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Abstract:  How autoreactive CD4 T cells develop to cause rheumatoid arthritis remains 

unknown. We used a reporter for antigen-receptor signaling in the SKG autoimmune arthritis 

model to profile a T cell subpopulation enriched for arthritogenic naïve CD4 T cells before 

arthritis onset by bulk and single cell RNA and T cell antigen-receptor (TCR) sequencing. Our 

analyses reveal that despite their impaired proximal TCR signaling, a subset of SKG naïve CD4 

T cells that have recently encountered endogenous antigen upregulate gene programs 

associated with positive regulation of T cell activation and cytokine signaling at higher levels 

than wild type cells in the pre-disease state. These arthritogenic cells also induce genes 

associated with negative regulation of T cell activation but do so less efficiently than wild type 

cells.  Furthermore, their TCR sequences exhibit a previously unrecognized biased peripheral 

TCR Vβ repertoire likely driven by endogenous viral superantigens.  These particular Vβs, 

known to recognize endogenous mouse mammary tumor virus (MMTV) superantigen, are 

further expanded in arthritic joints. Our results demonstrate that autoreactive naïve CD4 T cells 

which recognize endogenous viral superantigens are poised to cause disease by their altered 

transcriptome.  

 

Summary blurb: Self-reactive SKG T cells that escaped negative selection harbor an 

independent defect in anergy that, together with chronic antigen stimulation, sets the stage for 

disease. Moreover, we propose a novel role for endogenous mouse mammary tumor virus 

(MMTV) superantigen in promoting arthritogenic T cell responses.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 16, 2022. ; https://doi.org/10.1101/2022.01.13.476250doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.13.476250
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3

Introduction:  It is widely accepted that activation of conventional CD4 T cells that recognize 

specific self-antigen(s) via their TCRs is necessary for rheumatoid arthritis (RA) onset (1, 2). 

CD4 T cells from patients with RA differentiate into pathogenic effector cells despite their 

impaired TCR signaling (3-9). Yet, how these T cells subvert tolerance to cause disease 

remains incompletely understood.  The SKG mouse model of arthritis represents a powerful tool 

to define this mechanism. Due to a hypomorphic mutation in ZAP70, a cytoplasmic tyrosine 

kinase critical for proximal TCR signaling, SKG mice exhibit impaired thymocyte negative 

selection resulting in a break in central tolerance and escape of autoreactive and arthritogenic 

CD4 T cells into the periphery (10-13). In response to an innate immune stimulus, dormant 

arthritogenic CD4 T cells become activated and SKG mice on the Balb/c genetic background 

develop an erosive inflammatory arthritis that resembles RA (10, 14). SKG CD4 T cells are 

sufficient and necessary to cause arthritis (10), and we have shown that adoptive transfer even 

of naïve SKG CD4 T cells (into immunodeficient hosts) are sufficient to trigger disease (11). 

However, as in human RA, it is unclear how T cells can differentiate into pathogenic effector 

cells and produce frank disease in SKG mice despite severely impaired TCR signaling (10, 11, 

15). While the SKG mice have a known defect in central tolerance, it is less clear whether they 

have an independent defect in peripheral tolerance. It is also unknown how escape of 

arthritogenic T cells into the periphery interacts with defective TCR signaling to produce frank 

autoimmune disease. 

To address these questions, we previously developed the SKGNur mouse which combines the 

SKG model with a reporter of antigen receptor signaling, Nur77/Nr4a1-eGFP, that tethers GFP 

expression to the regulatory region of Nr4a1 (encoding the orphan nuclear hormone receptor 

Nur77). Because NR4A1 is rapidly and selectively upregulated in response to antigen, but not 

inflammatory stimuli in T cells (16, 17), the SKGNur mouse allows us to identify antigen-reactive 

T cells both before and during disease. We previously demonstrated that high expression of the 
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Nur77-eGFP reporter in SKGNur mice identifies self-reactive naive CD4 T cells with greater 

arthritogenic potential before disease onset (11). We showed that these naïve CD4 T cells in 

SKG mice play a pathogenic role in arthritis development, in part, because of abnormally 

heightened responses to IL-6 (11) (Supplementary Fig. 1A). We proposed that chronic antigen 

stimulation and impaired TCR signaling interact uniquely in peripheral CD4 SKG T cells and 

result in lower expression of suppressor of cytokine signaling 3 (Socs3)—a key negative 

regulator of IL-6 signaling, and showed that this mechanism may operate in patients with RA 

(11). This led us to hypothesize that CD4 SKG T cells might exhibit dysregulated expression of 

a broader program of negative immune regulators leading, ultimately, to a breach in peripheral 

tolerance.  

To test this hypothesis, we studied the TCR repertoire and transcriptome of arthritogenic 

CD4 T cells in SKG mice by leveraging both bulk and single cell RNA sequencing. We 

capitalized on the SKGNur model in order to capture arthritogenic cells before disease onset 

(akin to the pre-RA phase of disease (18)). We reasoned this could reveal early events in 

pathogenesis and identify novel targets to preserve tolerance and prevent disease. Within naïve 

CD4 SKG T with high arthritogenic potential, we found a cluster of cells with the highest 

expression of Nr4a1 that upregulate TCR-dependent gene expression programs and exhibit 

evidence of chronic antigen-stimulation in the pre-disease state. Though these arthritogenic 

SKG T cells also express anergy-associated genes, we identified a defect in the extent to which 

they do so relative to WT CD4 T cells. Furthermore, simultaneous determination of SKGNurhi T 

cell TCR sequences associated with these arthritogenic, chronically antigen-stimulated CD4 T 

cells in SKG mice revealed an enrichment of naïve CD4 T cells with specific TCR variable beta 

(Vβ) chains that are known to recognize endogenous mouse mammary tumor viral (MMTV) 

superantigen in BALB/c mice. We had previously shown that these Vβs escape negative 

selection in SKG mice (13). Here we find that T cells bearing these Vβs are strongly associated 
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with an activated TCR signaling program in the periphery. We confirmed enrichment of these 

TRBVs in SKG naïve CD4 GFPhi T cells by TCR Vβ protein expression as well. Moreover, the 

frequency of these CD4 T cells bearing Vβs that recognize MMTV superantigen are expanded 

in the arthritic joints of SKG mice and likely contribute to development and/or severity of arthritis. 

Our results reveal how self-reactive SKG T cells that escaped negative selection harbor an 

independent defect in peripheral tolerance that, together with chronic antigen stimulation, sets 

the stage for disease. Moreover, we propose a novel role for endogenous MMTV superantigen 

in promoting arthritogenic T cell responses. 

Results: 

Arthritogenic SKG naïve CD4 T cells have a uniquely activated phenotype.  We recently 

demonstrated that it is possible to identify autoreactive and arthritogenic naïve CD4 T cells prior 

to disease induction on the basis of Nur77-eGFP reporter expression (Supplementary Fig. 1A) 

(11). To understand the transcriptional program of the most arthritogenic CD4 T cells (the 

SKGNur GFPhi population) prior to disease onset, we performed bulk RNA-sequencing from 

SKG and wild-type control (SKGNur and WTNur) mice. We sorted and sequenced the 10% 

highest (GFPhi) and 10% lowest (GFPlo) Nur77-eGFP-expressing naïve (CD62LhiCD44loCD25-) 

CD4 T cells to compare transcriptomes between these four subgroups (Fig. 1A, 

Supplementary Fig. 1B, Supplementary Data 1). Principal component (PC) analysis revealed 

all four subgroups are transcriptionally distinct with the largest variance explained by PC1 (57%) 

which separated WT and SKG samples by GFP expression followed by PC2 (22%) which 

separated samples by genotype (Fig. 1B). Hierarchical clustering of the collection of 991 

differentially expressed genes (DEGs) from subgroup comparisons identified six gene modules 

that capture the transcriptional differences between the four subgroups (Fig. 1C, 

Supplementary Data 2). Gene ontology analysis (19) revealed functional heterogeneity 

between, and in some cases within, these modules whose expression patterns revealed the 
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unique transcriptomic signature of the SKGNur GFPhi cells. Both SKGNur subgroups (GFPhi and 

GFPlo) uniquely upregulated genes associated with cytokine signaling, antigen processing, and 

Th17 differentiation (represented in module 6) (Fig. 1C-D). Consistent with this, we recently 

showed that SKG naïve CD4 T cells are hyperresponsive to IL-6 stimulation and produce IL-17 

(11). Despite the impaired in vitro TCR signaling capability of the more arthritic SKGNur GFPhi 

subgroup (11), the SKGNur GFPhi and WTNur GFPhi subgroups both distinctly upregulated TCR 

signaling responsive genes including Nr4a1, Nr4a3, CD5, Tnfrsf9, Tnfrsf4, Irf4, Tigit, Tox, 

Pdcd1, Lag3, Ctla4  (found in modules 1 and 2, Fig. 1C-D). To further dissect the differences in 

WTNur GFPhi and SKGNur GFPhi transcriptomic profiles, we focused on the 260 DEGs between 

these two subgroups. (Fig. 1E). Cell cycle and some T cell activation gene programs (e.g., 

Cdca3, Cdk2nc, Mki67; and Irf4, Ctla4, Ikzf2, Slamf6, Birc5, Nrp1, Tnfsf14 primarily represented 

in module 1), were more highly upregulated in the SKGNur GFPhi subgroup; whereas genes 

associated with signal transduction and the negative regulation of a biologic process (e.g., 

Nr4a1, Cd5, Tnfrsf9, Folr4/Izumo1r  seen in module 2) were enriched in the WTNur GFPhi 

subgroup (Fig. 1C-E, Supplementary Fig. 1C). Thus, while both GFPhi groups were associated 

with increased TCR signaling and activation, our data suggests WTNur GFPhi cells may more 

efficiently induce negative regulators of TCR signaling (module 2). 

 In an unbiased orthogonal approach, we performed gene set enrichment analysis (GSEA) 

(20, 21) on the ranked gene list of DEGs and found enrichment of genes upregulated in the 

SKGNur GFPhi subgroup compared to WTNur GFPhi for pathways associated with antigen 

processing, T cell signaling and activation, as well as cytokine signaling, including interferon 

(IFN) responsiveness and IL-17 production (Fig. 1F, Supplementary Data 3). The SKGNur 

GFPhi subgroup have a severe impairment in TCR signaling capacity due to the SKG 

hypomorphic Zap70 allele (10, 11, 13), and yet they paradoxically upregulated transcriptional 

TCR and cytokine signaling programs. This likely reflects increased tonic signaling in the 
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SKGNur GFPhi subset due to chronic antigen encounter in the setting of a more autoreactive 

repertoire. However, these SKG CD4 T cells appeared to have a defect in the ability to 

efficiently upregulate the usual negative regulators of TCR signaling (e.g., Folr4, also known as 

Izumo1r) compared to their induced expression in WTNur GFPhi cells (11, 22-25). 

Pronounced transcriptional heterogeneity among naïve peripheral CD4 T cells.  The long 

half-life of eGFP (26) compared to the more dynamic turnover of NUR77/Nr4a1 protein and 

transcript (27-29) (Supplementary Fig. 2A-C), meant cells in the GFPhi subgroups most likely 

represented a heterogeneous collection of more and less recently stimulated cells. To overcome 

this limitation and to understand whether the TCR signaling and the effector cytokine modules 

that we identified were uniformly or heterogeneously activated among the subgroups, we 

performed paired single-cell RNA and TCR sequencing (scRNA- and scTCR-seq) on GFPhi and 

GFPlo naïve CD4 T cells from SKGNur and WTNur mice (Fig. 2A). Analysis of the scRNA-seq 

dataset revealed significant heterogeneity within the unperturbed, naïve CD4 T cell 

compartment (defined by surface markers CD62LhiCD44loCD25-) (Fig. 2B-C) across all the 

subgroups, consistent with a recent report (30). We identified eight distinct clusters, including a 

cluster (T.N4Nr4a1) uniquely representing cells that expressed both Nr4a1 (log2FC=6.1, P<2E-

308, Wilcoxon rank-sum) and eGfp (log2FC=6.0, P<2E-308) (Fig. 2C, Supplementary Fig. 2D, 

Supplementary Data 4). The transcriptomic signatures of these eight clusters recapitulated and 

further refined our bulk RNA-seq gene signatures (Fig. 1, Supplementary Data 5). Indeed, 

genes up-regulated in T.N4Nr4a1 cells were overwhelmingly enriched for T cell activation and 

TCR signaling response genes (Nr4a1, Nr4a3, Cd5, Tnfrsf9, Tnfrsf4, Egr1-3, Izumo1r, Ifr4, 

Supplementary Data 5) and primarily overlapped with module 2 (signal transduction and the 

negative regulation of a biologic process) and module 4 (response to external stimuli and 

leukocyte activation) genes identified in our bulk RNA-seq analysis (Fig. 1C-D, Supplementary 

Fig. 2G, Supplementary Data 2). 
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The GFPhi T cells from both SKGNur and WTNur mice were clearly enriched in the 

T.N4Nr4a1 cluster compared to GFPlo CD4 T cells in the respective mice by a mean of > 4-fold. 

GFPhi T cells were also enriched in the T.N4Izumo1_Id2 and, albeit to a lesser extent, the CytoNkg7 

clusters (Fig. 2D; Supplementary Fig. 2D-E) but were present across all eight clusters. This 

suggested to us that only a fraction of the GFPhi naïve CD4 T cells had more recent antigen 

encounter, whereas most of the other GFPhi T cells had downregulated their Nr4a1 and eGfp 

transcripts and segregated into heterogeneous phenotypes. We next closely examined the 

T.N4Nr4a1 cluster to determine which transcriptional changes in this cluster primed SKGNur 

GFPhi naïve CD4 T cells to differentiate into arthritogenic T cells. 

A subset of GFPhi naïve T cells is transcriptionally defined by an enhanced TCR signaling 

program.  Given the specificity of NR4A1 (NUR77) as a reporter of recent TCR signaling (31), 

the high expression of Nr4a1 in the T.N4Nr4a1 cluster signifies that these cells were actively, or at 

least recently, receiving TCR signaling input, most likely due to endogenous antigen(s) 

encounter (23, 24). The T.N4Nr4a1 cluster highly expressed multiple TCR response genes 

(Nr4a1, Egr1-3, Irf4, Irf8, Tnfrsf9, Nfkbid, Tnfrsf4, Bcl2a1b, Myb, Ikzf2, Nfkb2, Cd69), as well as 

negative checkpoint regulators (Pdcd1Ig2, Pdcd1, Lag3) (Fig. 2E, Supplementary Data 4) that 

are known to be induced by T cell activation to fine-tune and restrain T cell responses, enforce 

peripheral tolerance, and limit immunopathology (32-35). This TCR signaling signature was 

remarkably further upregulated in the signaling impaired GFPhi T cells from SKGNur mice within 

the T.N4Nr4a1 cluster (Fig. 2F-G, Supplementary Data 3 and 5), thereby mirroring the 

enrichment for genes involved in TCR signaling and T cell activation in our bulk RNA-seq 

dataset (Fig. 1F, Fig. 2G). Our scRNA-seq findings suggest active antigen encounter and 

adaptive gene regulation primarily occurred in the T.N4Nr4a1 cells and to a greater extent in the 

SKGNur GFPhi cells within this cluster. We next investigated additional T cell transcriptomic 
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signatures that could further illuminate how SKGNur GFPhi cells in the T.N4Nr4a1 cluster are 

poised to escape tolerance.  

Endogenous antigen-activated T cells upregulate a tolerogenic transcriptional program. 

T cell-intrinsic mechanisms that operate during thymic development (negative selection of self-

reactive cells) and in peripheral T cells (functional unresponsiveness or ‘anergy’) are essential 

to maintain tolerance to self. Therefore, we sought to examine the expression of candidate 

genes known to be associated with these two tolerance programs (36-41) in SKGNur and 

WTNur GFPhi cells compared to their GFPlo counterparts within the T.N4Nr4a1 cluster, which had 

the highest expression of Nr4a1 and Nr4a3 (log2FC=4.0, adjusted P<1E-42) . We found that in 

the T.N4Nr4a1 cluster, and in the overall dataset, GFPhi naïve CD4 T cells upregulated anergy 

and exhaustion-associated gene modules in both the WTNur and SKGNur subgroups (Fig. 2H, 

Supplementary Fig. 2H).  Additionally, the arthritogenic SKGNur GFPhi naïve CD4 T cells 

within the T.N4Nr4a1 cluster upregulated genes associated with a gene signature enriched in an 

in vivo anergy model compared to WTNur GFPhi naïve CD4 T cells (25) (Fig. 2I).  These results 

coincide with our published work defining a subset of Nur77-eGFP high CD4 T cells with a naïve 

surface phenotype juxtaposed with evidence of self-reactivity and upregulation of anergic 

markers (11, 25, 44).   This likely reflects the triggering of a negative regulatory program in 

naïve CD4 T cells in response to tonic TCR signaling since NR4A family members have been 

shown to play negative regulatory roles in peripheral T cells (28, 41-43), and to be associated 

with transcriptional signatures of anergy and exhaustion including expression of PDCD1 (PD-1), 

TIGIT, and other inhibitory regulators (41). 

However, within the SKGNur GFPhi cells, upregulation of these tolerogenic gene expression 

patterns appeared insufficient to induce anergy. Indeed, although genes upregulated in SKGNur 

GFPhi T cells are associated with an anergy gene signature (Fig. 2H-I), Folate receptor 4 (FR4) 

gene expression (Izumo1r) – a marker of anergic cells – was significantly lower in SKGNur 
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GFPhi compared to WTNur GFPhi T cells (Fig. 2H, Supplementary Fig. 2H). This is consistent 

with our previous report of SKGNur mice in which we described a reduced frequency of anergic 

peripheral T cells (11). Therefore, it appears that the anergy program is likely defective in SKG 

CD4 T cells, perhaps due in part to their severely impaired proximal TCR signaling capacity. 

Therefore, in addition to a known loss in central tolerance, SKG mice have an independent 

defect in peripheral tolerance with unchecked activation of arthritogenic clones that cause 

autoimmune, erosive arthritis. 

SKG’s hyperresponsiveness to IL-6 is pre-programmed transcriptionally. We previously 

found that SKGNur GFPhi T cells were more responsive to IL-6 and more readily produced IL-17 

in the most autoreactive T cells, in part due to lower levels of SOCS3 (suppressor of cytokine 

signaling 3) – a critical negative regulator of IL-6 (11) (Supplementary Fig. 1A). Here, we found 

that genes associated with IL-6 signaling machinery and the Th17 pathway were uniquely 

enriched in SKGNur GFPhi T cells (45) in the T.N4Nr4a1 cluster (fig. S2I), consistent with our bulk 

RNA-Seq results (Fig. 1F, Supplementary Data 3).  

SOCS3 is downregulated in naïve CD4 T cells in response to antigen (46) and in patients 

with RA (11, 47). Its expression has a strong inverse correlation with murine arthritis severity 

(48-50). Therefore, we examined the expression of SOCS family members in our single cell 

dataset. Of these family members, Socs3 was specifically downregulated in SKGNur GFPhi cells 

within the T.N4Nr4a1 cluster (Supplementary Fig. 2J). Moreover, we found a striking inverse 

correlation between individual T cells that expressed Nr4a1 and Socs3 (Fig. 2J), corresponding 

to a published report (46). The stark inverse correlation between Nr4a1 and Socs3 expression 

in SKGNur GFPhi T cells within the T.N4Nr4a1 cluster provides orthogonal validation of our 

previous results. It highlights the interdependence between signaling via the TCR and 

heightened sensitivity to cytokines such as IL-6 (11), providing yet another link between T cell 

self-reactivity and pathogenicity. 
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T.N4Nr4a1 cells segregate into two distinct TCR signaling modules.  To complement our 

investigation of these curated pathways that could contribute to pathogenicity of SKGNur GFPhi 

T cells in the T.N4Nr4a1 cluster, we turned to unbiased methods for discovery of transcriptomic 

signatures within the T.N4Nr4a1 cluster to elucidate additional unknown mechanisms. We 

identified three distinct modules of highly variable genes (HVGs) that positively correlated with 

Nr4a1 (Fig. 3A). To our surprise, we found that members of two of these modules, Egr family 

members (immediate early gene transcription factors) and Tnfrsf9 (4-1BB – the TCR inducible 

co-stimulatory receptor), identified distinct subsets of cells within the T.N4Nr4a1 cluster (Fig. 3B 

and Supplementary Fig. 3A). Indeed, within just the T.N4Nr4a1 cells, Egr’s and Tnfrsf9 

continued to segregate into separate gene modules of HVGs positively correlated with Nr4a1 

(Supplementary Fig. 3B). The Egr module contained additional immediate early genes or 

markers of early T cell activation (e.g., Egr1, Egr2, Cd69, Ier2, Egr3, Nfkbid, Junb, Fos, Myc, 

Cd40lg), whereas the Tnfrsf9 module contained markers of chronic or prolonged TCR signaling 

input (e.g., Nr4a1, Pou2f2, Myb, Tnfrsf4, Lag3) (Fig. 3C and Supplementary Fig. 3C, 

Supplementary Data 6). 

Using GSEA we found that the genes overexpressed in Egr2 high expressing cells were 

associated with gene pathways induced early after TCR stimulation (0.5h and 1h timepoints), 

whereas Tnfrsf9 high expressing cells overexpressed genes associated with gene pathways 

upregulated after prolonged TCR stimulation (24h and 72h, Fig. 3D, Supplementary Data 3). 

Our findings suggest that T.N4Nr4a1 cells segregate into subclusters driven by acute versus 

chronic TCR signaling signatures. 

To examine other co-variates which could lead to segregation of acute versus chronic 

antigen-activated T cells, we performed cell-cycle analysis on our dataset. Though cell-cycle 

appeared to contribute somewhat to the heterogeneity among the T.N4Nr4a1 cluster, as Tnfrsf9 

positive expressing cells were more likely to be associated with S-phase cell-cycle genes 
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(Supplementary Fig. 3D), it did not fully account for the clear division between the expression 

of the Egr family members and Tnfrsf9.   

Cell states and trajectories of T.4NNr4a1 cells have a distinct distribution in SKGNur GFPhi 

subset.  We next investigated if these acute versus prolonged TCR signaling states were 

related and may contribute to the arthritogenic potential of the SKGNur GFPhi subset. 

Specifically, we asked if the early vs prolonged TCR signaling signatures associated with Egr2 

and Tnfrsf9 markers, respectively, were indicative of a continuum of cell states. We used RNA 

velocity analysis (51) to create a latent time axis for cells from the T.N4Nr4a1 cluster and asked if 

this latent time axis related to the acute versus chronic TCR signaling states delineated by Egr2 

and Tnfrsf9. Qualitatively, cells assigned an earlier latent time appeared to overlap with Egr2 

high cells in the UMAP, whereas cells assigned a later latent time overlap with Tnfrsf9 

expression (Fig. 3B, 4A). Additionally, the expression of Egr2 and associated genes peaked in 

cells earlier in the latent time axis, while the expression of Tnfrsf9 and associated genes peaked 

in cells later along the latent time axis (Fig. 4B-C).  

We next used an unbiased deconvolution method to separate the bimodal distribution of all 

cells across the latent time axis into 4 underlying distributions or cell states labelled “Stage 1” to 

“Stage 4” from earlier to later latent time (Fig. 4D, Supplementary Fig. 3E-F). The UMAP 

overlay of the dynamical model velocity vector field qualitatively suggests sequential transitions 

between the stages (Supplementary Fig. 3G). These transitions were further supported by 

trajectory inference analysis (52) which predicted a trajectory from Stage 1 to Stage 4 (Fig. 4E). 

The expression of Egr2 and Nr4a1 peaked within cells from Stage 1 while the expression of 

Tnfrsf9 peaked within cells from Stage 4 (Fig. 4F, Supplementary Data 7), and the genes 

overexpressed in Stage 1 versus Stage 4 cells were enriched for the same pathways induced 

after early or after prolonged TCR stimulation as had been enriched in the Egr2 high and Tnfrsf9 

high cells, respectively (Supplementary Fig. 3H). Thus, our RNA velocity analysis 
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independently uncovered the same cell states defined by the Egr2 and Tnfrsf9 marker genes 

and suggests that these cell states are the endpoints of a trajectory of cell states from early to 

prolonged TCR stimulation.  

We then asked if there were any differences between the distribution of cells from the SKG 

and WT subgroups among these cell states. Cells from SKGNur GFPhi and WTNur GFPhi 

groups had significantly different bimodal distributions across latent time with a higher density at 

earlier time for the SKGNur GFPhi cells and a higher density at later time for the WTNur GFPhi 

cells, which was not observed in the GFPlo subsets (Fig. 4G-H) (p = 0.002 and p = 0.11, 

respectively, from the Kolmogorov-Smirnov test). The cells from SKGNur GFPhi had an 

increased odds of being in Stage 1 versus Stage 4 than the cells from WTNur GFPhi which 

agreed with our latent time density for each of those cell groupings (OR = 1.25, p = 0.02). We 

hypothesized that the arrest of SKGNur GFPhi cells from the T.N4Nr4a1 cluster in Stage 1, which 

is associated with early TCR stimulation, was not due to these cells truly experiencing primarily 

acute TCR stimulation but instead that prolonged TCR stimulation within these SKGNur GFPhi 

cells did not robustly induce the Stage 4 prolonged TCR transcriptomic signature as seen for the  

WTNur GFPhi cells. These results correspond to our bulk RNASeq findings (Fig. 1C-D) and 

support our hypothesis that SKG CD4 T cells have a defect in peripheral tolerance induction 

resulting in a reduced frequency of anergic cells (11). 

Arthritogenic naïve CD4 T cells in SKG mice demonstrate a biased TCR variable beta 

gene repertoire.  We have previously shown that the NUR77 reporter of TCR signaling can 

enrich for arthritogenic naïve (CD62LhiCD44lo) T cells characterized in part by their increased 

autoreactivity and ability to proliferate in response to an undefined endogenous antigen(s) (11).  

Thus, we asked how the SKGNur GFPhi TCR repertoire might be contributing to the activation of 

these T cells in the periphery. We examined the TCR repertoire in the subsets using scTCR-seq 

(Fig. 2A) and detected paired TCR α (TRA) and TCR β (TRB) genes in 86% of cells 
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(Supplementary Fig. 4A). Using Gini coefficient analysis, we did not find an oligoclonal 

expansion in any of the clusters of naïve T cells sorted from any of the samples, including all the 

SKGNur samples (Supplementary Data 8).  

Instead, we found that SKGNur GFPhi T cells are uniquely associated with biased TCR 

variable β gene (TRBV) usage, but not TCR variable α gene (TRAV) usage (Fig. 5A-C, 

Supplementary Fig. 4B). In SKGNur GFPhi CD4 T cells compared to the paired SKGNur GFPlo 

samples, we found significantly higher (FDR < 0.1) usage of TRBV26 (TCR variable beta (Vβ) 

3), TRBV12-1 (Vβ5), TRBV15 (Vβ12), TRBV16 (Vβ11), TRBV3, and TRBV29 (Vβ7) and each of 

these TRBV genes also had a higher mean frequency in SKGNur GFPhi cells compared to 

WTNur GFPhi cells (Fig. 5A,C-D, Supplementary Data 9). 

Polyclonal Vβ expansion occurs in the presence of superantigen in both humans and mice 

(53, 54). Interestingly, the TRBV genes enriched in the SKGNur GFPhi T cell population mark 

Vβ’s that are known to recognize endogenous viral superantigens from mouse mammary tumor 

virus (MMTV) (Fig. 5E) (55, 56). To further address whether the SKG TRBV repertoire might be 

shaped by MMTV superantigen, we examined whether our SKG line carry MMTVs previously 

reported to be present in BALB/c mice (55, 56) and found that indeed Mtv-6, Mtv-8, Mtv-9 were 

present in SKG mice, unlike the Mtv-17 strain present in C57BL/6 mice (Supplementary Fig. 

4C). In contrast to the TRBV genes uniquely enriched in SKGNur GFPhi cells, TRBV genes for 

Vβ’s not known to respond to these particular MMTV’s (e.g., TRBV19/Vβ6, TRBV13-2/Vβ8, 

TRBV31/Vβ14) are not enriched in SKGNur GFPhi T cells (Fig. 5C,F). These results reinforce 

the notion that negative selection is defective in SKG mice, particularly in the SKGNur GFPhi T 

cells, congruent with our previous work (13) and suggests that the biased TRBV repertoire in 

SKGNur GFPhi cells is indeed likely shaped by encounter with endogenous MMTV 

superantigen. 
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Since Nur77-eGFP expression is dynamically expressed in T cells, the observed TRBV 

restriction suggests that the SKG TRBV repertoire in GFPhi T cells is driven by involvement of 

viral superantigen(s) not only in the thymus, but also in the periphery. It is likely that encounter 

with endogenous viral superantigens drives their Nr4a1 expression and increased frequency. 

Indeed within the T.N4Nr4a1 cluster, representing the most recently stimulated cells, SKGNur 

GFPhi cells also had enrichment of several Vβ’s known to respond to these specific MMTV’s 

(e.g.  TRBV16 (Vβ11) Supplementary Fig. 5A-D). This suggests that there is an intersection 

between cells occupying the transcriptional states in this cluster which are enriched in TCR 

signaling target genes and cells with Vβ’s that recognize MMTV superantigen (Supplementary 

Fig. 5A-D). Consistent with this, the subset of cells from the entire SKGNur GFPhi population 

that express the enriched TRBV3 and likely recognize MMTV superantigen upregulated a 

unique profile of TCR signaling target genes more than their GFPlo counterparts expressing the 

same TRBV (Fig. 5G). This is not unique to TRBV3 (Supplementary Fig. 4D, Supplementary 

Data 10).   

Taken together, these results strongly suggest that the biased TRBV repertoire in SKGNur 

GFPhi cells is shaped by impaired negative selection and peripheral encounter with endogenous 

MMTV superantigen, the latter of which is contributing to their more activated state. Indeed, the 

superantigen recognition in the periphery in SKGNur GFPhi cells within the enriched TRBV 

repertoire could be influencing their unique transcriptional states especially those found within 

the recently TCR stimulated cells in the T.N4Nr4a1 cluster.  

Arthritogenic T cells are enriched for Vβ’s driven by endogenous superantigen(s).  To 

validate our scTCR-seq results, we examined the distribution of TCR Vβ protein levels in 

SKGNur and WTNur peripheral CD4 T cells prior to arthritis initiation using antibody staining 

against a subset of candidate Vβ’s with commercially available antibodies (gating strategy 

Supplementary Fig. 6A). We found that the Vβ protein abundances paralleled the transcript 
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abundances observed in our scTCR-seq dataset. T cells expressing Vβ3, Vβ5, Vβ11 

(corresponding to TRBV26, -12, -16 respectively) were significantly enriched in SKGNur GFPhi 

peripheral naïve CD4 T cells from lymph node (LN) and spleen (Fig. 6A-B and data not shown), 

whereas Vβ’s not known to respond to BALB/c specific MMTVs (e.g., Vβ6, Vβ8, Vβ14 

corresponding to TRBV19, -13, -31 respectively) were not enriched in SKGNur GFPhi cells 

(Supplementary Fig. 6B-C, Fig. 5A,C). 

We then asked whether there was a further enrichment of the BALB/c MMTV specific Vβ’s in 

SKG mice in the setting of arthritis. After moderate to severe inflammatory arthritis was 

established in SKG mice (Supplementary Fig. 6D), peripheral CD4 T cells were harvested from 

joint draining LN (dLN) and arthritic joints and then examined for Vβ usage. We found a 

significantly higher frequency of Vβ3, Vβ5, and Vβ11 in SKGNur GFPhi T cells compared to T 

cells from the GFPlo subgroup in both naïve and memory peripheral CD4 T cells, with an even 

further increase in frequency among SKG GFPhi T cells infiltrating the joint compared to those 

from the dLN (Fig. 6C-D). This further enrichment suggests T cells with these particular Vβ’s 

encounter antigen in the arthritic joints of SKG mice and is congruent with our previous results 

that SKG joint infiltrating CD4 T cells upregulate NUR77 in response to antigen encounter (11). 

This enrichment in the joint was not observed in T cells expressing Vβ6, Vβ8, and Vβ14 

(Supplementary Fig. 6E-F). 

These provocative results indicate that Vβ enrichment in the SKGNur GFPhi CD4 T cell 

subset may be driven by superantigen in the periphery and even the joints. We found that 

BALB/c specific Mtv’s are expressed in the joints of non-arthritic and arthritic SKG mice (Fig. 

6E). Therefore, presence of endogenous viral superantigen(s) in the joints may lead to 

engagement of T cells expressing these unique Vβ’s that are transcriptionally poised to enter 

into an immune response as a result of signaling via their antigen-receptor (marked by 
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Nr4a1/NUR77 transcript and protein upregulation) and thus lead to the enrichment of these 

particular Vβ’s (Vβ3, Vβ5, and Vβ11) in the arthritic joint.  

 

Discussion:   

In this study, we leveraged the SKGNur mice and both bulk RNA and single-cell sequencing 

to profile the gene expression program and TCR repertoire of self-reactive pathogenic T cells 

before arthritis onset. Using single-cell sequencing, we unmasked remarkable transcriptional 

heterogeneity in the phenotypically naïve CD4 T cell compartment in both SKG and WT mice. 

We identified a subset of these cells (T.4NNr4a1) that upregulate TCR signaling and TCR 

activation gene programs in response to recent endogenous antigen encounter (marked by 

upregulation of Nr4a1, Cd69, Cd5, Egr1-3, Tnfrsf9, Nfkbid). We further identify two subsets of 

naïve CD4 T cells within the T.4NNr4a1 cluster that were either acutely or chronically antigen-

stimulated and enriched for immediate-early gene expression and gene expression associated 

with prolonged TCR signaling respectively (Fig. 3B-D, Supplementary Fig. 3H). These 

phenotypically naïve CD4 T cells have also upregulated gene modules associated with TCR 

negative regulators (e.g., Pdcd1Ig2, Pdcd1, Lag3) and markers of anergy / exhaustion (Cblb, 

Dtx1, Egr3, Izumo1r, Ctla4, Lag3, Nr4a1, Tnfrsf9, Tigit, Tox). Remarkably, many components of 

these TCR-dependent gene programs are further upregulated in naïve SKGNur GFPhi CD4 T 

cells compared to WT T cells (Fig. 1F, 2F-I) despite their hypomorphic Zap70 allele, most likely 

reflective of their more autoreactive repertoire and chronic endogenous antigen encounter. 

Despite this chronic exposure to endogenous antigen, naïve SKGNur CD4 GFPhi T cells do not 

successfully transition to a chronically stimulated transcriptional state, nor do they efficiently 

transition along the trajectory of cell states associated with early to prolonged TCR stimulation 

within the T.4NNr4a1 cluster. These findings may in part explain why SKGNur GFPhi CD4 T cells 
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do not efficiently induce the usual negative regulators of TCR signaling as identified in our bulk 

RNASeq dataset (Fig. 1C-D), unmasking a defect in peripheral tolerance. 

Previous examinations of the TCR Vβ repertoire in SKG mice had not identified oligoclonal 

expansion of a particular Vβ (22). However, our transcriptomic dataset directly probed the TCR-

sequences of the more arthritogenic naïve SKGNur GFPhi T cells and revealed repertoire 

differences at the single cell level. Here we describe a previously unknown TCR Vβ bias in the 

naïve SKG repertoire. Our results provide a direct link demonstrating how altered thymic 

selection in SKG mice can result in a biased peripheral TRBV/Vβ repertoire within the SKGNur 

GFPhi subset (Fig. 5A,C,D, 6A-B). The Vβ’s enriched in the SKGNur GFPhi subset within our 

dataset are well known to recognize endogenous mouse viral superantigens (from MMTV, Fig. 

5E) (55, 57, 58) and suggest that their repertoire is further influenced in the periphery by these 

superantigen(s). This may have led to a greater degree of basal activity and adaptation of the 

cells bearing TRBVs/Vβ’s that recognize MMTV superantigen(s) in these mice, thus explaining 

the higher frequencies of T cells bearing these TRBVs/Vβ’s in the SKGNur GFPhi subset. 

Moreover, the further enrichment of these Vβ’s in the SKG arthritic joint (Fig. 6C-D) suggests 

that the expansion of these Vβ‘s may be driven by intra-articular superantigen encounter. These 

findings may also be relevant in human RA (59-61), and other autoimmune arthritides (62-64), 

where T cells bearing particular Vβ’s have been reported to be expanded and retained in the 

synovial microenvironment. 

We propose a speculative model drawn from these and previous results (10, 11, 13, 22) in 

which inefficient negative selection results in the escape of a self-reactive biased repertoire 

(marked by Vβ’s responsive to MMTV superantigens) that is further enriched in the periphery 

through chronic antigen encounter. Although naïve SKG CD4 T cells can upregulate inhibitory 

pathways and an anergic-like transcriptional program in response to chronic antigen encounter 
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(e.g., Nr4a1, Pdcd1, Lag3), due to weak proximal TCR signaling they are unable to efficiently 

and fully upregulate these programs (e.g., lower expression of Izumo1r, Tnfrsf9, Tigit, Tox) 

resulting in a defective anergy program and reduced numbers of peripheral anergic cells (11). 

Furthermore, Treg peripheral tolerance mechanisms are also severely impaired due to their 

attenuated TCR signaling and their altered Treg repertoire (12), releasing another checkpoint on 

arthritogenic T cells. We propose that costimulatory molecules such as IL-6, and perhaps other 

cytokines, promote T cell survival and lower the TCR signaling threshold required for peripheral 

activation and differentiation thereby allowing the activation of naïve SKG T cells that failed to 

upregulate TCR signaling-induced tolerogenic programs as we observed on our trajectory 

analysis (65-67). Therefore, the biased TCR Vβ repertoire unique to the SKGNur GFPhi CD4 T 

cells are transcriptionally on the brink of activation such that an innate immune stimulus can 

trigger these cells to become potential initiators, or amplifiers, of disease.  Future studies will 

determine whether these Vβs are sufficient, and/or necessary, to cause or exacerbate SKG 

arthritis and the role of MMTV superantigen(s) in SKG arthritis development. These findings 

have relevant implications in human autoimmune disease where endogenous or foreign 

antigens can also prime ‘dormant’ autoreactive T cells and trigger disease.   
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Materials and Methods 

Materials 

Antibodies and reagents.  Ghost Dye Violet 510 (Tonbo Biosciences: 13-0870-T100) was 

used for live/dead staining. The following antibodies were used for staining as indicated: CD3e-

BUV395 (BD Bioscience: 563565, clone: 145-2C11), CD4-APCeFluor 780 (eBioscience: 47-

0042-82, clone: RM4-5), CD25-PerCPCy5.5 (Tonbo BioL 65-0251-U100, clone: PC61.5), CD44-

PE-Cy7 (BioLegend: 103030, clone: IM7), CD62L-BV711 (BioLegend: 104445, clone: MEL-14), 

TCR Vβ3-PE (BD Bioscience: 553209, clone: KJ25), TCR Vβ5.1/5.2-PE (BD Bioscience: 

562088, clone: MR9-4), TCR Vβ6-BV421 (BD Bioscience: 744590, clone: RR4-7), TCR Vβ8-

BV421 (BD Bioscience: 742376, clone: F23), TCR Vβ11-PE (BD Bioscience: 553198, clone: 

RR3-15), TCR Vβ14-Biotin (BD Bioscience: 553257, clone: 14-2), Streptavidin-BV421 

(BioLegend: 405226), FOXP3-eFluor 660 (eBioscience: 50-5773-82, clone: FJK-16s).  

Methods 

Mice.  BALB/c and C57BL/6J mice were purchased from Jackson laboratory, and 

BALB/cNur77-eGFP and SKGNur77-eGFP mice were bred in our facility (University of 

California, San Francisco) as previously described (11). All mice were housed and bred in 

specific pathogen-free conditions in the Animal Barrier Facility at UCSF according to the 

University Animal Care Committee and NIH guidelines. All animal experiments were approved 

by the UCSF Institutional Animal Care and Use Committee. 

Flow cytometry and cell sorting.  Cells were stained with antibodies of the indicated 

specificities and analyzed on a BD LSR Fortessa flow cytometer. Flow cytometry plots and 

analyses were performed using FlowJo v.10.8.0 (Tree Star). Cells were sorted to >95% purity 

using a MoFlo XDP (Beckman Coulter).  
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Statistics.  Data were analyzed by comparison of means using paired or unpaired 2-tailed 

Student’s t tests using Prism v.9.2.0 for Mac (GraphPad Software). Data in all figures represent 

mean ± SEM unless otherwise indicated. Differences were considered significant at P < 0.05: *P 

< 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001. 

Murine synovial tissue preparation.  Synovial tissues from ankle joints were digested with 1 

mg/mL Collagenase IV (Worthington: LS004188) and DNase I (Sigma: 4536282001) in RPMI 

1640 medium for 2 h at 37 °C on a rotator then quenched with 10% fetal bovine serum in RPMI 

1640 medium; digested cells were filtrated through a 70 µm nylon mesh to prepare single cell 

suspensions. 

Surface and intracellular staining.  After live/dead staining with Ghost Dye Violet 510 as per 

manufacturer’s instructions, cells were stained for surface markers, washed, and then fixed for 

10 min with 4% (vol/vol) fresh paraformaldehyde at room temperature protected from light. Cells 

were then permeabilized using the Mouse Regulatory T-Cell Staining kit 1 (eBioscience: 00-

5521-00) per manufacturer's instruction and then stained with FoxP3 e660. 

In vivo treatments. Zymosan A (Sigma-Aldrich) suspended in saline at 10 mg/mL was kept in 

boiling water for 10 min. Zymosan A solution 2 mg or saline was intraperitoneally injected into 8-

12 week-old mice. 

PCR and RT-PCR.  BALB/cJ, C57BL/6J, and SKG tail DNA was typed for Mtv-6, -8, -9, and -17. 

Standard PCR protocols were used for preparing PCR mixtures. Primer pairs for the detection 

of MMTV proviruses were previously described (68). GAPDH primers used: (5' 

CATGTTTGTGATGGGTGTGAACCA 3') and (5' GTTGCTGTAGCCGTATTCATTGTC 3'). PCR 

mixtures for Mtv-6, -8, and -9 were incubated at 94°C for 5 min, then denatured for 44 cycles at 

94°C for 1 min, annealed at 46°C for 1 min, polymerized at 72°C for 1 min, and then incubated 
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at 72°C for 5 min. PCRs for Mtv-17 were conducted similarly except for an annealing 

temperature of 50°C. Samples were run on 2% agarose gel. 

RT-PCR with joints.  Single cells suspensions of synovial tissues from SKG ankle joints were 

spun down at 1500RPM at 4C. Cell pellets were flash frozen using dry ice in ethyl alcohol. 

Frozen cell pellets were used with the RNeasy Mini Kit (Qiagen: 74106) for RNA purification. 

The qScript cDNA Synthesis Kit (Quantabio: 95047-100) was used for cDNA library synthesis 

from purified total RNA. RT-PCR was conducted as described previously for PCR.  

Bulk RNA sequencing.  Negatively selected CD4 T cells from the lymph node were sorted for 

CD62LhiCD44loCD25- and the 10% highest (GFPhi) or lowest (GFPlo) expressing T cells. Cells 

were washed, pelleted and immediately flash frozen using dry ice in ethyl alcohol. Samples 

were processed for bulk RNA-sequencing by Q2 solutions using the TruSeq Stranded mRNA kit 

(Illumina: RS-122-2103) for library preparation. The resulting libraries pool into three batches 

and sequenced on a Illumina HiSeq 2500 sequencer over three lanes. 

Alignment and initial processing of bulk RNA sequencing data. The raw fastq files were 

clipped and filtered using fastq-mcf v.1.04.636 to remove low quality reads and bases, 

homopolymers, and adapter sequences. The filtered reads were aligned using the STAR v.2.4 

(69) with the default settings to the mm10 transcriptome to produce count matrices for each 

sample. Genes with less than 10 counts across all the samples were filtered out. Raw counts 

were normalized and transformed by the variance stabilizing transformation (VST) function from 

DESeq2 v.1.22.2 (70).  

PCA analysis. The VST normalized features were used for principal component analysis with 

the function plotPCA from DESeq2.  
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Bulk RNA sequencing differential expression. Differential gene expression for the bulk RNA 

sequencing samples was performed with the raw counts from the filtered gene list for the 

indicated samples as the inputs. The analysis was run using a negative binomial model with 

multiple testing correction with Benjamini-Hochberg implemented via the DESeq function which 

includes an internal normalization from DESeq2. For differential gene expression between 

samples within the same genotype, mouse identity was included as a covariate.  

Functional enrichment analysis. The collection of 991 significantly differentially expressed 

genes (log2FC > 1 and adjusted p value < 0.05) from the four comparisons [SKGNur GFPhi 

versus SKGNur GFPlo , WTNur GFPhi versus WTNur GFPlo, SKGNur GFPhi versus WTNur 

GFPhi, SKGNur GFPlo versus WTNur GFPlo] were hierarchically clustered using the Ward 

linkage (“ward.D2”) with the R package pheatmap v.1.0.12. The resulting dendrogram was used 

to partition the differentially expressed gene list into six gene modules. The gene lists for each 

gene module were analyzed using the functional profiling g:GOSt tool from g:Profiler (version 

e102_eg49_p15_e7ff1c9) with g:SCS multiple testing correction method applying significance 

threshold of 0.05. Select significantly enriched pathways from the GO:BP or KEGG collections 

were reported. 

Gene set enrichment analysis. For the bulk RNA differential expression, the differential gene 

list was filtered to remove genes with NA for the adjusted p value or log fold change. For the 

single-cell RNA differential expression, the differential gene list was filtered to only include 

genes which were expressed in at least 1% of cells in the T.4NNr4a1 cluster. These filtered gene 

list were used to create ranked gene lists with the sign(log fold change) times the -log10(raw p 

value) as the ranking metric. The ranked list was used as input to look for gene set enrichment 

in the indicated collection of pathways in the ‘classic’ mode with the GSEAPreranked tool from 

GSEA v.4.1.0 with the default settings. For pathway collections of human genes, the 
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‘Mouse_Gene_Symbol_Remapping_Human_Orthologs_MSigDB’ chip file was used to map 

mouse genes from the ranked gene list to the human orthologs. Mouse gene symbols that 

mapped to the same human symbol were collapsed based on the max rank. 

Single-cell RNA and TCR sequencing. Negatively selected CD4 T cells from the lymph node 

and spleen were sorted for CD62LhiCD44loCD25- and the 10% highest (GFPhi) or lowest (GFPlo) 

expressing T cells. Droplet-based paired single-cell RNA and TCR sequencing was performed 

using the 10x single-cell 5’+V(D)J v.1 kit per manufacterer’s instructions. The resulting cDNA 

libraries were sequenced on four lanes of an Illumina Novaseq 6000 sequencer to yield gene 

expression (GEX) and T cell receptor (TCR) fastqs. 

Alignment and initial processing of single-cell sequencing data. The raw fastq files were 

aligned using CellRanger v3.0.1 and 3.0.2 software with the default settings to the mm10 

transcriptome with the addition of the sequence for the eGFP transcript and the vdj GRCm38 v 

3.1.0 reference for the GEX and TCR fastqs, respectively. 

eGFP transcript sequence. 

ATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGAGCTGGA

CGGCGACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACCT

ACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGCCCA

CCCTCGTGACCACCCTGACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATGA

AGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCT

TCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACC

CTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGG

GCACAAGCTGGAGTACAACTACAACAGCCACAACGTCTATATCATGGCCGACAAGCAGAA

GAACGGCATCAAGGTGAACTTCAAGATCCGCCACAACATCGAGGACGGCAGCGTGCAGCT

CGCCGACCACTACCAGCAGAACACCCCCATCGGCGACGGCCCCGTGCTGCTGCCCGACA
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ACCACTACCTGAGCACCCAGTCCGCCCTGAGCAAAGACCCCAACGAGAAGCGCGATCACA

TGGTCCTGCTGGAGTTCGTGACCGCCGCCGGGATCACTCTCGGCATGGACGAGCTGTACA

AGTAA 

Cell type classification and clustering. We filtered out 721 cells with less than 100 or more 

than 3000 genes detected and filtered out 14,388 genes detected in less than 3 cells. We also 

filtered out 1,066 cells with more than 10% of total counts (UMIs) mapping to mitochondrial 

genes and 1008 cells determined to be contaminating B cells based on CD19 expression. The 

raw counts were normalized to 10,000 counts per cell and log(count + 1) transformed. For 

technical and batch correction, we regressed out total UMI counts and % counts mapping to 

mitochondrial genes and used combat for batch correction with each sample as a batch. We 

identified 1119 highly variable genes (excluding all Trav and Trbv genes to avoid clustering cells 

based on expression of those genes) which were scaled and used with the default settings in 

scanpy v.1.4.3 (71) for PCA analysis followed by leiden clustering after nearest neighbor 

detection and UMAP projection. This analysis identified 13 clusters which we collapsed into 9 

cell sub-types based on differential gene analysis. 

Single-cell differential expression analysis. Differential gene expression on the log-

normalized gene counts for the SKGNur GFPhi cells versus the SKGNur GFPlo cells with a 

particular TRBV assignment (Fig. 5G, fig. S4D) was performed using the hurdle model with 

Benjamini-Hochberg multiple testing correction from MAST v.1.12.0 (72) to allow for paired 

differential expression by mouse with the formula: ~ genotype + cell sub-type + number of 

genes detected + mouse id. All other single-cell differential expression was performed using the 

log-normalized gene counts with the rank_genes_groups function from scanpy with the 

Wilcoxon rank-sum method and multiple testing correction with Benjamini-Hochberg. 
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Additionally, the adjusted p values that were equal to 0 were updated to the minimum 

representable positive normalized float (2.2250738585072014e-308). 

Cell cycle phase assignment and module scoring. To assign cells to the cell cycle phases, 

the log-normalized scaled gene counts were used with the score_genes_cell_cycle function 

from the scanpy v.1.5.1 package with the Mus musculus G1/S DNA Damage Checkpoints and 

G2/M Checkpoints gene lists from the REACTOME database being used for the genes 

associated to the S phase and genes associated to the G2M phase (73, 74), respectively. For 

the single cell scoring of the bulk RNA sequencing gene modules, the log-normalized scaled 

gene counts were used with the score_genes function from scanpy.  

RNA velocity analysis. For each 10x well, we used velocyto v.0.17.17 (75) to create a loom file 

with the spliced, unspliced, and ambiguous counts with the Dec. 2011 GRCm38/mm10 repeat 

masking gtf file from the UCSC genome browser (76, 77). The loom files across all wells were 

merged and then subsetted to all cells in the T.4NNr4a1 cluster. The resulting object was used to 

run the dynamical model from scvelo v.0.2.1 with the default settings to uncover the RNA 

velocity to predict the latent time for each cell.  

We used we used a Gaussian mixture model with the GaussianMixture tool from sklearn 

v.0.23.1 (78) to deconvolute the underlying individual Gaussian distributions from the latent time 

distribution for cells from the T.4NNr4a1 cluster. This separated the cells into an optimal number 

of 4 distributions or clusters as determined by the elbow of the Bayesian Information Criterion 

(BIC) and Akaike Information Criterion (AIC) plots.  

The smoothed gene expression versus latent time was modelled using a linear generalized 

additive model using default settings with the LinearGAM function from pygam v.0.8.0 (79). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 16, 2022. ; https://doi.org/10.1101/2022.01.13.476250doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.13.476250
http://creativecommons.org/licenses/by-nc-nd/4.0/


 27

For trajectory inference between the four clusters (“Stage 1” – “Stage 4”), we used the graph-

based tool PAGA within scvelo to predict velocity-inferred transitions among the clusters.  

TCR analysis. Cells with <=2 TRA chains and <=1 TRB chains were used in the TCR clonotype 

analyses (53). Cells with two TRA chains were removed for the TRBV and TRAV analyses since 

the highest frequency for any dual TRA was 0.09% in any one sample (~1 cell). This removed 

10,598 cells or 13.6% of all cells which is consistent with the expected dual TRA frequency. 

TRBV and TRAV genes which were not present in at least two mice from the same subgroup 

(i.e., SKGNur GFPhi, WTNur GFPhi, SKGNur GFPlo, and WTNur GFPlo) were removed from the 

downstream TRBV and TRAV analyses.  

Significant differences in the TRBV frequencies between subgroups was determined by exact 

permutation test for unpaired samples and exact permutation test (N > 5 paired samples) (80) or 

paired t-test (N <= 5 paired samples) using scipy v.1.4.1 followed by Benjamini-Hochberg 

correction with statsmodels v.0.11.1 for paired samples.   
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Figure Legends 

Figure 1. Pre-arthritic naïve SKG T cells demonstrate enhanced T cell activation.  (A) 

Experimental scheme of bulk RNA-seq analysis. (B) Principal component analysis (PCA) based 

on transcriptomic data from bulk RNA-seq data shows distribution of SKGNur and WTNur GFPlo 

and GFPhi CD4 naïve T cell subsets as shown in (A) (n=3 per subgroup). (C) Heatmap showing 

expression of 991 differentially expressed genes (DEGs, absolute value(log2(fold-change)) > 1, 

adjusted P value < 0.05) from pairwise comparisons for all samples grouped by subgroup. 

Hierarchical clustering was used to group DEGs into 6 modules (indicated by dendrogram and 

row annotation color bar on left). (D) Dotplot of select pathways from gene ontology analysis for 

each gene module from (C) with dot color indicating adjusted P value and dot size proportional 

to number of genes in overlap between pathway genes and module genes. (E) Volcano plot of 

DEGs for SKGNur GFPhi versus WTNur GFPhi. DEGs are colored by module membership from 

gene modules in (C). (F) Enrichment plots of TCR signaling and cytokine pathways from GSEA 

analysis of all GO:BP pathways for ranked genes from SKGNur GFPhi versus WTNur GFPhi 

differential expression analysis. FDR, false discovery rate. NES, normalized enrichment score 

 

Figure 2. Single-cell RNA sequencing unveils heterogeneity among naïve CD4 T cells 

with a subset marked by genes associated with TCR signaling. (A) Experimental 

scheme of paired scRNA- and TCR-seq of sorted GFPhi and GFPlo naïve (CD62LhiCD44loCD25-

) CD4 T cells.  (B) Uniform manifold approximation and projection (UMAP) of 99,074 naïve T 

cells derived from 8 samples (2 replicates from each WTNur and SKGNur GFPlo and GFPhi 

subset). Cells are colored according to annotated leiden clusters. (C) Stacked violin plot of 

expression of marker genes for each annotated cluster. Red and black boxes highlight genes 

uniquely expressed in T.4NNr4a1 cluster.  (D) UMAP of cells separated by subgroup (WTNur and 
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SKGNur GFPlo and GFPhi subgroups). (E) Volcano plot of cells’ DEGs from T.4NNr4a1 cluster 

versus other cells. Dots are colored by significant overexpression (absolute value(log2(fold-

change)) > 1, adjusted P value < 0.05) in T.4NNr4a1 cluster (red), other cells (dark grey), or no 

significant difference (light grey).  Labelled genes are colored by role in regulation of TCR 

signaling either positive (red) or negative (blue).   (F) Volcano plot of T.4NNr4a1 cells’ DEGs from 

SKGNur GFPhi versus WTNur GFPhi. Dots are colored as significantly overexpressed (adjusted 

P value < 0.05) in WTNur GFPhi (orange), SKGNur GFPhi (blue), or not significantly different 

between groups (grey). Labelled genes involved in TCR signaling are colored as indicated in 

(E). Heatmap shows average expression of the same genes by subgroup normalized by 

standard scale by column (subtract minimum and divide by maximum).  (G) Enrichment plots of 

TCR activation and signaling pathways from GSEA analysis of all GO:BP pathways for 

ranked genes from differential gene expression analysis of cells in T.4NNr4a1 cluster from 

SKGNur GFPhi versus WTNur GFPhi. FDR, false discovery rate. NES, normalized 

enrichment score.  (H)  Stacked violin plot of expression of candidate anergy and exhaustion 

associated genes in WTNur and SKGNur GFPlo and GFPhi CD4 naïve cells from T.4NNr4a1 

cluster. Heatmap shows average expression of the same genes by subgroup normalized by 

standard scale by column (subtract minimum and divide by maximum).  (I) Enrichment plots of 

gene signature for in vivo naïve CD4 anergy model (Ngyugen et al. 2021) for ranked genes from 

differential gene expression analysis of cells in T.4NNr4a1 cluster from SKGNur GFPhi versus 

WTNur GFPhi. FDR, false discovery rate. NES, normalized enrichment score.  (J) UMAP of 

all cells colored by expression of the indicated genes. Scale is for the log-normalized gene 

expression. 

 

Figure 3. T.N4Nr4a1 cells segregate into two distinct TCR signaling modules that segregate 

acute from chronic antigen-activated T cells.  (A) Correlation matrix shows hierarchical 
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clustering of Spearman’s correlation of top 25 highly variable genes (HVG) that positively and 

negatively correlate with Nr4a1 expression across all cells. Diagonal grey boxes represent 

correlation of 1. Dark grey boxes mark distinct gene modules from genes that positively 

correlate with Nr4a1 expression.  (B) UMAP plots show the expression levels of indicated 

marker genes. Scale represents the log-transformed normalized counts of genes.  (C) Volcano 

plot shows DEGs for cells in T.4NNr4a1 cluster that expressed (log normalized expression > 1) 

Egr2 or Tnfrsf9 with dots colored by significant overexpression (absolute value(log2(fold-

change)) > 0.05, adjusted P value < 0.05) in Egr2 (tan) or Tnfrsf9 (teal) expressing cells. (D) 

Enrichment plots of pathways of time course in vitro activation of CD4+ T cells with αCD3 + 

CD28 from GSEA analysis of pathways from study GSE17974 for ranked genes from differential 

gene expression analysis of cells in T.4NNr4a1 cluster that express Egr2 versus Tnfrsf9. FDR, 

false discovery rate. NES, normalized enrichment score.  

 

Figure 4. Trajectory analysis of T.4NNr4a1 cells orthogonally uncovers acute versus 

chronic antigen-activated T cell states with a distinct distribution in the SKGNur GFPhi 

subset.  (A) UMAP of cells from T.4NNr4a1 cluster colored by latent time assigned by the scvelo 

dynamical modeling algorithm. (B) Smoothed gene expression from cells in T.4NNr4a1 cluster of 

select genes with highest expression earlier or later (C) along latent time axis. (D) Probability 

densities of latent time distribution of cells from T.4NNr4a1 cluster assigned to 4 distinct clusters 

(labelled “Stage 1” – “Stage 4”) by a Gaussian mixture model. (E) Predicted transitions from 

PAGA algorithm between cells from stages indicated in (D). (F) Single cell heatmap of standard 

scale normalized expression of genes ordered top to bottom by peak expression at earlier to 

later latent time. Chosen genes are the top 300 genes with the highest confidence used in 

modeling of latent time. Column annotation bar indicates stage assignment of the cell in each 
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column. (G-H) Probability densities of latent time distribution for GFPhi (G) and GFPlo (H) cells 

from WTNur and SKGNur mice. 

 

 

Figure 5. SKG CD4 T cells harbor a biased TCR variable beta gene repertoire.  (A-B) 

Scatterplot of mean frequency of cells expressing each TRBV (A) or TRAV (B) gene for the 

SKGNur GFPhi samples versus the WTNur GFPhi samples. Dots for each TRBV and TRAV 

genes are sized according to the FDR from a one-sided paired t-test comparing frequency in 

SKGNur GFPhi versus SKGNur GFPlo. Dots are colored as either significantly enriched (FDR < 

0.1) in SKGNur GFPhi (dark blue), significantly enriched in SKGNur GFPlo (light blue), or not 

significantly enriched in either subgroup (black). Dots for significant TRBV genes are labelled 

with the TRBV gene name. Labels for TRBV genes that were significantly enriched in SKGNur 

GFPhi and were also more highly expressed in SKGNur GFPhi samples versus WTNur GFPhi 

samples are bolded.  (C) Bar plot of mean value of cells expressing each TRBV gene as a 

percentage of all cells in each sample with an assigned TRBV. Bars are colored according to 

subgroup and ordered with the TRBV genes enriched in SKGNur GFPhi (A) followed by the 

other TRBV genes ordered by increasing overall frequency. (D) Bar plots of frequency of cells 

expressing indicated TRBV genes significantly enriched in SKGNur GFPhi for two replicate mice 

in each subgroup. (E) Table depicting H-2 haplotype, expected Mtv pro-virus, its Vβ specificity 

and base pair (bp) size on gel for Balb/c and C57BL/6 mice. (F) Bar plots of frequency of cells 

expressing indicated TRBV control genes not uniquely enriched in SKGNur GFPhi cells for two 

replicate mice in each subgroup. (G) Volcano plot of DEGs of cells with assigned indicated 

TRBV from the SKGNur GFPhi or SKGNur GFPlo subgroups. Dots are colored by significant 

overexpression (absolute value(natural log(fold-change)) > 0.2, adjusted P value < 0.05) in 

SKGNur GFPhi (dark blue), SKGNur GFPlo (light blue), or no significant difference (light grey). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 16, 2022. ; https://doi.org/10.1101/2022.01.13.476250doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.13.476250
http://creativecommons.org/licenses/by-nc-nd/4.0/


 40

 

Figure 6. Arthritogenic CD4 T cells are enriched for TCR Vβs likely driven by endogenous 

superantigen(s).  (A-B) Representative FACS plots (A) of naïve peripheral CD4 T cells with 

indicated TCR Vβ protein usage determined by flow cytometry in GFPlo and GFPhi T cells from 

LN of WTNur and SKGNur mice prior to arthritis induction and quantified in (B) where bar 

graphs depict mean frequency (± SEM), n = 3-4 mice per group, experiment repeated at least 3 

times. (C-D) Representative FACS plots (C) of peripheral naïve or memory, or joint CD4 T cells 

with indicated TCR Vβ protein usage determined by flow cytometry in GFPlo (light blue) and 

GFPhi (dark blue) T cells from LN or joints of SKGNur mice 2.5 weeks after arthritis induction 

with zymosan (as seen in Supplemental Fig. 6D) and quantified in (D) where bar graphs depict 

mean frequency (± SEM), n = 7 mice per group pooled from 2 experiments. Significance 

indicated by asterisk for P value (exact permutation test) or FDR (paired t-test) < 0.05 (*), < 0.1 

(**), or < 0.001 (***) in (B) and (D). (E) DNA was used from SKG joints ± arthritis in PCR 

reactions containing primers specific for the indicated Mtv pro-viruses. Lanes 2-6 show PCR 

mixtures lacking template DNA. (D, K) C57BL/6 tail DNA was used as a positive control for Mtv-

8, -9, -17 and a negative control for Mtv-6. Molecular size markers are shown in lane 1. Each 

gel is representative of at least 3-4 biological replicates per condition and genotype. 
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Figure 6
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Baseline Vβ frequency in CD4 naive T cells  
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