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Single-cell multi-omics of human clonal hematopoiesis reveals that
DNMT3A R882 mutations perturb early progenitor states through
selective hypomethylation.
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ABSTRACT

Somatic mutations in cancer genes have been ubiquitously detected in clonal expansions across healthy human
tissue, including in clonal hematopoiesis. However, mutated and wildtype cells are morphologically and
phenotypically similar, limiting the ability to link genotypes with cellular phenotypes. To overcome this limitation,
we leveraged multi-modality single-cell sequencing, capturing the mutation with transcriptomes and methylomes in
stem and progenitors from individuals with DNMT3A R882 mutated clonal hematopoiesis. DNMT3A mutations
resulted in myeloid over lymphoid bias, and in expansion of immature myeloid progenitors primed toward
megakaryocytic-erythroid fate. We observed dysregulated expression of lineage and leukemia stem cell markers.
DNMT3A R882 led to preferential hypomethylation of polycomb repressive complex 2 targets and a specific
sequence motif. Notably, the hypomethylation motif is enriched in binding motifs of key hematopoietic transcription
factors, serving as a potential mechanistic link between DNMT3A R882 mutations and aberrant transcriptional
phenotypes. Thus, single-cell multi-omics pave the road to defining the downstream consequences of mutations that
drive human clonal mosaicism.

INTRODUCTION detected in individuals without overt hematologic
abnormalities’-17, This state, termed clonal
hematopoiesis (CH), predisposes these individuals to an
increased risk of developing myeloid malignancies, such
as acute myeloid leukemias (AML) and myelodysplastic
syndromes, and thus represents the earliest stages of
neoplastic evolution819-21, Intriguingly, CH mutations
also increase the risk of cardiovascular disease!! and
progression of non-myeloid malignancies12223, with
early evidence supporting an aberrant immune
microenvironment due to CH82426, CH mutations have
also been found in stem cell grafts, linked with idiopathic
cytopenia in graft recipients?’. CH mutations in certain
genes (e.g. DNMT3A, TP53) endow a particularly strong
fitness advantage in the context of stem cell
transplantation, wherein the variant allele frequencies
(VAF) markedly increase post-transplant compared to
pre-transplant grafts2829. These data suggest that certain
CH mutations confer a particularly robust competitive
Clonal mosaicism within the hematopoietic system advantage over non-neoplastic hematopoietic cells in
serves as an informative model for this phenomenon, as  stressed settings such as transplantation.

recurrent drivers of myeloid malignancies (for example,

DNMT3A, TETZ and ASXL1 mutations) have been

Somatic mutations have been recently identified
ubiquitously across healthy tissues, indicating the
presence of acquired clonal mosaicisms!-6. These
mutations are pervasive across tissues such as the
blood”17, skin5 lung? and esophagus!3, and their
prevalence increases with physiological aging.
Importantly, somatic mutations in these clonal
outgrowths overlap with recurrent drivers of cancer (for
example, DNMT3A, TP53, PIK3CA, and NOTCH1)1-5818,
suggesting that cancer may arise from pre-malignant
clonal outgrowths. Nevertheless, mutated cells are
morphologically and phenotypically similar to their
wildtype counterparts. This limits the ability to define
the downstream transcriptional or phenotypic impact
that may drive clonal outgrowth, and therefore prior
studies in primary human tissue have largely focused on
genetic characterization of clonal mosaicism.
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DNMT34, which encodes a de novo DNA
methyltransferase that catalyzes the methylation of
cytosine bases in CpG dinucleotides, is by far the most
frequently mutated gene in CH7-10. Consistently,
DNMT3A mutations are considered an early event in
AMLY7, and the hotspot variant at R882 constitute the
majority of DNMT3A mutations in AML. The frequency of
R882 variants is lower in CH, suggesting that these
variants are particularly prone to progressing to AML
through clonal evolution!23031, [n vitro and murine
models have suggested that DNMT3A R882 (or the
murine R878 homologous residue) mutations result in a
differentiation block and increased self-renewal in the
hematopoietic stem cells (HSCs)3234. Biochemically,
DNMT3A R882 variants may exhibit a dominant negative
effect35:36, resulting in the reduction of
methyltransferase activity36. However, the study of
DNMT3A mutations directly in human samples has been
largely limited to MDS or AML, where confounding co-
occurrence of other genetic alterations is common. Thus,
CH presents a unique setting to interrogate the
molecular consequences of DNMT3A mutations in non-
malignant human hematopoiesis.

However, in CH as in other contexts of somatic
mosaicism, mutated cells are admixed with wildtype
cellsz31, limiting our ability to link genotype to
phenotype using studies of bulk populations. Although
recent fluidics methods for single-cell genotyping
coupled with oligo-barcoded antibodies have begun to
shed light on the phenotypic consequences of CH
mutations3’, these methods are limited to a small
number of pre-defined cell surface markers. To
overcome this limitation, we applied multi-omics single-
cell sequencing to capture the mutational status of
individual cells together with downstream epigenetic
and transcriptional information3839, thus enabling us to
compare mutated cells with their wildtype counterparts
from the same individuals, directly in primary human
samples.

RESULTS

Genotyping of DNMT3A mutations in single-cell RNA-
seq of CD34+ cells of human clonal hematopoiesis

As individuals with CH have normal blood production
and thus meet no clinical criteria for assessments by
bone marrow biopsy, progenitor-enriched samples with
CH are scarce. However, we recently observed that CH is
prevalent in patients with multiple myeloma (MM), and
thus we interrogated a cohort of 136 MM patients with
CH identified in hematopoietic progenitor cells collected
for autologous stem cell transplant while in remission40.
Given the known strong phenotypic impact of DNMT3A
R882 mutations, we focused on four samples with these
mutations and sufficiently high VAFs of >0.05 (range:

0.09-0.34) to enable profiling of large numbers of
mutated cells with single-cell RNA-sequencing (scRNA-
seq; see patient and sample data in Extended Data Fig.
1a; Supplementary Table 1). Notably, although CH
mutations tend to have low VAFs, CH clones with higher
VAFs have been frequently observed8104l. We further
confirmed that no morphologic evidence of a myeloid
neoplasm was seen in the bone marrow
(Supplementary Table 1). Screening for additional
mutations through a targeted myeloid panel4® showed
only one additional mutation (patient CH03), consisting
of a clonal (VAF = 0.5) heterozygous TETZ nonsense
mutation, which therefore likely arose first in the course
of clonal evolution and serves as a background mutation
for both the DNMT3A R882 mutated and wildtype cells.

We isolated viable CD34+ cells from these CH samples
and performed Genotyping of Transcriptomes (GoT38),
capturing scRNA-seq with targeted genotyping of the
R882 codon (Fig. 1a). A total of 27,324 cells across CH
samples were sequenced and included in the
downstream analysis after quality filters (online
methods, Extended Data Fig. 1b). Genotyping data
were available for 6,430 cells of these 27,324 cells
(23.5%) through GoT (Extended Data Fig. 1a,c,d).
Notably, to overcome the challenge of accurate
genotyping of the lowly expressed DNMT3A gene, we
performed deeper sequencing and further optimized the
original GoT analysis pipeline (IronThrone38, see online
methods). This optimization included integrating unique
molecule identifier (UMI) consensus assembly4?,
resulting in enhanced precision, with increased number
of cells correctly assigned with only mutant or wildtype
UMIs in a species mixing experiment (P < 10-10, Fisher
exact test, Extended Data Fig. 1e). We also filtered the
GoT UMIs based on their presence in the 10x gene
expression library to determine the threshold for the
number of supporting reads (online methods, Extended
Data Fig. 1f). Mutated CD34+ cell frequencies ranged
from 13% to 50%, comparable to the VAFs obtained
through bulk sequencing of matched unsorted stem cell
products (Extended Data Fig. 1a,c). Finally, to exclude
additional genetic lesions, we performed copy number
analysis with scRNA-seq data*3 and identified no
significant chromosomal gains or losses (Extended
Data Fig. 2a,b).

To chart the differentiation of CD34+ progenitor cells in
CH, we integrated data across the samples# and
clustered based on transcriptomic data alone, agnostic
to the genotyping information (Fig. 1b, Extended Data
Fig. 3a, online methods). Consistent with clinical data
indicating normal hematopoietic production, we
identified the expected progenitor subtypes, using
previously annotated progenitor identity markers (Fig.
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Figure 1. Genotyping of Transcriptomes demonstrates co-mingling of mutated and wildtype cells in DNMT3A R882-
clonal hematopoietic differentiation. a, Schematic of GoT workflow. UMI, unique molecular identifier; UTR, untranslated
region. b, Uniform manifold approximation and projection (UMAP) of CD34+ cells (n = 27,324 cells) from clonal hematopoiesis
samples (n = 4 individuals), overlaid with cluster assignment (left); projections of cell cycle gene module (top right) or
uncommitted hematopoietic stem cell (HSC) associated gene module score (bottom right, Supplementary Table 2). c, UMAP of
CD34+ cells (n = 27,324 cells) with projected mutation status assignment for WT (n = 4,641 cells), DNMT3A R882 mutant (MUT;
n = 1,789 cells) or unassigned (NA; n = 20,894 cells). d, Percent of genotyped cells per cluster for all samples (bars) and for each
patient sample (points) (top) and normalized gene expression of DNMT3A per cluster (bottom). HSPC, hematopoietic stem
progenitor cells; IMP, immature myeloid progenitors; IMP-ME, megakaryocytic-erythroid biased IMP; IMP-GM, granulo-
monocytic biased IMP; LMPP, lympho-myeloid primed progenitors; CLP, common lymphoid progenitor; MEP, megakaryocytic-
erythroid progenitors; E/B/M, eosinophil, basophil, and mast cell progenitors; EP, erythroid progenitor; MkP, megakaryocytic
progenitor; NP, neutrophil progenitor; WT, wildtype; MUT, mutant; NA, not assignable.

1b, Extended Data Fig. 3b-d, Supplementary Table
2)45. Furthermore, consistent with the fact that G-CSF
mobilizes early stem and progenitor cells, we identified
a large population of the earliest hematopoietic stem
progenitor cells (HSPCs), as well as immature myeloid
progenitor cells (IMPs), previously defined in a
landmark scRNA-seq study45 as corresponding to the
phenotypically-defined common myeloid progenitors
(CMPs) and granulocyte-monocyte progenitors (GMPs).
The high-throughput profiling by digital scRNA-seq
enabled a higher resolution view of the IMPs, revealing a
subcluster that exhibited markers of granulocyte-
monocyte differentiation (IMP-GM) and a subcluster
that exhibited markers of megakaryocytic-erythroid
differentiation (IMP-ME, Extended Data Fig. 4a,b).
Having established the progenitor identities, we then
projected the genotyping information onto the
differentiation map (Fig. 1c, Extended Data Fig. 4c). No
novel cell identities were formed by the DNMT3A

mutations, consistent with the fact that patients with CH
exhibit no overt peripheral blood count or morphologic
abnormalities, Instead, we observed that mutated and
wildtype cells co-mingled throughout (Fig. 1c,
Extended Data Fig. 4c), highlighting the need for single-
cell multi-omics to link genotypes with cellular
phenotypes in CH. Importantly, the genotyping
efficiency was balanced across the progenitor subsets,
mitigating potential technical biases (Fig. 1d, top),
consistent with no significant difference in DNMT3A
gene expression within the CD34+ cell subsets (Fig. 1d,
bottom).

DNMT3A-mutated cells show lineage biases at key
differentiation junctures

As previous data in murine and in vitro models have
suggested that DNMT3A mutations may lead to a
differentiation block#647, we performed a differentiation
pseudo-temporal (pseudotime) ordering analysis of the
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Figure 2. DNMT3A R882 mutated CH cells demonstrate distinct differentiation biases at key junctures. a, UMAP
highlighting multi-lineage lympho-myeloid primed progenitors (LMPPs) and common lymphoid progenitors (CLPs); UMAP
showing analytically isolated and re-clustered LMPPs and CLPs, showing branch point of divergence into myeloid versus
lymphoid primed progenitors (left middle); UMAP showing the cell density of DNMT3A4 R882 MUT and WT cells (left bottom).
The normalized frequency of mutant cells in subclusters for aggregate analysis of samples CHO1-CH04 with mean * s.d. of 100
downsampling iterations to 1 genotyping UMI per cell (right, downsampling performed to control for potential greater ability
to detect the mutant heterozygous allele in cells with higher DNMT3A expression, see online methods). The heatmap at the
bottom depicts representative lineage-specific genes for individual clusters. P-value was calculated from likelihood ratio test of
LMM with/without cluster identity. b, Normalized frequency of DNMT3A R882 mutant cells in progenitor subsets with at least
200 genotyped cells. Bars show aggregate analysis of samples CHO1-CH04 with mean # s.d. of 100 downsampling iterations to
1 genotyping UMI per cell. Points represent mean of n = 100 downsampling iterations for each sample. Heatmap depicts
representative lineage-specific genes for individual progenitor subsets. ¢, Megakaryocytic-erythroid module scores in wildtype
versus mutant IMPs (Supplementary Table 2). P-value was calculated from likelihood ratio test of LMM with /without mutation
status. d, Fraction of IMP-ME cells out of all biased IMP (IMP-ME + IMP-GM) cells in wildtype versus DNMT3A R882 mutant
populations. P-value was calculated from proportions test. e, Cell cycle module scores in wildtype versus mutant progenitor
subsets (Supplementary Table 2). P-values were calculated from likelihood ratio test of LMM with/without mutation status.
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f, RNA velocity field vectors overlaid on UMAP, demonstrating differentiation trajectories computed via scVelo (online methods).
g, Schematic representation of the transition probabilities between HSPCs and IMP subsets from samples CHO1-CHO04 (right).
0dds ratios (OR) were calculated as the ratio between DNMT3A R882 MUT and WT transition probabilities, as measured using
RNA velocity. Single cell mean IMP - IMP-ME or IMP - IMP-GM transition probabilities between wildtype or DNMT3A R882
mutant cells, inset. P-values were calculated from likelihood ratio test of LMM with/without mutation status (see Extended

Data Fig. 6 for per-sample data).

GoT data“8-50. We found no significant global difference
between wildtype and mutated cells (P = 0.70, linear
mixed model, Extended Data Fig. 4d including per
sample analysis, online methods), indicating that
DNMT3A R882 mutations do not result in a significant
global differentiation block in pre-cancerous human
hematopoietic development. This finding is nonetheless
consistent with findings in murine models, where even
in the setting of homozygous Dnmt3a deletion, mutated
cells do not exhibit self-renewal advantage in primary
transplant experiments#7, indicating that features of self-
renewal advantage may not be overtly obvious in steady-
state hematopoiesis. Although we did not observe a
global differentiation block, we hypothesized that the
DNMT3A mutated cell frequencies may vary across
certain progenitor identities. For example, as DNMT3A
R882 mutations are more frequently associated with
myeloid rather than lymphoid neoplasms, we tested
whether mutated cells may demonstrate a lineage bias
toward myeloid versus lymphoid differentiation by
examining lympho-myeloid primed progenitors (LMPP)
and common lymphoid progenitors (CLP). Consistent
with frequency biases seen in murine models for
DNMT3A mutations®!, mutated cells were enriched in
myeloid biased cells versus early lymphoid progenitors
(P <0.001, linear mixed model, Fig. 2a). Moreover, these
data are also consistent with previous results obtained
with bulk, sorted populations from a DNMT3A 1780T CH
sample, which showed a lower VAF in mutated cell
frequency in mature lymphoid cells (e.g. NK cells, B
cells), compared to those in myeloid progenitor and
mature cellss2.

To identify differentiation biases more broadly in
DNMT3A-mutated CH, we evaluated the mutated cell
frequencies across the different prevalent progenitor
cell types (>200 genotyped cells). Of note, as cells may
display variable expression of DNMT3A itself, we
performed amplicon UMI down-sampling to exclude
sampling biases given the heterozygosity of the mutated
allele as a potential confounder for observed differences
in mutated cell frequencies38. We observed that across
samples, mutated cells were enriched in IMPs compared
to the earliest HSPCs (P < 0.001, linear mixed model, Fig.
2b). Mutated IMPs also displayed an ME bias with an
increase in the expression of an MkP-EP gene set53 (P =
8.8 x 10-5, linear mixed model, Fig. 2c, Supplementary
Table 2, online methods), consistent with an increase in
the proportion of IMP-ME to IMP-GM in mutant

compared to wildtype cells (P = 0.004, proportions test,
odds ratio of 1.38 (1.08 - 1.76), Fig. 2d). These data are
in line with evidence of subtle erythroid abnormalities
observed in CH via routine clinical assays (e.g. elevated
red cell distribution width (RDW))21, and with our
recent demonstration of increased HSC erythroid
priming in a Dnmt3a knock-out murine model5.

Increased mutated cell frequency in a specific progenitor
subtype can result from cell-type specific elevated
proliferation38. We therefore first compared the
expression of cell cycle genes55 between mutated and
wildtype progenitors and found a modest increase in cell
cycle gene expression only in mutated IMPs (P =4.1x 10-
3, linear mixed model, Fig. 2e, Extended Data Fig. 5a).
Alternatively, increased mutated cell frequency in a
given progenitor subtype, may stem from a change in
transition rates into this cell state. To explore this
hypothesis, we measured transition probabilities
between progenitor subtypes with RNA velocity (online
methods)5657. The overall RNA velocity measurements
demonstrated that these mobilized CD34+ cells follow
the expected differentiation trajectories as described in
normal human bone marrow hematopoiesis5358 (Fig.
2f). Consistent with the hypothesis that transition rates
contribute to the observed differentiation biases, we
identified that the transition probability of mutated
IMPs to become IMP-MEs was higher compared to that
of wildtype cells (P =3.7x 107, linear mixed model, Fig.
2g, see Extended Data Fig. 6a for per sample
comparison), whereas the transition probability of
mutated IMPs to IMP-GMs was diminished (P = 2.9 x 10-
6, linear mixed model, Extended Fig. 6b). These analyses
thus orthogonally confirmed ME-biased differentiation
of DNMT3A-mutated CD34+ human progenitors, as was
also revealed by the gene set expression analysis (Fig.
1c).

Gene expression changes in DNMT3A mutated cells
include leukemia stem cell genes, and are linked to
proinflammatory signatures and putative
dysregulated transcription factor activity

To identify the transcriptional dysregulation that may
underlie the observed differentiation biases, we
performed differential gene expression analysis
between mutated and wildtype progenitors within each
progenitor cell type. Differential expression (DE)
analysis of mutated versus wildtype HSPCs revealed 88
dysregulated genes (Fig. 3a, 68-122 differentially
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Figure 3. Differential gene expression analysis between mutated and wildtype cells reveals markers of lineage
aberrancies and dysregulated MYC activity. a, Differentially expressed (DE) genes between DNMT3A R882 mutant and
wildtype hematopoietic stem progenitor cells (HSPC) via permutation test (online methods). Genes highlighted in red represent
DE genes overlapping with 58 genes upregulated on acute myeloid leukemia stem cells (LSC) compared to normal HSCs (P =9.3
x 10-5). P-value was calculated by hypergeometric test. b, Heatmap of upregulated genes in DNMT3A mutant cells compared to
wildtype cells, in at least two cell clusters (P < 0.05, permutation test). Histograms show numbers of upregulated genes in each
cluster (top) and numbers of clusters per upregulated gene (left). Next to the genes are listed putative TFs (TRANSFAC) with
black indicating the TFs that overlap for more than one recurrent DE gene. ¢, Differentially expressed genes between DNMT3A
R882 mutant and wildtype EPs via permutation test. Pathway enrichment of MSigDB CGP gene sets shows enrichment of
Benporath MYC MAX targets (FDR-adjusted P-value = 0.01) and Coller MYC targets (FDR-adjusted P-value = 0.01, see
Supplementary Table 4 for complete gene set enrichment results against the MSigDB CGP dataset). P-values were calculated
from hypergeometric test with FDR (Benjamini-Hochberg) correction. d, Local regression of normalized expression levels as a
function of pseudotime of MYC/MAX targets (differentially upregulated in Fig. 3c) for WT and DNMT3A R882 mutant (MUT)
cells. Shading denotes 95% confidence interval. Histogram shows cell density of clusters included in the analysis, ordered by
pseudotime.

expressed genes in each progenitor subset, see robustness of our approach further, we also determined

Supplementary Table 3 for results for each progenitor
subset; batch-aware permutation test where mutated
and wildtype labels are permuted only within the same
sample, see online methods). Of note, to ensure that the
analysis was not dominated by a single sample, we
down-sampled the number of mutated and wildtype
cells from each sample to maintain equal representation
in the progenitor subset DE analysis. To test the

DE by an alternative linear mixed model framework, in
which we explicitly modeled samples as a random effect
variable, and identified a high degree of concordance
between the two statistical frameworks (Extended Data
Fig. 7a, Supplementary Table 3, online methods).

DE genes included, for example, the upregulation of CD9
in the early mutated HSPCs (Fig. 3a, Supplementary
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Table 3). CD9 expression is closely linked with
megakaryocytic-priming5%60 and platelet activation61-63,
thus providing further support for the ME bias of
DNMT3A mutated progenitors. These data are also in
line with a lower degree of thrombocytopenia observed
in patients with DNMT3A mutated versus wildtype
AML6465 and thrombocytosis in a murine model of this
mutationé6. We further observed an enrichment of genes
previously associated with leukemia stem cells (LSCs)¢7
in mutated HSPCs, including PRSS21, FCER1G, TYROBP,
and TNFRSF4, mapping these dysregulated genes to the
nascent neoplastic process (P = 93 x 105,
hypergeometric test, Fig. 3a, Supplementary Table 3).
FCER1G, TYROBP and TNFRSF4, are known to be
involved in proinflammatory signaling6876, consistent
with previous reports suggesting that CH clones display
enhanced proinflammatory signatures24264177-81, [n
another example, we identified upregulation of the pro-
survival oncogene PIM2, downstream of STAT signaling,
in mutated LMPPs, recently implicated as a target for
eradicating chemotherapy-resistant chronic myeloid
leukemia stem cells82 (Supplementary Table 3).

Nine genes were upregulated in more than one
progenitor subset (Fig. 3b, Supplementary Table 3).
This analysis highlighted mediators of cell-to-cell
interactions, such as a regulator of the inflammatory
network C1QTNF48384, We also identified CLEC11A (also
known as stem cell growth factor (SCGF)), which has
been implicated as a hematopoietic growth factor8s86,
including in the setting of hematopoietic stress such as
irradiation and transplantation8587. This finding is
consistent with published murine data showing a 6.75-
fold increase of Clec11a in transplanted Dnmt3a KO cells
compared to wildtype cells88. Thus, overexpression of
CLEC11A by DNMT3A-mutated progenitors may provide
a potential mechanism for marked expansion of CH
clones upon transplantation2829.89-93, Genes upregulated
in more than one progenitor subset were associated
with putative transcription factors®4, identifying
recurring TFs (highlighted in black, Fig. 3b), including
MYC and its cofactor MAX, as well as the inflammatory
NFKB and STAT transcription factors and interferon
regulatory factor IRF7, consistent with proinflammatory
networks in CH clones242677.8081,

To more broadly identify dysregulated pathways, we
performed a gene set enrichment analysis of the
differentially upregulated genes (Fig. 3c,
Supplementary Table 4)99. The top significantly
enriched pathways (FDR < 0.2) included MYC targets in
the mutated erythroid progenitors (FDR-adjusted P =
0.01, Fig. 3c). Notably, we observed the enrichment of
two independent MYC target gene sets, including a MYC
signature that was downregulated with monocytic

differentiation in an HSPC differentiation cell line
model?7.98. Consistently, MYC has been demonstrated to
be a critical factor specifically for erythropoiesis99-101,
and may thus contribute to the observed ME bias (Fig.
2¢,d,g). Of interest, DNMT3A mutation driven MYC
target expression increased during differentiation along
the erythroid lineage (Fig. 3d), despite no increase in
MYC gene expression itself in the mutated progenitors
(Extended Data Fig. 7b), suggesting that its
transcriptional output as a transcription factor is
differentially increased in mutated cells. Other enriched
pathways included targets of cell cycle regulator E2F in
LMPPs (FDR-adjusted P = 0.057, Supplementary Table
4). Altogether, these findings suggest a focused
dysregulation in TF activity that may orchestrate the
observed lineage and transcriptional perturbations in
the premalignant stages of hematopoietic neoplasia.

Single-cell multi-omics integrating somatic
genotyping, methylome, and transcriptome profiling
reveals patterns of DNMT3A mutation
hypomethylation

To directly decipher the underlying link between
mutated DNMT3A-induced DNA hypomethylation and
the observed altered transcriptional regulatory
networks in CH, we profiled CD34+ progenitors from the
same individuals (from samples CHO2 and CH04 where
additional material was available) with multi-modality
single-cell sequencing capturing DNA methylation
(DNAme)102, scRNA-seq (Smart-seq2103), and targeted
DNMT3A genotyping3® (n = 528 cells after quality
filtering, Fig. 4a,b, Extended Data Fig. 8a-c, online
methods). As expected, these scRNA-seq data identified
the major progenitor identities as those demonstrated
by the 10x platform, albeit at a lower resolution given
fewer cells (Fig. 4b, left, Extended Data Fig. 8b). Of
these 528 cells, genotyping data were available for 441
cells (Fig. 4b, right, 84% cells genotyped). This multi-
modal profiling uniquely enabled us to compare the
methylation status of mutated and wildtype cells from
the same individuals, showing a decrease in DNAme in
CpG islands even in this relatively heterogeneous CD34+
population (CGI, P =5.72 x 10-3, linear mixed model, Fig.
4c), consistent with the finding that DNMT3A mutated
AMLs have lower methylation of CGI compared to
DNMT3A wildtype AMLs1%4, While enhancers have been
demonstrated to be particularly impacted by DNMT3A
loss in the setting of AML!05, these relatively CpG-poor
regions have lower coverage in standard enzymatic
methyl-seq (EM-seq)1% or reduced representation
bisulfite sequencing (RRBS) with a single restriction
enzyme Mspl. We therefore increased the capture of
enhancer regions through double restriction-enzyme
Msp1 and Haelll digestion!97 and identified marked
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Figure 4. DNMT3A R882 promotes selective hypomethylation of PRC2 targets in human hematopoiesis. a, Schematic
representation of the single-cell multi-omics platform that captures methylome, transcriptome, and somatic genotype status. b,
UMAP dimensionality reduction (n = 528 cells) showing the assigned progenitor identities (left) or the assigned genotype (right)
from available samples CH02 and CHO4. (c-d) Average single cell methylation at CpG islands ¢, and enhancers d, from double
digest experiments (online methods). P-values from likelihood ratio test of LMM with/without mutation status. e, Differentially
methylated promoters between wildtype and DNMT3A R882 mutant hematopoietic progenitors. P-values from generalized
linear model (GLM) to account for global hypomethylation in DNMT3A mutated cells and identify regions of preferential
hypomethylation (online methods). Red dots indicate significantly hypomethylated Benporath PRC2 and EED target genes
(MSigDB C2: CGP gene sets). f, Differentially hypomethylated ChIP-seq peaks (ENCODE hg38 Tf clusters) ranked by P-value. P-
values from a GLM to account for global hypomethylation in DNMT3A mutated cells and identify regions of preferential
hypomethylation. g, Single cell average methylation at ChIP-seq peaks (ENCODE hg38 Tf clusters intersected with bivalent peaks
(H3K27me3, H3K4me3) from human CD34+ hematopoietic progenitor cells) for either SUZ12 (left) or EZH2 (right). P-values
from likelihood ratio test of LMM with/without mutation status. h, Comparison of AML samples with/without DNMT3A R882
showing DNMT3A mutant-to-wildtype ratio of methylation at TSS overlapping PRC2 ChIP-seq peaks or non-overlapping CpG
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rich TSS as control. P-value from two-sided Wilcoxon rank sum test. HSPC, hematopoietic stem progenitor cells; IMP, immature
myeloid progenitor; NP, neutrophil progenitor; M/D, monocytic/dendritic cell progenitors; EP, erythroid progenitor; WT,

wildtype; MUT, mutant; NA, not assignable.

hypomethylation of enhancer regions!08 (P = 7.29 x 10-8,
linear mixed model, Fig. 4d) as well as global
hypomethylation in DNMT3A R882 cells compared to
wildtype cells (P = 2.92 x 103, linear mixed model,
Extended Data Fig. 8c-d, online methods). Thus, we
demonstrated that the methylation of regulatory regions
is affected by DNMT3A R882 mutations in human CH.
Interestingly, prior in vitro studies suggested that CpH
sites may be hypermethylated in DNMT3A4 R882H. Our
data revealed no significant difference, and an opposite
trend (Extended Data Fig. 8e), further highlighting the
significance of examining primary human cells.

Differentially methylated regions (DMR) analysis
identified 269 promoters to be significantly
hypomethylated considering the observed global
hypomethylation (P < 0.05 and at least 5% loss in
methylation, Fig. 4e, Extended Data Fig. 8f
Supplementary Table 5, see online methods for
statistical modeling to identify promoters with
preferential hypomethylation that explicitly models
samples as a variable). Gene set enrichment analysis of
these genes identified enrichment of targets of the PRC2
(FDR-adjusted P < 0.2, GSEA with MSigDB C2: CGP gene
set, Fig. 4e, Supplementary Table 6, online methods).
As an orthogonal approach, we performed differential
methylation analysis of chromatin immunoprecipitation
sequencing (ChIP-seq) peaks (ENCODE database109) that
overlap with TSS regions. This approach also identified
the targets of PRC2 components SUZ12 and EZH2 to be
differentially hypomethylated (Fig. 4f), as well as that of
GATAZ2, involved in ME differentiation. As ENCODE ChIP-
seq tracks reflect aggregation across several cell types,
we validated that preferential hypomethylation
specifically impacted regions marked by H3K27me3,
H3K4me3 bivalency in human hematopoietic
progenitors, by intersecting the ENCODE ChIP-seq
tracks with bivalent peaks in CD34+ cells!i0 (Fig. 4g,
Supplementary Table 7, for per-sample data see
Extended Data Fig. 8g). This finding is consistent with
previous data showing that germline gain-of-function
mutations in DNMT3A result in the reciprocal
hypermethylation of PRC2 targets, leading to premature
differentiation programs!il. Furthermore, PRC2 targets
exhibit significant overlap with previously reported
methylation canyons, shown to undergo preferential
hypomethylation upon Dnmt3a loss!i2 (98% of canyons
harbored a PRC2 target compared with 16% of canyons
harboring peaks of a size-matched set of random
genomic intervals, P < 10-10, Fisher exact test)!13.
Notably, while gene expression changes in PRC2 targets
were not observed between mutated and wildtype cells

from the GoT data (P = 0.42, linear mixed model,
Extended Data Fig. 8h), this may be expected given that
PRC2-repressed genes that gain DNA methylation may
only switch between different silencing states.
Nonetheless, DNA methylation of PRC2 targets has been
shown to reinforce gene silencing!14-116, and thus
mutated DNMT3A mediated hypomethylation of PRC2
targets may poise mutated progenitors to aberrant
reactivation of stem cell maintainers, as seen in a PRC2
deficient mouse model!?7.

Finally, to determine whether CH hypomethylation of
PRC2 targets persists through progression to AML, we
compared the methylation status of PRC2 targets (online
methods) between DNMT3A R882 mutated AML (n = 7)
and DNMT3A wildtype AML (n = 6, both groups with
NPM1 mutations!05, Supplementary Table 8). We
found that compared with DNMT3A wildtype AML,
DNMT3A R882 mutated AML demonstrated preferential
hypomethylation at promoters of PRC2 targets
compared to promoters with similar CpG content (P =
0.0087, online methods, Fig. 4h, Extended Data Fig. 8i).
To determine whether the preferential hypomethylation
of PRC2 targets may be robust against various co-
occurring mutations, we compared the methylation
rates of PRC2 targets in DNMT3A wildtype (n = 122)
versus DNMT3A R882 mutated AML (n = 9) with
heterogeneous mutation status from The Cancer
Genome Atlas (TCGA)!18 and identified similar results as
observed in the NPM1-mutated AML (Extended Data
Fig. 8j). These results demonstrated that mutated
DNMT3A-mediated hypomethylation of PRC2 targets is
maintained through evolution to AML, further
supporting it as a potential mechanism for enhanced
self-renewal, from clonal hematopoiesis to frank
malignancy.

DNMT3A R882 displays differential
methyltransferase activity as a function of CpG
flanking sequence

We hypothesized that mutated DNMT3A R882 may
further display differential methyltransferase activity,
depending on the flanking sequence context of the CpG
dinucleotide19.120, Indeed, CpGs within DMRs defined
CpG motifs that are particularly hypomethylated
(disfavored) in mutated versus wildtype human CD34+
cells (online methods, Fig. 5a, Extended Data Fig. 9a).
Of note, CpGpT was particularly associated with
hypomethylation (Fig. 5a, Extended Data Fig. 9a),
consistent with in vitro enzymatic studies of DNMT3A
R882 variants!19120 (Extended Data Fig. 9b,c).
Importantly, this CpG flanking motif was enriched in the
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binding motifs of specific TFs expressed in
hematopoietic progenitors (Fig. 5b). These included key
regulators of hematopoiesis such as MYC/MAX, whose
activities are known to be negatively impacted by DNA
methylation of their binding motifs!2t122, and were
found to have increased target expression in mutated
cells (Fig. 3c,d). Other key transcription regulators
included HIF1A (and its cofactor ARNT), whose binding
is facilitated by demethylation of the binding motif!23;
HIF1A/ARNT are critical factors for HSC quiescence,
through maintenance of the anaerobic glycolysis-
dependent metabolic activity in the bone marrow
niche124-130, USF1/2 were also among the highlighted
TFs, which have been shown to regulate chromatin
architecture in erythroid differentiation and the beta-
globin locus131132, [n further support for a model in
which preferential hypomethylation of the specific
sequence motif underlies transcriptional dysregulation,
we observed enrichment of the hypomethylated CpG
flanking sequence in regions surrounding genes
upregulated in mutated HSPCs and EPs (Fig. 5c,
Extended Data Fig. 9d-f).

To validate the impact of mutated DNMT3A on TF
activation, we collected Lin-, c-Kit+ hematopoietic stem
and progenitor cells from mice with and without Dnmt3a
R878H (the murine R882H equivalent; no. of mice = 3 in
each cohort)5t. While recent progress has been made in
single-cell chromatin binding assays133-135, the ability to
determine the weaker signal of TF binding in single cells
remains a challenge. We therefore performed a
chromatin accessibility assay, shown to be a reliable
surrogate for determining TF activity!3é, on single nuclei
(n = 46,496 cells, Fig. 5d, Extended Data Fig. 10a-d).
Confirming our findings in human CH, we found that the
accessibility of the DNMT3A  R882-specific
hypomethylated motif was increased in R878H cells,
across clusters, including in HSPCs, and particularly in
EPs (Fig. 5e,f, Extended Data Fig. 10e-g), whereas
shuffled versions of the hypomethylated motif, with or
without a CpG, displayed lower difference in
accessibility = between mutated and  wildtype
progenitors. Candidate TFs with high similarities scores
in their binding motif with the hypomethylated motif,
including MYC/MAX, HIF1A/ARNT, USF1/2, displayed
enhanced accessibility in R878H compared with
wildtype progenitors, across multiple progenitor
subsets (Fig. 5f, Extended Data Fig. 10g). The myeloid
progenitors were particularly impacted, whereas the
lymphoid progenitors showed little to no significant
difference in accessibility for these TF binding motifs
(Extended Data Fig. 10g), suggesting overactivity of
these TFs may play a role in the myeloid differentiation
bias. While Dnmt3a R878H HSPCs displayed a more
modest increase in chromatin accessibility, this may be

due to the global open chromatin in stem cells reducing
the ability to measure specific enrichments!37.138,
Overall, as chromatin accessibility has been
demonstrated to accurately reflect TF activity!3¢, these
data provided further evidence for the model in which
the DNMT3A mutation enhances the activity of TFs
whose binding motifs are prone to hypomethylation
through enrichment in the hypomethylated sequence
motif. This model then provides the basis of enhanced
MYC/MAX target gene expression in the DNMT3A
mutated cells observed in the GoT data (Fig. 3c,d),
despite no expression increase in the MYC gene itself
(Extended Data Fig. 7b). With respect to PRC2 targets,
although hypomethylation of PRC2 target genes were
observed, we observed no differential increase in
expression in mutated cells (Extended Data Fig. 8h)
and no enhanced accessibility of PRC2 targets in the
mutated cells from mouse snATAC-seq data (Extended
Data Fig. 10h).

As further confirmation of our proposed model, we
found that HIF1A/ARNT and MYC/MAX binding motifs
were hypomethylated in CH mutated cells compared to
wildtype progenitors in the single-cell multi-omics data
(P =27 x 104and P = 1.7 x 102, respectively, linear
mixed model, Fig. 5g,h). Moreover, as MYC targets were
upregulated in CH mutated cells in the GoT data, we
leveraged our single-cell multi-omics approach to
directly link the expression of MYC/MAX targets with the
level of DNA methylation of MYC/MAX target promoters
within the same cells (see online methods). Indeed, the
expression of MYC/MAX target genes was negatively
correlated with mean methylation of their binding sites
(P = 3.2 x 1018, generalized linear model, Fig. 5i),
consistent with prior studies indicating that
hypomethylation of binding motifs enhances MYC
binding121.122,139140, Thus, our single-cell multi-omics
profiling provides a potential model for the observed
transcriptional aberration in human DNMT3A mutated
CH, supporting enhanced fitness of DNMT3A mutated
cells via selective hypomethylation of key hematopoietic
TF binding motifs.

DNMT3A-mutated CH bone marrow sample
corroborates results from stem cell graft CH samples

To confirm that the findings we observed in the CH
samples were generalizable to CH not exposed to G-CSF
or prior chemotherapy, we obtained a bone marrow
sample from a patient without any underlying
hematologic disorders with a DNMT3A4 R882H mutation
(CHO5). We sorted for CD34+ cells and performed GoT as
we had done for CH01-CHO04 samples (n = 5,770 cells).
Although a low genotyping efficiency limited the
comparisons between mutated and wildtype cells within
the same sample (n = 687 genotyped cells), this sample
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Figure 5. DNMT3A R882 displays flanking sequence specificity associated with MYC binding motif. a, Motif logo for the
odds ratio of base frequency of the flanking positions (N-1, N-2, N+1, N+2) of CpG sites. Odds ratios were calculated based on
the flanking regions of CpG sites hypomethylated or hypermethylated in DNMT3A R882 mutant compared with wildtype
hematopoietic progenitors (online methods). b, Similarity score between the hypomethylated motif of DNMT3A R882 (Fig. 5a)
and TF binding motifs in the HOCOMOCO v11 collection of human TF binding motifs. Relevant transcription factors with
expression level in HSPCs > 0.5 and motif similarity > 0.5 are labeled. ¢, Frequencies of DNMT3A R882 hypomethylated motif
within 30 kb of TSS of the differentially expressed genes between MUT and WT cells in HSPCs and EPs (identified in GoT data,
Fig. 3a,c, see Extended Data Fig. 9d for other progenitor subsets, Extended Data Fig. 9e for 10 kb and 50 kb of TSS, and
Extended Data Fig. 9f for data accounting for CpG content). P-values were calculated by Wilcoxon rank sum test. d, UMAP
dimensionality reduction of murine wildtype (n = 3 mice) and Dnmt3a R878H (n = 3 mice) Lin-, Kit* snATAC-seq data showing
progenitor cluster annotation and representative progenitor gene marker accessibility (n = 46,496 cells). e, UMAP showing
accessibility deviation as calculated with chromVar for hypomethylated motif (left) and shuffled motif (right, z-scores). f,
Bonferroni FWER-adjusted P-values for accessibility changes between wildtype and Dnmt3a R878H cells by progenitor
identities for hypomethylated motif and negative control shuffled motifs (with/without CpG), as well as binding motifs of the
TFs identified in Fig. 5b. g, Comparison of single cell average methylation of ARNT binding motifs (intersected with ARNT ChIP-
seq peaks, ENCODE hg38 Tf clusters) between wildtype and DNMT3A R882 mutant hematopoietic progenitor cells. P-values
from likelihood ratio test of LMM with /without mutation status. h, Comparison of single cell average methylation of MYC binding
motifs (intersected with MYC ChIP-seq peaks, ENCODE hg38 Tf clusters) between wildtype and DNMT3A R882 mutant
hematopoietic progenitor cells. P-values from likelihood ratio test of LMM with/without mutation status. i, Relative expression
per cell (AUC) of MYC downstream targets inferred using the SCENIC package (online methods) as a function of average MYC
motif methylation. Correlation coefficient R calculated using Pearson's Correlation. P-value derived from GLM. HSPC,
hematopoietic stem progenitor cells; MP, multipotent progenitors; IMP, immature myeloid progenitors; LMPP, lympho-myeloid
primed progenitors; CLP, common lymphoid progenitor; EP, erythroid progenitor; MkP, megakaryocytic progenitor; NP,
neutrophil progenitor.

consisted of mostly mutated cells with a high VAF (0.4),
enabling a direct comparison to previously published
healthy control CD34+ bone marrow cells (n = 39,082
cells, Supplementary Table 9, online methods)141.142,
We batch-corrected and integrated across the samples
as previously described#4 (Fig. 6a,b, Extended Data Fig.
11a-e). We first determined whether the bone marrow
CH IMPs may display the lineage biases as previously
observed in the CHO1-CHO04 samples. Consistent with
those results, the IMPs from CHO5 demonstrated
skewing toward the ME versus GM state, compared to
the control bone marrow CD34+ cells (Fig. 6¢, Extended
Data Fig. 12a-c). Next, we assessed the progenitor-
specific differentially expressed genes identified in the
CHO1-CHO04 samples and confirmed the expected
increased or decreased expression for the differentially
upregulated or downregulated genes in mutated cells,
respectively, in CHO5 progenitors, compared to control
progenitors (data for HSPCs and EPs in Fig. 6d,
Extended Data Fig. 12d,e, see other progenitors in
Extended Data Fig. 12f). Furthermore, we observed an
enrichment of the MYC/MAX target genes in the CHO5
progenitors compared to the control progenitor cells
(Fig. 6e), again most pronounced within the EPs.
Intriguingly, the CHO5 cells integrated evenly across
progenitor subsets with control CD34+ cells except for a
subcluster of EPs (EP2, Fig. 6a-b, Extended Data Fig.
12g). We suspected that the MYC/MAX target gene
expression may be particularly impacted in this aberrant
cluster and identified this to be the case (Fig. 6e, right).
While the low genotyping efficiency limited our ability to
make within cluster mutated versus wildtype

comparisons in this sample, we were able to confirm
across clusters the increased expression of differentially
upregulated genes identified in more than one
progenitor subset (Extended Data Fig. 12h-j, genes
from Fig. 3b). Lastly, to test whether CD9 protein
expression was impacted by the upregulation of the gene
expression observed in the mutated HSPCs from CHO1-
CHO4, we incorporated protein expression in this sample
through CITE-seq!43. As CD9 expression has been linked
with megakaryocytic differentiation priming5%60, we
examined CD9 protein expression in the in the early
CD34+, CD38low hematopoietic stem and progenitor cells
along the megakaryocytic differentiation trajectory and
observed an increased CD9 expression in mutated
compared with wildtype cells (Extended Data Fig.
12k,1).

To test the chromatin accessibility of TF motifs (as a
surrogate for TF activity) that bear high similarity to the
DNMT3A R882 hypomethylated motif directly in this CH
sample, we extended GoT to the 10x Multiome
(ATAC+RNA) platform and applied it to sorted CD34+
nuclei (Fig. 6f, Extended Data Fig. 13a-c, n = 3,824
nuclei, note that the transcriptome data failed QC
metrics and was not used downstream). As genotyping
efficiency depends on mRNA abundance, the lower
mRNA abundance in nuclei limited genotyping. We
therefore again took advantage of the high VAF (~80%
cells are mutant) and showed that across these cells, the
accessibility of the hypomethylated motif - as well as
those of MYC/MAX, HIF1A/ARNT, USF1/2/TFE3 - was
increased compared to a shuffled motif and that of MYB,
which may serve as an additional negative control (Fig.
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Figure 6. Bone marrow clonal hematopoiesis progenitor cells display megakaryocytic-erythroid differentiation bias,
MYC target gene expression, and enhanced accessibility for the R882 hypomethylated motif. a, UMAP of CD34+ cells (n =
44,782 cells) for scRNA-seq data from a clonal hematopoiesis sample (CH05) and previously published five control bone marrow
samples (BM01-05), labeled with cluster assignments. b, UMAP of CD34+ cells (n = 44,782 cells) labeled with CH (n = 5,770) or
control (n = 39,082) status. ¢, Megakaryocytic-erythroid module scores in control versus CH IMPs (left, Supplementary Table
2) granulocytic-monocytic module scores in control versus CH IMPs (right, Supplementary Table 2). P-values were calculated
from likelihood ratio test of LMM with/without CH status. d, Module scores for differentially down- or up-regulated genes in
mutant DNMT3A HSPCs and EPs (identified in GoT data, Fig. 3a,c) in control versus CH HSPCs and EPs. e, Local regression of
normalized expression levels as a function of pseudotime of MYC/MAX targets (differentially upregulated in Fig. 3c) for control
and DNMT3A R882 CH cells. Shading denotes 95% confidence interval. Histogram shows cell density of clusters included in the
analysis, ordered by pseudotime. Boxplot shows comparison of module scores between control and CH cells within the two EP
clusters. P-value calculated from likelihood ratio test of LMM with/without CH status. f, UMAP dimensionality reduction of
CD34+ cells (n = 3,824 cells) for snATAC-seq data from a clonal hematopoiesis sample (CHO5) depicting the cell cluster
assignment and cell type labels. g, Motif accessibility z-scores for shuffled, hypo-methylated motif and relevant transcription
factors for the HSPC cluster (n = 788 cells). P-values correspond to Wilcoxon rank sum test between accessibility of the shuffled
motif and the indicated motif. h, UMAP projection of genotype assignment for WT (n = 135 cells) and MUT (n = 160 cells). i,
Motif accessibility z-score comparison for either hypo-methylated or shuffled motifs between WT (n = 135 cells), MUT (n = 160
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cells). P-values were calculated by Wilcoxon rank sum test. HSPC, Hematopoietic stem and progenitor cell; IMP- ME, immature
myeloid progenitor with megakaryocytic/erythroid bias; IMP-GM, immature myeloid progenitor with granulocyte/monocyte
bias; LMPP, Lymphoid-myeloid pluripotent progenitor; MkP, Megakaryocyte progenitor; NP, Neutrophil progenitor; CLP,
Common lymphoid progenitor; Pre-B1/2, Pre-B cell progenitor; EP1/2, Erythroid progenitor.

6g). The accessibility of the hypomethylated motif
increased with erythroid differentiation but not with
lymphoid differentiation, consistent with the
importance of these highlighted TFs in erythroid
differentiation (Extended Data Fig. 13d,e). Finally,
even within the limited number of genotyped cells, we
observed that the accessibility of the hypomethylated
motif was increased overall in the mutated cells
compared to the wildtype-enriched population (Fig.
6h,i). In summary, these findings in a bone marrow
DNMT3A-mutated CH sample, not complicated by
exposure to G-CSF or prior chemotherapy, corroborated
the findings in samples CHO1-CHO04, suggesting that the
comparisons between mutated and wildtype cells within
the same individuals are indeed robust to the potentially
confounding extrinsic factors and are largely
generalizable to steady-state DNMT3A R882-mutated
CH.

Discussion

We present an unbiased profiling of the downstream
effects of somatic driver mutations in clonal mosaicism
of normal human tissue, focusing on DNMT3A mutations
in clonal hematopoiesis. Hitherto, extensive genetic
profiling across normal tissues has been performed to
document the striking mosaicism that result from
pervasive age-related acquisition of somatic mutations?!-
5. For example, a landmark study of morphologically
normal skin from the eyelids of four individuals
identified ~140 mutations per square centimeters.
Importantly, while these studies have demonstrated that
mutations in cancer drivers are particularly prevalents,
the downstream effects of cancer driver mutations that
enable clonal outgrowths in normal human tissue are
largely unknown.

Similarly, CH is a prevalent phenomenon in physiological
hematopoietic aging fueled by driver mutations linked
with myeloid neoplasms. However, the downstream
consequences of these mutations in normal human
hematopoietic progenitors are largely unknown.
Previous studies leveraged rare germline mutations in
small cohorts of patients to study the downstream
perturbations of these mutations!04111, For example, by
examining mature blood cells from an individual with
Tatten-Brown-Rahman Syndrome (TBRS) due to a
germline DNMT3A R882H mutation, with a sibling
control94, the Ley group demonstrated focal
hypomethylation, including of CpG islands, consistent

with our findings. More recently, the Goodell group
studied the effects of DNMT3A R771Q mutation by
transforming primary cells into a lymphoblastoid cell
line (LCL) from an early embryonal mosaic individual!44,
demonstrating significant overlap in hypomethylated
regions in these DNMT3A R771Q LCLs and DNMT3A
mutated AML.

Nonetheless, we previously lacked the ability to directly
compare mutated and wildtype progenitors in human
CH in their native context. Specifically, two obstacles
challenge the study of CH mutation impact directly in
primary patient samples. First, CH specimens with
enriched human hematopoietic progenitors are scarce,
as individuals with CH have no current clinical indication
for a bone marrow biopsy. To circumvent this limitation,
we pursued an alternative approach to profile CH
mutated cells in stem cell graft products obtained from a
cohort of MM patients in remission!4> and identified one
DNMT3A R882H CH bone marrow specimen without G-
CSF exposure or a potentially confounding cancer
diagnosis to validate our findings. Second, mutated cells
are admixed with wildtype in the hematopoietic
progenitor pool and are morphologically and
phenotypically indistinct. Thus, mutated cells cannot be
isolated from wildtype cells for downstream analysis.
We overcame this challenge by leveraging single-cell
multi-omics that enabled us to profile the
transcriptomes and epigenomes, together with the
genotype information, of these single cells.

The application of the GoT approach3® enabled high-
resolution mapping of DNMT3A R882 mutated cells to
the hematopoietic differentiation tree to reveal
differentiation = skewing, even Dbefore clinically
observable changes in blood counts. We observed a
myeloid over lymphoid bias, consistent with prior
murine studies5!, and the strong association of this
genotype with myeloid versus lymphoid neoplasms. We
further identified expansion of mutated IMPs and ME-
biased IMPs. Enrichment of mutated cells in IMPs was
linked with a specific increase in proliferation compared
to wildtype cells. Notably, myeloid-bias has been linked
with proinflammatory signalingé4146, and thus a
proinflammatory state in mutated HSPCs (i.e. as
evidenced by the overexpression of TNFRSF4, TYROBP,
FCER1G) may also contribute to the enrichment of
mutated cells in IMPs. Mutated IMPs further displayed a
megakaryocytic-erythroid lineage bias, with enhanced
transition probability of mutated IMPs to differentiate
into IMP-MEs, consistent with our previous study in
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Dnmt3a KO mouse model54, as well as a Dnmt3a R878H
model showing increased platelet countsé.

As DNMT3A R882-induced changes in DNAme are
globally distributed across the genome, we sought to
understand how stochastic DNAme changes can be
translated into deterministic outputs, especially with
respect to differentiation skews. We found that the
DNMT3A R882 variants displayed a CpG sequence motif
specificity, disfavoring CpGs with T at the N+1 position,
consistent with deep enzymology assays!19. Notably, this
hypomethylated CpG flanking motif bore high similarity
to the binding motifs of key hematopoietic TFs, such as
MYC/MAX, HIF1A/ARNT, USF1/2, providing a
mechanistic model for enhanced MYC activity observed
in our GoT data. This model was supported by mouse
Dnmt3a R878H and, critically, human CH bone marrow
data in which snATAC-seq of hematopoietic progenitors
revealed enhanced accessibility of the hypomethylated
motif and importantly of the MYC/MAX, HIF1A/ARNT,
USF1/2 binding motifs. The accessibility changes
associated with the hypomethylated motif were
specifically pronounced in myeloid versus lymphoid
progenitors, suggesting that these molecular
consequences may play a role in differentiation biases.
Furthermore, our single-cell multi-omics platform
further enabled us to identify that cells with
hypomethylation of MYC/MAX binding motifs showed
increased expression of their transcriptional targets
within the same cells, consistent with previous reports
that demonstrated the negative impact on MYC activity
imparted by the methylation of its binding
motif121,122,139,140, These data revealed how modest,
global, stochastically distributed DNAme changes can be
translated into phenotypic skews. Through differences
in the enrichment of CpG flanking sequence density of TF
DNA binding motifs, subtle global DNAme changes
affecting hundreds of binding sites can modulate TF
output to result in reshaping of the differentiation
landscape5*.

We further identified preferential hypomethylation of
PRC2 targets. While the relationship between PRC2-
mediated histone methylation and DNA methylation is
not fully understood, DNA methylation may serve to
“lock in” gene silencing with a mechanism with more
robust mitotic inheritancel4’. PRC2 targets in stem cells
include pluripotency/stemness genes!48-150, and are
enriched for bivalent H3K27me3/H3K4me3
marks151152, suggesting that PRC2 results in “poising”
rather than in complete silencing at those sites. In
contrast, more differentiated cells reinforce gene
silencing by increasing the length of H3K27me3
domains, or through complementary silencing
mechanisms including DNA methylation!14-116, Thus,

while PRC2 targets are broadly suppressed in stem cells,
some leaky transcription may still occur, compared to
PRC2 targets that have also underwent DNA
methylation. This nuanced model posits that PRC2
targets DNA hypomethylation in DNMT3A mutated
progenitors, may allow for their re-activation in
response to stimuli, as another candidate mechanism for
enhanced self-renewal through de-repression of stem
cell programs. As activation of stem cell markers such as
those repressed by the polycomb group proteins have
been implicated in endowing cancer with stem-like
properties!s3, our data points to poising of PRC2 targets
as a potential mechanism for enhanced stem cell renewal
upon malignant transformation. While PRC2 deficiency
has been reported to lead to overexpression of stem cell
maintainers such as HoxC4 and inhibitors of
differentiation such as Sox7 and Id2 in a murine model
(Eed KO), as well as relative expansion of LT-HSC117, Eed
KO cells also showed reduced competitive repopulating
capacities with pro-apoptotic predisposition!!?. These
data suggest that PRC2 target activation of self-renewal
requires cooperation of an oncogenic TF such as MYC to
counterbalance the proapoptotic effects and support
clonal expansion in DNMT3A R882 cells. In support of
this model, a recent work in mice demonstrated that
while Ezh2 KO itself had little impact on hematopoiesis
(likely due to redundant homologs), Ezh2 KO together
with a compounding oncogenic driver (Nras G12D)
promoted myeloid malignancy with activation of
stemness genes!54. Interestingly, Nras G12D alone
promoted GM over ME bias, but in the double EzhZ2 KO,
Nras G12D mutated model, hematopoiesis was shifted
toward ME over GM, suggesting that the PRC2
aberrations may indeed play a role in the observed ME
bias (in addition to the better-established role of MYC in
ME differentiation)!54.

A potential limitation of our study of stem cell grafts is
the exposure to G-CSF used in stem cell mobilization
from patients with MM (of note, patients were not
subject to other mobilization agents, such as CXCR4
antagonists or cyclophosphamide). Nonetheless, our
analyses uniquely compared mutated and wildtype cells
within the same sample, which were equally subjected to
G-CSF. Indeed, our CHO5 bone marrow aspirate sample
from an individual with CH and no cancer diagnosis
confirmed the major findings of the study, showing that
comparing mutated versus wildtype cells from the same
individuals is robust to the potential extrinsic
confounders. For example, although G-CSF stimulates
granulocytic differentiation and proliferation?55, we
were still able to capture the megakaryocytic-erythroid
bias in the early mutated progenitors. Importantly, G-
CSF is especially effective in mobilizing quiescent
murine HSCs, without inducing proliferationtse.
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Interestingly, in the context of cell line models of
DNMT3A R882, G-CSF induced a differentiation block in
vitro in one study34 and GM-CSF masked the proliferative
effects of the mutation in another!5’. Although these
results were observed in cell lines, and thus the
applicability to human CH is less clear, these data
suggest that G-CSF may serve as a confounder. In this
context, our validation of the major findings in a CH
sample without exposure to G-CSF is of particular
importance.

Another limitation results from the incomplete capture
of the heterozygous allele in our GoT cDNA amplicon
method due to low expression (median of 1 amplicon per
genotyped cell, range 1-4 UMIs per cell). This is likely to
result in misclassification of some mutated cells as
wildtype cells. Nonetheless, as this is expected to
diminish mutation-specific signals, the mutation-specific
aberrations reported herein may likely have an even
stronger effect size. Another limitation of the study is the
sample size, due to the rarity of available samples. In this
context, it is important to note that intensive profiling of
a small number of samples (e.g. mutational profiling of
normal eyelid samples from four individuals® or
epigenetic profiling of one TBRS patient with germline
DNMT3A R882H mutation04) have shown that
fundamental insights can be gained from these cases,
directly in human samples. Our single-cell multi-omics
profiling of thousands of progenitors, directly comparing
mutated and wildtype cells within the same individuals,
thus enabled us to highlight reproducible gene
expression perturbations and epigenetic underpinnings,
that were supported by evidence from published reports
and murine data.

Altogether, we report the first direct examination of the
molecular consequences of DNMT3A R882 mutations in
primary CD34+ cells in human CH. These studies allowed
us to directly superimpose the differentiation
topographies of mutated and wildtype hematopoietic
progenitors, co-existing within the same individuals. We
identified key epigenetic and transcriptional aberrations
that reshape the differentiation topography and
contribute to clonal expansion in the most nascent stage
of neoplasia. These data also demonstrate the power of
emerging single-cell multi-omics methods58-161 to pave
the road towards defining how mutations drive normal
tissue mosaicism in human somatic evolution.
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METHODS
Patient samples

The study was approved by the local ethics committee
and by the Institutional Review Board (IRB) of Weill
Cornell Medicine, University of Chicago and Dana Farber
Cancer Institute conducted in accordance to the
Declaration of Helsinki protocol. All patients provided
informed consent. Cryopreserved G-CSF mobilized stem
cell grafts (without additional mobilizing agents such as
plerixafor or cyclophosphamide) from patients in
remission for multiple myeloma, with documented
DNMT3A R882 mutations were retrieved after
interrogating a cohort of 136 patients with CH#0. See
Supplementary Table 1 for clinical information.
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Cryopreserved grafts were thawed and stained using
standard procedures (10 min, 4°C) with the surface
antibody CD34-PE-Vio770 (clone AC136, Ilot#
5180718070, dilution 1:50, Miltenyi Biotec) and DAPI
(Sigma-Aldrich). Cells were then sorted for DAPI-
negative, CD34+ cells using BD Influx at the Weill Cornell
Medicine flow cytometry core.

Mouse Models

All animals were housed at Memorial Sloan Kettering
Cancer Center (MSKCC). All animal procedures were
completed in accordance with the Guidelines for the
Care and Use of Laboratory Animals and were approved
by the Institutional Animal Care and Use Committees at
MSKCC. The Dnmt3a R878H mouse model has been
described previously5!, and was crossed to the Tall-
creERT2 transgenic model to allow for inducible control
of the R878H mutation within the hematopoietic
systeml62, To induce recombination of the conditional
alleles, age and gender-matched 10-16 week old Tall-
creERT2 control mice and Dnmt3a R878H Tall-creERT2
mice were treated with tamoxifen (4 mg/kg/day;
Cayman Chemical, Ann Arbor, Michigan) for 2 doses,
separated 2 days apart. The mice were sacrificed 4-8
weeks after tamoxifen-induction. Primary mouse bone
marrow (BM) cells were isolated into cold phosphate-
buffered saline (PBS), without Ca?* and Mg?+*, and
supplemented with 2% bovine serum albumin (BSA) to
generate single cell suspensions. Red blood cells (RBCs)
were removed using ammonium chloride-potassium
bicarbonate (ACK) lysis buffer, resuspended in PBS/2%
BSA, and filtered through a 40um cell strainer. Total
nucleated cells were quantified by Vi-Cell XR cell counter
(Beckman Coulter, Brea, CA) and used for downstream
data production.

Genotyping of Transcriptomes (GoT)

Genotyping of Transcriptomes was performed as
previously described38. The standard 10x Genomics
Chromium 3’ (v.3 chemistry) libraries were carried out
according to manufacturer’s recommendations for the
generation of scRNA-seq libraries (Fig. 1a). At the cDNA
amplification step, 1 uL of 1 uM spike-in primer (5’ -
GAGGTCAAACTCCATAAAGCAGGGC- 3’) was added to
increase the yield of DNMT3A cDNA. After cDNA
amplification and cleanup with SPRI beads, 25% of the
cDNA underwent the standard 10x protocol per
manufacturer recommendations. The unused cDNA was
stored and 10% was subsequently used for targeted
genotyping. For locus-specific amplification (GoT), two
serial PCRs were performed with nested reverse primers
(5" -CTTATGGTGCACTGAAATGGAAAGGG - 3’ and 5’ -
CCTTGGCACCCGAGAATTCCAGGTTTCCCAGTCCACTATA
CTGACG - 3’) and the generic forward SI-PCR were used
to amplify the site of interest from the cDNA template

(10 PCR cycles each). The second locus-specific reverse
primer contains a partial [llumina TruSeq Small RNA
read 2 handle and a locus-specific region to allow
specific priming. The SI-PCR oligo (10x Genomics)
anneals to the partial [llumina TruSeq read 1 sequence,
preserving the cell barcode (CB) and unique molecule
identifier (UMI). After these rounds of amplification and
SPRI purification to remove unincorporated primers, a
third PCR was performed with a generic forward PCR
primer (P5_generic, 5 -
AATGATACGGCGACCACCGAGATCTACAC - 3’) to retain
the CB and UMI together with an RPI-x primer (Illumina)
to complete the P7 end of the library and add a sample
index (6 cycles). The targeted amplicon library was
subsequently spiked into the remainder of the 10x
library to be sequenced together on a NovaSeq
(Illumina). The cycle settings were as follows: 28 cycles
forread 1,98 cycles for read 2, 8 cycles fori7 and 8 cycles
for i5 sample index.

10x scRNA-seq data processing, alignment, cell-type
classification and clustering

10x data were processed using Cell Ranger (v3.0.1) with
default parameters. Reads were aligned to the human
reference sequence hg19. The genomic region of interest
for genotyping was examined to determine how many
UMIs with the targeted sequence were present in the
conventional 10x data. The Seurat package (v.3.1) was
used to perform unbiased clustering of the CD34+ sorted
cells from patient samplesté3. In brief, for individual
datasets, cells with UMI < 200 or UMI > 3 median
absolute deviations from the median UMI, or
mitochondrial gene percentage > 20%, were filtered.
The data were log-normalized using a scale factor of
10,000. Before clustering, the individual datasets (CHO1-
CHO4) were integrated and underwent batch-correction
within Seurat, which implements canonical correlation
analysis and the principles of mutual nearest neighbor44.
Recommended settings were used for the integration
(30 canonical correlation vectors for canonical
correlation analysis in the FindIntegrationAnchors
function and 30 principal components for the anchor
weighting procedure in IntegrateData function).
Following integration, potential confounders
(specifically, number of UMIs per cell, proportion of
mitochondrial genes, and patient sex) were regressed
out of the data before principal component analysis was
performed using variable genes using recommended
settings (i.e. top 2000 variable genes using variance
stabilizing transformation)#4. The first statistically
significant 30 principal components were used as inputs
to the UMAP algorithm for cluster visualizationl64.
Clusters were manually assigned on the basis of
differentially expressed genes using the FindAllMarkers
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function using default settings (using all genes that are
detected in a minimum of 25% of cells in either of the
two comparison sets as input, and log-transformed fold
change of 0.25 as the threshold). We identified 20
clusters in the integrated data, which were annotated
according to canonical lineage markers identified
previously in single-cell RNA-seq data of normal
hematopoietic progenitor cells53. These clusters were
collapsed into 11 main progenitor subsets based on
expression of levels of these canonical markers
(Extended Data Fig. 3b,c). Pseudotime analysis was
performed using the Monocle3 R package using
recommended parameters (v.0.2.1, Extended Data Fig.
4d) 50. In order to specify the initial cluster of the
pseudotime trajectory, we identified the cluster with the
highest expression level of the HSPC gene module (Fig.
1b, Supplementary Table 2). The Slingshot R package
(v.1.6.1) was used to isolate the minimum spanning tree
for the LMPP and CLP subset of cells (Fig. 2a) with
default parameters.

IronThrone GoT for processing targeted amplicon
sequences and mutation calling

Analysis of the GoT library was carried out as described
previously38. Briefly, amplicon reads were assessed for
presence of the primer sequence and the expected
sequence between the primer and the mutation site.
Reads were also assessed for matching to the cell
barcode list of the 10x dataset. A mismatch of 20% was
allowed for all sequence matching steps. Only UMIs with
at least 2 or more supporting reads were retained for
final genotyping assignments. A few key improvements
to our IronThrone pipeline (v.2.1) are detailed below.

First, parallelization was implemented to increase
runtime efficiency for larger sequencing libraries?é5. The
amplicon library of paired reads was shuffled and
subsetted into smaller groups of reads (default 125,000
reads/group). Then, the original IronThrone algorithm
was run on each one of these groups. This step has been
parallelized using both GNU Parallel tools for local
interactive operation, as well as options for Slurm-
managed high-performance compute clusters. OQutput
tables from these runs are finally concatenated by cell
barcode.

Second, we improved the UMI counting of the amplicon
reads by removing ‘pseudo’-UMIs introduced by PCR
and sequencing errors (that would result in a false
increase in the number of UMIs). Based on previously
published work#2, we implemented a network-based
UMI collapsing algorithm to aggregate amplicon reads
that likely originated from the same UMI in the original
10x library. Briefly, pairwise Levenshtein distances were
calculated between all UMIs paired within a single cell
barcode, and “matches” between UMIs were identified as

UMI pairs with a Levenshtein distance below a
predetermined threshold (default = ceiling(0.1 * UMI
length), or 2 bases for a 12 base UMI). The UMI with the
greatest number of matched UMIs was determined to be
the initial UMI. The number of supporting reads for these
UMI groups was summed together and attributed to that
initial UMI with the most matches. This process was then
repeated for the UMI with the next highest number of
matches until no additional collapsing was possible. This
improved pipeline was applied to the previously-
described species mixing experiment38, demonstrating a
significant improvement in the removal of aberrant
genotyping UMIs (see Results, Extended Data Fig. 1e).

Following UMI collapse, genotype assignment of
individual UMIs was conducted as described previously
with majority rule of supporting reads for wildtype or
mutant status. Rare UMIs with an equal number of
mutant and wildtype reads were removed as ambiguous.
Additionally, to remove reads that result from PCR
recombination38, UMIs in the amplicon library that
match UMIs of non-DNMT3A genes in the gene
expression library were discarded. Of note, the latter
likely PCR-recombination events were associated with
lower number of read per UMI compared with UMIs in
the amplicon library that matched DNMT3A UMI in the
gene expression library (Extended Data Fig. 1f). We
leveraged this observation, and retained UMIs without a
corresponding associated gene in the gene expression
library, so long as their read count was above the 80t
percentile of read counts for non-DNMT3A genes.
Finally, single cells were assigned mutant or wildtype
genotype status as follows: cells with one or more
mutant UMIs were assigned as mutant cells, and cells
with 0 mutant UMIs and at least one wildtype UMI were
assigned as wildtype. While the genotyping information
is derived from transcribed molecules and may be
affected by the capture of transcripts from wildtype
versus mutant alleles of heterozygous mutations, the
frequency of mutant cells as determined by GoT using all
cells that harbor at least one UMI yielded values that
were similar to that determined by bulk DNA exon
sequencing (Extended Data Fig. 1c).

Mutant cell frequency analysis

To exclude the possibility that variable DNMT3A
expression may impact the ability to detect mutant
alleles and thereby impact mutated cell frequency in
distinct progenitor subsets, we down-sampled all cells to
a single amplicon UMI prior to mutation calling for
calculating mutant cell frequencies (Fig. 2a,b). An equal
number of cells from each sample CHO1-CH04 (n = 83
cells for LMPP + CLP (Fig. 2a) and n = 978 cells for
analysis of all cell types (Fig. 2b)), were subsampled
randomly for the integrated data. Genotyping amplicon
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UMIs were downsampled (x100 iterations) to one per
cell and mutant cell frequency was determined for each
cluster for either the integrated dataset or individual
samples. This frequency was then divided by the total
mutant cell frequency across all progenitor subsets for
each of the iterations. Linear mixed effects analysis was
performed using the Ime4 package (v.1.2-1). Progenitor
identity was defined as the fixed effect, and for random
effects, we used intercepts for individual patients
(subjects) and iterative downsampling. P-values were
obtained by likelihood ratio tests of the full model with
the fixed effect against the model without the fixed
effect16s,

RNA velocity

RNA velocity was calculated using scVelo (v0.2.2)57. For
generating the loom file, the Python (v3.7) version of
Velocyto (v0.17)56 was ran using the velocyto run
command. The cell barcode and bam files were obtained
using Cell Ranger. In addition to the cell barcode and
bam files, a GTF file corresponding to the reference used
for alignment (hgl9; Ensembl 187) was supplied.
Repetitive regions were masked using a GTF file
downloaded from UCSC selecting for repetitive regions
in GRCh37 (hg19). QC was assessed by the percent of
unspliced reads per sample, requiring a minimum of
25% total unspliced reads. If duplicated gene names
were present in the spliced and unspliced tables the
counts were summed to leave only unique genes. Next,
gene velocity for each patient and genotype was
estimated separately using scVelo (v0.2.2). In order to
avoid a potential confounder of unequal number of cells
for each genotype, random sampling of the same number
of mutant and wildtype cells to the minimum number in
either group was performed for each patient sample for
downstream analysis. Gene selection for RNA velocity
estimation was performed requiring a minimum of 20
counts. After log-normalization by cell depth, the top
2,000 genes with the highest dispersion were selected
for downstream calculations. Next, first and second
order moments were computed among nearest
neighbors in principal component space, using the
pp-moments function with parameters n_pcs = 30 and
n_neighbors = 30. RNA velocity was estimated using the
dynamical model option of the tl.velocity function. The
cell-to-cell transition probability matrices were
retrieved for either wild type or mutant cells. For a given
cell, we averaged the probabilities of transitioning to
transcriptional states within a cluster of interest. This
resulted in a mean probability of transition for the cell of
interest to a given cluster. Statistical significance of the
mean single cell differentiation probabilities between
genotypes was estimated by linear mixed models.
Sample was added as the random effect and genotype as

the fixed effect. P-values were obtained by likelihood
ratio tests of the full model with the fixed effect against
the model without the fixed effect. To further compare
wildtype to mutant probabilities for a given transition,
we calculated the median of the distribution of single-
cell mean transition probabilities toward other cell
clusters, and calculated the mutant-to-wildtype odds
ratio of the median probabilities.

Gene module scoring, differential expression and
gene set enrichment analysis

For examining gene and gene module expression (see
Supplementary Table 2), the function
AddModuleScore was used to calculate the relative
expression of the genes for each cell within the Seurat
package (e.g. Fig. 2c; MkP-EP module score (union of the
MKkP and EP module genes in Supplementary Table 2)
was calculated using the AddModuleScore function)+4.
Briefly, control gene module expressions were
calculated and subtracted from the average gene module
expression of interest, as previously describedSs. All
analyzed genes were classified based on average
expression into 24 bins, and for each gene in the module,
100 control genes are randomly selected from the same
expression bin as the gene of interest5. For statistical
analysis, genotype status was entered as the fixed effect
and subjects as random effects in a linear mixed model.
P-values were obtained by likelihood ratio tests of the
full model with the fixed effect against the model without
the fixed effect.

Differential expression analysis comparing wildtype and
mutant cells was conducted using a within-sample
permutation test for each progenitor cell subtype.
Briefly, to ensure equal representation from each
patient, the numbers of mutated and wildtype cells from
each patient were downsampled to the same number,
respectively. Observed log2 fold change values were
calculated with original genotyping assignments (MUT
versus WT) for the tested genes. The tested genes
included the top 2,500 most variable genes which were
filtered for those expressed in at least 5% of either group
(mutated versus wildtype), for each progenitor subtype.
Ribosomal and mitochondrial genes were excluded.
Next, over 100,000 iterations, WT and MUT labels were
shuffled within each patient, and fold change values
were re-calculated to create a background distribution.
P-values were calculated per gene as a percent of
permutations whose absolute fold change values were
more extreme than the absolute value of the observed
fold change (Supplementary Table 3). As an orthogonal
approach, we also performed differential expression
analysis comparing wildtype and mutant cells via the
linear mixed model framework. For each gene, genotype
status was entered as the fixed effect and subjects as
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random effects. P-values were obtained by likelihood
ratio tests of the full model with the fixed effect against
the model without the fixed effect (Supplementary
Table 3).

Hypergeometric test for gene set enrichment analysis of
the integrated differentially expressed genes (P-value <
0.05, log2(fold change) > 0.25) was performed using the
Cluster Profile package (v. 0.1.9)167. FDR multiple
hypothesis testing correction was performed. MSigDB
C2: Chemical and genetic perturbations (CGP) sources
were included in the analyses (Supplementary Table
4).

Copy number variation analysis

The InferCNV package (v.1.4.0)43 was used to analyze the
single cell dataset for any duplications or deletions of
entire chromosomes or large chromosome fragments.
Briefly, by comparing expression levels of genes
annotated by chromosomal position (using the
CONICSmat package, v0.0.0.1168) to a set of reference
cells (in this case, a one-versus-rest comparison of cells
by patient of origin), a heatmap of relative expression
can be generated and used to identify regions with
significantly increased or decreased expression. We
removed the few genes for which alternative positions
have been reported (<2% of genes). We downsampled
our dataset to 978 genotyped cells from each patient
(the minimum number of genotyped cells from any given
individual patient). We then ran the InferCNV workflow
with recommended parameters, using the i6 6-state
Hidden Markov model (Extended Data Fig. 2a). As a
positive control, we specifically analyzed relative
expression of Y-chromosome genes to ensure sex-
differences between patients were appropriately
reflected in our data (Extended Data Fig. 2b).

Hypomethylated motif enrichment analysis in
differentially expressed genes

The HOMER (v4.9) scanMotifGenomeWide function was
used to search for occurrences of the DNMT3A R882
hypomethylated motif and a control motif containing a
CpG. For each gene in the scRNA-seq dataset, TSS
coordinates were identified and a .bed file was created
with intervals of #10 kb, 30 kb or 50 kb surrounding
each TSS. These two sets of coordinates were intersected
using bedtools (v2.30.0), and the number of
hypomethylated motif or control motif sites were
counted per gene. Differentially expressed genes were
classified as upregulated (P < 0.05, log2(fold change) >
0.25) or downregulated (P < 0.05, log2(fold change) < -
0.25), and counts of hypomethylated motif sites were
compared, with P-values obtained by Wilcoxon rank sum
test. To ensure that the results were not driven simply
by the presence of a CpG, we also determined the ratio of

the counts of the hypomethylated motif to that of the
control shuffled motif with CpG per gene.

Joint multiplexed single-cell methylome and single-
cell RNA-seq library construction

DNA methylation data was processed produced as
previously described by Gaiti et al.3° Briefly, genomic
DNA (gDNA) and mRNA were separated as follows. A
modified oligo-dT primer (5'-biotin-triethyleneglycol-
AAGCAGTGGTATCAACGCAGAGTACT30VN-3', where V
is either A, C or G, and N is any base; IDT) was conjugated
to streptavidin-coupled magnetic beads (Dynabeads,
Life Technologies) according to the manufacturer's
instructions. To capture polyadenylated mRNA, we
added the conjugated beads (10 pl) directly to the cell
lysate and incubated them for 20 min at room
temperature with mixing to prevent the beads from
settling. The mRNA was then collected to the side of the
well using a magnet, and the supernatant, containing the
gDNA, was transferred to a fresh plate. Single-cell
complementary DNA was amplified from the tubes
containing the captured mRNA according to a variation
of the Smart-Seq?2 protocol 107 using molecular crowding
to increase sensitivityl69. After amplification and
purification using 0.8X SPRI beads, 0.5 ng cDNA was
used for Nextera Tagmentation and library construction.
At the cDNA amplification step, the following primers
were spiked-in (0.5 puM final) to specifically increase
capture of the locus around DNMT3A R882 mutation

(Fw: 5
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGGTTTC
CCAGTCCACTATACTGACG-3’ ; Rv: 5

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGATGACC
GGCCCAGCAGTCTC -3’). The same primers were used to
specifically amplify the target locus separately in a
portion of the cDNA. Library quality and quantity were
assessed using Agilent Bioanalyzer 2100 and Qubit,
respectively. Libraries were then sequenced with
paired-end, 50-base reads, using a NovaSeq sequencer
(Illumina).

Genomic DNA present in the pooled supernatant and
wash buffer from the mRNA isolation step was
concentrated on 0.8X SPRI beads and eluted directly into
the reaction mixtures for single digest or Msp1 + Haelll
(Fermentas) for double restriction enzyme digest
reaction (10puL final reaction) for 90 min at 37°C. Heat-
inactivation was performed for 10 min at 70°C. Digested
DNA was filled-in and A-tailed at the 3’ sticky ends in 8.5
pL final volume of 1X CutSmart with 2.5 units of Klenow
fragment  (Exo-,  Fermentas). Reaction was
supplemented with 1 mM dATP and 0.1 mM dCTP and
0.1 mM dGTP (NEB) and performed as follows in a
thermocycler: 30°C for 25 min, 37°C for 25 min, and
70°C for 10 min (heat-inactivation). Custom barcoded

20 A. Nam, N. Dusaj, F. I1zzo, R. Murali, R. Myers, et al. (2022). BioRxiv.


https://doi.org/10.1101/2022.01.14.476225
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.14.476225; this version posted January 16, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

methylated adaptors (0.1 uM) were then ligated
overnight at 16°C with the dA-tailed DNA fragments in
the presence of 800 units of T4 DNA ligase (NEB) and 1
mM ATP (Roche) in a final volume of 11.5 uL of 1X
CutSmart buffer. T4 DNA ligase heat-inactivation was
performed at 70°C for 15 min the next day. Genomic DNA
from 24 individual cells were pooled together according
to their barcodes, giving 4 pools of 24 cells for a 96-well
plate. Pooled genomic DNA was cleaned-up and
concentrated using 1.8X SPRI beads (Agencourt AMPure
XP, Beckman Coulter). Each pool was then converted
using an enzyme-based conversion to increase the
recovery of single cell gDNA compared to standard
bisulfite conversion (NEBNext Enzymatic Methyl-seq,
New England Biolabs)102. Standard bisulfite conversion
was implemented for double restriction enzyme digest
reactions, as previously described!9?. Converted DNA
was then amplified using primers containing [llumina i7
and i5 index. Following Illumina pooling guidelines, a
different i7 and i5 index was used for every 24-cell pool,
allowing multiplexing of several samples for sequencing
on [llumina NovaSeq6000. Library enrichment was done
using KAPA HiFi Uracil+ master mix (Kapa Biosystems)
and the following PCR condition was used: 98°C for 45
secs; 6 cycles of: 98°C for 20 secs, 58°C for 30 secs, 72°C
for 1 min; followed by 12 cycles of: 98°C for 20 secs, 65°C
for 30 secs, 72°C for 1 min. PCR was terminated by an
incubation at 72°C for 5 min. Enriched libraries were
cleaned-up and concentrated using 1.3X SPRI beads.
DNA fragments between 200 bp and 1 Kb were size-
selected and recovered after resolving on an E-Gel EX
Precast Agarose Gels (Thermo Fisher Scientific). Library
molarity concentration calculation was obtained by
measuring concentration of double stranded DNA
(Qubit) and quantifying the average library size (bp)
using an Agilent Bioanalyzer. Every 24-cell pool was
mixed with the other pools in an equimolar ratio.
Negative controls (empty wells with no cells) were used
to control for non-specific amplification of the libraries.

Multimodal single cell
sequencing data processing

methylome and RNA

Methylation analysis pipeline. DNA methylation data was
processed as previously described3d. Pools of 24 cells
were demultiplexed based on a supplied list of cell
barcodes. Adapter sequences were trimmed by the first
3 bp on each 3’ end of R1 and R2. Bismark (v0.14.5) was
used to create bisulfite-converted genomes of GRCh38
(hg38 Ensembl version 93). Reads were mapped using
Bismark with Bowtie (v2.2.8) and default alignment
parameters. BAM files were then used to run Bismark
methylation extractor ignoring 6 bp from the end of R1
and 5 bp from R2. This was done to remove technical
variability introduced at the ends of the reads during end

repair with unmethylated nucleotides. These settings
were determined from the M-bias reports, which contain
the methylation proportion at each read position.
Bismark methylation extractor (-bedgraph
comprehensive) was used to determine the methylation
state of each individual CpG. Cells with > 99% conversion
efficiency as determined by Bismark were retained for
downstream analysis. Reads mapping to ChrY and the
mitochondrial genome were removed from the resulting
.cov files. For all downstream analysis, the methylation
status of CpGs per cell was binarized. CpGs with 10-90%
methylation values were removed (< 2% of total CpGs)
and those with values <10% were encoded as 0, while
those with values >90% are encoded as 1. On average,
209,519 * 15,200 (= SEM) unique CpGs per cell were
covered in the DNA methylome.

RNA analysis pipeline. scRNA-seq data was aligned using
STAR (v2.5.2a). Default parameters were used, other
than twopassMode Basic. Reads were aligned to GRCh38
(hg38 Ensembl version 93). Gene counts were
determined using featureCounts from Subread (v1.5.2)
using default parameters. Ensembl gene IDs were
converted to hgnc symbols using the R package biomaRt
(v2.40.5). In cases where there were duplicated gene
symbols the counts were summed. Seurat (v3.1.1) was
then used to analyze gene expression data. Cells were
filtered for mitochondrial reads of less than 25% and a
minimum of 200 detected genes. Genes were filtered for
coverage across at least three cells. The mean (*
standard deviation) number of detected genes was 5,763
+ 2075 genes/cell (range 3,117 + 678 - 8,715 * 1,449
genes/cell across the plates). The mean number of reads
was 511,840 * 315,941 reads/cell (range 170,383 +
63,951 - 779,771 + 361,887 reads/cell across the
plates). Normalization and variable feature detection
were performed for each batch (i.e. plate). Batch
correction and integration was performed via the Seurat
integration pipeline44 using recommended parameters
for SelectintegrationFeatures, FindIntegrationAnchors,
and IntegrateData. Dimensionality reduction was
performed by principal component analysis using the
RunPCA function, and the first 12 principal components
were retained for downstream analysis. For
visualization, UMAP164 was performed using the
RunUMAP function. Cell type assignment was performed
as described for the 10x Genomics scRNA-seq data.

Genotyping. To process genotyping data, genotyping
FASTQs were aligned the same manner as RNA library
FASTQs. Pysam (v0.8.2.1) was used to select reads
overlapping the target allele by using the pileup function.
Reads were filtered by a minimum read mapping quality
(MAPQ) of 40 and a minimum base quality (Phred score)
of 20. Each remaining read was classified as either
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mutant or wildtype based on the nucleotide detected at
the mutation site based on bulk sequencing data#0. Cells
were classified as mutant if there were at least two
mutant reads, and wildtype if there were at least three
wildtype reads (increased stringency given mutation
heterozygosity) and no mutant reads. For genotyping
libraries with increased sequencing depth (7,712 * 319
versus 20 * 2.75 reads; mean * SEM), the base quality
thresholds were increased to 40. For genotype
classification, a  bootstrapping approach was
implemented by randomly sampling 50 reads for 100
iterations. For each iteration, a mutant fraction cutoff of
0.10 was applied. The final genotyping call was
performed in cells with above 80% bootstrap support.

Average Single Cell Methylation

We compared single cell methylation at selected
genomic regions (i.e. enhancers, CpG islands, ChIP-seq
peaks) between mutant and wildtype cells from each
patient. To achieve this, we first filtered for CpG sites
with coverage in at least three cells in each patient, in
order to reduce inter-patient variability. The genomic
region of interest was then intersected with the CpG sites
using the R package GenomicRanges (v1.36.1). Finally,
the average methylation for a given region across the
covered CpG sites was calculated for each cell. Statistical
significance between genotypes was estimated by linear
mixed models. Sample was added as the random effect
and genotype as the fixed effect. P-values were obtained
by likelihood ratio tests of the full model with the fixed
effect against the model without the fixed effect. Due to
potential differences between single versus double
digest data, we display single digest datasets as
representatives (unless otherwise indicated for analysis
that specifically relies on the enhanced coverage of
double digest).

Single-cell differentially methylated region (DMR)
analysis to identify preferential hypomethylation

For each cell, Bismark methylation extractor output files
(containing information on methylation state of each
individual CpG) were intersected with the genomic
regions of interest (e.g., promoters) using BEDTools
(v2.27.1). A generalized linear model (GLM) was then
built to predict the DNAme for a given genomic region
between genotypes, accounting for global methylation
changes. For each cell, the global DNAme value was
defined as the average DNAme across all genomic
regions investigated. The model used was as follows:

GLM =m;;~gi+t

Where m;; represents the average DNAme of the
genomic region j (e.g., promoter of FOXAZ) for cell i; g;
represents the genotype of cell i and t; represents the
average methylation for all CpGs detected in cell i. Only

genomic regions with sufficient DNAme information (>5
CpGs per region for promoters and >50 CpGs for ChIP-
Seq peaks) in at least 15 cells per group (mutated or
wildtype) were used in the analysis. To test the impact of
genotype on DNAme for a given genomic region (e.g.
promoter of FOXAZ), P-values were derived from the
GLM (calculated from the t-statistic computed by
dividing the genotype (g) regression coefficient by the
residual standard error, Supplementary Table 5). To
calculate the percentage methylation difference in
mutant cells for a given genomic region of interest, the
average across mutant and wildtype cells was taken
within plate to control for batch effects. Next, the DNAme
difference between mutant and wildtype was computed
within plate and a weighted average of the difference
was calculated, using the number of cells from each plate
as weights. In order to be consistent across genes,
promoters were defined as 1 kb upstream and 1 kb
downstream of transcription start sites (hg38
RefSeqGene)199. ChIP-seq peaks were obtained from
ENCODE (hg38 Tfbs clustered)0®. When directly
examining the methylation status of SUZ12 and EZH2
targets, we intersected the ENCODE ChIP-seq peaks with
bivalent peaks (H3K27me3, H3K4me3) from human
CD34+ hematopoietic progenitor cells110.

Gene set enrichment analysis. To define the pathways
enriched at hypo- or hypermethylated TSS, genes were
ranked based on methylation difference, and
differentially hypomethylated genes (P < 0.05) were
selected as inquiry for pathway analysis. We note that
gene set enrichment analysis of RRBS data may be
confounded by the fact that the use of restriction
enzymes enriches for CpG rich genomic regions as well
as CpG rich promoters. Thus, pathway enrichment was
performed via a pre-ranked gene set enrichment
approach (and thus including only genes covered in our
data) using the msigdbr (v7.2.1) and fgsea (v1.12.0) R
packages, with the MSigDB C2 CGP collection of curated
gene sets.

DNMT3A R882 motif analysis

CpG flanking motif analysis. To identify the sequences
surrounding hypo or hypermethylated CpG sites in
wildtype versus DNMT3A mutant hematopoietic
progenitors, we first performed differentially
methylated regions (DMR) analysis in CpG islands as
described above in the “Single-cell differentially
methylated region (DMR) analysis” section. CpGs within
hypo or hypermethylated regions (P < 0.05) were
selected, and the surrounding * 6 bp sequences were
extracted using bedtools (v2.25.0). The frequency of
each base pair at each position relative to the CpG site
was calculated, and statistical significance was assessed
by Fisher exact test. Odds ratio logo was generated by
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calculating the frequency for each base at each position
for either hypomethylated or hypermethylated CpG
sites. To identify differentially enriched bases
surrounding the CpG site, we applied increasingly
stringent thresholds on the absolute methylation
difference required between wildtype and mutated cells
to consider the sites, and estimated the odds ratio of base
frequency of hypo- over hyper-methylated sites at a
given position relative to the CpG site. Next, we
calculated the correlation between the methylation
difference required and the odds ratio of base frequency.
We define bases differentially enriched or depleted in
hypo- versus hyper-methylated based on the correlation
significance (P < 0.05). For CpG sites with greater than
absolute methylation difference of 0.5, the odds ratios
were computed and used as input to generate the logo
using the ggseqlogo (v0.1) package. To identify
transcription factors with the motif pattern of interest,
we used the HOCOMOCO v11 human motif position
weight matrix (PWM) collection in HOMER format with
P <0.001. For each of the PWMs, we selected the position
containing the highest CpG probability and calculated
the similarity score of the flanking -2 and +2 positions
relative to the CpG site against the hypo-methylated
flanking sequences, based on the correlation of the base
frequencies along each of the motifs.

Average methylation at MYC motifs and modeling
regulon expression

The MYC and ARNT motif PWM was downloaded from
the HOCOMOCO (v11) human TF database and used as
input to HOMER (v4.9). The scanMotifGenomeWide
function was used to search for occurrences of motifs
throughout the genome. The R package GenomicRanges
(v1.36.1) was used to intersect CpG sites with motifs and
respective ChIP-seq peaks (ENCODE database)!09.
Methylation per cell was then averaged across the
covered CpG sites. Positively regulated downstream
MYC targets were determined using pySCENIC (v0.10.0).
Counts were converted to transcripts per million (TPM)
and genes in the count matrices were filtered for those
in the cisTarget database (all available hg38 files were
used). The hgnc (v9) motif file from the cisTarget
database was used to generate a list of input motifs.
Regulons were determined from each patient sample
separately with default parameters as described!70. To
analyze expression of the regulons, per-cell AUC scoring
was done using the aucell function. The relationship
between MYC motif methylation and regulon expression
was modeled with a generalized linear model (GLM)
using a Gamma distribution with the following model:

GLM = i ~ IMj

Where r; represents the AUC score to MYC downstream
targets for cell i; m; represents the DNAme of MYC motifs

for cell i. Due to batch effects between methylome
sequencing methods, only samples that were prepared
using the enzymatic method were included. Rare
outliers were excluded that had a Cook’s distance
greater than 2 * mean Cook’s distance. To test the impact
of MYC motif methylation on regulon expression, the P-
value was derived from GLM output (calculated from the
t-statistic computed by dividing the MYC motif
methylation (m) regression coefficient by the residual
standard error).

AML PRC2 target methylation analysis

Methylated base call files of DNMT3A-mutated AML
samples were downloaded from Glass et al.105 PRC2
targets were obtained from the union of EZH2 and
SUZ12 ChIP-seq peaks (see “single-cell differential
methylation analysis”), as approximately 50% of SUZ12
ChIP-seq peaks overlapped with EZH2 peaks. PRC2
targets were further intersected with promoters using
the GenomicRanges (v1.38.0) findOverlaps function,
requiring at least 30 bp to be overlapping. We note that
PRC2 targets are known to have a higher CpG
content!71172, potentially biasing the result given the
higher coverage of RRBS of high CpG content promoters.
We therefore also compared PRC2 target methylation
only with high CpG content promoters as annotated by
Saxonov et al.173 and + 1 KB surrounding the TSS. For
each sample 270,000 CpG sites were randomly sampled
from either promoters overlapping with PRC2 peaks, or
non-overlapping promoters as a control. The number of
randomly sampled CpG sites was selected based on the
minimum coverage among replicates. The ratio of
methylation between DNMT3A mutant and wildtype
AML (Fig. 4h), required to pair each mutated AML with
a wildtype sample. As this pairing is arbitrary (i.e,
samples are not explicitly matched), to safeguard against
anon-representative pairing, we permutated all possible
pairing and P-values were obtained by Wilcoxon rank
sum test. The example shown represents the median P-
value among the permutations. Methylated base call files
of DNMT3A-mutated and wildtype AML samples were
downloaded from TCGA!18. Overlap of PRC2 ChIP-seq
peaks and promoter regions was carried out as
described above. The average methylation at high CpG
promoters that overlap with PRC2 peaks and high CpG
promoters that do not overlap with PRC2 peaks was
calculated per sample and compared between DNMT3A
R882 mutant and DNMT3A wildtype AML (Wilcoxon
rank sum test).

Single nucleus ATAC-sequencing of Dnmt3a R878
and wildtype HSPCs

Hematopoietic progenitors (Lin-1-, c-Kit*) were sorted
from wildtype (n = 3 mice) or Dnmt3a R878H (n = 3
mice) via c-Kit enrichment as directed by the
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manufacturer (CD117 Microbeads, clone 3C1, Miltenyi,
Auburn, CA; LS Columns (Cat. No. #130-042-401),
Miltenyi) followed by FACS (Lin-1 BV421 (Cat. No.
#133311), Biolegend, San Diego, CA; CD117 APC (clone
2B8, Invitrogen, Waltham, MA). Nuclei isolation was
performed as suggested by the manufacturer (10x
Genomics, Pleasanton, CA). Briefly, single cell
suspensions were centrifuged at 300 rcf for 5 minutes
and cell pellets were resuspended in 100 pl of lysis
buffer (Tris-HCI pH 7.4, 10mM; NaCl 10mM; MgCl; 3mM;
Tween-20 0.1%; Nonidet P40 substitute (Sigma-Aldrich,
St. Louis, MO) 0.1%; Digitonin 0.01%; BSA 1%; DTT 1
mM; RNase inhibitor 1 U/uL (Sigma-Aldrich, St. Louis,
MO)) and kept on ice for 3 minutes. Then, 1 ml of wash
buffer (Tris-HCI pH 7.4, 10mM; NaCl 10mM; MgCl; 3mM;
BSA 1%; Tween-20 0.1%; DTT 1 mM; Sigma Protector
RNase inhibitor 1 U/puL) was added. The isolated nuclei
were centrifuged for 5 min at 500 rcf, and pellets were
resuspended in Diluted Nuclei Buffer (10x Genomics
Nuclei Buffer 1X; DTT 1 mM; Sigma Protector RNase
inhibitor 1 U/pL). Nuclei concentration was determined
by hemocytometer and processed as indicated by the
manufacturer (10x Genomics User Guide: Chromium
Next GEM Single Cell Multiome ATAC + Gene Expression,
CG000338). Single nucleus ATAC and Gene Expression
(GEX) libraries were constructed in parallel and
assessed for quality control metrics using Agilent
Bioanalyzer 2100 and Qubit respectively. ATAC libraries
were sequenced to a depth of 25,000 read pairs per
nucleus (paired-end, dual indexing: Read 1N 50 cycles,
i7 Index 8 cycles, i5 Index 24 cycles, Read 2N 49 cycles)
and GEX libraries were sequenced to a depth of 20,000
read pairs per nucleus (paired-end, dual indexing: 28
cycles for Read 1, 10 cycles for i7 Index, 10 cycles for i5
Index, 90 cycles for Read 2).

Single nucleus ATAC-sequencing data processing

Pre-processing was performed using 10x Genomics Cell
Ranger ARC (v1.0.1). Reads were de-multiplexed using
the cellranger-arc mkfastq function. Single cell feature
counts for each sample were then generated using the
cellranger-arc count function. The gene expression
information for these libraries exhibited exceedingly low
UMI and genes per cell consistent with lower quality
RNA in single-cell nuclei Multiome data; as such, we
moved forward utilizing only the ATAC data for analysis.
ATAC data was processed using the ArchR package
(v1.0.1) 174 using the atac_fragments.tsv.gz file generated
by the cellranger-arc count function as input. Arrow files
were created using a minimum TSS enrichment score of
5 and a minimum number of unique nuclear fragments
of 1,000. Doublet scores were calculated using the
addDoubletScores function with k = 10, knnMethod =
“umap” and LSImethod = 1. Doublets were removed

using the filterDoublets function with default
parameters. Dimensionality reduction was performed
through iterative semantic index (LSI) using the cell by
genomic window (500 bp) matrix as input, using the
addIterativeLSI function with the following parameters:
iterations = 3, resolution = 0.2, sampleCells = 1,000,
var.features = 25,000 and dimsToUse = 1:30. Cell
clusters were identified using the addClusters function
using the iterative latent semantic index (LSI)
dimensions as input, with method = “Seurat”, resolution
= 0.8. For visualization, UMAP dimensionality reduction
was performed using the LSI dimensions as input, using
the addUMAP function with: nNeighbors = 30, minDist =
0.5 and metric = “cosine”. Cell identities were assigned
based on gene accessibility scores of known marker
genes. Custom motif accessibility deviations were
calculated as follows: position weight matrices in
HOMER format (P < 0.001) were downloaded from the
HOCOMOCO v11 mouse database. Motif occurrences
were identified using the scanGenomeWide function of
the HOMER package. To include only high confidence
motif sites, we applied a minimum odds ratio score
threshold of 6. We next created custom peakAnnotations
using ArchR and performed ChromaVar analysis using
the addDeviationsMatrix function with default
parameters.

CHO5 sample processing and analysis

Single cell RNA-seq processing and downstream
analysis

CHO5 bone marrow underwent sorting, scRNA-
sequencing and genotyping with GoT as described above
for samples CH01-04, with the exception of the addition
of the CITE-seq integration. Briefly, the Total-seqA
antibodies (Biolegend: CD38, CD9, CD49f, CD45RA,
CD41, CD36, CD69, CD42, CD14, CD71, CD45RB,
CD45R0, CD37, CD7, CD279, CD47, CD90, CD99, CD84,
CD274, FLT3, CD79B, CD45, CD81) were used according
to manufacturer’s recommendations. The CD34+ sorted
cells were incubated with the antibodies for 30 minutes
and underwent washes 3X. 10x data were processed
using Cell Ranger (v3.0.1) with default parameters.
Reads were aligned to the human reference sequence
hg19. Control bone marrow samples (BM01-05) were
identified from previously published reports41.142 with
raw count matrices available for download. The Seurat
package (v.3.1) was used to perform integration and
unbiased clustering of the CD34+ sorted cells from
patient samples as described previously with the
following notable exceptions!63. The publicly available
archived count matrices for samples BM04 and BM05
had the following QC filtering: the mitochondrial and
ribosomal genes were removed, and only cells with >
400 unique genes and between 1,000 and 10,000 UMIs
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were kept. Consequently, these two patients were not
filtered with the aforementioned criteria. CHO5 and
BMO01-03 were filtered identically as samples CH01-04,
following which mitochondrial and ribosomal genes
were removed from the gene expression matrix. All
samples were then normalized and integrated as
described previously, with the exception of proportion
of mitochondrial genes no longer being regressed out as
a potential confounder. We identified 26 clusters in the
integrated data, which were annotated as above using
lineage markers previously identified for normal
hematopoietic progenitors53.175.

Following cell-type assignment, we down-sampled the
count matrices using the downsampleBatches function
from the scuttle package (v1.0.4) to ensure that the
average per-cell geometric mean of raw counts was
consistent across all 6 patient samples!7e.

Module scores were calculated as described above. The
performance of the CITE-seq antibodies was assessed
based on expected expression patterns across the
progenitor subsets.

Single nucleus ATAC-seq and downstream analysis

snATAC-seq data for CHO5 was generated as described
above using the Multiome platform (10x Genomics) and
GoT performed as described above using the cDNA
generated from the Multiome workflow. The gene
expression information for these libraries exhibited very
low UMI and genes per cell consistent with lower quality
RNA in single-cell nuclei Multiome data; as such, we
moved forward utilizing only the ATAC data for analysis.
For the analysis, fragment files were generated by
processing the fastq files using cell-ranger-ARC (v.1.0.0).
Downstream analysis was performed using the ArchR
(v1.0.1) pipelinel74. Based on the distribution of total
fragments and TSS enrichment per cell, empty droplets
were filtered out by requiring a minimum of 3,000
fragments per cell and a TSS enrichment score of 7.5.
Potential doublets were detected using the
addDoubletScores function, using KNN on the UMAP
dimensionality reduction with k = 10. Cell barcodes with
high enrichment for doublet scores were removed using
the filterDoublets function with default parameters.
Next, we performed dimensionality reduction through
iterative latent semantic indexing (LSI) using the top
25,000 variable features. Cell clustering was performed
using the addClusters function, with the following
parameters: reduceDims = “IterativeLSI”; method =
“Seurat”; resolution =1. For visualization, further
dimensionality reduction was performed by applying
UMAP to the iterative LSI space using the addUMAP
function with the following parameters: nNeighbors =
30; minDist = 0.5; metric = “cosine”. Cell type
identification was performed by manually inspecting the

genes showing up-regulated gene accessibility scores
(FDR < 0.01 and logz(fold change) > 1.25) for each of the
defined clusters (Extended Data Fig. 13c). Motif
occurrences were defined using the position weight
matrices (PWMs) obtained from the Hocomoco (v.11.0)
motif database or our custom PWMs for hypo-
methylated and shuffled motifs using HOMER (v4.9),
requiring a minimum enrichment score above 6.
Transcription factor, hypo-methylated and shuffled
motif accessibility was calculated using ChromVAR177
within the ArchR (v1.0.1) pipelinel74. Supervised
pseudotime trajectories for either erythroid or lymphoid
fates were defined within the ArchR (v1.0.1) pipelinel74
applying the addTrajectory function.
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Extended Data Figure 1. GoT captures genotyping information of thousands of CD34+ cells in scRNA-seq. a, Summary of
GoT data from CH patient samples with DNMT3A R882 mutations. b, Number of genes per cell (left) and number of UMIs per
cell (right) from CD34+ sorted hematopoietic progenitors by patient sample after QC filters. ¢, DNMT3A R882 mutant fraction of
single cells determined by GoT versus DNMT3A R882 mutation variant allele frequencies (VAF) in bulk sequencing of matched
unsorted stem cell product. d, Fraction of cells by number of DNMT3A UMIs in standard 10x Genomics data without genotyping
information (left), DNMT3A UMIs with R882 locus coverage in standard 10x data (middle), and DNMT3A UMIs with R882 locus
coverage in GoT amplicon library (right). e, Species-mixing experiment data in which mouse cells (Ba/F3) with a human mutant
CALR transgene were mixed with human cells (UT-7) with a human wildtype CALR transgene. Mouse and human genome
alignment of 10x data with genotyping data from GoT pre (top) and post (bottom) implementation of UMI consensus assembly
based on Levenshtein distance (online methods). f, Number of duplicate reads supporting cell barcode-UMI pair in the GoT
library that is identified in the 10x gene expression (GEX) library as a DNMT3A gene (left), no gene (middle), or a non-DNMT3A
gene (right).
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Extended Data Figure 2. Copy number analysis of wildtype and mutant single cells from clonal hematopoiesis patient
samples with DNMT3A R882 mutations. a, Heatmap of relative expression of genes ordered by chromosome/chromosomal
position following copy number variation analysis using the InferCNV package. Cells (y-axis) are stratified by patient and

DNMT3A R882 genotype status. b, Heatmap of relative expression of Y-chromosome genes following copy number variation
analysis and cell stratification as in a.
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Extended Data Figure 3. Integration of DNMT3A R882 mutation and assignment of progenitor subsets in clonal
hematopoiesis patient samples. a, UMAP of CD34+ progenitor cells from samples CHO1-CHO4 after integration using the
Seurat package (online methods). b, Heatmap of top 10 differentially expressed genes for progenitor subsets. ¢, Lineage-specific
genes (left) and modules from Velten et al. (right, Supplementary Table 2) are scored and projected onto the UMAP
representation of CD34+ cells. d, UMAP of CD34+ cells overlaid with cluster assignments, split by patient sample.
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Extended Data Figure 4. Classification of IMPs showing lineage biases and pseudotime analysis between mutated and
wildtype cells. a, UMAP of CD34+ cells, overlaid with cluster assignment of all IMP subsets in the dataset. b, Neutrophil and
Megakaryocytic-Erythroid lineage specific gene module scores from Velten et al. compared across the three IMP clusters. P-
value was calculated from Wilcoxon rank sum test. ¢, UMAP of CD34+ cells overlaid with mutation status for WT, DNMT34 R882
mutant (MUT), or unassigned (NA), split by genotype for all samples (top) and by patient sample (bottom). d, UMAP with
projected pseudotime values (top left). Pseudotime comparison between WT and MUT cells for all samples (top right) and for
individual samples (bottom) as estimated by Monocle. P-value was calculated from likelihood ratio test of linear mixed model
with/without mutation status for aggregate analysis (online methods, top) and Wilcoxon rank sum test for individual samples

(bottom).
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Extended Data Figure 5. Cell cycle module expression comparison between mutated and wildtype progenitor cells. a,
Cell cycle module score represents the union of S-phase and G2M-phase gene-module expression (Supplementary Table 2). P-
value was calculated from likelihood ratio test of linear mixed model with/without mutation status (online methods). Analysis
was performed for clusters with at least 200 genotyped cells across all patient samples.
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Extended Data Figure 6. Transition probabilities via RNA velocity reveals a megakaryocytic-erythroid bias of IMPs. a,
Single cell mean IMP - IMP-ME and b, IMP - IMP-GM transition probabilities, as measured via RNA velocity, between wildtype
or DNMT3A R882 mutant IMPs for each sample. P-values from Wilcoxon rank-sum test.
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Extended Data Figure 7. Comparison of differential expression analysis between permutation test and linear mixed
model and MYC gene expression. a, P-values from permutation test and linear mixed model (online methods) are plotted per
gene. Correlation coefficient R calculated using Pearson's Correlation. P-values derived from Student's t-distribution. b,
Normalized MYC gene expression between mutated and wildtype cells in MEP and EP. P-value was calculated from likelihood

ratio test of linear mixed model with/without mutation status (online methods).
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Extended Data Figure 8. Multi-omics single cell methylome, transcriptomic, and somatic genotyping reveals
hypomethylation of PRC2 targets in DNMT3A R882 CH. a, UMAP dimensionality reduction (n = 528 cells) based on scRNA-
seq data (Smart-seq2) after integration and batch correction of six plates (online methods). b, UMAP dimensionality reduction
showing cluster gene markers for the transcriptome data. ¢, Number of CpG sites captured per cell after quality filtering (online
methods). The metrics for each sample according to enzymatic digestion with Msp1 (Single) or Msp1 plus Haelll (Double) are
shown. d, Average single cell methylation at all regions (global, double digest), promoters, introns or exons. P-values from
likelihood ratio test of LMM with/without mutation status (online methods). e, Average single cell methylation at CpH (i.e. CpA
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or CpT) sites. f, Average single cell methylation at 269 hypomethylated promoters identified with DMR analysis (shown in Fig.
4e, promoters with P-value < 0.05 and at least -5% methylation change) in CHOZ and CH04. g, Average single cell methylation
at SUZ12 (top panel) and EZH2 (bottom panel) ENCODE ChIP-seq peaks intersected with bivalently H3K27me3, H3K4me3-
marked regions in CD34+ cells for CH02 and CH04. P-values from likelihood ratio test of LMM with/without mutation status. h,
Normalized expression of PRC2 target genes with preferentially hypomethylated TSS (from Fig. 4e) in GoT data of WT versus
MUT HSPCs. P-values from likelihood ratio test of LMM with/without mutation status. i, Comparison of average methylation
values for TSS + 1 kb regions in DNMT3A WT (n = 6) versus DNMT3A R882, NPM1 mutated acute myeloid leukemia (AML; n =
7) samples in regions without (left) or with (right) PRC2 ChIP-seq peaks, controlling for CpG content. j, Comparison of average
methylation values for promoter regions in WT (n = 122) versus DNMT3A R882 mutated AML (n = 9) samples from TCGA in
regions without (left) or with (right) PRC2 ChIP-seq peaks, controlling for CpG content.
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Extended Data Figure 9. Motif enrichment at hypomethylated CpGs and hypomethylated motif enrichment in regions
around differentially expressed genes. a, Base frequency odds ratio of hypo- versus hyper-methylated CpG flanking
sequences at positions N-2, N-1, N+1, and N+2. The odds ratios were derived from base frequencies of flanking positions of the
CpG sites hypo- or hyper-methylated in mutant versus wildtype cells above the thresholds shown in the x axis for minimum
absolute CpG methylation difference (Pearson correlation, P-values derived from F-test). b, Reported motif logos derived from
Emperle et al. for either hypomethylated (disfavored) or hypermethylated (favored) sites for DNMT3A R882 compared to its
wildtype counterpart (left). ¢, Similarity scores between the reported and our de novo DNMT3A R882 hypo- and
hypermethylated motifs as measured by correlation coefficients of the position weight matrices for the respective motifs
excluding the CpG dinucleotide. d, Frequencies of DNMT3A R882 hypomethylated motif within 30kb of TSS of the differentially
expressed genes between MUT and WT cells in progenitor subsets. P-values were calculated by Wilcoxon rank sum test. e,
Frequencies of DNMT3A R882 hypomethylated motif within 10 kb, 30 kb or 50 kb of TSS of the differentially expressed genes
between MUT and WT cells in HSPCs and EPs. P-values were calculated by Wilcoxon rank sum test. f, Ratio of frequencies of
DNMT3A R882 hypomethylated motif to those of the control shuffled motif with CpG (Fig. 5e) within 10 kb of TSS of the
differentially expressed genes between MUT and WT cells in HSPCs and EPs. P-values were calculated by Wilcoxon rank sum
test.
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Extended Data Figure 10. Single nucleus ATAC-seq of Dnmt3a R878H Lin-, c-Kit+ progenitors reveals enhanced
accessibility of R882 hypomethylated motif and TF motifs with high similarity scores to the hypomethylated motif. a,
Distribution of fragment size in snATAC-seq data of Dnmt3a R878H and wildtype Lin-, c-Kit+ progenitors (n = 3 in each cohort).
b, TSS enrichment of accessible fragments as a function of unique fragments per cell. ¢, UMAP of integrated datasets Dnmt3a
R878H and wildtype Lin-, c-Kit+ progenitors, displayed per sample (n = 3 in each cohort). d, Heatmap of gene accessibility scores
for differentially accessible progenitor identity marker genes across progenitor subsets. e, Scatterplot of similarity scores of
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mouse TF motifs versus human TF motifs to the R882-hypomethylated motif (Pearson’s correlation, P-value derived from F-
test). f, Binding motifs of mouse and human TFs with high similarity score to the R882-hypomethylated motif and expression in
HSPCs (Fig. 5b, HOCOMOCO v11). g, FWER-adjusted P-values for accessibility changes between wildtype and Dnmt3a R878H
cells by progenitor identities for hypo-methylated motif and shuffled motifs controls (with and without CpG), as well as motif
accessibility deviation of the TFs identified Fig. 5b (related to Fig. 5f). h, Accessibility of PRC2 targets between wildtype and
Dnmt3a R878H and wildtype Lin-, c-Kit+ progenitor subsets.
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Extended Data Figure 11. Integration of CHO5 and control bone marrow CD34+ scRNA-seq data and assignment of
progenitor subsets. a, UMAP of CD34+ progenitor cells from samples CHO5 and samples BM01-05 after integration using the
Seurat package (online methods). b, Number of genes per cell (top) and number of UMIs per cell (bottom) from CD34+
hematopoietic progenitors by patient sample after QC filters and down-sampling to equivalent geometric means of UMIs per
patient. ¢, Heatmap of top 10 differentially expressed genes for progenitor subsets. d, UMAP representation of CD34+ cells
showing cell marker gene expressions. e, Modules from Velten et al. (Supplementary Table 2) are scored and projected onto
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Extended Data Figure 12. Bone marrow clonal hematopoiesis patient sample confirms results from CH01-CHO04. a, Per-
patient comparison of megakaryocytic-erythroid module scores in control bone marrow versus CHO5 IMPs (Supplementary
Table 2). Cell number downsampled to the same number (n = 132 cells per sample). P-values were calculated from likelihood
ratio test of LMM with/without CH status. b, Per-patient comparison of granulocytic-monocytic module scores in control versus
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CH IMPs (Supplementary Table 2). P-values were calculated from likelihood ratio test of LMM with/without CH status. c,
Fraction of IMP-ME cells out of all biased IMP (IMP-ME + IMP-GM) cells in control versus CH populations. P-value was calculated
from one-sample t-test. d, Per-patient comparison of module scores for differentially down- or up-regulated genes in mutant
DNMT3A HSPCs (identified in GoT data, Fig. 3a,c) in control versus CH HSPCs. P-values were calculated from likelihood ratio
test of LMM with/without CH status. e, Per-patient comparison of module scores for differentially down- or up-regulated genes
in mutant DNMT3A EPs (identified in GoT data, Fig. 3a,c) in control versus CH EPs. P-values were calculated from likelihood
ratio test of LMM with/without CH status. f, Module scores for genes upregulated in at least 2 cell types (identified in GoT data,
Fig. 3b) in control versus CH cells of major cell types. P-values from likelihood ratio test of LMM with/without CH status. g,
Fraction of control BM or CHO5 cells in EP1 versus EP2 cell clusters. h, UMAP of CHO5 cells (clustered independently of the
control BM samples) with progenitor cell assignments. i, UMAP of CHO5 cells with genotyping data for WT (n = 397 cells) and
DNMT3A R882 mutant (MUT; n = 290 cells). j, Normalized expression of differentially upregulated genes in at least 2 cell types,
highlighted in Fig. 3b in wildtype versus mutated cells in CHO5. k, UMAP of CHO5 cells with protein expression (CITE-seq) and
gene expression for CD38 and CD9. 1, UMAP of CHO5 cells highlighting HSPCs, IMP-ME, and MkPs (left) included in the
comparison of CD9 expression in wildtype versus mutated cells (right).
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Extended Data Figure 13. Single nucleus ATAC-seq data from bone marrow clonal hematopoiesis reveals enhanced
accessibility of hypomethylated motif in mutated erythroid progenitors. a, Distribution of fragment size in snATAC-seq
data of patient CHO5 with DNMT3A R882 CH. b, TSS enrichment of accessible fragments as a function of unique fragments per
cell. ¢, Heatmap of the gene accessibility scores for cluster marker genes (FDR < 0.01 and Log:FC > 1) by cell cluster. d,
Pseudotime trajectories for either erythroid (left, n = 1,843 cells) or lymphoid (right, n = 1,740 cells) differentiation. e, Difference
between hypomethylated and shuffled motif accessibility z-scores across either erythroid (n = 1,843 cells) or lymphoid (n =
1,740 cells) pseudotime trajectory quartiles. P-values were calculated by Wilcoxon rank sum test. HSPC, Hematopoietic stem
and progenitor cell; IMP-ME, immature myeloid progenitor with megakaryocytic/erythroid bias; IMP-GM, immature myeloid
progenitor with granulocyte/monocyte bias; LMPP, Lymphoid-myeloid pluripotent progenitor; MkP, Megakaryocyte
progenitor; NP, Neutrophil progenitor; CLP, Common lymphoid progenitor; Pre-B1/2, Pre-B cell; EP1/2, Erythroid progenitor.
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