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Abstract

Pleiotropic SNPs are associated with multiple traits. Such SNPs can help pinpoint biological
processes with an effect on multiple traits or point to a shared etiology between traits. We
present PolarMorphism, a new method for the identification of pleiotropic SNPs from GWAS
summary statistics. PolarMorphism can be readily applied to more than two traits or whole
trait domains. PolarMorphism makes use of the fact that trait-specific SNP effect sizes can
be seen as Cartesian coordinates and can thus be converted to polar coordinates r (distance
from the origin) and theta (angle with the Cartesian x-axis). r describes the overall effect of a
SNP. while theta describes the extent to which a SNP is shared. r and theta are used to
determine the significance of SNP sharedness, resulting in a p-value per SNP that can be
used for further analysis. We apply PolarMorphism to a large collection of publicly available
GWAS summary statistics enabling the construction of a pleiotropy network that shows the
extent to which traits share SNPs. This network shows how PolarMorphism can be used to
gain insight into relationships between traits and trait domains. Furthermore, pathway
analysis of the newly discovered pleiotropic SNPs demonstrates that analysis of more than
two traits simultaneously yields more biologically relevant results than the combined results
of pairwise analysis of the same traits. Finally, we show that PolarMorphism is more efficient

and more powerful than previously published methods.
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Introduction

Genetic variation in the genome partly explains phenotypic differences between individuals.
Genome-wide association studies (GWAS) aim to identify the specific genetic variants
(usually single nucleotide polymorphisms, SNPs) that are associated with phenotypic
variation. Over the past decades, GWAS have led to the discovery of thousands of SNP-trait

associations [1], [2].

From these discoveries we know that some SNPs can influence multiple traits; i.e. they are
pleiotropic [3]. Pleiotropy is widespread in the human genome. An association analysis
between millions of SNPs and hundreds of traits found that almost ten percent of SNPs were
associated with more than one trait [4]. Moreover, pleiotropic SNPs have been identified for
many trait combinations. In many cases, the traits are known to be biologically related;
pleiotropic SNPs have been identified for several psychiatric phenotypes [5] and different
types of cancers [6]. However, pleiotropic SNPs have also been described for seemingly
unrelated diseases; for instance for prostate cancer and type 2 diabetes [7], schizophrenia
and Human Immunodeficiency Virus (HIV) infection [8], and Alzheimer’s disease and lung
cancer [9]. This could mean that those SNPs are involved in a biological process with a more
general function. It could also mean that the studied traits are more biologically related than
was previously known and might have a common etiology. Identifying more pleiotropic SNPs

can thus transform our current classification of diseases [10].

Pleiotropy analysis can also be useful to identify pleiotropic SNPs in druggable genetic
targets, which can help predict adverse treatment effects [10] as well as identify diseases
that could be treated with existing drugs [11]. Moreover, pleiotropy can be leveraged for more
accurate risk prediction [12]. Finally, methods like Mendelian Randomization (MR) rely on the
assumption that there is no direct effect of the SNPs used on both exposure and outcome
[13]. Since pleiotropy methods can be used to indicate whether some SNPs are pleiotropic,

they can be used to filter these SNPs.

It should be noted that analysis of similarity between traits can also be done using genetic
correlation, but this answers a different question. Genetic correlation gives the overall -
genome-wide - correlation of effect sizes. Pleiotropic SNPs have a shared effect regardless
of the genetic correlation and may tag a specific biological pathway or process rather than

describing a general relationship between two traits. If traits are correlated and often
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co-occur in individuals, then any SNP that affects trait X will also be associated with trait Y,
even if it does not directly affect trait Y. These SNPs are not actually pleiotropic because they
are only directly associated with one trait. For this reason, to identify pleiotropic SNPs it is
not sufficient to take the intersection of SNPs that are associated with both traits. Even if the
traits are uncorrelated, intersecting SNP-sets is not an optimal approach; both GWASs need
to be sufficiently powered to discover the pleiotropic SNP. Moreover, SNPs that are found
with this approach lack an important feature: we know that they are shared but we do not

know how shared they are and if this might be statistically significant.

Recently, a few methods that aim to identify pleiotropic SNPs have been described. HOPS
[14] and PLEIO [15] both identify a SNP as shared if it is associated with at least one of the
traits of interest. Problematically, SNPs with an effect on only one trait will thus also be
identified and cannot readily be differentiated from truly pleiotropic SNPs. Two other
methods, PLACO [7] and PRIMO [16], identify a SNP as shared if it is associated with all traits
of interest. PLACO can only be used for identification of SNPs that are shared by two traits.
Moreover, we will show that PLACO has a high computational burden. PRIMO, on the other
hand, only identifies a subset of the pleiotropic SNPs that PLACO finds.

Here, we present PolarMorphism, a new approach to identify pleiotropic SNPs that is more
efficient, identifies the same number of pleiotropic SNPs as PLACO, but can be applied to
more than two traits. This enables the identification of SNPs that have an effect on
numerous traits, and possibly play a role in more general biological processes.
PolarMorphism is based on a transformation of the trait-specific effect sizes x and y to polar
coordinates r (radius, the distance from the origin) and 6 (theta, the angle with the x-axis). As
aresult, ris a measure of overall effect and # a measure of sharedness, which can be used

for downstream significance analysis and SNP ranking.

PolarMorphism enables construction of a trait network showing which traits share SNPs.
From SNP-specific networks we observe that most SNPs are associated with traits within
one trait domain. We find one SNP - rs495828 in the ABO locus - that is associated with traits
across 7 trait domains. We show that analysis of more than two traits is more powerful than
the intersection of pairwise results of those same traits. We provide PolarMorphism as an R
package on Github under the MIT license:
https://github.com/UMCUGenetics/PolarMorphism.
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Results

Defining pleiotropy

Pleiotropy can be identified in different ways ([3], [17] and Figure 1). Horizontal pleiotropic
SNPs directly affect multiple traits. Vertical (or mediated) pleiotropic SNPs directly affect
one of the traits, but dependence between the traits leads to an association with both traits.
The difference between horizontal and vertical pleiotropy is particularly important in the
context of Mendelian randomization (MR). With MR, the causal effect of an exposure (e.g.
smoking) on an outcome (e.g. lung cancer) can be determined. Genetic variants that are
associated with the exposure are used as so-called ‘instrumental variables’. One important
assumption is that these variants only have an effect on the outcome through the exposure.
In other words, that they are vertically pleiotropic and not horizontally. Horizontally
pleiotropic SNPs - which have a direct effect on both smoking and lung cancer - violate this
assumption and should therefore not be used as instrumental variables in MR [18]. The final
pleiotropy type is spurious pleiotropy, which can arise from bias in measuring association
[19]. For example, one marker SNP can be associated with two or more traits due to that
marker being in Linkage Disequilibrium (LD) with another SNP that directly affects one of the
traits and yet another SNP that directly affects another trait. The marker SNP seems to be
pleiotropic, while in reality neither the marker SNP nor the nearby linked SNPs are pleiotropic.
Determining whether the same SNP is likely causal for both traits is only possible with
colocalization approaches [20]. Another source of spurious pleiotropy is misclassification of
traits. If certain symptoms are shared by two diagnoses, individuals with these overlapping
symptoms can be given either diagnosis. As a result, the genetic associations for these
diagnoses will be highly correlated. Finally, shared controls and ascertainment bias

(participant recruitment in a specific disease field) can also cause spurious pleiotropy [21].

Horizontal Vertical Spurious Legend
ONO), ® - P
| Bl Tag SNP
@ @ @ @@ @ Trait x
| I I |
===

Linkage disequilibrium Misclassification


https://paperpile.com/c/kggNEW/19ec+VL75
https://paperpile.com/c/kggNEW/9hQ6
https://paperpile.com/c/kggNEW/uMwN
https://paperpile.com/c/kggNEW/hwYV
https://paperpile.com/c/kggNEW/ENxP
https://doi.org/10.1101/2022.01.14.476302
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.14.476302; this version posted January 14, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

Figure 1. Visualization of horizontal, vertical and spurious pleiotropy, respectively. A
horizontally pleiotropic SNP has an effect on all traits under consideration. A vertically
pleiotropic SNP has an effect on only one of the traits, but because the traits are correlated it
is also associated with the other trait. A SNP can seem pleiotropic because it is in linkage
disequilibrium with two SNPs that each individually have an effect on a trait. Misclassification
of individuals can also give rise to a seemingly pleiotropic effect.

Overview of PolarMorphism

We aim to identify pleiotropic SNPs from GWAS summary statistics using an approach that
can be routinely applied to combinations of two or more traits. After obtaining summary
statistics with effect size beta and standard error SE, we calculate z-scores (beta / SE) per
SNP. PolarMorphism can be applied on any number of traits, but here we explain the
application to two traits. Analyzing more than two traits requires a slightly different approach

(see the methods for a full description) but leverages the same principles.

Our aim is to identify horizontally pleiotropic SNPs. Therefore we first perform a
decorrelating transform to attenuate vertical pleiotropy resulting from genetic correlation.
Given summary statistics for trait x and y, we calculate a covariance matrix, and use this to

apply decorrelation or whitening (see methods for details) yielding decorrelated summary

statistic vectors x and y. Next the trait-specific vectors x and y are used to calculate polar
coordinates r (the distance from the origin) and 0 (the angle with the x-axis, ranging from 0 to

2m). For SNPs that are specific to trait X, € is close to 0 or 7. For SNPs that are specific to

trait Y, 6 is close to %n or 1%11. For SNPs that are shared, 6 is approximately %n or 1%11 for

concordant direction of effect and %n or l%n for opposite direction of effect. Each

quadrant of the x,y plot only differs in direction of effect in the original GWAS. To simplify
further analysis we use the fourfold transform of 8 (,,.,s), which folds the quadrants on top
of each other (equivalent to using the absolute values of the z-scores) and then stretches the

angles so they still describe a full circle (Figure 2).

To assess significance of sharedness, we separately test the distance r and angle . Under a
null hypothesis of no overall effect, r is the square root of a sum of squared normally
distributed variables with mean 0. We thus use a central chi distribution to calculate p-values
for r. Under a null hypothesis of trait-specific effect, 0,.,sis equal to 0. To calculate p-values

for 6,..,. we use a von Mises distribution with concentration parameter k. We show that k
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depends on r (see methods). Estimates of k from simulations under the null hypothesis are

included in the R package. These are used to establish one p-value per SNP.

D

Figure 2. Overview of the method for 2 traits. Z-scores for each trait are plotted on
each axis and the data is decorrelated. Cartesian coordinates are transformed to polar
coordinates. The absolute values of the z-scores are calculated and the angle is multiplied by

4. After subsetting on SNPs with a significant distance, we calculate p-values for the angle.



https://doi.org/10.1101/2022.01.14.476302
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.14.476302; this version posted January 14, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

Domain name trait abbreviation trait name

anthropomorphic BMI body mass index
Height height
cancers PrCa prostate cancer
BC breast cancer
cardiac traits AF atrial fibrillation
HF heart failure
NICM non-ischemic cardiomyopathy
cardiovascular CAC coronary artery calcification
CAD coronary artery disease
cIMT carotid intima-media thickness
Plaque presence of carotid plaque
immune IBD irritable bowel disease
Asthma asthma
lipids HDL high-density lipoprotein
LDL low-density lipoprotein
TC triglycerides
TG total cholesterol
neurodegenerative disease AD Alzheimer's disease
ALS Amyotrophic lateral sclerosis
PD Parkinson's disease
pressures DBP Diastolic blood pressure
SBP Systolic blood pressure
PP Pulse pressure
psychiatric / psychological ASD Autism spectrum disorder
BIP bipolar disorder
DS depressive symptoms
EA educational attainment
0] intelligence quotient
MDD major depressive disorder
Neuroticism neuroticism
SWB subjective well being
Insomnia insomnia
smoking EvrSmk ever smoker
FrmrSmk former smoker
logOnset log of age at onset of smoking
CpD cigarettes per day
stroke AS any stroke (hemorrhagic or ischemic)
IS ischemic stroke
CES cardio-embolic stroke
LAS large artery stroke
SVS small vessel stroke

Table 1. Trait domains and trait abbreviation as used in the figures.
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Figure 3. Trait network based on pleiotropic SNPs. The thickness of the lines (network edges)
indicates how many loci are shared between two traits (network nodes). Colored by disease

domain.

Inferring relationships between traits from pleiotropic SNPs

We applied PolarMorphism to all pairwise combinations of 41 traits from different trait
domains (table 1). The resulting pleiotropy network is shown in Figure 3. Herein, traits are
nodes and the edge weights indicate the number of pleiotropic SNPs discovered by
PolarMorphism. The contribution of each SNP to the edge weights is weighted by the inverse
of the total number of traits it is associated with, in order to account for the effect that SNPs
affecting many traits probably tag a biological process with a general function. Sharing such

a SNP is less meaningful than sharing a SNP with an effect on only some traits.

The resulting pleiotropy network is densely connected (512 out of 820 possible edges),
supporting earlier descriptions of widely occurring pleiotropy among traits [4], [21] The lipid
domain (HDL, LDL, TG and TC) and blood pressure domain (DPB, SBP and PP) each form a
fully connected subgraph. SBP has the highest number of edges (degree), sharing SNPs with
37 of the 41 traits. ALS, which shares SNPs with 5 traits, has the lowest degree. Global
analysis of the pleiotropy network thus readily reveals general characteristics of traits and

trait domains.
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Analyzing the pleiotropy network in more detail, we find that most SNPs are associated with
traits within one or across two trait domains (51% and 43%, respectively). We observe one
SNP that is associated with traits across 7 trait domains: rs495828, a SNP in the ABO gene,
which is ubiquitously expressed across many tissues and cell types [22]. For each trait
domain, we determine how many SNPs only have associations within that domain (we call
these single domain SNPs), and calculate the percentage of the total number of SNPs that
were identified for that domain. We find that the psychiatric traits have the highest
percentage of single domain SNPs; one third of all SNPs that are shared with a psychiatric
trait are only associated with psychiatric traits. The smoking traits have the lowest
percentage of single domain SNPs, suggesting that most smoking-associated variants tag

general biological processes rather than smoking-specific processes.

A comparison with genetic correlation

Genetic correlation (hz) is the correlation of SNP effect sizes on two traits [19].

Non-biological factors like sample overlap between the two GWAS can inflate the h;

estimate. LDSC [23] or HDL [24] can be used to obtain an hZ estimate that is not biased by

sample overlap. Genetic correlation leads to overall correlation of effect sizes, also in those

SNPs with no effect on any of the traits. SNPs that do have an effect can influence hz
estimates; if they are very pleiotropic they can inflate h; , and if they are very trait-specific
they can deflate hz . Therefore it is generally recommended to only use the subset of SNPs

with no effect on any of the traits for h; estimation. Also note that pleiotropic effects

between traits can be present without genetic correlation, as pleiotropy is a SNP -specific

metric and genetic correlation is a genome-wide metric [23].

To assess whether genetic correlation provides the same insight into trait relationships as
pleiotropy, we built a network based on genetic correlation. The resulting network is sparse
(138 out of 780 possible edges) and only partially overlaps with the pleiotropy network.
Figure 4 shows separate subnetworks for edges that exist in both the genetic correlation
network and the pleiotropy network or in only one of the two. In total, 416 trait pairs share at

least one pleiotropic SNP, but are not genetically correlated (figure 4a). This situation can
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arise if there are only a few SNPs that are shared but the rest of the genetic architecture of
the traits is independent. It is also possible that some shared SNPs have the same direction

of effect in both traits while other shared SNPs have an opposite direction of effect, thereby
averaging out hz . 7 trait pairs are genetically correlated, but do not share any SNPs that are
horizontally pleiotropic (figure 4b). Each SNP that is associated with one of the traits is more
likely to also be associated with the other, because of the overall hZ [18]. After decorrelation,

vertically pleiotropic SNPs will not be identified by PolarMorphism. 96 trait pairs are

genetically correlated and share horizontally pleiotropic SNPs (figure 4c). These are traits
that share a number of vertically pleiotropic SNPs, leading to a higher hz , as well as some

horizontally pleiotropic SNPs. Our results seem to indicate that two traits are more likely to

share at least one pleiotropic SNP than they are to be genetically correlated.
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Figure 4. a) Edges denote trait pairs that share pleiotropic SNPs but are not genetically
correlated. b) Edges denote trait pairs that are genetically correlated but do not share
pleiotropic SNPs. c) Edges denote trait pairs that are genetically correlated and share

pleiotropic SNPs.
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Figure 5. Trait network of the IS subtypes and their direct neighbors, based on the
weighted full network as described earlier. Only edges between any of the IS subtypes and any
other trait are drawn; in other words, edges between two nodes shown here that do not include

an IS subtype, are not drawn.

The stroke domain consists of any stroke (AS); its subtype ischemic stroke (IS); and its
subtypes cardioembolic stroke (CES), large artery stroke (LAS) and small vessel stroke
(SVS). The three IS subtypes are generally believed to have different etiologies [25]-[27], and
previous efforts have resulted in tens of subtype-specific associations [28]-[31]. In line with
this, our analysis does not reveal any shared SNPs. It should be noted that shared SNPs have
been described before for LAS and SVS and for LAS and CES [28]. However, SNPs at these
loci were low-confidence and therefore not included in our analysis (see methods for
details).

Given the lack of shared SNPs among the IS subtypes, we investigated which other traits
share SNPs with each of the IS subtypes. To that end we looked at the subnetwork
composed of the IS subtypes and their direct neighbors (figure 5). Our analysis reveals that
six traits (CAD, DBP, Plaque, PP, SBP, TC) share SNPs with all IS subtypes. This indicates that
all ischemic stroke subtypes are associated with biological pathways with a possible effect
on blood pressure and lipids. CES shares most pleiotropic SNPs with atrial fibrillation (AF),

which is believed to be its main cause [26]. LAS, which is thought to arise from

11
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atherosclerotic plaques in the carotid arteries that rupture or block blood flow [31], shares
most SNPs with cIMT - a proxy for the extent of carotid atherosclerosis. SVS, which is
thought to have a cardiovascular origin like the other IS subtypes [32], shares most SNPs
with CAD. Notably, it also shares many SNPs with Alzheimer’s and Parkinson’s disease. This
might indicate that many of the SNPs that are associated with risk of small vessel stroke
also influence risk of neurodegenerative disease. Note that the edges LAS-HDL, SVS-AD,
SVS-PD and SVS-Plaque were only found in the pleiotropy network and not in the genetic
correlation network. This indicates that pleiotropic SNPs harbor information that is
complementary to genome-wide correlation measures. Furthermore, zooming in on one trait
domain shows how PolarMorphism can be employed to gain more detailed insight in trait

relationships than the general patterns that can be gathered from the complete network.

Joint analysis of more than two traits identifies more
pleiotropic SNPs than pairwise analyses of the same traits

PolarMorphism can be used to find SNPs that are shared by any number of traits. A SNP with
a small effect on each trait might not be identified in univariate or even pairwise analysis, but
could be if more traits are included. We therefore investigated whether analysis of three or
more traits is indeed more powerful than the combined results from pairwise analyses of
those same traits. Pairwise analyses of the lipid domain (HDL, LDL, TC, TG) identifies 186
shared loci. Analysis of all four traits together identifies 1029 shared loci. 180 loci are found

by both approaches.

To explore whether the increased number of loci is biologically relevant, we perform gene set
enrichment analysis in DEPICT [33] on the significant loci from the pairwise analyses and the
significant loci from the joint analysis. In order to get the relevant genes for each locus, we
perform clumping using DEPICT’s default settings. Hence the number of DEPICT loci differs
from the loci that we identified (108 pairwise loci, 496 joint loci, see tables S4 and S6). The
pairwise results are enriched for 12 gene sets (table S5) whereas the joint results are
enriched for 85 gene sets (table S7). Moreover, the loci revealed by the joint analysis result in
enrichments that are more significant: 85 of the 95 gene sets that are significant in either
analysis are more significant in the joint analysis, and 2 of the 2 gene sets that are significant
in both analyses are more significant in the joint analysis. Moreover, considering the 10
genes with the highest z-score for membership of these gene sets, we find that the genes

implied by the joint analysis have a higher likelihood of gene set membership (see the
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DEPICT paper for a detailed explanation [33]), thus resulting in more coherent gene sets. For
instance, the joint analysis identifies the LDLR (LDL receptor) gene, which has a high
membership likelihood for the REACTOME “metabolism of lipids and lipoproteins” gene set.
The pairwise analysis does not identify LDLR, making this gene set less enriched. These
results show that joint pleiotropy analysis of multiple traits yields more biologically relevant

insights compared to pairwise analysis of those same traits.

Runtime increases marginally with the number of traits

analyzed

To assess how the runtime scales with the number of traits analyzed, we picked all traits that
were affected by the most pleiotropic SNP, rs495828: AS, BC, CAD, CES, DBP, HDL, HF , IS,
LDL, T2D, TAGC, and TC. In this order, we picked the first p traits and timed PolarMorphism
(see Figure 5). Runtime increases slightly with larger p, but the effect is small. There is a
large difference between p = 2 and p > 2 because we use different approaches if p > 2 (see

methods).

a
o
1
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o
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o
1

n
o
1

time (seconds)

—_
o
1

3 4 5 6 7 8 9 10 11 12
number of traits p

Figure 5. Runtime scales with the number of traits p. a) p ranges from 3 to 12. The
slope of the regression line is 0.75 (se = 0.13). b) p ranges from 2 to 12. The large difference
between 2 and more than two traits is due to the different methodology that we use if p > 2,

see the methods for details.

Comparison with other methods

To compare PolarMorphism to existing methods, we ran: PolarMorphism, intersection,

PLACO, and PRIMO on a selection of traits (IS and myocardial infarction). We compared the
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individual SNPs and loci that were identified as pleiotropic by each method. Four loci are
found by all methods. Intersection does not identify more than those four loci. PLACO and
PolarMorphism both find 21 loci (19 of which are identical), PRIMO finds 13 loci that were
also identified by PLACO and PolarMorphism. PLACO and PolarMorphism use a
fundamentally different approach to identify pleiotropy: whereas PLACO tests if the effect for
both traits is not equal to zero, PolarMorphism first tests whether the overall effect

(distance) is different than expected and then tests the sharedness of a SNP.

We timed each method from cleaned input data (already in memory, timing done in R) to
results. The number of pleiotropic loci that were found by each method and the speed of
generating results (in number of input SNPs per second) are provided in table 2. These data

show that PLACO does not identify more loci than PolarMorphism and is slower.

speed (1k
Max p Decorrelation?  # of pleiotropic loci found SNPs/second)
PolarMorphism - Yes 21 63
PLACO 2 Yes 21 0.61
Primo - No 13 86
HOPS - Yes - -
PLEIO - No - -

Table 2. Comparison of methods. HOPS and PLEIO were not run because they use a

pleiotropy definition that includes single-trait SNPs.

Discussion

We have developed a new method that identifies pleiotropic SNPs with an effect on multiple
traits. PolarMorphism can be used on combinations of two or more traits. It uses GWAS
summary statistics and corrects for correlation in effect sizes arising from genetic
correlation or potential sample overlap. The potential applications of PolarMorphism include
a) identifying SNPs that are shared between traits within a trait domain to learn more about
the domain-wide biological processes, b) identifying SNPs that are shared among a diverse
set of traits to find general biological processes and c) using the identified SNPs to inform
new trait ontologies. As an example, we apply PolarMorphism to a set of traits from different

domains.
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The network analyses indicate that there are no trait domains that only share SNPs within
the domain. We observe that most SNPs are associated with traits within one or across two
trait domains. We zoomed in on the stroke domain, which has very little domain-specific
SNPs. This may mean that the stroke traits are associated with general SNPs or that the
stroke traits do not share many biological pathways. Each ischemic stroke subtype shares
more SNPs with non-stroke traits than with the other ischemic stroke subtypes. Note that
these networks are heavily influenced by the choice of included traits. Conclusions drawn
about the networks in this study are therefore not necessarily general, as each trait could

share SNPs with a number of traits that were not included.

We compared PolarMorphism with similar methods. PolarMorphism identifies more
pleiotropic SNPs than the standard intersection method and than PRIMO. PLACO identifies
the same number of pleiotropic loci as PolarMorphism. However, PolarMorphism finished
analysis of 1 million SNPs in less than 20 seconds (compared to >25 minutes for PLACO),
making analysis of many trait combinations feasible. Furthermore, PLACO can only be used
to analyze two traits together while PolarMorphism can analyze a theoretically unlimited
number of traits. A five-fold increase in the number of identified pleiotropic loci for the lipid
domain indicates that analyzing more than two traits is much more powerful than combined

results from the respective pairwise analyses.

Methods

PolarMorphism for two traits

PolarMorphism works on uncorrelated, standardized data. z, and z, are vectors of length m
containing the z-scores of SNPs 1 to m for trait x and trait y, respectively. We calculate polar

coordinates r and 6: r is the distance from the origin, and 6 is the angle of the vector from the

origin to the point (z,, z,). r = A /zx2 + zy2 and 6 = tan_l-i—.

We first test whether r comes from a central chi distribution with degrees of freedom equal
to the number of traits p. The chi distribution describes the distribution of the square root of
the sum of squared normally distributed variables. The distribution of p-values from this test
is used to calculate g-values, which are FDR-corrected p-values [34]. For all SNPs that have
an effect, we want to know whether that effect is shared. We perform a four-fold transform

of 0 that ‘folds’ all quadrants of the Cartesian plane on top of each other and stretches it to
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make sure the angles can take any value on the circle [35]: 6, = 40 modulo2m The von

Mises distribution describes angular data. It takes into account that 6 = 0 is equal to 6 = 2.
It has two parameters: 6,,, is the mean value, and kappa () is a concentration parameter
that is similar to the inverse of the variance. 6,,, is zero under the null hypothesis of
trait-specific effect. See the Supplementary methods for a description of how we obtained
estimates for x. Using the distribution of the observed r p-values for the distances of all
SNPs, and the fact that p-values follow a uniform distribution under the null hypothesis, the
false discovery rate (FDR) for each SNP can be calculated. This g-value gives the FDR if this
SNP and all SNPs with a lower p-value would be called significant. We keep the SNPs that
show a significant overall effect (r g-value < 0.05) and use the distribution of observed 6
p-values for these SNPs to calculate 6 g-values. We filter on 8 g-value < 0.05 to obtain SNPs

that are significantly shared (FDR < 0.05).
PolarMorphism for more than two traits

Converting Cartesian to hyperspherical coordinates

The distance of a SNP i in more than two dimensions is a straightforward extension of the

distance in two dimensions:

Where z;; is the z-score of SNP j for trait j. Describing the orientation of a SNP for p traits
involves calculating the corresponding p-dimensional hyperspherical coordinates. This gives

an additional angle for each added trait. Fortunately, this problem can be simplified. We

define )?l, as the vector from the origin of the p-dimensional sphere to an observed SNP, and
E as the vector from the origin to the expected position of the SNP under the null hypothesis
of trait-specific effect, along one of the axes. The goal is to determine the angular difference

between X, and p. We choose p such that it lies along the axis that is closest to X. In other

words, we construct p as a vector with zeros for each coordinate except for the coordinate
with the highest absolute value for the SNP under consideration. We set the length of p equal
to the length of X, (the distance r), so the only non-zero value of p is set to r. The two vectors

of interest always lie in a 2-dimensional plane, regardless of the number of traits p. The dot

product of the vectors is a scalar and is equal to:
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u- Xi = rurxcos(e)
, therefore
8 = cos (k- Xi/rz)

Which can be rewritten as

_1 p 14 2
6 =cos ((Znx)/(Xx))
o LT S
This angle should be normalized so the maximum value is always x, regardless of p. The

angle is maximal if all coordinates of a SNP have the same value (which we will call x).

Recall that p has zeros for all coordinates but one. If 6 is maximal, we can rewrite the

expression for 0 as:

p p
0(p) = cos (L ux)/(Z ¥ =cos (B = DO -0 + 7-0/px) = cos™ ()
j= j=

The final correction factor with which the angles should be multiplied can then be obtained

by dividing 2z by the result of this formula.

Testing the significance of rand 6

To test the significance of r, we use the same procedure as for two traits. In this case the
degrees of freedom is equal to the number of traits p. To assign significance levels to the
angle 0, we use the von Mises-Fisher distribution, which is an extension of the von Mises

distribution. The probability density function of the von Mises Fisher distribution is given by:

f = Cexp(iu-X)

Where C is a normalization constant, x is the concentration parameter, u is the unit vector of

the expected direction and X is the observed unit vector (i.e. the vector of the SNP divided

by its length to get unit length). The inner product H . X can be rewritten as cos(0), where 6

is the angle between the expected and observed vectors:

f = Cexp(kcos(6))

Functions to obtain the probability density function and the normalization constant C are
implemented in the vMF package in R [36]. To obtain a cumulative density function the
probability density function needs to be integrated. The definite integral for exp(k cos(0))
can not be defined using elementary functions. However, the exponent has the following

series representation:
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*® j
f = C exp(xcos(0) =C Y jﬂ;ﬁl
j=0

The integral is then equal to:

F=c/[Y (kco]j(e)) =C Y f(kw;(ﬁ))
j=0

j=0
The term (as a function of the iterator j) does have an indefinite integral:

JRC cos())’ cot() abs(sin(8)) (k cos(8)) hypergeo(,1t, 74, cos’(8))
J! B

gamma(j+2)

where cot is the cotangent function, hypergeo is the hypergeometric function and gamma is
the gamma function. We implemented the summation so that it stops when the last added
term is smaller than a user-defined value (called ‘tol’ in our R package). We use the hypergeo
package for the hypergeometric function [37]. The values for x as a function of p that we

derived for p = 2 still apply here, because 0 still describes a two-dimensional angle.

Preprocessing the summary statistics

We used publicly available summary statistics for the 41 traits shown in table 1. Data were
obtained from the sources provided in Supplemental table 2, which also contains references
to the respective papers they were described in. We aligned reference and alternative allele
across all traits, and filtered using the list of high-confidence SNPs provided with the LDSC
software.[23] We divide effect sizes by their standard error to obtain z-scores. We calculate
the covariance matrix on the subset of SNPs that do not have a large overall effect. To this
end, the covariance is calculated only on SNPs that have a mahalanobis distance smaller
than 5. We use the ZCA-cor whitening method in the ‘whitening’ package in R [38], to
decorrelate the data while ensuring that the x and y components of the transformed z-scores

maximally correlate with the x and y components of the original z-scores.

Inferring relationships between traits from pleiotropic SNPs

For all trait pairs, we ran PolarMorphism and clumped the significant SNPs with Plink, using
the g-values instead of p-values (-clump-kb 5000000, --clump-p1 0.05, --clump-p2 0.05,
-clump-r2 0.2) [39]. We make an adjacency matrix from the number of shared loci per trait
combination and use this to construct a graph using the igraph package in R [40]. We did the
same per SNP to obtain SNP-specific networks. To create domain networks from the trait
networks we draw an edge between domain A and B if an edge exists between any trait of

domain A and any trait of domain B.
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Gene set enrichment analysis in DEPICT

We changed the following settings from the default: association_pvalue_cutoff: 0.05 to
accommodate for the fact that we use g-values instead of p-values. We performed gene set
enrichment using the default gene sets provided by the DEPICT authors, but only considered
gene sets from gene ontology [41], REACTOME [42], KEGG[43] and the PPI networks as
defined by the DEPICT authors using the InWeb database [44] for further analysis.

Inferring relationships between traits from genetic correlation

To infer relationships between traits from genetic correlation, we ran LDSC[23] using the
GenomicSEM [45] package in R. We calculated p-values from the correlation coefficients and
their standard errors using the pnorm function in R, and used a Bonferroni corrected p-value
threshold of 6.4*10°to correct for 780 trait combinations tested. For this purpose, we made
an adjacency matrix from the genetic correlation for each trait combination and used this to

make a graph using the igraph package in R.[40]

Comparison with other methods

Intersection refers to the straight-forward approach of finding shared SNPs: take the
intersection of the SNPs that were significant for trait X and those that were significant for
trait Y. We used the R package for HOPS (HOrizontal Pleiotropy Score) [14] We used our
pre-processed z-scores (whitened). We ran HOPS both with and without polygenicity
correction and used only the Pm p-values. We used the command line tool written in Python
for PLEIO (Pleiotropic Locus Exploration and Interpretation using Optimal test) [15]. We used
z-scores (not whitened and not corrected for LD-score) and supplied the sample sizes of the
original GWAS. We used the R package for PRIMO (Package in R for Integrative Multi-Omics
association analysis) [16]. We used PRIMO based on p-values. For the alt_props parameter
(the expected proportion of SNPs that follow the alternative hypothesis per trait) we supplied
the proportion of SNPs that were significant for trait 1 (g-value < 0.05) over all SNPs, idem
for trait 2 (g-value < 0.05). We supplied c(2,2) for the dfs parameter. We used the R package
for PLEIO (pleiotropic analysis under composite null hypothesis) [15]. We used whitened
z-scores (not corrected for LD-score). We used the VarZ function to calculate the covariance

matrix and supplied that, with the z-scores, to the placo function.
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To assess how many loci were found by each method, we LD-pruned the significantly shared
SNPs. For each method and for each locus, we checked if any of the SNPs in that locus were
also found by another method. If that was the case, we gave that locus the same identifier in
each method. Afterwards, we determined the loci that were found by all methods and those
that were found by only one or a subset of the methods. We ran Intersection, HOPS (with
polyenicity correction), PRIMO, PLACO, and PolarMorphism on the same data while
supplying a dataframe with an increasing number of rows. For the Intersection method we
added g-value calculation from the original GWAS p-values and a filtering step on both
g-values to make it a fair comparison with the other methods. All five methods are written in
R, therefore we timed them in R using the tictoc package [46]. Running the software in the
terminal could have a different runtime, but this does allow us to compare the runtimes

among the methods.

Data availability

The PolarMorphism results presented in this paper are available on Zenodo, at

https://dx.doi.org/10.5281/zenodo.5844193.
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