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Abstract

Dynamic functional connectivity (dFC) in resting-state fMRI holds promise to deliver
candidate biomarkers for clinical applications. However, the reliability and interpretability
of dFC metrics remain contested. Despite a myriad of methodologies and resulting
measures, few studies have combined metrics derived from different conceptualizations
of brain functioning within the same analysis - perhaps missing an opportunity for
improved interpretability. Using a complexity-science approach, we assessed the
reliability and interrelationships of a battery of phase-based dFC metrics including tools
originated from dynamical systems, stochastic processes, and information dynamics
approaches. Our analysis revealed novel relationships between these metrics, which
allowed us to build a predictive model for integrated information using metrics from
dynamical systems and information theory. Furthermore, global metastability - a metric
reflecting simultaneous tendencies for coupling and decoupling - was found to be the
most representative and stable metric in brain parcellations that included cerebellar
regions. Additionally, spatiotemporal patterns of phase-locking were found to change in
a slow, non-random, continuous manner over time. Taken together, our findings show
that the majority of characteristics of resting-state fMRI dynamics reflect an interrelated
dynamical- and informational-complexity profile, which is unique to each acquisition.
This finding challenges the interpretation of results from cross-sectional designs for
brain neuromarker discovery, suggesting that individual life-trajectories may be more

informative than sample means.

Keywords

Functional magnetic resonance imaging, dynamic functional connectivity, complexity,

metastability, fractal scaling, integrated information, LEIDA.
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Highlights

e Spatiotemporal patterns of phase-locking tend to be time-invariant

e Global metastability is representative and stable in a cohort of heathy young
adults

e dFC characteristics are in general unique to any fMRI acquisition

e Dynamical- and informational-complexity are interrelated

e Complexity science contributes to a coherent description of brain dynamics

Abbreviations: fMRI, functional magnetic Resonance Imaging, BOLD, blood oxygen
level dependent, FC, Functional Connectivity, dFC, dynamic Functional Connectivity,

LEIDA, Leading Eigenvector Dynamic Analysis, DFA, detrended fluctuation analysis,

1 Introduction

There is great anticipation that functional neuroimaging may complement current
clinical phenomenology in the diagnosis of disorders of brain functioning, and provide
brain-based markers for patient stratification, disease progression tracking, and
prediction of treatment outcomes (Zhang et al., 2021). In this context, the investigation
of the brain’s functional connectivity (FC) — as revealed by resting-state functional
magnetic resonance imaging (fMRI) — holds promise for enabling tools of great clinical
value, with thousands of articles per year focused on elucidating properties of normal
and abnormal whole-brain functionality (Zhang et al., 2021). Static FC reveals the
statistical interdependence among different brain regions using blood oxygenation level
dependent (BOLD) signals (Friston,1994). However, these static measures camouflage
the inherent dynamic nature of brain activity which is captured with time-varying

functional connectivity, or dynamic FC (dFC). Unfortunately, the fact that fMRI may be
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85  capturing something other than BOLD signals (Drew et al., 2020; Raut et al., 2021), and

86 in the absence of a ground truth, the hurdles to use FC metrics in the clinic are high

87 (Woo and Wager, 2015), and considerably higher for dFC due to issues of interpretation

88  (Lurie et al., 2020) and sampling variability (Laumann et al., 2017), although the latter

89 has been rigorously challenged (Miller et al, 2018). Moreover, the popularity of FC and

90 dFC methods comes with a plethora of heterogeneous methodologies derived from

91  distinct conceptualizations of brain functioning (Bijsterbosch et al., 2020).

92 Candidate neuromarkers should demonstrate a high degree of reliability and

93 ideally be robust and interpretable in terms of neuroscience (Woo and Wager, 2015).

94  Despite efforts to assess the test-retest reliability of dFC metrics, the results remain

95 contested (Abrol et al., 2017; Bijsterbosch et al., 2017; Choe et al., 2017; Orban et al.,

96 2020; Vaisvilaite et al., 2021; Vohryzek et al., 2020). Common approaches to address

97 these concerns of validity include comparison of results with null models (Battaglia et

98 al., 2020) or replication of results in alternative datasets (Varley et al., 2020).

99  Neuroscientific interpretation of candidate neuromarkers is enhanced with convergence
100 of evidence from multiple sources (Woo and Wager, 2015), and together with reliability,
101  is one of the necessary conditions to introduce neuromarkers into the clinic.

102 With this in mind, in this paper we took a complexity-science perspective to

103 identify a number of diverse dFC metrics for investigation (Turkheimer et al., 2021).
104  The existence of distinct methodologies that investigate intrinsic brain activity either
105 from a dynamical systems perspective, from considerations of the time-evolution of the
106  dynamical system as a stochastic process, or from an information processing

107  perspective, compels us to confront the challenging task of piecing together a coherent

108 description of brain dynamics consistent across the underlying theories.
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Two specific metrics, metastability and integrated information, derived from
bottom-up and top-down analysis respectively, hold special interest for investigation.
Theoretically, metastability has been described as a subtle blend of segregation and
integration among brain regions that show tendencies to diverge and function
independently, with tendencies to converge and function collectively (Tognoli and Kelso,
2014). Metastability has been considered a key attribute for computational models
exploring mechanisms of brain dynamics and an important indicator of healthy brain
functioning (Deco et al., 2017). From an alternative but complementary perspective,
integrated information (operationalized as the quantity @) has been proposed as a way
of quantifying the balance between integration and segregation, and possibly
consciousness (Tononi, 2004). More recent metrics of integrated information, ®&,
extends this construct to reflect the degree of synergistic and transfer information
processing across brain areas (Mediano et al., 2022). Therefore, we sought to
investigate if these two metrics contributed converging evidence for the processes of
integration and segregation that are believed to take place as part of intrinsic brain
activity.

Our objective was to develop a coherent description of brain dynamics consistent
across underlying theories. Therefore, rather than investigate metastability and
integrated information in isolation, we assessed them in combination with metrics
originating in complexity-science, as well as metrics identified theoretically or empirically
as characterizing or contributing to metastability or integrated information. Whilst the
methodologies used in this study have already been individually validated against null
models or with surrogate data (Battaglia et al., 2020; Honari et al., 2021; Mediano et al.,
2022), there is a lack of studies where these methodologies were used to compare

performance in the same subjects across multiple fMRI acquisitions. Therefore, we set
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134  out to answer the following questions: are the chosen dFC metrics representative and
135 reliable across multiple fMRI acquisitions? Are these metrics related via their ability to
136 capture different aspects of dFC? And finally, what are the implications of these

137  relationships?

138 To address these questions, we used four resting-state fMRI acquisitions

139 recorded on two consecutive days from 99 healthy unrelated participants from the

140 Human Connectome Project (Van Essen et al., 2013). We performed confirmatory

141 analysis with different parcellation schemes, considering an anatomical parcellation with
142  and without the cerebellar regions and a functional parcellation that included the

143  cerebellar regions.

144 2 Materials and Methods
145 2.1 Data

146 All data used in this study was collected for the Human Connectome Project,
147  WU-Minn Consortium (Principal Investigators: David Van Essene and Kamil Ugurbil;
148 1U54MHO091657) with funding from the sixteen NIH Institutes and Centers supporting
149 the NIH Blueprint for Neuroscience Research; and by the McDonell Center for Systems

150 Neuroscience at Washington University.

151
152 2.2 Ethics Statement
153 The Washington University institutional review board approved the scanning

154  protocol, participant recruitment procedures, and informed written consent forms, and

155 consented to share deidentified data.

156
157 2.3 Participants
158 We used the data from the ‘500 subject’ release but restricted our analysis to the

159 100 Unrelated Subjects’ (aged 20 to 35 years old, 54 females (Glasser et al., 2013)). A
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160 list of employed subject ID numbers and associated scan times is provided in
161  Supplementary Table S 1.

162
163 2.4 fMRI data acquisition and pre-processing

164 Each participant underwent four scans of resting-state fMRI (rs-fMRI) collected
165 over two experimental sessions (two scans in each session) which took place on

166  consecutive days. The datasets acquired from all participants in each of the 4 scans are
167 referred to as ‘runs’ 1 to 4. During each scan 1200 frames were acquired using a

168 multiband sequence at 2 millimeters (mm) isotropic resolution with a repetition time (TR)
169 of 0.72 seconds over the span of 14 minutes 24 seconds. Participants were instructed
170 to maintain fixation on a bright crosshair presented on a dark background in a darkened
171  scanning room. The two scans in each session differed only in the oblique axial

172  acquisition phase encoding. For the first 6 subjects, the rs-fMRI runs were acquired

173  using a Right-Left (RL) phase-encoding followed by a Left-Right (LR) phase-encoding
174  on both days. For the following 94 subjects, the order of the different phase-encoding
175 acquisitions for the rs-fMRI runs across days was counterbalanced (RL followed by LR
176  on Day 1; LR followed by RL on Day 2).

177 Data were pre-processed with the HCP’s minimal pre-processing pipeline, and
178 denoising was performed by the ICA-FIX procedure (Glasser et al., 2013; Griffanti et al.,
179  2014; Salimi-Khorshidi et al., 2014). A complete description of the acquisition and pre-
180 processing details may be found at the HCP website

181  https://www.humanconnectome.org/. One subject was excluded from the analysis as

182 the image file was corrupted.

183
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2.5 Parcellations

We parcellated the pre-processed fMRI data by averaging time-courses across
all voxels for each region defined in the anatomical parcellation AAL (Tzourio-Mazoyer
et al., 2002) considering all cortical and subcortical brain areas including the
cerebellum, N=116 or without the cerebellum N=90. For confirmation of the contribution
of the cerebellum to the reliability of the metrics, we also parcellated the fMRI data with

the NEUROMARK framework (Du et al., 2020).

2.6 Bandpass filtering

To isolate low-frequency resting-state signal fluctuations, we bandpass filtered
the parcellated fMRI time-series for 0.01-0.08 Hz, in alignment with previous studies

(Glerean et al., 2012).

2.7 Phase relationships

We investigated two complementary forms of phase relationships, phase-locking

and phase synchrony as illustrated in Figure 1.

0 /4 /2 ™ 3n/2 3n/4
Phase-locking . I . .
Phase synchrony I . [— . |
-1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1
1 1 1 1 1 1
0.5 0.5 0.5 0.5 0.5 0.5
]
2 |
z 0 0 ] ] ! 0 i 0 i
E
«
-0.5 -0.5 -0.5 -0.5 -0.5 -0.5
-1 -1 -1 -1 -1 -1
0 0.05 01 0 0.05 01 0 0.05 01 0 0.05 01 0 0.05 01 0 0.05 0.1

time
Figure 1 Two complementary forms of phase coupling for the calculation of dFC metrics.
Phase-locking, evaluated as the cosine of the phase difference, is sensitive to both in-phase and anti-
phase relationships between regions, while phase synchrony is sensitive to the phase alignment between

regions.
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207 2.8 Functional connectivity through phase-locking
208 We estimated functional connectivity (FC) with the nonlinear measure of phase-

209 locking which may be more suitable than linear measures such as Pearson correlation
210 for analyzing complex brain dynamics (Pereda et al., 2005; Quian Quiroga et al., 2002).
211 Indeed, phase relationships have been leveraged in many dFC studies to date (Alonso
212 Martinez et al., 2020; Cabral et al., 2017; Deco and Kringelbach, 2016; Figueroa et al.,
213  2019; Ponce-Alvarez et al., 2015; Vohryzek et al., 2020; Zhang et al., 2019; Zhou et al.,
214 2020). First, we calculated the analytical signal using the Hilbert transform of the real
215 signal (Gabor, 1946). Then, the instantaneous phase-locking between each pair of brain
216  regions n and p was estimated for each time-point t as the cosine difference of the

217  relative phase as

218
iPL(n,p,t) = cos(e(n, t) — 0(p, t)) (1)
219

220 Phase-locking at a given timepoint ranges between -1 (regions in anti-phase) and 1
221  (regions in-phase). For each subject the resulting iPL was a three-dimensional tensor
222  NxNxT where N is the dimension of the parcellation, and T is the number of timepoints
223 inthe scan.

224

225 2.8.1 LEIDA - Leading Eigenvector Dynamic Analysis

226 To reduce the dimensionality of the phase-locking space for our dynamic

227 analysis, we employed the Leading Eigenvector Dynamic Analysis (LEIDA) (Cabral et
228 al., 2017) method. The leading eigenvector V1(t) of each iPL(t) is the eigenvector with
229 the largest magnitude eigenvalue and reflects the dominant FC (through phase-locking)
230 pattern at time t. V(1) is a Nx1 vector that captures the main orientation of the fMRI

231 signal phases over all anatomical areas. Each element in V() represents the projection
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of the fMRI phase in each region into the leading eigenvector. When all elements of
Vi(t) have the same sign, this means that all f/MRI phases are orientated in the same
direction as V/4(t) indicating a global mode governing all fMRI signals. When the
elements of V;(t) have both positive and negative signs, this means that the fMRI
signals have different orientations behaving like opposite anti-nodes in a standing wave.
This allows us to separate the brain regions into two ‘communities’ (or poles) according
to their orientation or sign, where the magnitude of each element in V1(t) indicates the
strength of belonging to that community (Newman, 2006). For more details and
graphical representation see (Figueroa et al., 2019; Lord et al., 2019; Vohryzek et al.,
2020). The outer product of Vi(t) reveals the FC matrix associated with the leading

eigenvector at time t¢.

2.8.2 Mode extraction

To identify recurring spatiotemporal modes y or phase-locking patterns, we
clustered the leading eigenvectors for each run with K-means clustering with 300
replications and up to 400 iterations for 2-7 centroids considering 116 and 90 (i.e.,
excluding the cerebellum) anatomical regions. K-means clustering returns a set of K
central vectors or centroids in the form of Nx7 vectors V.. As V. is a mean derived
variable, it may not occur in any individual subject data set. To obtain time courses
related to the extracted modes at each TR we assign the cluster number to which V(t)

is most similar using the cosine distance.

2.8.3 Mode visualization

We rendered the centroid vectors V. in cortical space by representing each

element as a sphere placed at the center of gravity of the relevant brain region, and

10
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257 scaling the color of the spheres according to the value of the relevant eigenvector.

258 Regions with similar phase orientation are colored alike (yellow-to-red for the smallest
259 community and cyan-to-blue for the largest community), where darker colors (red/blue)
260 indicate weak contributions and lighter colors (cyan/yellow) indicate stronger

261  contributions. We also plot links between the corresponding areas to highlight the

262 network formed by the smallest community of brain areas.

263

264  2.8.4 Cluster representation in voxel space

265 To obtain a visualization in voxel space of the spatial modes V. we first reduced
266 the spatial resolution of all fMRI volumes from 2mm?3 to 10mm? to obtain a reduced
267 number of brain voxels (here N = 1821) to be able to compute the eigenvectors of the
268  NxN phase-locking matrices. The analytic signal of each 10mm? voxel was computed
269 using the Hilbert transform, and the leading eigenvectors were obtained at each time
270 point (with size NxT). Subsequently, the eigenvectors were averaged across all time
271 instances assigned to a particular cluster, obtaining in this way, for each cluster, a 7xN
272  vector representative of the mean phase-locking pattern captured in voxel space.

273

274 2.9 Measures and metrics
275 The following sections provide an accessible overview of the measures and

276  metrics used in this study. Detailed mathematical treatment and explanations for all
277  metrics may be found in Supplementary methods and metrics. Each metric has found
278 application in either theoretical or empirical studies, or both. Examples of their

279 application may be found in Table 1.

280

Measure Relevance (T-theoretical, E-empirical) Reference

11
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Phase-Locking

Fractional occurrence Differences associated with major depression (E) (Alonso Martinez et al., 2020)
Duration Differences associated with Alzheimer's disease (E) (Sendi et al., 2021)
Typical FC Slows down in older healthy adults (E)

reconfiguration speed (Battaglia et al., 2020)
Fractal scaling Reduces with increasing age (E)

coefficient (Battaglia et al., 2020)
Phase

Synchronization

Synchronization Healthy cortex operates with moderate synchrony (Yang et al., 2012)
(E,T)
Metastability Increases with psilocybin (E) (Lord et al., 2019)
Cluster synchronization = Requires a certain degree of metastability (T) (Cabral et al., 2014)
(Chimera Index)
Diversity of cluster Ocecurs at transition between global synchronization (Wildie and Shanahan, 2012)
synchronization and disorder (T)
(Coalition entropy)
Phase coherence Requires connectivity between communities (T) (Wildie and Shanahan, 2012)
across Required for CTC-like channels of communication (Deco and Kringelbach, 2016)
synchronized (T)
communities
Integrated Information Loss of consciousness reduced integrated (Luppi et al., 2020a)

information (E)
281  Table 1 Examples of application of dFC metrics in empirical and theoretical studies

282

283 2.9.1 Metrics derived from phase-locking

284 Fractional occurrence of mode y,, was calculated as number of timepoints

285 assigned to mode ), divided by the total number of timepoints. This measure reflects
286 the proportion of time the fMRI activity patterns are closer to mode v, than to any other
287 mode Y. Its values are bound between 0 and 1.

288 Duration of mode 1, was calculated as the mean of all consecutive periods

289 spentin a particular mode measured in seconds.

290 Reconfiguration speeds were calculated as 1 — correlation between functional
291  connectivity (iPL matrices) at time t and t+1. This measure characterizes the time

292  evolution of the phase-locking modes. Low speed indicates smooth transitions in phase-
293 locking relationships. Faster speed indicates abrupt switching between phase-locking

294  relationships.

12
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The detrended fluctuation analysis exponent o returns an estimate of how
predictable a timeseries is by quantifying the dependence of a value at time tis on a
value at time t-1. Values less than 0.5 indicate non-persistent fluctuations and a return
to the mean. Values = 0.5 indicate random fluctuations and an underlying process with
no memory. Values between 0.5 and 1 indicate persistent fluctuations and an
underlying process that has memory and long-term correlations.

Following (Ton and Daffertshofer, 2016), power-law scaling was tested for
linearity using a Bayesian model comparison technique and the best fit model was
selected with Bayesian Information Criterion. Only subjects that exhibited extended

linear power-law scaling were included in the summary metric of DFAa.

2.9.2 Metrics derived from phase synchrony

Communities were defined as a set of regions that intermittently lock out of
phase with the global mode. The global mode was also considered as a community
yielding 5 communities in total.

Synchronization was calculated as the time-average of the Kuramoto order

parameter in each community, which is given by

Zy(t) = (e®TD), ey, (2)

Above, Z,,(t) is a complex value where its magnitude, and hence SYNCy=|Z,,(t)|,

provides a quantification of the degree of synchronization of the community at each time
t, taking values between 1 (for fully synchronized systems) and 0O (for fully random

systems.

13
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Metastability was calculated as the standard deviation of the Kuramoto order
parameter in each community. The mean value of this measure across communities
denoted as global metastability, represents the overall variability in the synchronization
across communities.

Cluster synchronization was calculated as the variance over communities of the
Kuramoto order parameter at time t. This metric reveals if some communities cluster
together in synchrony whilst other communities remain disordered.

Instantaneous phase coherence across communities was calculated as the
average phase across communities with synchronization values higher than a
synchronization threshold A > 0.8 at time t. This measure represents the coherence
between communities when they are highly synchronized internally. Phase coherence
coefficient was calculated as the fraction of time that instantaneous phase coherence
occurred.

Coalition entropy was calculated as the entropy of the coalitions formed at each
timepoint t reported in bits. This metric represents the diversity of cluster
synchronization.

Integrated information ®® (Mediano et al., 2021) was computed from 5 binarized
time-series, one for each mode extracted through K-means clustering. Values were set
to 1 if synchronization values were higher than a synchronization threshold A > 0.8 at
time t. In this study, integrated information Indicates the degree of synergistic and
transfer information processing within the system computed over an integration

timescale t reported in bits.
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2.10 Statistical analysis

2.10.1 Interclass correlation coefficient (ICC)

ICC is a relative metric that is used for test-retest reliability in measurement
theory. It is generally defined as the proportion of the total measured variance that can
be attributed to within subject variation. As such, ICC coefficients may be low when
there is little variance between subjects, that is in a homogeneous sample, or when the
within-subject variance is large (Xing and Zuo, 2018).

There are many scales for ICC, so for clarity we will use those of (Landis and

Koch, 1977):

low (0 < ICC < 0.2)

fair (0.2 < ICC < 0.4)

moderate (0.4 <ICC < 0.6

substantial (0.6 < 1CC < 0.8)

almost perfect (0.8 < ICC < 1)

We calculated the run reliability of mode y extraction with ICC(1,1) in search of
agreement rather than consistency across runs (Noble et al., 2021). For the test-retest
assessment of metric consistency over runs, we used the ICC(3,1) form (Shrout and
Fleiss, 1979) as recommended by (Koo and Li, 2016) which is the equivalent of a 2-way
mixed ANOVA. As such, there is an assumption that the data comes from a normal
distribution. When the assumption of normality is violated, it is recommended to use

non-parametric tests such as permutation testing.

2.10.2 Repeated measures ANOVA

We performed repeated measures ANOVA on global metrics using the ranova()

function in MATLAB MathWorks R2021b. Greenhouse-Geisser correction was
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necessary as the assumption of sphericity was violated in most cases. We therefore
assessed normality of the data with Chi-square goodness of fit (results not included). As
the results indicated non-normal distribution of the data, we decided to replace ICC(3,1)
with non-parametric permutation testing. We also performed repeated measures
ANOVA on the mode-specific metrics. It should be noted that for the AAL parcellation
that included the cerebellar regions, the order of the modes in run 2 and 4 was adjusted

to match the order in run 1 and 3 for all statistical testing.

2.10.3 Permutation testing

We used a non-parametric permutation-based paired t-test to identify significant
differences between runs. This non-parametric two-sample hypothesis test uses
permutations of group (run) labels to estimate the null distribution rather than relying on
the t-test standard distributions. The null distribution was computed independently for

each run. A t-test was then applied with 1000 permutations to compare runs.

2.10.4 Linear mixed effects modeling

We used ImerTest (Kuznetsova et al., 2017) in RStudio 2021.09.1 Build 372, with
the purpose of building predictive models with both standardized and non-standardized
metric data that could deal with data that was not independent and identically
distributed. To investigate the relationship between integrated information and all other
metrics, we fitted a linear mixed-effect model (estimated using REML and nloptwrap
optimizer) to predict PHI with standardized metric values. The model included RUN as
random effect (formula: ~1 | RUN). 95% Confidence Intervals (Cls) and p-values were

computed using the Satterthwaite's method.
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2.11 Code availability statement
The Matlab and R code developed for this analysis will be made available on

publication at github.com/franhancock/Complexity-science-in-dFC together with the 5

phase-locking mode centroids for AAL parcellation in NIFTI and in Matlab format.

3 Results

3.1 Reliability of dFC measures and metrics

3.1.1 Spatial patterns of phase-locking are invariant across fMRI acquisitions

We first sought to evaluate if the spatiotemporal patterns of phase-locking
observed in fMRI are representative and stable across multiple acquisitions. For this
purpose, we compared the spatial patterns of phase-locking extracted independently for
each of the 4 fMRI runs recorded from the same 99 participants (Figure 2). Each mode
of phase locking Y corresponds to a 1xN vector (with N being the number of brain
areas considered) obtained through K-means clustering of phase-locking patterns
obtained at every time point in each run. We chose K=5 modes considering previous
test-retest studies (Abrol et al., 2017; Vohryzek et al., 2020). We calculated run
reliability with inter-class correlation coefficient (ICC) in search of agreement across
runs (Noble et al., 2021). With N=90 anatomical non-cerebellar brain regions defined in
the AAL parcellation, the modes extracted independently in each run showed almost
perfect agreement between runs with 0.99 > ICC > 0.97. With the inclusion of cerebellar
regions, the reliability of spatial patterns showed again almost perfect agreement
between runs with 1 > |CC > 0.94, although the probability of occurrence differed across
runs, altering the order of the modes when sorted by relative occupancy.

The similarity of the 5 cluster centroids k-, s across the 4 runs is clearly visible

in Figure 2. To illustrate the patterns of phase relationships between brain regions, the
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1xN centroids are rendered in cortical space together with the associated phase-locking
matrices. In addition, to visualize the phase-relationships in voxel space, we reduce the
fMRI volumes from 2mm?3 to 10mm3, resulting in 1821 brain voxels within the MNI brain
mask, and compute the eigenvectors of phase-locking at each time point. Subsequently,
the eigenvectors are averaged across all time points assigned to each cluster, and
represented in sagittal and axial planes overlaying on a 1mm?3 MNI structural image.
This approach allows visualizing the patterns of phase relationships in voxel space,
revealing meaningful functional subsystems overlapping with resting-state networks
described in the literature (A similar figure when 116 regions are considered in the K-
means clustering can be found in inline Supplementary Figure 1. ICC values for both 90

and 116 regions are reported in inline Supplementary Figure 2).
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Figure 2 - Invariant spatiotemporal patterns of phase-locking obtained independently in each of the 4
fMRI runs on the same 99 participants.

LEiDA was applied separately to the 4 fMRI runs recorded on 2 consecutive days from 99 participants
and the centroids obtained from clustering into K=5 are reported here. Each centroid V. (with size 1xN,
with N=90) is represented in three distinct forms: (A) each element Vc(n) is represented as a sphere
placed at the center of gravity of the corresponding brain region and its color is scaled according to its

value in Vc. Links highlight the network formed by the smallest community of brain areas. (B) the phase-
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locking matrices computed as the outer product of the centroid vector Vc. (C) Representation of the
centroid vector for each mode in 10mm voxel space by averaging the eigenvector values over all time
instances assigned to a particular cluster/mode. The modes were then plotted over a 1mm3 MNI T1

image.

We used the eigenvectors obtained with 116 regions to shed light on the
composition of the extracted modes and their putative membership of seven cerebral
intrinsic functional networks (Yeo et al., 2011) collectively known as resting-state
networks (RSN), and connections with the sub-cortical and cerebellum regions. In inline
Supplementary Figure 3 we show the composition of each mode eigenvector color-
coded according to the RSNs, and the rendering of these eigenvectors in cortical space.

We find that mode y; represents a global mode where the fMRI signals in all
regions are aligned in-phase. Mode 1, consists of a phase-locking pattern where
regions associated with the Default Mode Network (DMN), the Limbic network (LBC),
the subcortical hippocampi (SC) regions, and some cerebellum (CB) regions are shifted
in phase with respect to the rest of the brain. Mode y; comprises regions associated
with the Frontal Parietal Area (FPA), the LBC, the SC Caudate and Putamen, and a
number of CB regions. Mode 1, comprises of regions associated with the Sensory
Motor network (SMT), and the Ventral Attention network (VAT), with some contribution
from the FPA and the CB regions. Finally, 5 is comprised mainly of the Visual network
(VIS) with significantly lower contributions from SMT, LBC, DMN, and SC.

Overall, these results show that spatiotemporal patterns of phase-locking are
representative and stable across multiple fMRI acquisitions. They therefore provide a

stable basis for the characterization and analysis of our battery of dFC metrics.
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460 3.1.2 Global Metastability was the most stable metric across all runs

461 As a second step, we sought to investigate the stability of a series of global

462  metrics - namely metastability, synchronization, chimera index, phase-coherence

463 coefficient, coalition entropy, integrated information, and typical reconfiguration speed —
464  across different multiple fMRI acquisitions. For this, the values of each metric in four
465 different runs were compared using a non-parametric permutation-based paired t-test to
466 identify significant difference. Figure 3A shows the bar plots for each metric including
467 the mean value and indicators for where significant differences were found between the
468 runs. In Figure 3B we show the distribution of the metrics across runs which provides
469 complementary information on the median and spread of the metric values across runs.
470 There was no statistically significant difference in the measure of global

471  metastability across the 4 fMRI runs. When the cerebellum was excluded, however,

472  global metastability did not show the same reliability inline Supplementary Figure 4(A-
473 B). The measures of global synchronization and phase-coherence coefficient were

474  found to be reliable across runs 2, 3, and 4. The remaining metrics however, showed
475  statistically significant differences across the 4 acquisitions. To test the contribution of
476 the cerebellar regions for the reliability of the metrics, we performed the same analysis
477  with NEUROMARK (Du et al., 2020), a parcellation based on intrinsic connectivity

478 networks that includes these regions. Indeed, in this case, global metastability remained
479 representative and stable across all 4 runs inline Supplementary Figure 4(C-D).

480
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Figure 3 Stability of global metrics across 4 runs.

(A) The mean values for each metric are shown as bar plots. The *** indicate a statistically significant
difference between the metric across the associated runs where - p < 0.05, ~ p < 0.01, ~~ p < 0.001, and
>~ p < 0.0001. (B) The distribution of the global metrics across runs. META, metastability; SYNC,
synchronization; CHI, chimera index; PCC, phase-coherence coefficient; Hc coalition entropy; ®F,
integrated information; SPEED, typical reconfiguration speed.
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3.1.3 High dynamical- and informational-complexity across acquisitions of resting-state

MRI

Although a measure of global metastability was found to be stable across the
cohort of healthy young adults between all runs, this was not the case for individual
subjects. To illustrate this, we plot the temporal evolution of a series of metrics for two
scans from one representative subject as illustrated in Figure 4. For comparison
purposes, we include the same information for another subject in inline Supplementary

Figure 5.
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Figure 4 Overview of all metrics in all runs for a representative subject.

(A) Exemplar snippets from the instantaneous phase synchrony or Kuramoto order parameter time series

for each run color-coded to show which mode was dominant over time. (B) The same as A but for

chimeras or cluster synchronization. (C) The evolution of instantaneous synchrony within each of the

color-coded modes. (D) The evolution of instantaneous phase-coherence. (E) Mode-specific metrics

calculated independently for each of the 4 runs. (F) The values of the global metrics across all 4 runs.

META, metastability; CHI, chimera index; PCC, phase coherence coefficient; Hc, coalition entropy; and

®F | integrated information.
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3.1.4 Mode-specific metrics do not appear representative or stable across runs

We further defined mode-specific metrics by considering only the subsets of

brain areas shifted in phase in each spatial mode, and compared their values across the

4 runs. Mode-specific metrics are commonly used to investigate differences between

normal and abnormal functional brain activity (Kottaram et al., 2019; Zarghami et al.,

2020). Using repeated measures ANOVA, we did not find any mode-specific metric that

was reliable in all 5 modes across all 4 runs when excluding or including the cerebellar

region as shown in Table 2.

Repeated measures ANOVA for mode-specific metrics

Significant differences

Repeated measures ANOVA for mode-specific metrics

Significant differences

AAL90 AAL116
Metric Mode F score p value Metric Mode F score p value
occ Y, F(3,294)=10.570 p <0.001 occ Y, F(3,294) =7.158 p < 0.001
occ Y, F(3,294) = 5.362 p =0.001 occC Y, F(3,294) = 9.634 p =0.001
DURATION 3, F(3,294) = 6.139 p =0.001 occC Y3 F(3,294) = 2.817 p =0.039
DURATION ), F(3,294) = 3.152 p =0.025 occC Y, F(3,294) = 8.234 p<0.001
META Ps F(3,294) = 7.462 p <0.001 DURATION o, F(3,294) = 7.932 p <0.001
SYNC Y, F(3,294) =14.466 p <0.001 META Y3 F(3,294) = 4.262 p = 0.006
SYNC Y, F(3,294) = 7.062 p <0.001 SYNC Y, F(3,294) =11.334 p<0.001
SYNC V8 F(3,294) = 9.381 p <0.001 SYNC Y, F(3,294) = 5.138 p =0.002
SYNC Y, F(3,294) =24.355 p<0.001 SYNC Y3 F(3,294) = 3.537 p =0.015
SYNC Ps F(3,294) = 6.956 p <0.001 SYNC Y, F(3,294)=17.132 p<0.001
SPEED Y, F(3,294) = 9.069 p <0.001 SYNC Ps F(3,294) =85.632 p <0.001
SPEED Y, F(3,294) =12.065 p <0.001 SPEED Y, F(3,294) = 8.552 p <0.001
SPEED V8 F(3,294) = 9.251 p <0.001 SPEED Y, F(3,294) =16.348 p <0.001
SPEED Y, F(3,294) = 8.907 p <0.001 SPEED Y3 F(3,294) = 3.272 p =0.022
SPEED Ps F(3,294) =10.805 p <0.001 SPEED Y, F(3,294)=17.662 p<0.001
SPEED Ps F(3,294) =65.839 p <0.001

Table 2 Repeated measures ANOVA results for mode-specific metrics over 4 fMRI acquisitions in AAL
parcellations excluding the cerebellar regions (AAL90), and including the cerebellar regions (AAL116).

OCC, occurrence; META, metastability; SYNC, synchronization; SPEED, typical reconfiguration speed.
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We also used a non-parametric permutation-based paired t-test to investigate if
these differences were due to 1 idiosyncratic run or if the differences emerged over
different runs. The differences remained statistically significant and were present across
different runs even after performing Bonferroni correction for multiple comparisons
across the 5 modes, as can be seen in inline Supplementary Figure 6. Notably, metrics
of fractional occurrence and duration of modes - which have been used for comparisons
between conditions studies - were not reliable across 4 acquisitions in the AAL

parcellation with or without the cerebellar regions.

3.2 Characterization of the dFC process
3.2.1 Reconfiguration speeds in phase-locking space exhibit fractal scaling and deviate

from Gaussianity

An unanswered question regarding dFC is whether spatiotemporal patterns
change in a discrete or continuous manner over time. K-means clustering yields a
distinct mode for each timepoint, but this mode is just the cluster centroid with the
shortest distance, and a number of other modes may also contribute to the resulting
spatiotemporal pattern at each timepoint. An alternative perspective is to view dFC as a
smooth reconfiguration of phase-locking connectivity, and to collapse these relations to
a point in the space of possible relations. We can then view the evolution of this point as
a stochastic exploration of a high-dimensional space. This is a direct adaptation of the
reconfiguration speed introduced in (Battaglia et al., 2020) for phase-locking functional
connectivity.

We computed the reconfiguration speeds (Figure 5A) and fractal scaling
characteristics (Figure 5D) of phase-locking dFC. Out initial plan was to include the

Hurst-like exponent o derived from detrended fluctuation analysis (DFA.) (Peng C-K et
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al., 1993) in our battery of dFC metrics (see 2 Materials and Methods). However, we
found that the assumption of extended linear power-law scaling was violated in 40-50%
of subjects Figure 5(B-C). When linear power-law scaling was present, FC fluctuations
showed fractal scaling with DFA, > 0.5 indicating that the stochastic reconfiguration
process in phase-locking space was not random, but displayed long-range correlations

and deviated from Gaussianity as shown in Figure 5D.
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Figure 5 dFC reconfiguration speeds and Detrended Fluctuation Analysis (DFA).

(A) Phase-coupling dFC reconfiguration speeds were slow across all 4 fMRI acquisitions. (B) Before
performing DFA we established if subjects exhibited extended sections of linear power-law scaling in FC
fluctuations. Between 50% to 60% of subjects exhibited ‘genuine’ power-law scaling. (C) For the majority
of subjects that demonstrated linear power-law scaling, DFA«was greater than 0.5 which implies the
presence of persistent fluctuations, long-range correlations, and deviation from a Gaussian generation
process. (D) The probability densities for DFA« for ‘genuine’ subjects in each of the 4 runs. (E) An
example of linear power-law scaling where the best fit was found to be y=2.40*0.57x. (F) An example of
non-linear power-law scaling where the best fit was found to be y= (-real(1/log(10))log(0.11(1-exp(-
0.02exp(log(10)x)))-0.01)). We used FluctuationAnalysis() (Ton and Daffertshofer, 2016) to test for
linearity and to calculate DFA.
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The reconfiguration random-walk of dynamic phase-locking matrices, or dPL
stream, is represented in 3 dimensions in Figure 6 (using a t-Stochastic Neighbor
Embedding algorithm, see Materials and Methods). The resulting distance preserving
non-linear projections in 3 dimensions of the associated dPL stream (timeseries) are
shown with respect to time (left) and with respect to the mode visited (right). The speeds
of reconfiguration revealed periods of slow morphing interspersed with sharp changes in
the configuration of phase-locked connectivity corresponding to the concept of ‘knots
and leaps’ in (Battaglia et al., 2020), in contrast to unstructured space filling as would be

expected for uncorrelated speeds in a memoryless stochastic process..
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Figure 6 Visualizations of a reconfiguration walk in the phase space of leading eigenvectors.

(A) We show a distance preserving non-linear projection in three dimensions of a subject’'s dPL stream
from a single fMRI scan obtained with the t-SNE algorithm. Each point corresponds to a specific
observation of FC(t) and the path connecting the points indicates in (A) the temporal order in which the
different configurations are visited. (B) The same projection but color-coded with the mode assigned to

the timepoint in the timeseries.
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Overall, these findings are consistent with previous literature (Battaglia et al.,

2020) and suggest that spatiotemporal patterns of phase-locking change in a non-

random slow continuous fashion over time.

3.3 Relationship between global metrics

As a next step in our investigation, we sought to investigate how the various
studied global metrics are related to each other between subjects. For this, we
calculated the Spearman correlation between all pairs of metrics. As illustrated in
Figure 7 (which corresponds to RUN1), most metrics were significantly correlated, with
some metrics correlating more than 90% - revealing relationships that can be more or
less evident given their nature. For instance, it is not surprising that synchrony is highly
correlated (r=0.84) with the occupancy of the mode 1, since the latter represents more
time in a mode of global phase coherence, while being also highly correlated (r=0.92)
with the phase coherence coefficient. Moreover, the occupancy and duration of mode 1
are also highly correlated (r=0.92), which can be explained by the fact that the more a
mode occurs, the more probable it is to be detected on 2 consecutive time points. Less
obvious, perhaps, are the strong correlations detected between Phase Coherence
Coefficient, Coalition Entropy and Integrated Information. Moreover, both the Chimera
Index (CHI) and the reconfiguration speed (SPEED) exhibit negative relationships with
the other metrics, but the two are not correlated to each other, indicating that they are
sensitive to complementary dynamical features of the system. Correlation matrices for

runs 2-4 may be found in inline Supplementary Figure 7.
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Figure 7 Relationships between metrics.

Correlation coefficients for all metrics in run 1. Coefficients with X indicate statistical significance with o <
0.05. SYNC, synchronization, CHI, chimera index, META, metastability, OCC, fractional occurrence of ¢,
, DURATION, duration of ¢, , SPEED, typical reconfiguration speed, PCC, phase-coherence coefficient,

CENTROPY, coalition entropy, PHI, integrated information.

To further investigate the relationship between integrated information and all
other metrics, we fitted a linear mixed-effect model to predict PHI based on the values
of SYNC, CENTROPY, and CHI with standardized metric values. As there appeared to
be quadratic structure in the distribution of the residuals, we investigated each predictor
variable in its quadratic form. SYNC? provided the best model fit and so was retained as
a quadratic term. Additionally, the model included random intercepts to account for the
effect of different fMRI runs. The model's explanatory power related to the fixed effects
alone (i.e. its marginal R?) is 0.85. All predictors in this model were found to be
significantly correlated, with SYNC and CENTROPY having positive effects while

CENTROPY having a negative effect as illustrated in Table 3.
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Predictor Beta T score p value

SYNC? 0.05  (390)=3.03 p = 0.003
CENTROPY 0.87  t(390)=42.35 p < 0.001
CHI -0.11  t(390) =-5.17 p < 0.001

Table 3 Linear mixed-effect regression model - fixed effects

The quality of the model fit was assessed using performance (Ludecke et al.,
2021) and a visualization of the model checks can be found in inline Supplementary
Figure 8. Additionally, this linear mixed regression model indicated that there were no
random effects due to RUN as the standard deviation of the random intercept was
1.454e-16.

These findings provide unique empirical evidence that dynamical- and
informational-complexity are related; and shows convergence of evidence from multiple

approaches to support the interpretability of these metrics with respect to neuroscience.

4 Discussion

When conceptualizing the brain as a complex system (Turkheimer et al., 2021)
one has a number of theoretical approaches and corresponding methodological tools
available to assess dynamic functional connectivity beyond viewing them as mere time-
varying temporal correlations in fMRI signals. In this work we empirically investigated
the relationships between approaches that investigate intrinsic brain activity from a
dynamical systems perspective, from a stochastic process view, and from an
information-processing perspective, providing some practical first steps towards the
development of unified accounts of brain function.

Four main insights can be derived from our results. First, from a methodological

perspective, phase-locking functional connectivity derived with LEIDA, provides an
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645 invariant basis of spatial modes for the investigation of dynamical behavior between
646  brain regions. This invariant basis could be used as a template for future studies

647 providing a validated (in terms of test-retest reliability) basis for cross study

648 comparisons. These 5 reliable spatiotemporal modes of phase-locking activity reflect
649 the physics of self-organization (Haken, 1996): that is, these macroscopic patterned
650 modes are spontaneously created and change dramatically at critical points, showing
651  how global order can emerge from local interactions (Kelso, 1995).

652 Second, global metastability was the only representative and stable metric

653 across a cohort of healthy young adults when the cerebellum is considered in

654  conjunction with the cortex and subcortex. This may seem surprising given that the
655 modes themselves were invariant across scanning sessions. However, the modes
656 reflect centroids derived from k-means clustering, and as such represent the center of
657 the cluster. Any particular instance or realization of a fMRI timeseries will not

658 necessarily reflect these centroids, but will nevertheless have their time-points assigned
659 to the mode they are closest to. The disadvantage of such hard clustering is that each
660 time-point will only be assigned to one mode when in fact, the spatiotemporal pattern of
661 the time-point may closely match more than one mode.

662 In addition to methodological considerations, there may be physiological effects
663 that affect brain activity across runs. Indeed, within-individual changes in resting-state
664 dynamics have been associated with fluctuations in arousal (Laumann et al., 2017),
665 physiological state (Chang et al., 2013; Schneider et al., 2016), ongoing conscious
666 experience (Gonzalez-Castillo et al., 2021) and spontaneous memory replay (Tambini
667 and Davachi, 2019). Systematic differences have also been found with time of day

668 (Orban et al., 2020; Vaisvilaite et al., 2021). However, our results indicate that global
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metastability is relatively insensitive to these effects. This global metric is therefore a
potential candidate for neurological markers of effect in intervention studies.

Indeed, empirical results have shown global metastability to be higher when the
brain was at rest (Hellyer et al., 2014), reduced during states of unconsciousness (Jobst
et al., 2017), and increased beyond the resting-state maximum when the brain was in a
psychedelic state (Carhart-Harris et al., 2014; Lord et al., 2019). In clinical populations,
global metastability was found to be progressively reduced for mild cognitive impairment
to Alzheimer’s disease (Cordova-Palomera et al., 2017) and positively correlated with
cognitive flexibility (Hellyer et al., 2015). Metastable synchronization of brain
subsystems has also been shown to drive the transient emergence of cluster
synchronization, replicating features of resting-state magnetoencephalography MEG
(Cabral et al., 2014). Global metastability, is therefore, a reliable dFC metric that has
promise for both empirical and computational studies.

However, as the majority of metrics were not representative across the same
subjects in different acquisitions, they may not be representative or generalizable to the
overall population of healthy young adults. This nonergodicity challenges the
interpretation of cross-sectional study outcomes and questions the applicability of such
designs to study phenomena that may be more suitable to investigation of individual life-
trajectories through approaches such as fingerprinting (Van De Ville et al., 2021).

The differential effect of including the cerebellum in the calculation of our dFC
metrics is intriguing. The cerebellar regions have been shown to be associated with the
DMN and FPA (Buckner et al., 2011), and to be active across a range of motor and
cognitive tasks including working memory, cognitive control, social cognition (King et al.,
2019) and emotional processing (Pierce and Péron, 2020). Interestingly, it has been

suggested that the cerebellar regions fine-tune limbic-induced synchronization of the
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694 cortical regions (Pierce and Péron, 2020) which is consistent with our findings that

695 mode y; includes frontal-parietal, limbic, and cerebellar regions. This synchronization
696 effect of the cerebellar regions has been neglected to date in dFC studies, but appears
697 to play a key role for the reliability of global metastability.

698 Third, we sought to find reproducible evidence of convergence from multiple

699 methods by investigating the relationship between our diversly derived metrics. The
700 development of a prediction model that was independent of run and included metrics
701  derived from dynamical systems theory, information theory, and information dynamics
702 testifies to the neuroscientific interpretability of our results. It also revealed in empirical
703 data that dynamical- and informational complexity are related, confirming previous

704  computational study findings (Mediano et al., 2022). It is interesting to note that in our
705 regression model, the main effect of cluster synchronization was to reduce mean

706 integrated information ®R. What this suggests is that excessive competition between
707  the communities to create coalitions may lead to predominantly redundant information
708 processing; conversely, the diversity of cluster coalitions would be what leads to transfer
709 and synergistic information processing. Integrated information - as computed in this
710  study, with the additional subtleties of decomposition and multivariate sources and

711 targets, may be capturing some elements of conscious processing. Intriguingly,

712  integrated information was not significantly predicted by metastability, although

713  moderate positive correlations between the two metrics were found in all 4 runs. Indeed,
714  global metastability could be associated with homeostasis, reflecting a healthy

715  regulation of tendencies for integration and segregation, whereas integrated information
716  theoretically reflects the actual balance of integration and segregation. Metastability can
717  be viewed as providing the opportunity for the system to engage in cluster

718  synchronization resulting in segregation of the communities. This dynamic segregation
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feature of the system appears to be complementary to the speed of changes in FC, and
the metrics sensitive to these features exhibit negative relationships with all other
metrics.

Taking metrics derived from dynamical systems theory and stochastic processes
yields complementary insights into the dynamical complexity of brain functioning.
However, not all metrics revealed findings consistent with previous literature. It is not
unexpected to find periods of high phase coherence across communities in the global
mode, but it would be expected to find CTC-like channels of communication when other
modes are dominant. It may be that the synchronization threshold A = 0.8 was too high
to allow for delays in phase synchronization between remote communities. Indeed,
when the threshold was set to A = 0.7, periods of high phase coherence across
communities were also found in other modes as can been seen in inline Supplementary
Figure 9.

Computational models play a crucial role in neuroscience either for predicting
phenomenon or for replicating phenomenon observed in empirical data. In this study we
included metrics from both empirical data and computational modelling, and have
unveiled relationships that will require a fundamental review of the underlying theoretical
and mathematical concepts for neuroscientific interpretation.

Fourth, and finally, from describing brain behavior from the perspective of a
stochastic process, we have provided tentative confirmatory results that the dFC
process changes in a slow, non-random manner. It must be noted that we used phase-
locking functional connectivity rather than temporal correlation as in the original
application of this innovative methodology (Battaglia et al., 2020). Our non-linear
measures of dynamic phase-locking behaved differently than linear correlations.

Despite this difference, we were still able to show in the majority of subjects, that
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spatiotemporal patterns of phase-locking change in a continuous and non-random
manner, exhibiting long-range temporal correlations, indicating the presence of memory.
Taken together, these results are congruent with complex systems theory
(Turkheimer et al., 2021) in that phase-relationships in fMRI of the resting state brain
exhibit:
e Invariant spatiotemporal patterns that are indicative of self-organized processes
(Haken, 1996)
¢ Nonergodicity in that dFC metrics are in general, not representative across
samples (Turkheimer et al., 2021)
e Diversity in cluster synchronization (Turkheimer et al., 2021)
e Fractal scaling in the continuous change of functional connectivity (Battaglia et

al., 2020)

5 Limitations and future research

A number of limitations that should be considered when evaluating the findings.
Starting with modes, we found near perfect ICC agreement of all 5 spatiotemporal
phase-locking modes across all 4 runs. However, ICC is a relative metric and the large
between-region differences may bias a high ICC value in the absence of genuinely
small within-region differences. However, we achieved similar results with Pearson
correlation.

Another possible limitation of this study is that in contrast to previous studies of
metastability, we defined the communities of oscillators directly from the phase-locking
data and not from intrinsic connectivity networks. Our so-derived communities are not

distinct, specifically mode y; comprises all other modes. This may be a violation of
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769 assumptions for calculating some metrics but we believe that it is more representative of
770  what may actually be happening in the brain, that is, coalitions transiently forming

771  between phase-related communities.

772 Moving on to communities, previous investigations of ®* in fMRI data have used
773  a continuous model to compute the relevant information theoretic variables (Luppi et al.,
774  2020b). In this study we adopted the discrete data model which has been used in

775 computational models of weakly coupled Kuramoto oscillators (Mediano et al., 2022,
776  2016). We computed ¢ for an integration timescale from 1-500 TRs and retained the
777 max ®R obtained as indicative of integrated information for a specific subject in a

778  specific run. Although there is information in the integration timescale that yielded this
779 @R, .., a maximum statistic test (Novelli et al., 2019) would be required before any
780 inferences may be drawn.

781 We note that there are a number of differences between our findings and those
782  of (Battaglia et al., 2020). Our stochastic walks were based on instantaneous phase-
783  locking and not on smoothed sliding-window temporal correlation. We used a

784  parcellation with 116 rather than 68 anatomical regions which influences the resulting
785 speeds, and potentially the power-law scaling and fluctuation characteristics. We also
786  did not pool our data as we had sufficient datapoints (1198 TRs) for our calculations.
787  Unlike Battaglia et al. we found that between 40-50% of the HCP subjects exhibited a
788 loss of linearity in power-law scaling in any particular run. In fact, just 7 subjects showed
789  ‘genuine’ power-law scaling over the 4 runs. In a previous study investigating fractal
790 scaling in phase synchronization, fluctuations were averaged over all subjects before
791  determining the scaling component «a (Daffertshofer et al., 2018) potentially obscuring
792  loss of linearity in some individual subjects. The lack of linear power-law scaling in

793 individual subjects has been noted before (Botcharova, 2014). We did not investigate
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the reasons for this lack or loss of linearity although there have been suggestions that
this may be due to periodic trends (Hu et al., 2001), non-stationarities (Chen et al.,
2002) or non-linear transformations (Chen et al., 2005). Indeed, it has recently been
reported that different RSNs exhibit different degrees of non-stationarity (Guan et al.,
2020). Unravelling the reasons for loss of linearity is beyond the scope of the present
paper, but merits future study.

We did not develop any null models to test the validity of the methodologies
employed which may be considered a weakness of this study. However, each of these
methodologies has already been validated against null models or with surrogate data
(Battaglia et al., 2020; Honari et al., 2020; Mediano et al., 2022). In contrast, there have
been few studies that used these methodologies to compare performance across fMRI
realizations.

We have just started to explore the relationships between metrics from different
conceptualizations of brain functioning. It is clear that there are a number of possible
avenues for future research arising from this study. A deeper investigation of power-law
linearity differences between subjects and runs for reconfiguration speeds could reveal
interesting trait or state correlations. Understanding the relationships between the
metrics in general, and with respect to integrated information specifically, poses a
challenging task. Unravelling these relationships, potentially with computational models,
may provide novel insight into the mechanisms and dynamics of functional connectivity.
Finally, applying this battery of metrics to longitudinal or individual life-trajectories could

uncover novel relationships that have evaded detection with single methodologies.
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6 Concluding remarks

Neuromarkers need to demonstrate reliability and interpretability before
introduction into a clinical environment. A measure of global metastability, a universal
phenomenon across multiple conceptualizations of intrinsic brain activity, was found to
be the most representative and stable across multiple fMRI acquisitions of the same
subjects. This nonergodicity challenges the use of cross-sectional study designs for
dFC. Using concepts and tools from complexity science we have described the
metastable behavior of fMRI resting-state activity and our findings are congruent with
complex system theory. The inter-relationships between metrics derived from dynamical
systems theory, information theory, and information dynamics highlight the
simultaneous and balanced tendencies for functional segregation and global integration
in the healthy brain. Our battery of metrics may one day help to understand why this
balance is lost in psychiatric disorders, or how pharmacological interventions can affect

this balance.
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