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Abstract

Pleiotropic SNPs are associated with multiple traits. Such SNPs can help pinpoint biological

processes with an effect on multiple traits or point to a shared etiology between traits. We

present PolarMorphism, a new method for the identification of pleiotropic SNPs from GWAS

summary statistics. PolarMorphism can be readily applied to more than two traits or whole

trait domains. PolarMorphism makes use of the fact that trait-specific SNP effect sizes can

be seen as Cartesian coordinates and can thus be converted to polar coordinates r (distance

from the origin) and theta (angle with the Cartesian x-axis). r describes the overall effect of a

SNP, while theta describes the extent to which a SNP is shared. r and theta are used to

determine the significance of SNP sharedness, resulting in a p-value per SNP that can be

used for further analysis. We apply PolarMorphism to a large collection of publicly available

GWAS summary statistics enabling the construction of a pleiotropy network that shows the

extent to which traits share SNPs. This network shows how PolarMorphism can be used to

gain insight into relationships between traits and trait domains. Furthermore, pathway

analysis of the newly discovered pleiotropic SNPs demonstrates that analysis of more than

two traits simultaneously yields more biologically relevant results than the combined results

of pairwise analysis of the same traits. Finally, we show that PolarMorphism is more efficient

and more powerful than previously published methods.
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Introduction

Genetic variation in the genome partly explains phenotypic differences between individuals.

Genome-wide association studies (GWAS) aim to identify the specific genetic variants

(usually single nucleotide polymorphisms, SNPs) that are associated with phenotypic

variation. Over the past decades, GWAS have led to the discovery of thousands of SNP-trait

associations [1], [2].

From these discoveries we know that some SNPs can influence multiple traits; i.e. they are

pleiotropic [3]. Pleiotropy is widespread in the human genome. An association analysis

between millions of SNPs and hundreds of traits found that almost ten percent of SNPs were

associated with more than one trait [4]. Moreover, pleiotropic SNPs have been identified for

many trait combinations. In many cases, the traits are known to be biologically related;

pleiotropic SNPs have been identified for several psychiatric phenotypes [5] and different

types of cancers [6]. However, pleiotropic SNPs have also been described for seemingly

unrelated diseases; for instance for prostate cancer and type 2 diabetes [7], schizophrenia

and Human Immunodeficiency Virus (HIV) infection [8], and Alzheimer’s disease and lung

cancer [9]. This could mean that those SNPs are involved in a biological process with a more

general function. It could also mean that the studied traits are more biologically related than

was previously known and might have a common etiology. Identifying more pleiotropic SNPs

can thus transform our current classification of diseases [10].

Pleiotropy analysis can also be useful to identify pleiotropic SNPs in druggable genetic

targets, which can help predict adverse treatment effects [10] as well as identify diseases

that could be treated with existing drugs [11]. Moreover, pleiotropy can be leveraged for more

accurate risk prediction [12]. Finally, methods like Mendelian Randomization (MR) rely on the

assumption that there is no direct effect of the SNPs used on both exposure and outcome

[13]. Since pleiotropy methods can be used to indicate whether some SNPs are pleiotropic,

they can be used to filter these SNPs.

It should be noted that analysis of similarity between traits can also be done using genetic

correlation, but this answers a different question. Genetic correlation gives the overall -

genome-wide - correlation of effect sizes. Pleiotropic SNPs have a shared effect regardless

of the genetic correlation and may tag a specific biological pathway or process rather than

describing a general relationship between two traits. If traits are correlated and often
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co-occur in individuals, then any SNP that affects trait X will also be associated with trait Y,

even if it does not directly affect trait Y. These SNPs are not actually pleiotropic because they

are only directly associated with one trait. For this reason, to identify pleiotropic SNPs it is

not sufficient to take the intersection of SNPs that are associated with both traits. Even if the

traits are uncorrelated, intersecting SNP-sets is not an optimal approach; both GWASs need

to be sufficiently powered to discover the pleiotropic SNP. Moreover, SNPs that are found

with this approach lack an important feature: we know that they are shared but we do not

know how shared they are and if this might be statistically significant.

Recently, a few methods that aim to identify pleiotropic SNPs have been described. HOPS

[14] and PLEIO [15] both identify a SNP as shared if it is associated with at least one of the

traits of interest. Problematically, SNPs with an effect on only one trait will thus also be

identified and cannot readily be differentiated from truly pleiotropic SNPs. Two other

methods, PLACO [7] and PRIMO [16], identify a SNP as shared if it is associated with all traits

of interest. PLACO can only be used for identification of SNPs that are shared by two traits.

Moreover, we will show that PLACO has a high computational burden. PRIMO, on the other

hand, only identifies a subset of the pleiotropic SNPs that PLACO finds.

Here, we present PolarMorphism, a new approach to identify pleiotropic SNPs that is more

efficient, identifies the same number of pleiotropic SNPs as PLACO, but can be applied to

more than two traits. This enables the identification of SNPs that have an effect on

numerous traits, and possibly play a role in more general biological processes.

PolarMorphism is based on a transformation of the trait-specific effect sizes x and y to polar

coordinates r (radius, the distance from the origin) and 𝜽 (theta, the angle with the x-axis). As

a result, r is a measure of overall effect and 𝜽 a measure of sharedness, which can be used

for downstream significance analysis and SNP ranking.

PolarMorphism enables construction of a trait network showing which traits share SNPs.

From SNP-specific networks we observe that most SNPs are associated with traits within

one trait domain. We find one SNP - rs495828 in the ABO locus - that is associated with traits

across 7 trait domains. We show that analysis of more than two traits is more powerful than

the intersection of pairwise results of those same traits. We provide PolarMorphism as an R

package on Github under the MIT license:

https://github.com/UMCUGenetics/PolarMorphism.

3

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 14, 2022. ; https://doi.org/10.1101/2022.01.14.476302doi: bioRxiv preprint 

https://paperpile.com/c/kggNEW/KPgW
https://paperpile.com/c/kggNEW/RWQy
https://paperpile.com/c/kggNEW/q3dF
https://paperpile.com/c/kggNEW/sf5m
https://github.com/UMCUGenetics/PolarMorphism
https://doi.org/10.1101/2022.01.14.476302
http://creativecommons.org/licenses/by/4.0/


Results

Defining pleiotropy

Pleiotropy can be identified in different ways ([3], [17] and Figure 1). Horizontal pleiotropic

SNPs directly affect multiple traits. Vertical (or mediated) pleiotropic SNPs directly affect

one of the traits, but dependence between the traits leads to an association with both traits.

The difference between horizontal and vertical pleiotropy is particularly important in the

context of Mendelian randomization (MR). With MR, the causal effect of an exposure (e.g.

smoking) on an outcome (e.g. lung cancer) can be determined. Genetic variants that are

associated with the exposure are used as so-called ‘instrumental variables’. One important

assumption is that these variants only have an effect on the outcome through the exposure.

In other words, that they are vertically pleiotropic and not horizontally. Horizontally

pleiotropic SNPs - which have a direct effect on both smoking and lung cancer - violate this

assumption and should therefore not be used as instrumental variables in MR [18]. The final

pleiotropy type is spurious pleiotropy, which can arise from bias in measuring association

[19]. For example, one marker SNP can be associated with two or more traits due to that

marker being in Linkage Disequilibrium (LD) with another SNP that directly affects one of the

traits and yet another SNP that directly affects another trait. The marker SNP seems to be

pleiotropic, while in reality neither the marker SNP nor the nearby linked SNPs are pleiotropic.

Determining whether the same SNP is likely causal for both traits is only possible with

colocalization approaches [20]. Another source of spurious pleiotropy is misclassification of

traits. If certain symptoms are shared by two diagnoses, individuals with these overlapping

symptoms can be given either diagnosis. As a result, the genetic associations for these

diagnoses will be highly correlated. Finally, shared controls and ascertainment bias

(participant recruitment in a specific disease field) can also cause spurious pleiotropy [21].
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Figure 1. Visualization of horizontal, vertical and spurious pleiotropy, respectively.  A
horizontally pleiotropic SNP has an effect on all traits under consideration. A vertically
pleiotropic SNP has an effect on only one of the traits, but because the traits are correlated it
is also associated with the other trait. A SNP can seem pleiotropic because it is in linkage
disequilibrium with two SNPs that each individually have an effect on a trait. Misclassification
of individuals can also give rise to a seemingly pleiotropic effect.

Overview of PolarMorphism

We aim to identify pleiotropic SNPs from GWAS summary statistics using an approach that

can be routinely applied to combinations of two or more traits. After obtaining summary

statistics with effect size beta and standard error SE, we calculate z-scores (beta / SE) per

SNP. PolarMorphism can be applied on any number of traits, but here we explain the

application to two traits. Analyzing more than two traits requires a slightly different approach

(see the methods for a full description) but leverages the same principles.

Our aim is to identify horizontally pleiotropic SNPs. Therefore we first perform a

decorrelating transform to attenuate vertical pleiotropy resulting from genetic correlation.

Given summary statistics for trait x and y, we calculate a covariance matrix, and use this to

apply decorrelation or whitening (see methods for details) yielding decorrelated summary

statistic vectors and .  Next the trait-specific vectors and are used to calculate polar𝑥
^
→

𝑦
^
→

𝑥
^
→

𝑦
^
→

coordinates r (the distance from the origin) and 𝜽 (the angle with the x-axis, ranging from 0 to

). For SNPs that are specific to trait X, 𝜽 is close to 0 or . For SNPs that are specific to2π π

trait Y, 𝜽 is close to or . For SNPs that are shared, 𝜽 is approximately for 1
2 π 1 1

2 π 1
4 π 𝑜𝑟 1 1

4 π

concordant direction of effect and for opposite direction of effect. Each3
4 π 𝑜𝑟 1 3

4 π

quadrant of the x,y plot only differs in direction of effect in the original GWAS. To simplify

further analysis we use the fourfold transform of θ (𝜽trans), which folds the quadrants on top

of each other (equivalent to using the absolute values of the z-scores) and then stretches the

angles so they still describe a full circle (Figure 2).

To assess significance of sharedness, we separately test the distance r and angle 𝜽. Under a

null hypothesis of no overall effect, r is the square root of a sum of squared normally

distributed variables with mean 0. We thus use a central chi distribution to calculate p-values

for r. Under a null hypothesis of trait-specific effect, 𝜽trans is equal to 0. To calculate p-values

for 𝜽trans we use a von Mises distribution with concentration parameter . We show thatκ κ
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depends on r (see methods). Estimates of from simulations under the null hypothesis areκ

included in the R package. These are used to establish one p-value per SNP.

Figure 2. Overview of the method for 2 traits. Z-scores for each trait are plotted on

each axis and the data is decorrelated. Cartesian coordinates are transformed to polar

coordinates. The absolute values of the z-scores are calculated and the angle is multiplied by

4. After subsetting on SNPs with a significant distance, we calculate p-values for the angle.
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Domain name trait abbreviation trait name
anthropomorphic BMI body mass index

Height height
cancers PrCa prostate cancer

BC breast cancer
cardiac traits AF atrial fibrillation

HF heart failure
NICM non-ischemic cardiomyopathy

cardiovascular CAC coronary artery calcification
CAD coronary artery disease
cIMT carotid intima-media thickness
Plaque presence of carotid plaque

immune IBD irritable bowel disease
Asthma asthma

lipids HDL high-density lipoprotein
LDL low-density lipoprotein
TC triglycerides
TG total cholesterol

neurodegenerative disease AD Alzheimer's disease
ALS Amyotrophic lateral sclerosis
PD Parkinson's disease

pressures DBP Diastolic blood pressure
SBP Systolic blood pressure
PP Pulse pressure

psychiatric / psychological ASD Autism spectrum disorder
BIP bipolar disorder
DS depressive symptoms
EA educational attainment
IQ intelligence quotient
MDD major depressive disorder
Neuroticism neuroticism
SWB subjective well being
Insomnia insomnia

smoking EvrSmk ever smoker
FrmrSmk former smoker
logOnset log of age at onset of smoking
CpD cigarettes per day

stroke AS any stroke (hemorrhagic or ischemic)
IS ischemic stroke
CES cardio-embolic stroke
LAS large artery stroke
SVS small vessel stroke

Table 1. Trait domains and trait abbreviation as used in the figures.
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Figure 3. Trait network based on pleiotropic SNPs. The thickness of the lines (network edges)

indicates how many loci are shared between two traits (network nodes). Colored by disease

domain.

Inferring relationships between traits from pleiotropic SNPs

We applied PolarMorphism to all pairwise combinations of 41 traits from different trait

domains (table 1). The resulting pleiotropy network is shown in Figure 3. Herein, traits are

nodes and the edge weights indicate the number of pleiotropic SNPs discovered by

PolarMorphism. The contribution of each SNP to the edge weights is weighted by the inverse

of the total number of traits it is associated with, in order to account for the effect that SNPs

affecting many traits probably tag a biological process with a general function. Sharing such

a SNP is less meaningful than sharing a SNP with an effect on only some traits.

The resulting pleiotropy network is densely connected (512 out of 820 possible edges),

supporting earlier descriptions of widely occurring pleiotropy among traits [4], [21] The lipid

domain (HDL, LDL, TG and TC) and blood pressure domain (DPB, SBP and PP) each form a

fully connected subgraph. SBP has the highest number of edges (degree), sharing SNPs with

37 of the 41 traits. ALS, which shares SNPs with 5 traits, has the lowest degree. Global

analysis of the pleiotropy network thus readily reveals general characteristics of traits and

trait domains.
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Analyzing the pleiotropy network in more detail, we find that most SNPs are associated with

traits within one or across two trait domains (51% and 43%, respectively). We observe one

SNP that is associated with traits across 7 trait domains: rs495828, a SNP in the ABO gene,

which is ubiquitously expressed across many tissues and cell types [22]. For each trait

domain, we determine how many SNPs only have associations within that domain (we call

these single domain SNPs), and calculate the percentage of the total number of SNPs that

were identified for that domain. We find that the psychiatric traits have the highest

percentage of single domain SNPs; one third of all SNPs that are shared with a psychiatric

trait are only associated with psychiatric traits. The smoking traits have the lowest

percentage of single domain SNPs, suggesting that most smoking-associated variants tag

general biological processes rather than smoking-specific processes.

A comparison with genetic correlation

​​Genetic correlation ( ) is the correlation of SNP effect sizes on two traits [19].ℎ
𝑔
2

Non-biological factors like sample overlap between the two GWAS can inflate the ℎ
𝑔
2

estimate. LDSC [23] or HDL [24] can be used to obtain an estimate that is not biased byℎ
𝑔
2

sample overlap. Genetic correlation leads to overall correlation of effect sizes, also in those

SNPs with no effect on any of the traits. SNPs that do have an effect can influence ℎ
𝑔
2

estimates; if they are very pleiotropic they can inflate , and if they are very trait-specificℎ
𝑔
2

they can deflate . Therefore it is generally recommended to only use the subset of SNPsℎ
𝑔
2

with no effect on any of the traits for estimation. Also note that pleiotropic effectsℎ
𝑔
2

between traits can be present without genetic correlation, as pleiotropy is a SNP -specific

metric and genetic correlation is a genome-wide metric [23].

To assess whether genetic correlation provides the same insight into trait relationships as

pleiotropy, we built a network based on genetic correlation. The resulting network is sparse

(138 out of 780 possible edges) and only partially overlaps with the pleiotropy network.

Figure 4 shows separate subnetworks for edges that exist in both the genetic correlation

network and the pleiotropy network or in only one of the two. In total, 416 trait pairs share at

least one pleiotropic SNP, but are not genetically correlated (figure 4a). This situation can
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arise if there are only a few SNPs that are shared but the rest of the genetic architecture of

the traits is independent. It is also possible that some shared SNPs have the same direction

of effect in both traits while other shared SNPs have an opposite direction of effect, thereby

averaging out . 7 trait pairs are genetically correlated, but do not share any SNPs that areℎ
𝑔
2

horizontally pleiotropic (figure 4b). Each SNP that is associated with one of the traits is more

likely to also be associated with the other, because of the overall [18]. After decorrelation,ℎ
𝑔
2

vertically pleiotropic SNPs will not be identified by PolarMorphism. 96 trait pairs are

genetically correlated and share horizontally pleiotropic SNPs (figure 4c). These are traits

that share a number of vertically pleiotropic SNPs, leading to a higher , as well as someℎ
𝑔
2

horizontally pleiotropic SNPs. Our results seem to indicate that two traits are more likely to

share at least one pleiotropic SNP than they are to be genetically correlated.

Figure 4. a) Edges denote trait pairs that share pleiotropic SNPs but are not genetically

correlated. b) Edges denote trait pairs that are genetically correlated but do not share

pleiotropic SNPs. c) Edges denote trait pairs that are genetically correlated and share

pleiotropic SNPs.
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The stroke domain

Figure 5. Trait network of the IS subtypes and their direct neighbors, based on the

weighted full network as described earlier. Only edges between any of the IS subtypes and any

other trait are drawn; in other words, edges between two nodes shown here that do not include

an IS subtype, are not drawn.

The stroke domain consists of any stroke (AS); its subtype ischemic stroke (IS); and its

subtypes cardioembolic stroke (CES), large artery stroke (LAS) and small vessel stroke

(SVS). The three IS subtypes are generally believed to have different etiologies [25]–[27], and

previous efforts have resulted in tens of subtype-specific associations [28]–[31]. In line with

this, our analysis does not reveal any shared SNPs. It should be noted that shared SNPs have

been described before for LAS and SVS and for LAS and CES [28]. However, SNPs at these

loci were low-confidence and therefore not included in our analysis (see methods for

details).

Given the lack of shared SNPs among the IS subtypes, we investigated which other traits

share SNPs with each of the IS subtypes. To that end we looked at the subnetwork

composed of the IS subtypes and their direct neighbors (figure 5). Our analysis reveals that

six traits (CAD, DBP, Plaque, PP, SBP, TC) share SNPs with all IS subtypes. This indicates that

all ischemic stroke subtypes are associated with biological pathways with a possible effect

on blood pressure and lipids. CES shares most pleiotropic SNPs with atrial fibrillation (AF),

which is believed to be its main cause [26]. LAS, which is thought to arise from
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atherosclerotic plaques in the carotid arteries that rupture or block blood flow [31], shares

most SNPs with cIMT - a proxy for the extent of carotid atherosclerosis. SVS, which is

thought to have a cardiovascular origin like the other IS subtypes [32], shares most SNPs

with CAD. Notably, it also shares many SNPs with Alzheimer’s and Parkinson’s disease. This

might indicate that many of the SNPs that are associated with risk of small vessel stroke

also influence risk of neurodegenerative disease. Note that the edges LAS-HDL, SVS-AD,

SVS-PD and SVS-Plaque were only found in the pleiotropy network and not in the genetic

correlation network. This indicates that pleiotropic SNPs harbor information that is

complementary to genome-wide correlation measures. Furthermore, zooming in on one trait

domain shows how PolarMorphism can be employed to gain more detailed insight in trait

relationships than the general patterns that can be gathered from the complete network.

Joint analysis of more than two traits identifies more

pleiotropic SNPs than pairwise analyses of the same traits

PolarMorphism can be used to find SNPs that are shared by any number of traits. A SNP with

a small effect on each trait might not be identified in univariate or even pairwise analysis, but

could be if more traits are included. We therefore investigated whether analysis of three or

more traits is indeed more powerful than the combined results from pairwise analyses of

those same traits. Pairwise analyses of the lipid domain (HDL, LDL, TC, TG) identifies 186

shared loci. Analysis of all four traits together identifies 1029 shared loci. 180 loci are found

by both approaches.

To explore whether the increased number of loci is biologically relevant, we perform gene set

enrichment analysis in DEPICT [33] on the significant loci from the pairwise analyses and the

significant loci from the joint analysis. In order to get the relevant genes for each locus, we

perform clumping using DEPICT’s default settings. Hence the number of DEPICT loci differs

from the loci that we identified (108 pairwise loci, 496 joint loci, see tables S4 and S6). The

pairwise results are enriched for 12 gene sets (table S5) whereas the joint results are

enriched for 85 gene sets (table S7). Moreover, the loci revealed by the joint analysis result in

enrichments that are more significant: 85 of the 95 gene sets that are significant in either

analysis are more significant in the joint analysis, and 2 of the 2 gene sets that are significant

in both analyses are more significant in the joint analysis. Moreover, considering the 10

genes with the highest z-score for membership of these gene sets, we find that the genes

implied by the joint analysis have a higher likelihood of gene set membership (see the
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DEPICT paper for a detailed explanation [33]), thus resulting in more coherent gene sets. For

instance, the joint analysis identifies the LDLR (LDL receptor) gene, which has a high

membership likelihood for the REACTOME “metabolism of lipids and lipoproteins” gene set.

The pairwise analysis does not identify LDLR, making this gene set less enriched. These

results show that joint pleiotropy analysis of multiple traits yields more biologically relevant

insights compared to pairwise analysis of those same traits.

Runtime increases marginally with the number of traits

analyzed

To assess how the runtime scales with the number of traits analyzed, we picked all traits that

were affected by the most pleiotropic SNP, rs495828: AS, BC, CAD, CES, DBP, HDL, HF , IS,

LDL, T2D, TAGC, and TC. In this order, we picked the first p traits and timed PolarMorphism

(see Figure 5). Runtime increases slightly with larger p, but the effect is small. There is a

large difference between p = 2 and p > 2 because we use different approaches if p > 2 (see

methods).

Figure 5. Runtime scales with the number of traits p. a) p ranges from 3 to 12. The

slope of the regression line is 0.75 (se = 0.13). b) p ranges from 2 to 12. The large difference

between 2 and more than two traits is due to the different methodology that we use if p > 2,

see the methods for details.

Comparison with other methods

To compare PolarMorphism to existing methods, we ran: PolarMorphism, intersection,

PLACO, and PRIMO on a selection of traits (IS and myocardial infarction). We compared the
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individual SNPs and loci that were identified as pleiotropic by each method. Four loci are

found by all methods. Intersection does not identify more than those four loci. PLACO and

PolarMorphism both find 21 loci (19 of which are identical), PRIMO finds 13 loci that were

also identified by PLACO and PolarMorphism. PLACO and PolarMorphism use a

fundamentally different approach to identify pleiotropy: whereas PLACO tests if the effect for

both traits is not equal to zero, PolarMorphism first tests whether the overall effect

(distance) is different than expected and then tests the sharedness of a SNP.

We timed each method from cleaned input data (already in memory, timing done in R) to

results. The number of pleiotropic loci that were found by each method and the speed of

generating results (in number of input SNPs per second) are provided in table 2. These data

show that PLACO does not identify more loci than PolarMorphism and is slower.

Max p Decorrelation? # of pleiotropic loci found
speed (1k
SNPs/second)

PolarMorphism - Yes 21 63

PLACO 2 Yes 21 0.61

Primo - No 13 86

HOPS - Yes - -

PLEIO - No - -

Table 2. Comparison of methods. HOPS and PLEIO were not run because they use a

pleiotropy definition that includes single-trait SNPs.

Discussion

We have developed a new method that identifies pleiotropic SNPs with an effect on multiple

traits. PolarMorphism can be used on combinations of two or more traits. It uses GWAS

summary statistics and corrects for correlation in effect sizes arising from genetic

correlation or potential sample overlap. The potential applications of PolarMorphism include

a) identifying SNPs that are shared between traits within a trait domain to learn more about

the domain-wide biological processes, b) identifying SNPs that are shared among a diverse

set of traits to find general biological processes and c) using the identified SNPs to inform

new trait ontologies. As an example, we apply PolarMorphism to a set of traits from different

domains.
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The network analyses indicate that there are no trait domains that only share SNPs within

the domain. We observe that most SNPs are associated with traits within one or across two

trait domains. We zoomed in on the stroke domain, which has very little domain-specific

SNPs. This may mean that the stroke traits are associated with general SNPs or that the

stroke traits do not share many biological pathways. Each ischemic stroke subtype shares

more SNPs with non-stroke traits than with the other ischemic stroke subtypes. Note that

these networks are heavily influenced by the choice of included traits. Conclusions drawn

about the networks in this study are therefore not necessarily general, as each trait could

share SNPs with a number of traits that were not included.

We compared PolarMorphism with similar methods. PolarMorphism identifies more

pleiotropic SNPs than the standard intersection method and than PRIMO. PLACO identifies

the same number of pleiotropic loci as PolarMorphism. However, PolarMorphism finished

analysis of 1 million SNPs in less than 20 seconds (compared to >25 minutes for PLACO),

making analysis of many trait combinations feasible. Furthermore, PLACO can only be used

to analyze two traits together while PolarMorphism can analyze a theoretically unlimited

number of traits. A five-fold increase in the number of identified pleiotropic loci for the lipid

domain indicates that analyzing more than two traits is much more powerful than combined

results from the respective pairwise analyses.

Methods

PolarMorphism for two traits

PolarMorphism works on uncorrelated, standardized data. zx and zy are vectors of length m

containing the z-scores of SNPs 1 to m for trait x and trait y, respectively. We calculate polar

coordinates r and θ: r is the distance from the origin, and θ is the angle of the vector from the

origin to the point (zx, zy). and .𝑟 =  𝑧
𝑥

2 + 𝑧
𝑦

2 θ = 𝑡𝑎𝑛−1 𝑦
𝑥

We first test whether r comes from a central chi distribution with degrees of freedom equal

to the number of traits p. The chi distribution describes the distribution of the square root of

the sum of squared normally distributed variables. The distribution of p-values from this test

is used to calculate q-values, which are FDR-corrected p-values [34]. For all SNPs that have

an effect, we want to know whether that effect is shared. We perform a four-fold transform

of θ that ‘folds’ all quadrants of the Cartesian plane on top of each other and stretches it to
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make sure the angles can take any value on the circle [35]: . The vonθ
𝑡𝑟𝑎𝑛𝑠

= 4θ 𝑚𝑜𝑑𝑢𝑙𝑜 2π

Mises distribution describes angular data. It takes into account that θ = 0 is equal to θ = 2𝜋.

It has two parameters: θmu is the mean value, and kappa (𝜅) is a concentration parameter

that is similar to the inverse of the variance. θmu is zero under the null hypothesis of

trait-specific effect. See the Supplementary methods for a description of how we obtained

estimates for 𝜅. Using the distribution of the observed r p-values for the distances of all

SNPs, and the fact that p-values follow a uniform distribution under the null hypothesis, the

false discovery rate (FDR) for each SNP can be calculated. This q-value gives the FDR if this

SNP and all SNPs with a lower p-value would be called significant. We keep the SNPs that

show a significant overall effect (r q-value < 0.05) and use the distribution of observed θ

p-values for these SNPs to calculate θ q-values. We filter on θ q-value < 0.05 to obtain SNPs

that are significantly shared (FDR < 0.05).

PolarMorphism for more than two traits

Converting Cartesian to hyperspherical coordinates

The distance of a SNP i in more than two dimensions is a straightforward extension of the

distance in two dimensions:

𝑟
𝑖
 =

𝑗 = 1

𝑝

∑ 𝑧
𝑖,𝑗
2

Where zi,j is the z-score of SNP i for trait j. Describing the orientation of a SNP for p traits

involves calculating the corresponding p-dimensional hyperspherical coordinates. This gives

an additional angle for each added trait. Fortunately, this problem can be simplified. We

define as the vector from the origin of the p-dimensional sphere to an observed SNP, and𝑋
𝑖

→

as the vector from the origin to the expected position of the SNP under the null hypothesisµ
→

of trait-specific effect, along one of the axes. The goal is to determine the angular difference

between and . We choose such that it lies along the axis that is closest to . In other𝑋
𝑖

→
µ
→

µ
→

𝑋
𝑖

→

words, we construct as a vector with zeros for each coordinate except for the coordinateµ
→

with the highest absolute value for the SNP under consideration. We set the length of equalµ
→

to the length of (the distance r), so the only non-zero value of is set to r. The two vectors𝑋
𝑖

→
µ
→

of interest always lie in a 2-dimensional plane, regardless of the number of traits p. The dot

product of the vectors is a scalar and is equal to:
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µ
→

· 𝑋
𝑖

→
 =  𝑟

µ
𝑟

𝑥
𝑐𝑜𝑠(θ)

, therefore

θ = 𝑐𝑜𝑠−1(µ
→

· 𝑋
𝑖

→
 / 𝑟2)

Which can be rewritten as

θ = 𝑐𝑜𝑠−1((
𝑗=1

𝑝

∑ µ
𝑗
𝑥

𝑗
) / (

𝑗=1

𝑝

∑ 𝑥
𝑗
2))

This angle should be normalized so the maximum value is always 𝜋, regardless of p. The

angle is maximal if all coordinates of a SNP have the same value (which we will call x).

Recall that has zeros for all coordinates but one. If is maximal, we can rewrite theµ
→

θ

expression for as:θ

θ(𝑝) = 𝑐𝑜𝑠−1((
𝑗=1

𝑝

∑ µ
𝑗
𝑥 ) / (

𝑗=1

𝑝

∑ 𝑥2)) = 𝑐𝑜𝑠−1(((𝑝 − 1)(0 · 𝑥) +  𝑟 · 𝑥) / 𝑝𝑥2 ) = 𝑐𝑜𝑠−1( 𝑝
𝑝 ) 

The final correction factor with which the angles should be multiplied can then be obtained

by dividing 2𝜋 by the result of this formula.

Testing the significance of r and 𝜃

To test the significance of r, we use the same procedure as for two traits. In this case the

degrees of freedom is equal to the number of traits p. To assign significance levels to the

angle 𝜃, we use the von Mises-Fisher distribution, which is an extension of the von Mises

distribution. The probability density function of the von Mises Fisher distribution is given by:

𝑓 =  𝐶 𝑒𝑥𝑝(κµ
→

· 𝑋
→

)

Where C is a normalization constant, 𝜅 is the concentration parameter, is the unit vector ofµ
→

the expected direction and is the observed unit vector (i.e. the vector of the SNP divided𝑋
→

by its length to get unit length). The inner product can be rewritten as , where θµ
→

· 𝑋
→

𝑐𝑜𝑠(θ)

is the angle between the expected and observed vectors:

𝑓 =  𝐶 𝑒𝑥𝑝(κ 𝑐𝑜𝑠(θ))

Functions to obtain the probability density function and the normalization constant C are

implemented in the vMF package in R [36]. To obtain a cumulative density function the

probability density function needs to be integrated. The definite integral for 𝑒𝑥𝑝(κ 𝑐𝑜𝑠(θ))

can not be defined using elementary functions. However, the exponent has the following

series representation:
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.𝑓 =  𝐶  𝑒𝑥𝑝(κ 𝑐𝑜𝑠(θ)) = 𝐶
𝑗 = 0

∞

∑ (𝑘 𝑐𝑜𝑠(θ))𝑗

𝑗!  

The integral is then equal to:

𝐹 =  𝐶  ∫
𝑗 = 0

∞

∑ (𝑘 𝑐𝑜𝑠(θ))𝑗

𝑗! = 𝐶 
𝑗 = 0

∞

∑ ∫ (𝑘 𝑐𝑜𝑠(θ))𝑗

𝑗!

The term (as a function of the iterator j) does have an indefinite integral:

∫ (𝑘 𝑐𝑜𝑠(θ))𝑗

𝑗! =−
𝑐𝑜𝑡(θ) 𝑎𝑏𝑠(𝑠𝑖𝑛(θ)) (𝑘 𝑐𝑜𝑠(θ))𝑗 ℎ𝑦𝑝𝑒𝑟𝑔𝑒𝑜( 1

2 , 𝑗+1
2 , 𝑗+3

2 , 𝑐𝑜𝑠2(θ))

𝑔𝑎𝑚𝑚𝑎(𝑗+2)

where cot is the cotangent function, hypergeo is the hypergeometric function and gamma is

the gamma function. We implemented the summation so that it stops when the last added

term is smaller than a user-defined value (called ‘tol’ in our R package). We use the hypergeo

package for the hypergeometric function [37]. The values for 𝜅 as a function of p that we

derived for p = 2 still apply here, because θ still describes a two-dimensional angle.

Preprocessing the summary statistics

We used publicly available summary statistics for the 41 traits shown in table 1. Data were

obtained from the sources provided in Supplemental table 2, which also contains  references

to the respective papers they were described in. We aligned reference and alternative allele

across all traits, and filtered using the list of high-confidence SNPs provided with the LDSC

software.[23] We divide effect sizes by their standard error to obtain z-scores. We calculate

the covariance matrix on the subset of SNPs that do not have a large overall effect. To this

end, the covariance is calculated only on SNPs that have a mahalanobis distance smaller

than 5. We use the ZCA-cor whitening method in the ‘whitening’ package in R [38], to

decorrelate the data while ensuring that the x and y components of the transformed z-scores

maximally correlate with the x and y components of the original z-scores.

Inferring relationships between traits from pleiotropic SNPs

For all trait pairs, we ran PolarMorphism and clumped the significant SNPs with Plink, using

the q-values instead of p-values (--clump-kb 5000000, --clump-p1 0.05, --clump-p2 0.05,

--clump-r2 0.2) [39]. We make an adjacency matrix from the number of shared loci per trait

combination and use this to construct a graph using the igraph package in R [40]. We did the

same per SNP to obtain SNP-specific networks. To create domain networks from the trait

networks we draw an edge between domain A and B if an edge exists between any trait of

domain A and any trait of domain B.
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Gene set enrichment analysis in DEPICT

We changed the following settings from the default: association_pvalue_cutoff: 0.05 to

accommodate for the fact that we use q-values instead of p-values. We performed gene set

enrichment using the default gene sets provided by the DEPICT authors, but only considered

gene sets from gene ontology [41], REACTOME [42], KEGG[43] and the PPI networks as

defined by the DEPICT authors using the InWeb database [44] for further analysis.

Inferring relationships between traits from genetic correlation

To infer relationships between traits from genetic correlation, we ran LDSC[23] using the

GenomicSEM [45] package in R. We calculated p-values from the correlation coefficients and

their standard errors using the pnorm function in R, and used a Bonferroni corrected p-value

threshold of 6.4*10-5 to correct for 780 trait combinations tested. For this purpose, we made

an adjacency matrix from the genetic correlation for each trait combination and used this to

make a graph using the igraph package in R.[40]

Comparison with other methods

Intersection refers to the straight-forward approach of finding shared SNPs: take the

intersection of the SNPs that were significant for trait X and those that were significant for

trait Y. We used the R package for HOPS (HOrizontal Pleiotropy Score) [14] We used our

pre-processed z-scores (whitened). We ran HOPS both with and without polygenicity

correction and used only the Pm p-values. We used the command line tool written in Python

for PLEIO (Pleiotropic Locus Exploration and Interpretation using Optimal test) [15]. We used

z-scores (not whitened and not corrected for LD-score) and supplied the sample sizes of the

original GWAS. We used the R package for PRIMO (Package in R for Integrative Multi-Omics

association analysis) [16]. We used PRIMO based on p-values. For the alt_props parameter

(the expected proportion of SNPs that follow the alternative hypothesis per trait) we supplied

the proportion of SNPs that were significant for trait 1 (q-value < 0.05) over all SNPs, idem

for trait 2 (q-value < 0.05). We supplied c(2,2) for the dfs parameter. We used the R package

for PLEIO (pleiotropic analysis under composite null hypothesis) [15]. We used whitened

z-scores (not corrected for LD-score). We used the VarZ function to calculate the covariance

matrix and supplied that, with the z-scores, to the placo function.
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To assess how many loci were found by each method, we LD-pruned the significantly shared

SNPs. For each method and for each locus, we checked if any of the SNPs in that locus were

also found by another method. If that was the case, we gave that locus the same identifier in

each method. Afterwards, we determined the loci that were found by all methods and those

that were found by only one or a subset of the methods. We ran Intersection, HOPS (with

polyenicity correction), PRIMO, PLACO, and PolarMorphism on the same data while

supplying a dataframe with an increasing number of rows. For the Intersection method we

added q-value calculation from the original GWAS p-values and a filtering step on both

q-values to make it a fair comparison with the other methods. All five methods are written in

R, therefore we timed them in R using the tictoc package [46]. Running the software in the

terminal could have a different runtime, but this does allow us to compare the runtimes

among the methods.

Data availability

The PolarMorphism results presented in this paper are available on Zenodo, at

https://dx.doi.org/10.5281/zenodo.5844193.
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