 correlated with cluster membership by multinomial linear regression are summarized below the  
792 clusters. CFRD is positively associated with Cluster 1 and negatively associated with Clusters 2

793 and 3. Sinus exacerbation is positively associated with Cluster 2. **B)** Identifying which and to what  
794 extent each taxon drives the differences between clusters was calculated by comparing the  
795 coefficient of determination ( $R^2$ ) for a reduced model (without a taxon of interest) against a full  
796 model (with all taxa included) with the  $R^2$  ratio:  $R^2$  reduced /  $R^2$  full. If excluding a taxon (evaluated  
797 with the reduced model) reduces the separation between two clusters relative to keeping it  
798 (evaluated with the full model), then it was an important taxon to the cluster, and the  $R^2$  ratio would  
799 be  $<1$ . Values plotted are  $\log_{10}(R^2$  reduced /  $R^2$  full), with negative values indicating the most  
800 influential taxa separating the two clusters compared. The bottommost plots are classical  
801 multidimensional scaling (MDS) plots depicting the separation of individual samples in the  
802 indicated clusters. **C)** Microbial community diversity (Shannon) is reduced as the relative  
803 abundance of *P. aeruginosa* (Cluster 1 samples in red and X axis) or *Staphylococcus* spp. (Cluster  
804 2 samples in green) begin to dominate. Individual samples that were clustered in Figure 2A are  
805 plotted by the relative abundance of *P. aeruginosa* (x-axis) and their Shannon diversity index (y-  
806 axis), then colored by their cluster membership. Samples in Cluster 3 (blue) tended to have higher  
807 Shannon diversity values than those in Cluster 1 or 2. **D)** Relative abundance of *Staphylococcus*  
808 spp. overlaid onto the same plot as Figure 2C, showing that Shannon diversity decreases as the  
809 relative abundance of this taxon increases.

810  
811 **Figure 3. Relationship of microbial community diversity and individual taxa with**  
812 **respiratory disease outcomes and pro- or anti-inflammatory cytokines.** Summary matrix  
813 depicting statistically significant relationships between clinical outcome variables (left panels: A,  
814 B) or cytokines (right panels: C, D) with alpha diversity (top panels: A, C) or the top 15 taxa (lower  
815 panels: B, D). The blue P's represent the associations when the alpha diversity indices or taxa  
816 best predict ("P") the cytokine values or clinical variables. In contrast, the orange R's depict when  
817 the clinical variables or cytokines predict the alpha diversity indices or taxa with greater statistical  
818 significance (i.e. when the alpha diversity indices or taxa respond ("R") to the cytokine values or  
819 clinical variables). The green upward-pointing triangles represent positive associations between  
820 diversity or taxa and clinical variables or cytokines, whereas the red downward-pointing triangles  
821 represent negative associations based on the coefficients of their association. To compute the  
822 associations, eight linear regression models were fit. In panel A, 1) diversity indices = covariates  
823 + clinical variables and 2) clinical variables = covariates + diversity indices. In panel B, 3.) taxa =  
824 covariates + clinical variables and 4) clinical variables = covariates + taxa. In panel C, 5) diversity  
825 indices = covariates + cytokines and 6) cytokines = covariates + diversity indices. In panel D, 7.)  
826 taxa = covariates + cytokines and 8) cytokines = covariates + taxa. Taxa were represented as

827 additive log ratio transformed abundances. Cytokine concentrations were log transformed, except  
828 for pentraxin 3 (PTX3), which was sufficiently normally distributed. Covariates included Patient  
829 ID, age, sex, BMI, CFTR mutation, CFRD status, and topical antibiotic usage. Associations  
830 included in the predictor/response matrix required at least one of the associations from the models  
831 to have an estimated coefficient p-value < 0.025. The coefficients for relationships depicted in  
832 each panel are as follows: A) Shannon responds to mLK: -0.138, Simpson responds to mLK: -  
833 0.169, Evenness responds to mLK: -0.138; B) *Stenotrophomonas* responds to mLK: 0.287,  
834 *Stenotrophomonas* responds to SNOT-22: -0.0691, *Haemophilus* responds to SNOT-22: -0.0483;  
835 C) Shannon predicts log[IL-1 $\beta$ ]: -2.64, Simpson predicts log[IL-1 $\beta$ ]: -4.2, Tail responds to log[IL-  
836 1 $\beta$ ]: -0.233; D) *Stenotrophomonas* responds to log[IL-6]: -1.09, *Haemophilus* responds to log[IL-  
837 19]: -0.287, *Fusobacterium* responds to log[IFN- $\lambda$ 1]: -0.342, *Enterobacteriaceae*\_uncl predicts  
838 PTX3: 341, *Actinobacteria*\_uncl responds to log[IFN- $\lambda$ 1]: 0.85.

839

840 **Supplemental figure legends**

841 **Figure S1. CF CRS microbial communities can be unstable, with many individuals**  
842 **switching between *Staphylococcus* spp. and *P. aeruginosa* at the greatest levels of relative**  
843 **abundance over time.** Taxa bar plots depicting the percent of each taxon measured at clinic visit  
844 dates for each of the 27 study participants for whom we sequenced one microbiota sample (top)  
845 or longitudinal (bottom) samples. Colors representing each taxa can be matched by the legend  
846 on the right. *Staphylococcus* spp. is depicted in red, *P. aeruginosa* is represented by  
847 *Pseudomonadaceae* in peach and *Pseudomonas* spp. in dark teal. Values indicated beneath  
848 each stacked bar plot signify the days since study enrollment. Black lines were drawn over the  
849 individual bar plots to indicate the degree of microbiota dissimilarity relative to the first time point.  
850 The units of dissimilarity were measured with the Manhattan distance and are annotated on the  
851 y-axis on the right.

852

853 **Figure S2. Commensal taxa *Corynebacterium* spp. and *Dolosigranulum* spp. co-occur,**  
854 **whereas opportunistic pathogens *P. aeruginosa* and *Burkholderia* spp. display**  
855 **antagonism.** Depicted in bold text and with a thick black box are the coefficients for relationships  
856 among the top 15 taxa that were statistically significant after controlling for multiple comparisons  
857 (Holm-Bonferroni adjusted p-value <0.05). In non-bold black text are individual associations that  
858 were statistically significant prior to correcting for multiple hypothesis testing (p < 0.05), but not  
859 after (Holm-Bonferroni adjusted p-value >0.05).

860

861 **Figure S3. Characterization of cluster assignment in Figure 2. A)** The Calinski-Harabasz  
862 Pseudo-F statistic was calculated across all cluster cuts (k) to determine the optimal numbers of  
863 cluster cuts to use in Figure 2AB. Although at  $k = 5$  cluster cuts, the clusters had the greatest  
864 inter-cluster separation, the cuts from  $k = 3$  to 7 were not statistically significantly different from  
865 each other. Ultimately, the cluster cut at  $k = 3$  was chosen because deeper cuts at  $k = 4$  or  $k = 5$   
866 would have yielded cluster sizes too small to find statistically significant associations with the  
867 clinical or cytokine data. **B)** To determine which taxa influence the differentiation of clusters from  
868 one another (in Figure 2AB), taxa were iteratively evaluated for their contribution to pair-wise  
869 cluster separation by comparing the coefficient of determination ( $R^2$ ) with (full) and without  
870 (reduced) the taxon of interest. The x-axis annotates this calculated metric:  $\log(R^2 \text{ reduced} / R^2$   
871 full). If excluding a taxon (reduced model) increases the separation between two clusters relative  
872 to its inclusion (full model), then it was an important clustering influencer, and the log ratio would  
873 be  $<1$ . Log ratios greater than 1 indicate that the taxon added more noise (within cluster  
874 variance), thus reducing between cluster separation.

875

876 **Figure S4. Twelve of eighteen individuals with longitudinal microbiota samples switch**  
877 **between cluster membership over time.** Cluster membership is colored as in Figure 2. Cluster  
878 1 (*P. aeruginosa*) = red, Cluster 2 (*Staphylococcus* spp.) = green, Cluster 3 (other taxa) = blue.  
879 The size of each dot is proportional to the Manhattan distance at each timepoint from the first  
880 sequenced sample.

881

882 **Supplemental table legends**

883 **Supplemental table 1. Diversity indices for each sequenced microbiota sample.** The sample  
884 ID numbers listed correspond to the sample ID numbers in the metadata file (Supplemental table  
885 4).

886

887 **Supplemental table 2. Top 100 taxa identified in this study.** The mean abundance per  
888 participant is averaged across all study participants, regardless of whether the taxon was  
889 detected. For participants with multiple study visits, the relative abundance of each taxon was first  
890 averaged across their visits. Number of participants is a count of the number of study participants  
891 with at least one study visit in which that taxon was identified. The prevalence is the percentage  
892 of patients with at least one study visit in which that taxon was identified. The Rs95 value is an  
893 estimate of mean abundance that takes into account the uneven sequencing depth of samples

894 and is presented as a count of participants and prevalence based on this adjustment. All statistics  
895 for taxonomic abundances are performed on additive log-transformed abundances.

896

897 **Supplemental table 3. CF CRS microbial communities are highly individualized, but may**  
898 **share similarities during sinus exacerbation.** PERMANOVA results describing the proportion  
899 of variance in sample composition attributable to variables tested ("source" of variation). Two  
900 sources contributed a significant amount of variance ( $p < 0.05$ ; Patient ID and whether or not a  
901 study participant was experiencing a sinus exacerbation), whereas enrollment age has a non-  
902 statistically significant effect ( $p < 0.1$ ) and the remaining variables had non-significant effects ( $p >$   
903 0.1). The name of the variable as it appears in the metadata sheet is included in parentheses in  
904 the first column ("Source"). Terms were added sequentially and the model was run with 12000  
905 permutations. Significance levels were determined by the  $Pr(>F)$ . \*\*\*:  $p < 0.001$ , \*\*:  $p < 0.01$ , \*:  $p$   
906  $< 0.05$ ,  $^o$  :  $p < 0.1$ , blank:  $p > 0.1$ .

907

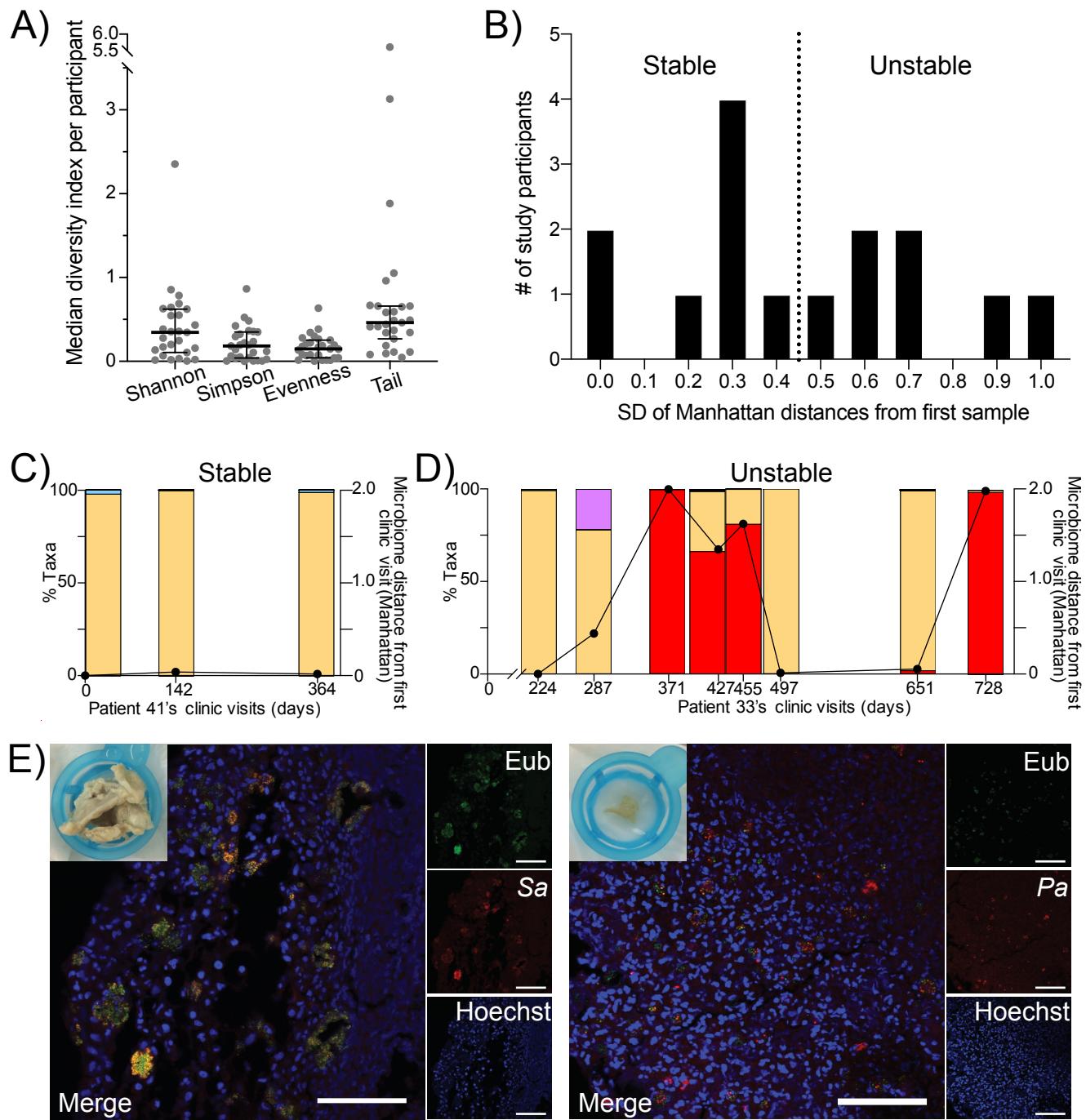
908 **Supplemental table 4. Metadata associated with each sequenced microbiota sample.** See  
909 the codebook in Supplemental table 5 for a description of each variable.

910

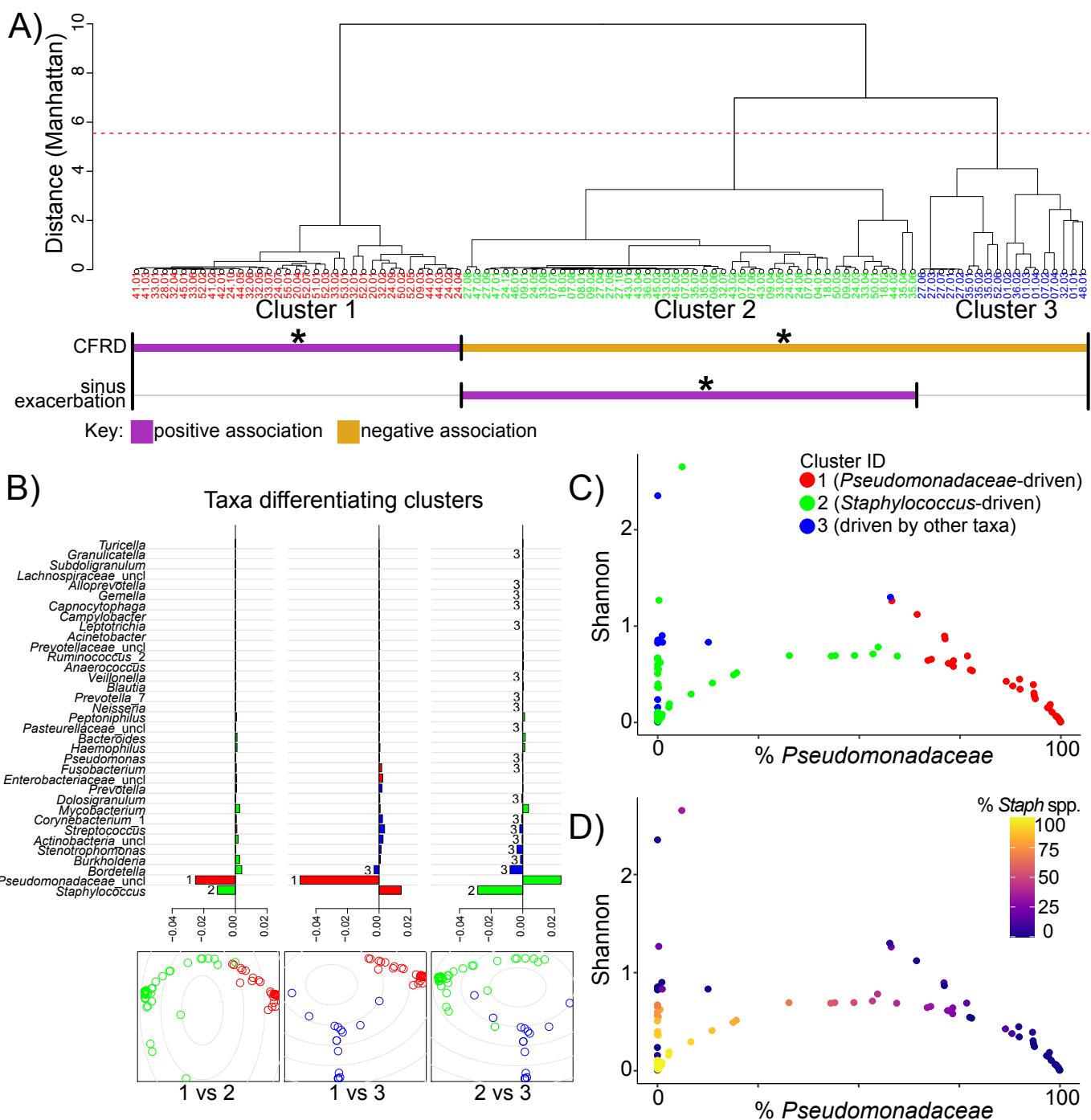
911 **Supplemental table 5. Codebook describing each variable in the metadata.** See  
912 Supplemental table 4 for the metadata.

913

**Tables**


**Table 1. Demographics of the adult CF CRS microbiota study cohort.** The cohort includes 27 people from the larger 33 person study, for whom we sequenced at least one 16S amplicon microbiota sample from a paranasal sinus swab collected by endoscope. For 18 of these 27 people, we sequenced at least two samples, giving us longitudinal information. Drug use is reported for any time during study. CF-related diabetes (CFRD) is reported for at any time within the study or +/- 12 months of enrollment. Clinical parameters of the full cohort (N = 33) were published in Zemke, IFAR 2019.

---


| <b>Microbiota cohort (N = 27/33)</b> |                               |
|--------------------------------------|-------------------------------|
| Longitudinal microbiota samples (%)  | 18/27 (66.6)                  |
| Median age on enrollment (range)     | 27.6 (19.7-43.6)              |
| Male (%)                             | 9/27 (33.3)                   |
|                                      | ΔF508 homozygous 13/27 (48.2) |
| CFTR genotype (%)                    | ΔF508/other 11/27 (40.7)      |
|                                      | Other/other 2/27 (7.4)        |
|                                      | Missing 1/27 (3.7)            |
| CFRD (%)                             | 12/27 (44.4)                  |
| Topical sinus antibiotic use? (%)    | 22/27 (81.5)                  |
| Topical or oral steroid use? (%)     | 21/27 (77.7)                  |
| CFTR corrector/modulator use? (%)    | 10/27 (37)                    |

---

914



**Figure 1**



**Figure 2**

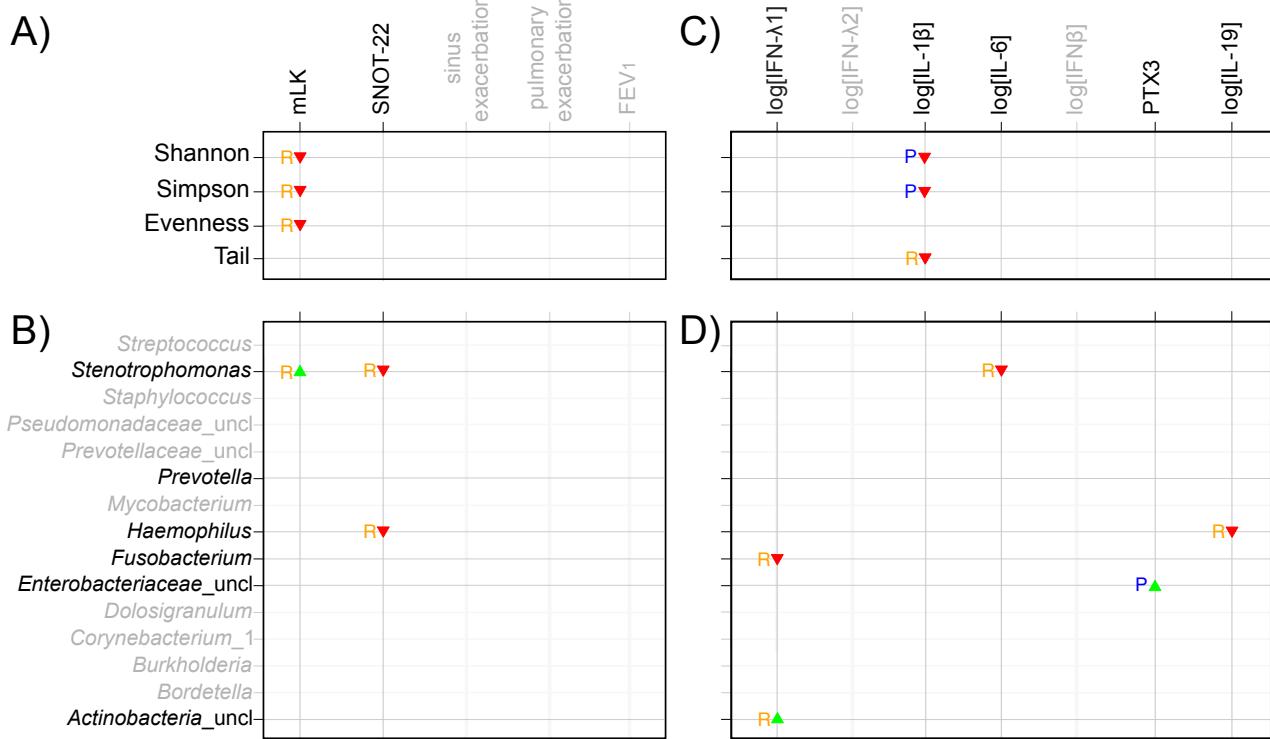
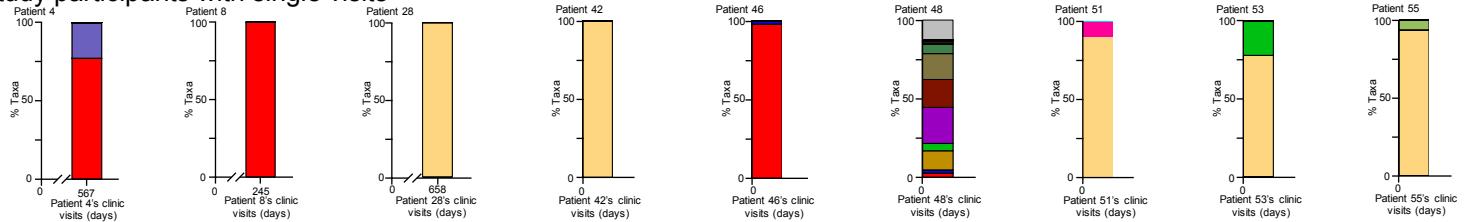
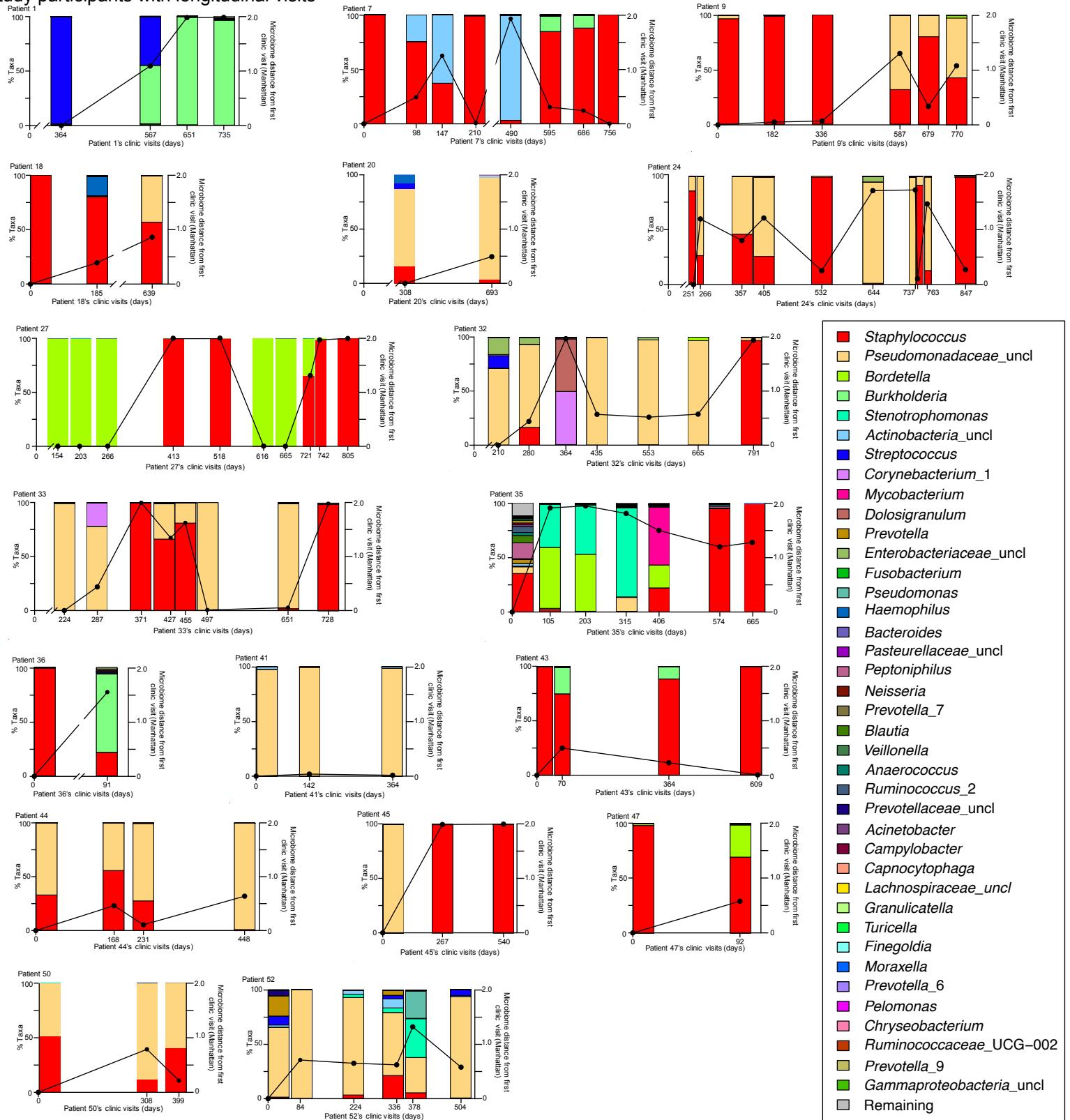
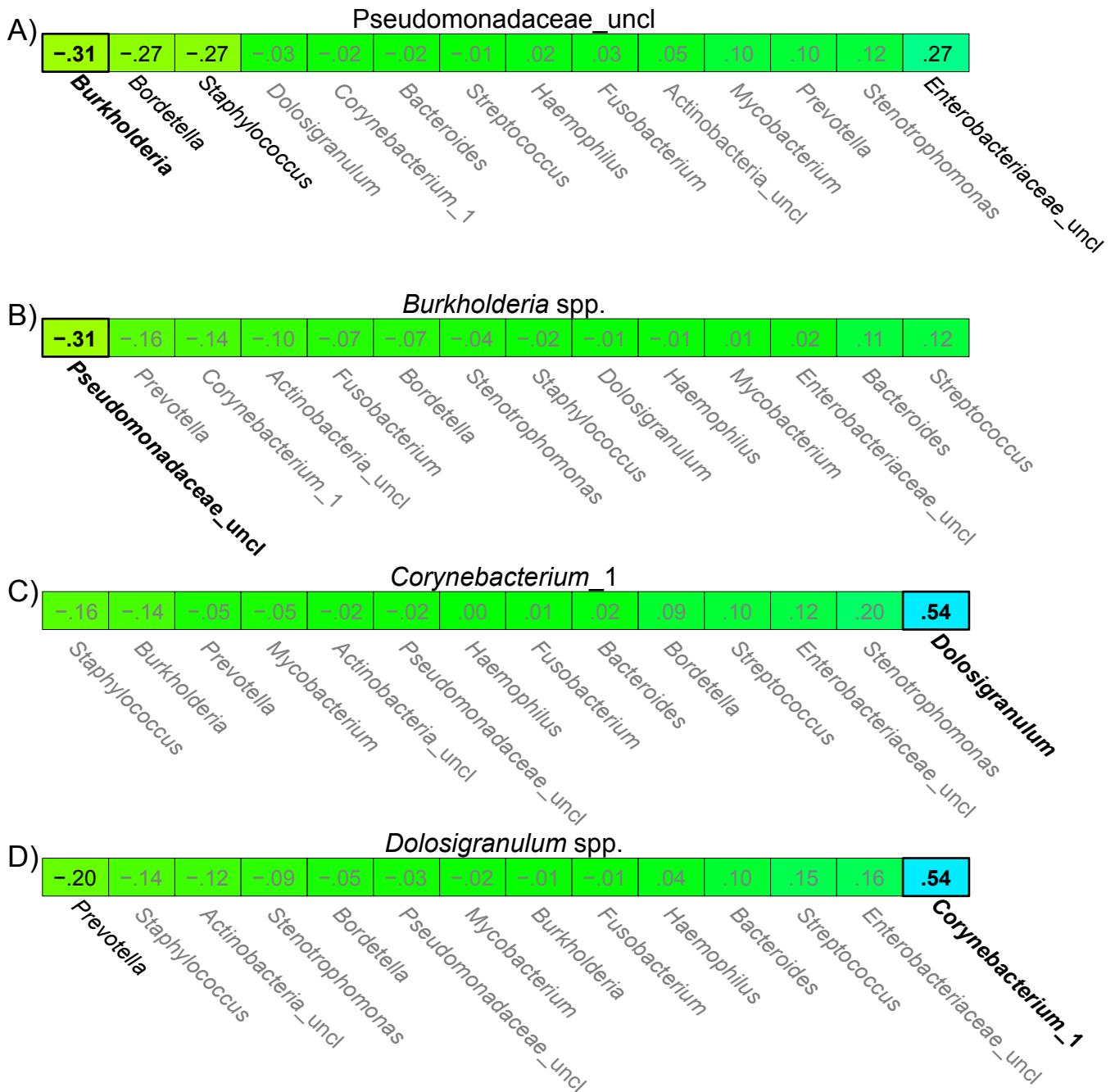
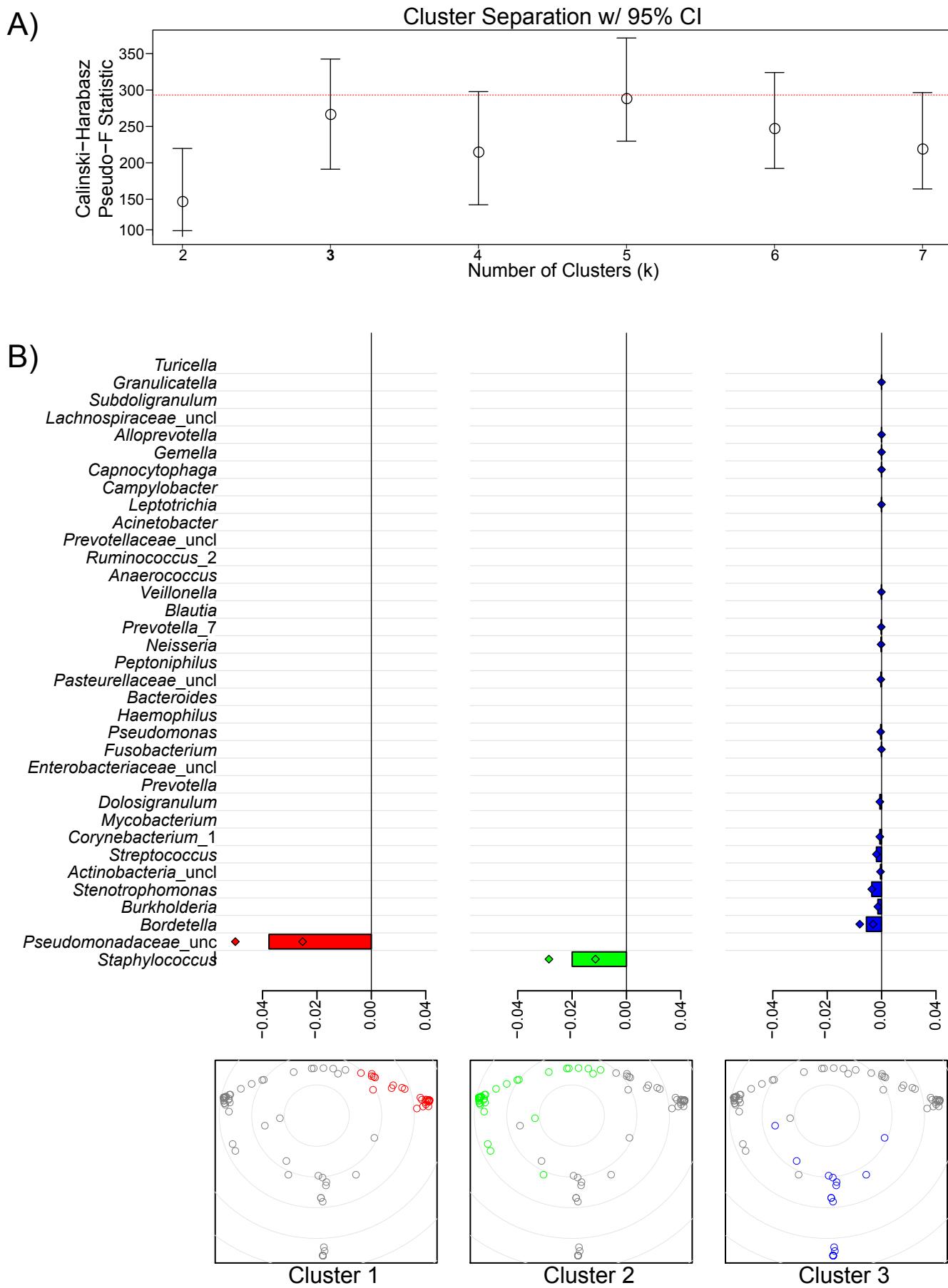



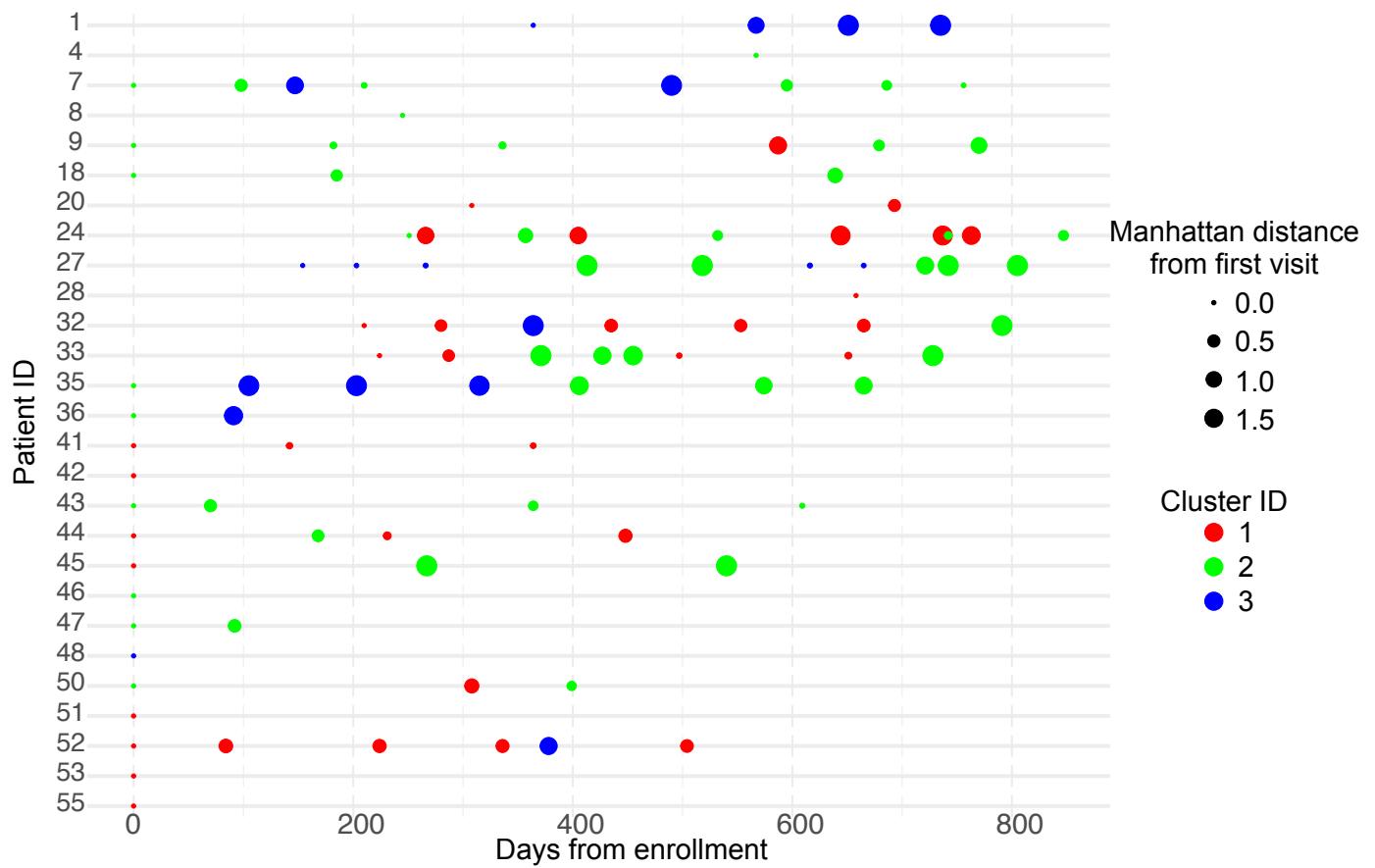

Figure 3

## Study participants with single visits



## Study participants with longitudinal visits



Figure S1



**Figure S2**



**Figure S3**



**Figure S4**

**Supplemental table 1. Diversity indices for each sequenced microbiota sample.** The sample ID numbers listed correspond to the sample ID numbers in the metadata file (Supplemental table 4).

| Sample ID        | Shannon    | Simpson    | Evenness   | Tail       | Richness |
|------------------|------------|------------|------------|------------|----------|
| 0104.01.01.SINUS | 0.10589483 | 0.03397046 | 0.05092465 | 0.287282   | 8        |
| 0104.01.02.SINUS | 0.8179829  | 0.51611268 | 0.27780603 | 1.23346473 | 19       |
| 0104.01.03.SINUS | 0.05154394 | 0.01166583 | 0.01750552 | 0.62712527 | 19       |
| 0104.01.04.SINUS | 0.23749582 | 0.06885968 | 0.08769993 | 1.23729498 | 15       |
| 0104.04.01.SINUS | 0.55157206 | 0.35447306 | 0.34271099 | 0.48696288 | 5        |
| 0104.07.01.SINUS | 0.5631518  | 0.37064178 | 0.16249126 | 0.57228765 | 32       |
| 0104.07.02.SINUS | 0.66782445 | 0.46875164 | 0.34319388 | 0.61981386 | 7        |
| 0104.07.03.SINUS | 0.07910591 | 0.01762764 | 0.0211645  | 1.57350577 | 42       |
| 0104.07.04.SINUS | 0.15674374 | 0.06603898 | 0.1426743  | 0.20127525 | 3        |
| 0104.07.05.SINUS | 0.50714676 | 0.26517697 | 0.15957777 | 0.98347694 | 24       |
| 0104.07.06.SINUS | 0.40024958 | 0.21522894 | 0.14779991 | 0.59603557 | 15       |
| 0104.07.07.SINUS | 0.0121703  | 0.00264745 | 0.00679237 | 0.11119694 | 6        |
| 0104.07.08.SINUS | 0.00778681 | 0.00148121 | 0.00324735 | 0.16889304 | 11       |
| 0104.08.01.SINUS | 0.00432632 | 0.00088028 | 0.00312078 | 0.04532762 | 4        |
| 0104.09.01.SINUS | 0.08402852 | 0.02486021 | 0.02470557 | 0.57216535 | 30       |
| 0104.09.02.SINUS | 0.00142403 | 0.00028937 | 0.00205443 | 0.01202944 | 2        |
| 0104.09.03.SINUS | 0.65588247 | 0.43865674 | 0.36605497 | 0.61119325 | 6        |
| 0104.09.04.SINUS | 0.51529151 | 0.31923503 | 0.23451927 | 0.47379282 | 9        |
| 0104.09.05.SINUS | 0.78229205 | 0.5148748  | 0.4366055  | 0.72857792 | 6        |
| 0104.09.06.SINUS | 0.19234726 | 0.06978859 | 0.0605236  | 0.93817563 | 24       |
| 0104.18.01.SINUS | 0.62057285 | 0.32374802 | 0.16939058 | 1.92072164 | 39       |
| 0104.18.02.SINUS | 0.68887458 | 0.49111112 | 0.49691797 | 0.65939088 | 4        |
| 0104.18.03.SINUS | 0.00836935 | 0.00174383 | 0.00467103 | 0.08647293 | 6        |
| 0104.20.01.SINUS | 0.89683958 | 0.46001571 | 0.40816928 | 0.98816278 | 9        |
| 0104.20.04.SINUS | 0.3885309  | 0.13060842 | 0.09652098 | 2.68572267 | 56       |
| 0104.24.01.SINUS | 0.4094465  | 0.23690178 | 0.17782036 | 0.41456201 | 10       |
| 0104.24.02.SINUS | 0.58119984 | 0.39109617 | 0.5290309  | 0.5167745  | 3        |
| 0104.24.03.SINUS | 0.7110311  | 0.50035517 | 0.44178846 | 0.69425102 | 5        |
| 0104.24.04.SINUS | 0.63897899 | 0.39483391 | 0.19850998 | 1.16587182 | 25       |
| 0104.24.05.SINUS | 0.05833955 | 0.02057431 | 0.05310295 | 0.10332065 | 3        |
| 0104.24.07.SINUS | 0.30522775 | 0.12649838 | 0.12283268 | 0.5061858  | 12       |
| 0104.24.08.SINUS | 0.29419649 | 0.15405914 | 0.21221791 | 0.29673778 | 4        |
| 0104.24.09.SINUS | 0.42659598 | 0.23561198 | 0.26505899 | 0.41326579 | 5        |
| 0104.24.10.SINUS | 0.05857163 | 0.01761035 | 0.0363926  | 0.1517269  | 5        |
| 0104.24.12.SINUS | 0.10335155 | 0.03279684 | 0.04703732 | 0.28326927 | 9        |
| 0104.27.01.SINUS | 0.01002628 | 0.00181389 | 0.00289297 | 0.40264721 | 32       |
| 0104.27.02.SINUS | 0.0079806  | 0.00161679 | 0.00410122 | 0.10310041 | 7        |
| 0104.27.03.SINUS | 0.02148301 | 0.00472933 | 0.00932995 | 0.21063452 | 10       |
| 0104.27.04.SINUS | 0.03243851 | 0.00824179 | 0.01305422 | 0.23774389 | 12       |
| 0104.27.05.SINUS | 0.0210052  | 0.00565583 | 0.01515205 | 0.06893748 | 4        |
| 0104.27.06.SINUS | 0.01964533 | 0.00571675 | 0.02834221 | 0.05354057 | 2        |
| 0104.27.07.SINUS | 0.01097545 | 0.00263642 | 0.00791711 | 0.05137333 | 4        |
| 0104.27.08.SINUS | 0.65581038 | 0.45334025 | 0.4074779  | 0.59864025 | 5        |
| 0104.27.09.SINUS | 0.07297444 | 0.02729362 | 0.10527986 | 0.11763635 | 2        |
| 0104.27.10.SINUS | 0.0177899  | 0.00440411 | 0.0128327  | 0.08401063 | 4        |
| 0104.28.01.SINUS | 0.02275625 | 0.00551117 | 0.0116944  | 0.14182516 | 7        |
| 0104.32.01.SINUS | 0.86733327 | 0.45454917 | 0.36170607 | 0.95381009 | 11       |
| 0104.32.02.SINUS | 0.69004526 | 0.37816213 | 0.35461312 | 0.67418798 | 7        |

|                  |            |            |            |            |    |
|------------------|------------|------------|------------|------------|----|
| 0104.32.03.SINUS | 0.82344377 | 0.52160291 | 0.28489199 | 0.99783591 | 18 |
| 0104.32.04.SINUS | 0.02379887 | 0.00605704 | 0.0122302  | 0.1255229  | 7  |
| 0104.32.05.SINUS | 0.14457184 | 0.05562015 | 0.06278675 | 0.25443824 | 10 |
| 0104.32.06.SINUS | 0.15334763 | 0.06380262 | 0.07880509 | 0.21475188 | 7  |
| 0104.32.07.SINUS | 0.15684413 | 0.0605612  | 0.06811654 | 0.34175494 | 10 |
| 0104.33.01.SINUS | 0.04310884 | 0.01254171 | 0.01491464 | 0.27159448 | 18 |
| 0104.33.02.SINUS | 0.53595587 | 0.34303814 | 0.27542683 | 0.48392336 | 7  |
| 0104.33.03.SINUS | 0.03000626 | 0.00746224 | 0.01365644 | 0.18039856 | 9  |
| 0104.33.04.SINUS | 0.69416067 | 0.45336895 | 0.24500826 | 0.73161372 | 17 |
| 0104.33.05.SINUS | 0.49254924 | 0.30718119 | 0.21391142 | 0.46863302 | 10 |
| 0104.33.06.SINUS | 0.00719502 | 0.00139141 | 0.00280513 | 0.1381955  | 13 |
| 0104.33.07.SINUS | 0.1788408  | 0.05278516 | 0.045953   | 1.98165623 | 49 |
| 0104.33.08.SINUS | 0.08335648 | 0.02719195 | 0.03620126 | 0.25233094 | 10 |
| 0104.35.01.SINUS | 0.89561934 | 0.52979487 | 0.32302639 | 1.00465728 | 16 |
| 0104.35.02.SINUS | 0.85395521 | 0.52355481 | 0.26870382 | 1.25972202 | 24 |
| 0104.35.03.SINUS | 0.75738899 | 0.31301841 | 0.19782187 | 3.56206679 | 46 |
| 0104.35.04.SINUS | 1.24399943 | 0.62473957 | 0.31799389 | 3.13508178 | 50 |
| 0104.35.05.SINUS | 0.3378025  | 0.10282788 | 0.08468384 | 2.96338754 | 54 |
| 0104.35.06.SINUS | 2.63562916 | 0.83780344 | 0.62247588 | 13.0473956 | 69 |
| 0104.35.07.SINUS | 0.06032969 | 0.01531783 | 0.02427845 | 0.38003598 | 12 |
| 0104.36.01.SINUS | 0.03495463 | 0.0098714  | 0.01457721 | 0.17654247 | 11 |
| 0104.36.02.SINUS | 0.83224584 | 0.42967049 | 0.42768976 | 1.14070365 | 7  |
| 0104.41.01.SINUS | 0.10540975 | 0.04214031 | 0.07603706 | 0.15114284 | 4  |
| 0104.41.02.SINUS | 0.01533826 | 0.0039999  | 0.01106422 | 0.05744511 | 4  |
| 0104.41.03.SINUS | 0.06672001 | 0.02447487 | 0.09625663 | 0.11131475 | 2  |
| 0104.42.01.SINUS | 0.01807113 | 0.00442783 | 0.01303556 | 0.09118583 | 4  |
| 0104.43.01.SINUS | 0.02637757 | 0.00614694 | 0.00866394 | 0.3089862  | 21 |
| 0104.43.02.SINUS | 0.59837818 | 0.37762027 | 0.21581931 | 0.67459121 | 16 |
| 0104.43.03.SINUS | 0.36706226 | 0.20307205 | 0.14771672 | 0.42625751 | 12 |
| 0104.43.04.SINUS | 0.03255379 | 0.0070786  | 0.01233538 | 0.45574127 | 14 |
| 0104.44.01.SINUS | 0.64386079 | 0.44264048 | 0.21492601 | 0.659217   | 20 |
| 0104.44.02.SINUS | 0.69408029 | 0.49392019 | 0.31588955 | 0.67550772 | 9  |
| 0104.44.03.SINUS | 0.61347552 | 0.40354821 | 0.21224796 | 0.68952096 | 18 |
| 0104.44.05.SINUS | 0.06140531 | 0.02132493 | 0.04429457 | 0.11321719 | 4  |
| 0104.45.01.SINUS | 0.0081712  | 0.00171266 | 0.00456044 | 0.08352691 | 6  |
| 0104.45.02.SINUS | 0.03262632 | 0.01001701 | 0.02027187 | 0.08118358 | 5  |
| 0104.45.05.SINUS | 0.01537737 | 0.00400778 | 0.01399708 | 0.05487295 | 3  |
| 0104.46.01.SINUS | 0.10567839 | 0.03882913 | 0.03902379 | 0.34435305 | 15 |
| 0104.47.01.SINUS | 0.09856943 | 0.03622011 | 0.04280816 | 0.2160261  | 10 |
| 0104.47.02.SINUS | 0.66867394 | 0.43215508 | 0.37319403 | 0.58890149 | 6  |
| 0104.48.01.SINUS | 2.35363069 | 0.86435954 | 0.63379157 | 5.61677333 | 41 |
| 0104.50.01.SINUS | 0.69408007 | 0.49985878 | 0.6317789  | 0.69914799 | 3  |
| 0104.50.02.SINUS | 0.37886231 | 0.21033836 | 0.19469672 | 0.37760126 | 7  |
| 0104.50.03.SINUS | 0.68887166 | 0.48359093 | 0.38446659 | 0.64854983 | 6  |
| 0104.51.01.SINUS | 0.34527223 | 0.18211599 | 0.13461171 | 0.46116123 | 13 |
| 0104.52.01.SINUS | 1.12138729 | 0.54057118 | 0.40445497 | 1.41079921 | 16 |
| 0104.52.02.SINUS | 0.00520951 | 0.00105428 | 0.00290748 | 0.05420299 | 6  |
| 0104.52.03.SINUS | 0.44870722 | 0.19058439 | 0.19487107 | 0.69406454 | 10 |
| 0104.52.05.SINUS | 1.2623419  | 0.60501169 | 0.39720595 | 1.70145422 | 24 |
| 0104.52.06.SINUS | 1.29989416 | 0.70018226 | 0.66801345 | 1.43817256 | 7  |
| 0104.52.07.SINUS | 0.27742563 | 0.12400344 | 0.20012029 | 0.33000668 | 4  |
| 0104.53.01.SINUS | 0.5450781  | 0.34868089 | 0.28011473 | 0.49035187 | 7  |
| 0104.55.01.SINUS | 0.24599724 | 0.11865297 | 0.1774495  | 0.26771423 | 4  |

**Supplemental table 2. Top 100 taxa identified in this study.** The mean abundance per participant is averaged across all study participants, regardless of whether the taxon was detected. For participants with multiple study visits, the relative abundance of each taxon was first averaged across their visits. Number of participants is a count of the number of study participants with at least one study visit in which that taxon was identified. The prevalence is the percentage of patients with at least one study visit in which that taxon was identified. The Rs95 value is an estimate of mean abundance that takes into account the uneven sequencing depth of samples and is presented as a count of participants and prevalence based on this adjustment. All statistics for taxonomic abundances are performed on additive log-transformed abundances.

| Rank | Taxa                      | Mean abundance per participant | Number of participants | Prevalence (%) | Number of participants (Rs95) | Prevalence (Rs95:%) | Mean abundance across all samples |                |             |
|------|---------------------------|--------------------------------|------------------------|----------------|-------------------------------|---------------------|-----------------------------------|----------------|-------------|
|      |                           |                                |                        |                |                               |                     | Standard Deviation                | Standard Error |             |
| 1    | Staphylococcus            | 0.4118                         | 25                     | 92.6           | 23                            | 85.2                | 0.43002067                        | 0.424574076    | 0.0422467   |
| 2    | Pseudomonadaceae_uncl     | 0.4077                         | 25                     | 92.6           | 21                            | 77.8                | 0.348833988                       | 0.41211472     | 0.041006947 |
| 3    | Bordetella                | 0.043                          | 15                     | 55.6           | 10                            | 37                  | 0.069704213                       | 0.230869672    | 0.022972391 |
| 4    | Burkholderia              | 0.0275                         | 8                      | 29.6           | 4                             | 14.8                | 0.038078581                       | 0.163958354    | 0.016314466 |
| 5    | Streptococcus             | 0.0146                         | 19                     | 70.4           | 13                            | 48.1                | 0.01817556                        | 0.107603503    | 0.010706949 |
| 6    | Fusobacterium             | 0.01                           | 6                      | 22.2           | 2                             | 7.4                 | 0.002678309                       | 0.022560873    | 0.002244891 |
| 7    | Stenotrophomonas          | 0.0098                         | 12                     | 44.4           | 6                             | 22.2                | 0.020840547                       | 0.10566466     | 0.010514027 |
| 8    | Actinobacteria_uncl       | 0.0093                         | 13                     | 48.1           | 8                             | 29.6                | 0.020388974                       | 0.116331921    | 0.011575459 |
| 9    | Pasteurellaceae_uncl      | 0.0085                         | 10                     | 37             | 6                             | 22.2                | 0.002338915                       | 0.022733269    | 0.002262045 |
| 10   | Bacteroides               | 0.0084                         | 11                     | 40.7           | 7                             | 25.9                | 0.002373978                       | 0.022598338    | 0.002248619 |
| 11   | Mycobacterium             | 0.0069                         | 3                      | 11.1           | 2                             | 7.4                 | 0.006255698                       | 0.053828728    | 0.005356159 |
| 12   | Neisseria                 | 0.0066                         | 10                     | 37             | 6                             | 22.2                | 0.001873116                       | 0.017635309    | 0.001754779 |
| 13   | Prevotella_7              | 0.0062                         | 6                      | 22.2           | 4                             | 14.8                | 0.00180565                        | 0.016410278    | 0.001632884 |
| 14   | Prevotella                | 0.0055                         | 9                      | 33.3           | 6                             | 22.2                | 0.003978868                       | 0.022749065    | 0.002263617 |
| 15   | Haemophilus               | 0.0035                         | 6                      | 22.2           | 4                             | 14.8                | 0.002634651                       | 0.019099189    | 0.00190044  |
| 16   | Enterobacteriaceae_uncl   | 0.0035                         | 11                     | 40.7           | 4                             | 14.8                | 0.003576617                       | 0.018490395    | 0.001839863 |
| 17   | Corynebacterium_1         | 0.0033                         | 15                     | 55.6           | 9                             | 33.3                | 0.007405359                       | 0.053400466    | 0.005313545 |
| 18   | Dulosigranulum            | 0.0024                         | 4                      | 14.8           | 2                             | 7.4                 | 0.004828915                       | 0.048269142    | 0.004802959 |
| 19   | Veillonella               | 0.0022                         | 9                      | 33.3           | 4                             | 14.8                | 0.000647501                       | 0.005971301    | 0.000594167 |
| 20   | Leptotrichia              | 0.0017                         | 5                      | 18.5           | 2                             | 7.4                 | 0.000453501                       | 0.004464456    | 0.00044423  |
| 21   | Alloprevotella            | 0.0008                         | 2                      | 7.4            | 1                             | 3.7                 | 0.000202502                       | 0.002025486    | 0.000201543 |
| 22   | Gemella                   | 0.0007                         | 4                      | 14.8           | 3                             | 11.1                | 0.000202893                       | 0.001922157    | 0.000191262 |
| 23   | Lachnoanaerobaculum       | 0.0005                         | 3                      | 11.1           | 1                             | 3.7                 | 0.000147851                       | 0.001463586    | 0.000145632 |
| 24   | Peptoniphilus             | 0.0005                         | 3                      | 11.1           | 2                             | 7.4                 | 0.001928542                       | 0.014726115    | 0.001465303 |
| 25   | Selenomonas_3             | 0.0003                         | 2                      | 7.4            | 1                             | 3.7                 | 8.75489E-05                       | 0.000857603    | 8.53347E-05 |
| 26   | Capnocytophaga            | 0.0003                         | 7                      | 25.9           | 1                             | 3.7                 | 0.000212675                       | 0.001449359    | 0.000144217 |
| 27   | Prevotella_6              | 0.0003                         | 4                      | 14.8           | 2                             | 7.4                 | 0.00010341                        | 0.000813092    | 8.09056E-05 |
| 28   | Campylobacter             | 0.0003                         | 4                      | 14.8           | 3                             | 11.1                | 0.000331682                       | 0.001969071    | 0.00019593  |
| 29   | Stomatobaculum            | 0.0003                         | 3                      | 11.1           | 1                             | 3.7                 | 7.58472E-05                       | 0.000724581    | 7.20985E-05 |
| 30   | Anaerococcus              | 0.0003                         | 7                      | 25.9           | 3                             | 11.1                | 0.000557374                       | 0.003150702    | 0.000313507 |
| 31   | Prevotellaceae_uncl       | 0.0002                         | 8                      | 29.6           | 2                             | 7.4                 | 0.000517544                       | 0.00488722     | 0.000486446 |
| 32   | Pseudomonas               | 0.0002                         | 12                     | 44.4           | 5                             | 18.5                | 0.002669558                       | 0.02513086     | 0.002500614 |
| 33   | Acinetobacter             | 0.0002                         | 15                     | 55.6           | 7                             | 25.9                | 0.0004655                         | 0.002066011    | 0.000205576 |
| 34   | Moraxella                 | 0.0002                         | 10                     | 37             | 6                             | 22.2                | 0.000133847                       | 0.000572013    | 5.69174E-05 |
| 35   | Megasphaera               | 0.0002                         | 4                      | 14.8           | 1                             | 3.7                 | 4.51189E-05                       | 0.000428852    | 4.26723E-05 |
| 36   | Granulicatella            | 0.0001                         | 6                      | 22.2           | 1                             | 3.7                 | 0.000164862                       | 0.001226152    | 0.000122007 |
| 37   | Gamma-proteobacteria_uncl | 0.0001                         | 8                      | 29.6           | 4                             | 14.8                | 7.13E-05                          | 0.00027522     | 2.74E-05    |
| 38   | Bergeyella                | 0.0001                         | 3                      | 11.1           | 1                             | 3.7                 | 2.43348E-05                       | 0.000208357    | 2.07323E-05 |
| 39   | Blautia                   | 0.0001                         | 8                      | 29.6           | 3                             | 11.1                | 0.000678114                       | 0.00655322     | 0.00065207  |
| 40   | Chryseobacterium          | 0.0001                         | 6                      | 22.2           | 4                             | 14.8                | 8.801E-05                         | 0.000541202    | 5.38517E-05 |
| 41   | Sphingomonas              | 0.0001                         | 11                     | 40.7           | 7                             | 25.9                | 5.25892E-05                       | 0.00019488     | 1.93912E-05 |
| 42   | Pelomonas                 | 0.0001                         | 10                     | 37             | 5                             | 18.5                | 0.000100349                       | 0.000468823    | 4.66497E-05 |
| 43   | Turicella                 | 0.0001                         | 6                      | 22.2           | 2                             | 7.4                 | 0.000159799                       | 0.001021605    | 0.000101654 |
| 44   | Oribacterium              | 0.0001                         | 2                      | 7.4            | 2                             | 7.4                 | 1.91712E-05                       | 0.000151526    | 1.50774E-05 |
| 45   | Neisseriaceae_uncl        | 0.0001                         | 5                      | 18.5           | 2                             | 7.4                 | 4.27E-05                          | 0.000268764    | 2.67E-05    |
| 46   | Ruminococcus_2            | 0.0001                         | 4                      | 14.8           | 2                             | 7.4                 | 0.000556224                       | 0.00546117     | 0.000543407 |
| 47   | Lactobacillus             | 0.0001                         | 7                      | 25.9           | 4                             | 14.8                | 5.14529E-05                       | 0.000259294    | 2.58007E-05 |
| 48   | Finegoldia                | 0.0001                         | 5                      | 18.5           | 2                             | 7.4                 | 0.000151581                       | 0.000924509    | 9.19921E-05 |
| 49   | Rothia                    | 0                              | 9                      | 33.3           | 5                             | 18.5                | 4.07843E-05                       | 0.00131184     | 1.30533E-05 |
| 50   | Aquabacterium             | 0                              | 4                      | 14.8           | 3                             | 11.1                | 2.00704E-05                       | 0.00150486     | 1.49739E-05 |
| 51   | Bradyrhizobium            | 0                              | 10                     | 37             | 6                             | 22.2                | 6.77824E-05                       | 0.000255806    | 2.54537E-05 |
| 52   | Micrococcus               | 0                              | 8                      | 29.6           | 2                             | 7.4                 | 5.24264E-05                       | 0.000239931    | 3.3874E-05  |
| 53   | [Eubacterium]_nodatum_grp | 0                              | 1                      | 3.7            | 1                             | 3.7                 | 1.03E-05                          | 0.000103496    | 1.03E-05    |
| 54   | Bacilli_uncl              | 0                              | 9                      | 33.3           | 5                             | 18.5                | 4.71E-05                          | 0.000145319    | 1.45E-05    |
| 55   | Comamonadaceae_uncl       | 0                              | 5                      | 18.5           | 4                             | 14.8                | 7.56E-05                          | 0.000504326    | 5.02E-05    |
| 56   | Bacteria_uncl             | 0                              | 8                      | 29.6           | 4                             | 14.8                | 4.18E-05                          | 0.000146741    | 1.46E-05    |
| 57   | Methylobacterium          | 0                              | 9                      | 33.3           | 6                             | 22.2                | 4.05889E-05                       | 0.000168225    | 1.6739E-05  |
| 58   | Lachnospiraceae_uncl      | 0                              | 7                      | 25.9           | 2                             | 7.4                 | 0.000196502                       | 0.00188629     | 0.000187693 |
| 59   | Dialister                 | 0                              | 2                      | 7.4            | 2                             | 7.4                 | 8.78323E-05                       | 0.000525151    | 5.22544E-05 |
| 60   | Alishewanella             | 0                              | 4                      | 14.8           | 1                             | 3.7                 | 1.1186E-05                        | 8.23999E-05    | 8.1991E-06  |
| 61   | Actinomycetes             | 0                              | 3                      | 11.1           | 1                             | 3.7                 | 1.017E-05                         | 6.53118E-05    | 6.49877E-06 |
| 62   | unknown_uncl              | 0                              | 3                      | 11.1           | 1                             | 3.7                 | 3.06E-05                          | 0.000176293    | 1.75E-05    |
| 63   | Subdoligranulum           | 0                              | 5                      | 18.5           | 1                             | 3.7                 | 0.000167339                       | 0.001415227    | 0.00014082  |
| 64   | Porphyromonas             | 0                              | 5                      | 18.5           | 2                             | 7.4                 | 2.41443E-05                       | 0.000159913    | 1.5912E-05  |
| 65   | Hymenobacter              | 0                              | 5                      | 18.5           | 3                             | 11.1                | 2.10241E-05                       | 0.000105945    | 1.05419E-05 |

|     |                            |   |   |      |   |      |             |             |             |
|-----|----------------------------|---|---|------|---|------|-------------|-------------|-------------|
| 66  | Alloiococcus               | 0 | 6 | 22.2 | 3 | 11.1 | 2.14639E-05 | 0.00012783  | 1.27196E-05 |
| 67  | Domibacillus               | 0 | 1 | 3.7  | 1 | 3.7  | 3.03339E-05 | 0.000304852 | 3.03339E-05 |
| 68  | Delftia                    | 0 | 6 | 22.2 | 1 | 3.7  | 1.54631E-05 | 7.56312E-05 | 7.52559E-06 |
| 69  | Ruminococcaceae_UCG_002    | 0 | 5 | 18.5 | 2 | 7.4  | 8.17E-05    | 0.000513844 | 5.11E-05    |
| 70  | Prevotella_9               | 0 | 7 | 25.9 | 2 | 7.4  | 7.46306E-05 | 0.000568666 | 5.65844E-05 |
| 71  | Prevotella_2               | 0 | 4 | 14.8 | 0 | 0    | 9.40291E-06 | 6.42449E-05 | 6.3926E-06  |
| 72  | Janibacter                 | 0 | 2 | 7.4  | 2 | 7.4  | 9.20962E-06 | 5.64448E-05 | 5.61646E-06 |
| 73  | Alcaligenaceae_und         | 0 | 3 | 11.1 | 3 | 11.1 | 2.89E-05    | 0.000109037 | 1.08E-05    |
| 74  | Pseudobutyrivibrio         | 0 | 6 | 22.2 | 3 | 11.1 | 0.000103679 | 0.000894836 | 8.90395E-05 |
| 75  | Faecalibacterium           | 0 | 6 | 22.2 | 2 | 7.4  | 5.55362E-05 | 0.000342782 | 3.41081E-05 |
| 76  | Sporobacter                | 0 | 1 | 3.7  | 1 | 3.7  | 5.71651E-06 | 5.74502E-05 | 5.71651E-06 |
| 77  | Azomonas                   | 0 | 7 | 25.9 | 2 | 7.4  | 1.67769E-05 | 5.25508E-05 | 5.229E-06   |
| 78  | Anaerostipes               | 0 | 3 | 11.1 | 2 | 7.4  | 0.000132057 | 0.001290912 | 0.000128451 |
| 79  | Micrococcaceae_und         | 0 | 6 | 22.2 | 1 | 3.7  | 1.69E-05    | 8.91E-05    | 8.87E-06    |
| 80  | Fusicatenibacter           | 0 | 1 | 3.7  | 1 | 3.7  | 0.000138337 | 0.001390272 | 0.000138337 |
| 81  | Sorangium                  | 0 | 4 | 14.8 | 1 | 3.7  | 2.22701E-05 | 0.000139415 | 1.38723E-05 |
| 82  | Bacillales_und             | 0 | 9 | 33.3 | 1 | 3.7  | 1.78E-05    | 8.07E-05    | 8.03E-06    |
| 83  | Xanthomonadaceae_und       | 0 | 4 | 14.8 | 1 | 3.7  | 7.95E-06    | 4.95E-05    | 4.93E-06    |
| 84  | Staphylococcaceae_und      | 0 | 7 | 25.9 | 1 | 3.7  | 1.39E-05    | 5.18E-05    | 5.15E-06    |
| 85  | Massilia                   | 0 | 3 | 11.1 | 1 | 3.7  | 1.43407E-05 | 7.2316E-05  | 7.19571E-06 |
| 86  | Abiotrophia                | 0 | 5 | 18.5 | 1 | 3.7  | 9.92484E-06 | 3.74956E-05 | 3.73095E-06 |
| 87  | Cloacibacterium            | 0 | 4 | 14.8 | 3 | 11.1 | 1.59258E-05 | 9.49309E-05 | 9.44598E-06 |
| 88  | Ruminococcus_1             | 0 | 1 | 3.7  | 1 | 3.7  | 9.22517E-05 | 0.000894035 | 8.89598E-05 |
| 89  | Actinobacillus             | 0 | 1 | 3.7  | 0 | 0    | 2.94234E-06 | 2.95702E-05 | 2.94234E-06 |
| 90  | Facklamia                  | 0 | 2 | 7.4  | 1 | 3.7  | 5.64365E-06 | 4.08389E-05 | 4.06363E-06 |
| 91  | Devosia                    | 0 | 2 | 7.4  | 1 | 3.7  | 5.64365E-06 | 4.08389E-05 | 4.06363E-06 |
| 92  | Brevundimonas              | 0 | 3 | 11.1 | 1 | 3.7  | 1.62809E-05 | 0.00011187  | 1.11315E-05 |
| 93  | Ruminococcaceae_und        | 0 | 2 | 7.4  | 1 | 3.7  | 2.00E-05    | 0.000140293 | 1.40E-05    |
| 94  | Alphaproteobacteria_und    | 0 | 6 | 22.2 | 2 | 7.4  | 1.72E-05    | 9.01E-05    | 8.97E-06    |
| 95  | Tepidiphilus               | 0 | 2 | 7.4  | 1 | 3.7  | 1.95942E-05 | 0.000186642 | 1.85716E-05 |
| 96  | Conchiformibius            | 0 | 1 | 3.7  | 1 | 3.7  | 4.57391E-06 | 4.59672E-05 | 4.57391E-06 |
| 97  | Candidate_division_SR1_und | 0 | 2 | 7.4  | 0 | 0    | 3.12E-06    | 2.21E-05    | 2.20E-06    |
| 98  | Sphingomonadales_und       | 0 | 6 | 22.2 | 0 | 0    | 3.76E-05    | 0.000236781 | 2.36E-05    |
| 99  | Lachnoclostridium          | 0 | 8 | 29.6 | 3 | 11.1 | 3.29414E-05 | 0.00020429  | 2.03276E-05 |
| 100 | Rheinheimera               | 0 | 3 | 11.1 | 0 | 0    | 7.04733E-06 | 4.60856E-05 | 4.58569E-06 |

**Supplemental table 3. CF CRS microbial communities are highly individualized, but may share similarities during sinus exacerbation.** PERMANOVA results describing the proportion of variance in sample composition attributable to variables tested ("source" of variation). Two sources contributed a significant amount of variance ( $p < 0.05$ ; Patient ID and whether or not a study participant was experiencing a sinus exacerbation), whereas enrollment age has a non-statistically significant effect ( $p < 0.1$ ) and the remaining variables had non-significant effects ( $p > 0.1$ ). The name of the variable as it appears in the metadata sheet is included in parentheses in the first column ("Source"). Terms were added sequentially and the model was run with 12000 permutations. Significance levels were determined by the  $\text{Pr}(>F)$ . \*\*\*:  $p < 0.001$ , \*\*:  $p < 0.01$ , \*:  $p < 0.05$ ,  $\circ$ :  $p < 0.1$ , blank:  $p > 0.1$ .

| Source                                                  | df | Sum of Squares (SS) | Mean Squares (MS) | F       | R2      | Pr(>F)   | Significance |
|---------------------------------------------------------|----|---------------------|-------------------|---------|---------|----------|--------------|
| Age upon enrollment (age_onenrollment)                  | 1  | 2.006               | 2.00589           | 2.75998 | 0.02119 | 0.0585   | $\circ$      |
| CFRD (cfrd)                                             | 1  | 0.927               | 0.927             | 1.27548 | 0.00979 | 0.25823  |              |
| Patient ID (crs_ID)                                     | 22 | 45.722              | 2.07829           | 2.85958 | 0.48298 | 8.33E-05 | ***          |
| Current topical antibiotic usage (current_topabx)       | 1  | 0.882               | 0.88227           | 1.21394 | 0.00932 | 0.27673  |              |
| Current sinus exacerbation (sinus_exacerbation)         | 1  | 2.095               | 2.09525           | 2.88292 | 0.02213 | 0.04841  | *            |
| Current pulmonary exacerbation (pulmonary_exacerbation) | 1  | 0.176               | 0.17618           | 0.24241 | 0.00186 | 0.89676  |              |
| FEV1 (fev)                                              | 1  | 0.522               | 0.52165           | 0.71775 | 0.00551 | 0.51196  |              |
| SNOT-22 (snot22)                                        | 1  | 0.407               | 0.40721           | 0.56029 | 0.0043  | 0.6157   |              |
| Modified Lund-Kennedy Score (mLK)                       | 1  | 0.504               | 0.50386           | 0.69327 | 0.00532 | 0.52254  |              |
| Residuals                                               | 57 | 41.426              | 0.72678           |         | 0.4376  |          |              |
| Total                                                   | 87 | 94.668              |                   |         | 1       |          |              |

Supplemental table 4. Metadata associated with each sequenced microbiota sample.

| SampleID         | BarcodeSequence | LinkerPrimerSequence  | participant_id | visit_number | days_since_first_visit | sex_is_female | age_on_enrollment | BMI_on_enrollment | crfd | transplant_prior_to_enrollment | hmzg | mut508 | allergic | rhinitis | ever_on_topabx | ever_on_topvanc | ever_on_topgent |
|------------------|-----------------|-----------------------|----------------|--------------|------------------------|---------------|-------------------|-------------------|------|--------------------------------|------|--------|----------|----------|----------------|-----------------|-----------------|
| 0104.01.01.SINUS | CGTTGGAAATGA    | GTGTGTCAGCMGCGCGGTTAA | crs_01         | 1            | 0                      | 23.94000053   | 24.90999985       | 0                 | 0    | 0.5                            | 0    | 1      | 1        | 1        | 1              | 1               |                 |
| 0104.01.02.SINUS | AAGAACTATGA     | GTGTGTCAGCMGCGCGGTTAA | crs_01         | 2            | 77                     | 0             | 23.94000053       | 24.90999985       | 0    | 0                              | 0.5  | 0      | 1        | 1        | 1              | 1               |                 |
| 0104.01.03.SINUS | TGATATCGTT      | GTGTGTCAGCMGCGCGGTTAA | crs_01         | 3            | 161                    | 0             | 23.94000053       | 24.90999985       | 0    | 0                              | 0.5  | 0      | 1        | 1        | 1              | 1               |                 |
| 0104.01.04.SINUS | CGGTGACCTACT    | GTGTGTCAGCMGCGCGGTTAA | crs_01         | 4            | 245                    | 0             | 23.94000053       | 24.90999985       | 0    | 0                              | 0.5  | 0      | 1        | 1        | 1              | 1               |                 |
| 0104.04.01.SINUS | AATTTAGGTTAGG   | GTGTGTCAGCMGCGCGGTTAA | crs_04         | 1            | 0                      | 0             | 27.02000046       | 20.89999962       | 1    | 1                              | 1    | 1      | 1        | 1        | 0              | 0               |                 |
| 0104.07.08.SINUS | TTCGATGCCGA     | GTGTGTCAGCMGCGCGGTTAA | crs_07         | 1            | 0                      | 1             | 43.56999969       | 24.84000015       | 1    | 0                              | 1    | 1      | 1        | 1        | 1              | 1               |                 |
| 0104.07.01.SINUS | AGAGGGTATCG     | GTGTGTCAGCMGCGCGGTTAA | crs_07         | 2            | 98                     | 1             | 43.56999969       | 24.84000015       | 1    | 0                              | 1    | 1      | 1        | 1        | 1              | 1               |                 |
| 0104.07.02.SINUS | AGCTCTAAAGA     | GTGTGTCAGCMGCGCGGTTAA | crs_07         | 3            | 147                    | 1             | 43.56999969       | 24.84000015       | 1    | 0                              | 1    | 1      | 1        | 1        | 1              | 1               |                 |
| 0104.07.03.SINUS | CTGACAGAAATA    | GTGTGTCAGCMGCGCGGTTAA | crs_07         | 4            | 210                    | 1             | 43.56999969       | 24.84000015       | 1    | 0                              | 1    | 1      | 1        | 1        | 1              | 1               |                 |
| 0104.07.04.SINUS | GCTGCCACCA      | GTGTGTCAGCMGCGCGGTTAA | crs_07         | 5            | 490                    | 1             | 43.56999969       | 24.84000015       | 1    | 0                              | 1    | 1      | 1        | 1        | 1              | 1               |                 |
| 0104.07.05.SINUS | GCGTTTGTAGC     | GTGTGTCAGCMGCGCGGTTAA | crs_07         | 6            | 595                    | 1             | 43.56999969       | 24.84000015       | 1    | 0                              | 1    | 1      | 1        | 1        | 1              | 1               |                 |
| 0104.07.06.SINUS | AGATCGTCTTA     | GTGTGTCAGCMGCGCGGTTAA | crs_07         | 7            | 686                    | 1             | 43.56999969       | 24.84000015       | 1    | 0                              | 1    | 1      | 1        | 1        | 1              | 1               |                 |
| 0104.07.07.SINUS | AGATCGTCTTA     | GTGTGTCAGCMGCGCGGTTAA | crs_07         | 8            | 756                    | 1             | 43.56999969       | 24.84000015       | 1    | 0                              | 1    | 1      | 1        | 1        | 1              | 1               |                 |
| 0104.08.01.SINUS | AATGGTCAGCA     | GTGTGTCAGCMGCGCGGTTAA | crs_08         | 1            | 0                      | 1             | 24.20999908       | 19.52000046       | 0    | 0                              | 0.5  | 1      | 1        | 0        | 0              | 1               |                 |
| 0104.09.06.SINUS | GAACAGTACTC     | GTGTGTCAGCMGCGCGGTTAA | crs_09         | 1            | 0                      | 1             | 25.79000092       | 28.76000023       | 1 NA | 0.5                            | 0    | 1      | 0        | 0        | 0              | 0               |                 |
| 0104.09.01.SINUS | CGACCCATACA     | GTGTGTCAGCMGCGCGGTTAA | crs_09         | 2            | 182                    | 1             | 25.79000092       | 28.76000023       | 1 NA | 0.5                            | 0    | 1      | 0        | 0        | 0              | 0               |                 |
| 0104.09.02.SINUS | GTGCTATACTG     | GTGTGTCAGCMGCGCGGTTAA | crs_09         | 3            | 336                    | 1             | 25.79000092       | 28.76000023       | 1 NA | 0.5                            | 0    | 1      | 0        | 0        | 0              | 0               |                 |
| 0104.09.03.SINUS | CTACAGGGTCTC    | GTGTGTCAGCMGCGCGGTTAA | crs_09         | 4            | 587                    | 1             | 25.79000092       | 28.76000023       | 1 NA | 0.5                            | 0    | 1      | 0        | 0        | 0              | 0               |                 |
| 0104.09.04.SINUS | CTACAGGGTCTC    | GTGTGTCAGCMGCGCGGTTAA | crs_09         | 5            | 679                    | 1             | 25.79000092       | 28.76000023       | 1 NA | 0.5                            | 0    | 1      | 0        | 0        | 0              | 0               |                 |
| 0104.09.05.SINUS | CTTGGAGGCTTA    | GTGTGTCAGCMGCGCGGTTAA | crs_09         | 6            | 770                    | 1             | 25.79000092       | 28.76000023       | 1 NA | 0.5                            | 0    | 1      | 0        | 0        | 0              | 0               |                 |
| 0104.18.03.SINUS | CAGTTTATTTC     | GTGTGTCAGCMGCGCGGTTAA | crs_18         | 1            | 0                      | 1             | 27.68000031       | 19.87999916       | 1    | 0                              | 1    | 0      | 1        | 0        | 0              | 0               |                 |
| 0104.18.01.SINUS | TAATCGGTCGA     | GTGTGTCAGCMGCGCGGTTAA | crs_18         | 2            | 185                    | 1             | 27.68000031       | 19.87999916       | 1    | 0                              | 1    | 0      | 1        | 0        | 0              | 0               |                 |
| 0104.18.02.SINUS | CGGGACACCGA     | GTGTGTCAGCMGCGCGGTTAA | crs_18         | 3            | 639                    | 1             | 27.68000031       | 19.87999916       | 1    | 0                              | 1    | 0      | 1        | 0        | 0              | 0               |                 |
| 0104.20.01.SINUS | GAAGAGGGTTC     | GTGTGTCAGCMGCGCGGTTAA | crs_20         | 1            | 0                      | 1             | 23.06999969       | 19.54000092       | 0    | 0                              | 1    | 0      | 1        | 0        | 0              | 1               |                 |
| 0104.20.04.SINUS | TTACACAAAGGC    | GTGTGTCAGCMGCGCGGTTAA | crs_20         | 2            | 385                    | 1             | 23.06999969       | 19.54000092       | 0    | 0                              | 1    | 0      | 1        | 0        | 0              | 1               |                 |
| 0104.24.01.SINUS | GTTAACTTACTA    | GTGTGTCAGCMGCGCGGTTAA | crs_24         | 1            | 0                      | 1             | 27.62000084       | 24.13999939       | 1    | 0                              | 1    | 1      | 1        | 1        | 1              | 1               |                 |
| 0104.24.02.SINUS | GTTAACTTACTA    | GTGTGTCAGCMGCGCGGTTAA | crs_24         | 2            | 15                     | 1             | 27.62000084       | 24.13999939       | 1    | 0                              | 1    | 1      | 1        | 1        | 1              | 1               |                 |
| 0104.24.03.SINUS | CGTATAAAATGCC   | GTGTGTCAGCMGCGCGGTTAA | crs_24         | 3            | 106                    | 1             | 27.62000084       | 24.13999939       | 1    | 0                              | 1    | 1      | 1        | 1        | 1              | 1               |                 |
| 0104.24.04.SINUS | ATCTGCAACAC     | GTGTGTCAGCMGCGCGGTTAA | crs_24         | 4            | 154                    | 1             | 27.62000084       | 24.13999939       | 1    | 0                              | 1    | 1      | 1        | 1        | 1              | 1               |                 |
| 0104.24.05.SINUS | ACTCGCTCGT      | GTGTGTCAGCMGCGCGGTTAA | crs_24         | 5            | 281                    | 1             | 27.62000084       | 24.13999939       | 1    | 0                              | 1    | 1      | 1        | 1        | 1              | 1               |                 |
| 0104.24.07.SINUS | CGTCCGTTAGAA    | GTGTGTCAGCMGCGCGGTTAA | crs_24         | 6            | 393                    | 1             | 27.62000084       | 24.13999939       | 1    | 0                              | 1    | 1      | 1        | 1        | 1              | 1               |                 |
| 0104.24.10.SINUS | ACGTGAGAACG     | GTGTGTCAGCMGCGCGGTTAA | crs_24         | 7            | 486                    | 1             | 27.62000084       | 24.13999939       | 1    | 0                              | 1    | 1      | 1        | 1        | 1              | 1               |                 |
| 0104.24.08.SINUS | GTGTTCTGGGA     | GTGTGTCAGCMGCGCGGTTAA | crs_24         | 8            | 491                    | 1             | 27.62000084       | 24.13999939       | 1    | 0                              | 1    | 1      | 1        | 1        | 1              | 1               |                 |
| 0104.24.09.SINUS | GTGTTCTGGGA     | GTGTGTCAGCMGCGCGGTTAA | crs_24         | 9            | 512                    | 1             | 27.62000084       | 24.13999939       | 1    | 0                              | 1    | 1      | 1        | 1        | 1              | 1               |                 |
| 0104.24.12.SINUS | CATATAGCCGA     | GTGTGTCAGCMGCGCGGTTAA | crs_24         | 10           | 596                    | 1             | 27.62000084       | 24.13999939       | 1    | 0                              | 1    | 1      | 1        | 1        | 1              | 1               |                 |
| 0104.27.01.SINUS | AGCTTTAACGAC    | GTGTGTCAGCMGCGCGGTTAA | crs_27         | 1            | 0                      | 1             | 23.45000076       | 19.15999985       | 1    | 0.5                            | 0    | 1      | 0        | 0        | 1              | 1               |                 |
| 0104.27.02.SINUS | TAAGGATTATGG    | GTGTGTCAGCMGCGCGGTTAA | crs_27         | 2            | 49                     | 1             | 23.45000076       | 19.15999985       | 1    | 0.5                            | 0    | 1      | 0        | 0        | 1              | 1               |                 |
| 0104.27.03.SINUS | ATACATGCAAGA    | GTGTGTCAGCMGCGCGGTTAA | crs_27         | 3            | 112                    | 1             | 23.45000076       | 19.15999985       | 1    | 0                              | 0.5  | 0      | 1        | 0        | 0              | 1               |                 |
| 0104.27.04.SINUS | CTTATGCGAGAA    | GTGTGTCAGCMGCGCGGTTAA | crs_27         | 4            | 259                    | 1             | 23.45000076       | 19.15999985       | 1    | 0                              | 0.5  | 0      | 1        | 0        | 0              | 1               |                 |
| 0104.27.05.SINUS | ATATCTGGCG      | GTGTGTCAGCMGCGCGGTTAA | crs_27         | 5            | 364                    | 1             | 23.45000076       | 19.15999985       | 1    | 0                              | 0.5  | 0      | 1        | 0        | 0              | 1               |                 |
| 0104.27.06.SINUS | AGGATCAGGAA     | GTGTGTCAGCMGCGCGGTTAA | crs_27         | 6            | 462                    | 1             | 23.45000076       | 19.15999985       | 1    | 0                              | 0.5  | 0      | 1        | 0        | 0              | 1               |                 |
| 0104.27.07.SINUS | AATAACTAGGAT    | GTGTGTCAGCMGCGCGGTTAA | crs_27         | 7            | 511                    | 1             | 23.45000076       | 19.15999985       | 1    | 0                              | 0.5  | 0      | 1        | 0        | 0              | 1               |                 |
| 0104.27.08.SINUS | AATAACTAGGAT    | GTGTGTCAGCMGCGCGGTTAA | crs_27         | 8            | 567                    | 1             | 23.45000076       | 19.15999985       | 1    | 0                              | 0.5  | 0      | 1        | 0        | 0              | 1               |                 |
| 0104.27.09.SINUS | TATTGCGAGCAG    | GTGTGTCAGCMGCGCGGTTAA | crs_27         | 9            | 588                    | 1             | 23.45000076       | 19.15999985       | 1    | 0                              | 0.5  | 0      | 1        | 0        | 0              | 1               |                 |
| 0104.27.10.SINUS | TGATGTTAGTAA    | GTGTGTCAGCMGCGCGGTTAA | crs_27         | 10           | 651                    | 1             | 23.45000076       | 19.15999985       | 1    | 0                              | 0.5  | 0      | 1        | 0        | 0              | 1               |                 |
| 0104.28.01.SINUS | CTTATTAACGCT    | GTGTGTCAGCMGCGCGGTTAA | crs_28         | 1            | 0                      | 0             | 28.36000061       | 20.34000015       | 0    | 0                              | 0    | 1      | 1        | 0        | 0              | 0               |                 |
| 0104.32.01.SINUS | TATTTGATTGTT    | GTGTGTCAGCMGCGCGGTTAA | crs_32         | 1            | 0                      | 0             | 26.54000092       | 18.45000076       | 1    | 0                              | 0.5  | 1      | 1        | 0        | 0              | 1               |                 |
| 0104.32.02.SINUS | TGTCAAAGTC      | GTGTGTCAGCMGCGCGGTTAA | crs_32         | 2            | 70                     | 0             | 26.54000092       | 18.45000076       | 1    | 0                              | 0.5  | 1      | 1        | 0        | 0              | 1               |                 |
| 0104.32.03.SINUS | CTATGTTATTG     | GTGTGTCAGCMGCGCGGTTAA | crs_32         | 3            | 154                    | 0             | 26.54000092       | 18.45000076       | 1    | 0                              | 0.5  | 1      | 1        | 0        | 0              | 1               |                 |
| 0104.32.04.SINUS | CTATGTTATTG     | GTGTGTCAGCMGCGCGGTTAA | crs_32         | 4            | 225                    | 0             | 26.54000092       | 18.45000076       | 1    | 0                              | 0.5  | 1      | 1        | 0        | 0              | 1               |                 |
| 0104.32.05.SINUS | ACTCCGTGTA      | GTGTGTCAGCMGCGCGGTTAA | crs_32         | 5            | 343                    | 0             | 26.54000092       | 18.45000076       | 1    | 0                              | 0.5  | 1      | 1        | 0        | 0              | 1               |                 |
| 0104.32.06.SINUS | CGGTATGACAA     | GTGTGTCAGCMGCGCGGTTAA | crs_32         | 6            | 455                    | 0             | 26.54000092       | 18.45000076       | 1    | 0                              | 0.5  | 1      | 1        | 0        | 0              | 1               |                 |
| 0104.32.07.SINUS | CGGTATGACAA     | GTGTGTCAGCMGCGCGGTTAA | crs_32         | 7            | 581                    | 0             | 26.54000092       | 18.45000076       | 1    | 0                              | 0.5  | 1      | 1        | 0        | 0              | 1               |                 |
| 0104.33.01.SINUS | ACTTGTTAAG      | GTGTGTCAGCMGCGCGGTTAA | crs_33         | 1            | 0                      | 1             | 27.03000069       | 21.56999969       | 0    | 0                              | 1    | 0      | 1        | 0        | 0              | 0               |                 |
| 0104.33.02.SINUS | ACTTGTTAAG      | GTGTGTCAGCMGCGCGGTTAA | crs_33         | 2            | 63                     | 1             | 27.03000069       | 21.56999969       | 0    | 0                              | 1    | 0      | 1        | 0        | 0              | 0               |                 |
| 0104.33.03.SINUS | ATTAGCTATAC     | GTGTGTCAGCMGCGCGGTTAA | crs_33         | 3            | 147                    | 1             | 27.03000069       | 21.56999969       | 0    | 0                              | 1    | 0      | 1        | 0        | 0              | 0               |                 |
| 0104.33.04.SINUS | ATTAGAATAACC    | GTGTGTCAGCMGCGCGGTTAA | crs_33         | 4            | 203                    | 1             | 27.03000069       | 21.56999969       | 0    | 0                              | 1    | 0      | 1        | 0        | 0              | 0               |                 |
| 0104.33.05.SINUS | ATTAGAATAACC    | GTGTGTCAGCMGCGCGGTTAA | crs_33         | 5            | 231                    | 1             | 27.03000069       | 21.56999969       | 0    | 0                              | 1    | 0      | 1        | 0        | 0              | 0               |                 |
| 0104.33.06.SINUS | ATTAGAATAACC    | GTGTGTCAGCMGCGCGGTTAA | crs_33         | 6            | 273                    | 1             | 27.03000069       | 21.56999969       | 0    | 0                              | 1    | 0      | 1        | 0        | 0              | 0               |                 |
| 0104.33.07.SINUS | TGTCAGGCCAT     | GTGTGTCAGCMGCGCGGTTAA | crs_33         | 7            | 427                    | 1             | 27.03000069       | 21.56999969       | 0    | 0                              | 1    | 0      | 1        | 0        | 0              | 0               |                 |
| 0104.33.08.SINUS | TGTCAGGCCAT     | GTGTGTCAGCMGCGCGGTTAA | crs_33         | 8            | 504                    | 1             | 27.03000069       | 21.56999969       | 0    | 0                              | 1    | 0      | 1        | 0        | 0              | 0               |                 |
| 0104.35.06.SINUS | TATCCAAAGCGCA   | GTGTGTCAGCMGCGCGGTTAA | crs_35         | 1            | 0                      | 1             | 35.02999878       | 25.04999924       | 0    | 0                              | 1    | 1      | 1        | 1        | 0              | 1               |                 |
| 0104.35.01.SINUS | AGAGCCAAAGC     | GTGTGTCAGCMGCGCGGTTAA | crs_35         | 2            | 105                    | 1             | 35.02999878       | 25.04999924       | 0    | 0                              | 1    | 1      | 1        | 1        | 0              | 1               |                 |
| 0104.35.02.SINUS | GGTGAGCAAGCA    | GTGTGTCAGCMGCGCGGTTAA | crs_35         | 3            | 203                    | 1             | 35.02999878       | 25.04999924       | 0    | 0                              | 1    | 1      | 1        | 1        | 0              | 1               |                 |
| 0104.35.03.SINUS | TTCGGGACCTA     | GTGTGTCAGCMGCGCGGTTAA | crs_35         | 5            | 315                    | 1             | 35.02999878       | 25.04999924       | 0    | 0                              | 1    | 1      | 1        | 1        | 0              | 1               |                 |
| 0104.35.04.SINUS | TTCGGGACCTA     | GTGTGTCAGCMGCGCGGTTAA | crs_35         | 6            | 406                    | 1             | 35.02999878       | 25.04999924       | 0    | 0                              | 1    | 1      | 1        | 1        | 0              | 1               |                 |
| 0104.35.05.SINUS | GTGTCCTAAATG    | GTGTGTCAGCMGCGCGGTTAA | crs_35         | 7            | 574                    | 1             | 35.02999878       | 25.04999924       | 0    | 0                              | 1    | 1      | 1        | 1        | 0              | 1               |                 |
| 0104.35.07.SINUS | TGCAAGCTGCT     | GTGTGTCAGCMGCGCGGTTAA | crs_35         | 8            |                        |               |                   |                   |      |                                |      |        |          |          |                |                 |                 |

|                  |               |                      |        |   |     |   |             |             |      |      |     |     |   |   |   |
|------------------|---------------|----------------------|--------|---|-----|---|-------------|-------------|------|------|-----|-----|---|---|---|
| 0104.42.01.SINUS | GTCATGCTCAG   | GTGTGYCAGCMGCGCGGTAA | crs_42 | 1 | 0   | 1 | 38.58000183 | 30.06999969 | 1    | 1 NA | 0   | 1   | 0 | 0 | 0 |
| 0104.43.01.SINUS | GAGATACAGTTC  | GTGTGYCAGCMGCGCGGTAA | crs_43 | 1 | 0   | 0 | 33.22999954 | 22.01000023 | 0    | 0    | 1   | 0   | 0 | 0 | 0 |
| 0104.43.02.SINUS | GTGAGTCTCAT   | GTGTGYCAGCMGCGCGGTAA | crs_43 | 2 | 70  | 0 | 33.22999954 | 22.01000023 | 0    | 0    | 0   | 1   | 0 | 0 | 0 |
| 0104.43.03.SINUS | ACCTTACACCTT  | GTGTGYCAGCMGCGCGGTAA | crs_43 | 3 | 364 | 0 | 33.22999954 | 22.01000023 | 0    | 0    | 0   | 1   | 0 | 0 | 0 |
| 0104.43.04.SINUS | TAATCTGCCGG   | GTGTGYCAGCMGCGCGGTAA | crs_43 | 4 | 609 | 0 | 33.22999954 | 22.01000023 | 0    | 0    | 0   | 1   | 0 | 0 | 0 |
| 0104.44.01.SINUS | GGAGAACGACAC  | GTGTGYCAGCMGCGCGGTAA | crs_44 | 1 | 0   | 1 | 26.19000053 | 19.65999985 | 0 NA | 1    | 1   | 1   | 0 | 0 | 0 |
| 0104.44.02.SINUS | GTACTCGAACCA  | GTGTGYCAGCMGCGCGGTAA | crs_44 | 2 | 168 | 1 | 26.19000053 | 19.65999985 | 0 NA | 1    | 1   | 1   | 0 | 0 | 0 |
| 0104.44.03.SINUS | GTACTCGAACCA  | GTGTGYCAGCMGCGCGGTAA | crs_44 | 3 | 231 | 1 | 26.19000053 | 19.65999985 | 0 NA | 1    | 1   | 1   | 0 | 0 | 0 |
| 0104.44.05.SINUS | TCCGGCGGGCAA  | GTGTGYCAGCMGCGCGGTAA | crs_44 | 4 | 448 | 1 | 26.19000053 | 19.65999985 | 0 NA | 1    | 1   | 1   | 0 | 0 | 0 |
| 0104.45.01.SINUS | TCCATACCGGAA  | GTGTGYCAGCMGCGCGGTAA | crs_45 | 1 | 0   | 0 | 24.20999908 | 19.59000015 | 0    | 0    | 0.5 | 1   | 1 | 0 | 1 |
| 0104.45.02.SINUS | TCCATACCGGAA  | GTGTGYCAGCMGCGCGGTAA | crs_45 | 2 | 267 | 0 | 24.20999908 | 19.59000015 | 0    | 0    | 0.5 | 1   | 1 | 0 | 1 |
| 0104.45.05.SINUS | CTTAACCGGTC   | GTGTGYCAGCMGCGCGGTAA | crs_45 | 3 | 540 | 0 | 24.20999908 | 19.59000015 | 0    | 0    | 0.5 | 1   | 1 | 0 | 1 |
| 0104.46.01.SINUS | GTTCATTAACAT  | GTGTGYCAGCMGCGCGGTAA | crs_46 | 1 | 0   | 1 | 36.54000092 | 24          | 1    | 0    | 0   | 0.5 | 0 | 0 | 0 |
| 0104.47.01.SINUS | CTCGCCCTGCC   | GTGTGYCAGCMGCGCGGTAA | crs_47 | 1 | 0   | 1 | 26.18000031 | 17.88999939 | 0    | 0    | 1   | 1   | 1 | 0 | 0 |
| 0104.47.02.SINUS | TCTCTTTGACA   | GTGTGYCAGCMGCGCGGTAA | crs_47 | 2 | 92  | 1 | 26.18000031 | 17.88999939 | 0    | 0    | 1   | 1   | 1 | 0 | 0 |
| 0104.48.01.SINUS | CTTGGATTCTGA  | GTGTGYCAGCMGCGCGGTAA | crs_48 | 1 | 0   | 0 | 31.75       | 26.5        | 0    | 0    | 1   | 0   | 1 | 0 | 0 |
| 0104.49.01.SINUS | TGCCCCGCCAC   | GTGTGYCAGCMGCGCGGTAA | crs_50 | 1 | 0   | 1 | 30.71999931 | 22.11000061 | 0    | 0    | 0.5 | 1   | 0 | 0 | 0 |
| 0104.50.02.SINUS | CTTGACCGATG   | GTGTGYCAGCMGCGCGGTAA | crs_50 | 2 | 308 | 1 | 30.71999931 | 22.11000061 | 0    | 0    | 0.5 | 1   | 0 | 0 | 0 |
| 0104.50.03.SINUS | CAAACTGGTTG   | GTGTGYCAGCMGCGCGGTAA | crs_50 | 3 | 399 | 1 | 30.71999931 | 22.11000061 | 0    | 0    | 0.5 | 1   | 0 | 0 | 0 |
| 0104.51.01.SINUS | GTGTGATAGATG  | GTGTGYCAGCMGCGCGGTAA | crs_51 | 1 | 0   | 1 | 36.16999817 | 18.60000038 | 0    | 0    | 1   | 1   | 0 | 0 | 0 |
| 0104.52.01.SINUS | CTATATTATCCG  | GTGTGYCAGCMGCGCGGTAA | crs_52 | 1 | 0   | 1 | 35.83000183 | 23.03000069 | 1    | 0    | 1   | 0   | 1 | 0 | 1 |
| 0104.52.02.SINUS | ACCGAACAAATCC | GTGTGYCAGCMGCGCGGTAA | crs_52 | 2 | 84  | 1 | 35.83000183 | 23.03000069 | 1    | 0    | 1   | 0   | 1 | 0 | 1 |
| 0104.52.03.SINUS | ACGGTACCCCTAC | GTGTGYCAGCMGCGCGGTAA | crs_52 | 3 | 224 | 1 | 35.83000183 | 23.03000069 | 1    | 0    | 1   | 0   | 1 | 0 | 1 |
| 0104.52.05.SINUS | ACCTACTGTCT   | GTGTGYCAGCMGCGCGGTAA | crs_52 | 4 | 336 | 1 | 35.83000183 | 23.03000069 | 1    | 0    | 1   | 0   | 1 | 0 | 1 |
| 0104.52.06.SINUS | ACTGTGAGTCC   | GTGTGYCAGCMGCGCGGTAA | crs_52 | 5 | 378 | 1 | 35.83000183 | 23.03000069 | 1    | 0    | 1   | 0   | 1 | 0 | 1 |
| 0104.52.07.SINUS | CATGTCCTCAT   | GTGTGYCAGCMGCGCGGTAA | crs_52 | 6 | 504 | 1 | 35.83000183 | 23.03000069 | 1    | 0    | 1   | 0   | 1 | 0 | 1 |
| 0104.53.01.SINUS | GTAGTAGACCAT  | GTGTGYCAGCMGCGCGGTAA | crs_53 | 1 | 0   | 1 | 19.67000008 | 20.77000046 | 0    | 0    | 0.5 | 1   | 0 | 0 | 0 |
| 0104.55.01.SINUS | CCTCCGTATGG   | GTGTGYCAGCMGCGCGGTAA | crs_55 | 1 | 0   | 0 | 40          | 22.20000076 | 1    | 0    | 0.5 | 1   | 1 | 0 | 1 |

| ever_on_top_mupirocin | ever_on_top_cipro | ever_on_nasal_steroid | ever_on_chronic_oral_steroid | sinus_exacerbation | pulmonary_eon_nasal | ca_interim | hos | hospital_days | transplant_at | visit | visit_bmi | samp_loc | ppFEV1                 | ppFEF25-75 | snot22 | mlk | sputum_pa | sputum_staph | sinus_staph |   |   |
|-----------------------|-------------------|-----------------------|------------------------------|--------------------|---------------------|------------|-----|---------------|---------------|-------|-----------|----------|------------------------|------------|--------|-----|-----------|--------------|-------------|---|---|
| 0                     | 0                 | 1                     | 0                            | 0                  | 1                   | 0          | 0   | NA            | NA            | NA    | NA        | NA       | 0 25.4099999 Maxillary | 94         | NA     | 74  | 5         | 4            | 0           | 1 | 0 |
| 0                     | 0                 | 1                     | 0                            | 0                  | 0                   | 0          | 0   | NA            | NA            | NA    | NA        | NA       | 0 25.0499992 Ethmoid   | 66         | 27     | 62  | 10        | 0            | 1           | 1 | 0 |
| 0                     | 0                 | 1                     | 0                            | 0                  | 0                   | 0          | 0   | NA            | NA            | NA    | NA        | NA       | 0 23.4300003 Ethmoid   | 70         | 31     | 48  | 12        | 0            | 1           | 1 | 0 |
| 0                     | 0                 | 0                     | 1                            | 0                  | 0                   | 1          | 0   | 0             | 0             | NA    | NA        | NA       | 0 22.8099995 Ethmoid   | 65         | 34     | 34  | 8         | 0            | 1           | 1 | 1 |
| 0                     | 0                 | 0                     | 1                            | 0                  | 0                   | 0          | 0   | 0             | 0             | NA    | NA        | NA       | 0 22.7900009 Ethmoid   | 63         | 26     | 59  | 8         | 0            | 1           | 1 | 1 |
| 0                     | 0                 | 0                     | 1                            | 0                  | 0                   | 0          | 0   | 0             | 0             | NA    | NA        | NA       | 0 24.7099991 Ethmoid   | 63         | 29     | 54  | 6         | 0            | 1           | 1 | 1 |
| 0                     | 0                 | 0                     | 1                            | 0                  | 1                   | 0          | 0   | 0             | 0             | NA    | NA        | NA       | 0 25.9500008 Ethmoid   | 63         | 24     | 54  | 10        | 0            | 1           | 1 | 1 |
| 0                     | 0                 | 0                     | 1                            | 1                  | 1                   | 0          | 0   | 0             | 0             | NA    | NA        | NA       | 0 25.3700008 Ethmoid   | 66         | 28     | 58  | 10        | 0            | 1           | 1 | 1 |
| 0                     | 0                 | 0                     | 1                            | 1                  | 1                   | 0          | 1   | 0             | 0             | NA    | NA        | NA       | 0 26.4099999 Ethmoid   | 56         | 21     | 55  | 10        | 0            | 1           | 1 | 1 |
| 1                     | 0                 | 0                     | 0                            | 0                  | 0                   | 1          | 0   | 1             | 1             | 3     | NA        | NA       | 0 18.1000004 Maxillary | 76         | 62     | 47  | 12        | 0            | 1           | 1 | 1 |
| 1                     | 1                 | 0                     | 0                            | 0                  | 0                   | 0          | 0   | 0             | 0             | NA    | NA        | NA       | 0 28.7600002 Ethmoid   | 100        | 79     | 67  | 16        | 1            | 1           | 1 | 1 |
| 1                     | 1                 | 0                     | 0                            | 0                  | 0                   | 0          | 0   | 0             | 1             | 10    | NA        | NA       | 0 29.7000008 Ethmoid   | 92         | 63     | 83  | 16        | 1            | 1           | 1 | 1 |
| 1                     | 1                 | 0                     | 0                            | 0                  | 0                   | 0          | 0   | 0             | 1             | 13    | NA        | NA       | 0 30.8600006 Ethmoid   | 104        | 70     | 85  | 16        | 1            | 1           | 1 | 1 |
| 1                     | 1                 | 0                     | 0                            | 0                  | 1                   | 1          | 0   | 0             | 0             | NA    | NA        | NA       | 0 33.0900002 Ethmoid   | 83         | 46     | 83  | 8         | NA           | 1           | 1 | 1 |
| 1                     | 1                 | 0                     | 0                            | 0                  | 1                   | 0          | 0   | 0             | 0             | NA    | NA        | NA       | 0 33.5499992 Ethmoid   | 101        | 72     | 81  | 8         | 1            | 0           | 1 | 1 |
| 1                     | 1                 | 0                     | 0                            | 0                  | 1                   | 0          | 0   | 0             | 0             | NA    | NA        | NA       | 0 33.9199982 Ethmoid   | 98         | 79     | 96  | NA        | 1            | 1           | 1 | 1 |
| 1                     | 1                 | 0                     | 1                            | 0                  | 0                   | 0          | 0   | 0             | 0             | NA    | NA        | NA       | 0 19.8799992 Ethmoid   | 54         | 19     | 30  | 14        | 0            | 0           | 0 | 0 |
| 1                     | 1                 | 0                     | 1                            | 0                  | 0                   | 0          | 0   | 0             | 1             | 13    | NA        | NA       | 0 22.0699997 Maxillary | 51         | 18     | 18  | 6         | NA           | NA          | 1 | 1 |
| 1                     | 1                 | 0                     | 1                            | 1                  | 0                   | 0          | 0   | 1             | 1             | 23    | NA        | NA       | 0 19.8799992 Ethmoid   | 47         | 15     | 63  | 8         | 1            | 0           | 1 | 1 |
| 1                     | 1                 | 1                     | 0                            | 1                  | 0                   | 0          | 0   | 0             | 0             | NA    | NA        | NA       | 0 19.3600006 Maxillary | 71         | 64     | 48  | 8         | 1            | 1           | 1 | 1 |
| 1                     | 1                 | 1                     | 0                            | 0                  | 0                   | 1          | 0   | 0             | 0             | NA    | NA        | NA       | 0 19.0300007 Maxillary | 66         | 85     | 51  | 4         | 0            | 1           | 1 | 1 |
| 0                     | 0                 | 0                     | 0                            | 0                  | 1                   | 1          | 1   | 1             | 0             | NA    | NA        | NA       | 0 22.5200005 Ethmoid   | 27         | 8      | 39  | 8         | 1            | 0           | 1 | 0 |
| 0                     | 0                 | 0                     | 0                            | 0                  | 0                   | 0          | 1   | 0             | 1             | NA    | NA        | NA       | 0 23.1000004 Ethmoid   | 34         | 10     | 50  | 10        | 1            | 1           | 1 | 1 |
| 0                     | 0                 | 0                     | 0                            | 0                  | 1                   | 1          | 1   | 1             | 1             | 4     | NA        | NA       | 0 21.9400005 Ethmoid   | 31         | 11     | 49  | 12        | 0            | 0           | 1 | 1 |
| 0                     | 0                 | 0                     | 0                            | 0                  | 1                   | 1          | 1   | 1             | 1             | 3     | NA        | NA       | 0 21.5799999 Maxillary | 25         | 8      | 40  | 12        | 0            | 1           | 1 | 1 |
| 0                     | 0                 | 0                     | 0                            | 0                  | 1                   | 1          | 1   | 1             | 0             | NA    | NA        | NA       | 0 24.3400002 Ethmoid   | 30         | 11     | 43  | 10        | 1            | 1           | 1 | 1 |
| 0                     | 0                 | 0                     | 0                            | 0                  | 0                   | 1          | 1   | 1             | 0             | NA    | NA        | NA       | 0 23.0400009 Ethmoid   | 27         | 10     | 33  | 10        | 1            | 1           | 1 | 1 |
| 0                     | 0                 | 0                     | 0                            | 0                  | 0                   | 1          | 1   | 1             | 0             | NA    | NA        | NA       | 0 24.3400002 Maxillary | 28         | 8      | 45  | 10        | 1            | 1           | 1 | 1 |
| 0                     | 0                 | 0                     | 0                            | 0                  | 0                   | 1          | 1   | 1             | 0             | NA    | NA        | NA       | 0 23.9799995 Ethmoid   | 21         | 7      | 45  | 12        | 1            | 1           | 1 | 1 |
| 1                     | 1                 | 0                     | 1                            | 0                  | 1                   | 0          | 1   | 1             | 1             | NA    | NA        | NA       | 0 18.4799995 Ethmoid   | 38         | 42     | 12  | 8         | NA           | NA          | 0 | 0 |
| 1                     | 1                 | 0                     | 1                            | 1                  | 0                   | 0          | 1   | 0             | 1             | NA    | NA        | NA       | 0 17.8500004 Ethmoid   | 26         | 25     | 30  | 12        | 0            | 0           | 0 | 0 |
| 1                     | 1                 | 0                     | 1                            | 1                  | 0                   | 1          | 1   | 1             | 0             | NA    | NA        | NA       | 0 18.8199997 Ethmoid   | 27         | 16     | 14  | 8         | 0            | 0           | 0 | 0 |
| 1                     | 1                 | 0                     | 1                            | 1                  | 1                   | 1          | 1   | 1             | 0             | NA    | NA        | NA       | 0 17.8500004 Ethmoid   | 28         | 18     | 29  | 12        | 0            | 1           | 1 | 1 |
| 1                     | 1                 | 0                     | 1                            | 1                  | 0                   | 0          | 1   | 1             | 1             | NA    | NA        | NA       | 0 19.6900005 Maxillary | 37         | 35     | 21  | 10        | 0            | 1           | 1 | 1 |
| 1                     | 1                 | 0                     | 1                            | 1                  | 0                   | 1          | 1   | 1             | 1             | 4     | NA        | NA       | 0 18.8199997 Ethmoid   | 27         | 24     | 26  | 6         | 0            | 0           | 0 | 0 |
| 1                     | 1                 | 0                     | 1                            | 1                  | 0                   | 1          | 0   | 1             | 1             | NA    | NA        | NA       | 0 18.6800003 Maxillary | 32         | 28     | 15  | 6         | 0            | 0           | 1 | 0 |
| 1                     | 1                 | 0                     | 1                            | 1                  | 0                   | 1          | 0   | 1             | 1             | NA    | NA        | NA       | 0 18.8199997 Ethmoid   | 25         | 40     | 18  | 6         | 0            | 1           | 1 | 1 |
| 1                     | 1                 | 0                     | 1                            | 1                  | 0                   | 1          | 1   | 1             | 1             | NA    | NA        | NA       | 0 19.8400002 Ethmoid   | 22         | 19     | 18  | 8         | 0            | 1           | 1 | 1 |
| 1                     | 1                 | 0                     | 1                            | 1                  | 0                   | 1          | 0   | 1             | 1             | NA    | NA        | NA       | 0 19.6900005 Ethmoid   | 33         | 10     | 8   | 6         | 0            | 1           | 1 | 1 |
| 0                     | 1                 | 1                     | 1                            | 1                  | 0                   | 1          | 0   | 1             | 0             | NA    | NA        | NA       | 0 22.9500008 Maxillary | 42         | 14     | 21  | 6         | NA           | NA          | 0 | 0 |
| 1                     | 1                 | 1                     | 0                            | 1                  | 0                   | 1          | 0   | 0             | 0             | NA    | NA        | NA       | 0 19.6800003 Maxillary | 60         | 32     | 60  | 8         | 1            | 1           | 0 | 0 |
| 1                     | 1                 | 1                     | 0                            | 0                  | 0                   | 1          | 0   | 1             | 1             | 1     | NA        | NA       | 0 20.5599995 Maxillary | 67         | 34     | 36  | 8         | 1            | 1           | 1 | 1 |
| 1                     | 1                 | 1                     | 1                            | 0                  | 0                   | 0          | 0   | 0             | 0             | NA    | NA        | NA       | 0 19.9599991 Maxillary | 61         | 30     | 59  | 4         | 1            | 1           | 1 | 1 |
| 1                     | 1                 | 1                     | 1                            | 0                  | 0                   | 1          | 1   | 0             | 0             | NA    | NA        | NA       | 0 19.1900005 Maxillary | 77         | 18     | 52  | NA        | 1            | 0           | 0 | 0 |
| 1                     | 1                 | 1                     | 1                            | 0                  | 0                   | 0          | 1   | 0             | 1             | 5     | NA        | NA       | 0 19.4400005 Maxillary | 62         | 8      | NA  | NA        | 0            | 0           | 0 | 0 |
| 1                     | 1                 | 1                     | 1                            | 0                  | 1                   | 0          | 0   | 0             | 1             | 10    | NA        | NA       | 0 17.3199997 Maxillary | 58         | 25     | 52  | 10        | 1            | 0           | 0 | 0 |
| 1                     | 1                 | 1                     | 1                            | 1                  | 1                   | 0          | 0   | 0             | 0             | NA    | NA        | NA       | 0 17.9500008 Ethmoid   | 57         | 20     | 74  | 8         | 1            | 1           | 1 | 1 |
| 1                     | 1                 | 1                     | 1                            | 1                  | 1                   | 1          | 0   | 0             | 0             | NA    | NA        | NA       | 0 22.0599995 Maxillary | 88         | 59     | 0   | 10        | 1            | 0           | 0 | 0 |
| 1                     | 1                 | 1                     | 1                            | 1                  | 1                   | 1          | 1   | 0             | 1             | 1     | NA        | NA       | 0 21.7199993 Maxillary | 91         | 71     | 0   | 6         | 1            | 1           | 0 | 0 |
| 1                     | 1                 | 1                     | 1                            | 1                  | 1                   | 1          | 1   | 0             | 1             | NA    | NA        | NA       | 0 21.9400005 Maxillary | 92         | 66     | 0   | 10        | 1            | 1           | 1 | 1 |
| 1                     | 1                 | 1                     | 1                            | 1                  | 1                   | 1          | 0   | 0             | 0             | NA    | NA        | NA       | 0 22.5900002 Maxillary | 83         | 59     | 0   | 4         | NA           | NA          | 1 | 1 |
| 1                     | 1                 | 1                     | 1                            | 1                  | 1                   | 0          | 1   | 0             | 0             | NA    | NA        | NA       | 0 22.6499996 Ethmoid   | 81         | 54     | 3   | 4         | 1            | 0           | 1 | 0 |
| 1                     | 1                 | 1                     | 1                            | 1                  | 1                   | 0          | 0   | 0             | 0             | NA    | NA        | NA       | 0 22.25 Ethmoid        | 83         | 55     | 0   | 3         | 1            | 0           | 0 | 0 |
| 1                     | 1                 | 1                     | 1                            | 1                  | 1                   | 0          | 0   | 0             | 0             | NA    | NA        | NA       | 0 NA Ethmoid           | 82         | 52     | 1   | 2         | 1            | 0           | 0 | 0 |
| 1                     | 1                 | 1                     | 1                            | 1                  | 1                   | 0          | 0   | 0             | 0             | NA    | NA        | NA       | 0 23.1100006 Ethmoid   | 94         | 58     | 1   | 4         | 1            | 0           | 1 | 0 |
| 0                     | 0                 | 1                     | 0                            | 0                  | 0                   | 0          | 0   | 0             | 0             | NA    | NA        | NA       | 0 25.0499992 Maxillary | 94         | 55     | 29  | 6         | 0            | 0           | 0 | 0 |
| 0                     | 0                 | 0                     | 1                            | 0                  | 0                   | 0          | 0   | 0             | 0             | NA    | NA        | NA       | 0 23.8799992 Maxillary | 92         | 55     | 16  | 6         | 0            | 1           | 0 | 0 |
| 0                     | 0                 | 0                     | 1                            | 0                  | 0                   | 0          | 0   | 0             | 0             | NA    | NA        | NA       | 0 24.2099991 Maxillary | 91         | 58     | 25  | 6         | NA           | 0           | 0 | 0 |
| 0                     | 0                 | 0                     | 1                            | 0                  | 0                   | 1          | 1   | 0             | 0             | NA    | NA        | NA       | 0 24.6599999 Ethmoid   | 86         | 49     | 48  | 8         | 0            | 1           | 0 | 0 |
| 0                     | 0                 | 0                     | 1                            | 0                  | 0                   | 1          | 0   | 0             | 0             | NA    | NA        | NA       | 0 24.8099995 Ethmoid   | 94         | 59     | 37  | 4         | 0            | 1           | 0 | 0 |
| 0                     | 0                 | 0                     | 1                            | 0                  | 0                   | 1          | 0   | 0             | 0             | NA    | NA        | NA       | 0 26.6900005 Maxillary | 88         | 43     | 47  | 5         | 0            | 1           | 1 | 1 |
| 0                     | 0                 | 0                     | 1                            | 0                  | 0                   | 0          | 0   | 0             | 0             | NA    | NA        | NA       | 0 27.5499992 Maxillary | 99         | 61     | 40  | 2         | 0            | 0           | 0 | 0 |
| 1                     | 0                 | 0                     | 1                            | 0                  | 0                   | 0          | 0   | 0             | 0             | NA    | NA        | NA       | 0 27.5 Maxillary       | 81         | 59     | 0   | 6         | 0            | 0           | 0 | 0 |
| 1                     | 0                 | 0                     | 1                            | 0                  | 0                   | 0          | 0   | 0             | 0             | NA    | NA        | NA       | 0 28.4799995 Ethmoid   | 81         | 59     | 1   | 2         | 1            | 1           | 0 | 0 |
| 0                     | 0                 | 0                     | 0                            | 1                  | 0                   | 0          | 1   | 1             | 1             | 7     | NA        | NA       | 0 17.5400009 Ethmoid   | 30         | 8      | 31  | 7         | 1            | 0           | 0 | 0 |
| 0                     | 0                 | 0                     | 0                            | 1                  | 0                   | 1          | 1   | 1             | 6             | NA    | NA        | NA       | 0 16.5799999 Maxillary | 27         | 6      | 34  | 8         | 1            | 0           | 0 | 0 |
| 0                     | 0                 | 0                     | 0                            | 1                  | 0                   | 0          | 0   | 0             | 1             | 23    | NA        | NA       | 0 16.5799999 Maxillary | 59         | 64     | NA  | 8         | 1            | 0           | 0 | 0 |

|   |   |   |   |   |   |   |    |      |            |            |           |    |    |    |    |    |    |    |   |
|---|---|---|---|---|---|---|----|------|------------|------------|-----------|----|----|----|----|----|----|----|---|
| 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0  | 0 NA | 1          | 30.0699997 | Ethmoid   | NA | NA | 7  | NA | NA | NA | NA | 0 |
| 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1  | NA   | 0          | 22.0100002 | Maxillary | 71 | 19 | 50 | 10 | 0  | 0  | 0  | 0 |
| 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0  | NA   | 0          | 22.6599999 | Ethmoid   | 74 | 23 | 38 | 8  | 1  | 1  | 0  | 0 |
| 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0  | NA   | 0          | 24.2199993 | Maxillary | 68 | 16 | 25 | 6  | 1  | 0  | 0  | 1 |
| 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0  | NA   | 0          | 24.7099991 | Ethmoid   | 84 | 32 | 28 | 9  | 1  | 0  | 0  | 1 |
| 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0  | NA   | 0          | 19.9799995 | Maxillary | 76 | 45 | 47 | 8  | 0  | 1  | 0  | 0 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0  | NA   | 0          | 20.0200005 | Ethmoid   | 78 | 43 | 47 | 8  | 0  | 0  | 0  | 0 |
| 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0  | NA   | 0          | 19.3099995 | Maxillary | 73 | 45 | 71 | 9  | 1  | 1  | 0  | 0 |
| 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0  | NA   | 0          | 20.1200008 | Ethmoid   | 74 | 39 | 53 | 6  | 1  | 1  | 0  | 0 |
| 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0  | NA   | 0          | 19.5900002 | Frontal   | 62 | 25 | 13 | 8  | 0  | 1  | 1  | 1 |
| 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0  | NA   | 0          | 18.9799995 | Maxillary | 59 | 20 | 8  | 6  | 0  | 1  | 1  | 1 |
| 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0  | NA   | 0          | 20.0499992 | Maxillary | 54 | 17 | 13 | 9  | 1  | 1  | 1  | 1 |
| 0 | 0 | 0 | 0 | 1 | 1 | 0 | NA | 0    | 0          | 34         | Ethmoid   | 65 | 40 | 67 | 10 | 0  | 1  | 1  | 1 |
| 1 | 0 | 1 | 0 | 1 | 1 | 0 | NA | 0    | 17.8899994 | Ethmoid    | 51        | 16 | 50 | 12 | 0  | 1  | 1  | 1  |   |
| 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0  | NA   | 0          | 17.5300007 | Maxillary | 54 | 18 | 29 | 8  | 0  | 0  | 1  | 1 |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | NA   | 0          | 26.25      | Maxillary | NA | NA | 17 | NA | NA | NA | 1  | 1 |
| 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1  | NA   | 0          | 22.1100006 | Frontal   | 34 | 12 | 22 | 9  | 1  | 0  | 0  | 0 |
| 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1  | NA   | 0          | 23.0400009 | Maxillary | 34 | 8  | 22 | 10 | 0  | 1  | 1  | 1 |
| 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1  | NA   | 0          | 22.1100006 | Ethmoid   | 32 | 10 | 24 | 10 | 0  | 1  | 1  | 1 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | NA   | 0          | NA         | Maxillary | 64 | 36 | 30 | 8  | 1  | 0  | 0  | 0 |
| 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0  | NA   | 0          | 23.0300007 | Maxillary | 56 | 30 | 58 | 8  | 1  | 0  | 0  | 0 |
| 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0  | NA   | 0          | 24.0599995 | Ethmoid   | 62 | 31 | 41 | 4  | 1  | 0  | 0  | 0 |
| 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0  | NA   | 0          | 23.7999992 | Ethmoid   | 56 | 27 | 47 | 4  | NA | NA | 1  | 1 |
| 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0  | NA   | 0          | 23.7999992 | Maxillary | NA | NA | 36 | 6  | NA | NA | 1  | 1 |
| 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0  | NA   | 0          | 23.7999992 | Ethmoid   | NA | NA | 34 | 6  | NA | NA | 1  | 1 |
| 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0  | NA   | 0          | 23.7999992 | Ethmoid   | NA | NA | 34 | 6  | NA | NA | 1  | 1 |
| 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0  | NA   | 0          | 30.4799995 | Maxillary | 81 | 63 | 8  | 8  | 1  | 1  | 0  | 0 |
| 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0  | NA   | 0          | 22.000008  | Ethmoid   | 76 | 11 | 60 | 10 | 1  | 0  | 0  | 0 |









**Supplemental table 5.** Codebook describing each variable in the metadata.

| Variable                       | Description                                                                                                                                 |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| SampleID                       | Unique name for the 16S amplicon sequencing sample                                                                                          |
| BarcodeSequence                | Sequence of the barcode                                                                                                                     |
| LinkerPrimerSequence           | Sequence of the linker primer                                                                                                               |
| participant_id                 | The study participant's unique ID number                                                                                                    |
| visit_number                   | Numerical order of visits for each participant (ascending)                                                                                  |
| days_since_first_visit         | Count of the number of visits since enrollment (Day 0)                                                                                      |
| sex_is_female                  | male = 0, female = 1                                                                                                                        |
| age_onenrollment               | in years                                                                                                                                    |
| BMI_on_enrollment              | mg/kg2                                                                                                                                      |
| cfrd                           | prior diagnosis of CF-related diabetes; 0 = no, 1 = yes                                                                                     |
| transplant_prior_to_enrollment | prior LUNG transplant at day of enrollment, no = 0, yes = 1. Note that one subject gets a transplant during the study                       |
| hmzg_mut508                    | homozygous = 0, heterozygous = 1, other mutations = 2, missing = NA                                                                         |
| allergic_rhinitis              | no = 0, yes = 1                                                                                                                             |
| ever_on_topabx                 | Is the subject on topical antibiotics at ANY TIME during the study, no = 0, yes = 1                                                         |
| ever_on_topvanco               | If the subject on specific topical antibiotics at ANY TIME during the study, no = 0, yes = 1                                                |
| ever_on_top_togent             | If the subject on specific topical antibiotics at ANY TIME during the study, no = 0, yes = 1                                                |
| ever_on_top_mupirocin          | If the subject on specific topical antibiotics at ANY TIME during the study, no = 0, yes = 1                                                |
| ever_on_top_cipro              | If the subject on specific topical antibiotics at ANY TIME during the study, no = 0, yes = 1                                                |
| ever_on_nasal_steroid          | Is the subject on a nasal steroid at ANY TIME during the study? no = 0, yes = 1                                                             |
| ever_on_chronic_oral_steroid   | Is the subject on chronic oral prednisone during the study? no = 0, yes = 1                                                                 |
| sinus_exacerbation             | Is this an unscheduled visit because of worse sinus disease? no = 0, yes = 1                                                                |
| pulmonary_exacerbation         | Have they been treated for a CF pulmonary exacerbation in the month surrounding the study visit (+/- 4 weeks on each side)? no = 0, yes = 1 |
| on_nasal_cannula_oxygen        | no = 0, yes = 1                                                                                                                             |
| interim_hos                    | no = 0, yes = 1                                                                                                                             |
| hospital_days                  | if yes to interim_hospitalization, then this is the number of days in the hospital since the last visit                                     |
| transplant_at_visit            | transplant status on DAY OF VISIT no = 0, yes = 1                                                                                           |
| visit_bmi                      | mg/kg2                                                                                                                                      |
| samp_loc                       | the site in the sinus cavity where the sample taken from                                                                                    |
| ppFEV1                         | % predicted FEV1 (theoretical max is about 110%, min around 25%)                                                                            |
| ppFEF25-75                     | % predicted FEF25-75                                                                                                                        |
| snot22                         | sinus symptom scale 0-100. people without sinus disease score 0-7 points                                                                    |
| mlk                            | endoscopy visual severity score, modified lund kennedy scale, normal = 0, maximally severe disease = 16                                     |
| sputum_pa                      | Was Pseudomonas aeruginosa grown from the sputum at this visit (or within 1 month, from the medical records); n = 0, yes = 1.               |
| sputum_staph                   | Was Staphylococcus aureus grown from the sputum at this visit (or within 1 month, from the medical records); n = 0, yes = 1.                |
| sinus_staph                    | Was Pseudomonas aeruginosa grown from the sinuses at this visit (or within 1 month, from the medical records); n = 0, yes = 1.              |
| sinus_pa                       | Was Staphylococcus aureus grown from the sinuses at this visit (or within 1 month, from the medical records); n = 0, yes = 1.               |
| current_topabx                 | is the subject currently on topical sinus rinses, no = 0, yes = 1                                                                           |
| current_top_vanco              | if the subject is on rinses, which drug, no = 0, yes = 1                                                                                    |
| current_top_gent               | if the subject is on rinses, which drug, no = 0, yes = 1                                                                                    |
| current_top_mupirocin          | if the subject is on rinses, which drug, no = 0, yes = 1                                                                                    |
| current_top_cipro              | if the subject is on rinses, which drug, no = 0, yes = 1                                                                                    |
| is_subject_on_systemic_abx     | is the subject currently on systemic antibiotics (oral or IV)                                                                               |
| IV_vanco                       | if the subject is on systemic antibiotics, which one, no=0, yes=1, these are by drug class                                                  |
| IV_gent                        | if the subject is on systemic antibiotics, which one, no=0, yes=1, these are by drug class                                                  |
| IV_pip-tazo                    | if the subject is on systemic antibiotics, which one, no=0, yes=1, these are by drug class                                                  |
| IV_cephalosporin               | if the subject is on systemic antibiotics, which one, no=0, yes=1, these are by drug class                                                  |
| IV_carbenem                    | if the subject is on systemic antibiotics, which one, no=0, yes=1, these are by drug class                                                  |
| IV_colistin                    | if the subject is on systemic antibiotics, which one, no=0, yes=1, these are by drug class                                                  |
| IV_cipro                       | if the subject is on systemic antibiotics, which one, no=0, yes=1, these are by drug class                                                  |
| IV_aztreonam                   | if the subject is on systemic antibiotics, which one, no=0, yes=1, these are by drug class                                                  |
| oral_linezolid                 | if the subject is on systemic antibiotics, which one, no=0, yes=1, these are by drug class                                                  |
| oral_cipro                     | if the subject is on systemic antibiotics, which one, no=0, yes=1, these are by drug class                                                  |
| oral_clinda                    | if the subject is on systemic antibiotics, which one, no=0, yes=1, these are by drug class                                                  |
| oral_sulfa                     | if the subject is on systemic antibiotics, which one, no=0, yes=1, these are by drug class                                                  |
| oral_doxy                      | if the subject is on systemic antibiotics, which one, no=0, yes=1, these are by drug class                                                  |
| oral_other                     | if the subject is on systemic antibiotics, which one, no=0, yes=1, these are by drug class                                                  |
| oral_betaactam                 | if the subject is on systemic antibiotics, which one, no=0, yes=1, these are by drug class                                                  |
| days_IVs_current_course        | days of IV therapy as of visit in current course                                                                                            |
| days_oral_abx_currentcourse    | days of oral therapy as of visit in current course                                                                                          |
| is_patient_currently_on_abx    | is the subject on IV abx AT THE DAY OF VISIT                                                                                                |
| days_on_current_abx            | days on antibiotics as of the visit                                                                                                         |
| days_iv_abx_since_last_visit   | total number of days on IV abx since last visit                                                                                             |
| days_of_oral_since_last_visit  | total number of days on oral abx since last visit                                                                                           |
| il_1b                          | continuous variable (pg/mL)                                                                                                                 |
| il_6                           | continuous variable (pg/mL)                                                                                                                 |
| infbeta                        | continuous variable (pg/mL)                                                                                                                 |
| il_19                          | continuous variable (pg/mL)                                                                                                                 |
| ifn_lambda2                    | continuous variable (pg/mL)                                                                                                                 |
| il_29                          | continuous variable (pg/mL)                                                                                                                 |
| pentraxin_3                    | continuous variable (pg/mL)                                                                                                                 |