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Abstract

Copy number aberrations (CNAs) are ubiquitous in many types of cancer. Inferring CNAs from cancer
genomic data could help shed light on the initiation, progression, and potential treatment of cancer. While
such data have traditionally been available via “bulk sequencing", the more recently introduced techniques
for single-cell DNA sequencing (scDNAseq) provide the type of data that makes CNA inference possible at
the single-cell resolution.
In this paper, we introduce a new birth-death evolutionary model of CNAs as well as a Bayesian method,
NestedBD, for the inference of evolutionary trees (topologies and branch lengths with relative mutation
rates) from single-cell data under this model. We assessed the accuracy of our method on both simulated
and biological data and compared it to the accuracy of two standard phylogenetic tools, namely neighbor-
joining and maximum parsimony (MP). We show through simulations that our method infers more accurate
topologies and branch lengths. We also studied the ancestral state reconstruction accuracy with the birth-
death evolutionary model and found it outperformed MP. Finally, running all three methods on a colorectal
cancer data set, we observed that among all three methods, only the phylogeny inferred by NestedBD clearly
separated the primary tumor cells from the metastatic ones, providing a more plausible history of the tumor
cells.
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Introduction
Copy number aberrations, or CNAs, are somatic mutations that
delete or amplify genomic regions and could cause cancer by
amplifying oncogenes [1, 8] or deleting of tumor suppressor
genes [27, 20]. CNAs are distinguished from copy number
variations, or CNVs, which are typically germline mutations
that serve as markers for population or evolutionary genetic
studies. CNAs can vary in terms of the size of the genomic
region that is amplified or deleted, the number of such events
across the genome, as well as the rate at which they occur
[21]. In particular, a CNA could amplify an entire genome or
delete/amplify an entire chromosome [3, 31]. However, CNAs
are often smaller, spanning thousands or fewer base pairs [34].

The accumulation of CNAs during cancer development and
progression results in intra-tumor heterogeneity (ITH), where
distinct CNA signatures characterize different groups of cells
[7]. Elucidating ITH from genomic data is important for the

diagnosis, prognosis, and treatment of cancer [16]. Single-
cell DNA sequencing (scDNAseq) is ideal for inferring CNAs
and ITH as it generates DNA sequence data from individual
cells that are readily available for comparative genomic and
evolutionary analyses [23]. Indeed, several methods have been
developed for inferring copy number profiles from scDNAseq
data [18], though their accuracy needs improvement [17].

In this work, we target the problem of inferring the
evolutionary history of a set of individual cells using scDNAseq
data, where each cell is defined by its copy number profile. That
is, we assume the copy number profiles have been estimated
already, and treat these as the input. Furthermore, we focus
on focal CNAs that impact sub-chromosomal genomic regions,
rather than whole genomes or chromosomes.

SCICoNE [15] and CONET [19] are two recent tools
for simultaneous CNA detection and evolutionary history
reconstruction on scDNAseq, leveraging the shared evolutionary
history among single cells to infer CNAs. In this regard, both
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SCICoNE and CONET estimate a mutation tree, where a path
from the root to a leaf defines the CNA signature of all cells
attached to that leaf. The problem we focus on here, instead,
is inferring a phylogenetic tree with branch lengths, with the
two main goals of our work being to study the appropriateness
of (1) an independent-bins assumption in these analyses and
(2) a birth-death model of CNAs under this assumption. In
studies of CNAs, it is common to partition the genome into bins,
where each bin is a fixed number of nucleotides, rather than
conduct the analysis at the resolution of individual nucleotides
[18]. Given that CNAs naturally span many bins and CNAs
could overlap over time, copy numbers in adjacent bins are not
independent. Trying to model CNAs as events while taking
into account such dependencies could result in intractable
inference problems. Indeed, the MEDICC model developed by
Schwarz et al. [30] aims to capture these dependencies, but
inference under this model is very limited in terms of the size
of the data given the prohibitive computational requirements
[10]. Even if it is violated in practice, assuming independence
among sites and loci has long been central to phylogenetic and
phylogenomic inference formulations, mainly because it allows
for much more efficient inferences. Here, we study the impact
of assuming that copy numbers across bins are independent on
the quality of phylogenetic inference. Furthermore, we propose
the first formulation and inference method for copy number
profile data from scDNAseq based on a birth-death model of
copy numbers. We developed a new method, NestedBD, for
Bayesian inference of phylogenetic trees from scDNAseq data
under a birth-death model of copy number evolution assuming
the bins are independent. The cells are also assumed to have
been sampled at a single time point. NestedBD is implemented
as a package in BEAST 2 [5], utilizing existing Markov chain
Monte Carlo (MCMC) implementations and allowing for joint
inference of trees and model parameters.

We assessed the performance of NestedBD on simulated
and biological data and compared it to the performance of
two commonly used methods, neighbor-joining (NJ) [28] and
maximum parsimony (MP) as implemented in PAUP [32]. These
two methods are readily applicable to CNA data since NJ
requires pairwise distances among cells, which can be computed
from the copy number profiles, and MP works directly on
the copy number profiles and seeks a tree that minimizes
the total number of copy number changes along its branches.
Furthermore, these two methods are run in a way that assumes
independence among the bins. We found that NestedBD infers
more accurate tree topologies than the other two methods on
the simulated data. It also provides accurate estimates of branch
lengths. NJ, on the other hand, provides unreliable branch
lengths (some of them are even negative), and MP does not
estimate branch lengths (it can, of course, be used to estimate
the minimum number of copy number changes on each branch
of the tree, but these quantities differ from true branch lengths).
Applying all three methods to a colorectal cancer data sample
from [4], NestedBD obtained a more plausible evolutionary
history.

Both the simulator and NestedBD are available at https:
//github.com/Androstane/.

Methods
In this work, we assume that the genomes under consideration
are partitioned into bins such that all genomes have the same
number and sizes of bins. The copy number profile of a cell at
each bin is an element of {0, 1, 2, . . .}. In practice, copy number
profiles are estimated from scDNAseq data and consequently
have errors in them [17]. In this paper, we do not consider the
issue of error in the data. In the simulated data, this is easily
accomplished since the true copy number profiles are available.
For the biological data set, we used the estimated copy number
profiles as is. Accounting for errors in the profiles is an important
direction for future research.

A birth-death evolutionary model of CNAs

To compute the likelihood of phylogeny, we first need an
evolutionary model that defines the transition probability
between copy number states. We model the copy number
amplification and deletion by a constant rate birth-death
process {Z(t), t ≥ 0} with state space S = {0, 1, 2, ....}. Z(t)

gives the copy number state of a bin at time t. We assume each
copy is amplified with birth rate λ > 0 and deleted with death
rate µ > 0. The transition rate at time t with Z(t) = m equals
mλ if Z(t + ∆t) = m + 1 and mµ if Z(t + ∆t) = m − 1. Note
that when Z(t) = 0, the transition rate becomes zero, suggesting
neither amplification nor deletion from zero is allowed. Then we
define the transition probability between copy number states
as follows. Let i be the copy number state at the child node,
j be the copy number state at the parent node, and t be the
time between the parent node and the child node. Since there’s
no prior information on the birth and death rates, we assume
λ = µ = r. According to [12], the conditional probability
P(i|j, t) is:

P(i|j, t) =



0, if i ̸= j = 0

1, if i = j = 0

( rt
1+rt

)j , if i = 0 ̸= j

rti−1

(1+rt)i+1 , if i > 0 & j = 1

rt
rt+1

(i+j) ·
∑min(i,j)

k=1

(i
k

)(j−1
k−1

)
rt−2k, Otherwise

(1)

Bayesian inference

Given the birth-death evolutionary model of copy number
profiles, we use Markov chain Monte Carlo (MCMC) to sample
from the following posterior distribution:

P(T , d, θ|D) ∝ f(D|T , d)P(T |θ,R)f(θ)f(d)f(R|λRLC , α, β),

where D is the copy number profile, θ is the collection of
parameters that define a birth-death1 tree prior on T , and d

is the distance between the common ancestor of all cells and its
diploid ancestor.

Prior. We assume the topology T follows a two-parameter
birth-death prior. Specifically, the birth-death model on the
tree is a continuous-time process with two parameters, λ̃ and µ̃,

1 There are two birth-death processes employed in this work—
one on the shape of the trees and another on the copy number
states. There are distinct and should not be confused.
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the instantaneous per-lineage rates of speciation and extinction,
respectively, both of which are constant across the tree in their
original characterizations [29, 24]. For the purpose of inference,
we parametrize the model using the diversification rate rd =

(λ̃ − µ̃) and extinction fraction re = (µ̃/λ̃), respectively. Since
there is no prior information on the diversification rate and
extinction fraction, we assume a uniform prior on both rd and
re. In addition, the mutation rates on branches are assumed
to follow the random local clock (RLC) model [9]. We assume
a Poisson prior on number of rate changes with an expected
value λRLC = log 2. This sets a 0.5 prior probability on the
hypothesis of no change in mutation rate across the phylogeny.
We also assume that rate multipliers are independently gamma
distributed with α = 0.5 and β = 2 as in [9].

Likelihood. Assuming r = 1 with transition probability defined
by birth-death evolutionary model on copy number state in Eq.
(1), we used a modified Felsenstein’s pruning algorithm [11] to
compute the likelihood of tree T constructed from input copy
number profile data D. We assume a diploid common ancestor
of all tumor cells.

We define the state space of copy numbers as S =

{0, 1, 2, ...k}, where k ∈ N defines the maximum copy number
state to be considered during likelihood computation. For
flexibility of the method, k is left to be a user-specified input
with default being 9 considering the maximum value commonly
observed in copy number state of cancerous cells. Note that
although the likelihood computed under a larger k could be more
accurate, it may not always be desirable computationally given
the likelihood computation is O(nk2), where n is the number of
leaves in the tree.

Then, to compute the likelihood of a topology we adopt
Felsenstein’s pruning algorithm with slight modification when
computing the likelihood at the root to account for the diploid
origin. Specifically, the original Felsenstein’s pruning algorithm
computes likelihood across the whole tree using conditional
likelihoods for all possible states at the root of the tree by L =∑

x∈S πx ∗Lroot(x), where x refers to the copy number state at
root node of the tree and πx refers to the corresponding prior
probability of that copy number state at the root of the tree.
Our algorithm computes instead L =

∑
x∈S P(x|2, d)∗Lroot(x),

where P(x|2, d) corresponds to the transition probability as
defined in Eq. (1) and d represents the time between the diploid
and common ancestor of all cancerous cells. By default, d is
inferred jointly with the topology by assuming a uniform prior
on it.

Evaluating tree inference on simulated data

Simulation protocol. To simulate data, we made three
modifications to the CNA evolutionary simulator described in
[17]. (1) The simulator now accepts a user-defined topology and
simulates CNAs along the branches of the input tree. (2) If an
input tree is specified by the user, the number of CNAs on a
branch with length t is sampled from Poisson(c · t), where c is
a user-specified parameter that controls the number of CNAs
at the leaves of the tree. (3) The chromosome and position
of the allele where a CNA occurs are sampled from a random
distribution whose probability density function can be expressed
as f(x) ∝ exp(

∑30
i=1 sin(1000x + ϕi) ∗ λi) with x representing

the location on genome. We fixed ϕi ∼ Uniform(−π, π) and
λi ∼ Uniform(0, a), where a is a user-specified parameter that

controls the non-uniformity of the distribution. When setting
a = 0, the position of the CNA is sampled from a uniform
distribution as in the original simulator.

To simulate CNAs with a similar pattern to the original
CNAs in real data set, we used the maximum clade credibility
(MCC) tree inferred by NestedBD on the biological data set as
input to the simulator. The branch lengths of the MCC tree
are summarized using median node heights across all sampled
trees. CNAs are added along the branches of the tree with the
number of CNAs sampled from a Poisson distribution whose
mean is proportional to branch length. Each node has its unique
CNAs on the corresponding branches while inheriting the CNAs
from their ancestors. The copy number profiles of the leaves
are then inferred using Ginkgo [14] with binning option of
variable _175000 _48 _bwa. For the purpose of this study we
used c = 125, a = 0.6, X = 1, m = 2Mbp, e = 100Mbp,
with all other parameters set to their default values. We also
assume there is no whole-genome amplification or deletion. We
found the CNAs simulated under such conditions best resemble
what we observed from the biological data set. On average,
more than 90% of the CNAs overlapped with at least one other
CNA. Finally, to satisfy the independent-bins assumption, we
sample the bins with a 1/20 sampling rate before making the
copy number profile data available to the inference methods.

Inference methods. For each simulated data set, NestedBD is
run using the BEAST 2 implementation with coupled-MCMC
[2] for 80 million iterations. Five chains with random seeds are
run to assess the convergence of the MCMC runs. To summarize
the posterior distribution, 2000 samples are taken from the
MCMC chain for computation of inferred topology and branch
length. We obtained 100 bootstrap replicates for each data set
using both MP and NJ with PAUP [32]. Both MP and NJ return
unrooted trees by default while NestedBD infers a rooted tree
by assuming a diploid origin. To root the MP and NJ trees,
we added as an outgroup a diploid “genome" and rooted the
inferred tree at it.

Assessing the error rates of methods. We compute the
true positive rates of reconstructed branches considering
all phylogenies sampled from the posterior distribution of
NestedBD or the bootstrap samples of MP and NJ for all
simulated repetitions. More specifically, for each branch in the
true tree, we count the proportion of trees in the posterior
distribution or bootstrap samples having that branch.

We assess the the ability of a method to recover a branch
in the true tree as a function of the length of that branch. To
make sure the slopes across different methods are comparable,
we fitted an ordinary least squares (OLS) regression of log-scaled
branch lengths with respect to the true positive rate assuming
the slopes share a common intercept.

Tree scaling. Branch lengths inferred by NestedBD are not in
the same unit as those in the true tree. Therefore, to assess the
accuracy of branch length reconstruction, we needed to scale
the inferred phylogeny before comparing branch lengths. Given
an inferred tree T and a true tree R with same set of leaves, we
find the scale factor by computing an OLS regression as follows.
Let the set of clades in T be TC and the set of clades in R be
RC . We compute β that minimizes residue R(β) = ||Y−βX||2,
where Y is a vector of true node heights and X is a vector of
inferred node heights of clades in TC ∩RC .
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To compute the 95% highest posterior density (HPD)
intervals and R2 measures from posterior samples of NestedBD,
we summarized the trees from the posterior distribution by
MCC trees with median node heights. We then computed the
scaling factor of the MCC tree with respect to the true tree for
each simulated data set. The same scaling factor is used to scale
all selected samples from the posterior distribution.

Evaluating ancestral profile inference on simulated data

We used the same simulated data to evaluate the performance
of ancestral profile inference. For each data set, we inferred
ancestral profiles on both the true tree as well as the inferred
trees (MP tree as inferred by maximum parsimony, and MCC
tree as inferred by NestedBD). The former allows us to assess
the accuracy of methods assuming the tree is correct, whereas
the latter allows us to factor in the tree estimation error when
computing the accuracy of ancestral profile reconstruction.

For MP ancestral profile reconstruction, we used PAUP
[32]. For NestedBD ancestral profile reconstruction, we used
a dynamic programming algorithm adopted from [25]. The
algorithm maximizes the joint likelihood given the binned copy
number profiles of the single cells and a tree topology. The
transition probability is computed by Eq. (1). To account for
the diploid origin of all cells, we compute the probability of each
state at the root by P(x|2, d) as defined in Eq. (1).

Hamming distances between true and inferred ancestral
profiles are used for measuring accuracy. In the case where the
true tree was used to reconstruct ancestral profiles, there’s a
one-to-one correspondence between ancestral profiles on both
trees (as the trees are identical). When inferred trees are used
to reconstruct ancestral profiles, such a correspondence might
not exist since the true and inferred trees could differ. In this
case, a node u in the true tree has a corresponding node v in the
inferred tree if and only if the set of leaves under u and the set
of leaves under v are identical. Hamming distances of ancestral
profiles of only corresponding nodes were computed in this case.

Results

Performance on simulated data

We discuss here the accuracy of the methods in terms
of inferring the trees—topologies and branch lengths—and
ancestral copy number profiles.

Accuracy of inferred topologies. While it is common to calculate
the Robinson-Foulds (RF) distance [26] between the inferred
tree and true tree to quantify their difference, this is not
particularly useful in our case for at least two reasons. First,
there are several groups of cells where cells within each group are
equidistant from each other, and their resolution in a binary tree
in arbitrary. The RF distance would heavily penalize resolutions
that differ from the true one. Second, in analyses of real
scDNAseq data, full resolution of the tree down to the individual
cells is not of interest; instead, biologists are interested in
resolution down to the level of sub-clones only. Therefore, we
focus on a method’s ability to reconstruct a branch in the true
tree as a function of the length of that branch. More specifically,
we computed the true positive rate for a given branch length as
the number of branches of that length that are correctly inferred

Fig. 1: Accuracy of the summarized posterior
distribution of reconstructed phylogeny. (Top) True
positive rates of branches in the true tree vs. lengths of the
branches. Each point corresponds to a branch length in the true
tree (there are 10 true trees) and the proportion of trees (in the
posterior or bootstrap samples) that have that branch, inferred
by each of the three methods. ×: NestedBD; : MP; •: NJ. A
fitted OLS regression on all points for each method is shown.
(Bottom) Box plots of the 10 slopes of linear regressions fitted
for each method on the 10 simulated data sets. The whiskers
correspond to the minimum and maximum values, while the
line within the box corresponds to the median.

by the method of interest. Furthermore, we fit the true positive
rate data of each method using linear regression to study how
the accuracy of each method improves with increasing branch
length. The results are shown in Fig. 1.

As expected, the longer a branch in the true tree, the
better the method’s ability to recover it in the inferred tree.
Furthermore, NestedBD has the best accuracy, followed by MP,
followed by NJ. As the top panel of Fig. 1 shows, a large number
of the true branches are very short and these tend to be closer to
the leaves. As we discussed above, recovering branches near the
leaves is not of much biological interest in studies of single-cell
data.
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Fig. 2: 95% HPD of node heights estimated by
NestedBD. Each panel corresponds to one of the ten data
sets. For each data set, the node height inferred by NestedBD
is summarized by both the median and 95% HPD interval
of samples in the posterior distribution. The r-squared value
(R2) is computed by fitting a linear model using the median of
inferred node heights versus true node heights.

Accuracy of estimated branch lengths. To the best of our
knowledge, NestedBD is the first method that jointly infers
branch lengths with mutation rates when reconstructing the
evolutionary history of copy number profiles. MP constructs
only the topology without branch length information, while NJ
yields branch lengths that are often not biologically meaningful
(the branch lengths might even be negative). We focus here
on the accuracy of branch length estimates of NestedBD, and
report them in terms of the node heights.

Since an inferred tree topology might differ from the true
tree topology, we only compared the heights of nodes in the
true tree that have corresponding nodes in the inferred tree.
Furthermore, as described above, node heights were scaled
to ensure comparability between the true and inferred node
heights.

As in the case of topological accuracy, we evaluate the
accuracy of estimated node heights using samples from the
posterior distribution obtained by NestedBD. Fig. 2 summarizes
the 95% HPD of node heights inferred by NestedBD after scaling
(described in Section 2.3) for each of 10 simulated data sets. We

Fig. 3: Accuracy of ancestral state reconstruction. True
node height deciles in the true tree are shown on the x-axis.

also computed the R2 value of inferred and true node heights. As
the figure shows, NestedBD obtains very accurate estimates of
node heights. In particular, for all data sets, with the exception
of data set I, the true node height is within the predicted
95% HPD interval for a majority of the nodes. Furthermore,
for a large number of the nodes, the median of inferred node
heights in the posterior sample appears to be a reasonable point
estimate of the true node height.

Accuracy of ancestral profile reconstruction. For ancestral state
(copy number profile) reconstruction, we ran both NestedBD
and MP on both the true trees and trees inferred by NestedBD.
Furthermore, we estimated ancestral states using MP on the
trees inferred by MP. NestedBD cannot be run on the trees
inferred by MP since the tree does not have branch length
estimates that are needed from NestedBD. Results are shown in
Fig. 3.

A few observations are in order. First, in all scenarios,
ancestral profiles are much more accurate at the shallower nodes
(ones closer to the leaves) and that accuracy drops as the
nodes become deeper. This might seem unintuitive given that
the genomes at deeper nodes have fewer, and potentially less
complex, CNAs with respect to the (normal) diploid genome.
However, the data used for ancestral reconstruction is the
profiles at the leaves of the tree, and the shallowest nodes are
closest to those. Since reconstruction proceeds in bottom-up
(leaves to root) fashion, errors in shallow reconstructed profiles
could propagate to the deeper ones (given the dependencies
of the latter on the former ones). Second, the quality of the
tree has a big impact on the accuracy of ancestral profile
reconstruction. This is unsurprising. The accuracy is highest
when the true tree is used, followed by the cases where the
tree inferred by NestedBD is used, and finally using the MP
tree yields poorest results. As we showed above, trees obtained
by NestedBD are more accurate than those obtained by MP.
Third, while for the shallowest nodes, the accuracy of ancestral
profile reconstruction by NestedBD is comparable to that of
MP, the gap between the two methods opens up in favor of
NestedBD as nodes become deeper. This, too, makes sense.
As the node gets deeper in the tree, the likelihood that a bin
in the genome undergoes multiple CNAs becomes higher (not
only mathematically, but this has been hypothesized in the
case of cancer genomes [6]). By definition of the parsimony
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Fig. 4: Inference results using NestedBD on data from colorectal cancer patient CRC04 from [4]. The heatmap shows
the copy number profiles of the sampled cells. Colors of the branches indicate the estimated branch-specific relative rates from
fast (red) to slow (blue). Branches defining the primary tumor cell clades are annotated with colorectal-cancer-related oncogenes
(yellow) and tumor suppressor genes, or TSGs (green), impacted by CNAs. Note: while WDCP is netiher an oncogene nor a TSG,
the WDCP protein has been identified in a fusion protein with ALK in colorectal cancer [35].

criterion, MP is not well equipped to handle recurrent mutations
at the same locus, whereas such mutations are accounted for
in the birth-death process underlying NestedBD. Finally, as
we discussed above, from a tree inference perspective, the
shallowest nodes are harder to infer than deeper one. Since
MP makes more errors in tree inference and those errors are
mostly in shallow nodes, the performance of ancestral profile
reconstruction by MP on the tree inferred by MP drops rapidly
with the node height.

Analysis of a colorectal cancer sample

We applied NestedBD to a single-cell copy number profile data
set from colorectal cancer patient CRC04 obtained from [4]. We
took a subset of the data set by randomly sampling 52 cells taken
from the primary tumor site (PT) and Lymph node metastasis
(LN) after excluding cells taken from normal adjacent tissue.
For analysis of biological data set, NestedBD was run for 80
million iterations to ensure convergence of the MCMC chain.
We then computed the MCC of the trees from the posterior
samples, which is shown with a heat-map summarizing copy

number profiles in Fig. 4. We inferred the ancestral profiles
using NestedBD, and annotated the branches that define the
primary tumor cell clades with colorectal-cancer-related genes,
according to [33], that were impacted by CNAs. The inferred
tree has a relatively long branch that separates the normal cell
and the most recent common ancestor of all 52 tumor cells.
This observation supports a punctuated mode of evolution of
the tumor [13]. Nine colorectal-cancer-related mutations are
detected on this branch, including in APC, a well-recognized
initiator gene in colorectal cancer [22].

After that, a group of primary tumor cells acquired six
additional mutations (in genes AKT1, BCL9L, B2M, FBXW7,
MUTYH, RSPO2 ). An increase in mutation rate is also
observed on this branch. Part of the cells then metastasized
to the lymph nodes and evolved with a relatively high mutation
rate; the rest remained at the primary tumor site (PT4). The
rest of the cells at the primary tumor site acquired several
unique mutations (in genes SRC, SALL4, BAX, SMAD3,
SRC ), but with a slower mutation rate (PT2 PT3, PT5). We
also applied MP and NJ to the same data set; results are shown
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Fig. 5: Inference results using MP and NJ on data from colorectal cancer patient CRC04 from [4]. The heatmaps
show the copy number profiles of the sampled cells. (Left) Tree inferred by MP. (Right) Tree inferred by NJ. At the leaves of the
trees, solid rectangles correspond to primary tumor cells, and open rectangles correspond to lymph node metastasis cells.

in Fig. 5. We observe that while MP places the same set of
primary tumor cells (PT4) under the LN lineage, the topology
seems to suggest those primary tumor cells are derived from
the LN lineage, which is an unlikely evolutionary scenario. NJ
infers a more reasonable topology similar to that inferred by
NestedBD. While the branch lengths inferred by NJ are not
biologically meaningful (especially considering that the inferred
tree should be very close to ultrametric given that the cells
were sampled at a single time point), we observed that the LN
lineage is closer to the diploid cell at the root in the NJ tree.
This observation is consistent with the higher relative mutation
of the LN lineage in the tree inferred by NestedBD.

Discussion
In this paper, we presented NestedBD, a Bayesian method for
joint inference of evolutionary trees and branch lengths from
scDNAseq copy number profiles. Specifically, we proposed a
novel evolutionary model that uses a continuous birth-death
process to model copy number amplification and deletion,
accounting for the fact that there could be multiple CNAs at a
single bin. We assume the phylogeny also follows a birth-death
branching process parameterized by a diversification rate and
an extinction fraction, and branch-specific mutation rates so
that it is possible to distinguish between rapid expansion and
slower mutations. NestedBD also infers the distribution of birth
and death rates on the tree topology, the relative time between
(normal) diploid cells and the most recent common ancestor
of tumor cells. A major distinguishing feature of NestedBD is
that it infers a tree with branch lengths representing the relative
times of the tumor phylogeny nodes. NestedBD is implemented
as a BEAST 2 package to utilize efficient implementation of

MCMC. We assessed the accuracy of NestedBD on simulated
data, demonstrated its application to a biological data set, and
compared that to results obtained by two existing methods,
namely maximum parsimony and neighbor-joining. NestedBD
provides more accurate results overall.

To the best of our knowledge, NestedBD is the first method
to infer a tree with branch lengths that measure relative times
of evolution given single-cell copy number profiles (assuming
independence among bins). While the simulated data do not
assume independence among bins and biological data are very
unlikely to satisfy such an assumption, the results we obtained
demonstrate that utilizing the independence assumption for
computational efficiency does not necessarily impact inference
quality much. Recent methods, such as [19] and [15], infer
breakpoints and clonal trees simultaneously, but they do not
provide information on the times of nodes or mutations on the
tree.

Two directions for future research are (1) accounting for error
in the copy number profile estimates, since in practice these
are estimated from genome read data, and (2) developing an
inference method that works on the genome read data directly
so that it simultaneously infer the copy number profiles and
evolutionary history. While the latter is expected to produce
the most accurate results, its scalability to large data sets could
prove very challenging.

Acknowledgments
This work was supported in part by National Science
Foundation grants IIS-1812822 and IIS-2106837.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 19, 2022. ; https://doi.org/10.1101/2022.01.16.476510doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.16.476510
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 Liu et al.

References
1. Kari Alitalo and Manfred Schwab. Oncogene amplification

in tumor cells. In Advances in cancer research, volume 47,
pages 235–281. Elsevier, 1986.

2. Gautam Altekar, Sandhya Dwarkadas, John P. Huelsenbeck,
and Fredrik Ronquist. Parallel Metropolis coupled Markov
chain Monte Carlo for Bayesian phylogenetic inference.
Bioinformatics, 20(3):407–415, 01 2004.

3. Uri Ben-David and Angelika Amon. Context is everything:
aneuploidy in cancer. Nature Reviews Genetics, 21(1):44–
62, Jan 2020.

4. Shuhui Bian, Yu Hou, Xin Zhou, Xianlong Li, Jun
Yong, Yicheng Wang, Wendong Wang, Jia Yan, Boqiang
Hu, Hongshan Guo, Jilian Wang, Shuai Gao, Yunuo
Mao, Ji Dong, Ping Zhu, Dianrong Xiu, Liying Yan,
Lu Wen, Jie Qiao, Fuchou Tang, and Wei Fu. Single-
cell multiomics sequencing and analyses of human colorectal
cancer. Science, 362(6418):1060–1063, 2018.

5. R. Bouckaert, T.G. Vaughan, J. Barido-Sottani, S. Duchêne,
M. Fourment, A. Gavryushkina, J. Heled, G. Jones,
D. Kühnert, N. De Maio, M. Matschiner, F.K. Mendes,
N.F. Müller, H.A. Ogilvie, L. Du Plessis, A. Popinga,
A. Rambaut, D. Rasmussen, I. Siveroni, M.A. Suchard, C.-
H. Wu, D. Xie, C. Zhang, T. Stadler, and A.J. Drummond.
Beast 2.5: An advanced software platform for bayesian
evolutionary analysis. PLoS Computational Biology, 15(4),
2019. cited By 588.

6. David Brown, Dominiek Smeets, Borbála Székely, Denis
Larsimont, A Marcell Szász, Pierre-Yves Adnet, Françoise
Rothé, Ghizlane Rouas, Zsófia I Nagy, Zsófia Faragó,
et al. Phylogenetic analysis of metastatic progression in
breast cancer using somatic mutations and copy number
aberrations. Nature communications, 8(1):1–13, 2017.

7. Rebecca A Burrell, Nicholas McGranahan, Jiri Bartek, and
Charles Swanton. The causes and consequences of genetic
heterogeneity in cancer evolution. Nature, 501(7467):338–
345, 2013.

8. Ibiayi Dagogo-Jack and Alice T Shaw. Tumour
heterogeneity and resistance to cancer therapies. Nature
reviews Clinical oncology, 15(2):81, 2018.

9. Alexei J Drummond and Marc A Suchard. Bayesian random
local clocks, or one rate to rule them all. BMC Biology, 8(1),
2010.

10. Mohammed El-Kebir, Benjamin J Raphael, Ron Shamir,
Roded Sharan, Simone Zaccaria, Meirav Zehavi, and Ron
Zeira. Copy-number evolution problems: complexity and
algorithms. In International Workshop on Algorithms in
Bioinformatics, pages 137–149. Springer, 2016.

11. J. Felsenstein. Maximum likelihood estimation of
evolutionary trees from continuous characters. American
Journal of Human Genetics, 25(5):471–492, 1973. cited By
386.

12. Mike Foote, John P. Hunter, Christine M. Janis, and J. John
Sepkoski. Evolutionary and preservational constraints on
origins of biologic groups: Divergence times of eutherian
mammals. Science, 283(5406):1310–1314, 1999.

13. Ruli Gao, Alexander Davis, Thomas O McDonald, Emi Sei,
Xiuqing Shi, Yong Wang, Pei-Ching Tsai, Anna Casasent,
Jill Waters, Hong Zhang, et al. Punctuated copy number
evolution and clonal stasis in triple-negative breast cancer.

Nature genetics, 48(10):1119, 2016.
14. Tyler Garvin, Robert Aboukhalil, Jude Kendall, Timour

Baslan, Gurinder S Atwal, James Hicks, Michael Wigler,
and Michael C Schatz. Interactive analysis and assessment
of single-cell copy-number variations. Nature methods,
12(11):1058, 2015.

15. Jack Kuipers, Mustafa A Tuncel, Pedro Ferreira, Katharina
Jahn, and Niko Beerenwinkel. Single-cell copy number
calling and event history reconstruction. bioRxiv, 2020.

16. Michael S Lawrence, Petar Stojanov, Paz Polak, Gregory V
Kryukov, Kristian Cibulskis, Andrey Sivachenko, Scott L
Carter, Chip Stewart, Craig H Mermel, Steven A Roberts,
et al. Mutational heterogeneity in cancer and the search for
new cancer-associated genes. Nature, 499(7457):214–218,
2013.

17. Xian F Mallory, Mohammadamin Edrisi, Nicholas Navin,
and Luay Nakhleh. Assessing the performance of methods
for copy number aberration detection from single-cell
dna sequencing data. PLOS Computational Biology,
16(7):e1008012, 2020.

18. Xian F Mallory, Mohammadamin Edrisi, Nicholas Navin,
and Luay Nakhleh. Methods for copy number aberration
detection from single-cell dna-sequencing data. Genome
biology, 21(1):1–22, 2020.

19. Magda Markowska, Tomasz Cąkała, Błażej Miasojedow,
Dilafruz Juraeva, Johanna Mazur, Edith Ross, Eike Staub,
and Ewa Szczurek. Conet: Copy number event tree model
of evolutionary tumor history for single-cell data. bioRxiv,
2021.

20. Nicholas McGranahan and Charles Swanton. Clonal
heterogeneity and tumor evolution: past, present, and the
future. Cell, 168(4):613–628, 2017.

21. Craig H Mermel, Steven E Schumacher, Barbara Hill,
Matthew L Meyerson, Rameen Beroukhim, and Gad Getz.
Gistic2.0 facilitates sensitive and confident localization of
the targets of focal somatic copy-number alteration in
human cancers. Genome biology, 12(4):R41, 2011.

22. Sousan Mir Najd Gerami, Mohammad Hossein Somi, Leila
Vahedi, Faris Farassati, and Roya Dolatkhah. The apc
gene rs41115 polymorphism is associated with survival in
iranian colorectal cancer patients. Biomedical Research and
Therapy, 7(9):3962–3970, 2020.

23. Nicholas Navin, Jude Kendall, Jennifer Troge, Peter
Andrews, Linda Rodgers, Jeanne McIndoo, Kerry Cook,
Asya Stepansky, Dan Levy, Diane Esposito, et al. Tumour
evolution inferred by single-cell sequencing. Nature,
472(7341):90, 2011.

24. Sean Nee, Robert Mccredie May, and Paul H. Harvey.
The reconstructed evolutionary process. Philosophical
Transactions of the Royal Society of London. Series B:
Biological Sciences, 344(1309):305–311, 1994.

25. Tal Pupko, Itsik Pe, Ron Shamir, and Dan Graur. A Fast
Algorithm for Joint Reconstruction of Ancestral Amino Acid
Sequences. Molecular Biology and Evolution, 17(6):890–896,
06 2000.

26. David F Robinson and Leslie R Foulds. Comparison of
phylogenetic trees. Mathematical biosciences, 53(1-2):131–
147, 1981.

27. Frank G Rucker, Richard F Schlenk, Lars Bullinger, Sabine
Kayser, Veronica Teleanu, Helena Kett, Marianne Habdank,
Carla-Maria Kugler, Karlheinz Holzmann, Verena I Gaidzik,

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 19, 2022. ; https://doi.org/10.1101/2022.01.16.476510doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.16.476510
http://creativecommons.org/licenses/by-nc-nd/4.0/


Bayesian inference from single-cell DNA copy number profiles 9

et al. Tp53 alterations in acute myeloid leukemia with
complex karyotype correlate with specific copy number
alterations, monosomal karyotype, and dismal outcome.
Blood, The Journal of the American Society of Hematology,
119(9):2114–2121, 2012.

28. Naruya Saitou and Masatoshi Nei. The neighbor-joining
method: a new method for reconstructing phylogenetic trees.
Molecular biology and evolution, 4(4):406–425, 1987.

29. Brice A J Sarver, Matthew W Pennell, Joseph W Brown,
Sara Keeble, Kayla M Hardwick, Jack Sullivan, and Luke J
Harmon. The choice of tree prior and molecular clock
does not substantially affect phylogenetic inferences of
diversification rates. PeerJ, Mar 2019.

30. Roland F Schwarz, Anne Trinh, Botond Sipos, James D
Brenton, Nick Goldman, and Florian Markowetz.
Phylogenetic quantification of intra-tumour heterogeneity.
PLoS computational biology, 10(4), 2014.

31. Ankit Shukla, Thu H. M. Nguyen, Sarat B. Moka,
Jonathan J. Ellis, John P. Grady, Harald Oey, Alexandre S.
Cristino, Kum Kum Khanna, Dirk P. Kroese, Lutz Krause,
Eloise Dray, J. Lynn Fink, and Pascal H. G. Duijf.
Chromosome arm aneuploidies shape tumour evolution and
drug response. Nature Communications, 11(1):449, Jan
2020.

32. David L. Swofford. Paup*: Phylogenetic analysis using
parsimony (and other methods) version 4.0 beta, 2001.

33. John G Tate, Sally Bamford, Harry C Jubb, Zbyslaw
Sondka, David M Beare, Nidhi Bindal, Harry Boutselakis,
Charlotte G Cole, Celestino Creatore, Elisabeth Dawson,
Peter Fish, Bhavana Harsha, Charlie Hathaway, Steve C
Jupe, Chai Yin Kok, Kate Noble, Laura Ponting,
Christopher C Ramshaw, Claire E Rye, Helen E Speedy,
Ray Stefancsik, Sam L Thompson, Shicai Wang, Sari Ward,
Peter J Campbell, and Simon A Forbes. COSMIC: the
Catalogue Of Somatic Mutations In Cancer. Nucleic Acids
Research, 47(D1):D941–D947, 10 2018.

34. Ruibin Xi, Angela G. Hadjipanayis, Lovelace J. Luquette,
Tae-Min Kim, Eunjung Lee, Jianhua Zhang, Mark D.
Johnson, Donna M. Muzny, David A. Wheeler, Richard A.
Gibbs, Raju Kucherlapati, and Peter J. Park. Copy number
variation detection in whole-genome sequencing data using
the bayesian information criterion. Proceedings of the
National Academy of Sciences, 108(46):E1128–E1136, 2011.

35. Evgeny Yakirevich, Murray B. Resnick, Shamlal Mangray,
Michael Wheeler, Cynthia L. Jackson, Kara A. Lombardo,
Jeeyun Lee, Kyoung-Mee Kim, Anthony J. Gill, Kai Wang,
Kyle Gowen, James Sun, Vincent A. Miller, Philip J.
Stephens, Siraj M. Ali, Jeffrey S. Ross, and Howard Safran.
Oncogenic alk fusion in rare and aggressive subtype of
colorectal adenocarcinoma as a potential therapeutic target.
Clinical Cancer Research, 22(15):3831–3840, 2016.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 19, 2022. ; https://doi.org/10.1101/2022.01.16.476510doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.16.476510
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Methods
	A birth-death evolutionary model of CNAs
	Bayesian inference
	Prior.
	Likelihood.


	Evaluating tree inference on simulated data
	Simulation protocol.
	Inference methods.
	Assessing the error rates of methods.
	Tree scaling.


	Evaluating ancestral profile inference on simulated data

	Results
	Performance on simulated data
	Accuracy of inferred topologies.
	Accuracy of estimated branch lengths.
	Accuracy of ancestral profile reconstruction.


	Analysis of a colorectal cancer sample

	Discussion
	Acknowledgments

