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 2 

Abstract 34 

 35 

Dynamic functional connectivity (dFC) in resting-state fMRI holds promise to deliver 36 

candidate biomarkers for clinical applications. However, the reliability and interpretability 37 

of dFC metrics remain contested. Despite a myriad of methodologies and resulting 38 

measures, few studies have combined metrics derived from different conceptualizations 39 

of brain functioning within the same analysis - perhaps missing an opportunity for 40 

improved interpretability. Using a complexity-science approach, we assessed the 41 

reliability and interrelationships of a battery of phase-based dFC metrics including tools 42 

originated from dynamical systems, stochastic processes, and information dynamics 43 

approaches. Our analysis revealed novel relationships between these metrics, which 44 

allowed us to build a predictive model for integrated information using metrics from 45 

dynamical systems and information theory. Furthermore, global metastability - a metric 46 

reflecting simultaneous tendencies for coupling and decoupling - was found to be the 47 

most representative and stable metric in brain parcellations that included cerebellar 48 

regions. Additionally, spatiotemporal patterns of phase-locking were found to change in 49 

a slow, non-random, continuous manner over time. Taken together, our findings show 50 

that the majority of characteristics of resting-state fMRI dynamics reflect an interrelated 51 

dynamical- and informational-complexity profile, which is unique to each acquisition. 52 

This finding challenges the interpretation of results from cross-sectional designs for 53 

brain neuromarker discovery, suggesting that individual life-trajectories may be more 54 

informative than sample means.  55 

 56 

Keywords 57 

Functional magnetic resonance imaging, dynamic functional connectivity, complexity, 58 

metastability, fractal scaling, integrated information, LEiDA. 59 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 20, 2022. ; https://doi.org/10.1101/2022.01.17.476583doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.17.476583
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3 

 60 

Highlights 61 

• Spatiotemporal patterns of phase-locking tend to be time-invariant  62 

• Global metastability is representative and stable in a cohort of heathy young 63 

adults 64 

• dFC characteristics are in general unique to any fMRI acquisition 65 

• Dynamical- and informational-complexity are interrelated 66 

• Complexity science contributes to a coherent description of brain dynamics 67 

 68 

Abbreviations: fMRI, functional magnetic Resonance Imaging, BOLD, blood oxygen 69 

level dependent, FC, Functional Connectivity, dFC, dynamic Functional Connectivity, 70 

LEiDA, Leading Eigenvector Dynamic Analysis, DFA, detrended fluctuation analysis,  71 

1 Introduction 72 

There is great anticipation that functional neuroimaging may complement current 73 

clinical phenomenology in the diagnosis of disorders of brain functioning, and provide 74 

brain-based markers for patient stratification, disease progression tracking, and 75 

prediction of treatment outcomes (Zhang et al., 2021). In this context, the investigation 76 

of the brain’s functional connectivity (FC) – as revealed by resting-state functional 77 

magnetic resonance imaging (fMRI) – holds promise for enabling tools of great clinical 78 

value, with thousands of articles per year focused on elucidating properties of normal 79 

and abnormal whole-brain functionality (Zhang et al., 2021). Static FC reveals the 80 

statistical interdependence among different brain regions using blood oxygenation level 81 

dependent (BOLD) signals (Friston,1994). However, these static measures camouflage 82 

the inherent dynamic nature of brain activity which is captured with time-varying 83 

functional connectivity, or dynamic FC (dFC).  Unfortunately, the fact that fMRI may be 84 
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capturing something other than BOLD signals (Drew et al., 2020; Raut et al., 2021), and 85 

in the absence of a ground truth, the hurdles to use FC metrics in the clinic are high 86 

(Woo and Wager, 2015), and considerably higher for dFC due to issues of interpretation 87 

(Lurie et al., 2020) and sampling variability (Laumann et al., 2017), although the latter 88 

has been rigorously challenged (Miller et al, 2018). Moreover, the popularity of FC and 89 

dFC methods comes with a plethora of heterogeneous methodologies derived from 90 

distinct conceptualizations of brain functioning (Bijsterbosch et al., 2020). 91 

Candidate neuromarkers should demonstrate a high degree of reliability and 92 

ideally be robust and interpretable in terms of neuroscience (Woo and Wager, 2015). 93 

Despite efforts to assess the test-retest reliability of dFC metrics, the results remain 94 

contested (Abrol et al., 2017; Bijsterbosch et al., 2017; Choe et al., 2017; Orban et al., 95 

2020; Vaisvilaite et al., 2021; Vohryzek et al., 2020). Common approaches to address 96 

these concerns of validity include comparison of results with null models (Battaglia et 97 

al., 2020) or replication of results in alternative datasets (Varley et al., 2020). 98 

Neuroscientific interpretation of candidate neuromarkers is enhanced with convergence 99 

of evidence from multiple sources (Woo and Wager, 2015), and together with reliability, 100 

is one of the necessary conditions to introduce neuromarkers into the clinic.  101 

 With this in mind, in this paper we took a complexity-science perspective to 102 

identify a number of diverse dFC metrics for investigation (Turkheimer et al., 2021).  103 

The existence of distinct methodologies that investigate intrinsic brain activity either 104 

from a dynamical systems perspective, from considerations of the time-evolution of the 105 

dynamical system as a stochastic process, or from an information processing 106 

perspective, compels us to confront the challenging task of piecing together a coherent 107 

description of brain dynamics consistent across the underlying theories.  108 
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Two specific metrics, metastability and integrated information, derived from 109 

bottom-up and top-down analysis respectively, hold special interest for investigation.  110 

Theoretically, metastability has been described as a subtle blend of segregation and 111 

integration among brain regions that show tendencies to diverge and function 112 

independently, with tendencies to converge and function collectively (Tognoli and Kelso, 113 

2014). Metastability has been considered a key attribute for computational models 114 

exploring mechanisms of brain dynamics and an important indicator of healthy brain 115 

functioning (Deco et al., 2017). From an alternative but complementary perspective, 116 

integrated information (operationalized as the quantity 𝛷) has been proposed as a way 117 

of quantifying the balance between integration and segregation, and possibly 118 

consciousness (Tononi, 2004). More recent metrics of integrated information, Φ!, 119 

extends this construct to reflect the degree of synergistic and transfer information 120 

processing across brain areas (Mediano et al., 2022). Therefore, we sought to 121 

investigate if these two metrics contributed converging evidence for the processes of 122 

integration and segregation that are believed to take place as part of intrinsic brain 123 

activity. 124 

Our objective was to develop a coherent description of brain dynamics consistent 125 

across underlying theories. Therefore, rather than investigate metastability and 126 

integrated information in isolation, we assessed them in combination with metrics 127 

originating in complexity-science, as well as metrics identified theoretically or empirically 128 

as characterizing or contributing to metastability or integrated information. Whilst the 129 

methodologies used in this study have already been individually validated against null 130 

models or with surrogate data (Battaglia et al., 2020; Honari et al., 2021; Mediano et al., 131 

2022), there is a lack of studies where these methodologies were used to compare 132 

performance in the same subjects across multiple fMRI acquisitions.  Therefore, we set 133 
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out to answer the following questions: are the chosen dFC metrics representative and 134 

reliable across multiple fMRI acquisitions? Are these metrics related via their ability to 135 

capture different aspects of dFC? And finally, what are the implications of these 136 

relationships? 137 

To address these questions, we used four resting-state fMRI acquisitions 138 

recorded on two consecutive days from 99 healthy unrelated participants from the 139 

Human Connectome Project (Van Essen et al., 2013). We performed confirmatory 140 

analysis with different parcellation schemes, considering an anatomical parcellation with 141 

and without the cerebellar regions and a functional parcellation that included the 142 

cerebellar regions. 143 

2 Materials and Methods 144 

2.1 Data 145 

All data used in this study was collected for the Human Connectome Project, 146 

WU-Minn Consortium (Principal Investigators: David Van Essene and Kamil Ugurbil; 147 

1U54MH091657) with funding from the sixteen NIH Institutes and Centers supporting 148 

the NIH Blueprint for Neuroscience Research; and by the McDonell Center for Systems 149 

Neuroscience at Washington University. 150 

 151 

2.2 Ethics Statement 152 

The Washington University institutional review board approved the scanning 153 

protocol, participant recruitment procedures, and informed written consent forms, and 154 

consented to share deidentified data. 155 

 156 

2.3 Participants 157 

We used the data from the ‘500 subject’ release but restricted our analysis to the 158 

‘100 Unrelated Subjects’ (aged 20 to 35 years old, 54 females (Glasser et al., 2013)). A 159 
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list of employed subject ID numbers and associated scan times is provided in 160 

Supplementary Table S 1. 161 

 162 

2.4 fMRI data acquisition and pre-processing 163 

Each participant underwent four scans of resting-state fMRI (rs-fMRI) collected 164 

over two experimental sessions (two scans in each session) which took place on 165 

consecutive days. The datasets acquired from all participants in each of the 4 scans are 166 

referred to as ‘runs’ 1 to 4. During each scan 1200 frames were acquired using a 167 

multiband sequence at 2 millimeters (mm) isotropic resolution with a repetition time (TR) 168 

of 0.72 seconds over the span of 14 minutes 24 seconds. Participants were instructed 169 

to maintain fixation on a bright crosshair presented on a dark background in a darkened 170 

scanning room. The two scans in each session differed only in the oblique axial 171 

acquisition phase encoding. For the first 6 subjects, the rs-fMRI runs were acquired 172 

using a Right-Left (RL) phase-encoding followed by a Left-Right (LR) phase-encoding 173 

on both days. For the following 94 subjects, the order of the different phase-encoding 174 

acquisitions for the rs-fMRI runs across days was counterbalanced (RL followed by LR 175 

on Day 1; LR followed by RL on Day 2). 176 

Data were pre-processed with the HCP’s minimal pre-processing pipeline, and 177 

denoising was performed by the ICA-FIX procedure (Glasser et al., 2013; Griffanti et al., 178 

2014; Salimi-Khorshidi et al., 2014). A complete description of the acquisition and pre-179 

processing details may be found at the HCP website 180 

https://www.humanconnectome.org/. One subject was excluded from the analysis as 181 

the image file was corrupted. 182 

 183 
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2.5 Parcellations 184 

We parcellated the pre-processed fMRI data by averaging time-courses across 185 

all voxels for each region defined in the anatomical parcellation AAL (Tzourio-Mazoyer 186 

et al., 2002) considering all cortical and subcortical brain areas including the 187 

cerebellum, N=116 or without the cerebellum N=90. For confirmation of the contribution 188 

of the cerebellum to the reliability of the metrics, we also parcellated the fMRI data with 189 

the NEUROMARK framework (Du et al., 2020).  190 

 191 

2.6 Bandpass filtering 192 

To isolate low-frequency resting-state signal fluctuations, we bandpass filtered 193 

the parcellated fMRI time-series for 0.01-0.08 Hz, in alignment with previous studies 194 

(Glerean et al., 2012). 195 

 196 

2.7 Phase relationships 197 

We investigated two complementary forms of phase relationships, phase-locking 198 

and phase synchrony as illustrated in Figure 1.  199 

 200 

 201 
Figure 1 Two complementary forms of phase coupling for the calculation of dFC metrics. 202 
Phase-locking, evaluated as the cosine of the phase difference, is sensitive to both in-phase and anti-203 
phase relationships between regions, while phase synchrony is sensitive to the phase alignment between 204 
regions. 205 

 206 
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2.8 Functional connectivity through phase-locking 207 

We estimated functional connectivity (FC) with the nonlinear measure of phase-208 

locking which may be more suitable than linear measures such as Pearson correlation 209 

for analyzing complex brain dynamics (Pereda et al., 2005; Quian Quiroga et al., 2002). 210 

Indeed, phase relationships have been leveraged in many dFC studies to date (Alonso 211 

Martínez et al., 2020; Cabral et al., 2017; Deco and Kringelbach, 2016; Figueroa et al., 212 

2019; Ponce-Alvarez et al., 2015; Vohryzek et al., 2020; Zhang et al., 2019; Zhou et al., 213 

2020). First, we calculated the analytical signal using the Hilbert transform of the real 214 

signal (Gabor, 1946). Then, the instantaneous phase-locking between each pair of brain 215 

regions n and p was estimated for each time-point t as the cosine difference of the 216 

relative phase as 217 

 218 

𝑖𝑃𝐿(𝑛, 𝑝, 𝑡) = 𝑐𝑜𝑠0θ(𝑛, 𝑡) − θ(𝑝, 𝑡)3 (1) 

 219 

Phase-locking at a given timepoint ranges between -1 (regions in anti-phase) and 1 220 

(regions in-phase).  For each subject the resulting iPL was a three-dimensional tensor 221 

NxNxT where N	is the dimension of the parcellation, and T is the number of timepoints 222 

in the scan. 223 

 224 

2.8.1 LEiDA – Leading Eigenvector Dynamic Analysis 225 

To reduce the dimensionality of the phase-locking space for our dynamic 226 

analysis, we employed the Leading Eigenvector Dynamic Analysis (LEiDA) (Cabral et 227 

al., 2017) method. The leading eigenvector V1(t) of each iPL(t) is the eigenvector with 228 

the largest magnitude eigenvalue and reflects the dominant FC (through phase-locking) 229 

pattern at time 𝑡. V1(t) is a Nx1 vector that captures the main orientation of the fMRI 230 

signal phases over all anatomical areas. Each element in V1(t) represents the projection 231 
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of the fMRI phase in each region into the leading eigenvector. When all elements of 232 

V1(t) have the same sign, this means that all fMRI phases are orientated in the same 233 

direction as V1(t) indicating a global mode governing all fMRI signals. When the 234 

elements of V1(t) have both positive and negative signs, this means that the fMRI 235 

signals have different orientations behaving like opposite anti-nodes in a standing wave. 236 

This allows us to separate the brain regions into two ‘communities’ (or poles) according 237 

to their orientation or sign, where the magnitude of each element in V1(t) indicates the 238 

strength of belonging to that community (Newman, 2006). For more details and 239 

graphical representation see (Figueroa et al., 2019; Lord et al., 2019; Vohryzek et al., 240 

2020). The outer product of V1(t) reveals the FC matrix associated with the leading 241 

eigenvector at time 𝑡. 242 

 243 

2.8.2 Mode extraction 244 

To identify recurring spatiotemporal modes 𝜓 or phase-locking patterns, we 245 

clustered the leading eigenvectors for each run with K-means clustering with 300 246 

replications and up to 400 iterations for 2-7 centroids considering 116 and 90 (i.e., 247 

excluding the cerebellum) anatomical regions. K-means clustering returns a set of K 248 

central vectors or centroids in the form of Nx1 vectors Vc. As Vc is a mean derived 249 

variable, it may not occur in any individual subject data set. To obtain time courses 250 

related to the extracted modes at each TR we assign the cluster number to which Vc(t) 251 

is most similar using the cosine distance. 252 

 253 

2.8.3 Mode visualization 254 

We rendered the centroid vectors Vc in cortical space by representing each 255 

element as a sphere placed at the center of gravity of the relevant brain region, and 256 
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scaling the color of the spheres according to the value of the relevant eigenvector. 257 

Regions with similar phase orientation are colored alike (yellow-to-red for the smallest 258 

community and cyan-to-blue for the largest community), where darker colors (red/blue) 259 

indicate weak contributions and lighter colors (cyan/yellow) indicate stronger 260 

contributions. We also plot links between the corresponding areas to highlight the 261 

network formed by the smallest community of brain areas. 262 

 263 

2.8.4 Cluster representation in voxel space 264 

To obtain a visualization in voxel space of the spatial modes Vc we first reduced 265 

the spatial resolution of all fMRI volumes from 2mm3 to 10mm3 to obtain a reduced 266 

number of brain voxels (here N = 1821) to be able to compute the eigenvectors of the 267 

NxN phase-locking matrices. The analytic signal of each 10mm3 voxel was computed 268 

using the Hilbert transform, and the leading eigenvectors were obtained at each time 269 

point (with size NxT). Subsequently, the eigenvectors were averaged across all time 270 

instances assigned to a particular cluster, obtaining in this way, for each cluster, a 1xN 271 

vector representative of the mean phase-locking pattern captured in voxel space. 272 

 273 

2.9 Measures and metrics 274 

The following sections provide an accessible overview of the measures and 275 

metrics used in this study. Detailed mathematical treatment and explanations for all 276 

metrics may be found in Supplementary methods and metrics. Each metric has found 277 

application in either theoretical or empirical studies, or both. Examples of their 278 

application may be found in Table 1. 279 

 280 
Measure Relevance (T-theoretical, E-empirical) Reference 
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Phase-Locking     
Fractional occurrence Differences associated with major depression (E) (Alonso Martínez et al., 2020) 
Duration Differences associated with Alzheimer's disease (E) (Sendi et al., 2021) 

Typical FC 
reconfiguration speed  

Slows down in older healthy adults (E) 
(Battaglia et al., 2020) 

Fractal scaling 
coefficient 

Reduces with increasing age (E) 
(Battaglia et al., 2020) 

   
Phase 
Synchronization 

  
  

Synchronization  Healthy cortex operates with moderate synchrony 
(E,T)  

(Yang et al., 2012)  

Metastability  Increases with psilocybin (E) (Lord et al., 2019) 
Cluster synchronization  
        (Chimera Index) 

Requires a certain degree of metastability (T) 
  

(Cabral et al., 2014)  

Diversity of cluster 
synchronization 
       (Coalition entropy)  

Occurs at transition between global synchronization 
and disorder (T) 

(Wildie and Shanahan, 2012)  

Phase coherence 
across 
synchronized 
communities  

Requires connectivity between communities (T) 
Required for CTC-like channels of communication 
(T)  

(Wildie and Shanahan, 2012) 
(Deco and Kringelbach, 2016) 

Integrated Information Loss of consciousness reduced integrated 
information (E) 

(Luppi et al., 2020a) 

Table 1 Examples of application of dFC metrics in empirical and theoretical studies 281 

 282 

2.9.1 Metrics derived from phase-locking 283 

Fractional occurrence of mode 𝜓" was calculated as number of timepoints 284 

assigned to mode 𝜓" divided by the total number of timepoints. This measure reflects 285 

the proportion of time the fMRI activity patterns are closer to mode 𝜓" than to any other 286 

mode 𝜓#". Its values are bound between 0 and 1. 287 

Duration of mode 𝜓" was calculated as the mean of all consecutive periods 288 

spent in a particular mode measured in seconds. 289 

Reconfiguration speeds were calculated as 1 – correlation between functional 290 

connectivity (iPL matrices) at time t and t+1. This measure characterizes the time 291 

evolution of the phase-locking modes. Low speed indicates smooth transitions in phase-292 

locking relationships. Faster speed indicates abrupt switching between phase-locking 293 

relationships. 294 
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The detrended fluctuation analysis exponent a returns an estimate of how 295 

predictable a timeseries is by quantifying the dependence of a value at time t is on a 296 

value at time t-1. Values less than 0.5 indicate non-persistent fluctuations and a return 297 

to the mean. Values = 0.5 indicate random fluctuations and an underlying process with 298 

no memory. Values between 0.5 and 1 indicate persistent fluctuations and an 299 

underlying process that has memory and long-term correlations.  300 

Following (Ton and Daffertshofer, 2016), power-law scaling was tested for 301 

linearity using a Bayesian model comparison technique and the best fit model was 302 

selected with Bayesian Information Criterion. Only subjects that exhibited extended 303 

linear power-law scaling were included in the summary metric of DFAa. 304 

  305 

2.9.2 Metrics derived from phase synchrony 306 

Communities were defined as a set of regions that intermittently lock out of 307 

phase with the global mode. The global mode was also considered as a community 308 

yielding 5 communities in total.  309 

Synchronization was calculated as the time-average of the Kuramoto order 310 

parameter in each community, which is given by  311 

 312 

𝑍$(𝑡) = 〈𝑒%&((,*)〉, 	(∈$		 (2) 

 313 

Above, 𝑍$(𝑡) is a complex value where its magnitude, and hence  	𝑆𝑌𝑁𝐶$= |𝑍$(𝑡)|, 314 

provides a quantification of the degree of synchronization of the community at each time 315 

t, taking values between 1 (for fully synchronized systems) and 0 (for fully random 316 

systems. 317 
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Metastability was calculated as the standard deviation of the Kuramoto order 318 

parameter in each community. The mean value of this measure across communities 319 

denoted as global metastability, represents the overall variability in the synchronization 320 

across communities. 321 

Cluster synchronization was calculated as the variance over communities of the 322 

Kuramoto order parameter at time t. This metric reveals if some communities cluster 323 

together in synchrony whilst other communities remain disordered. 324 

Instantaneous phase coherence across communities was calculated as the 325 

average phase across communities with synchronization values higher than a 326 

synchronization threshold l > 0.8 at time t. This measure represents the coherence 327 

between communities when they are highly synchronized internally. Phase coherence 328 

coefficient was calculated as the fraction of time that instantaneous phase coherence 329 

occurred. 330 

Coalition entropy was calculated as the entropy of the coalitions formed at each 331 

timepoint t reported in bits. This metric represents the diversity of cluster 332 

synchronization.  333 

Integrated information Φ! (Mediano et al., 2021) was computed from 5 binarized 334 

time-series, one for each mode extracted through K-means clustering. Values were set 335 

to 1 if synchronization values were higher than a synchronization threshold l > 0.8 at 336 

time t. In this study, integrated information Indicates the degree of synergistic and 337 

transfer information processing within the system computed over an integration 338 

timescale 𝜏 reported in bits. 339 

  340 
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2.10  Statistical analysis 341 

2.10.1 Interclass correlation coefficient (ICC) 342 

ICC is a relative metric that is used for test-retest reliability in measurement 343 

theory. It is generally defined as the proportion of the total measured variance that can 344 

be attributed to within subject variation. As such, ICC coefficients may be low when 345 

there is little variance between subjects, that is in a homogeneous sample, or when the 346 

within-subject variance is large (Xing and Zuo, 2018).  347 

There are many scales for ICC, so for clarity we will use those of (Landis and 348 

Koch, 1977): 349 

• low (0 < ICC < 0.2) 350 

• fair (0.2 < ICC < 0.4)   351 

• moderate (0.4 < ICC < 0.6 352 

• substantial (0.6 < ICC < 0.8)  353 

• almost perfect (0.8 < ICC < 1)  354 

We calculated the run reliability of mode 𝜓 extraction with ICC(1,1) in search of 355 

agreement rather than consistency across runs (Noble et al., 2021). For the test-retest 356 

assessment of metric consistency over runs, we used the ICC(3,1) form (Shrout and 357 

Fleiss, 1979) as recommended by (Koo and Li, 2016) which is the equivalent of a 2-way 358 

mixed ANOVA. As such, there is an assumption that the data comes from a normal 359 

distribution. When the assumption of normality is violated, it is recommended to use 360 

non-parametric tests such as permutation testing. 361 

 362 

2.10.2 Repeated measures ANOVA 363 

We performed repeated measures ANOVA on global metrics using the ranova() 364 

function in MATLAB MathWorks R2021b. Greenhouse-Geisser correction was 365 
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necessary as the assumption of sphericity was violated in most cases. We therefore 366 

assessed normality of the data with Chi-square goodness of fit (results not included). As 367 

the results indicated non-normal distribution of the data, we decided to replace ICC(3,1) 368 

with non-parametric permutation testing. We also performed repeated measures 369 

ANOVA on the mode-specific metrics. It should be noted that for the AAL parcellation 370 

that included the cerebellar regions, the order of the modes in run 2 and 4 was adjusted 371 

to match the order in run 1 and 3 for all statistical testing. 372 

 373 

2.10.3 Permutation testing 374 

We used a non-parametric permutation-based paired t-test to identify significant 375 

differences between runs. This non-parametric two-sample hypothesis test uses 376 

permutations of group (run) labels to estimate the null distribution rather than relying on 377 

the t-test standard distributions. The null distribution was computed independently for 378 

each run. A t-test was then applied with 1000 permutations to compare runs. 379 

2.10.4 Linear mixed effects modeling 380 

We used lmerTest (Kuznetsova et al., 2017) in RStudio 2021.09.1 Build 372, with 381 

the purpose of building predictive models with both standardized and non-standardized 382 

metric data that could deal with data that was not independent and identically 383 

distributed. To investigate the relationship between integrated information and all other 384 

metrics, we fitted a linear mixed-effect model (estimated using REML and nloptwrap 385 

optimizer) to predict PHI with standardized metric values. The model included RUN as 386 

random effect (formula: ~1 | RUN). 95% Confidence Intervals (CIs) and p-values were 387 

computed using the Satterthwaite's method. 388 

 389 

 390 
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2.11 Code availability statement 391 

The Matlab and R code developed for this analysis will be made available on 392 

publication at github.com/franhancock/Complexity-science-in-dFC together with the 5 393 

phase-locking mode centroids for AAL parcellation in NIFTI and in Matlab format. 394 

 395 

3 Results 396 

3.1 Reliability of dFC measures and metrics 397 

3.1.1 Spatial patterns of phase-locking are invariant across fMRI acquisitions 398 

We first sought to evaluate if the spatiotemporal patterns of phase-locking 399 

observed in fMRI are representative and stable across multiple acquisitions. For this 400 

purpose, we compared the spatial patterns of phase-locking extracted independently for 401 

each of the 4 fMRI runs recorded from the same 99 participants (Figure 2). Each mode 402 

of phase locking 𝜓. 	corresponds to a 1xN vector (with N being the number of brain 403 

areas considered) obtained through K-means clustering of phase-locking patterns 404 

obtained at every time point in each run. We chose K=5 modes considering previous 405 

test-retest studies (Abrol et al., 2017; Vohryzek et al., 2020). We calculated run 406 

reliability with inter-class correlation coefficient (ICC) in search of agreement across 407 

runs (Noble et al., 2021). With N=90 anatomical non-cerebellar brain regions defined in 408 

the AAL parcellation, the modes extracted independently in each run showed almost 409 

perfect agreement between runs with 0.99 > ICC > 0.97. With the inclusion of cerebellar 410 

regions, the reliability of spatial patterns showed again almost perfect agreement 411 

between runs with 1 > ICC > 0.94, although the probability of occurrence differed across 412 

runs, altering the order of the modes when sorted by relative occupancy.  413 

The similarity of the 5 cluster centroids 𝜓./0,..,2 across the 4 runs is clearly visible 414 

in Figure 2. To illustrate the patterns of phase relationships between brain regions, the 415 
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1xN centroids are rendered in cortical space together with the associated phase-locking 416 

matrices. In addition, to visualize the phase-relationships in voxel space, we reduce the 417 

fMRI volumes from 2mm3 to 10mm3, resulting in 1821 brain voxels within the MNI brain 418 

mask, and compute the eigenvectors of phase-locking at each time point. Subsequently, 419 

the eigenvectors are averaged across all time points assigned to each cluster, and 420 

represented in sagittal and axial planes overlaying on a 1mm3 MNI structural image. 421 

This approach allows visualizing the patterns of phase relationships in voxel space, 422 

revealing meaningful functional subsystems overlapping with resting-state networks 423 

described in the literature (A similar figure when 116 regions are considered in the K-424 

means clustering can be found in inline Supplementary Figure 1. ICC values for both 90 425 

and 116 regions are reported in inline Supplementary Figure 2). 426 

 427 
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428 
Figure 2 - Invariant spatiotemporal patterns of phase-locking obtained independently in each of the 4 429 
fMRI runs on the same 99 participants.  430 
LEiDA was applied separately to the 4 fMRI runs recorded on 2 consecutive days from 99 participants 431 
and the centroids obtained from clustering into K=5 are reported here. Each centroid Vc (with size 1xN, 432 
with N=90) is represented in three distinct forms: (A) each element Vc(n) is represented as a sphere 433 
placed at the center of gravity of the corresponding brain region and its color is scaled according to its 434 
value in Vc. Links highlight the network formed by the smallest community of brain areas. (B) the phase-435 
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locking matrices computed as the outer product of the centroid vector Vc. (C) Representation of the 436 
centroid vector for each mode in 10mm voxel space by averaging the eigenvector values over all time 437 
instances assigned to a particular cluster/mode. The modes were then plotted over a 1mm3 MNI T1 438 
image. 439 

We used the eigenvectors obtained with 116 regions to shed light on the 440 

composition of the extracted modes and their putative membership of seven cerebral 441 

intrinsic functional networks (Yeo et al., 2011) collectively known as resting-state 442 

networks (RSN), and connections with the sub-cortical and cerebellum regions. In inline 443 

Supplementary Figure 3 we show the composition of each mode eigenvector color-444 

coded according to the RSNs, and the rendering of these eigenvectors in cortical space. 445 

We find that mode 𝜓0	represents a global mode where the fMRI signals in all 446 

regions are aligned in-phase. Mode  𝜓3 consists of a phase-locking pattern where 447 

regions associated with the Default Mode Network (DMN), the Limbic network (LBC), 448 

the subcortical hippocampi (SC) regions, and some cerebellum (CB) regions are shifted 449 

in phase with respect to the rest of the brain. Mode 𝜓4 comprises regions associated 450 

with the Frontal Parietal Area (FPA), the LBC, the SC Caudate and Putamen, and a 451 

number of CB regions. Mode 𝜓5 comprises of regions associated with the Sensory 452 

Motor network (SMT), and the Ventral Attention network (VAT), with some contribution 453 

from the FPA and the CB regions. Finally, 𝜓2 is comprised mainly of the Visual network 454 

(VIS) with significantly lower contributions from SMT, LBC, DMN, and SC. 455 

Overall, these results show that spatiotemporal patterns of phase-locking are 456 

representative and stable across multiple fMRI acquisitions. They therefore provide a 457 

stable basis for the characterization and analysis of our battery of dFC metrics.  458 

 459 
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3.1.2 Global Metastability was the most stable metric across all runs 460 

As a second step, we sought to investigate the stability of a series of global 461 

metrics - namely metastability, synchronization, chimera index, phase-coherence 462 

coefficient, coalition entropy, integrated information, and typical reconfiguration speed – 463 

across different multiple fMRI acquisitions. For this, the values of each metric in four 464 

different runs were compared using a non-parametric permutation-based paired t-test to 465 

identify significant difference. Figure 3A shows the bar plots for each metric including 466 

the mean value and indicators for where significant differences were found between the 467 

runs. In Figure 3B we show the distribution of the metrics across runs which provides 468 

complementary information on the median and spread of the metric values across runs.  469 

There was no statistically significant difference in the measure of global 470 

metastability across the 4 fMRI runs. When the cerebellum was excluded, however, 471 

global metastability did not show the same reliability inline Supplementary Figure 4(A-472 

B). The measures of global synchronization and phase-coherence coefficient were 473 

found to be reliable across runs 2, 3, and 4. The remaining metrics however, showed 474 

statistically significant differences across the 4 acquisitions.  To test the contribution of 475 

the cerebellar regions for the reliability of the metrics, we performed the same analysis 476 

with NEUROMARK (Du et al., 2020), a parcellation based on intrinsic connectivity 477 

networks that includes these regions. Indeed, in this case, global metastability remained 478 

representative and stable across all 4 runs inline Supplementary Figure 4(C-D). 479 

 480 
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 481 
Figure 3 Stability of global metrics across 4 runs.  482 
(A) The mean values for each metric are shown as bar plots. The *** indicate a statistically significant 483 
difference between the metric across the associated runs where * p < 0.05, ** p < 0.01, *** p < 0.001, and 484 
>*** p < 0.0001. (B) The distribution of the global metrics across runs. META, metastability; SYNC, 485 
synchronization; CHI, chimera index; PCC, phase-coherence coefficient; HC coalition entropy; Φ", 486 
integrated information; SPEED, typical reconfiguration speed. 487 
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3.1.3 High dynamical- and informational-complexity across acquisitions of resting-state 488 

fMRI 489 

Although a measure of global metastability was found to be stable across the 490 

cohort of healthy young adults between all runs, this was not the case for individual 491 

subjects. To illustrate this, we plot the temporal evolution of a series of metrics for two 492 

scans from one representative subject as illustrated in Figure 4. For comparison 493 

purposes, we include the same information for another subject in inline Supplementary 494 

Figure 5.  495 

 496 
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 497 
Figure 4 Overview of all metrics in all runs for a representative subject.  498 
(A) Exemplar snippets from the instantaneous phase synchrony or Kuramoto order parameter time series 499 
for each run color-coded to show which mode was dominant over time. (B) The same as A but for 500 
chimeras or cluster synchronization. (C) The evolution of instantaneous synchrony within each of the 501 
color-coded modes. (D) The evolution of instantaneous phase-coherence. (E) Mode-specific metrics 502 
calculated independently for each of the 4 runs. (F) The values of the global metrics across all 4 runs. 503 
META, metastability; CHI, chimera index; PCC, phase coherence coefficient; Hc , coalition entropy; and 504 
Φ", integrated information.  505 
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 506 

3.1.4 Mode-specific metrics do not appear representative or stable across runs 507 

We further defined mode-specific metrics by considering only the subsets of 508 

brain areas shifted in phase in each spatial mode, and compared their values across the 509 

4 runs. Mode-specific metrics are commonly used to investigate differences between 510 

normal and abnormal functional brain activity (Kottaram et al., 2019; Zarghami et al., 511 

2020). Using repeated measures ANOVA, we did not find any mode-specific metric that 512 

was reliable in all 5 modes across all 4 runs when excluding or including the cerebellar 513 

region as shown in Table 2. 514 

 515 
Repeated measures ANOVA for mode-specific metrics Repeated measures ANOVA for mode-specific metrics 
Significant differences Significant differences 
AAL90 AAL116 
        
Metric Mode F score p value Metric Mode F score p value 
        
OCC 𝜓! F(3,294) = 10.570 p < 0.001 OCC 𝜓" F(3,294) = 7.158 p < 0.001 
OCC 𝜓# F(3,294) = 5.362 p = 0.001 OCC 𝜓! F(3,294) = 9.634 p = 0.001 
DURATION 𝜓" F(3,294) = 6.139 p = 0.001 OCC 𝜓$ F(3,294) = 2.817 p = 0.039 
DURATION 𝜓! F(3,294) = 3.152 p = 0.025 OCC 𝜓# F(3,294) =  8.234 p < 0.001 
META 𝜓% F(3,294) = 7.462 p < 0.001 DURATION 𝜓" F(3,294) = 7.932 p < 0.001 
SYNC 𝜓" F(3,294) = 14.466 p < 0.001 META 𝜓$ F(3,294) = 4.262 p = 0.006 
SYNC 𝜓! F(3,294) = 7.062 p < 0.001 SYNC 𝜓" F(3,294) = 11.334 p < 0.001 
SYNC 𝜓$ F(3,294) = 9.381 p < 0.001 SYNC 𝜓! F(3,294) = 5.138 p = 0.002 
SYNC 𝜓# F(3,294) = 24.355 p < 0.001 SYNC 𝜓$ F(3,294) = 3.537 p = 0.015 
SYNC 𝜓% F(3,294) = 6.956 p < 0.001 SYNC 𝜓# F(3,294) = 17.132 p < 0.001 
SPEED 𝜓" F(3,294) = 9.069 p < 0.001 SYNC 𝜓% F(3,294) = 85.632 p < 0.001 
SPEED 𝜓! F(3,294) = 12.065 p < 0.001 SPEED 𝜓" F(3,294) = 8.552 p < 0.001 
SPEED 𝜓$ F(3,294) = 9.251 p < 0.001 SPEED 𝜓! F(3,294) = 16.348 p < 0.001 
SPEED 𝜓# F(3,294) = 8.907 p < 0.001 SPEED 𝜓$ F(3,294) = 3.272 p = 0.022 
SPEED 𝜓% F(3,294) = 10.805 p < 0.001 SPEED 𝜓# F(3,294) = 17.662 p < 0.001 
    SPEED 𝜓% F(3,294) = 65.839 p < 0.001 

 516 
Table 2 Repeated measures ANOVA results for mode-specific metrics over 4 fMRI acquisitions in AAL 517 
parcellations excluding the cerebellar regions (AAL90), and including the cerebellar regions (AAL116). 518 
OCC, occurrence; META, metastability; SYNC, synchronization; SPEED, typical reconfiguration speed.  519 
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We also used a non-parametric permutation-based paired t-test to investigate if 520 

these differences were due to 1 idiosyncratic run or if the differences emerged over 521 

different runs. The differences remained statistically significant and were present across 522 

different runs even after performing Bonferroni correction for multiple comparisons 523 

across the 5 modes, as can be seen in inline Supplementary Figure 6. Notably, metrics 524 

of fractional occurrence and duration of modes - which have been used for comparisons 525 

between conditions studies - were not reliable across 4 acquisitions in the AAL 526 

parcellation with or without the cerebellar regions.  527 

 528 

3.2 Characterization of the dFC process 529 

3.2.1 Reconfiguration speeds in phase-locking space exhibit fractal scaling and deviate 530 

from Gaussianity  531 

An unanswered question regarding dFC is whether spatiotemporal patterns 532 

change in a discrete or continuous manner over time. K-means clustering yields a 533 

distinct mode for each timepoint, but this mode is just the cluster centroid with the 534 

shortest distance, and a number of other modes may also contribute to the resulting 535 

spatiotemporal pattern at each timepoint. An alternative perspective is to view dFC as a 536 

smooth reconfiguration of phase-locking connectivity, and to collapse these relations to 537 

a point in the space of possible relations. We can then view the evolution of this point as 538 

a stochastic exploration of a high-dimensional space. This is a direct adaptation of the 539 

reconfiguration speed introduced in (Battaglia et al., 2020) for phase-locking functional 540 

connectivity.  541 

We computed the reconfiguration speeds (Figure 5A) and fractal scaling 542 

characteristics (Figure 5D) of phase-locking dFC. Out initial plan was to include the 543 

Hurst-like exponent a derived from detrended fluctuation analysis (DFAa) (Peng C-K et 544 
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al., 1993) in our battery of dFC metrics (see 2 Materials and Methods). However, we 545 

found that the assumption of extended linear power-law scaling was violated in 40-50% 546 

of subjects Figure 5(B-C). When linear power-law scaling was present, FC fluctuations 547 

showed fractal scaling with DFAa  > 0.5 indicating that the stochastic reconfiguration 548 

process in phase-locking space was not random, but displayed long-range correlations 549 

and deviated from Gaussianity as shown in Figure 5D. 550 

 551 

 552 
Figure 5 dFC reconfiguration speeds and Detrended Fluctuation Analysis (DFA).  553 
(A) Phase-coupling dFC reconfiguration speeds were slow across all 4 fMRI acquisitions. (B) Before 554 
performing DFA we established if subjects exhibited extended sections of linear power-law scaling in FC 555 
fluctuations. Between 50% to 60% of subjects exhibited ‘genuine’ power-law scaling. (C) For the majority 556 
of subjects that demonstrated linear power-law scaling, DFAα was greater than 0.5 which implies the 557 
presence of persistent fluctuations, long-range correlations, and deviation from a Gaussian generation 558 
process.  (D) The probability densities for DFAα for ‘genuine’ subjects in each of the 4 runs. (E) An 559 
example of linear power-law scaling where the best fit was found to be y=2.40*0.57x. (F) An example of 560 
non-linear power-law scaling where the best fit was found to be y= (-real(1/log(10))log(0.11(1-exp(-561 
0.02exp(log(10)x)))-0.01)). We used FluctuationAnalysis() (Ton and Daffertshofer, 2016) to test for 562 
linearity and to calculate DFA. 563 
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The reconfiguration random-walk of dynamic phase-locking matrices, or dPL 564 

stream, is represented in 3 dimensions in Figure 6 (using a t-Stochastic Neighbor 565 

Embedding algorithm, see Materials and Methods). The resulting distance preserving 566 

non-linear projections in 3 dimensions of the associated dPL stream (timeseries) are 567 

shown with respect to time (left) and with respect to the mode visited (right). The speeds 568 

of reconfiguration revealed periods of slow morphing interspersed with sharp changes in 569 

the configuration of phase-locked connectivity corresponding to the concept of ‘knots 570 

and leaps’ in (Battaglia et al., 2020), in contrast to unstructured space filling as would be 571 

expected for uncorrelated speeds in a memoryless stochastic process.. 572 

 573 

 574 
Figure 6 Visualizations of a reconfiguration walk in the phase space of leading eigenvectors.  575 
(A) We show a distance preserving non-linear projection in three dimensions of a subject’s dPL stream 576 
from a single fMRI scan obtained with the t-SNE algorithm. Each point corresponds to a specific 577 
observation of FC(t) and the path connecting the points indicates in (A) the temporal order in which the 578 
different configurations are visited. (B) The same projection but color-coded with the mode assigned to 579 
the timepoint in the timeseries. 580 

 581 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 20, 2022. ; https://doi.org/10.1101/2022.01.17.476583doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.17.476583
http://creativecommons.org/licenses/by-nc-nd/4.0/


 29 

Overall, these findings are consistent with previous literature (Battaglia et al., 582 

2020) and suggest that spatiotemporal patterns of phase-locking change in a non-583 

random slow continuous fashion over time.  584 

 585 

3.3 Relationship between global metrics 586 

 587 

As a next step in our investigation, we sought to investigate how the various 588 

studied global metrics are related to each other between subjects. For this, we 589 

calculated the Spearman correlation between all pairs of metrics.  As illustrated in 590 

Figure 7 (which corresponds to RUN1), most metrics were significantly correlated, with 591 

some metrics correlating more than 90% - revealing relationships that can be more or 592 

less evident given their nature. For instance, it is not surprising that synchrony is highly 593 

correlated (r=0.84) with the occupancy of the mode 1, since the latter represents more 594 

time in a mode of global phase coherence, while being also highly correlated (r=0.92) 595 

with the phase coherence coefficient. Moreover, the occupancy and duration of mode 1 596 

are also highly correlated (r=0.92), which can be explained by the fact that the more a 597 

mode occurs, the more probable it is to be detected on 2 consecutive time points. Less 598 

obvious, perhaps, are the strong correlations detected between Phase Coherence 599 

Coefficient, Coalition Entropy and Integrated Information. Moreover, both the Chimera 600 

Index (CHI) and the reconfiguration speed (SPEED) exhibit negative relationships with 601 

the other metrics, but the two are not correlated to each other, indicating that they are 602 

sensitive to complementary dynamical features of the system. Correlation matrices for 603 

runs 2-4 may be found in inline Supplementary Figure 7. 604 
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 605 
Figure 7 Relationships between metrics.  606 
Correlation coefficients for all metrics in run 1. Coefficients with X indicate statistical significance with a < 607 
0.05. SYNC, synchronization, CHI, chimera index, META, metastability, OCC, fractional occurrence of 𝜓# 608 
, DURATION, duration of 𝜓# , SPEED, typical reconfiguration speed, PCC, phase-coherence coefficient, 609 
CENTROPY, coalition entropy, PHI, integrated information. 610 

 611 

To further investigate the relationship between integrated information and all 612 

other metrics, we fitted a linear mixed-effect model to predict PHI based on the values 613 

of SYNC, CENTROPY, and CHI with standardized metric values. As there appeared to 614 

be quadratic structure in the distribution of the residuals, we investigated each predictor 615 

variable in its quadratic form. SYNC2 provided the best model fit and so was retained as 616 

a quadratic term. Additionally, the model included random intercepts to account for the 617 

effect of different fMRI runs. The model's explanatory power related to the fixed effects 618 

alone (i.e. its marginal R2) is 0.85. All predictors in this model were found to be 619 

significantly correlated, with SYNC and CENTROPY having positive effects while 620 

CENTROPY having a negative effect as illustrated in Table 3.  621 

 622 
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Predictor Beta T score p value 

SYNC2 0.05 t(390) = 3.03 p = 0.003 

CENTROPY 0.87 t(390) = 42.35 p < 0.001 

CHI -0.11 t(390) = -5.17 p < 0.001 

Table 3 Linear mixed-effect regression model - fixed effects 623 

The quality of the model fit was assessed using performance (Lüdecke et al., 624 

2021) and a visualization of the model checks can be found in inline Supplementary 625 

Figure 8. Additionally, this linear mixed regression model indicated that there were no 626 

random effects due to RUN as the standard deviation of the random intercept was 627 

1.454e-16. 628 

These findings provide unique empirical evidence that dynamical- and 629 

informational-complexity are related; and shows convergence of evidence from multiple 630 

approaches to support the interpretability of these metrics with respect to neuroscience.  631 

 632 

4 Discussion 633 

 634 

When conceptualizing the brain as a complex system (Turkheimer et al., 2021) 635 

one has a number of theoretical approaches and corresponding methodological tools 636 

available to assess dynamic functional connectivity beyond viewing them as mere time-637 

varying temporal correlations in fMRI signals. In this work we empirically investigated 638 

the relationships between approaches that investigate intrinsic brain activity from a 639 

dynamical systems perspective, from a stochastic process view, and from an 640 

information-processing perspective, providing some practical first steps towards the 641 

development of unified accounts of brain function.  642 

Four main insights can be derived from our results. First, from a methodological 643 

perspective, phase-locking functional connectivity derived with LEiDA, provides an 644 
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invariant basis of spatial modes for the investigation of dynamical behavior between 645 

brain regions. This invariant basis could be used as a template for future studies 646 

providing a validated (in terms of test-retest reliability) basis for cross study 647 

comparisons. These 5 reliable spatiotemporal modes of phase-locking activity reflect 648 

the physics of self-organization (Haken, 1996): that is, these macroscopic patterned 649 

modes are spontaneously created and change dramatically at critical points, showing 650 

how global order can emerge from local interactions (Kelso, 1995). 651 

Second, global metastability was the only representative and stable metric 652 

across a cohort of healthy young adults when the cerebellum is considered in 653 

conjunction with the cortex and subcortex. This may seem surprising given that the 654 

modes themselves were invariant across scanning sessions. However, the modes 655 

reflect centroids derived from k-means clustering, and as such represent the center of 656 

the cluster. Any particular instance or realization of a fMRI timeseries will not 657 

necessarily reflect these centroids, but will nevertheless have their time-points assigned 658 

to the mode they are closest to. The disadvantage of such hard clustering is that each 659 

time-point will only be assigned to one mode when in fact, the spatiotemporal pattern of 660 

the time-point may closely match more than one mode.  661 

In addition to methodological considerations, there may be physiological effects 662 

that affect brain activity across runs. Indeed, within-individual changes in resting-state 663 

dynamics have been associated with fluctuations in arousal (Laumann et al., 2017), 664 

physiological state (Chang et al., 2013; Schneider et al., 2016), ongoing conscious 665 

experience (Gonzalez-Castillo et al., 2021) and spontaneous memory replay (Tambini 666 

and Davachi, 2019). Systematic differences have also been found with time of day 667 

(Orban et al., 2020; Vaisvilaite et al., 2021). However, our results indicate that global 668 
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metastability is relatively insensitive to these effects. This global metric is therefore a 669 

potential candidate for neurological markers of effect in intervention studies.  670 

Indeed, empirical results have shown global metastability to be higher when the 671 

brain was at rest (Hellyer et al., 2014), reduced during states of unconsciousness (Jobst 672 

et al., 2017), and increased beyond the resting-state maximum when the brain was in a 673 

psychedelic state (Carhart-Harris et al., 2014; Lord et al., 2019). In clinical populations, 674 

global metastability was found to be progressively reduced for mild cognitive impairment 675 

to Alzheimer’s disease (Córdova-Palomera et al., 2017) and positively correlated with 676 

cognitive flexibility (Hellyer et al., 2015). Metastable synchronization of brain 677 

subsystems has also been shown to drive the transient emergence of cluster 678 

synchronization, replicating features of resting-state magnetoencephalography MEG 679 

(Cabral et al., 2014). Global metastability, is therefore, a reliable dFC metric that has 680 

promise for both empirical and computational studies. 681 

However, as the majority of metrics were not representative across the same 682 

subjects in different acquisitions, they may not be representative or generalizable to the 683 

overall population of healthy young adults. This nonergodicity challenges the 684 

interpretation of cross-sectional study outcomes and questions the applicability of such 685 

designs to study phenomena that may be more suitable to investigation of individual life-686 

trajectories through approaches such as fingerprinting (Van De Ville et al., 2021). 687 

The differential effect of including the cerebellum in the calculation of our dFC 688 

metrics is intriguing. The cerebellar regions have been shown to be associated with the 689 

DMN and FPA (Buckner et al., 2011), and to be active across a range of motor and 690 

cognitive tasks including working memory, cognitive control, social cognition (King et al., 691 

2019) and emotional processing (Pierce and Péron, 2020). Interestingly, it has been 692 

suggested that the cerebellar regions fine-tune limbic-induced synchronization of the 693 
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cortical regions (Pierce and Péron, 2020) which is consistent with our findings that 694 

mode 𝜓4 includes frontal-parietal, limbic, and cerebellar regions. This synchronization 695 

effect of the cerebellar regions has been neglected to date in dFC studies, but appears 696 

to play a key role for the reliability of global metastability. 697 

Third, we sought to find reproducible evidence of convergence from multiple 698 

methods by investigating the relationship between our diversly derived metrics. The 699 

development of a prediction model that was independent of run and included metrics 700 

derived from dynamical systems theory, information theory, and information dynamics 701 

testifies to the neuroscientific interpretability of our results. It also revealed in empirical 702 

data that dynamical- and informational complexity are related, confirming previous 703 

computational study findings (Mediano et al., 2022). It is interesting to note that in our 704 

regression model, the main effect of cluster synchronization was to reduce mean 705 

integrated information Φ!. What this suggests is that excessive competition between 706 

the communities to create coalitions may lead to predominantly redundant information 707 

processing; conversely, the diversity of cluster coalitions would be what leads to transfer 708 

and synergistic information processing. Integrated information - as computed in this 709 

study, with the additional subtleties of decomposition and multivariate sources and 710 

targets, may be capturing some elements of conscious processing. Intriguingly, 711 

integrated information was not significantly predicted by metastability, although 712 

moderate positive correlations between the two metrics were found in all 4 runs. Indeed, 713 

global metastability could be associated with homeostasis, reflecting a healthy 714 

regulation of tendencies for integration and segregation, whereas integrated information 715 

theoretically reflects the actual balance of integration and segregation. Metastability can 716 

be viewed as providing the opportunity for the system to engage in cluster 717 

synchronization resulting in segregation of the communities. This dynamic segregation 718 
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feature of the system appears to be complementary to the speed of changes in FC, and 719 

the metrics sensitive to these features exhibit negative relationships with all other 720 

metrics.  721 

Taking metrics derived from dynamical systems theory and stochastic processes 722 

yields complementary insights into the dynamical complexity of brain functioning. 723 

However, not all metrics revealed findings consistent with previous literature. It is not 724 

unexpected to find periods of high phase coherence across communities in the global 725 

mode, but it would be expected to find CTC-like channels of communication when other 726 

modes are dominant. It may be that the synchronization threshold l = 0.8 was too high 727 

to allow for delays in phase synchronization between remote communities. Indeed, 728 

when the threshold was set to λ = 0.7, periods of high phase coherence across 729 

communities were also found in other modes as can been seen in inline Supplementary 730 

Figure 9. 731 

Computational models play a crucial role in neuroscience either for predicting 732 

phenomenon or for replicating phenomenon observed in empirical data. In this study we 733 

included metrics from both empirical data and computational modelling, and have 734 

unveiled relationships that will require a fundamental review of the underlying theoretical 735 

and mathematical concepts for neuroscientific interpretation. 736 

Fourth, and finally, from describing brain behavior from the perspective of a 737 

stochastic process, we have provided tentative confirmatory results that the dFC 738 

process   changes in a slow, non-random manner. It must be noted that we used phase-739 

locking functional connectivity rather than temporal correlation as in the original 740 

application of this innovative methodology (Battaglia et al., 2020). Our non-linear 741 

measures of dynamic phase-locking behaved differently than linear correlations. 742 

Despite this difference, we were still able to show in the majority of subjects, that 743 
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spatiotemporal patterns of phase-locking change in a continuous and non-random 744 

manner, exhibiting long-range temporal correlations, indicating the presence of memory.  745 

Taken together, these results are congruent with complex systems theory 746 

(Turkheimer et al., 2021) in that phase-relationships in fMRI of the resting state brain 747 

exhibit: 748 

• Invariant spatiotemporal patterns that are indicative of self-organized processes 749 

(Haken, 1996) 750 

• Nonergodicity in that dFC metrics are in general, not representative across 751 

samples (Turkheimer et al., 2021) 752 

• Diversity in cluster synchronization (Turkheimer et al., 2021) 753 

• Fractal scaling in the continuous change of functional connectivity (Battaglia et 754 

al., 2020) 755 

 756 

5 Limitations and future research 757 

 758 

A number of limitations that should be considered when evaluating the findings. 759 

Starting with modes, we found near perfect ICC agreement of all 5 spatiotemporal 760 

phase-locking modes across all 4 runs. However, ICC is a relative metric and the large 761 

between-region differences may bias a high ICC value in the absence of genuinely 762 

small within-region differences. However, we achieved similar results with Pearson 763 

correlation. 764 

Another possible limitation of this study is that in contrast to previous studies of 765 

metastability, we defined the communities of oscillators directly from the phase-locking 766 

data and not from intrinsic connectivity networks. Our so-derived communities are not 767 

distinct, specifically mode 𝜓0 comprises all other modes. This may be a violation of 768 
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assumptions for calculating some metrics but we believe that it is more representative of 769 

what may actually be happening in the brain, that is, coalitions transiently forming 770 

between phase-related communities.  771 

Moving on to communities, previous investigations of Φ! in fMRI data have used 772 

a continuous model to compute the relevant information theoretic variables (Luppi et al., 773 

2020b). In this study we adopted the discrete data model which has been used in 774 

computational models of weakly coupled Kuramoto oscillators (Mediano et al., 2022, 775 

2016). We computed  𝜙! for an integration timescale from 1-500 TRs and retained the 776 

max Φ! obtained as indicative of integrated information for a specific subject in a 777 

specific run. Although there is information in the integration timescale that yielded this 778 

Φ!
678 , a maximum statistic test (Novelli et al., 2019) would be required before any 779 

inferences may be drawn. 780 

We note that there are a number of differences between our findings and those 781 

of (Battaglia et al., 2020). Our stochastic walks were based on instantaneous phase-782 

locking and not on smoothed sliding-window temporal correlation. We used a 783 

parcellation with 116 rather than 68 anatomical regions which influences the resulting 784 

speeds, and potentially the power-law scaling and fluctuation characteristics. We also 785 

did not pool our data as we had sufficient datapoints (1198 TRs) for our calculations. 786 

Unlike Battaglia et al. we found that between 40-50% of the HCP subjects exhibited a 787 

loss of linearity in power-law scaling in any particular run. In fact, just 7 subjects showed 788 

‘genuine’ power-law scaling over the 4 runs. In a previous study investigating fractal 789 

scaling in phase synchronization, fluctuations were averaged over all subjects before 790 

determining the scaling component 𝛼 (Daffertshofer et al., 2018) potentially obscuring 791 

loss of linearity in some individual subjects. The lack of linear power-law scaling in 792 

individual subjects has been noted before (Botcharova, 2014). We did not investigate 793 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 20, 2022. ; https://doi.org/10.1101/2022.01.17.476583doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.17.476583
http://creativecommons.org/licenses/by-nc-nd/4.0/


 38 

the reasons for this lack or loss of linearity although there have been suggestions that 794 

this may be due to periodic trends (Hu et al., 2001), non-stationarities (Chen et al., 795 

2002) or non-linear transformations (Chen et al., 2005). Indeed, it has recently been 796 

reported that different RSNs exhibit different degrees of non-stationarity (Guan et al., 797 

2020). Unravelling the reasons for loss of linearity is beyond the scope of the present 798 

paper, but merits future study. 799 

We did not develop any null models to test the validity of the methodologies 800 

employed which may be considered a weakness of this study. However, each of these 801 

methodologies has already been validated against null models or with surrogate data  802 

(Battaglia et al., 2020; Honari et al., 2020; Mediano et al., 2022). In contrast, there have 803 

been few studies that used these methodologies to compare performance across fMRI 804 

realizations.  805 

We have just started to explore the relationships between metrics from different 806 

conceptualizations of brain functioning. It is clear that there are a number of possible 807 

avenues for future research arising from this study. A deeper investigation of power-law 808 

linearity differences between subjects and runs for reconfiguration speeds could reveal 809 

interesting trait or state correlations. Understanding the relationships between the 810 

metrics in general, and with respect to integrated information specifically, poses a 811 

challenging task. Unravelling these relationships, potentially with computational models, 812 

may provide novel insight into the mechanisms and dynamics of functional connectivity. 813 

Finally, applying this battery of metrics to longitudinal or individual life-trajectories could 814 

uncover novel relationships that have evaded detection with single methodologies. 815 

 816 
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6 Concluding remarks 817 

Neuromarkers need to demonstrate reliability and interpretability before 818 

introduction into a clinical environment. A measure of global metastability, a universal 819 

phenomenon across multiple conceptualizations of intrinsic brain activity, was found to 820 

be the most representative and stable across multiple fMRI acquisitions of the same 821 

subjects. This nonergodicity challenges the use of cross-sectional study designs for 822 

dFC. Using concepts and tools from complexity science we have described the 823 

metastable behavior of fMRI resting-state activity and our findings are congruent with 824 

complex system theory. The inter-relationships between metrics derived from dynamical 825 

systems theory, information theory, and information dynamics highlight the 826 

simultaneous and balanced tendencies for functional segregation and global integration 827 

in the healthy brain. Our battery of metrics may one day help to understand why this 828 

balance is lost in psychiatric disorders, or how pharmacological interventions can affect 829 

this balance. 830 
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