

1 **IL-33 regulates age-dependency of long-term immune dysfunction induced by**
2 **sepsis**

3 *David F. Colon^{1,2}, Carlos W. Wanderley^{1,3}, Walter M. Turato¹, Vanessa F. Borges¹, Marcelo*
4 *Franchin⁴, Fernanda V. S. Castanheira¹, Daniele Nascimento^{1,2}, Douglas Prado^{1,3}, Mikhael Haruo*
5 *Fernandes de Lima¹, Leila C Volpon⁵, Silvia K. Kavaguti⁵, Fernando Ramalho⁶, Ana P. Carlotti⁵,*
6 *Fabio Carmona⁵, Bernardo S Franklin⁷, Jose C. Alves-Filho^{1,2}, Fernando Q. Cunha^{1,3*}*

7 ¹Center of Research in Inflammatory Diseases (CRID), Ribeirão Preto Medical School, Departments
8 of ²Biochemistry and Immunology and ³Pharmacology, University of São Paulo, Ribeirão Preto
9 Brazil. ⁴School of Dentistry, Alfenas Federal University, Alfenas, Brazil. ⁵Pediatrics and ⁶Pathology,
10 University of São Paulo, Ribeirão Preto, Brazil. ⁷Institute of Innate Immunity, Medical Faculty,
11 University of Bonn, 53127 Bonn, NRW, Germany.

12

13 ***Correspondence:** Fernando Q Cunha; Center of Research in Inflammatory Diseases (CRID),
14 Ribeirão Preto Medical School, Rua das Paineiras, casa 3; 14049-900, Ribeirao Preto, SP, Brazil.
15 Tel: +55 16 33153324; Email: fdqcunha@fmrp.usp.br

16 **Keywords:** pediatric sepsis, sepsis-induced immunosuppression, Tregs, IL-33, M2 macrophages.

17 **Run title:** Age and long-term sepsis immunosuppression

18

19

20

21 **Abstract**

22 Sepsis survival in adults is commonly followed by immunosuppression and increased susceptibility
23 to secondary infections. However, the long-term immune consequences of pediatric sepsis are
24 unknown. Here, we compared the frequency of Tregs, the activation of the IL-33/ILC2s axis in M2
25 macrophages, and the DNA methylation of epithelial lung cells from post-septic infant and adult
26 mice. In contrast to adults, infant mice were resistant to secondary infection and did not show
27 impairment in tumour controls upon melanoma challenge. Mechanistically, increased IL-33 levels,
28 Tregs expansion, and activation of ILC2s and M2-macrophages were observed in post-septic adults
29 but not infant mice. Impaired IL-33 production in post-septic infant mice was associated with
30 increased DNA-methylation on lung epithelial cells. Notably, IL-33 treatment boosted the expansion
31 of Tregs and induced immunosuppression in infant mice. Clinically, adults but not pediatric post-
32 septic patients exhibited higher counts of Tregs and sera IL-33 levels. Hence, we describe a crucial
33 and age-dependent role for IL-33 in post-sepsis immunosuppression.

34

35

36

37

38

39

40

41

42 Introduction

43 Sepsis is a life-threatening multi-organ dysfunction caused by a dysregulated host response to an
44 infection¹. Adults that survived a sepsis episode frequently experience long-term
45 immunosuppression, which increases the likelihood of secondary infections by opportunistic
46 pathogens or the development of cancer^{2, 3, 4, 5, 6}. Despite these serious consequences, little is known
47 about the development of post-sepsis immunosuppression in children. Longitudinal studies analysing
48 the outcomes of survivor pediatric sepsis patients demonstrated that they did not have
49 immunosuppression markers nor impairment in the quality of life after hospital discharge^{7, 8, 9}.

50 In adults, the development of long-term post-sepsis immunosuppression is associated with increased
51 production of anti-inflammatory mediators, such as IL-10, IL-4, or TGF- β ^{5, 10, 11}; immune system
52 dysfunction^{5, 12}; epigenetic alterations^{13, 14}; and expansion of specific cellular populations, including
53 regulatory T cells (Tregs), B cells and M2-like macrophage^{15, 16, 17, 18}. Indeed, the inhibition of the
54 Tregs suppressive capacity or genetic ablation of *foxp3* on T cells significantly reduced the mortality
55 due to secondary infection in sepsis-surviving adult mice^{15, 19}. Although the main regulator of post-
56 sepsis immunosuppression is undetermined, recently, the alarmin IL-33 emerged as an important
57 "rheostat" for the development of post-septic immunosuppression in adults¹⁷.

58 IL-33, the latest member of the IL-1 family, is released by non-hematopoietic cells such as lung
59 epithelial cells during injury^{20, 21, 22}. Alveolar epithelial cells have been reported as the major cellular
60 sources of IL-33^{23, 24}. IL-33 plays an important role in Th2-associated immune responses. After
61 binding to its receptor (ST2), IL-33 induces the production of the Th2-associated mediators IL-4, IL-
62 5, IL-10, and IL-13 by Th2 lymphocytes, mast cells, type 2 innate lymphoid cells (ILC2) and
63 eosinophils^{25, 26}. Moreover, IL-33 drives the polarization of alternative-activated macrophages (M2)
64²⁷. Remarkably, post-septic IL-33 induced expansion of Tregs depends on ILC2s/M2-macrophages
65¹⁷. However, the role of IL-33/ILC2s/M2-macrophages/Tregs axis in sepsis-surviving children

66 remains unclear. Here, we investigated the long-term immune consequences of sepsis in surviving
67 infants vs adults. Our findings demonstrate that, compared to adults, young mice that survived sepsis
68 do not develop immunosuppression. These findings were recapitulated in sepsis-surviving pediatric
69 patients in whom no Tregs expansion or increase in serum IL-33 levels was observed compared to
70 adults. This study reveals that the long-term immunosuppression after sepsis might be an
71 unappreciated age-dependent phenomenon and suggest that adult and pediatric sepsis-surviving
72 patients require a different treatment approach.

73 **Methods**

74 **Animals**

75 Infant (2 weeks old) and adult (6 weeks old) C57BL/6 mice (wild-type, WT) were obtained from the
76 animal facility of the Ribeirao Preto Medical School of University of São Paulo, São Paulo - Brazil.
77 The animals were housed under standard conditions and received water and food *ad libitum*. Mice
78 were housed in barrier cages under controlled environmental conditions (12/12 h of light/dark cycle,
79 55% \pm 5% humidity, 23°C).

80 **Patients**

81 Peripheral blood samples were collected from 21 sepsis-surviving patients (12 children and 9 adults),
82 who were prospectively enrolled in the study after hospital discharge from the Intensive Care Unit of
83 a tertiary-care university hospital at Ribeirão Preto. All patients fulfilled clinical or laboratory criteria
84 for sepsis ²⁸. Seventeen healthy volunteers (7 children and 12 adults) were recruited as controls.
85 Pediatric disease severity was evaluated by PRISM (Pediatric Risk of Mortality) score and organ
86 dysfunction by PELOD (Pediatric Logistic Organ Dysfunction) score ^{29, 30}. The exclusion criteria

87 included active haematological malignancy or cancer, chronic treatment with steroids,
88 transplantation, HIV infection or advanced cirrhosis.

89 **Ethics approval and consent to participate**

90 Animal studies were reviewed and approved by the Ethics Committee on the Use of Animals
91 (CEUA) of the Ribeirão Preto Medical School, University of São Paulo, under protocol number
92 169/2011. The care and treatment of the animals were based on the Guide for the Care and Use of
93 Laboratory Animals³¹. The study was also approved by the Human Subjects Institutional Committee
94 of the Ribeirão Preto Medical School, University of São Paulo, under protocol number 4886/2009.
95 Written informed consent was obtained from patients or their parents/guardians/caregivers before
96 enrolment and a blood sample was drawn.

97 **Bacterial culture**

98 The caecal content of an adult C57BL/6 mouse was isolated, filtered through sterile gauze and grown
99 in Brain Heart Infusion (BHI) (BD Diagnostic Systems, Sparks, USA) for 5 days, 37°C. The bacteria
100 grown in this culture were washed two times with PBS, lyophilized and frozen on aliquots. One vial
101 of bacteria was thawed and grown in a BHI medium, 37°C for 20 hours before each experiment.
102 After two rounds of wash to remove the culture medium, bacteria were resuspended on sterile saline
103 0.9% and the number of bacteria was assessed by absorbance at 600 nm using a spectrophotometer
104 (Molecular Devices, Sunnyvale, USA). To prepare *Pseudomonas aeruginosa* suspension, a stock
105 strain isolated in a tertiary-care university hospital of Ribeirão Preto were prepared following the
106 same procedures for caecal bacterial suspension.

107 **Experimental design**

108 Infant and adult mice were submitted to sepsis by the intraperitoneal inoculation with 2×10^8
109 CFU/cavity or 4×10^8 CFU/cavity of bacterial suspension, respectively. Survival curves were
110 prepared from the data recorded daily and serum biomarkers for organ functions were assayed at
111 regular intervals. To assess the long-term phase of sepsis, animals undergoing sepsis received an
112 intraperitoneal injection of ertapenem sodium (Merck Research Laboratory), 30 mg/kg to adult mice
113 and 15 mg/kg to infant mice, beginning 6 h after sepsis and then every 12 h up to day 3. The survival
114 rate was recorded daily for 5 days. At the end of this period, further experiments were performed
115 with the surviving-sepsis mice who were euthanized on day 15 after sepsis induction by
116 ketamine/xylazine overdose (>100 mg/kg, s.c., União Quimica, BR) followed by cervical dislocation.

117 To address the long-term sepsis immuno-consequences, two “double-hit” sepsis models were used:
118 airway bacterial infection and tumor challenge model. For the airway second hit model, infant and
119 adult sepsis-surviving mice were infected on the day 15 or 30 after sepsis induction with a virulent
120 clinical strain of *Pseudomonas aeruginosa* suspension (8×10^5 or 2×10^6 CFUs/40 μ L, respectively).
121 The survival rate was recorded daily for up to 10 days.

122 For a tumor challenge model, melanoma B16 (ATCC) cells lines were cultured in RPMI containing
123 10% FBS (v/v), penicillin (100 U/mL) and amphotericin B (2 μ g/mL). Before use, cells with 70% to
124 80% of confluence were detached with trypsin-EDTA 0.25% and washed in PBS twice.
125 Subsequently, infant and adult sepsis-surviving mice were subcutaneously inoculated on the day 15
126 after sepsis with the B16 Melanoma cell line (5×10^4 cells/mice). The tumor growth was followed
127 from the day 0 to the day 15 after tumor inoculation. Tumor volumes were calculated according to
128 the formula: tumor volume (mm^3) = $L \times W^2/2$, where L represents the major axis (largest cross-
129 sectional diameter) of the tumor, and W represents the minor axis. On day 7 after tumor transplant, a
130 tumor density was assessed by IVIS (Xennogen IVIS Spectrum In Vivo Imaging System).
131 Furthermore, on the day 15 after tumor inoculation, animals were euthanized by ketamine/xylazine

132 overdose (>100 mg/kg, s.c., União Quimica, BR) followed by cervical dislocation and the tumor
133 microenvironment were assessed by FACS.

134 **Bacterial counts**

135 Bacterial counts were determined 6 h and 1, 7 and 15 days after infection, as previously described³².
136 Briefly, peritoneal exudate and blood samples were collected, serially diluted, plated on Muller-
137 Hinton agar dishes (Difco Laboratories), and incubated at 37°C for 18 h, and CFU/ml were recorded.

138 **Glutamate Oxaloacetate Transaminase (GOT) activity**

139 Animals were euthanized 6 h and 1, 7 and 15 days after infection, and blood samples were collected
140 to measure hepatic damage by assessing GOT activity levels. The assays were performed with a
141 commercial kit (Labtest, Brazil).

142 **Cytokine assays**

143 Cytokine concentrations were measured by ELISA, using antibodies from R&D Systems according
144 to the manufacturer's instructions. The optical density of the individual samples was measured at 450
145 nm using a spectrophotometer (Spectra Max-250, Molecular Devices, Sunnyvale, CA).

146 **Flow cytometry**

147 Aliquots of cells homogenate (1×10^6 cells per tube) were suspended in buffer containing 2% FCS in
148 PBS. For surface staining, cells were incubated with specific antibodies to F4/80 (BM8,
149 eBioscience), CD206 (mannose receptor C type 1, MR; MR5D3, AbD Serotec), CD4 (GK1.5,
150 eBioscience; H129.19, BD Biosciences), CD4 (RPA-T4, BD Biosciences, for human), CD45 (30-
151 F11, BD Biosciences), CD11b (M1/70, BioLegend), CD11c (N418, BioLegend; HI3, BD
152 Biosciences), T1/St2 (IL-33R, DJ8, MD Biosciences) Lin (145-2C11; RB6-8C5; RA3-6B2; Ter-119;

153 M1/70, BioLegend), Sca-1 (D7, BioLegend) or the appropriate isotype controls plus FcBlocker for
154 30 min. For transcription factor staining, cells were first stained for surface antigens, then fixed and
155 permeabilized with mouse Foxp3 Buffer Set (BD Biosciences), according to the manufacturer's
156 recommendations. Cells homogenate were then incubated with specific antibodies to FoxP3 (FJK-
157 16 s, eBioscience) or FoxP3 (150D/E4, eBioscience, for human) for 45 min. For intracellular
158 cytokines staining, cells were stimulated for 4 h with eBioscience™ Cell Stimulation Cocktail and a
159 protein transport inhibitor-containing Brefeldin (1.5uL/mL StopGolgi; BD Biosciences). Cells were
160 then washed in FACS buffer, fixed immediately in formaldehyde (final concentration 4%) for 20 min
161 on ice, washed and re-suspended in NP40 0.4% for 4 min at room temperature. Cells were washed
162 twice in FACS buffer and stained with an antibody specific for IL-13 (eBio13A, eBioscience) or the
163 appropriate isotype controls. Cells were analysed by FACSCanto using FCS Express V3 (De Novo
164 Software, Los Angeles, CA).

165 **Lung Alveolar Epithelial Cells and type 2 Innate Lymphoid Cells immunophenotyping**

166 The lung tissue from infant and adult post-septic mice was digested with Liberase TL (0.2 mg / mL,
167 Roche) and DNase I (0.5 mg / mL, Sigma) for 45 minutes at 37°C under rotation. Then, total lung
168 tissue was marked with a lineage antibody (Lin, anti-mouse CD3ε, Ly-6G / Ly-6C, CD11b, CD45R /
169 B220, TER-119 PE, Biolegend), anti-EpCAM for 10 minutes at temperature environment. The
170 epithelial alveolar cells were characterized as Lin-EpCAM⁺. For ILC2s characterization, total lung
171 tissue was marked with a lineage antibody (Lin, anti-mouse CD3ε, Ly-6G / Ly-6C, CD11b, CD45R /
172 B220, TER-119 PE, Biolegend), anti-CD45 (BD Bioscience) and anti-Sca-1 (BD Bioscience). Data
173 were collected with a FACS Canto II (BD Biosciences) and then were analyzed with FlowJo 10.6.1
174 software (Treestar).

175 ***In vitro* T cell differentiation**

176 CD4⁺ T cells were purified from spleen and lymph nodes with anti-CD4 and anti-CD25 microbeads
177 negative selection (Miltenyi Biotech). Isolated cells were activated with plate-bound anti-CD3 (1
178 µg/mL) and soluble anti-CD28 (1 µg/mL, both BD Biosciences) in the presence of Tregs polarizing
179 cytokines. Tregs were polarized with 1 ng/mL of TGF-β1 (R&D Systems). Cells were cultured for 72
180 hours and collected for flow cytometry analysis.

181 **Macrophage differentiation and polarization**

182 BMDM were differentiated as described previously ²⁷. Bone marrow cells from infant and adult naïve
183 mice were cultured in the presence of 20% of L929 cell culture supernatant (v/v) for 7 days. After
184 differentiation, cells were seeded at a density of 1×10^6 cells per well in 12-well plates and
185 stimulated with LPS (100 ng/mL, M1-like - Sigma-Aldrich), IL4 (10 ng/mL, M2-like, R&D Systems)
186 or medium (M0 macrophages). After 48 hours, the cells were used for FACS and supernatants for
187 cytokine analysis by ELISA.

188 **Coculture of macrophages with T cells**

189 Subsets of macrophages (M0, M1 or M2, 5×10^5 per well) were co-cultured for 4 days with effector
190 CD4⁺ T cells (CD4⁺ CD25-T cells, 5×10^5 per well) purified from the spleen of naive infant and
191 adult mice, in the presence of IL-2 (10 ng ml⁻¹, R&D Systems), anti-IL-10 (50 µg ml⁻¹, clone
192 JES052A5, R&D Systems) and stimulated with polyclonal anti-CD3 (1 µg ml⁻¹, BD Biosciences) in
193 U-bottom 96-well plates. Cells were then stained for FoxP3 and CD4 and analyzed by FACS.

194 **Total DNA imprinting methylation**

195 Lung Lin- cells of infant and adult sepsis-surviving animals were isolated and the total DNA was
196 extracted using a commercial kit (Wizard® Genomic DNA Purification Kit, Promega) according to
197 the manufacturer's recommendations. Afterwards, the total DNA methylation signature was evaluated

198 in 100 ng of DNA using the commercial kit (Imprint Methylated DNA Quantification kit, Sigma-
199 Aldrich), according to the manufacturer's recommendations.

200 **Gene expression by real-time PCR**

201 Total RNA from the lung was extracted using TRIZOL reagent (Invitrogen) or RNeasy kit (Qiagen)
202 according to the manufacturer's instructions. Total RNA (2 µg from tissue and 1900 ng from cells)
203 was reverse-transcribed using high-capacity cDNA RT Kit (Applied Biosystem). A High-Capacity
204 cDNA kit (Life Technologies) was used and results were analyzed by quantitative RT-PCR with a
205 Vii 7 Real-time PCR system (Applied Biosystems). The comparative threshold cycle method and
206 internal control (Gapdh) was used for the normalization of the target genes. Real-time PCR was
207 performed using the following primers: *Foxp3*, F- TTCTCCAGGACAGACACAACT / R-
208 GTTGCTGTCTTCCTGGGTGTA, *Ctla4*, F- TGTTGACACGGGACTGTACCT / R-
209 CGGGCATGGTTCTGGATCA, *Tgfb1*, F- CCTGTCCAAACTAAGGC / R-
210 GGTTTCTCATAGATGGCG, *Gitr*, F- AAGGTTCAGAACCGGAAGT / R-
211 GGGTCTCCACAGTGGTAC, and *Gapdh*, F- GGGTGTGAACCACGAGAAAT / R-
212 CCTTCCACAATGCCAAAGTT.

213 **Western blot analysis**

214 Mice were terminally anesthetized and the lungs were collected. Samples were homogenized in a
215 lysis buffer containing a mixture of proteinase inhibitors (Tris-HCl 50 mM, pH 7.4; NP-40 1%; Na-
216 deoxycholate 0.25%; NaCl 150 mM; EDTA 1 mM; PMSF 1 mM; Aprotinin, leupeptin and pepstatin
217 1 µg/ml). Proteins were separated by SDS-polyacrylamide gel electrophoresis and trans-blotted onto
218 nitrocellulose membranes (Amersham Pharmacia Biotech). The membranes were blocked with 5%
219 dry milk and incubated overnight at 4°C with rabbit polyclonal antibody against p-Smad2/3 (1:200;
220 ab272332, Abcam), Smad2/3 (1:200; ab217553, Abcam), p-CREB (1:200; ab32096, Abcam) and

221 CREB (1:200; ab32515, Abcam). The membranes were incubated with a secondary antibody
222 (Jackson ImmunoResearch). Immunodetection was performed using an enhanced chemiluminescence
223 light-detecting kit (Amersham Pharmacia, Biotech) for 1 min. Optical densitometry was measured
224 following normalization to the control using Scientific Imaging Systems (Image labTM 3.0 software,
225 Biorad Laboratories, Hercules CA).

226 **Statistical analysis**

227 The data (except for the survival curves) are reported as the mean \pm standard error of the mean (SD)
228 of values obtained from at least two independent experiments. The means of different treatments
229 were compared by analysis of variance (ANOVA) followed by Bonferroni's Student's *t*-test for
230 unpaired values. Bacterial counts were analyzed by the Mann-Whitney *U* test. The survival rate was
231 expressed as the percentage of live animals, and the Mantel-Cox log-rank test was used to determine
232 differences between survival curves. $P < 0.05$ was considered significant. All statistical analyses were
233 performed using GraphPad Prism version 9.00 (GraphPad Software, USA).

234

235

236

237

238

239

240

241 Results

242 Absence of post-sepsis-induced immunosuppression in infant mice

243 To assess the immune consequences of sepsis in infants, a “double-hit” sepsis model was used. For
244 this, we induced sepsis in infant (2 weeks old) or adult (6 weeks old) mice by intraperitoneal (i.p)
245 injection of bacterial suspension, as previously reported ³³. Mice were treated with the antibiotic
246 ertapenem, beginning 6 h after sepsis induction and then every 12 h up to day 3 (**Supplemental file**
247 **1: Figure S1A**). As expected, ertapenem significantly reduced the mortality rate of the animals and
248 improved the progressive recovery of body weight (**Supplemental file 1: Figure S1B, C**).
249 Concentrations of GOT (liver injury) in serum and bacteria loads in blood were also significantly
250 reduced by ertapenem treatment (**Supplemental file 1: Figure S1D, E**). To address the immune
251 status of sepsis-surviving mice, we administered a non-lethal dose of *P. aeruginosa*, a common post-
252 sepsis opportunistic pathogen ^{34, 35}. For that, infant and adult naïve mice were infected intranasally
253 with different doses of *P. aeruginosa* suspension (10^5 - 10^6 CFU) and the survival rate was recorded.
254 The doses of 8×10^5 CFU/40 µl to infants and 2×10^6 CFU/40 µl to adult mice that led to 80% of
255 survival in both groups were selected to be used as the second infection hit (**Supplemental file 1:**
256 **Figure S1F, G**). Further, sepsis-surviving mice were submitted to the second hit of *P. aeruginosa* on
257 day 15 or 30 after sepsis induction. In agreement with previous findings ¹⁵, adult mice that survived
258 sepsis become highly susceptible to secondary *P. aeruginosa* infection, indicating the development of
259 post-sepsis immunosuppression. Notably, sepsis-surviving infant mice were resistant to a secondary
260 *P. aeruginosa* infection (**Fig. 1A, B**) and displayed no changes in the lung bacterial load (**Fig. 1C**).
261 The results suggest that post-septic infant mice do not develop immunosuppression. Post-sepsis
262 immunosuppression has been described as a key risk factor for the development of lung carcinoma
263 and melanoma growth ^{16, 36}. Therefore, to confirm the post-sepsis immunosuppression, we injected
264 surviving mice with the murine melanoma cell line (B16). Post-sepsis adult mice displayed an

265 increase in the density and growth of implanted B16 tumors. Confirming the absence of
266 immunosuppression in infant mice, B16-challenged infant mice did not show differences in the tumor
267 growth when compared to the infant sham group (**Fig. 1D - F**). Additionally, infant post-septic spleen
268 CD4⁺ T cells proliferation capacity was not compromised after *in vitro* stimulation with anti-
269 CD3/anti-CD28 compared to adults (**Supplemental file 2: Figure S2**). Altogether, these results show
270 that sepsis-surviving infant mice do not develop post-sepsis immunosuppression.

271 **Lack of Tregs expansion in sepsis-surviving infant mice**

272 Because Tregs are a major cellular driver of the post-sepsis immunosuppression in adults^{15, 16, 17, 37,}
273³⁸, we sought to assess the *in vivo* expansion of Tregs population in sepsis-surviving infant mice.
274 Remarkably, in contrast to post-sepsis adults, post-septic infant mice displayed no increase in the
275 spleen Tregs population, as well as no changes in *Foxp3* or *Tgfb1* expression on isolated spleen
276 Tregs, conventional T cells (Tconv) and total spleen tissue (**Fig. 2A – D and Supplemental file 3:**
277 **Figure S3A**). Concordantly, we found that the expansion in the frequency of both iTregs (induced
278 regulatory T cells, CD4⁺Foxp3⁺Neuropilin1⁻) and nTregs (natural regulatory T cells,
279 CD4⁺Foxp3⁺Neuropilin1⁺) did not occur in post-septic infant animals compared to adults
280 (**Supplemental file 3: Figure S3B - D**). We also observed a significant reduction in the *ex vivo*
281 proliferation capacity of both total CD4⁺ T spleen cells and Tregs from post-septic infant mice
282 (**Supplemental file 3: Figure S3E, F**). To confirm these findings, we carried out the intratumoral
283 Tregs frequency in post-septic bearing breast tumor mice. Consistent with the aforementioned
284 findings, we observed no increase in the frequency of Tregs in the tumor microenvironment of post-
285 septic infant mice compared to the adult counterparts (**Fig. 2E – F**). Moreover, compared to infant
286 mice in post-septic adult animals we observed a reduced frequency of cell subtypes that are essential
287 for the control of tumor growth (IFN- γ -producing CD4⁺ and CD8⁺ cells)^{39, 40, 41, 42} (**Fig. 2G – H**).
288 Corroborating this, post-septic adult mice presented a higher ratio of Tregs/ IFN- γ -producing CD8⁺

289 cells and Tregs/CD4 IFN⁺ cells, which indicates a more severely immunosuppressed tumor
290 microenvironment when compared to the post-septic infant group (**Fig. 2I**). To investigate the
291 mechanisms involved in the failure of Tregs expansion, we assessed whether CD4 T cells from infant
292 mice could have impaired the Tregs differentiation. We stimulated the *in vitro* Tregs differentiation
293 of CD4 T cells from adult and infant mice cultured with TGF- β . We found that the differentiation to
294 the regulatory profile (CD4⁺Foxp3⁺) was similar in both groups. No differences were found in the
295 expression of hallmark genes associated with the Tregs profile (*Foxp3*, *Tgfb1*, *Gitr*, *Ctla4*, and *Tigit*)
296 (**Supplemental file 4: Figure S4A, B**). Validating these findings, we observed that the early
297 differentiation to the regulatory profile (CD4⁺CD25^{hi} T cells) was similar in both groups
298 (**Supplemental file 4: Figure S4C**). We then assessed the early phosphorylation of SMAD2/3 and
299 CREB, essential transcription factors involved in Tregs stability and differentiation^{43, 44}, after TGF- β
300 stimulation. TGF- β increased the expression of activated SMAD2 (p-SMAD2) and CREB (p-CREB)
301 in a time-dependent manner (**Supplemental file 4: Figure S4D**), indicating that Tregs differentiation
302 is an age-independent process. Collectively, these results suggest that the reduced expansion of Tregs
303 in sepsis-surviving infant mice is independent of the intrinsic fitness of the infant Tregs.

304 **Sepsis does not increase M2-like macrophages profile in post-septic infant mice**

305 To further examine the mechanism of the dampened expansion of Tregs in post-septic infant mice *in*
306 *vivo*, we assessed the effect of sepsis in infant M2-like macrophages polarization. The M2-like
307 macrophages have a particularly important role in post-sepsis immunosuppression through the
308 induction of Tregs differentiation in adults^{17, 45, 46, 47}. We found that whereas post-septic adult mice
309 showed an increased frequency in peritoneal M2-like macrophages (F4/80⁺ CD206⁺) and reduced
310 bacterial killing, the frequency of M2-like macrophages was significantly reduced in post-septic
311 infant mice, with no impairment in the bacterial killing (**Fig. 3A, B**). Furthermore, the adult post-
312 sepsis immunosuppression triggered the expression of M2 hallmark genes (*Ym1*, *Mrc1* and *Arg1*) in

313 the peritoneal cells, total lung tissues, and alveolar macrophages. In contrast, no such increased
314 expression was found in post-septic infant mice (**Fig. 3C – E**). Then, we assessed whether infant
315 mice could have a cell-intrinsic impairment in the M2 polarization. For that, we compared the M2
316 polarization of BMDMs from adult and infant mice *in vitro*. Consistent with the Tregs findings, we
317 found no impairment in the M2 polarization in infant mice (**Fig. 3F and Supplemental file 5: Figure**
318 **S5A**). Moreover, hallmarkM2-associated genes (*Ym1*, *Mrc1* and *Arg1*) were similarly upregulated in
319 a time-dependent manner in both infant and adult BMDMs in response to IL-4 (**Supplemental file 5:**
320 **Figure S5B**). There were also no differences in the production of IGF-1, a tissue damage resolution
321 mediator ⁴⁸, as well as in CCL22, a Tregs attracting chemokine ⁴⁹ between adult and infant mice
322 (**Supplemental file 5: Figure S5C**). We then investigated whether M2 infant macrophages are less
323 able to induce Tregs than the adult M2 macrophages. We cocultured M2-like macrophages from
324 infant and adult mice with isolated CD4⁺ T cells from adult or infant mice, and the Tregs
325 differentiation was assessed. Although adult and infant M2 macrophages were able to induce the
326 Tregs differentiation, this was even more prominent in the presence of infant M2 macrophages (**Fig.**
327 **3G**) showing that there is no defect in the ability of M2 macrophages from infant mice to induce
328 Tregs *in vitro*. Altogether, these findings suggest that events upstream to M2 macrophage
329 polarization and Tregs expansion are involved in the damped development of post-sepsis
330 immunosuppression in infant mice.

331 **Sepsis does not increase the ILC2/IL-33 axis in sepsis-surviving infant mice**

332 Recently, the alarmin IL-33, a member of the interleukin (IL)-1 family, has been identified as a major
333 player in the post-sepsis immunosuppression by activating the Tregs/M2-like macrophages axis ¹⁷.
334 We, therefore explored the effect of IL-33 administration on Tregs/M2-like macrophages axis in
335 infant mice. IL-33 administration resulted in a robust expansion of peritoneal M2-like macrophages
336 and spleen Tregs in both infant and adult mice in an IL-33 receptor (ST2)-dependent manner (**Fig.**

337 **4A, B).** Noticeably, compared to the adults, IL-33 treatment led to even a significantly higher
338 expansion of infant ST2⁺ Treg cell population (**Supplemental file 6: Figure S6**) suggesting that
339 there is no impairment in IL-33 responsiveness in infant mice. These findings prompted us to
340 investigate whether the infant post-septic condition affects the IL-33 and type 2 cytokines production.
341 We, therefore measured type 2 cytokines (IL-10 and IL-4) and IL-33 production in the lung tissue
342 and bronchoalveolar lavage (BAL) from sepsis-surviving mice. Lung was selected since epithelial
343 and endothelial lung cells are the major sources of IL-33^{23, 50}. Consistent with previously reported
344 studies¹⁷, the post-septic condition resulted in a significant increase in lung IL-33 production and
345 expression as well as an increase of type 2 cytokine production in adult mice. Remarkably, no such
346 increase was evident in post-septic infant mice (**Fig. 4C – F**). Moreover, we observed that whereas
347 post-septic adult mice showed an increase in BAL IL-33 production accompanied by the reduction in
348 the IL-33 soluble receptor (sST2), the production of BAL IL-33 was significantly reduced in post-
349 septic infant mice with no changes in sST2 production (**Supplemental file 7: Figure S7A, B**).
350 Pulmonary epithelial cells, especially pulmonary alveolar type II (Lin⁻EpCAM⁺), have been
351 characterized as the main early and late producers of IL-33^{23, 24}. Hence, we carried out the
352 expression of *Il33* by lung Lin- cells in post-septic mice. Strikingly, we observed only a significant
353 increase of *Il33* expression on adult but not infant Lin- cells (**Fig. 4G**). We then sought to determine
354 the expression of *Il33* in alveolar epithelial cells (AECs) isolated from post-septic infant mice. AECs
355 from septic-surviving infant mice showed a reduction in the expression of *Il33* when compared to the
356 Sham group (**Fig. 4H and Supplemental file 7: Figure S7C**). IL-33 production is finely regulated
357 by both molecular and epigenetic events^{51, 52}. Specifically, in a pathological context, IL-33
358 expression can be regulated by events of acetylation or methylation^{52, 53}. To further understand the
359 underlying mechanisms involved in the impairment of IL-33 production in post-septic infant mice,
360 we assess the total imprinting DNA methylation of lung Lin- cells from sepsis-surviving infant and
361 adult mice. Strikingly, the post-sepsis condition led to an increase in the total methylation signature

362 of infant Lin- cells compared to that of the adult mice (**Fig. 4I**). Importantly, a significant increment
363 in ILC2s frequency, a common downstream IL-33 target population, was only observed in the adult
364 post-septic group but not in the infant post-septic mice (**Fig. 4J and Supplemental file 7: Figure**
365 **S7D**). Furthermore, after *in vitro* stimulation, no impairment in the ILCs function was verified in
366 infant mice assessed by the intracellular production of IL-13 (**Fig. 4K**). Collectively, these findings
367 suggest that the infant immunosuppression “resistance” might be associated with the impairment of
368 IL-33 production.

369 **Lack of Tregs/IL-33 expansion in sepsis-surviving pediatric patients**

370 Finally, we assessed whether our data from the murine models could be extended to the clinical
371 setting. For that, we investigated the frequency of Tregs in the peripheral blood as well as the serum
372 concentrations of IL-33 in healthy control volunteers and sepsis-surviving adult and pediatric
373 patients. We prospectively included 21 patients (12 children and 9 adults) after hospital discharge in
374 the Emergency Department of a high-complexity hospital. Healthy volunteers (7 healthy children
375 and 12 healthy adults) were included as controls. The baseline demographic and clinical
376 characteristics are summarized in Supplemental file **Table 1**. PRISM and PELOD scores for
377 pediatric patients and SOFA and APACHE II scores for adult patients during their hospitalization
378 were recorded. Whereas sepsis-surviving adults exhibited a significantly elevated level of Tregs cells
379 compared to healthy controls, the sepsis-surviving infant had a low and similar level of Tregs cells as
380 the healthy infants or adults (**Fig. 5A – C**). Nevertheless, Tregs cells from the surviving infants
381 retained their suppressive activity (**Supplemental file 8: Figure S8**). Moreover, consistent with the
382 mouse model, we did not find significant changes in the plasma levels of IL-33 of post-septic
383 pediatric patients (**Fig. 5D**). These data, therefore demonstrate that the reduced level of IL-33
384 production in infant mice and pediatric sepsis patients could be responsible for the reduced level of

385 Tregs cells and the resistance of long-term immune suppression that is often observed in adult sepsis
386 individuals.

387 **Discussion**

388 Several studies have described the post-sepsis immunosuppression syndrome in adults (Cavassani et
389 al., 2010; Hotchkiss et al., 2013; Monneret et al., 2003; Nascimento et al., 2010; Nascimento et al.,
390 2017). However, such immune consequences of sepsis are not significant in children. Concordantly,
391 in comparison to non-survivors, sepsis-surviving pediatric patients did not show leukopenia, an
392 outcome accompanied by reduction of IL-10 expression in monocytes (Hall et al., 2007; Hall et al.,
393 2011). Furthermore, neonate mice with early-onset sepsis did not have an increased frequency for
394 the development of late-onset sepsis immunosuppression (Wynn et al., 2013). Moreover, whereas
395 sepsis-surviving adult patients have up to five times the risk of acquiring a secondary infection after
396 hospital discharge (Cuthbertson et al., 2010), the infant post-septic patients have a low risk of
397 secondary infection (Morrison et al., 2002). The mechanisms for this differential immune suppression
398 between adults and infants recovering from sepsis are largely unknown.

399 Data reported here demonstrate that, compared to the adults, sepsis-surviving infant mice do not
400 develop post-sepsis immunosuppression. Specifically, post-septic infant mice are resistant to
401 secondary bacterial infections. Notably, we found that this is associated with a failure of Tregs
402 expansion as well as reduced activation of M2-like macrophages/IL-33 axis. Moreover, the post-
403 septic infant condition was associated with an increase in DNA methylation in lung Lin- cells,
404 leading to reduced IL-33 production compared with those from the adult counterparts. Consistent
405 with this observation, treatment of infant mice with exogenous IL-33 led to a higher expansion of the
406 Tregs population and immunosuppression, demonstrating that the decreased IL-33 production in
407 infant mice is essential for their resistance to post-sepsis immunosuppression. The clinical relevance

408 of our findings was supported by the observation that sepsis-surviving pediatric patients exhibit
409 neither systemic Tregs expansion nor increased serum IL-33 levels compared to adult counterparts.
410 Expansion of cord blood Tregs population in neonatal patients with early-onset sepsis (12 days old)
411 has been reported to be inversely correlated with the severity of the disease (Timperi et al., 2016).
412 Likewise, the expansion of the Tregs population has been reported in newborn mice (five to seven
413 days old) 24 h after sepsis induction (Wynn et al., 2007). The discrepancy between these reports and
414 our current finding is likely due to the difference in experimental protocols used. Unlike our
415 experimental system, most of these studies used umbilical cord blood and included acute sepsis
416 patients instead of sepsis-surviving patients. It is noteworthy that Tregs *in vitro* differentiation and
417 CD4 T cells TGF- β responsiveness are not compromised by age, suggesting that the failure of Tregs
418 expansion *in vivo* does not rely on failure in infants Tregs fitness. Furthermore, the expansion of M2
419 macrophages in adult post-septic mice was not observed in infants. However, similarly to Tregs, the
420 differentiation of M2 macrophages *in vitro* was not compromised in infant mice. These results
421 suggest that the mechanisms that drive the M2/Treg axis could be upstream of these cells.

422 Recently, our group demonstrated the role of IL-33 as a key regulator of post-sepsis
423 immunosuppression in adult mice (Nascimento et al., 2017). IL-33 is constitutively produced mainly
424 by epithelial and endothelial cells and acts as an endogenous danger signal, or alarmin, in response to
425 tissue damage (Cayrol and Girard, 2014; Liew et al., 2010; Smith, 2010). IL-33 levels remain
426 elevated in the lung of sepsis-surviving adult mice, leading to the expansion and activation of ILCs
427 populations, which orchestrates a macrophage alternative reprogramming toward an M2-like profile,
428 type 2 cytokines production and expansion of Tregs population (Nascimento et al., 2017). In our
429 study, we observed that the M2-like reprogramming, type 2 cytokines production (such as IL-4), and
430 especially IL-33 production in sepsis-surviving infant mice was not increased, suggesting an
431 unrecognized age-dependent regulation of IL-33 production in a post-septic state. The expression of

432 IL-33 is finely regulated by epigenetic events (Polumuri et al., 2012; Zhang et al., 2014) (Larouche et
433 al., 2018; Zhang et al., 2014) thus we addressed the total DNA methylation imprinting in post-septic
434 infant mice. Compared with adults, lung Lin- cells from post-septic infant mice show a higher total
435 methylation signature, which might be related to the impairment of IL-33 production. The
436 mechanism by which methylation signature might regulate IL-33 production during pediatric sepsis
437 warrants further investigation. Taken together, our findings reveal that post-sepsis
438 immunosuppression is an age-dependent phenomenon. In this context, the differential production of
439 IL-33 has an important implication for the treatment of adult and pediatric post-sepsis
440 immunosuppression.

441 **Abbreviations**

442 Tregs, Regulatory T cells. BMDM, Bone marrow-derived macrophages. AECs, Alveolar Epithelial
443 Cells. GOT, Glutamic Oxaloacetic Transaminase. ILC2s, Type 2 innate lymphoid cells.

444 **Declarations**

445 **Consent for publication**

446 Not applicable

447 **Competing interests**

448 The authors declare that they have no competing interests.

449 **Funding**

450 The research received funding from the São Paulo Research Foundation (FAPESP n.º 2013/08216-2),
451 the Center for Research in Inflammatory Disease (CRID 2011/19670-0), the University of São Paulo

452 NAP-DIN (11.1.21625.01.0), the Conselho Nacional de Pesquisa e Desenvolvimento Tecnológico,
453 CNPq) and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). This study
454 was also supported by intramural funding from the Medical Faculty of the University of Bonn to
455 BSF. BSF is further supported by grants from the European Research Council (PLAT-IL-1, 714175);
456 and Germany's Excellence Strategy (EXC 2151 – 390873048) from the Deutsche
457 Forschungsgemeinschaft (DFG, German Research Foundation).

458 **Authors' contributions**

459 Conceived and designed the experiments: DC, CW, WT, VB, FV, DN, JA, BSF and FC. Performed
460 the experiments: DC, CW, WT, VB, MF, FV, DN, DP and MHL. Analyzed the data: DC, CW, FV,
461 JA and FC. Contributed reagents/materials/analysis tools: FC. Wrote/revised the paper: DC, CW,
462 WT, JA, BSF and FC.

463 **Acknowledgements**

464 We are grateful to Ieda dos Santos, Marco Antônio, Sergio Rosa, Vagner Jesus, Ana Kátia dos Santos
465 and Giuliana Bertozi for technical assistance. We are also grateful to Nathalia Sofia Rosero and
466 Cornelia Rohland for their technical assistance. We also thank the FACS Core Facility of the Medical
467 Faculty at the University of Bonn for providing help, services, and devices funded by the Deutsche
468 Forschungsgemeinschaft (DFG, German Research 764 Foundation, project number 216372545).

469

470

471

472

473 **Figure legends**

474 **FIGURE 1. Absence of post-sepsis-induced immunosuppression in infant mice.** Infant and adult
475 mice were intraperitoneally injected with 2×10^8 and 4×10^8 colony-forming units (CFU) of cecum
476 bacteria, respectively, and after six hours, the ertapenem antibiotic therapy (Abx, 15 mg/kg for infant
477 and 30 mg/kg for adults) was initiated and maintained for 3 days, via intraperitoneal (i.p) twice a day.
478 On days 15 (**A**) or 30 (**B**), the surviving mice were submitted to the second hit with an intranasal
479 injection of *P. aeruginosa*, 8×10^5 CFU for infant and 2×10^6 CFU for adults, and the survival
480 percentage was calculated with the data recorded daily for 10 days. (**C**) The logarithm of CFU per
481 lung (Log CFU/lung) was determined by seeding the bronchoalveolar lavage (BAL) collected 12 h
482 after *P. aeruginosa* infection in the 15 days sepsis-surviving (*Sepsis*_{15d}) mice. We also submitted the
483 *Sepsis*_{15d} mice to B16 melanoma cells subcutaneous inoculation (5×10^4 cells/mice) and, after 7 days,
484 the tumor density (**D**) was evaluated by in vivo imaging system (IVIS) and the average radiance was
485 expressed in 10^4 photons per second per square centimeter per steradian (p/sec/cm²/sr) (**E**). The
486 tumor volume (**F**) in cubic millimeters (mm³) was also evaluated daily from day 10 to day 15 after
487 tumoral cells challenging. Data are mean \pm SD, n=6-8 per group and are representative of 2-3
488 independent experiments. * $p < 0.5$ and ** $p < 0.01$ (**A** - **B**, Mantel-Cox log-rank test; **C** - **F**, one way-
489 ANOVA, Bonferroni's).

490 **FIGURE 2. Lack of Treg expansion in sepsis-surviving infant mice.** Infant and adult mice were
491 intraperitoneally injected with 2×10^8 and 4×10^8 colony-forming units (CFU) of cecum bacteria,
492 respectively, and after six hours, the ertapenem antibiotic therapy (Abx, 15 mg/kg for infant and 30
493 mg/kg for adults) was initiated and maintained for 3 days, via intraperitoneal (i.p) twice a day. The
494 frequency in percentages of spleen T regulatory cells (Tregs) (**A**) on sepsis-surviving mice in the
495 days indicated in the figure, as well as the representative flow cytometry plots (**B**) and the absolute
496 number of Tregs in the 15 days sepsis-surviving (*Sepsis*_{15d}) mice (**C**) addressed by flow cytometry.

497 **(D)** Heat map of *Foxp3* expression in spleen Tregs (CD4⁺CD25⁺), conventional T cells (Tconv,
498 CD4⁺CD25⁻) and whole spleen tissue from Sepsis_{15d} mice. Sepsis_{15d} mice were inoculated with B16
499 melanoma cells (5 x 10⁴ cells/mice) and, after 15 days, the tumor was removed and the intratumor
500 cells were evaluated by flow cytometry. **(E)** Representative flow cytometry plots and **(F)** frequency
501 of intratumoral Tregs. Frequency of **(G)** CD4⁺ and **(H)** CD8⁺ IFN γ -producing cells. The ratio
502 between Tregs cells and CD4⁺ or CD8⁺ IFN γ -producing cells **(I)** in the tumor microenvironment
503 from sepsis-surviving mice. Data are mean \pm SD, n=6-8 per group and are representative of 2-3
504 independent experiments. * $p<0.5$ and **** $p<0.0001$ (**A** and **I**, *t*-test and **A**, **F** – **H** one way-
505 ANOVA, Bonferroni's; **D**, Z-score normalized heat map).

506 **FIGURE 3. Sepsis does not increase the M2-like macrophages profile in post-septic infant mice.**
507 Infant and adult mice were intraperitoneally injected with 2x10⁸ and 4x10⁸ colony-forming units
508 (CFU) of cecum bacteria, respectively, and after six hours, the ertapenem antibiotic therapy (Abx, 15
509 mg/kg for infant and 30 mg/kg for adults) was initiated and maintained for 3 days, via intraperitoneal
510 (i.p) twice a day. **(A)** Representative flow cytometry plots and frequency in the percentage of M2-like
511 macrophages (F4/80⁺CD206⁺) in the peritoneal exudates of 15 days sepsis-surviving (Sepsis_{15d}) mice.
512 **(B)** Live bacteria after killing assay of *E. coli* by peritoneal macrophages from Sepsis_{15d} mice. *Yml*,
513 *Mrc1* and *Arg1* relative expression in the days indicated in the figure or Sepsis_{15d} mice in the **(C)**
514 peritoneal fluid exudates **(D)** total lung tissue, and **(E)** alveolar macrophages assessed by qPCR.
515 Infant and adult bone marrow-derived macrophages (BMDMs) were polarized in the presence of IL-4
516 (10 ng/mL) for 48 h. **(F)** Representative Flow cytometry plots and frequency in the percentage of
517 F4/80⁺CD206⁺ macrophages. **(G)** Bone marrow-derived macrophages (M0) or M2-like polarized
518 macrophages (BMDM + IL-4, 48h) from infant or adult mice were co-cultured with infant or adult
519 spleen-isolated CD4⁺CD25⁻ T cells in the presence of anti- ϵ CD3 (1 μ g/mL) and the Tregs
520 differentiation was addressed 72 h later by flow cytometry and shown as representative flow

521 cytometry plots and frequency in the percentage of CD4⁺Foxp3⁺ T cells (**G**). Data are mean ± SD,
522 n=4-6, representative of two experiments, * $p<0.05$, ** $p<0.01$, *** $p<0.001$ and **** $p<0.0001$ (one
523 way-ANOVA, Bonferroni's; **C**, *t*-test).

524 **FIGURE 4. Sepsis does not increase the ILC2/IL-33 axis in sepsis-surviving infant mice.** We
525 treated wild type mice (infant and adult) or infant ST2 deficient mice (ST2^{-/-}) with recombinant IL-
526 33 (rIL-33, 0,5 μ g/kg per 6 days), afterwards, the peritoneal lavage and the spleen were collected, and
527 their cell composition was evaluated by flow cytometry. Representative flow cytometry plots and
528 frequency of (**A**) M2-like macrophages calculated as the percentage of CD206⁺ cells among those
529 F4/80⁺ in the peritoneal exudates and (**B**) spleen Tregs as Foxp3⁺ cells in the gate of those CD4⁺.
530 Infant and adult mice were intraperitoneally injected with 2 \times 10⁸ and 4 \times 10⁸ colony-forming units
531 (CFU) of cecum bacteria, respectively, and after six hours, the ertapenem antibiotic therapy (Abx, 15
532 mg/kg for infant and 30 mg/kg for adults) was initiated and maintained for 3 days, via intraperitoneal
533 (i.p) twice a day. The following analyses, except the item K, were performed with the 15 days sepsis-
534 surviving (Sepsis_{15d}) mice. Concentration in picrogram per mL (pg/mL) of (**C**) IL-10, (**D**) IL-4 and
535 (**E**) IL-33 in the lung homogenates. *Il33* relative expression evaluated by qPCR in (**F**) lung tissue,
536 (**G**) lung whole Lin- cells (CD3ε-Gr-1-CD11b-CD45R/B220-mTer-119) and (**H**) alveolar epithelial
537 cells isolated from Sepsis_{15d} infant mice (AECs, CD3ε-Gr-1-CD11b-CD45R/B220-mTer-119-
538 EpCAM⁺). (**I**) total imprinting DNA methylation percentage performed in Lin-cells. (**J**)
539 Representative Flow cytometry plots and frequency in the percentage of lung ILC2s cells
540 (CD45⁺Lin-Sca1⁺ cells). (**K**) Representative Flow cytometry plots and frequency in the percentage of
541 IL13-producing ILC2s cells (CD45⁺Lin⁻Sca-1⁺IL-13⁺) from infant and adult naïve mice after phorbol
542 12-myristate 13-acetate/ionomycin stimulation (PMA/Ion). Data are mean ± SD, n=4-6,
543 representative of two experiments, * $p<0.05$, ** $p<0.01$, *** $p<0.001$ and **** $p<0.0001$ (**A – G**, and

544 **J, K** one way-ANOVA, Bonferroni's; **H**, data are Z-score normalized heat map; **I**, data are presented
545 as % of DNA methylated and no methylated).

546 **FIGURE 5. Lack of Tregs/IL-33 expansion in sepsis-surviving pediatric patients.** Blood samples
547 were collected from both pediatric and adult sepsis-surviving patients, as well as healthy volunteers,
548 after hospital discharge. **(A)** Representative flow cytometry plots **(B)** frequency in percentage **(C)**
549 and absolute number in 10^5 cells per milliliter ($10^5/\text{mL}$) of $\text{CD4}^+\text{Foxp3}^+$ T cells. **(D)** Serum IL-33
550 levels in healthy and sepsis-surviving pediatric patients in picogram per mL (pg/mL). Data are mean
551 \pm SD, ** $p < 0.01$ and **** $p < 0.0001$ (Kruskal-Wallis unpaired test).

552 **Additional files**

553 **FIGURE S1. Antibiotic-induced recovery from cecal bacteria peritonitis of infant and adult**
554 **mice and standardization of *P. aeruginosa* sublethal doses used as a second hit in our model.**
555 Experimental setup of our two-hit models with *P. aeruginosa* and B16 tumor cells **(A)**. Infant and
556 adult mice were intraperitoneally injected with 2×10^8 and 4×10^8 colony-forming units (CFU) of
557 cecum bacteria, respectively, and after six hours, the ertapenem antibiotic therapy (Abx, 15 mg/kg for
558 infant and 30 mg/kg for adults) was initiated and maintained for 3 days, via intraperitoneal (i.p) twice
559 a day. The survival **(B)** and the variation on the body weight **(C)** expressed in percentage were
560 periodically recorded, as indicated in the figures. In another set of experiments, we evaluated the
561 liver injury by measuring the glutamic-oxalacetic transaminase (GOT) levels expressed in units per
562 milliliter (U/mL) of plasma **(D)**, and the blood bacterial count as the logarithm of CFU per milliliter
563 (Log_{10} CFU/mL) **(E)**, in samples collected from sham animals or septic animals after 6h and 1, 7 and
564 15 days after infection. Infant **(F)** and adult **(G)** naïve mice were infected with different doses of *P.*
565 *aeruginosa* (4×10^6 , 2×10^6 and 8×10^5 CFUs/mice, intranasally), and the survival was recorded for

566 10 days and expressed as a percentage. Data are mean \pm SD, n=6-8 per group and are representative
567 of 2-3 independent experiments. * $p<0.5$ (*t*-test).

568

569 **FIGURE S2. Sepsis-surviving infant mice do not develop CD4 T cells proliferation impairment.**
570 Infant and adult mice were intraperitoneally injected with 2×10^8 and 4×10^8 colony-forming units
571 (CFU) of cecum bacteria, respectively, and after six hours, the ertapenem antibiotic therapy (Abx, 15
572 mg/kg for infant and 30 mg/kg for adults) was initiated and maintained for 3 days, via intraperitoneal
573 (i.p) twice a day. *Ex vivo* proliferation capacity percentage of total spleen CD4 T cells after
574 polyclonal stimulation (anti- ϵ CD3 and anti-CD28, 1 μ g/mL, respectively) from 15 days sepsis-
575 surviving (Sepsis_{15d}) mice. Data are mean \pm SD, n=6-8 per group and are representative of 2-3
576 independent experiments. ** $p<0.01$ (one way-ANOVA, Bonferroni's).

577

578 **FIGURE S3. Sepsis-surviving infant mice do not expand Tregs.** Infant and adult mice were
579 intraperitoneally injected with 2×10^8 and 4×10^8 colony-forming units (CFU) of cecum bacteria,
580 respectively, and after six hours, the ertapenem antibiotic therapy (Abx, 15 mg/kg for infant and 30
581 mg/kg for adults) was initiated and maintained for 3 days, via intraperitoneal (i.p) twice a day. The
582 15 days sepsis surviving (Sepsis_{15d}) mice were then euthanized and the spleen was processed to the
583 flow cytometry analyses **(A)** Representative histogram of and total expression of Foxp3 in CD4 $^{+}$ cells
584 as mean fluorescence intensity (MFI). **(B)** Representative flow cytometry plot of Foxp3 expression in
585 CD4 $^{+}$ cells. Absolute number of induced **(C)** and natural **(D)** spleen-derived T regulatory cells, iTregs
586 and nTregs, based on neuropilin 1 (Nrp1) expression on CD4 $^{+}$ Foxp3 $^{+}$ cells (natural (iTregs:
587 Foxp3 $^{+}$ Nrp1 $^{-}$; nTregs: Foxp3 $^{+}$ Nrp1 $^{+}$). Representative flow cytometry histograms **(E)** and frequency
588 **(F)** in the percentage of spleen Ki67 $^{+}$ cells on CD4 $^{+}$ Foxp3 $^{+}$ and CD4 $^{+}$ gates from Sepsis_{15d} infant

589 mice. Data are mean \pm SD, n=6-8 per group and are representative of 2-3 independent experiments. *

590 $p<0.05$ ** $p<0.01$ and *** $p<0.001$ (A, C and D, one way-ANOVA, Bonferroni'; F, t-test).

591

592 **FIGURE S4. Tregs *in vitro* differentiation is independent of age. (A)** *In vitro* Tregs differentiation
593 from adult and infant DEREG mice (Foxp3-DTR/EGFP) after stimulation with TGF- β 1 (1 and 3
594 ng/mL) for 72 h, 37°C 5% CO₂. (A) Representative flow cytometry plots and frequency in the
595 percentage of CD4⁺Foxp3eGFP⁺ T cells (Tregs). (B) CD4⁺Foxp3eGFP⁻ T cells from infant and adult
596 mice were differentiated *in vitro* and the expression of Tregs hallmark genes were assessed by qPCR.
597 (C) Representative flow cytometry plots and frequency of CD25 negative (CD25), CD25 intermediate
598 (CD25^{int}) and CD25 high (CD25^{hi}) on CD4⁺ T cells after polyclonal stimulation (anti- ϵ CD3 and anti-
599 CD28, 1 μ g/mL). (D) Representative *immunoblots* of p-Smad2/3, Smad2/3, pCREB and CREB on
600 infant CD4⁺Foxp3eGFP⁻ T cells after TGF- β 1 stimulation (30 ng/mL). Data are mean \pm SD, n=6-8
601 per group and are representative of 2-3 independent experiments.

602

603 **FIGURE S5. Bone marrow-derived macrophages from infant and adult mice are similarly able**
604 **to polarize to M2-like macrophages.** Bone marrow-derived macrophages (BMDMs) obtained from
605 infant and adult mice were polarized in the presence of IL-4 (10ng/mL) for 48 h. (A) Representative
606 histogram and frequency in the percentage of CD206 on F4/80⁺ macrophages. (B) M2-like
607 macrophages hallmark genes after *in vitro* polarization in the time point indicated assessed by qPCR.
608 (C) CCL22 and IGF-1 levels were expressed in picograms per mL (pg/mL) in the supernatant of the
609 macrophages culture 48 h after stimulation with IL-4. Data are mean \pm SD, n=4-6, representative of
610 two experiments, * $p<0.05$, ** $p<0.01$ and *** $p<0.001$ (one way-ANOVA, Bonferroni's).

611

612 **FIGURE S6. Recombinant IL-33 boosted the expansion of ST2⁺Tregs.** We treated wild type mice
613 (infant and adult) or infant ST2 deficient mice (ST2^{-/-}) with recombinant IL-33 (rIL-33, 0,5 μ g/kg per
614 6 days) and the spleens were collected, and their cell composition was evaluated by flow cytometry.
615 Frequency and representative flow cytometry plots spleen Tregs as Foxp3⁺ cells in the gate of those
616 CD4⁺. Percentage and representative flow cytometry plots of spleen Tregs ST2⁺ (Foxp3⁺ST2⁺ cells).
617 Data are mean \pm SD, n=3 -5 per group. *p<0. (Two way-ANOVA, Tukey).

618

619 **FIGURE S7. Sepsis does not increase the ILC2/IL-33 axis in sepsis-surviving infant mice.** Infant
620 and adult mice were intraperitoneally injected with 2x10⁸ and 4x10⁸ colony-forming units (CFU) of
621 cecum bacteria, respectively, and after six hours, the ertapenem antibiotic therapy (Abx, 15 mg/kg for
622 infant and 30 mg/kg for adults) was initiated and maintained for 3 days, via intraperitoneal (i.p) twice
623 a day. The 15 days sepsis surviving (Sepsis_{15d}) mice were then euthanized and the bronchoalveolar
624 lavage (BAL) and the lung tissue were collected for further analysis. **(A)** IL-33 and **(B)** sST2 levels
625 in picogram per mL (pg/mL) in the BAL. **(C)** Sorting strategy flow cytometry plots of lung alveolar
626 epithelial cells (AECs). **(D)** Absolute number of lungs ILC2s cells (CD45⁺Lin⁻Sca1⁺ cells) expressed
627 in cells x 10⁵ (x10⁵), mean fluorescence intensity x 10³ (MFI x 10³) and Sca1 expression in
628 percentage on CD45⁺Lin⁻ cells. Data are mean \pm SD, n=4-6, representative of two experiments,
629 *p<0.05 (one way-ANOVA, Bonferroni's).

630

631 **FIGURE S8. Tregs suppression activity is preserved in sepsis-surviving pediatric patients.**
632 Blood samples were collected from sepsis-surviving pediatric patients, and healthy volunteers, after
633 hospital discharge. Representative histogram of T effector cells (CD4⁺CD25⁺CFSE⁺) proliferation in
634 the presence of a serially diluted concentration of Tregs 72 h after polyclonal stimulation (1 μ g/mL).

635

636 **TABLE S1.** Demographic and clinical characteristics of the sepsis-surviving patients. SOFA,
637 Sequential Organ Failure Assessment. APACHE, Acute Physiology and Chronic Health Evaluation.
638 PRISM, Pediatric Risk of Mortality. PELOD, Pediatric Logistic Organ Dysfunction. PRISM,
639 Pediatric Risk of Mortality.

640

641 **References**

642 1. Singer M, *et al.* The Third International Consensus Definitions for Sepsis and Septic Shock
643 (Sepsis-3). *JAMA* **315**, 801-810 (2016).

644

645 2. Muenzer JT, *et al.* Characterization and modulation of the immunosuppressive phase of
646 sepsis. *Infect Immun* **78**, 1582-1592 (2010).

647

648 3. Meakins JL, *et al.* Delayed hypersensitivity: indicator of acquired failure of host defenses in
649 sepsis and trauma. *Annals of surgery* **186**, 241-250 (1977).

650

651 4. Wang T, Derhovanessian A, De Cruz S, Belperio JA, Deng JC, Hoo GS. Subsequent
652 infections in survivors of sepsis: epidemiology and outcomes. *J Intensive Care Med* **29**, 87-95
653 (2014).

654

655 5. Hotchkiss RS, Monneret G, Payen D. Sepsis-induced immunosuppression: from cellular
656 dysfunctions to immunotherapy. *Nat Rev Immunol* **13**, 862-874 (2013).

657

658 6. Otto GP, *et al.* The late phase of sepsis is characterized by an increased microbiological
659 burden and death rate. *Crit Care* **15**, R183 (2011).

660

661 7. Hall MW, Gavrilin MA, Knatz NL, Duncan MD, Fernandez SA, Wewers MD. Monocyte
662 mRNA phenotype and adverse outcomes from pediatric multiple organ dysfunction
663 syndrome. *Pediatr Res* **62**, 597-603 (2007).

664

665 8. Hall MW, *et al.* Innate immune function and mortality in critically ill children with influenza:
666 a multicenter study. *Crit Care Med* **41**, 224-236 (2013).

667

668 9. Morrison AL, Gillis J, O'Connell AJ, Schell DN, Dossetor DR, Mellis C. Quality of life of
669 survivors of pediatric intensive care. *Pediatr Crit Care Med* **3**, 1-5 (2002).

670

671 10. Vincent JL, Opal SM, Marshall JC, Tracey KJ. Sepsis definitions: time for change. *Lancet*
672 **381**, 774-775 (2013).

673

674 11. Steinhauser ML, Hogaboam CM, Kunkel SL, Lukacs NW, Strieter RM, Standiford TJ. IL-10
675 is a major mediator of sepsis-induced impairment in lung antibacterial host defense. *J
676 Immunol* **162**, 392-399 (1999).

677

678 12. Boomer JS, *et al.* Immunosuppression in patients who die of sepsis and multiple organ failure.
679 *JAMA* **306**, 2594-2605 (2011).

680

681 13. Roquilly A, *et al.* Alveolar macrophages are epigenetically altered after inflammation, leading
682 to long-term lung immunoparalysis. *Nat Immunol* **21**, 636-648 (2020).

683

684 14. Cross D, Drury R, Hill J, Pollard AJ. Epigenetics in Sepsis: Understanding Its Role in
685 Endothelial Dysfunction, Immunosuppression, and Potential Therapeutics. *Front Immunol* **10**,
686 1363 (2019).

687

688 15. Nascimento DC, *et al.* Role of regulatory T cells in long-term immune dysfunction associated
689 with severe sepsis. *Crit Care Med* **38**, 1718-1725 (2010).

690

691 16. Cavassani KA, *et al.* The post sepsis-induced expansion and enhanced function of regulatory
692 T cells create an environment to potentiate tumor growth. *Blood* **115**, 4403-4411 (2010).

693

694 17. Nascimento DC, *et al.* IL-33 contributes to sepsis-induced long-term immunosuppression by
695 expanding the regulatory T cell population. *Nat Commun* **8**, 14919 (2017).

696

697 18. Nascimento DC, *et al.* Sepsis expands a CD39(+) plasmablast population that promotes
698 immunosuppression via adenosine-mediated inhibition of macrophage antimicrobial activity.
699 *Immunity* **54**, 2024-2041 e2028 (2021).

700

701 19. Venet F, *et al.* Increased circulating regulatory T cells (CD4(+)CD25 (+)CD127 (-))
702 contribute to lymphocyte anergy in septic shock patients. *Intensive Care Med* **35**, 678-686
703 (2009).

704

705 20. Liew FY, Pitman NI, McInnes IB. Disease-associated functions of IL-33: the new kid in the
706 IL-1 family. *Nat Rev Immunol* **10**, 103-110 (2010).

707

708 21. Smith DE. IL-33: a tissue derived cytokine pathway involved in allergic inflammation and
709 asthma. *Clin Exp Allergy* **40**, 200-208 (2010).

710

711 22. Liew FY. IL-33: a Janus cytokine. *Ann Rheum Dis* **71 Suppl 2**, i101-104 (2012).

712

713 23. Heyen L, *et al.* Lung epithelium is the major source of IL-33 and is regulated by IL-33-
714 dependent and IL-33-independent mechanisms in pulmonary cryptococcosis. *Pathog Dis* **74**,
715 (2016).

716

717 24. Byers DE, *et al.* Long-term IL-33-producing epithelial progenitor cells in chronic obstructive
718 lung disease. *J Clin Invest* **123**, 3967-3982 (2013).

719

720 25. Mirchandani AS, Salmond RJ, Liew FY. Interleukin-33 and the function of innate lymphoid
721 cells. *Trends Immunol* **33**, 389-396 (2012).

722

723 26. Schmitz J, *et al.* IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related
724 protein ST2 and induces T helper type 2-associated cytokines. *Immunity* **23**, 479-490 (2005).

725

726 27. Kurowska-Stolarska M, *et al.* IL-33 amplifies the polarization of alternatively activated
727 macrophages that contribute to airway inflammation. *J Immunol* **183**, 6469-6477 (2009).

728

729 28. Levy MM, *et al.* 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions
730 Conference. *Crit Care Med* **31**, 1250-1256 (2003).

731

732 29. Leteurtre S, *et al.* Validation of the paediatric logistic organ dysfunction (PELOD) score:
733 prospective, observational, multicentre study. *Lancet* **362**, 192-197 (2003).

734

735 30. Pollack MM, Ruttimann UE, Getson PR. Pediatric risk of mortality (PRISM) score. *Crit Care Med* **16**, 1110-1116 (1988).

737

738 31. Clark JD, Gebhart GF, Gonder JC, Keeling ME, Kohn DF. Special Report: The 1996 Guide
739 for the Care and Use of Laboratory Animals. *ILAR J* **38**, 41-48 (1997).

740

741 32. Godshall CJ, Scott MJ, Peyton JC, Gardner SA, Cheadle WG. Genetic background
742 determines susceptibility during murine septic peritonitis. *J Surg Res* **102**, 45-49 (2002).

743

744 33. Colon DF, *et al.* Neutrophil extracellular traps (NETs) exacerbate severity of infant sepsis.
745 *Crit Care* **23**, 113 (2019).

746

747 34. Pena C, *et al.* Carbapenem-resistant *Pseudomonas aeruginosa*: factors influencing multidrug-
748 resistant acquisition in non-critically ill patients. *Eur J Clin Microbiol Infect Dis* **28**, 519-522
749 (2009).

750

751 35. Juan C, Pena C, Oliver A. Host and Pathogen Biomarkers for Severe *Pseudomonas*
752 *aeruginosa* Infections. *J Infect Dis* **215**, S44-S51 (2017).

753

754 36. Mota JM, *et al.* Post-Sepsis State Induces Tumor-Associated Macrophage Accumulation
755 through CXCR4/CXCL12 and Favors Tumor Progression in Mice. *Cancer Immunol Res* **4**,
756 312-322 (2016).

757

758 37. Benjamim CF, Hogaboam CM, Lukacs NW, Kunkel SL. Septic mice are susceptible to
759 pulmonary aspergillosis. *Am J Pathol* **163**, 2605-2617 (2003).

760

761 38. Roquilly A, *et al.* Local Modulation of Antigen-Presenting Cell Development after Resolution
762 of Pneumonia Induces Long-Term Susceptibility to Secondary Infections. *Immunity* **47**, 135-
763 147 e135 (2017).

764

765 39. Song A, Song J, Tang X, Croft M. Cooperation between CD4 and CD8 T cells for anti-tumor
766 activity is enhanced by OX40 signals. *Eur J Immunol* **37**, 1224-1232 (2007).

767

768 40. Beatty G, Paterson Y. IFN-gamma-dependent inhibition of tumor angiogenesis by tumor-
769 infiltrating CD4+ T cells requires tumor responsiveness to IFN-gamma. *J Immunol* **166**,
770 2276-2282 (2001).

771

772 41. Casares N, *et al.* CD4+/CD25+ regulatory cells inhibit activation of tumor-primed CD4+ T
773 cells with IFN-gamma-dependent antiangiogenic activity, as well as long-lasting tumor
774 immunity elicited by peptide vaccination. *J Immunol* **171**, 5931-5939 (2003).

775

776 42. Kim R, Emi M, Tanabe K, Arihiro K. Tumor-driven evolution of immunosuppressive
777 networks during malignant progression. *Cancer Res* **66**, 5527-5536 (2006).

778

779 43. Tone Y, Furuuchi K, Kojima Y, Tykocinski ML, Greene MI, Tone M. Smad3 and NFAT
780 cooperate to induce Foxp3 expression through its enhancer. *Nat Immunol* **9**, 194-202 (2008).

781

782 44. Ogawa C, Tone Y, Tsuda M, Peter C, Waldmann H, Tone M. TGF-beta-mediated Foxp3 gene
783 expression is cooperatively regulated by Stat5, Creb, and AP-1 through CNS2. *J Immunol*
784 **192**, 475-483 (2014).

785

786 45. Cao Q, *et al.* IL-10/TGF-beta-modified macrophages induce regulatory T cells and protect
787 against adriamycin nephrosis. *J Am Soc Nephrol* **21**, 933-942 (2010).

788

789 46. Watanabe N, Suzuki Y, Inokuchi S, Inoue S. Sepsis induces incomplete M2 phenotype
790 polarization in peritoneal exudate cells in mice. *J Intensive Care* **4**, 6 (2016).

791

792 47. Sun W, *et al.* A positive-feedback loop between tumour infiltrating activated Treg cells and
793 type 2-skewed macrophages is essential for progression of laryngeal squamous cell
794 carcinoma. *Br J Cancer* **117**, 1631-1643 (2017).

795

796 48. Spadaro O, *et al.* IGF1 Shapes Macrophage Activation in Response to Immunometabolic
797 Challenge. *Cell Rep* **19**, 225-234 (2017).

798

799 49. Ishida T, Ueda R. CCR4 as a novel molecular target for immunotherapy of cancer. *Cancer Sci*
800 **97**, 1139-1146 (2006).

801

802 50. Cayrol C, Girard JP. Interleukin-33 (IL-33): A nuclear cytokine from the IL-1 family.
803 *Immunological reviews* **281**, 154-168 (2018).

804

805 51. Polumuri SK, *et al.* Transcriptional regulation of murine IL-33 by TLR and non-TLR
806 agonists. *J Immunol* **189**, 50-60 (2012).

807

808 52. Zhang F, Tossberg JT, Spurlock CF, Yao SY, Aune TM, Sriram S. Expression of IL-33 and
809 its epigenetic regulation in Multiple Sclerosis. *Ann Clin Transl Neurol* **1**, 307-318 (2014).

810

811 53. Larouche M, *et al.* Methylation profiles of IL33 and CCL26 in bronchial epithelial cells are
812 associated with asthma. *Epigenomics* **10**, 1555-1568 (2018).

813

814

815

816

817

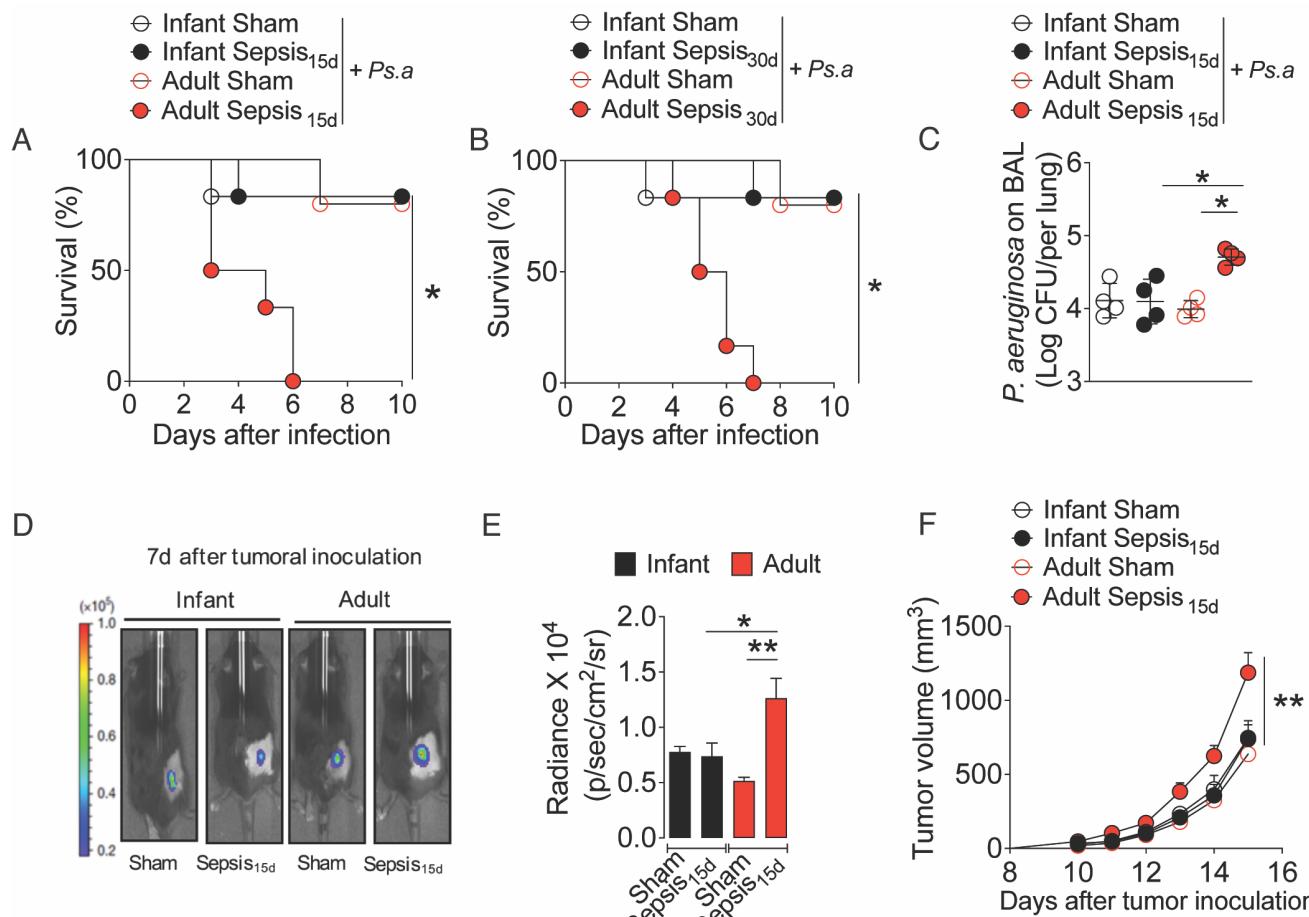
818

819

820

821

822


823

824

825

826 **Figures**

827 **Figure 1**

828

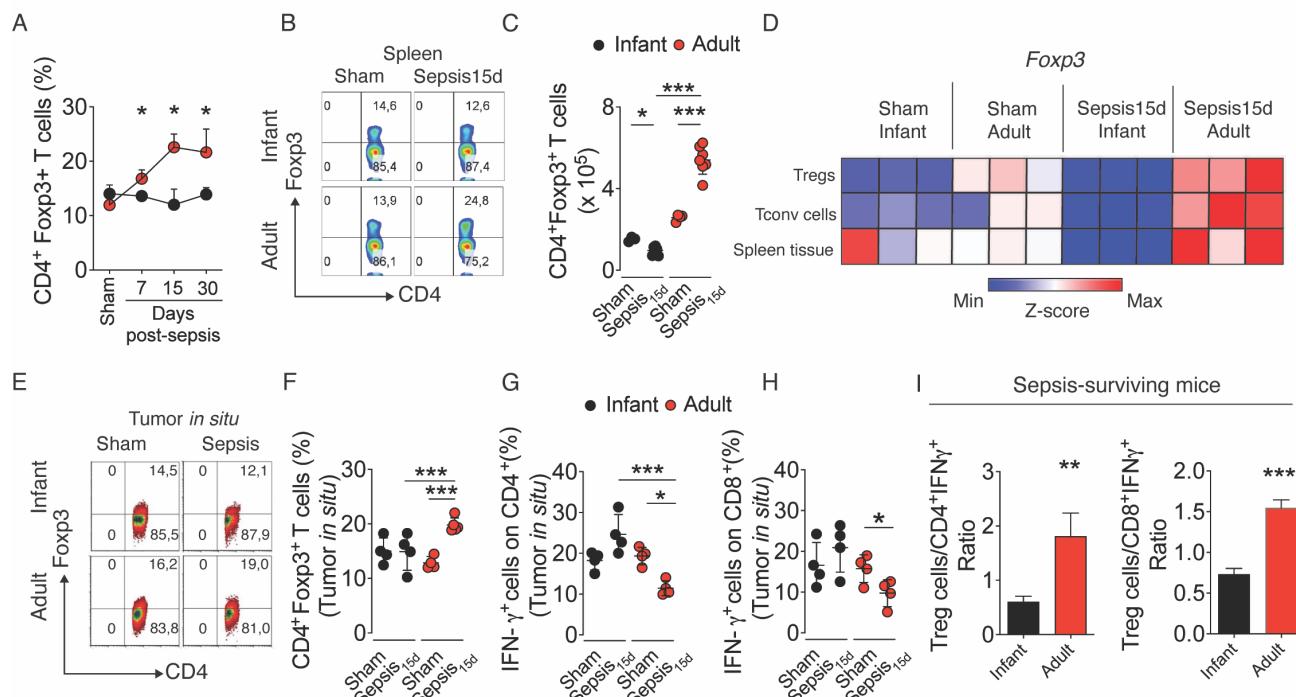
829

830

831

832

833


834

835

836

837

838 Figure 2

839

840

841

842

843

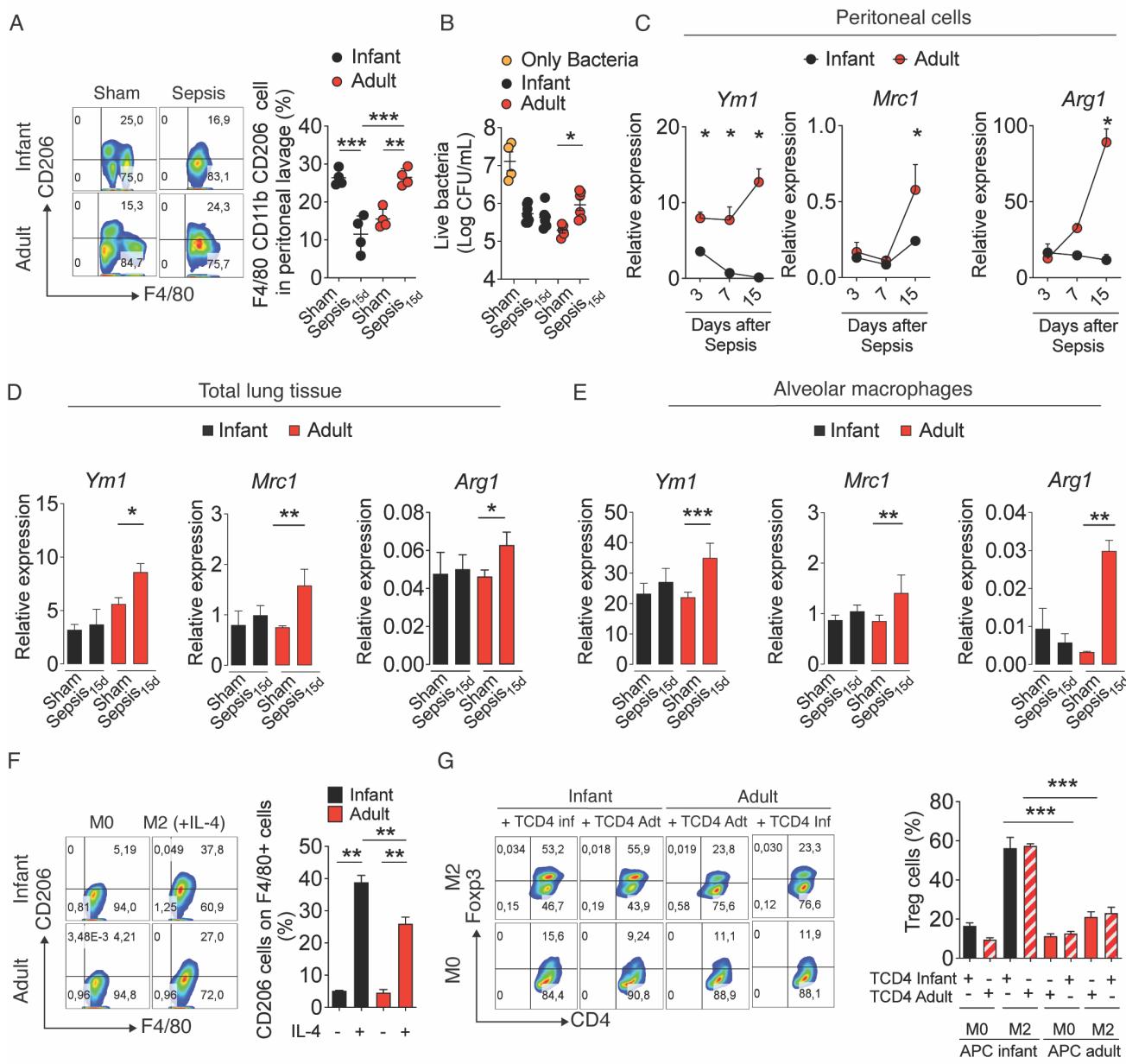
844

845

846

847

848


849

850

851

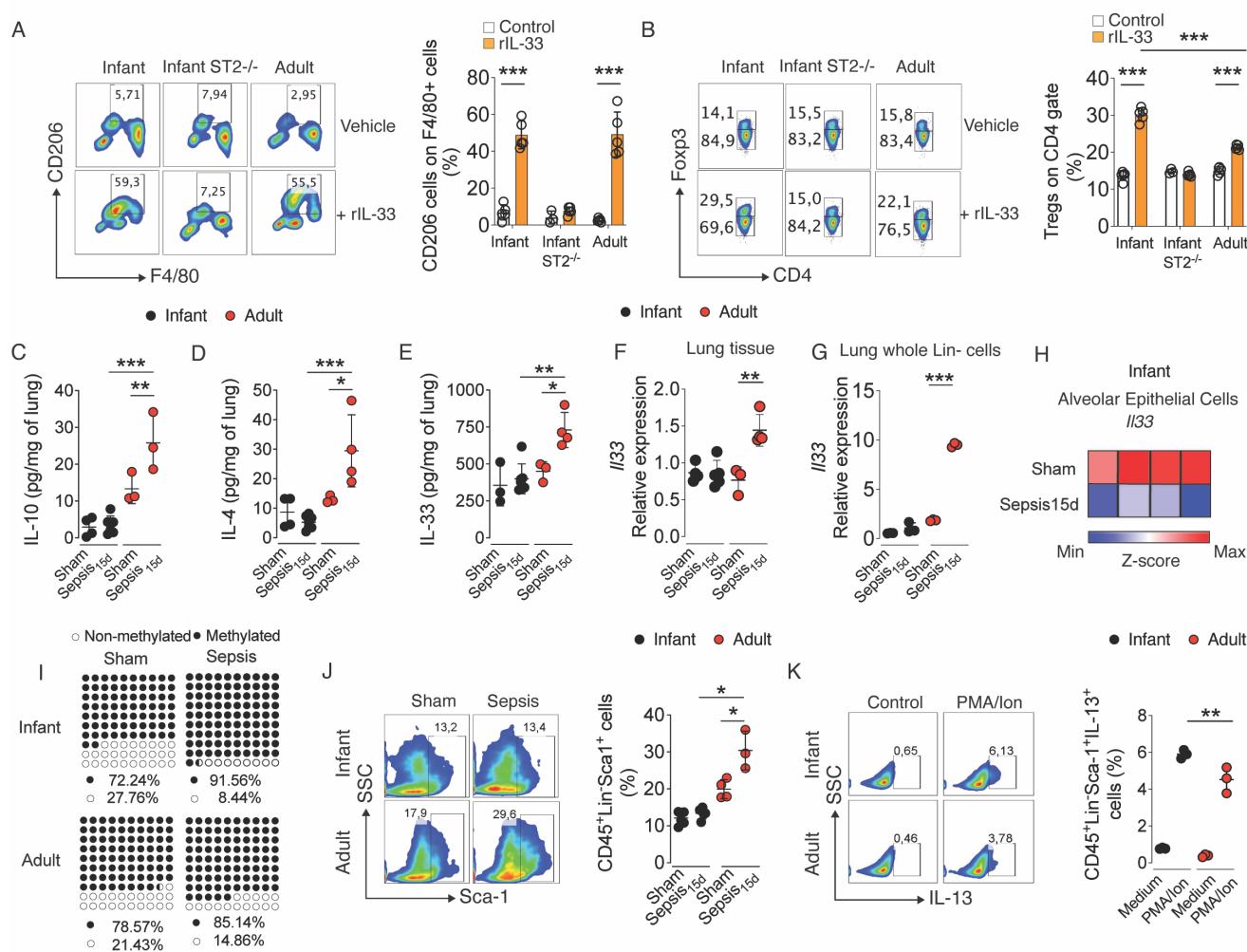
852

853 Figure 3

854

855

856


857

858

859

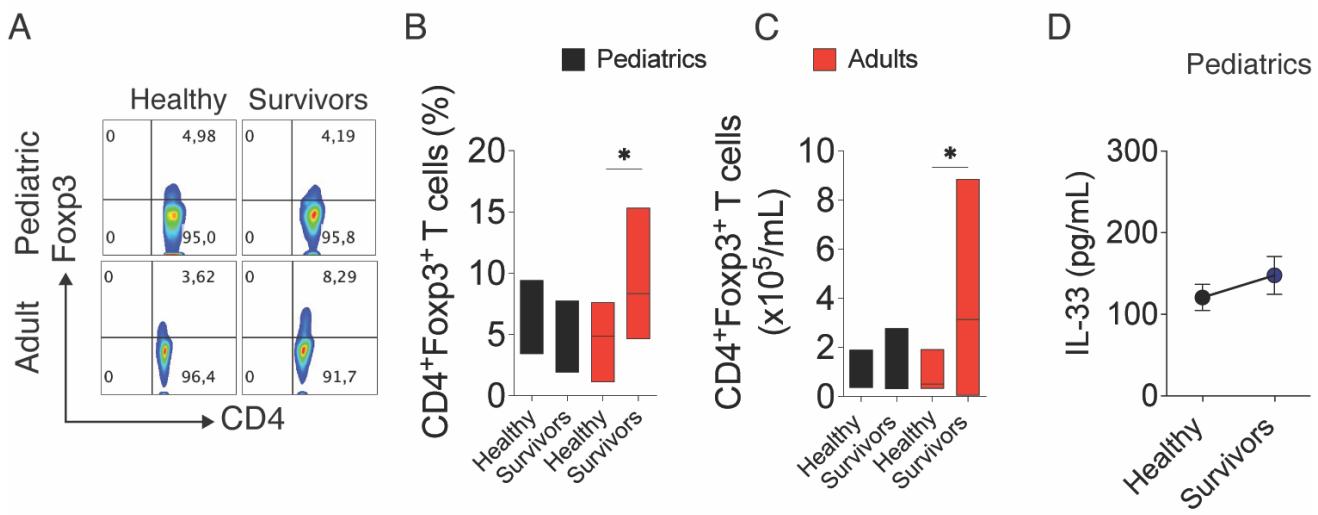
860

861 Figure 4

862

863

864


865

866

867

868

869 Figure 5

870

871

872

873

874

875

876

877

878

879

880

881