

Novel MBLs inhibitors screened from FDA-approved drug library restore the susceptibility of carbapenems to NDM-1-harbouring bacteria

4 Yan Guo^{1#}, Hongtao Liu^{1#}, Mengge Yang^{1#}, Rui Ding¹, Yawen Gao², Xiaodi Niu²,
5 Xuming Deng¹, Jianfeng Wang^{1*}, Haihua Feng^{1*}, Jiazhang Qiu^{1*}

6 ¹ Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine,
7 Jilin University, Changchun, Jilin 130062, China

² College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China

10

¹¹ # These authors contributed equally to this work.

12

* Corresponding authors: Jiazhang Qiu, qiu_jz@jlu.edu.cn; Haihua Feng, fh70@163.com; Jianfeng Wang, wjf927@jlu.edu.cn.

15

16

17

18

19

20

21

22

23 **Abstract**

24 The production of metallo- β -lactamases (MBLs) is one of the major mechanisms
25 adopted by bacterial pathogens to resist carbapenems. One promising strategy to
26 overcome MBLs-mediated carbapenems resistance is to develop effective inhibitors.
27 Repurposing approved drugs to restore the efficacy of carbapenems represents an
28 efficient and cost-effective approach to fight infections caused by carbapenem resistant
29 pathogens. Here, twelve FDA-approved compounds were screened to neutralize the
30 ability of NDM-1. Among these compounds, dexamzoxane, embelin, candesartan
31 cilexetil (CAN) and nordihydroguaiaretic acid (NDGA) were further demonstrated to
32 inhibit all tested MBLs, and showed an *in vitro* synergistic bactericidal effect with
33 meropenem against MBLs-producing bacteria. Mechanistic studies revealed that
34 dexamzoxane, embelin and CAN are metal ion chelating agents, while the inhibition of
35 NDM-1 by NDGA involves its direct binding with the active region of NDM-1.
36 Furthermore, dexamzoxane, embelin and CAN and NDGA dramatically rescued the
37 treatment efficacy of meropenem in three infection models. Our observations indicated
38 that dexamzoxane, embelin, CAN and NDGA are promising carbapenem adjuvants
39 against MBLs-positive carbapenem resistant bacterial pathogens.

40

41

42 **Keywords:** Carbapenems, Carbapenem-resistant Gram-negative bacteria, Metallo- β -
43 lactamase, FDA-approved drug library, Drug repurposing

44

45 **Introduction**

46 The overuse and misuse of antibiotics has led to the rapid development and
47 dissemination of antimicrobial resistance (AMR), which is a serious threat to public
48 health worldwide. Currently, few therapeutic options are available for the treatment of
49 infections caused by multi-drug resistant (MDR) bacteria, especially “ESKAPE”
50 pathogens (*Enterococcus faecium*, *Staphylococcus aureus*, *Klebsiella pneumoniae*,
51 *Acinetobacter baumannii*, *Pseudomonas aeruginosa* and *Enterobacter* spp [1]. It was
52 estimated that AMR will result in 10 million patient deaths per year by 2050 unless
53 active and effective actions are mounted [2].

54 Carbapenems are β -lactam antibiotics that are commonly used as last-resort drugs
55 for the treatment of serious MDR gram-negative bacterial infections [3]. In the past two
56 decades, the clinical consumption of carbapenems has increased dramatically, which is
57 inevitably accompanied by the emergence and prevalence of carbapenem-resistant
58 strains [4]. In particular, carbapenem-resistant *Enterobacteriaceae* (CRE), which has
59 become a global public threat [5]. The production of an inactivating enzyme,
60 carbapenemase, is the major resistance mechanism of *Enterobacteriaceae* to
61 carbapenems [6]. The large numbers of carbapenemases are divided into three major
62 categories according to their amino acid sequences. Classes A and D carbapenemases
63 (e.g. KPC and OXA-48) are serine β -lactamases (SBLs), which utilize an active serine
64 residue to covalently attack the β -lactam ring [7]. Class B carbapenemases represented
65 by NDM, IMP and VIM are metallo- β -lactamases (MBLs), which require zinc ions for
66 the activation of a water nucleophile to hydrolyse the ring [7, 8]. The global spread of

67 MBLs is particularly problematic and has aroused significant concerns due to their
68 ability to inactivate almost all clinically approved β -lactams except for aztreonam [9].
69 In addition, MBLs have great potential for horizontal gene transfer between various
70 bacterial species through MBLs-bearing plasmids [8]. The SENTRY antimicrobial
71 surveillance program reported that the detection of MBL genes in CRE isolates were
72 rapidly increased from 4.3% during 2007-2009 to 12.7% during 2014-2016, among
73 which NDM was the most predominant type of MBLs, accounting for approximately
74 10% of the CRE isolates [10].

75 Carbapenem-resistant bacteria including *Acinetobacter baumannii*, *Pseudomonas*
76 *aeruginosa* and *Enterobacteriaceae* were listed by the World Health Organization
77 (WHO) in 2019 as the priority pathogens required for new treatment [10, 11].
78 Compared with the development of novel antibiotics, the discovery of carbapenemase
79 inhibitors represents a fast and cost-effective alternative approach to restore the
80 susceptibility of bacteria to carbapenems [12]. The advantages were further
81 strengthened by advances in rapid detection technologies, enabling fast and accurate
82 detection of carbapenemase genes [13-15]. Indeed, this strategy has yielded the
83 successful development of SBL inhibitors. For example, vaborbactam was approved in
84 2017 for clinical use in combination with meropenem to overcome carbapenem
85 resistance mediated by the expression of SBLs [16]. However, to date, no MBL
86 inhibitors have been approved for clinical use to date.

87 Here, we screened 1515 FDA-approved drugs through the nitrocefin hydrolysis
88 assay, resulting in the identification of 12 compounds that are capable of inhibiting

89 NDM-1 activity. We further confirmed that dexamoxane, embelin, candesartan cilexetil
90 (CAN) and nordihydroguaiaretic acid (NDGA) showed significant synergistic
91 antibacterial effects when used in combination with meropenem against NDM-1
92 positive bacterial strains. In addition to affecting NDM-1, these compounds also exhibit
93 broad inhibitory effects on other major types of MBLs, including IMP and VIM. Further
94 mechanistic studies revealed that dexamoxane, embelin and CAN are metal ion
95 chelators, while the inhibition of MBLs by NDGA involves NDGA binding to the active
96 region of NDM-1, preventing the binding of NDM-1 to its substrate and thereby
97 inhibiting the activity of NDM-1. Finally, the combination therapy of the compounds
98 with meropenem restored the treatment efficacy of meropenem in mice infected with
99 NDM-1 harbouring *E. coli* isolates. Taken together, our study provides additional
100 options for the treatment of infections caused by MBLs-positive bacterial pathogens.

101 **Materials and Methods**

102 **Bacterial strains, plasmids, culture methods and reagents**

103 The bacterial strains, plasmids and primers used in this study are listed in
104 Supplementary **Table S1**, **Table S2** and **Table S3**, respectively. All bacterial strains
105 were grown on Luria-Bertani (LB) plates or in LB broth. All NDM-1-positive strains
106 were originated from our previous studies [17]. *E. cloacae* 20710 and *E. cloacae* 20712
107 were provided by Dr. Yonghong Xiao at Zhejiang University [18]. *A. baumannii* 21 was
108 provided by Dr. Zhimin Guo at the First Hospital of Jilin University.

109 The full gene sequences of *bla*_{IMP-1}, *bla*_{VIM-1}, *bla*_{KPC-2} and *bla*_{OXA-48} were
110 synthesized by GeneScript (Nanjing, China) and were inserted into pET28a or

111 pETSUMO for protein expression.

112 The FDA-approved drug library was purchased from ApexBio Technology
113 (Cat#L1021, Houston, TX, USA). Dexrazoxane, embelin, CAN and NDGA were
114 dissolved in DMSO (Sigma-Aldrich, St. Louis, MO, USA). Meropenem, amoxicillin,
115 ciprofloxacin, imipenem, erythromycin, chloramphenicol, tetracycline and gentamicin
116 were obtained from Dalian Meilun Biotechnology Co., Ltd. (Dalian, China).

117 **Protein expression and purification**

118 Plasmids derived from pET28a or pETSUMO for protein production were
119 transformed into *E. coli* strain BL21 (DE3). Transformed *E. coli* was inoculated into
120 LB broth containing kanamycin (final concentration of 30 µg/mL) and grown to an
121 OD_{600nm} of 0.8 at 37 °C, followed by induction with isopropyl-β-d-thiogalactoside
122 (IPTG) overnight at 18 °C. Cells were collected by centrifugation and lysed by a
123 homogenizer (JN-mini, JNBIO, Guangzhou, China). Lysed samples were centrifuged
124 at 12,000 rpm for 20 min. NDM-1 and its mutant proteins, IMP-1, VIM-1, KPC-2 and
125 OXA-48 were purified by nickel affinity chromatography. After washing with lysis
126 buffer, proteins were eluted with 250 mM imidazole and dialyzed twice in a buffer
127 containing 20 mM Tris-HCl (pH 7.5), 150 mM NaCl, 10% glycerol and 1 mM
128 dithiothreitol (DTT). Protein concentrations were measured by the Bradford Protein
129 Assay (Bio-Rad).

130 **Nitrocefin hydrolysis assays**

131 Nitrocefin hydrolysis assays were determined as described previously [17] in the
132 presence of the indicated concentrations (from 0 to 64 µg/mL) of different compounds.

133 The results were read in 96-well plates at 37 °C using a microplate reader at 492 nm
134 (SYNERGY H1, BioTek). The inhibitory effects of the identified active compound on
135 other carbapenemases (NDM-3, NDM-9, IMP-1, VIM-1, KPC-2 and OXA-48) were
136 tested as described above using nitrocefin as the substrate.

137 **Determination of the MIC and FICI**

138 MIC values were determined according to the broth microdilution guidelines of
139 the Clinical and Laboratory Standards Institute (CLSI). After the tested strains were
140 diluted with LB to a final concentration of 5×10^5 CFUs/mL, various concentrations of
141 meropenem (0-256 µg/mL) and increasing concentrations of inhibitors (0-64 µg/mL)
142 were added to the sterile 96-well plate, and further incubated for 18-24 h at 37 °C. The
143 lowest concentration with no visible growth was considered as the MIC value. The
144 synergistic effect of antibiotics and inhibitors was assessed by determining the
145 fractional inhibitory concentration (FIC) index values according to the formula:
146 $FICI = (\text{MIC of inhibitors in combination}/\text{MIC of inhibitors}) + (\text{MIC of antibiotics in combination}/\text{MIC of antibiotics})$.
147

148 **Combined disc tests**

149 Overnight bacterial culture was diluted with LB broth to an OD_{600nm} of 0.1. 200
150 µL of the bacterial suspension was plated on the LB plates. 10 µL of each inhibitor was
151 added to the discs that containing 10 µg meropenem (Oxoid Ltd. Basingstoke, United
152 Kingdom). The discs were placed in the center of the LB plates and incubated at 37 °C
153 for 24 h. Then, the inhibition zone of different treatments was measured and recorded.

154 **Time-dependent killing**

155 To determine the *in vitro* time-dependent killing of NDM-1 producing bacteria by
156 meropenem, bacterial strains were incubated with inhibitors (32 or 64 µg/mL),
157 meropenem (2 or 8 µg/mL), or inhibitors (32 or 64 µg/mL) in combination with
158 meropenem (2 or 8 µg/mL) at 37 °C. At the indicated time points, samples of different
159 treatments were collected, diluted and plated on LB plates. The CFU values were
160 calculated after incubation overnight at 37 °C.

161 **Inductively coupled plasma-mass spectrometry (ICP-MS)**

162 ICP-MS was performed as described earlier [19] to investigate the potential ability
163 of the identified NDM-1 inhibitors to chelate zinc ions. Briefly, in order to remove the
164 contained metals, freshly purified NDM-1 protein was exchanged in ICP-MS buffer (20
165 mM HEPES, 100 mM NaCl, pH 7.5) overnight at 4 °C in a 15 kDa cutoff dialysis tubing.
166 The NDM-1 concentration was adjusted to 5 mg/mL prior to mixing with different
167 concentrations of inhibitors and incubating for 3 h at room temperature with shaking.
168 The NDM-1-inhibitor samples were then dialyzed overnight at 4 °C with ICP-MS
169 buffer by the 12-14 kDa cutoff D-tube dialyzer mini (EMD Biosciences) microdialysis
170 cassettes. The samples were diluted to 1 mg/mL with ICP-MS buffer and then diluted
171 40-fold with an internal standard containing 10 ng/mL Sc⁴⁵ and 1% nitric acid. Then,
172 the samples were analysed by ICP-MS (XSERIES 2, Thermo Fisher Scientific).

173 **Metal ions restoration assays**

174 NDM-1 was pretreated with various concentrations of the inhibitors at 37 °C for
175 10 min, followed by the addition of metal salts (ZnSO₄, MgSO₄ and CaCl₂) and
176 nitrocefin to a final volume of 200 µL and an incubation for 30 min at 37 °C. Then, the

177 absorbance at 492 nm of each sample was measured to calculate the percent residual
178 activity.

179 **Molecular dynamics simulation**

180 Molecular dynamics simulations of the NDGA-NDM-1 complexes were
181 performed using the Gromacs 4.5.2 software package [20] based on the GRO MOS96
182 54a7 force field and TIP3P water model. The molecular mechanics/Poisson-Boltzmann
183 surface area (MM-PBSA) method was used to calculate the binding free energy after
184 simulation as described previously [17].

185 **Secondary structure determination of NDM-1 by circular dichroism (CD)
186 spectroscopy**

187 The CD spectrum of NDM-1 was analysed using a CD spectrophotometer (MOS-
188 500; Bio-Logic, France) [21]. 200 µg of NDM-1 was incubated with 32 µg/mL of each
189 inhibitor. Then, the secondary structure of NDM-1 (0.2 mg/mL) was determined at
190 room temperature using a quartz cuvette with an optical distance of 1 mm. The scan
191 wavelength range was 190 to 250 nm with a resolution of 0.2 nm and a bandwidth of 1
192 nm. The BeStSel web server was used to analyse the secondary structure measurements
193 of each sample.

194 **Plasmid stability**

195 NDM-1-positive *E. coli*, *K. pneumoniae* and *A. baumannii* strains were grown in
196 LB broth overnight with constant shaking in the presence or absence of inhibitors (32
197 µg/mL). Bacteria were diluted and plated on blank LB plates or LB plates containing
198 30 µg/mL of kanamycin and incubated at 37 °C for CFU determination.

199 **Antibodies and Immunoblotting**

200 Polyclonal antibodies against NDM-1 were produced by immunization of mice
201 with recombinant His₆-NDM-1 (AbMax Biotechnology Co., Ltd., Beijing, China).
202 NDM-1-positive bacterial strains were cultured in the presence of increasing
203 concentrations of inhibitors at 37 °C for 12 h. Bacterial cultures were centrifuged at
204 12,000 rpm for 5 min, resuspended in 1× loading buffer and subjected to SDS-PAGE.
205 The proteins were transferred to polyvinylidene fluoride (PVDF) membranes followed
206 by a blocking step using 5% nonfat milk. Membranes were incubated with primary
207 antibody (1: 2000) for 2 h and secondary antibody for 1 h at room temperature. The
208 expression of NDM-1 was detected by the Odyssey® CLx Imaging System (Li-Cor).

209 **Ethics statement**

210 All animal studies were conducted according to the experimental practices and
211 standards approved by the Institutional Animal Care and Use Committee of Jilin
212 University (ALKT202102001). The laboratory animal usage license number is SYXK-
213 2021-0001, as certified by the Department of Science & Technology of Jilin Province.

214 All surgery was performed under sodium pentobarbital anesthesia, and every effort was
215 made to minimize suffering.

216 **Mouse infection models**

217 Female BALB/c mice (6-8 weeks old, approximately 20 g) were used in this study.
218 Mice were injected intraperitoneally with *E. coli* ZJ487 at a dose of 2×10⁸ CFUs for
219 survival experiments, intramuscularly injected at a dose of 2×10⁷ CFUs for bacterial
220 burden experiments on thigh muscles or inoculated in the left nare (5×10⁷ CFUs) to

221 generate a pneumonia model. For all experiments, after the bacterial challenge, mice
222 were given subcutaneous injections of DMSO, meropenem (10 mg/kg), inhibitors (80
223 mg/kg), or a combination of meropenem (10 mg/kg) with inhibitors (80 mg/kg) every
224 12 h. The infected mice were monitored until 96 h post infection for survival analysis.
225 For the thigh muscle and pneumonia models, mice were euthanized 72 h post infection
226 and the thigh muscles and lungs were harvested. Organs were placed into 1 mL of
227 sterilized PBS and homogenized. Then, the suspension was diluted with PBS and plated
228 on an LB plate for CFU enumeration. In addition, lungs were placed into 4% formalin,
229 stained with haematoxylin and eosin and scanned with a digital slide scanner
230 (Pannoramic MIDI, 3DHISTECH Ltd).

231 **Statistical analysis**

232 The statistical analysis was performed by GraphPad Prism 5 and SPSS software.
233 All the data are presented as the mean \pm SD. For *in vitro* studies, the statistical analysis
234 was calculated by the unpaired two tailed Student's *t*-tests; for *in vivo* experiments, the
235 statistical significance was determined using the log-rank (Mantel-Cox) test (survival
236 rates) and Mann-Whitney U test (tissue bacterial load). $P < 0.05$ was considered as
237 significant difference, with * indicating $P < 0.05$ and ** indicating $P < 0.01$.

238

239 **Results**

240 **Four new NDM-1 inhibitors restore the sensitivity of NDM-1-positive bacterial
241 strains to meropenem**

242 To probe for the potential application of an existing drug as an NDM-1 inhibitor,
243 we screened a commercially available FDA-approved drug library comprising 1515
244 compounds for their ability to inhibit the hydrolysis of nitrocefin to chromogenic
245 cephalosporin by purified NDM-1 enzyme. The initial screening resulted in the
246 identification of 12 compounds that were capable of inhibiting the enzymatic activity
247 of NDM-1, with IC_{50} values ranging from 1.77 $\mu\text{g}/\text{mL}$ to 10.71 $\mu\text{g}/\text{mL}$ (**Figure 1** and
248 **Table S4**). None of the compounds showed antibacterial activity against the tested
249 gram-negative bacterial strains, as evident by all the MICs being no lower than 128
250 $\mu\text{g}/\text{mL}$. We further determined the potential synergistic effects of the compounds with
251 carbapenems. Only four compounds (dexrazoxane, embelin, CAN and NDGA)
252 significantly restored the susceptibility of meropenem against engineered *E. coli* strains
253 expressing NDM-1 (BL21-pET28a-SP-NDM-1) or carbapenem-resistant bacterial
254 isolates harbouring *bla_{NDM-1}*, as indicated by an FICI less than 0.5 (**Figure 2A** and
255 **Tables S5-S8**). In addition, the combined disk tests also showed significant synergy
256 between meropenem and the inhibitors. Compared to the disks containing meropenem
257 alone, the diameter of the inhibition zone was significantly larger in disks containing
258 both meropenem and each tested inhibitor (**Figure 2B** and **Figure2- figure supplement**
259 **1**). Moreover, the time-dependent killing curves were determined to investigate their
260 synergistic bactericidal activity. We found that the combinations led to almost complete
261 bacterial killing within 4 to 10 h for engineered *E. coli* BL21 expressing NDM-1 as
262 well as the clinical *E. coli* isolate ZJ487 (**Figure 2C**). Thus, our results identified that
263 dexrazoxane, embelin, CAN and NDGA represent effective NDM-1 inhibitors

264 displaying synergistic antibacterial activity against NDM-1-positive bacteria with
265 meropenem.

266 **Dexrazoxane, embelin, CAN and NDGA are broad-spectrum MBLs inhibitors**

267 To verify the specificity of the NDM-1 inhibitors identified from the FDA-
268 approved drug library, we purified a series of carbapenemases and tested their
269 enzymatic activity in the presence of dexrazoxane, embelin, CAN and NDGA. Not
270 surprisingly, all the inhibitors displayed potent inhibitory effects on the NDM-3 and
271 NDM-9, the NDM-1 variants that have only a single amino acid mutation (**Figure 3A-**
272 **B**). The inhibitors also showed increased antibacterial activity of meropenem against
273 clinical isolates expressing NDM-9 (**Tables S5-S8**). Furthermore, the ability of two
274 other major types of MBLs, IMP-1 and VIM-1, to hydrolyse nitrocefin was
275 significantly suppressed by these compounds (**Figure 3C-D**). Therefore, dexrazoxane,
276 embelin, CAN and NDGA could act as broad-spectrum MBLs inhibitors. Indeed, they
277 were able to rescue the susceptibility of meropenem against carbapenem-resistant *E.*
278 *cloacae* isolates mediated by the production of VIM-1 (**Tables S5-S8**). Surprisingly,
279 embelin, CAN and NDGA but not dexrazoxane also exhibited varying degrees of
280 inhibition of class A (KPC-2) and class D (OXA-48) carbapenemases (**Figure 3- figure**
281 **supplement 1A-B**). Taken together, these results indicated that dexrazoxane, embelin,
282 CAN and NDGA are broad-spectrum MBLs inhibitors.

283 **Dexrazoxane, embelin and CAN act as metal ion chelators to inhibit the activity**
284 **of NDM-1**

285 To gain insights into the mechanisms adopted by the inhibitors to neutralize NDM-
286 1, we first added excessive zinc ions in the nitrocefin hydrolysis reactions in the
287 presence or absence of inhibitors. The efficacy of dexamoxane, embelin and CAN in
288 suppressing NDM-1 enzymatic activity was significantly reduced with the addition of
289 500 μ M of ZnSO₄ (**Figure 4A-B**). Additionally, supplementation with other divalent
290 metal ions (magnesium and calcium ions) in the reaction resulted in a similar restoration
291 of NDM-1 activity (**Figure 4C-D**). Therefore, the inhibition of NDM-1 by dexamoxane,
292 embelin and CAN may be involved in a metal depletion mechanism. Indeed, after
293 incubation of NDM-1 with 8 or 32 μ g/mL of dexamoxane, embelin and CAN, the zinc
294 ion concentrations associated with NDM-1 were significantly reduced as determined
295 by ICP-MS (**Figure 4E**). Taken together, dexamoxane, embelin and CAN function as
296 metal chelating agents to suppress the enzymatic activity of MBLs. In contrast, we did
297 not observe either restoration of hydrolysing activity by supplementation with metal
298 ions or the loss of zinc ions in NDM-1 inactivated by NDGA (**Figure 4A-E**), suggesting
299 a different inhibitory mechanism employed by NDGA.

300 **A direct engagement of NDGA inhibits NDM-1 activity**

301 To further clarify the mechanism of NDGA on the inhibition of NDM-1, we carried
302 out molecular dynamics simulations. A complex MD simulation of the NDM-1-NDGA
303 complex was aimed to explore the binding mode (**Figure 5A**). The root mean square
304 deviation (RMSD) of the complex fluctuated between 0.3 and 0.35 nm after 20 ns,
305 which indicated that the last 80 ns period of the simulation was suitable for the
306 subsequent analysis (**Figure 5B**). Energy decomposition analysis confirmed that the

307 side chains of Ile35, Cys208, Lys211, Asp212, Ala215, Met248 and His250 could bind
308 to NDGA via van der Waals interactions (**Figure 5C**). Moreover, the distance between
309 different residues of NDM-1 and NDGA was analysed. The Ile35, Lys211 and His250
310 in the NDM-1-binding region are closer to NDGA than other residues (distance < 0.4
311 nm) (**Figure 5D**). The simulated residues (Ile35, Lys211 and His250) that had the
312 highest binding energy were selected for site-directed mutagenesis. Single mutations of
313 Ile35, Lys211 and His250 into alanine did not affect the enzymatic activity of NDM-1.
314 However, the inhibitory effect of NDGA on NDM-1_{I35A} and NDM-1_{K211A} but not NDM-
315 1_{H250A} was significantly reduced (**Figure 5E**). Collectively, we speculated that NDGA
316 could bind Ile35 and Lys211 to inhibit the activity of NDM-1.

317 **Alteration of the secondary structure of NDM-1 by dextrazoxane, embelin, CAN**
318 **and NDGA**

319 In addition to the aforementioned mechanisms, we further detected whether these
320 inhibitors affected the secondary structure of NDM-1 by CD spectroscopy. In the
321 absence of inhibitors, the NDM-1 contains 52.5% α -helix and 22.0% turn
322 conformations. However, following treatment of NDM-1 with 32 μ g/mL of the
323 inhibitors, the percentage of α -helix conformation was reduced to 0%, 18.8%, 0% and
324 17.2% for dextrazoxane, embelin, CAN and NDGA, respectively (**Figure 6A**). The
325 percentage of turn conformation was increased to 76.7%, 54.3%, 70.3% and 46.1%,
326 respectively. Additionally, NDGA-treated NDM-1 maintained a highly consistent
327 conformational composition with untreated NDM-1, and only the proportion of
328 different conformations is changed, while the conformation of dextrazoxane, embelin or

329 CAN-treated NDM-1 (including heat inactivated NDM-1) changed dramatically
330 compared with that of untreated NDM-1 (**Figure 6A**). With the addition of inhibitors,
331 the negative ellipticity of the CD spectrum of NDM-1 decreased, and the negative peak
332 at 222 nm was shifted to higher wavenumbers accompanied by a shortened amplitude
333 (**Figure 6B**). Such conformational changes may be attributed to the direct interaction
334 between inhibitors and NDM-1 or the indirect influence of zinc ions depletion within
335 NDM-1 caused by the inhibitors. However, the currently available structural biology
336 data did not clearly clarify the importance of zinc ion on the structural stability of NDM-
337 1. Thus, our results indicated that treatment with dexamoxane, embelin, CAN and
338 NDGA measurably altered the secondary structure of NDM-1.

339 **Dexamoxane and embelin reduce the protein stability of NDM-1**

340 In addition to the direct inhibition of NDM-1, we further assessed whether these
341 compounds affect the production of NDM-1. Bacterial strains harbouring plasmid-
342 borne *bla*_{NDM-1} were treated with increasing concentrations of inhibitors, and the total
343 cell lysates were subsequently subjected to immunoblotting to determine the protein
344 level of NDM-1. We found that the amount of NDM-1 was remarkably reduced in
345 response to 32 µg/mL of dexamoxane and embelin but not NDGA or CAN (**Figure 7A**
346 and **Figure 7- figure supplement 1A**). The reduced level of NDM-1 did not result from
347 the loss of plasmid stability by the effect of dexamoxane and embelin (**Figure 7- figure**
348 **supplement 2**). It was previously reported earlier that zinc ion depletion could
349 accelerate the degradation of MBLs in bacteria [22]. Hence, the decreased amount of
350 NDM-1 in the tested bacterial isolates could be the consequence of metal ion removal

351 by dexamzoxane and embelin. Indeed, we observed a restored amount of NDM-1 in the
352 sample with an addition of excessive zinc ions in bacteria treated with 32 μ g/mL of
353 dexamzoxane and embelin (**Figure 7B** and **Figure 7- figure supplement 1B**). CAN,
354 another metal ion chelator, was not observed detected to reduce the amount of NDM-1
355 at the tested concentration, probably due to its weaker chelating capability or relatively
356 poor permeability to bacterial cells, which failed to efficiently remove zinc ions
357 associated with NDM-1. Taken together, our data suggested that deletion of zinc ions
358 by dexamzoxane and embelin could induce the degradation of NDM-1.

359 **Dexamzoxane, embelin, CAN and NDGA restore meropenem activity *in vivo***

360 Given the potent inhibition of dexamzoxane, embelin, CAN and NDGA on the
361 enzymatic activity of NDM-1, as well as their excellent *in vitro* synergistic bactericidal
362 activity against NDM-1 producing bacterial pathogens when used in combination with
363 meropenem, we further investigated the potential application of these inhibitors to
364 overcome carbapenem resistance *in vivo* and restore the treatment efficacy of
365 meropenem in the clinical settings. We established three mouse infection models to
366 assess the *in vivo* therapeutic effects of the combined therapy. In the lethal systemic
367 infection model, all mice infected with *E. coli* ZJ487 treated with PBS or meropenem
368 monotherapy died within 36 h post-infection. However, the combined therapy of
369 meropenem with the inhibitors resulted in 33.33%, 50%, 66.67% and 33.33% survival
370 for dexamzoxane, NDGA, embelin and CAN, respectively (**Figure 8A**). Surprisingly,
371 embelin alone can also increase the survival rate of mice to 33%, which may be due to
372 its unexplored pharmacological actions on either mammalian hosts or bacteria cells.

373 The therapeutic advantages of the combined therapy were also supported by the mouse
374 thigh muscle infection model. The bacterial load was reduced significantly in infected
375 mice treated with meropenem and the individual NDM-1 inhibitors (**Figure 8- figure**
376 **supplement 1A**). Moreover, we tested the treatment efficacy of the combination
377 therapy in a mouse pneumonia infection model. Co-therapy of mice with meropenem
378 and NDM-1 inhibitors resulted in strikingly lower bacterial counts in the lungs (**Figure**
379 **8- figure supplement 1B**) and as well as the marked remission of pulmonary
380 inflammation as evidenced by less inflammatory factor infiltration in the alveolar space
381 (**Figure 8B**). Together, these observations confirmed the potential utilization of
382 dexamoxane, embelin, CAN and NDGA to rescue carbapenem activity *in vivo* against
383 infections caused by NDM-1 producing bacterial pathogens.

384

385 **Discussion**

386 Carbapenems are still the last-resort antibiotics to control serious infectious
387 diseases caused by MDR gram-negative bacterial pathogens. However, the
388 development of carbapenem resistance mediated by carbapenemase has greatly limited
389 the clinical use of carbapenems. Therefore, it is urgent to develop novel treatment
390 strategies to address infections caused by carbapenem resistant bacteria. In recent
391 decades, many scientific groups have concentrated on the identification of novel
392 effective β -lactamase inhibitors, and fortunately resulting in significant progress [23].
393 The most striking achievements are the discovery of diazabicyclooctanones (DBOs),
394 non- β -lactam β -lactamase inhibitors [24]. Recently, two DBOs (avibactam and

395 relebactam) have been approved for clinical use in combination with β -lactams such as
396 ceftazidime, imipenem and cilastatin [25-27]. Moreover, two novel DBO-type
397 inhibitors, zidebactam and nacubactam, which have high affinity for penicillin-binding
398 protein 2 and potent inhibition of β -lactamase, are under investigation in clinical trials
399 combined with β -lactams [28-30]. In addition to DBOs, another type of non- β -lactam
400 β -lactamase inhibitor, vaborbactam, which contains a cyclic boronic acid
401 pharmacophore, was available on the market and used in conjunction with meropenem
402 [31]. Obviously, the clinical application of DBOs and vaborbactam expanded the
403 therapeutic options for lethal diseases by gram-negative bacteria. However, both DBOs
404 and vaborbactam are narrow-spectrum inhibitors and are only active towards SBLs but
405 not MBLs [24, 32]. Hence, the identification of inhibitors against MBLs is highly
406 urgent and represents the major challenge in the field of β -lactamase inhibitor
407 development. A great number of compounds such as thiols, thioesters,
408 azolylthioacetamide, carboxylic acids, cyclic boronates and aspergillomarasmine A
409 showed activity to inhibit MBLs by diverse mechanisms [19, 33]. Despite of the
410 worldwide academic efforts, no MBLs inhibitors are close to clinical use.

411 Compared to the *de novo* development of an entirely new drug for a specific
412 disease, drug repurposing, which aims to identify novel applications for existing drugs,
413 has gained increasing interest during the last decade [34, 35]. This strategy exhibits
414 significant advantages since the repurposed drugs already have pharmacokinetic and
415 safety assessment data, which can greatly reduce the timeline and cost of development.
416 Here we employed the repurposing approach and found four NDM-1 inhibitors from

417 the FDA-approved drugs. Dexrazoxane is used mainly as an anti-tumor adjuvant drug
418 to alleviate the cardiotoxicity induced by anthracycline [36]; NDGA is an antioxidant
419 applied mostly in the food industry [37]; embelin, a natural compound isolated from
420 *Embeliaribes*, is a well-known antagonist for X-linked inhibitor of apoptosis protein
421 (XIAP) used for the treatment of various cancers [38]; CAN is a potent blocker of
422 angiotensin II receptor approved to treat hypertension in adults [39]. These four
423 inhibitors showed broad-spectrum inhibitory effects on MBLs either by chelating zinc
424 ions (dexrazoxane, embelin and CAN) or by directly engaging MBLs (NDGA). When
425 used in combination with meropenem, these inhibitors displayed potent synergistic
426 bactericidal effects on MBLs-producing bacteria *in vitro*. In addition, combined therapy
427 with meropenem and inhibitors also exhibits synergistic treatment advantages against
428 infections induced by bacteria expressing NDM-1.

429 It was noted that an earlier study also reported embelin as an NDM-1 inhibitor
430 from an enzymatic-based screening of naturally occurring chemicals [40]. Here, we
431 further demonstrated that embelin functions as a potent chelating agent to directly
432 deplete zinc ions from NDM-1, and further clarified its potential application in
433 combined therapy with meropenem against MBLs-harbouring bacteria in various
434 animal infection models.

435 **Conclusion**

436 Our data demonstrated that the FDA-approved dexrazoxane, embelin, CAN and
437 NDGA possess excellent synergistic activity with meropenem against carbapenem-
438 resistant bacteria mediated by MBLs both *in vitro* and *in vivo*. Our observations together

439 with the established safety assessments indicate the great potential of repurposing these
440 drugs as antibiotic adjuvants to fight lethal infections caused by MBLs-producing
441 bacterial pathogens.

442

443 **Acknowledgements**

444 The authors thank Professor Yonghong Xiao (Zhejiang University, China) for
445 strains *E. cloacae* 20710 and 20712, and thank Dr. Zhimin Guo (the First Hospital of
446 Jilin University, China) for *A. baumannii* 21. This work was supported by the National
447 Key Research and Development Program of China (2021YFD1801000), the National
448 Natural Science Foundation of China (grant nos. 81861138046 and 32172912).

449

450 **Conflicts of interest**

451 All authors declare no conflict of interest.

452

453

454 **References**

455 1. De Oliveira DMP, Forde BM, Kidd TJ, Harris PNA, Schembri MA, Beatson SA,
456 et al. Antimicrobial Resistance in ESKAPE Pathogens. *Clin Microbiol Rev.* 2020; 33:
457 2. de Kraker ME, Stewardson AJ, Harbarth S. Will 10 Million People Die a Year due
458 to Antimicrobial Resistance by 2050? *PLoS Med.* 2016; 13: e1002184.
459 3. McKenna M. Antibiotic resistance: the last resort. *Nature.* 2013; 499: 394-6.
460 4. Zequinao T, Telles JP, Gasparetto J, Tuon FF. Carbapenem stewardship with
461 ertapenem and antimicrobial resistance-a scoping review. *Rev Soc Bras Med Trop.*
462 2020; 53: e20200413.
463 5. Patel G, Bonomo RA. "Stormy waters ahead": global emergence of
464 carbapenemases. *Front Microbiol.* 2013; 4: 48.
465 6. Nordmann P, Poirel L. Epidemiology and Diagnostics of Carbapenem Resistance
466 in Gram-negative Bacteria. *Clin Infect Dis.* 2019; 69: S521-S8.
467 7. Queenan AM, Bush K. Carbapenemases: the versatile beta-lactamases. *Clin
468 Microbiol Rev.* 2007; 20: 440-58, table of contents.
469 8. Yong D, Toleman MA, Giske CG, Cho HS, Sundman K, Lee K, et al.
470 Characterization of a new metallo-beta-lactamase gene, bla(NDM-1), and a novel
471 erythromycin esterase gene carried on a unique genetic structure in *Klebsiella*
472 *pneumoniae* sequence type 14 from India. *Antimicrob Agents Chemother.* 2009; 53:
473 5046-54.
474 9. van Duin D, Doi Y. The global epidemiology of carbapenemase-producing
475 Enterobacteriaceae. *Virulence.* 2017; 8: 460-9.

476 10. Castanheira M, Deshpande LM, Mendes RE, Canton R, Sader HS, Jones RN.

477 Variations in the Occurrence of Resistance Phenotypes and Carbapenemase Genes

478 Among Enterobacteriaceae Isolates in 20 Years of the SENTRY Antimicrobial

479 Surveillance Program. *Open Forum Infect Dis.* 2019; 6: S23-S33.

480 11. WHO. Global Priority List of Antibiotic-Resistant Bacteria to Guide Research,

481 Discovery, and Development of New Antibiotics. . 2020.

482 12. Bush K, Bradford PA. Interplay between beta-lactamases and new beta-lactamase

483 inhibitors. *Nat Rev Microbiol.* 2019; 17: 295-306.

484 13. Pasteran F, Gonzalez LJ, Albornoz E, Bahr G, Vila AJ, Corso A. Triton Hodge Test:

485 Improved Protocol for Modified Hodge Test for Enhanced Detection of NDM and Other

486 Carbapenemase Producers. *J Clin Microbiol.* 2016; 54: 640-9.

487 14. Kumar N, Singh VA, Beniwal V, Pottathil S. Modified Carba NP Test: Simple and

488 rapid method to differentiate KPC- and MBL-producing *Klebsiella* species. *J Clin Lab*

489 *Anal.* 2018; 32: e22448.

490 15. Howard JC, Creighton J, Ikram R, Werno AM. Comparison of the performance of

491 three variations of the Carbapenem Inactivation Method (CIM, modified CIM [mCIM])

492 and in-house method (iCIM)) for the detection of carbapenemase-producing

493 Enterobacterales and non-fermenters. *J Glob Antimicrob Resist.* 2020; 21: 78-82.

494 16. Zhanel GG, Lawrence CK, Adam H, Schweizer F, Zelenitsky S, Zhanel M, et al.

495 Imipenem-Relebactam and Meropenem-Vaborbactam: Two Novel Carbapenem-beta-

496 Lactamase Inhibitor Combinations. *Drugs.* 2018; 78: 65-98.

497 17. Liu S, Zhang J, Zhou Y, Hu N, Li J, Wang Y, et al. Pterostilbene restores

498 carbapenem susceptibility in New Delhi metallo-beta-lactamase-producing isolates by
499 inhibiting the activity of New Delhi metallo-beta-lactamases. *Br J Pharmacol.* 2019;
500 176: 4548-57.

501 18. Zhou K, Yu X, Zhou Y, Song J, Ji Y, Shen P, et al. Detection of an In104-like
502 integron carrying a blaIMP-34 gene in *Enterobacter cloacae* isolates co-producing IMP-
503 34 and VIM-1. *J Antimicrob Chemother.* 2019; 74: 2812-4.

504 19. King AM, Reid-Yu SA, Wang W, King DT, De Pascale G, Strynadka NC, et al.
505 Aspergillomarasmine A overcomes metallo-beta-lactamase antibiotic resistance.
506 *Nature.* 2014; 510: 503-6.

507 20. Hess B, Kutzner C, van der Spoel D, Lindahl E. GROMACS 4: Algorithms for
508 Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. *Journal of
509 chemical theory and computation.* 2008; 4: 435-47.

510 21. Zhou Y, Guo Y, Wen Z, Ci X, Xia L, Wang Y, et al. Isoalantolactone Enhances the
511 Antimicrobial Activity of Penicillin G against *Staphylococcus aureus* by Inactivating
512 beta-lactamase during Protein Translation. *Pathogens.* 2020; 9.

513 22. Sychantha D, Rotondo CM, Tehrani K, Martin NI, Wright GD.
514 Aspergillomarasmine A inhibits metallo-beta-lactamases by selectively sequestering
515 Zn(2). *J Biol Chem.* 2021; 297: 100918.

516 23. Tooke CL, Hinchliffe P, Bragginton EC, Colenso CK, Hirvonen VHA, Takebayashi
517 Y, et al. beta-Lactamases and beta-Lactamase Inhibitors in the 21st Century. *J Mol Biol.*
518 2019; 431: 3472-500.

519 24. de Sousa Coelho F, Mainardi JL. The multiple benefits of second-generation beta-

520 lactamase inhibitors in treatment of multidrug-resistant bacteria. Infect Dis Now. 2021; 521 51: 510-7.

522 25. Giri P, Patel H, Srinivas NR. Review of Clinical Pharmacokinetics of Avibactam, 523 A Newly Approved non-beta lactam beta-lactamase Inhibitor Drug, In Combination 524 Use With Ceftazidime. Drug Res (Stuttg). 2019; 69: 245-55.

525 26. Campanella TA, Gallagher JC. A Clinical Review and Critical Evaluation of 526 Imipenem-Relebactam: Evidence to Date. Infect Drug Resist. 2020; 13: 4297-308.

527 27. McCarthy MW. Clinical Pharmacokinetics and Pharmacodynamics of Imipenem- 528 Cilastatin/Relebactam Combination Therapy. Clin Pharmacokinet. 2020; 59: 567-73.

529 28. Moya B, Barcelo IM, Bhagwat S, Patel M, Bou G, Papp-Wallace KM, et al. WCK 530 5107 (Zidebactam) and WCK 5153 Are Novel Inhibitors of PBP2 Showing Potent 531 "beta-Lactam Enhancer" Activity against *Pseudomonas aeruginosa*, Including 532 Multidrug-Resistant Metallo-beta-Lactamase-Producing High-Risk Clones. 533 Antimicrob Agents Chemother. 2017; 61.

534 29. Livermore DM, Mushtaq S, Warner M, Vickers A, Woodford N. In vitro activity of 535 cefepime/zidebactam (WCK 5222) against Gram-negative bacteria. J Antimicrob 536 Chemother. 2017; 72: 1373-85.

537 30. Mallalieu NL, Winter E, Fettner S, Patel K, Zwanziger E, Attley G, et al. Safety 538 and Pharmacokinetic Characterization of Nacubactam, a Novel beta-Lactamase 539 Inhibitor, Alone and in Combination with Meropenem, in Healthy Volunteers. 540 Antimicrob Agents Chemother. 2020; 64.

541 31. Wu G, Cheon E. Meropenem-vaborbactam for the treatment of complicated urinary

542 tract infections including acute pyelonephritis. *Expert Opin Pharmacother.* 2018; 19:

543 1495-502.

544 32. Lomovskaya O, Sun D, Rubio-Aparicio D, Nelson K, Tsivkovski R, Griffith DC,
545 et al. Vaborbactam: Spectrum of Beta-Lactamase Inhibition and Impact of Resistance
546 Mechanisms on Activity in Enterobacteriaceae. *Antimicrob Agents Chemother.* 2017;
547 61.

548 33. Nagulapalli Venkata KC, Ellebrecht M, Tripathi SK. Efforts towards the inhibitor
549 design for New Delhi metallo-beta-lactamase (NDM-1). *Eur J Med Chem.* 2021; 225:
550 113747.

551 34. Pushpakom S, Iorio F, Evers PA, Escott KJ, Hopper S, Wells A, et al. Drug
552 repurposing: progress, challenges and recommendations. *Nat Rev Drug Discov.* 2019;
553 18: 41-58.

554 35. Peyclit L, Baron SA, Rolain JM. Drug Repurposing to Fight Colistin and
555 Carbapenem-Resistant Bacteria. *Front Cell Infect Microbiol.* 2019; 9: 193.

556 36. Popelova O, Sterba M, Haskova P, Simunek T, Hroch M, Guncova I, et al.
557 Dexrazoxane-afforded protection against chronic anthracycline cardiotoxicity in vivo:
558 effective rescue of cardiomyocytes from apoptotic cell death. *Br J Cancer.* 2009; 101:
559 792-802.

560 37. Peralta I, Marrassini C, Filip R, Alonso MR, Anesini C. Food preservation by
561 Larrea divaricata extract: participation of polyphenols. *Food Sci Nutr.* 2018; 6: 1269-
562 75.

563 38. Sheng Z, Ge S, Gao M, Jian R, Chen X, Xu X, et al. Synthesis and Biological

564 Activity of Embelin and its Derivatives: An Overview. *Mini Rev Med Chem.* 2020; 20:

565 396-407.

566 39. Sawhney N, Patel MK, Schachter M, Hughes AD. Inhibition of proliferation by

567 heparin and expression of p53 in cultured human vascular smooth muscle cells. *J Hum*

568 *Hypertens.* 1997; 11: 611-4.

569 40. Ning NZ, Liu X, Chen F, Zhou P, Hu L, Huang J, et al. Embelin Restores

570 Carbapenem Efficacy against NDM-1-Positive Pathogens. *Front Microbiol.* 2018; 9:

571 71.

572

573

574 **Tables**

575 **Table S1. Bacterial strains used in this study.**

Bacterial Strains	Source	Identifier
<i>E. coli</i> ATCC25922	ATCC	25922
<i>E. coli</i> BL21 (DE3)	NEB	CAT#C2527I
<i>E. coli</i> pET28a-SP-NDM-1	This study	N/A
<i>E. coli</i> ZJ487 (NDM-1)	[1]	N/A
<i>E. coli</i> ZC-YN3 (NDM-1)	[1]	N/A
<i>E. coli</i> ZC-YN7 (NDM-9)	[1]	N/A
<i>E. coli</i> D3 (NDM-1)	[1]	N/A
<i>E. coli</i> E1 (NDM-1)	[1]	N/A
<i>E. coli</i> 2Z49 (NDM-5)	[1]	N/A
<i>E. coli</i> 2Z69 (NDM-5)	[1]	N/A
<i>E. coli</i> E4 (NDM-5)	[1]	N/A
<i>E. coli</i> E2 (NDM-9)	[1]	N/A
<i>K. pneumoniae</i> QD-KP1 (NDM-1)	[1]	N/A
<i>K. pneumoniae</i> QD-KP2 (NDM-1)	[1]	N/A
<i>K. pneumoniae</i> QD-KP3 (NDM-1)	[1]	N/A
<i>E. cloacae</i> 20710 (VIM-1)	[2]	N/A
<i>E. cloacae</i> 20712 (VIM-1)	[2]	N/A
<i>A. baumanii</i> 21	This study	N/A

576 **References**

577 1. Wang Y, Zhang R, Li J, Wu Z, Yin W, Schwarz S, et al. Comprehensive resistome
578 analysis reveals the prevalence of NDM and MCR-1 in Chinese poultry production. Nat

579 Microbiol. 2017; 2: 16260.

580 2. Zhou K, Yu X, Zhou Y, Song J, Ji Y, Shen P, et al. Detection of an In104-like

581 integron carrying a blaIMP-34 gene in *Enterobacter cloacae* isolates co-producing IMP-

582 34 and VIM-1. *J Antimicrob Chemother*. 2019; 74: 2812-4.

583

584

585

586

587

Table S2. Plasmids used in this study.

Plasmids	Source	Identifier
pET28a	Novagen	CAT#69864
pETSUMO	Invitrogen	CAT#K300
pET28a-NDM-1	This study	N/A
pETSUMO-KPC-2	This study	N/A
pETSUMO-VIM-1	This study	N/A
pETSUMO-IMP-1	This study	N/A
pETSUMO-OXA-48	This study	N/A
pET28a-NDM-3	This study	N/A
pET28a-NDM-9	This study	N/A
pET28a-NDM-1 _{I35A}	This study	N/A
pET28a-NDM-1 _{K211A}	This study	N/A
pET28a-NDM-1 _{H250A}	This study	N/A

588

589

590 **Table S3. Primers used in this study.**

Primers	Sequences ^{a, b}	Notes
YG601	ctg <u>GGATC</u> TTGAATT <u>CGCCCC</u> ATATT	<i>bla</i> _{sp-NDM-1} BamHI-F
YG602	ctg <u>GTCGACT</u> CAGCGCAG <u>CTGTCGGCC</u> AT	<i>bla</i> _{sp-NDM-1} SalI-R
YG603	ctg <u>GGATCC</u> AT <u>GGAA</u> ATTGCCAAT	<i>bla</i> _{NDM-1} BamHI-F
YG604	ctg <u>GTCGAC</u> GACAAG <u>CTGCGCTG</u> A	<i>bla</i> _{NDM-1} SalI-R
YG605	ctg <u>GGATCC</u> AT <u>GACCAACCTCGTCGCG</u>	<i>bla</i> _{KPC-2} BamHI-F
YG606	ctg <u>GTCGAC</u> GCCCCAAT <u>CCCTCGAG</u>	<i>bla</i> _{KPC-2} SalI-R
YG607	ctg <u>GGATCC</u> AT <u>GTTAAAAGTTATTAGTAGT</u>	<i>bla</i> _{VIM-1} BamHI-F
YG608	ctg <u>CTCGAG</u> CTACT <u>CGCGACTGAG</u>	<i>bla</i> _{VIM-1} XhoI-R
YG609	ctg <u>GGATCC</u> AT <u>GAGCAA</u> ACTGAGC	<i>bla</i> _{IMP-1} BamHI-F
YG610	ctg <u>GTCGAC</u> AT <u>GGTTGCTCGGTTG</u> CT	<i>bla</i> _{IMP-1} SalI-R
YG611	ctg <u>GGATCC</u> TTGGCAG <u>GGAAAAACAAA</u>	<i>bla</i> _{OXA-48} BamHI-F
YG612	ctg <u>GTCGAC</u> CGGAATA <u>ATTTTTC</u>	<i>bla</i> _{OXA-48} SalI-R
YG613	CCGC <u>CTGGACCA</u> AT <u>GACCAGACC</u>	<i>bla</i> _{NDM-3} BamHI-F
YG614	GGT <u>CTGGTCATTGGTCCAGGC</u> GG	<i>bla</i> _{NDM-3} SalI-R
YG615	CTT <u>GCCCCG</u> AAA <u>AGGGGATGGTTG</u>	<i>bla</i> _{NDM-9} BamHI-F
YG616	CAACC <u>ATCCC</u> TTTG <u>CGGGG</u> CAAG	<i>bla</i> _{NDM-9} SalI-R
YG617	GTGAA <u>ATCCGCCC</u> GAC <u>GGCTGGCC</u> AGCAA <u>ATG</u> GAAA	<i>bla</i> _{NDM-1-<i>I35A</i>-F}
YG618	TTT <u>CCATTGCTGGCC</u> <u>AGCC</u> GT <u>CGGGCGG</u> ATT CAC	<i>bla</i> _{NDM-1-<i>I35A</i>-R}
YG619	GGT <u>GGCTGCCTGATCGCGG</u> ACAG <u>CAAGGCCAA</u>	<i>bla</i> _{NDM-1-<i>K211A</i>-F}
YG620	TT <u>GGCCTTGCTGTCC</u> CGAT <u>CAGGCAGCCACC</u>	<i>bla</i> _{NDM-1-<i>K211A</i>-R}
YG621	CAT <u>GATCGT</u> GAT <u>GAGCG</u> CTCCGCC <u>CCGATAG</u> C	<i>bla</i> _{NDM-1-<i>H250A</i>-F}
YG622	GCT <u>ATCGGGGGCGGA</u> <u>AGCG</u> CT <u>CATCACGATCA</u> TG	<i>bla</i> _{NDM-1-<i>H250A</i>-R}

591 ^a Restriction enzyme sites are underlined.

592 ^b The mutated codons are underlined in red.

593

594

595

596 **Table S4. IC₅₀ of the remaining active inhibitors on NDM-1.**

Number	Drug	Structure	IC ₅₀ (μg/mL)
1	Benserazide hydrochloride		2.06
2	Broxyquinoline		3.00
3	Gadodiamide		4.61
4	Sertaconazole nitrate		3.09
5	Dolutegravir Sodium		9.29
6	1, 4-Benzoquinone		3.79
7	Clotrimazole		2.07
8	Fenticonazole nitrate		6.30

597 **Table S5. Synergistic antibacterial effect of meropenem in combination with**
 598 **dexrazoxane on tested strains.**

Species	Antibiotics	MIC (μg/mL)		FIC Index
		Alone	Combination	
<i>E. coli</i> ATCC 25922	Meropenem	0.03±0.00	0.03±0.00	1.06±0.00
	Meropenem	32.00±0.00	1.00±0.00	0.09±0.00
	Amoxicillin	512.00±0.00	512.00±0.00	1.06±0.00
	Ciprofloxacin	512.00±0.00	341.33±120.68	0.73±0.24
<i>E. coli</i> ZJ487 (NDM-1)	Imipenem	13.33±3.77	3.33±0.94	0.31±0.00
	Erythrocin	2.00±0.00	2.00±0.00	1.06±0.00
	Chloramphenicol	8.00±0.00	6.67±1.89	0.90±0.20
	Tetracycline	213.33±60.34	213.33±60.34	13.33±3.77
<i>E. coli</i> ZC-YN3 (NDM-1)	Gentamicin	341.33±120.68	256.00±0.00	13.33±3.77
	Meropenem	21.33±7.54	2.67±0.94	0.19±0.00
<i>E. coli</i> ZC-YN7 (NDM-9)	Meropenem	13.33±3.77	3.00±1.41	0.27±0.06
<i>E. coli</i> D3 (NDM-1)	Meropenem	13.33±3.77	1.00±0.00	0.15±0.03
<i>E. coli</i> E1 (NDM-1)	Meropenem	13.33±3.77	1.00±0.00	0.15±0.03
<i>E. coli</i> 2Z49 (NDM-5)	Meropenem	32.00±0.00	4.00±0.00	0.19±0.00
<i>E. coli</i> 2Z69 (NDM-5)	Meropenem	32.00±0.00	6.67±1.89	0.27±0.06
<i>E. coli</i> E4 (NDM-5)	Meropenem	53.33±15.08	8.67±5.73	0.24±0.1
<i>E. coli</i> E2 (NDM-9)	Meropenem	53.33±15.08	4.00±0.00	0.15±0.03
<i>K. pneumoniae</i> QD-KP1 (NDM-1)	Meropenem	64.00±0.00	10.67±3.77	0.23±0.06
<i>K. pneumoniae</i> QD-KP2 (NDM-1)	Meropenem	106.67±30.17	37.33±19.96	0.40±0.12
<i>K. pneumoniae</i> QD-KP3 (NDM-1)	Meropenem	128.00±0.00	12.00±5.66	0.10±0.02
<i>E. coli</i> BL21 (pET28a-SP-NDM-1)	Meropenem	128.00±0.00	5.33±1.89	0.10±0.01
<i>E. cloacae</i> 20710 (VIM-1)	Meropenem	32.00±0.00	4.00±0.00	0.19±0.00
<i>E. cloacae</i> 20712 (VIM-1)	Meropenem	32.00±0.00	5.33±1.89	0.23±0.06

599 Data are the mean ± SD from three independent experiments. Dexrazoxane, 64μg/mL.

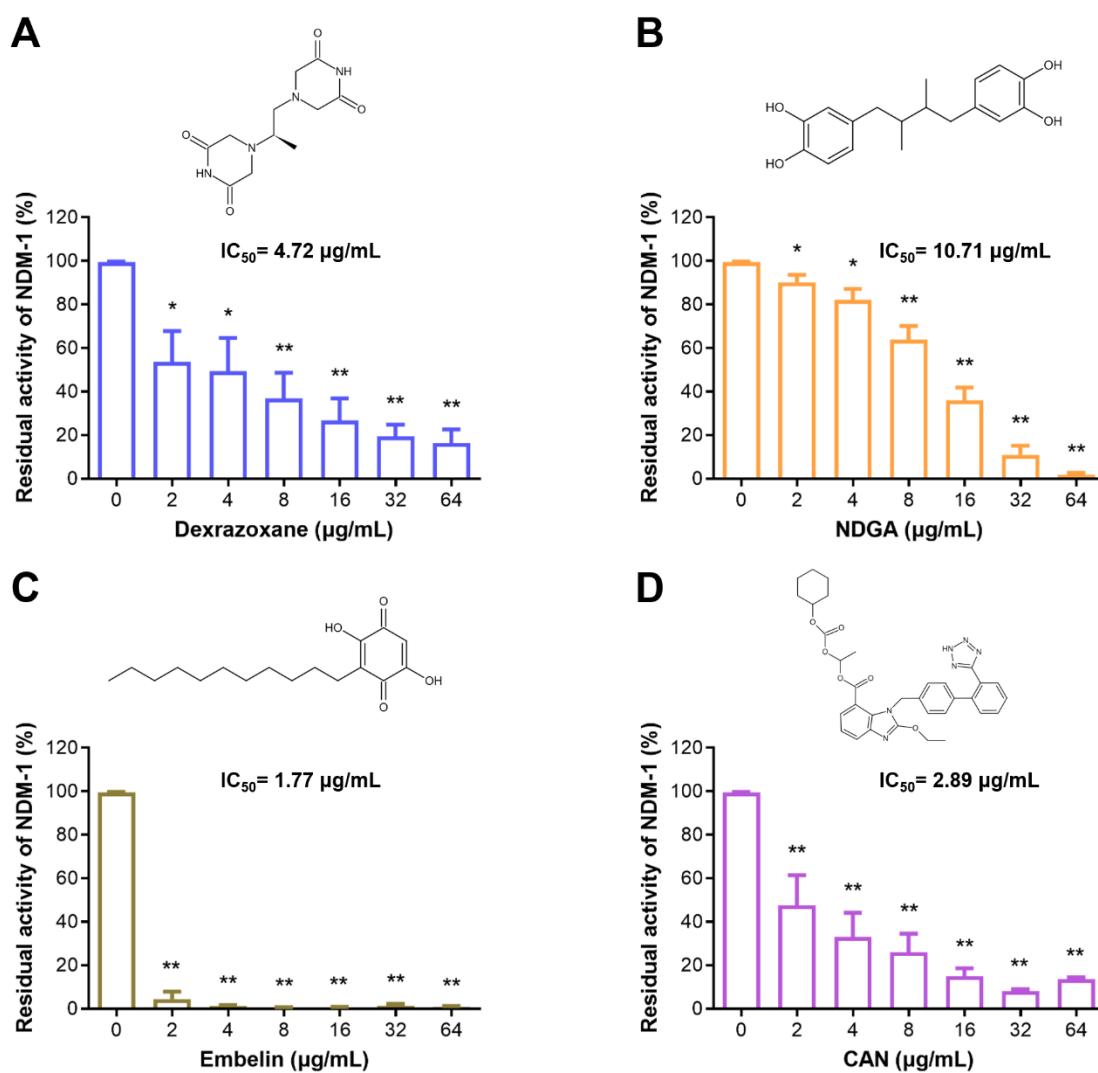
600 **Table S6. Synergistic antibacterial effect of meropenem in combination with**
 601 **NDGA on tested strains.**

Species	Antibiotics	MIC (μg/mL)		FIC Index
		Alone	Combination	
<i>E. coli</i> ATCC 25922	Meropenem	0.03±0.00	0.03±0.00	1.13±0.00
	Meropenem	32.00±0.00	1.00±0.00	0.16±0.00
	Amoxicillin	512.00±0.00	512.00±0.00	1.13±0.00
	Ciprofloxacin	512.00±0.00	426.67±120.68	0.96±0.24
<i>E. coli</i> ZJ487 (NDM-1)	Imipenem	13.33±3.77	3.33±0.94	0.38±0.00
	Erythrocine	2.00±0.00	1.33±0.47	0.79±0.24
	Chloramphenicol	8.00±0.00	5.33±1.89	0.79±0.24
	Tetracycline	213.33±60.34	213.33±60.34	1.13±0.00
<i>E. coli</i> ZC-YN3 (NDM-1)	Gentamicin	341.33±120.68	213.33±60.34	0.79±0.24
	Meropenem	21.33±7.54	2.67±0.94	0.25±0.00
<i>E. coli</i> ZC-YN7 (NDM-9)	Meropenem	13.33±3.77	1.00±0.00	0.21±0.03
<i>E. coli</i> D3 (NDM-1)	Meropenem	13.33±3.77	2.00±0.00	0.29±0.06
<i>E. coli</i> E1 (NDM-1)	Meropenem	13.33±3.77	2.67±0.94	0.33±0.03
<i>E. coli</i> 2Z49 (NDM-5)	Meropenem	32.00±0.00	8.00±0.00	0.38±0.00
<i>E. coli</i> 2Z69 (NDM-5)	Meropenem	32.00±0.00	6.67±1.89	0.33±0.06
<i>E. coli</i> E4 (NDM-5)	Meropenem	53.33±15.08	2.67±0.94	0.19±0.10
<i>E. coli</i> E2 (NDM-9)	Meropenem	53.33±15.08	24.67±27.92	0.55±0.41
<i>K. pneumoniae</i> QD-KP1 (NDM-1)	Meropenem	64.00±0.00	21.33±7.54	0.46±0.12
<i>K. pneumoniae</i> QD-KP2 (NDM-1)	Meropenem	106.67±30.17	69.33±45.88	0.71±0.31
<i>K. pneumoniae</i> QD-KP3 (NDM-1)	Meropenem	128.00±0.00	341.33±120.68	0.96±0.24
<i>E. coli</i> BL21 (pET28a-SP-NDM-1)	Meropenem	128.00±0.00	26.67±7.54	0.33±0.06
<i>E. cloacae</i> 20710 (VIM-1)	Meropenem	32.00±0.00	6.67±1.89	0.33±0.06
<i>E. cloacae</i> 20712 (VIM-1)	Meropenem	32.00±0.00	8.00±0.00	0.38±0.00

602 Data are the mean ± SD from three independent experiments. NDGA, 32 μg/mL.

603 **Table S7. Synergistic antibacterial effect of meropenem in combination with**
 604 **embelin on tested strains.**

Species	Antibiotics	MIC (µg/mL)		FIC Index
		Alone	Combination	
<i>E. coli</i> ATCC 25922	Meropenem	0.03±0.00	0.03±0.00	1.25±0.00
	Meropenem	32.00±0.00	0.03±0.00	0.25±0.00
	Amoxicillin	512.00±0.00	512.00±0.00	1.25±0.00
	Ciprofloxacin	512.00±0.00	426.67±120.68	1.08±0.24
<i>E. coli</i> ZJ487 (NDM-1)	Imipenem	13.33±3.77	1.00±0.00	0.33±0.03
	Erythrocine	2.00±0.00	1.67±0.47	1.08±0.24
	Chloramphenicol	8.00±0.00	6.67±1.89	1.08±0.24
	Tetracycline	213.33±60.34	213.33±60.34	1.25±0.00
<i>E. coli</i> ZC-YN3 (NDM-1)	Gentamicin	341.33±120.68	213.33±60.34	0.92±0.24
	Meropenem	21.33±7.54	0.25±0.00	0.26±0.00
<i>E. coli</i> ZC-YN7 (NDM-9)	Meropenem	13.33±3.77	0.50±0.00	0.29±0.01
<i>E. coli</i> D3 (NDM-1)	Meropenem	13.33±3.77	0.50±0.00	0.29±0.01
<i>E. coli</i> E1 (NDM-1)	Meropenem	13.33±3.77	0.50±0.00	0.29±0.01
<i>E. coli</i> 2Z49 (NDM-5)	Meropenem	32.00±0.00	0.33±0.12	0.26±0.00
<i>E. coli</i> 2Z69 (NDM-5)	Meropenem	32.00±0.00	0.50±0.00	0.27±0.00
<i>E. coli</i> E4 (NDM-5)	Meropenem	53.33±15.08	0.50±0.00	0.26±0.00
<i>E. coli</i> E2 (NDM-9)	Meropenem	53.33±15.08	0.50±0.00	0.26±0.00
<i>K. pneumoniae</i> QD-KP1 (NDM-1)	Meropenem	64.00±0.00	1.67±0.47	0.28±0.01
<i>K. pneumoniae</i> QD-KP2 (NDM-1)	Meropenem	106.67±30.17	1.33±0.47	0.27±0.01
<i>K. pneumoniae</i> QD-KP3 (NDM-1)	Meropenem	128.00±0.00	1.67±0.47	0.28±0.01
<i>E. coli</i> BL21 (pET28a-SP-NDM-1)	Meropenem	128.00±0.00	0.50±0.00	0.25±0.00
<i>E. cloacae</i> 20710 (VIM-1)	Meropenem	32.00±0.00	4.00±0.00	0.26±0.00
<i>E. cloacae</i> 20712 (VIM-1)	Meropenem	32.00±0.00	0.25±0.00	0.26±0.00


605 Data are the mean ± SD from three independent experiments. Embelin, 32 µg/mL.

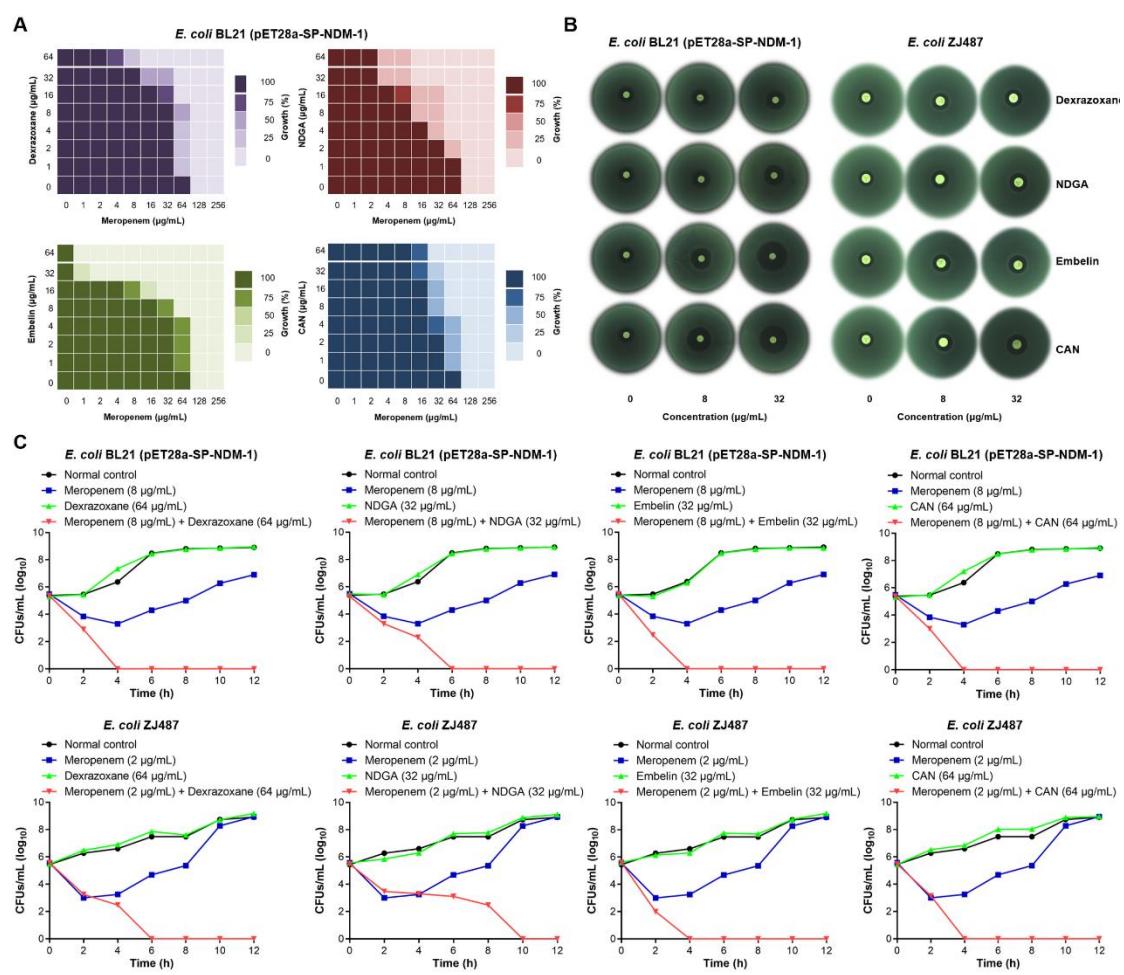
606 **Table S8. Synergistic antibacterial effect of meropenem in combination with CAN**
607 **on tested strains.**

Species	Antibiotics	MIC (µg/mL)		FIC Index
		Alone	Combination	
<i>E. coli</i> ATCC 25922	Meropenem	0.03±0.00	0.03±0.00	1.06±0.00
	Meropenem	32.00±0.00	2.00±0.00	0.13±0.00
	Amoxicillin	512.00±0.00	512.00±0.00	1.06±0.00
	Ciprofloxacin	512.00±0.00	512.00±0.00	1.06±0.00
<i>E. coli</i> ZJ487 (NDM-1)	Imipenem	13.33±3.77	1.33±0.47	0.17±0.03
	Erythrocin	2.00±0.00	1.67±0.47	0.90±0.24
	Chloramphenicol	8.00±0.00	8.00±0.00	1.06±0.00
	Tetracycline	213.33±60.34	170.67±60.34	0.90±0.24
<i>E. coli</i> ZC-YN3 (NDM-1)	Gentamicin	341.33±120.68	341.33±120.68	1.06±0.00
	Meropenem	21.33±7.54	3.33±0.94	0.23±0.06
<i>E. coli</i> ZC-YN7 (NDM-9)	Meropenem	13.33±3.77	3.33±0.94	0.31±0.00
<i>E. coli</i> D3 (NDM-1)	Meropenem	13.33±3.77	1.67±0.47	0.19±0.00
<i>E. coli</i> E1 (NDM-1)	Meropenem	13.33±3.77	2.33±1.25	0.23±0.06
<i>E. coli</i> 2Z49 (NDM-5)	Meropenem	32.00±0.00	6.67±1.89	0.27±0.06
<i>E. coli</i> 2Z69 (NDM-5)	Meropenem	32.00±0.00	5.33±1.89	0.23±0.06
<i>E. coli</i> E4 (NDM-5)	Meropenem	53.33±15.08	10.67±3.77	0.27±0.06
<i>E. coli</i> E2 (NDM-9)	Meropenem	53.33±15.08	13.33±13.20	0.29±0.19
<i>K. pneumoniae</i> QD-KP1 (NDM-1)	Meropenem	64.00±0.00	16.00±0.00	0.31±0.00
<i>K. pneumoniae</i> QD-KP2 (NDM-1)	Meropenem	106.67±30.17	8.00±0.00	0.15±0.03
<i>K. pneumoniae</i> QD-KP3 (NDM-1)	Meropenem	128.00±0.00	256.00±0.00	0.73±0.24
<i>E. coli</i> BL21 (pET28a-SP-NDM-1)	Meropenem	128.00±0.00	21.33±7.54	0.23±0.06
<i>E. cloacae</i> 20710 (VIM-1)	Meropenem	32.00±0.00	10.67±3.77	0.40±0.12
<i>E. cloacae</i> 20712 (VIM-1)	Meropenem	32.00±0.00	6.67±1.89	0.27±0.06

608 Data are the mean ± SD from three independent experiments. CAN, 64 µg/mL.

609 **Figures**

610


611 **Figure 1. Four inhibitors were screened for their ability to inactivate NDM-1.**

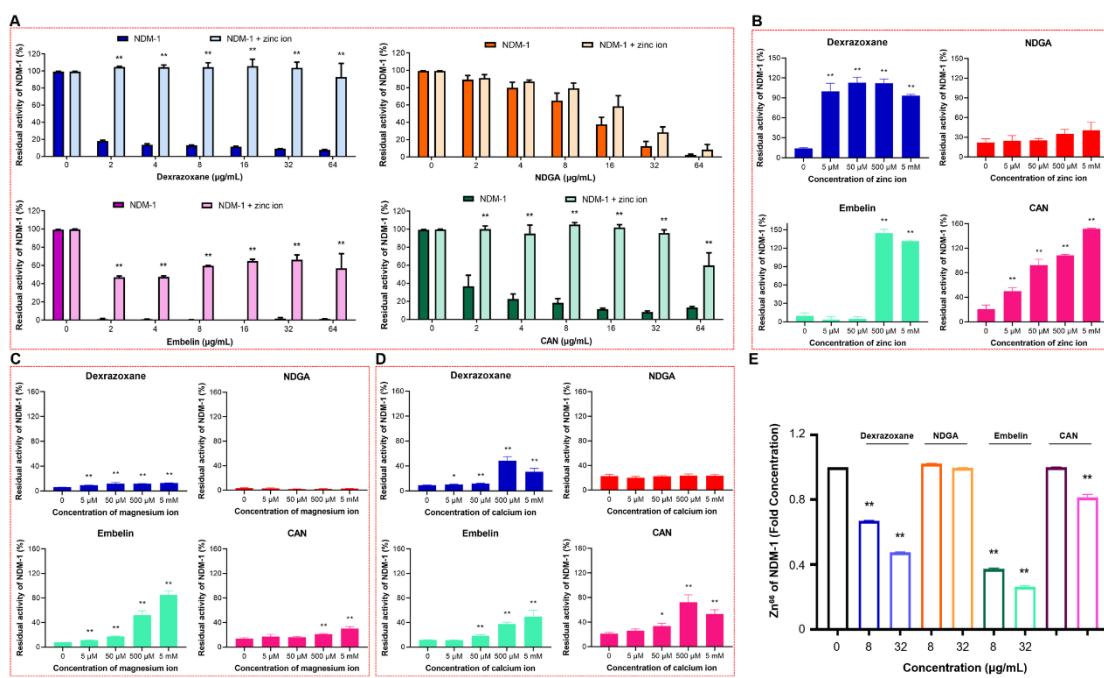
612 Inhibition of NDM-1 by dexrazoxane (A), NDGA (B), embelin (C) and CAN (D). The
613 chemical structures of the inhibitors are shown in each panel. The positive control was
614 performed in the presence of NDM-1 without inhibitors, while the negative control was
615 carried out in the absence of enzyme. Percent residual activity of NDM-1
616 = $A - A_0/A_{100} - A_0 \times 100\%$, where A represents the absorbance of samples at 492 nm,
617 A0 and A100 represent 0% and 100% activity of enzyme as determined in the negative
618 control and positive control, respectively. All the data represent the mean \pm SD from

619 three independent experiments. * indicates $P < 0.05$ and ** indicates $P < 0.01$ by

620 Student's *t*-test.

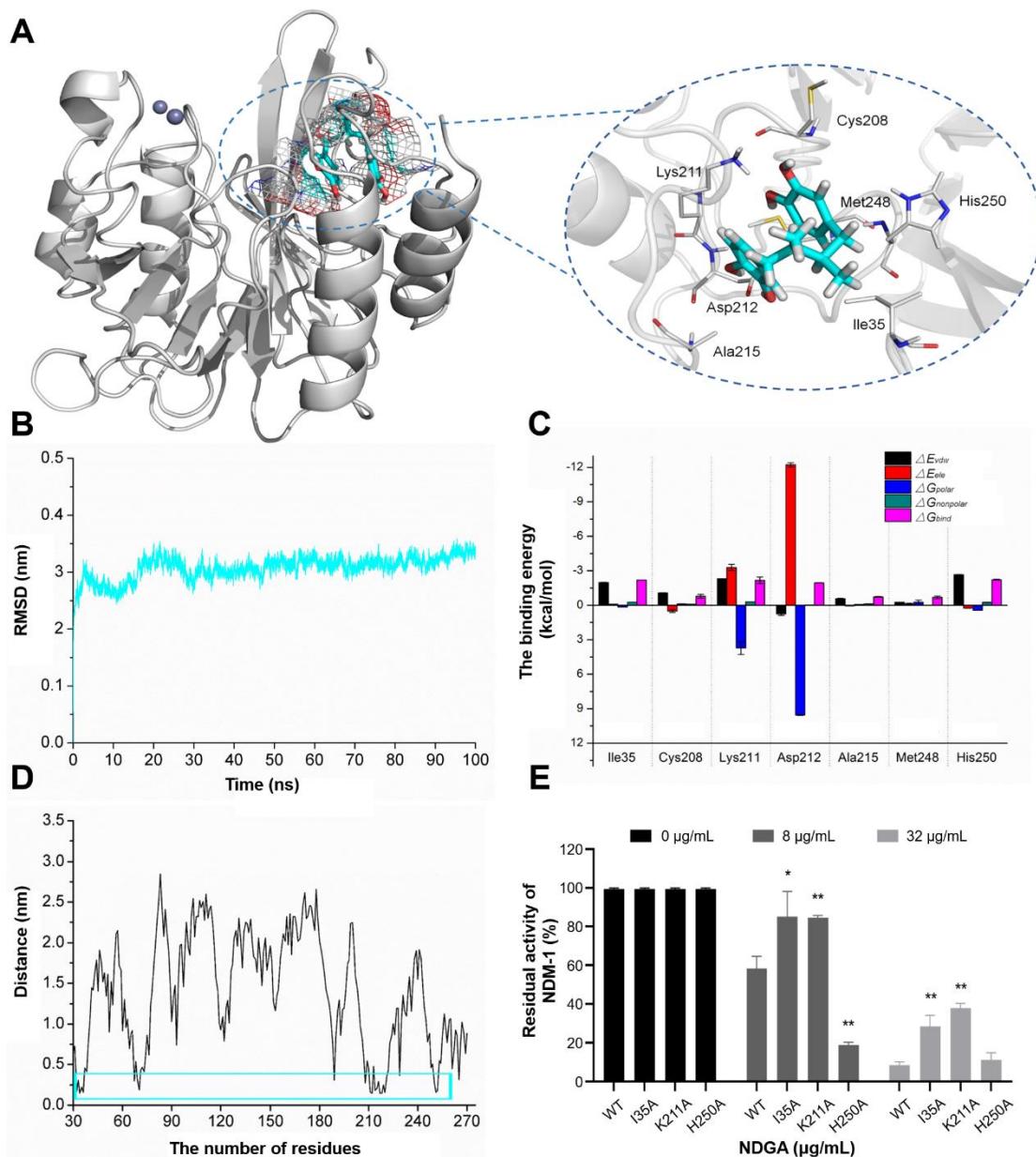
621

623 **Figure 2. Dexamoxane, NDGA, embelin and CAN rescue the antibacterial activity**
624 **of meropenem *in vitro*.**


625 (A) Microdilution checkerboard analysis showed the synergistic antibacterial effect of
626 dexamoxane, NDGA, embelin and CAN and meropenem against *E. coli* BL21
627 (pET28a-SP-NDM-1). (B) Zones of inhibition surrounding meropenem disks
628 supplemented with increasing concentrations of dexamoxane, NDGA, embelin and
629 CAN for the NDM-1-positive strains. (C) Time-dependent killing by the combination
630 of meropenem and dexamoxane, NDGA, embelin or CAN against ZJ487 and *E. coli*
631 BL21 (pET28a-SP-NDM-1). The data shown in panels A, B and C are one
632 representative of three independent experiments.

633

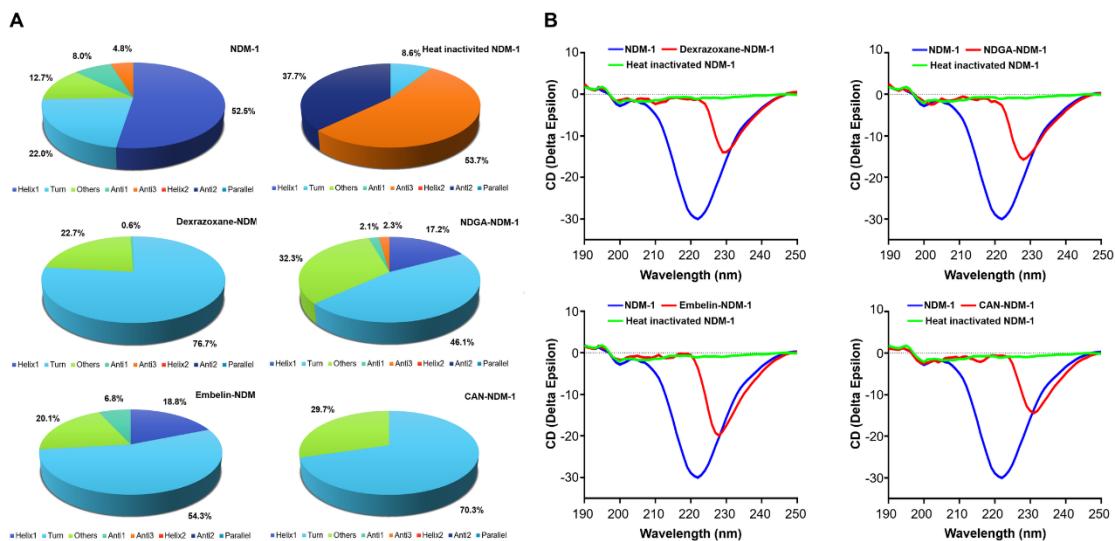
634
635 **Figure 3. Dexamoxane, NDGA, embelin and CAN suppress the activity of NDM-
636 3, NDM-9, IMP-1 and VIM-1.**


637 Following pre-incubation of dexamoxane, NDGA, embelin and CAN with NDM-3 (A),
638 NDM-9 (B), IMP-1 (C) and VIM-1 (D), the residual enzymatic activity of these
639 proteins was determined as shown in Figure 1. The data shown are the mean \pm SD from
640 three independent experiments. * indicates $P < 0.05$ and ** indicates $P < 0.01$ by
641 Student's *t*-test.
642

643

644 **Figure 4. Dexrazoxane, embelin and CAN act as metal ion chelators to inhibit**
 645 **NDM-1 activity.**

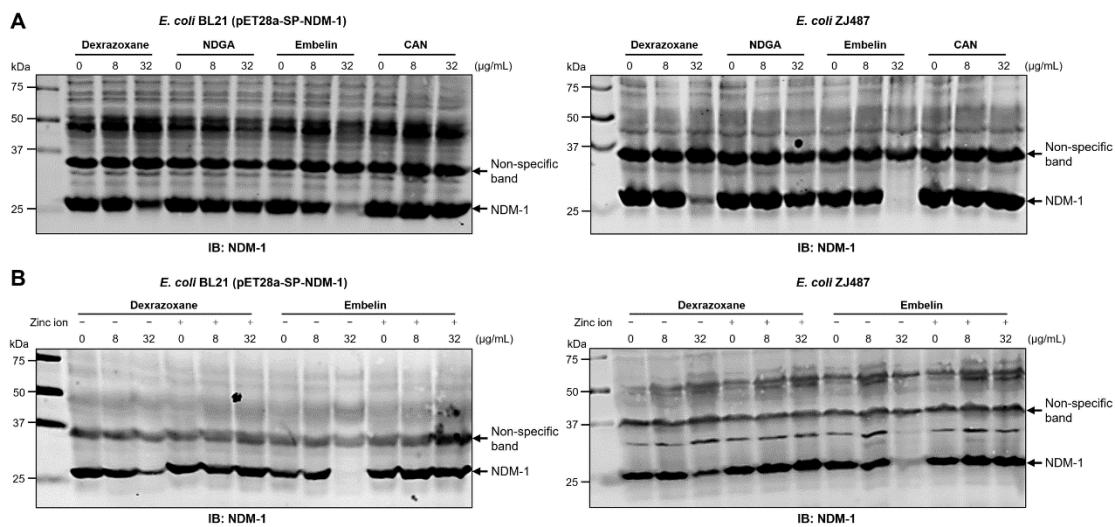
646 **(A)** Residual activity of NDM-1 after the addition of 500 μ M zinc ions in the presence
 647 of increasing concentrations of dexrazoxane, NDGA, embelin and CAN. **(B-D)**
 648 Supplementation with increasing concentrations of zinc ions **(B)**, magnesium ions **(C)**
 649 and calcium ions **(D)** relieved the inhibition of NDM-1 mediated by dexrazoxane,
 650 embelin and CAN. **(E)** Zinc ion depletion by dexrazoxane, embelin and CAN as
 651 determined by ICP-MS. The vertical coordinate represents the fold concentration of
 652 free Zn⁶⁶ in NDM-1. The data shown are the mean \pm SD from three independent
 653 experiments. * indicates $P < 0.05$ and ** indicates $P < 0.01$ by Student's *t*-test.



654

655 **Figure 5. Direct engagement of NDGA with NDM-1.**

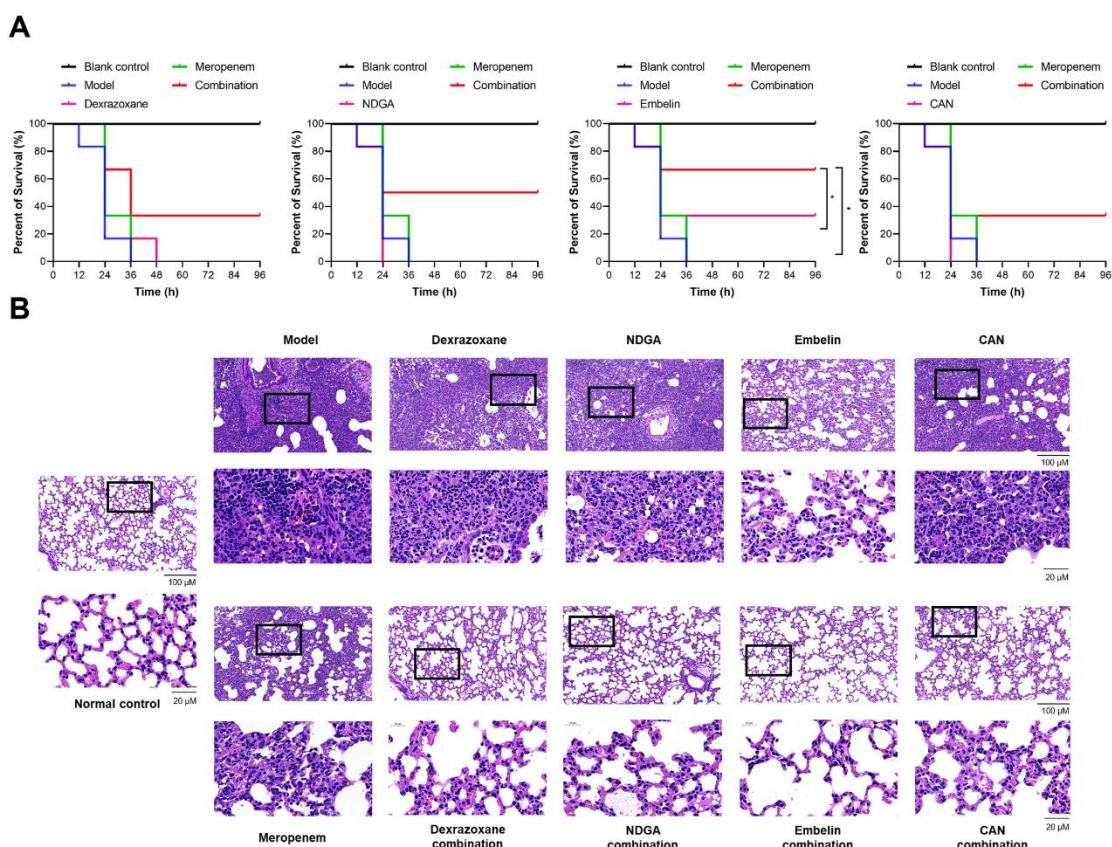
656 (A) The three-dimensional structure determination of NDM-1 with the NDGA complex
657 via a molecular modelling method. The purple spheres represent zinc ions. (B) The
658 RMSD values of the NDM-1-NDGA complex. (C) Decomposition of the binding
659 energy on a per-residue basis in the binding sites of the NDM-1-NDGA complex. (D)
660 Analysis of the distance between all residues of NDM-1 and NDGA. (E) Residual
661 activity of NDM-1 and its mutants in the presence of different concentrations of NDGA.


662 Data shown in panel E are the mean \pm SD. * indicates $P < 0.05$ and ** indicates $P <$
663 0.01 by Student's *t*-test.
664

665

666 **Figure 6. Inhibitors alter the secondary structure of NDM-1.**

667 (A) Secondary structure composition of NDM-1 in the presence or absence of 32 $\mu\text{g}/\text{mL}$
668 of the inhibitors as determined by CD spectra. (B) Calculated CD spectrum with
669 dexrazoxane, NDGA, embelin and CAN on NDM-1. Comparison between NDM-1
670 (blue), NDM-1 treated with inhibitor (red) and heat inactivated NDM-1 (green) at 70 $^{\circ}\text{C}$
671 for 30 min. The wavelength for CD spectroscopy was set as 190-250 nm.

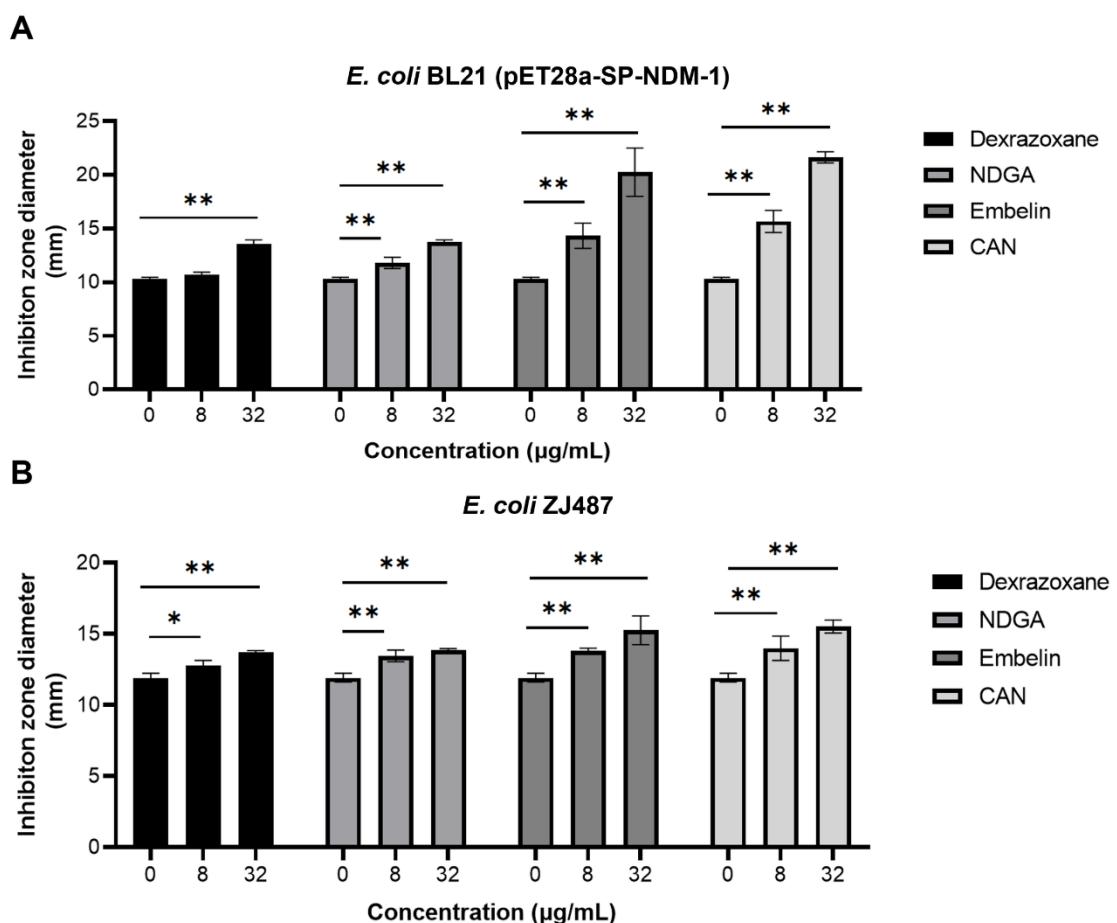


672

673 **Figure 7. Dexrazoxane and embelin induce NDM-1 degradation via metal ion
674 depletion manner.**

675 (A) NDM-1 levels in *E. coli* strains BL21 (pET28a-SP-NDM-1) and ZJ487 treated with
676 the indicated concentrations of inhibitors. (B) The addition of 500 μM of zinc ions
677 suppresses the degradation of NDM-1 resulting from dexrazoxane and embelin
678 treatment. Total proteins of bacteria cultured in the presence or absence of inhibitors
679 and additional zinc ions were separated by SDS-PAGE and probed with NDM-1
680 specific antibody. The non-specific band was used as an internal loading control. The
681 blots shown are one representative of three independent experiments with similar
682 observations.

683

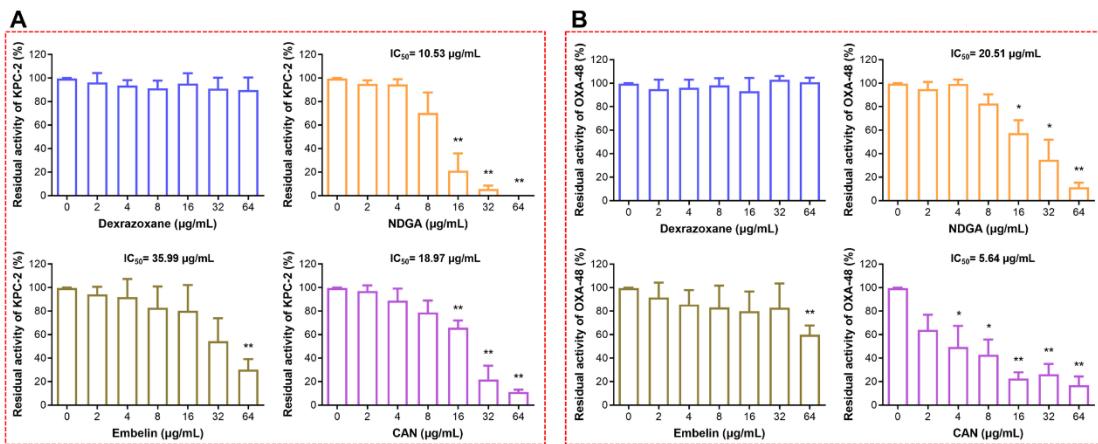


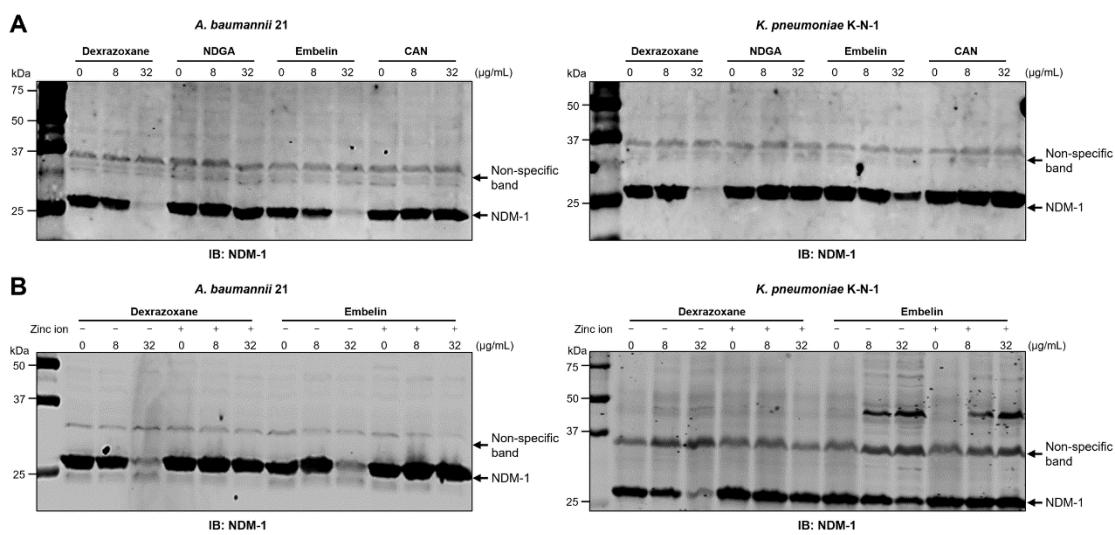
684

685 **Figure 8. Dexrazoxane, NDGA, embelin and CAN rescue meropenem efficacy in**
686 ***vivo*.**

687 Mice were challenged with *E. coli* ZJ487 and then treated with inhibitors (80 mg/kg),
688 meropenem (10 mg/kg), inhibitors (80 mg/kg) combined with meropenem (10 mg/kg)
689 (combination), or DMSO (model). Mice without bacterial infection were included as a
690 blank control. (A) The combination of individual inhibitors and meropenem
691 significantly increased the survival rate of mice intraperitoneally infected with *E. coli*
692 ZJ487 compared with meropenem monotherapy. Mice were randomly allocated into
693 different groups and each group contained 6 mice (n=6). (B) The combination of
694 individual inhibitors and meropenem alleviated histopathological injury of mice in a
695 mouse pneumonia model compared with meropenem monotherapy. Lungs of infected
696 mice were collected 72 h post-infection and stained with haematoxylin and eosin.

697 Histopathological changes were visualized under a digital slide scanner. Mice were
698 randomly allocated into different groups and each group contained 6 mice (n=6). The
699 experimental results shown in panels A and B are one representative from three
700 independent experiments. * indicates $P < 0.05$ as determined by log-rank (Mantel-Cox)
701 test.
702

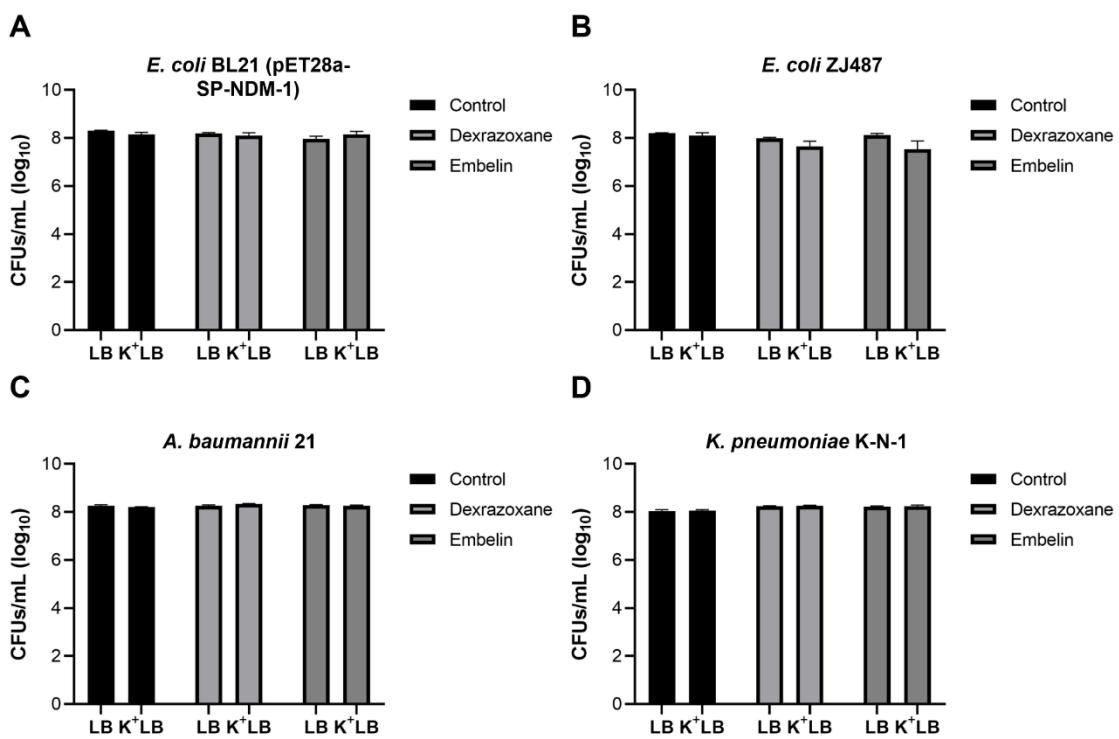

703


704 **Figure 2- figure supplement 1. Dexrazoxane, NDGA, embelin and CAN rescued**
705 **the activity of meropenem *in vitro* (related to Figure 2B).**

706 The inhibition zone diameter of meropenem disks supplemented with 0 µg/mL, 8
707 µg/mL or 32 µg/mL of dexrazoxane, NDGA, embelin and CAN against *E. coli* strains
708 BL21 (pET28a-SP-NDM-1) (A) and ZJ487 (B). The data shown are the mean ± SD
709 from three independent experiments. * indicates $P < 0.05$ and ** indicates $P < 0.01$ by
710 Student's *t*-test.

711

712

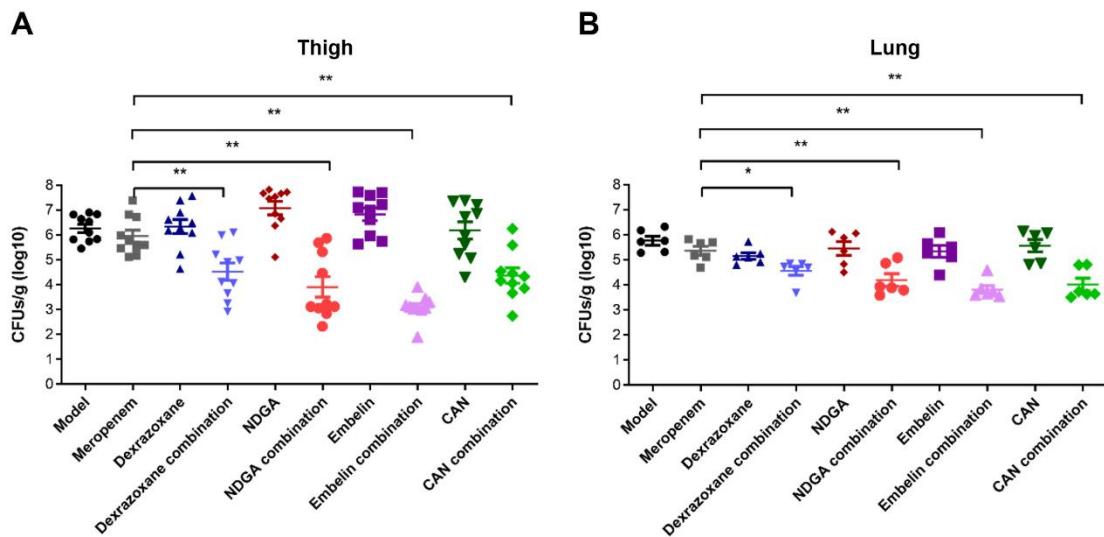


720

721 **Figure 7- figure supplement 1. Dexrazoxane and embelin induce NDM-1**
722 **degradation via metal ion depletion manner.**

723 (A) NDM-1 levels in *A. baumannii* 21 and *K. pneumoniae* K-N-1 treated with the
724 indicated concentrations of inhibitors. (B) The addition of 500 μM of zinc ions
725 suppresses the degradation of NDM-1 resulting from dexrazoxane and embelin
726 treatment. Total proteins of bacteria cultured in the presence or absence of inhibitors
727 and additional zinc ions were separated by SDS-PAGE and probed with NDM-1
728 specific antibody. The non-specific band was used as an internal loading control. The
729 blots shown are one representative of three independent experiments with similar
730 observations.

731

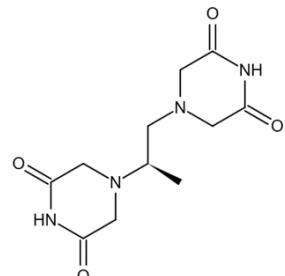


732

733 **Figure 7- figure supplement 2. Dexrazoxane and embelin do not affect plasmid
734 stability.**

735 Plasmid stability of *E. coli* BL21 (pET28a-SP-NDM-1) (A), *E. coli* ZJ487 (B), *A.*
736 *baumannii* 21 (C) or *K. pneumoniae* K-N-1 (D) following culture with 32 µg/mL of
737 dexrazoxane or embelin. The data shown are the mean ± SD from three independent
738 experiments.

739


740

741 **Figure 8- figure supplement 1. Dexrazoxane, NDGA, embelin and CAN rescue**
742 **meropenem activity *in vivo*.**

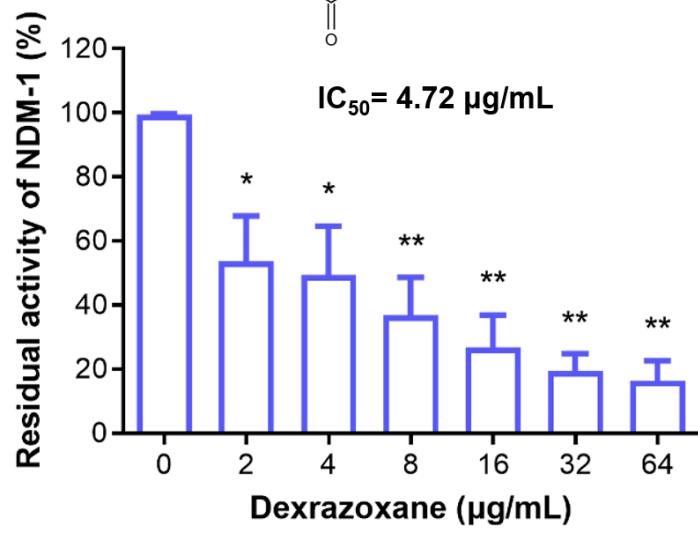
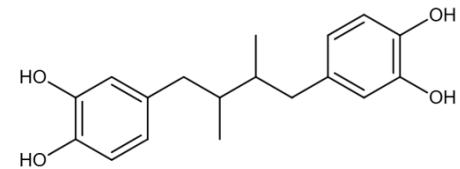
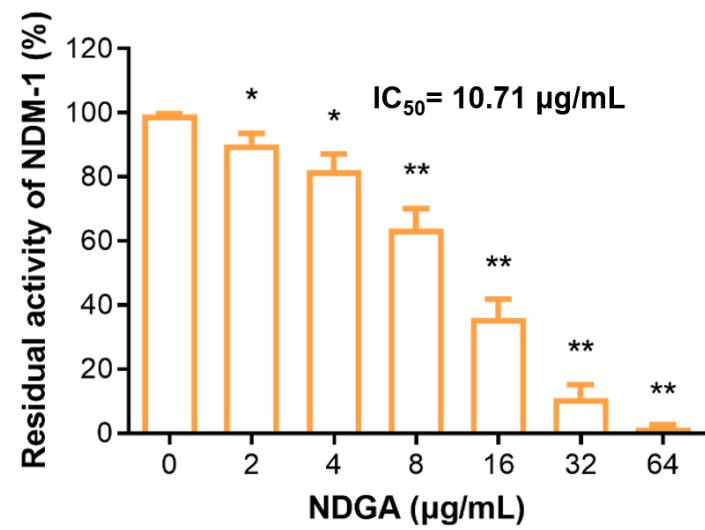
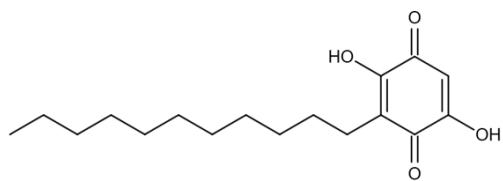
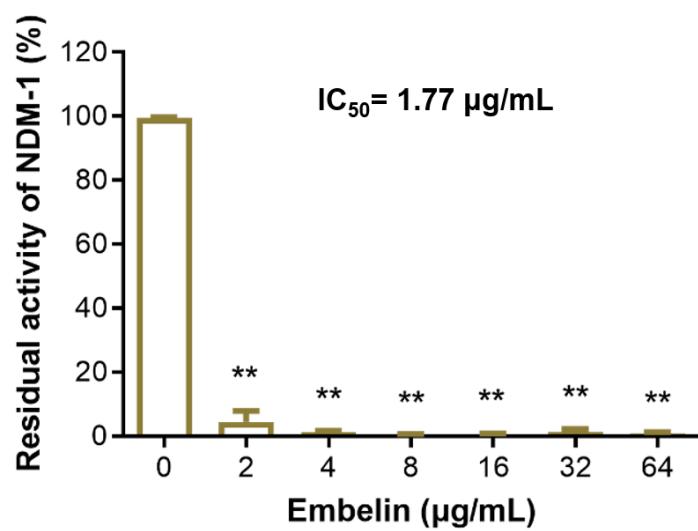

743 (A) The combination of meropenem with dexrazoxane, NDGA, embelin or CAN
744 decreased the bacterial load in the mouse thigh infection model compared with the
745 meropenem monotherapy. Mice were randomly allocated into different groups and each
746 group contains 10 mice (n=10). (B) The combination of meropenem with dexrazoxane,
747 NDGA, embelin or CAN reduced the bacterial load of the lungs in the mouse
748 pneumonia model compared with the meropenem monotherapy (related to Figure 8B).
749 Mice were randomly allocated into different groups and each group contains 6 mice
750 (n=6). The data shown are one representative of three independent experiments. *
751 indicates $P < 0.05$ and ** indicates $P < 0.01$ by Mann–Whitney U test.

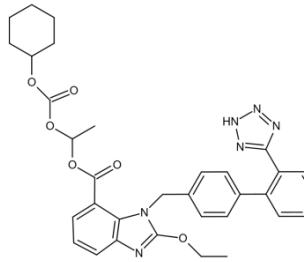
Figure 1

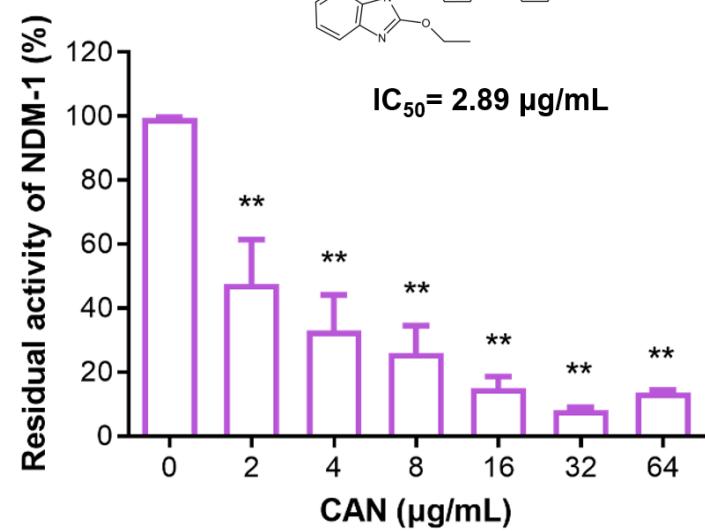

A


$IC_{50} = 4.72 \mu\text{g/mL}$


B


$IC_{50} = 10.71 \mu\text{g/mL}$


C


$IC_{50} = 1.77 \mu\text{g/mL}$

D

$IC_{50} = 2.89 \mu\text{g/mL}$

Figure 2

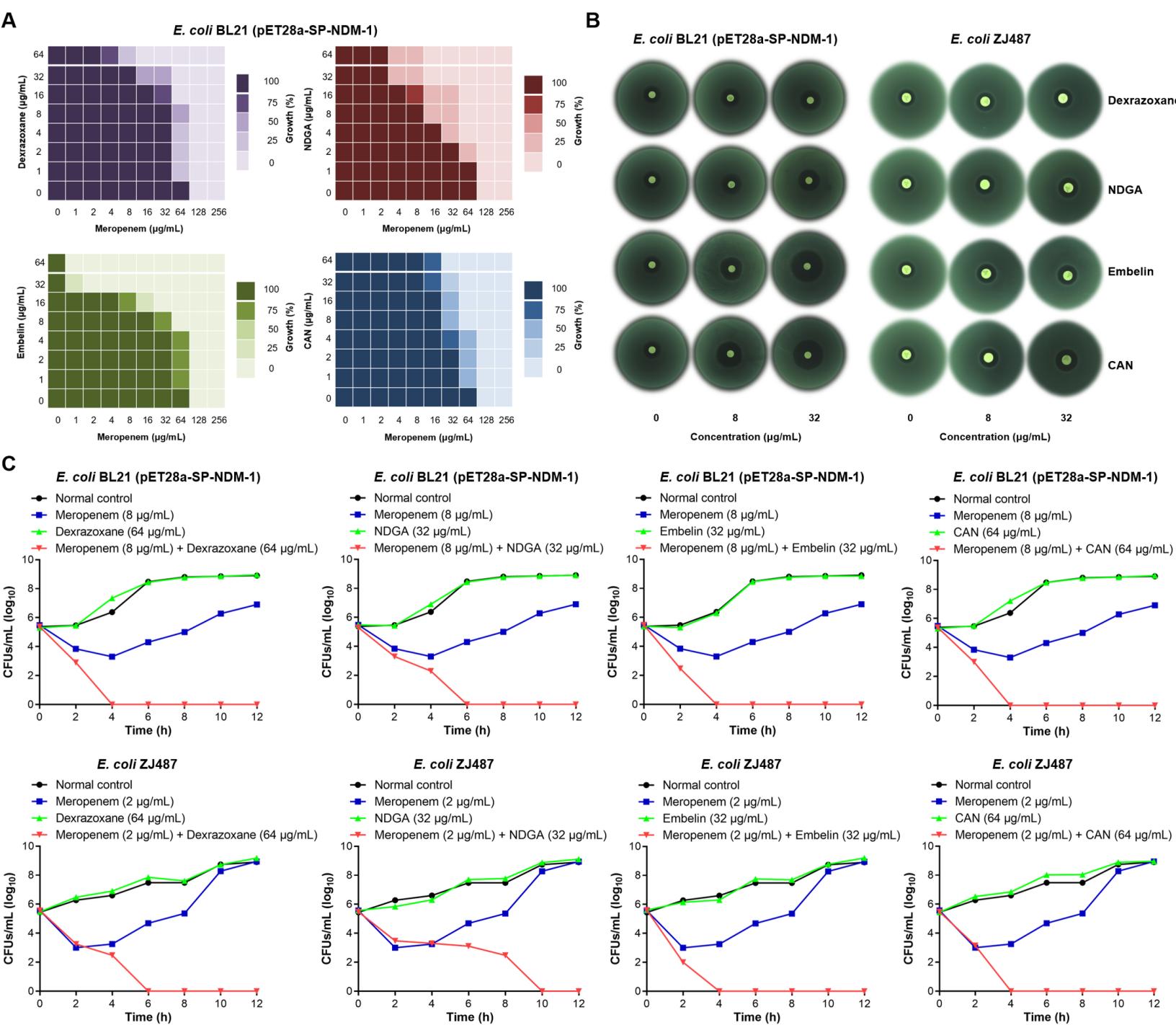
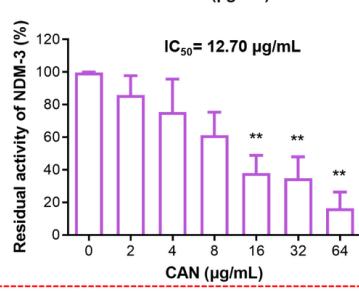
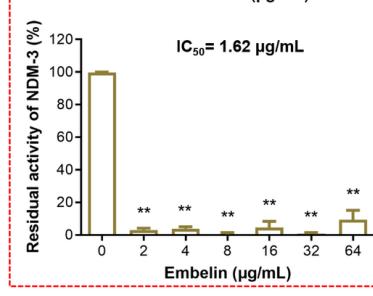
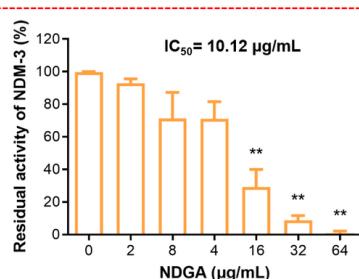
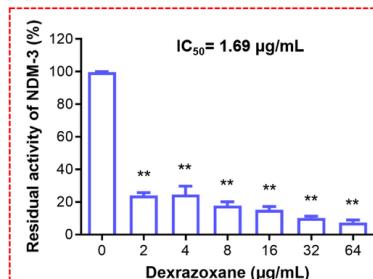
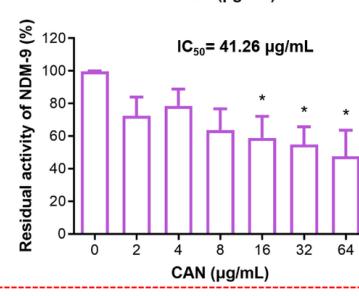
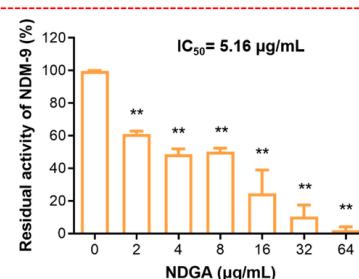
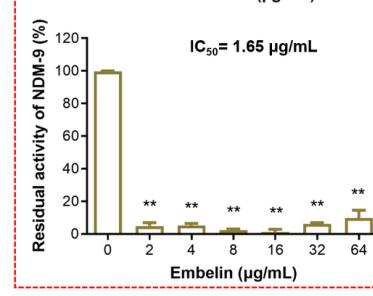
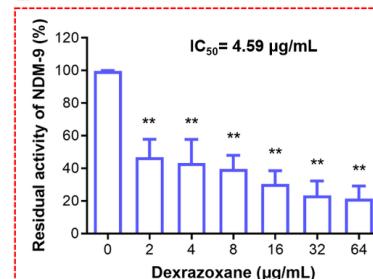
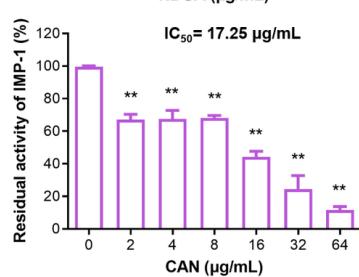
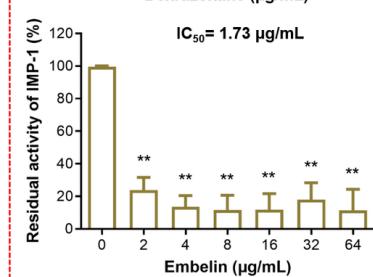
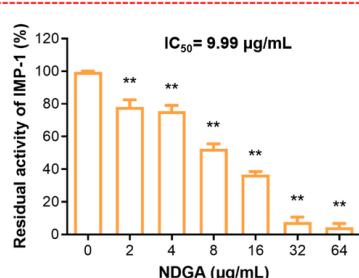
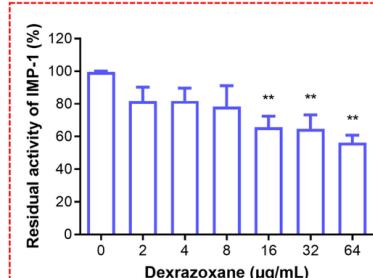
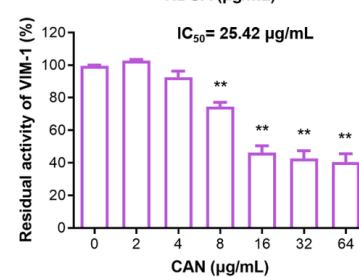
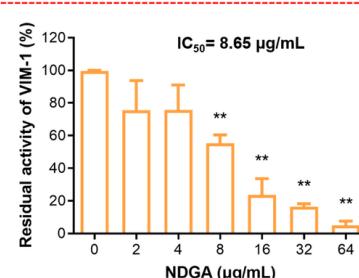
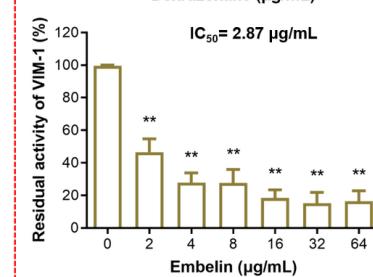
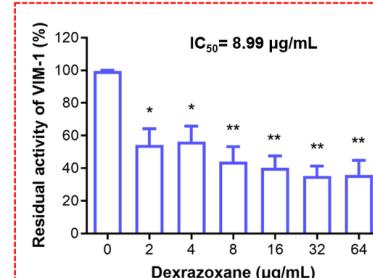


















Figure 3

A**B****C****D**

Figure 4

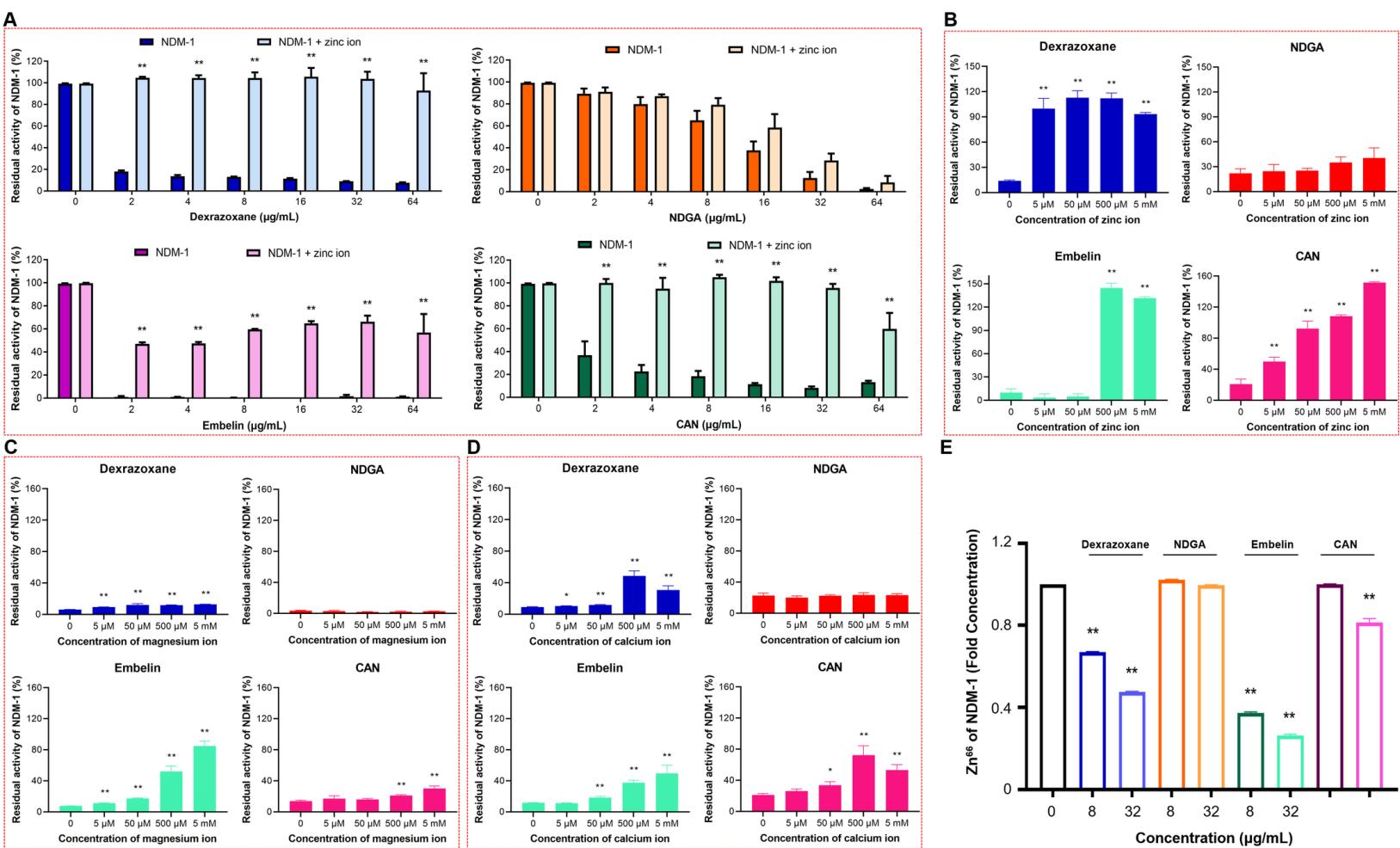
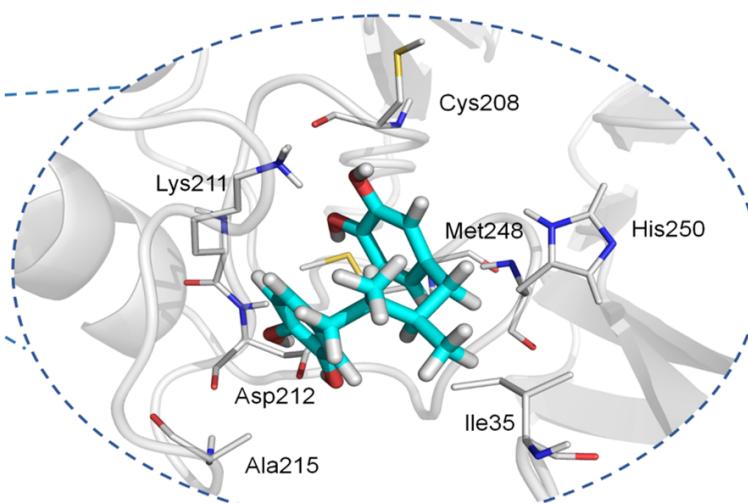
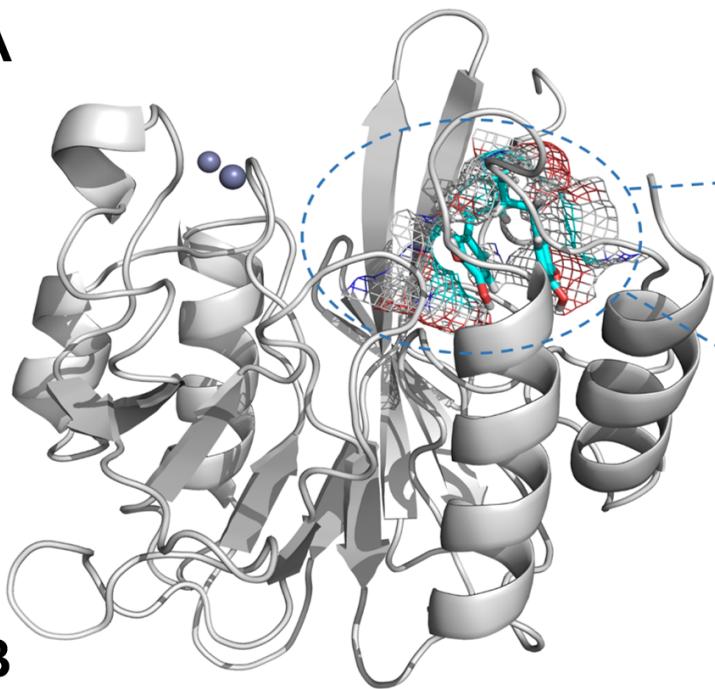
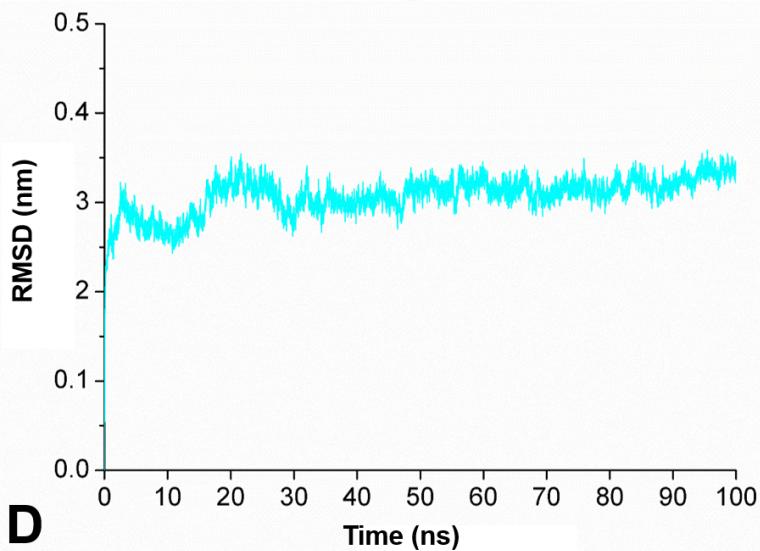
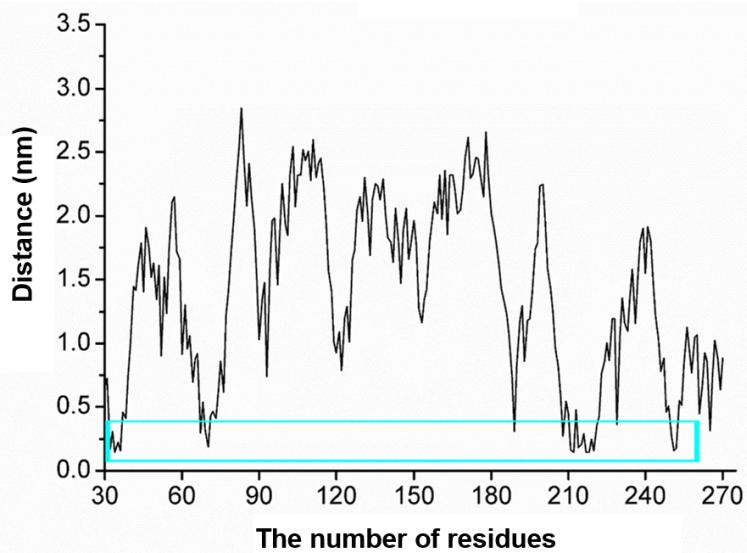
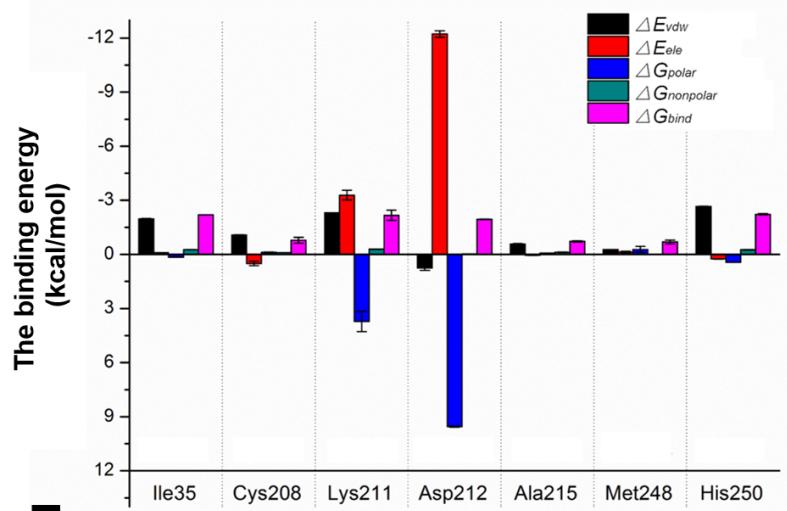
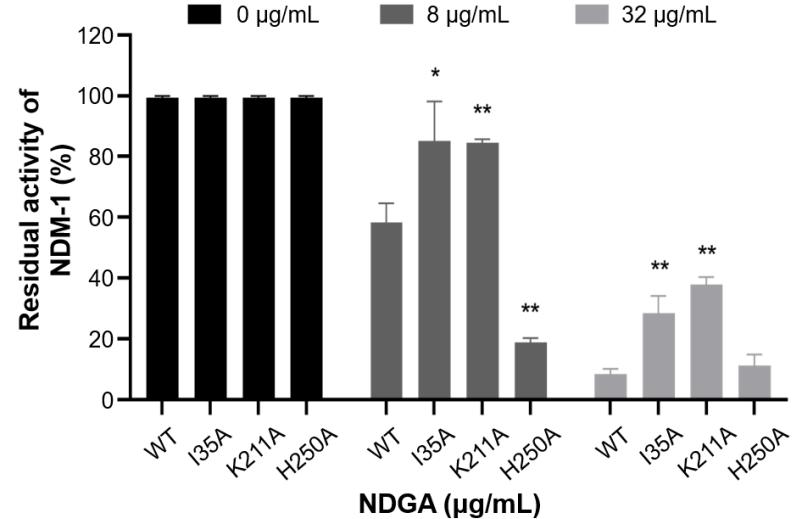
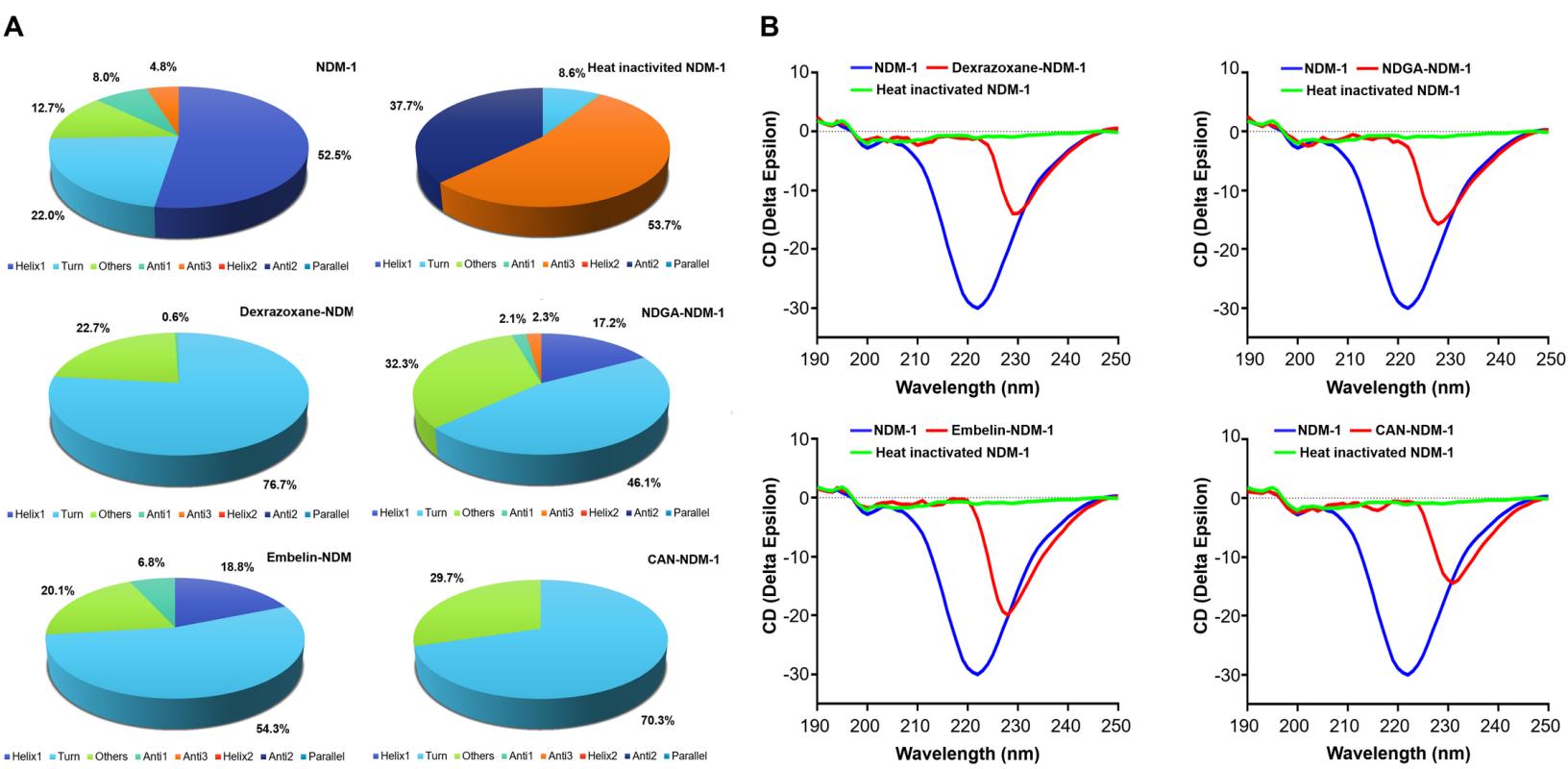
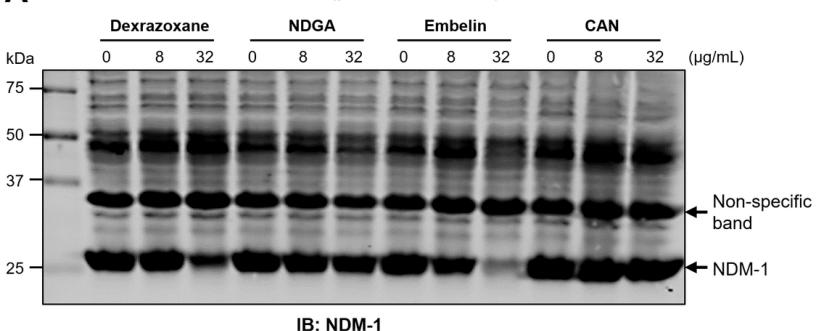
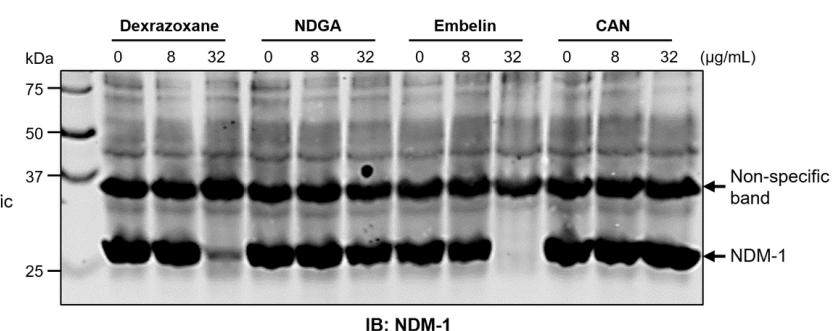








Figure 5

A**B****D****C****E**

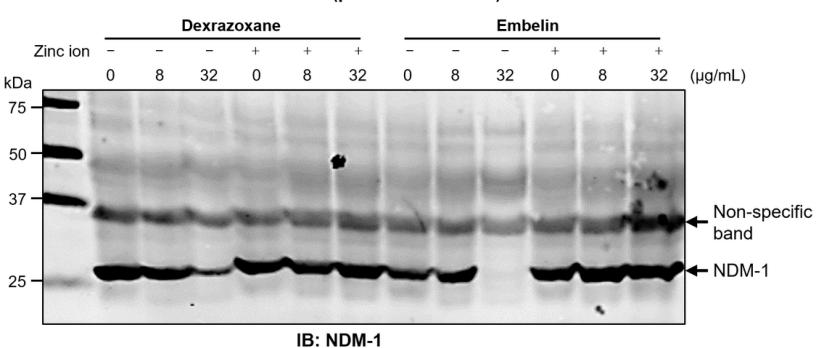
Figure 6

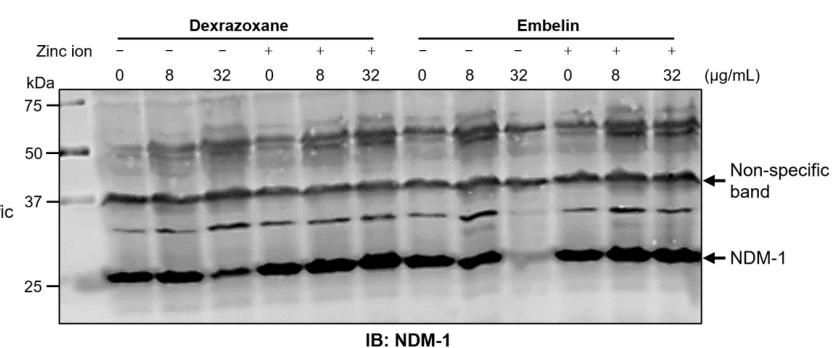

Figure 7

A

E. coli BL21 (pET28a-SP-NDM-1)

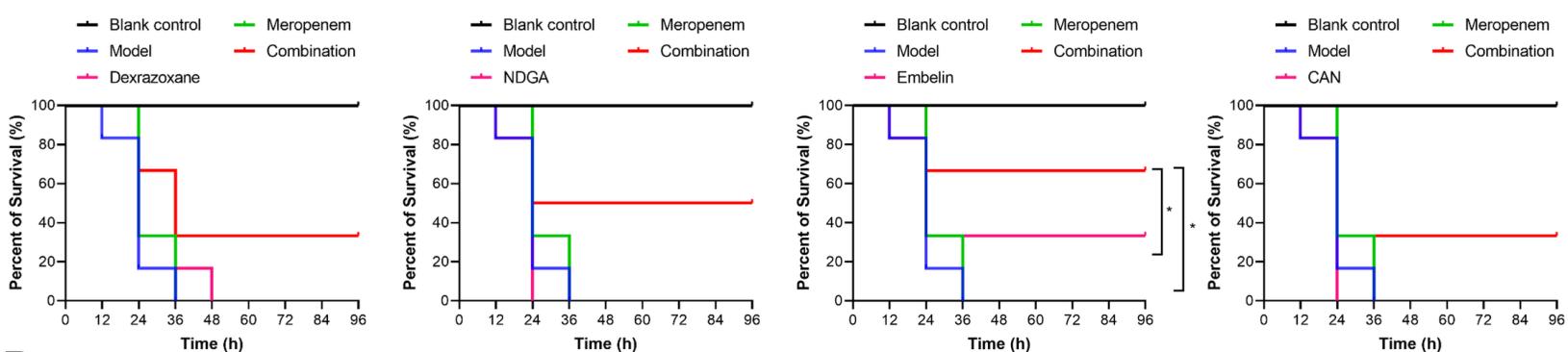


E. coli ZJ487

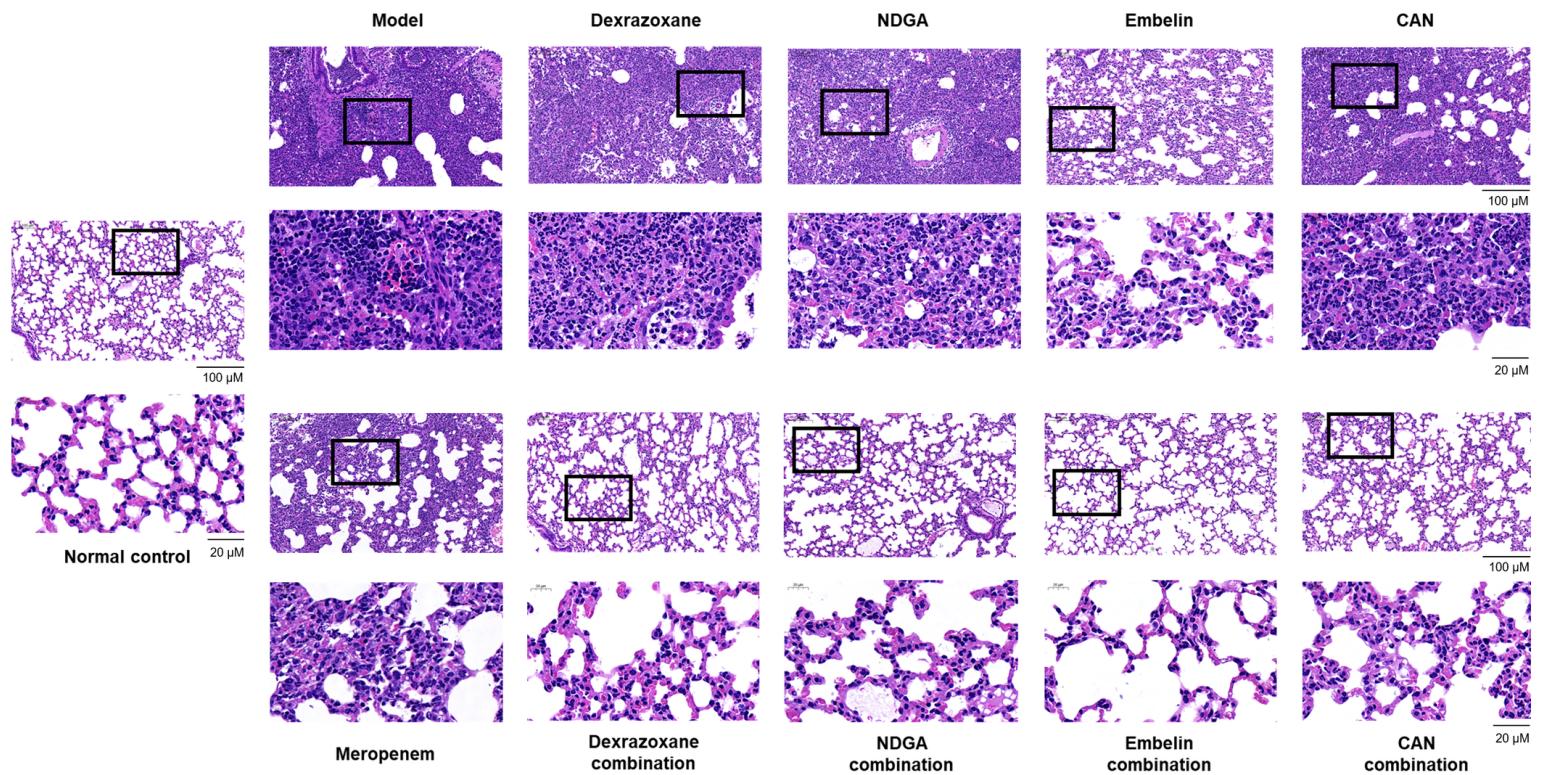


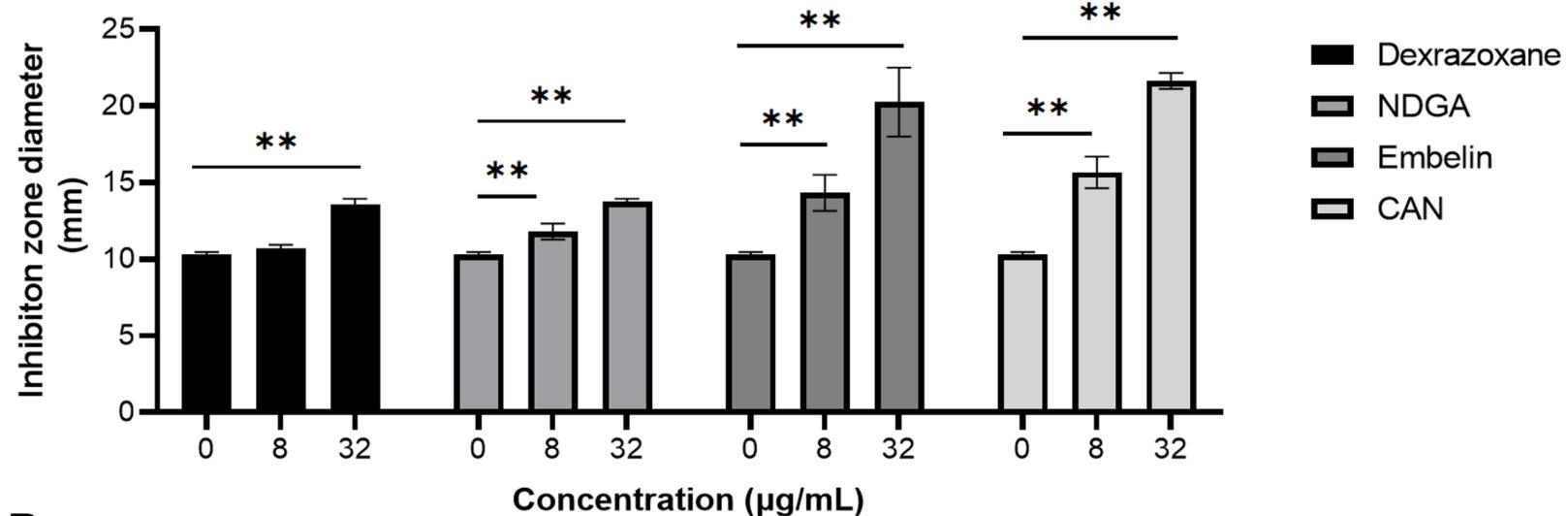
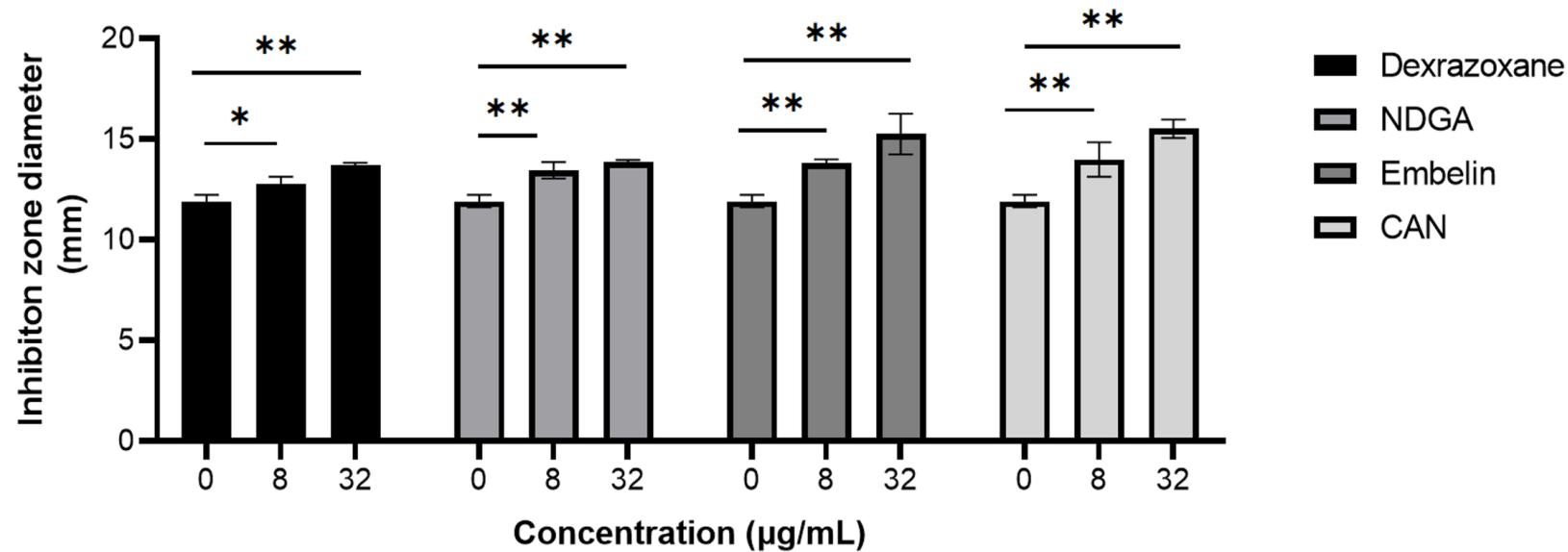
B

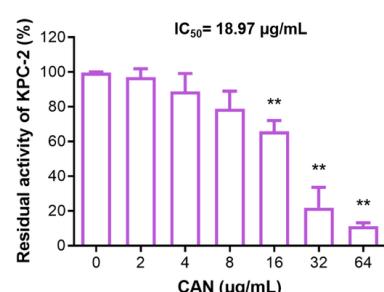
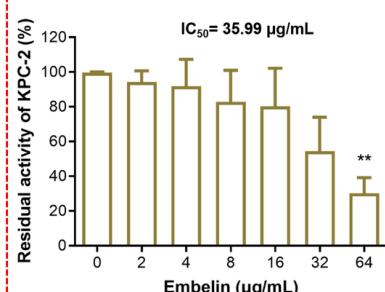
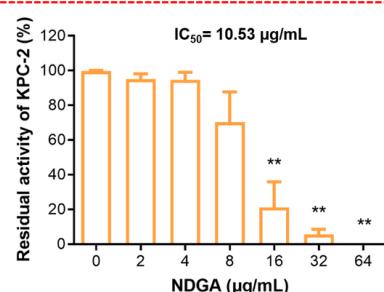
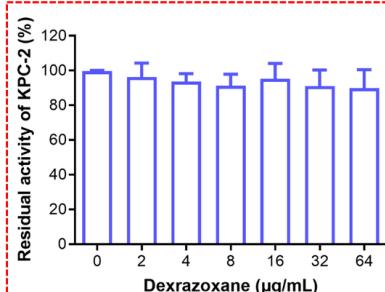
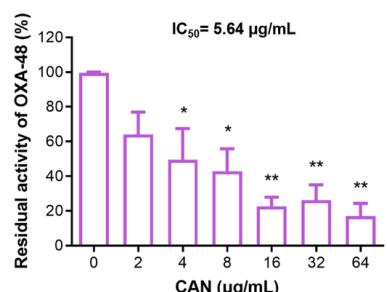
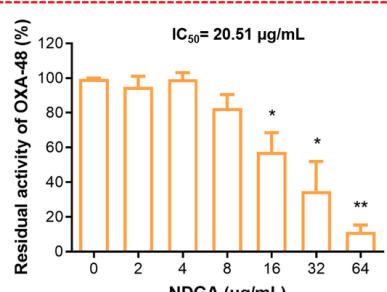
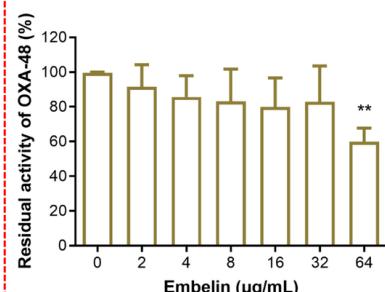
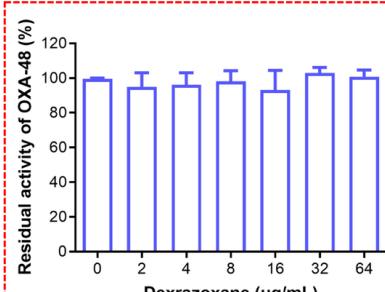
E. coli BL21 (pET28a-SP-NDM-1)

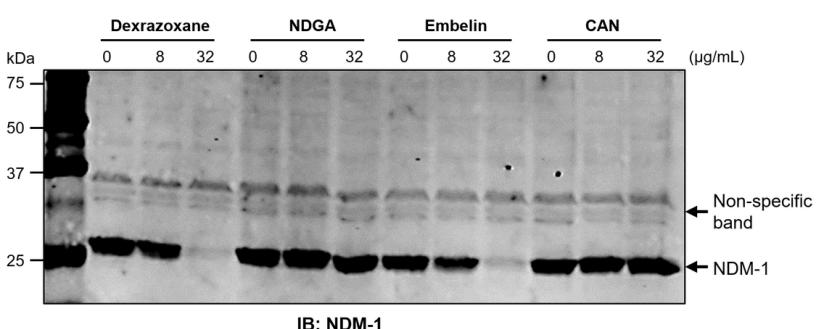
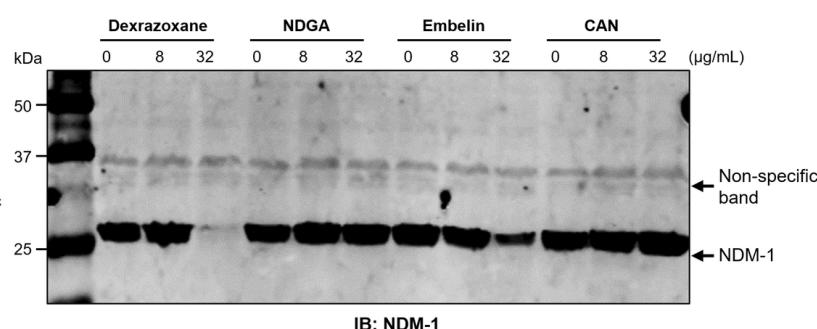
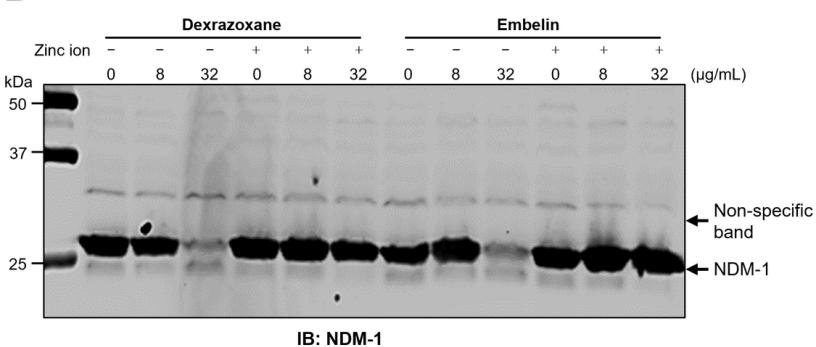
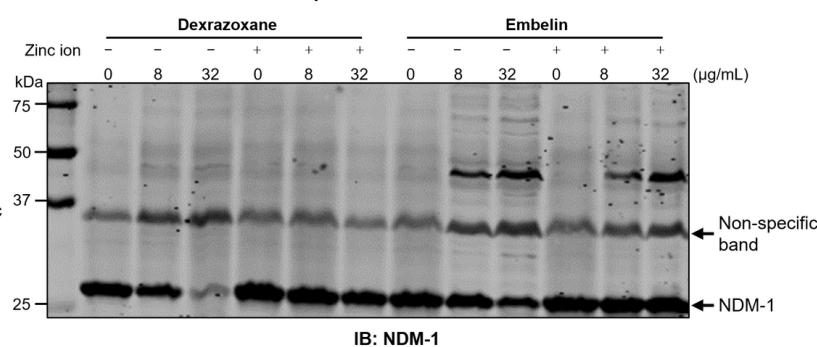


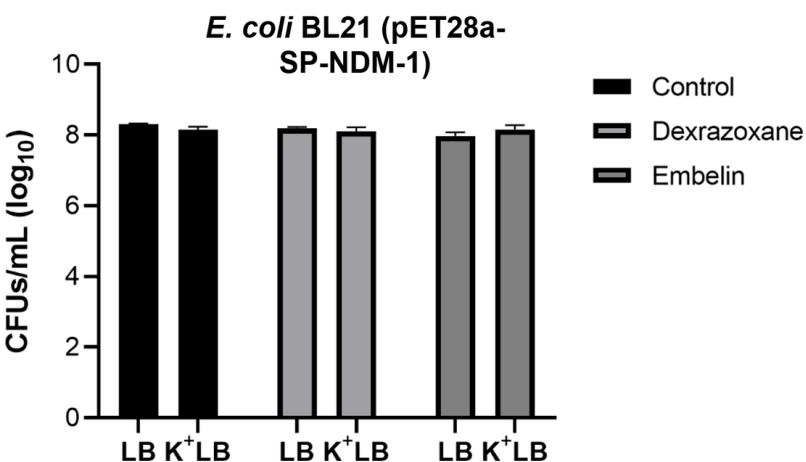
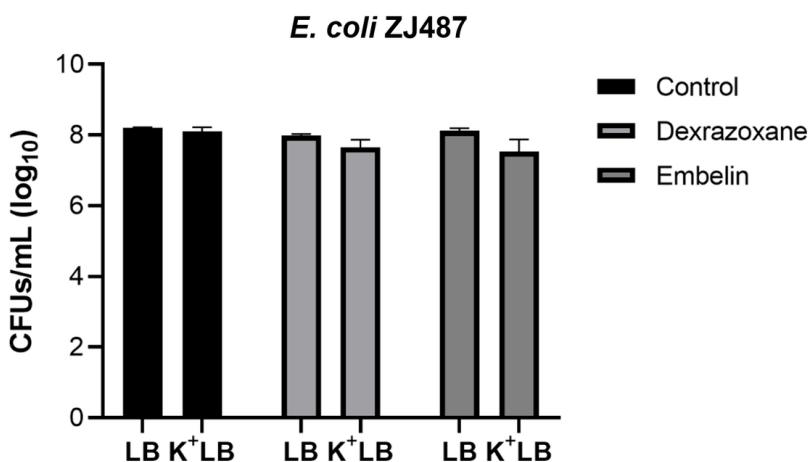
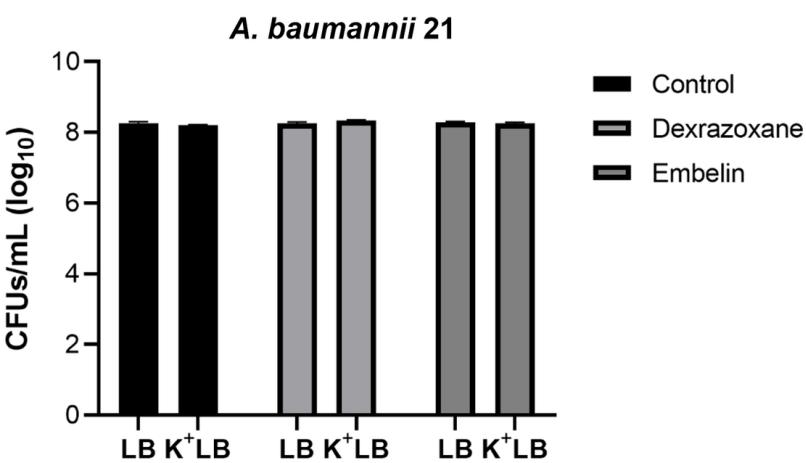
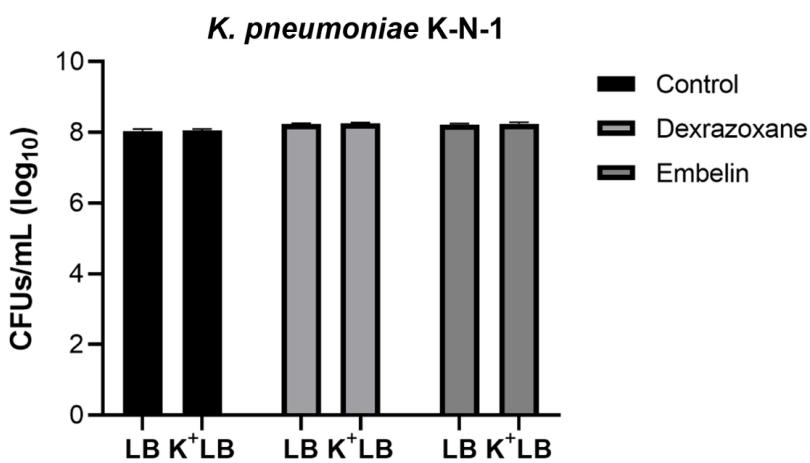
E. coli ZJ487

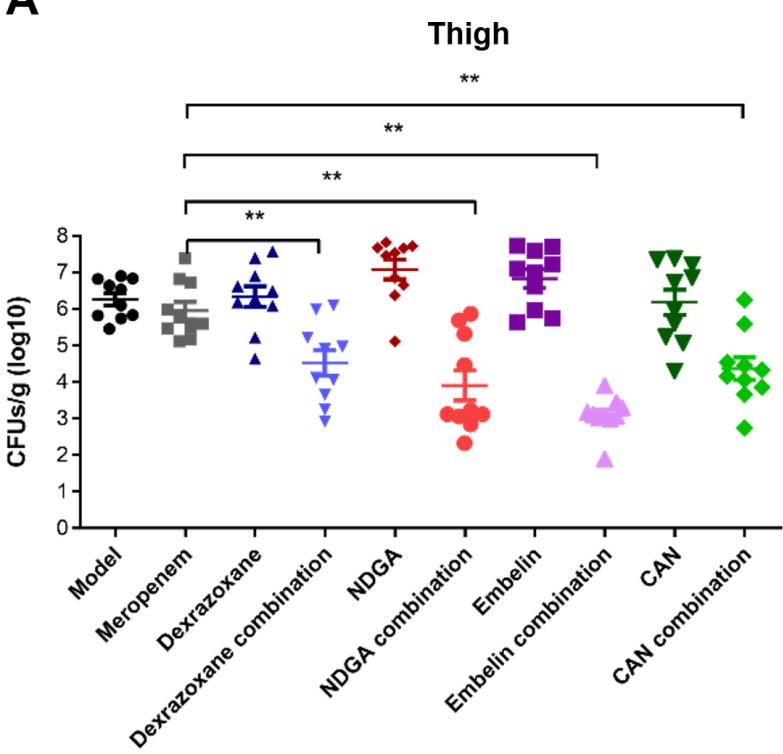
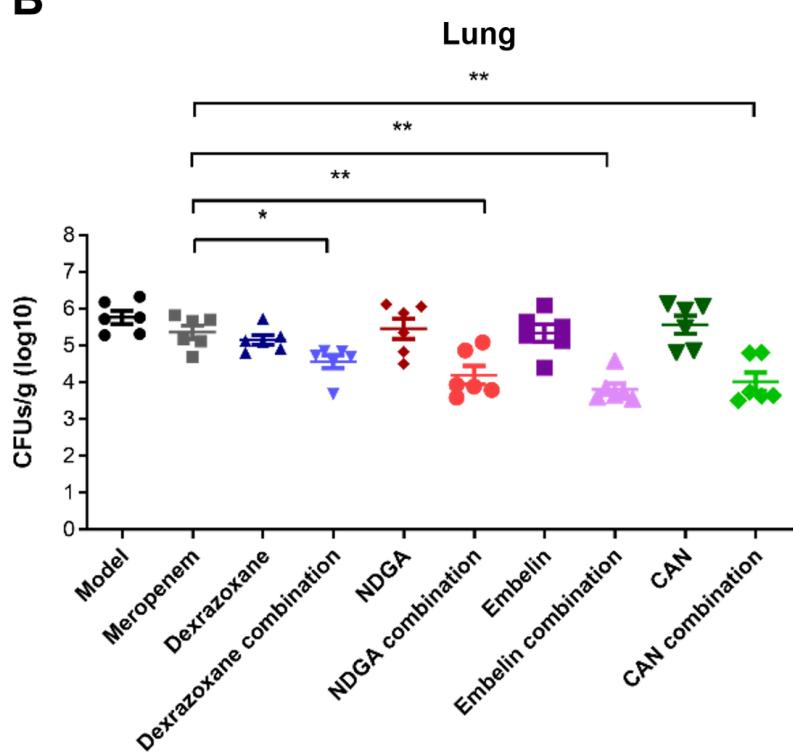




Figure 8









A





B

A***E. coli* BL21 (pET28a-SP-NDM-1)****B*****E. coli* ZJ487**

A**B**

A*A. baumannii* 21*K. pneumoniae* K-N-1**B***A. baumannii* 21*K. pneumoniae* K-N-1

A**B****C****D**

A**B**