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ABSTRACT
Phosphoproteomics routinely quantifies changes in the levels of thousands of

phosphorylation sites, but functional analysis of such data remains a major challenge.

While databases like PhosphoSitePlus contain information about many phosphorylation

sites, the vast majority of known sites are not assigned to any protein kinase. Assigning

changes in the phosphoproteome to the activity of individual kinases therefore remains

a key challenge.. A recent large-scale study systematically identified in vitro substrates

for most human protein kinases. Here, we reprocessed and filtered these data to

generate an in vitro Kinase-to-Phosphosite database (iKiP-DB). We show that iKiP-DB

can accurately predict changes in kinase activity in published phosphoproteomic

datasets for both well-studied and poorly characterized kinases. We apply iKiP-DB to a

newly generated phosphoproteomic analysis of SARS-CoV-2 infected human lung

epithelial cells and provide evidence for coronavirus-induced changes in host cell kinase

activity. In summary, we show that iKiP-DB is widely applicable to facilitate the functional

analysis of phosphoproteomic datasets.
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INTRODUCTION
Mass spectrometry (MS)-based proteomics provides extensive information about

thousands of posttranslational modifications (PTMs)1,2. Phosphorylation of serine,

threonine or tyrosine residues is the most extensively studied PTM in humans3,4, and

over 200,000 phosphorylation sites have been described5. However, the vast majority of

these sites have neither an annotated kinase nor a known biological function6,7.

Therefore, while phosphoproteomics can now routinely quantify changes in thousands

of phosphorylation sites8,9, the functional interpretation of these data remains a major

challenge.

Computational methods to functionally annotate phosphoproteomic data can be

broadly divided into two categories. The first category consists of algorithms aiming at

assigning kinases to unannotated phosphosites by integrating known kinase-substrate

associations with other biological features (e.g. interaction networks or co-expression

profiles)10–14. The output of such algorithms are scores representing the likelihood of a

certain site to be phosphorylated by a specific kinase. The second category of methods

seeks to annotate changes in kinase activity in quantitative phosphoproteomics

datasets. To this end, observed changes in phosphopeptide levels across conditions are

integrated with kinase-substrate annotations15–17. The output of such algorithms are

kinase activity profiles across conditions. Both categories of algorithms share the need

for a resource representing kinase-to-phosphosite associations. The most

comprehensive resource for phosphosites function is PhosphoSitePlus (PSP)5.

However, fewer than 3% of known phosphosites have either a reported function or a

known regulatory kinase in PSP6. Moreover, the distribution of kinase-to-phosphosite

associations in PSP is skewed with a minority of well-studied kinases making up the

majority of entries in the database. This bias remained essentially unchanged, despite

tremendous technological developments in the field18.

Here, we address the challenge of predicting kinase activity in phosphoproteomic

data from a different angle: instead of developing algorithms that rely on existing

annotation, we expand on the knowledge of kinase-to-phosphosite annotation. To this

end, we took advantage of recently published large-scale in vitro kinase data for over

300 human protein kinases19. We re-analyzed and filtered these data to compile it into
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an in vitro kinase-to-phosphosite database, or iKiP-DB. Using several published

phosphoproteomics datasets of kinase activation/inhibition, we show that iKiP-DB

outperforms PSP in its ability to detect changes in kinase activity. Finally, to apply

iKiP-DB, we infected lung epithelial cells with SARS-CoV-2 and investigated changes in

cellular kinase activity induced by the novel coronavirus.
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EXPERIMENTAL SECTION
Analysis of in vitro kinase assays

In vitro kinase assay data from the work of Sugiyama and colleagues19 deposited

on ProteomeXchange (dataset identifier PXD011366) was downloaded and re-analyzed

using MaxQuant v1.6.10.4320. Each kinase assay was assigned a specific experimental

group in the experimental design of MaxQuant, and, when present, replicate

experiments were combined in the same experimental group. The quantification method

was set to di-methyl labeling, as described in the original publication. The MS scans

were searched against the Human Uniprot database (2018-07) using the Andromeda

search engine. FDR was calculated based on searches on a pseudo-reverse database

and set to 0.05. The search included as fixed modifications carbamidomethylation of

cysteine and as variable modifications methionine oxidation, N-terminal acetylation,

asparagine and glutamine deamidation as well as Phospho (STY). Trypsin/P was set as

protease for in-silico digestion of the reference proteome. Phosphosites were filtered for

reverse hits, contaminants and phosphosites with a localization probability lower than

0.75. Additionally, we only considered singly phosphorylated sites for building the

database. Phosphopeptide intensities were log2-transformed and corrected for the

intensity measured in the light di-methyl label channel, corresponding to the control

experiment. As in the original publication19, phosphosites were considered specifically

phosphorylated by a recombinant kinase when having a log-transformed ratio treatment

over control higher than 1. From these kinase-substrate lists we removed all sites that

were not contained in a large-scale re-analysis of 110 human phosphoproteomics

experiments7, which was downloaded from the PRIDE repository (dataset identifier

PXD012174). As a second filter, we removed all redundant phosphosites assigned to 20

or more kinases; finally, we excluded all kinase set with less than 5 annotated

phosphosites. We then extracted the ±7 amino acid sequence windows around the

phosphorylated site to be used as the specific identifier for each site, and combined all

kinase sets into a single GMT file to be used with the ssGSEA suite to perform PTM- set

enrichment analysis (PTM-SEA)15. Since our database is exclusively composed of

kinase-substrate associations, all sites were marked as “up” sites. The database is built

to work with the flanking sequence centric mode of PTM-SEA. To compare our
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database with PSP, we extracted the phosphosites of PTMsigDB15 annotated as

“KINASE-PSP''.

Preparation of phosphoproteomics dataset for benchmarking
All datasets used for benchmarking of iKiP-DB were downloaded from the

supplementary tables containing information on phosphopeptide data of the respective

publications21–25. When not already provided, we filtered for single-phosphorylated, high

confidence phosphosites (localization probability > 0.75) and calculated

log2-transformed ratios of treatment(s) over control(s). We then extracted the ±7 amino

acid sequence windows around the phosphorylation site (±6 for Rosales et al.) and

removed duplicate entries. For each phosphoproteomics dataset, resulting sites and

ratio information were exported as GCT files15.

Calculation of kinase enrichments
We calculated all our kinase enrichments using the ssGSEA2.0 suite15,26 using

the standard settings: rank sample normalization, weight for the Kolmogorov-Smirnov

statistic of 0.75, area under the resulting curve as main statistic and normalized

enrichment score (NES) as output score, minimum overlap between query and test set

of 5 sites and 1000 permutation for p-value and NES calculations. All benchmarking

datasets were analyzed using iKiP-DB and PTMsigDB15 (v1.9.0) separately. Since

PTMsigDB contains annotations for several experimental categories, we considered

exclusively sets of kinase-substrate associations (“KINASE-PSP” group). Since Rosales

and colleagues only provided ±6 sequence windows for their dataset, we adapted

iKiP-DB and PTMsigDB by cutting the sequences contained in the databases to ±6 and

removing all duplicate entries that resulted from this cut. Analyses outputs were further

processed using in-house made scripts with the R programming language. KSEA

scores were calculated using in-house R scripts based on the formula described in the

original publication16.
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SARS-CoV-2 infections of Calu-3 cells
Experiments were performed and generated in the same context as described

previously by Wyler, Mösbauer, Franke and colleagues27. Briefly, Calu-3 cells (ATCC

HTB-55) were cultivated in Dulbecco’s modified Eagle’s medium supplemented with

10% heat-inactivated fetal calf serum, 1% non-essential amino acids, 1% L-glutamine

and 1% sodium pyruvate in a 5% CO2 atmosphere at 37 °C. SARS-CoV-2 (Patient

isolate, BetaCoV/Munich/BavPat1/2020|EPI_ISL_406862) was grown on Vero E6 cells

and concentrated using Vivaspin® 20 concentrators (Sartorius Stedim Biotech). Virus

stocks were stored at -80°C, diluted in OptiPro serum-free medium supplemented with

0.5% gelatine and phosphate-buffered saline. Mock infected controls were generated

with cells inoculated with cell culture supernatants from uninfected Vero cells in

accordance with virus stock preparation. For the infection experiments, Calu-3 cells

were seeded at 6 x 105 cells/mL cells/mL and after 24 hours cells were infected with

SARS-CoV-2 at an MOI of 0.33, or with Vero E6 medium as control. Samples were

harvested in three biological replicates after 4, 8 and 12 hours with pre-warmed trypsin

for 3 mins at 37 °C, after removal of the cell culture media. Mock infected controls were

similarly harvested in biological triplicates after 4 and 12 hours. Samples were lysed and

inactivated through boiling in SDS sample buffer. All infection experiments were carried

out under biosafety level three conditions with enhanced respiratory personal protection

equipment.

(Phospho)-proteomics sample preparation
Proteomics samples were prepared combining SP3 sample preparation28 and

TMT labelling29 using TMTpro reagents30. Briefly, lysates were pre-cleared via

centrifugation, then reduced and alkylated with DTT and iodoacetamide, respectively.

Proteins were then incubated with a 1:1 mix of SeraMag beads A and B at a 10:1

weight:weight bead:protein ratio. Protein binding to the hydrophilic beads was induced

by adding ACN and washed with 80% EtOH to remove contaminants. Protein digestion

was performed on beads in 50mM HEPES pH8, with Trypsin and LysC at a 1:50

protein:enzyme ratio for approximately 16 hours. After digestion, peptides were

quantified via BCA assay and directly labelled with TMTpro reagents (Thermo Fisher
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Scientific; product number A44520, lot number UL297970) following the manufacturer’s

protocol. Samples were randomly assigned to a TMT channel as follows: CoV2 4hrs

repA -> 128C, CoV2 4hrs repB -> 129N, CoV2 4hrs repC -> 133N, CoV2 8hrs repA ->

133C, CoV2 8hrs repB -> 127N, CoV2 8hrs repC -> 131C, CoV2 12hrs repA -> 130C,

CoV2 12hrs repB -> 130N, CoV2 12hrs repC -> 131N, mock 4hrs repA -> 132N, mock

4hrs repB -> 128N, mock 4hrs repC -> 132C, mock 12hrs repA -> 129C, mock 12hrs

repB -> 126, mock 12hrs repC -> 127C. The last TMTpro channel (134) was comprised

of a supermix of the other samples. Labelled peptides were pooled in equal amounts

and desalted with SepPak columns (Waters) and the resulting peptide mixture was

offline separated with high pH reverse phase fractionation29,31 on an Dionex 3000

system (Thermo Fisher Scientific) and a XBridge Peptide BEH C18 (130Å, 3.5 µm; 2.1

mm x 250 mm) column (Waters). Peptides were resuspended in high pH buffer A (5mM

ammonium formate, 2% ACN) and separated on a multi-step gradient from 0 to 60%

high pH buffer B (5mM ammonium formate, 90% ACN) 96 minutes long and collected in

96 fractions (1 fraction/min). The fractions were automatically pooled during collections,

where each xth fraction was combined with the x+25th, x+49th, x+73th fraction for a

total of 24 fractions. Of each pooled fraction approximately 1µg of peptide was

subjected to mass spectrometric (MS) analysis for total proteome measurement. The

remaining peptides were further pooled into 12 fractions and used as input for a

phosphopeptide enrichment via immobilized metal affinity chromatography (IMAC),

which was performed by the Bravo Automated Liquid Handling Platform (Agilent) with

AssayMAP Fe(III)-NTA cartridges.

LC-MS/MS Analysis
Proteome and phosphoproteome fractions were online-fractionated on a

EASY-nLC 1200 and acquired on an Exploris 480 mass spectrometer (Thermo Fisher

Scientific) operated on profile-centroid mode, as previously described32. Peptide

separation was achieved on a fused silica, 25 cm long column packed in-house with

C18-AQ 1.9 µm beads kept at a temperature of 45°C. Mobile phase A consisted of 0.1%

FA and 3% ACN in water, while mobile phase B consisted of 0.1% FA and 90% ACN.

After column equilibration peptides resuspended in buffer A were separated with a 250

8

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 14, 2022. ; https://doi.org/10.1101/2022.01.13.476159doi: bioRxiv preprint 

https://paperpile.com/c/2tvDyd/40Fy+AAeR
https://paperpile.com/c/2tvDyd/Abfp
https://doi.org/10.1101/2022.01.13.476159
http://creativecommons.org/licenses/by-nc-nd/4.0/


µl/min flow on a 110 minutes gradient:mobile phase B increased from 4% to 30% in the

first 88 minutes, followed by an increase to 60% in the following 10 minutes, to then

reach 90% in one minute, which was held for 5 minutes. The MS was operated in data

dependent acquisition, with MS1 scans from 350 to 1500 m/z acquired at a resolution of

60,000, maximum injection time (IT) of 10 ms and an automatic gain control (AGC)

target value of 3e6. The 20 most intense precursor ion peaks with charges from +2 to

+6 were selected for fragmentation, unless present in the dynamic exclusion list (30 s).

Precursor ions were selected with an isolation window of 0.7 m/z, fragmented in an

HCD cell with a normalized collision energy of 30% and analyzed in the detector with a

resolution of 45,000 m/z, AGC target value of 1e5, maximum injection time of 86 ms or

240 ms for total proteome and phosphoproteome analysis respectively.

(Phospho)-proteomics data analysis
RAW files were analyzed using MaxQuant20 v1.6.10.43, where TMTpro was

manually included as a fixed modification and quantification method. Correction factors

for each TMT channel as provided by the vendor were added to account for channel

spillage and minimum reporter precursor intensity fraction was set to 0.5. The MS scans

were searched against human and SARS-CoV-2 Uniprot databases (Jan 2020 and Apr

2020 respectively. SARS-CoV-2 database was modified to include the D614G mutation

on the Spike protein) using the Andromeda search engine. FDR was calculated based

on searches on a pseudo-reverse database and set to 0.05. The search included as

fixed modifications carbamidomethylation of cysteine and as variable modifications

methionine oxidation, N-terminal acetylation, and asparagine and glutamine

deamidation. Trypsin/P was set as protease for in-silico digestion of the proteome

database. Total proteome and IMAC-enriched phosphopeptides samples were analyzed

in the same MaxQuant run in separate parameter groups with the same settings, except

for the IMAC-enriched samples also Phospho (STY) was added as variable

modification. Protein contaminants, hits in the reverse database, only identified by

modified site and identified by less than two peptides of which less than one unique

were removed from the ProteinGroups result table. Phosphosites were filtered by hits in

the reverse database and potential contaminants. Additionally, only sites with
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localization probability higher than 50% were considered for further analysis. TMT

reporter ion intensities for each sample were then log2-transformed and median

normalized. Ratio of treatment over control were calculated with the matching mock

infection for the 4 and 12 hours time point, while the 8 hours time point was corrected

with the 4 hours control. Significantly regulated proteins at 12 hours post infection were

calculated with a Student t-test with Benjamini-Hochberg corrected p-values. Significant

cut-off was set at 10% FDR, while we used a data driven approach for a fold-change

cut-off. Specifically, for each side of the distribution of fold-changes (higher or lower than

zero), the function describing the density of points on the x-axis was calculated. The

cut-off was set based on the x value for which for and𝑑
𝑑𝑥 𝑓(𝑥) =  1 𝑥 ≥ 0

for . Phosphoproteomics data for PTM-SEA analysis was𝑑
𝑑𝑥 𝑓(𝑥) =  − 1 𝑥 <  0

prepared as described above for the benchmarking datasets. All statistical analysis was

done with the R programming language (v3.6.6).

Data availability
The mass spectrometry proteomics data have been deposited to the

ProteomeXchange Consortium via the PRIDE33 partner repository with the dataset

identifier PXD030395. Prior to publication, the data can be accessed with the following

credentials: Username: reviewer_pxd030395@ebi.ac.uk; Password: nLLVTHZZ
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RESULTS AND DISCUSSION
Deriving iKiP-DB from in vitro phosphorylation assays

To develop our database, we took advantage of a recent large-scale discovery

study of substrates of the human kinome19. In this study, de-phosphorylated HeLa cell

lysate was incubated with 385 recombinantly expressed human kinases to perform in

vitro kinase assays. After proteolytic digestion and phosphopeptide enrichment, the

sites phosphorylated by each kinase were identified via MS (Figure 1A). Intrigued by

this study, we retrieved the raw mass spectrometry data (ProteomeXchange dataset

identifier PXD011366) and re-analyzed it with MaxQuant20. In total, we obtained 159,618

kinase-to-phosphosites associations for 17,225 unique phosphosites, localized on 4,032

distinct protein groups (Figure 1A). In vitro kinase assays can induce phosphorylation of

sites that are not phosphorylated under physiological conditions. Therefore, we first

filtered the data using a catalogue of 112 manually curated datasets of

phospho-enriched proteins from 104 different human cell types or tissues7. More than

half of the in vitro sites were not observed in any cell or tissue dataset and therefore

excluded (Figure 1B). As a second filter, we excluded all sites assigned to 20 or more

kinases, since we reasoned that these highly redundant sites are not well suited to

distinguish between different kinases (Figure 1C). Finally, we removed all kinases with

less than five phosphosites since such a small number would not provide sufficient

information to compute robust enrichment scores.

After filtering, we obtained an in vitro kinase-to-phosphosite database (or

iKiP-DB) for 313 kinases (Supplemental Table S1). iKiP-DB provides kinase-substrate

associations for 128 kinases not previously annotated in PSP (Figure 1D). When

looking at the 185 kinases shared between both databases, PSP showed a strong bias

towards few well-characterized kinases (e.g. CDK1, PRKCA, CK2A1) while most other

kinases have only a small number of assigned sites. In contrast, kinase-substrate

associations in iKiP-DB do not display such a bias and greatly extend the annotations

for many kinases (Figure 1E, upper panel). Nevertheless, although PSP and IKiP-DB

have been derived in a completely independent fashion, we observed a significant

overlap between the number of phosphosites assigned to the same kinases in both

databases (Figure 1E, lower panel).
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Figure 1. Generating iKiP-DB. (A) Schematic representation of how the kinase assay data were
produced, together with the output of our re-analysis and the major steps to derive iKiP-DB. (B)
Venn diagram representing the overlap between the sites identified by Sugiyama et al. and the
collection of human phosphosites from the work of Ochoa and colleagues. The red line indicates
which sites were selected by this first filtering step. (C) Frequency distribution of phosphosites
redundancy, as in the number of kinases each phosphosite was assigned to. The red line
indicates the cut-off for the second filter we applied to obtain iKiP-DB. (D) Venn diagram
showing the overlap of kinases annotated in iKiP-DB and PhosphositePlus (PSP). (E) Kinases
present in PSP and iKiP-DB ranked based on the number of sites annotated in PSP. Above, we
indicated the number of sites in each database and the names of the kinases with most sites in
PSP (higher than 200). Below, is depicted the size of the overlap between the two databases
and the significance of the overlap (when present) based on an hypergeometric test with BH
adjusted p-values. The dashed line indicates the 5% FDR cut-off.
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iKiP-DB predicts the activation of EGFR and downstream pathway
To assess if iKiP-DB can predict kinase activity in phosphoproteomic data, we

first turned to epidermal growth factor receptor (EGFR) signalling34. To this end, we took

advantage of a recent phosphoproteomic dataset21. In this study, the authors treated

HeLa cells with EGF or TGFɑ over a time course, enriched for phosphopeptides via

combined phospho-tyrosine and titanium-dioxide enrichment, and measured the

resulting phosphoproteome by MS (Figure 2A). This dataset provides an excellent

benchmark for our database since i) EGFR/PI3K/AKT pathway is well studied and

characterized34; ii) the time course provides a longitudinal dimension to evaluate

kinases activity annotations over time; iii) EGF and TGFɑ act on the EGFR receptor

producing similar but not identical outcomes21,34. To calculate kinase enrichments, we

employed the PTM-SEA algorithm15, a method recently developed to calculate

enrichment of specific PTM sets in MS data. Similarly to a gene set enrichment analysis

(GSEA)26, PTM-SEA computes a rank-based statistic for sites present in an annotated

PTM set within the overall distribution of all ranked sites (ordered by their abundance

ratio or intensity). For comparison, we computed kinase enrichments with the same

algorithm but using a database of kinase sites in the PSP collection of PTMsigDB15

(Figure 2B, S1A and Supplemental Table S2). The two databases produced very similar

predictions for EGFR and the two downstream kinases AKT1 and RPS6KA1 (also

known as p90RSK or MAPKAPK1)21,34. In line with previous findings, our analysis

reveals that EGFR is rapidly activated upon stimulation with both EGF and TGFɑ,

followed by a decrease in activity caused by receptor internalization21. Both analyses

indicate a stronger re-activation of EGFR upon TGFɑ treatment, which has been linked

to the more efficient recycling of the receptor to the plasma membrane21. Of note, both

PSP and iKiP-DB predicted EGFR at time point 1 min as the most activated kinase

throughout the treatment, confirming the specificity of the predictions (Supplemental

Table S2). The relevant phosphosites for EGFR from PSP and iKiP-DB showed similar

trends across the dataset (Figure 2C). Additionally, the delayed and more sustained

activation of AKT1 and RPS6KA1 is in line with the more downstream position of these

kinases in the EGFR/PI3K/AKT pathway35,36 (Figure 2B). To ensure robustness of

iKiP-DB across different algorithms to calculate kinase enrichments, we also used
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kinase-substrate enrichment analysis (KSEA)16 and calculated KSEA scores and

statistics, obtaining overall similar results (Figure S1B, Supplemental Table S2). In

summary, these data show that iKiP-DB can be used to predict the activation status of a

well-studied kinase as well as a manually curated database.

Figure 2. Benchmarking of iKiP-DB. (A) Schematic representation of the experimental design of
the data from Francavilla et al. (B) Heatmap depicting the prediction output and colored
according to the normalized enrichment score of the PTM-SEA analysis. Each cell reports the
significance of the prediction (permutation based p-values: * < 10%, ** < 5%, *** < 1%), as well
as the size of the overlap over the size of the specific kinase set. (C) Distribution of
phosphosites ratios for EGF and TFGɑ treatments. Sites annotated for EGFR in iKiP-DB, PSP
or both are highlighted.

iKiP-DB predicts the inhibition of well and poorly characterized kinases
To further validate iKiP-DB as a useful tool to predict kinase activity, we searched

the literature for phosphoproteomics datasets with the following characteristics: i)

treatments with kinase inhibitors or knockdowns, as they would provide an easy ground
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truth to test our predictions; ii) studies focusing on a range of kinases, both well and less

characterized; iii) datasets derived from samples other than HeLa cells, to test

predictions across different model systems. According to these criteria, we selected four

additional datasets for further benchmarking of iKiP-DB (Figure 3). Again, we used the

PTM-SEA algorithm to compute kinase enrichment scores15.

Figure 3. iKiP-DB correctly predicts kinase inhibitions under different experimental conditions.
All panels depict the experimental design of the data used on the left or top and a heatmap with
the output of the prediction on the right or bottom. Each heatmap is colored according to the
normalized enrichment score (NES) and each cells reports the significance (permutation based
p-values: * < 10%, ** < 5%, *** < 1%), as well as the size of the overlap over the size of the
specific kinase set. We tested our database on the inhibitions of DYRK1A in glioblastoma cells
(A), ALK in neuroblastoma cells (B), ERK1/2 in metastatic melanoma cells (C) and CK2 in two
acute myeloid leukemia cell lines (D).
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For the selected datasets on DYRK1A22 and ALK23 kinase inhibition, PSP

provides poor predictions of activity (Figure 3A, Supplemental Table S3), or no

prediction at all because no observed sites overlapped with the database (Figure 3B,

Supplemental Table S3). In contrast, the predictions made with iKiP-DB reflected the

treatments the cells were subjected to: U251 glioblastoma cells treated with two

DYRK1A inhibitors at two different concentrations show an inhibition for the correct

kinase, with the normalized enrichment scores (NES) reflecting the increased

concentrations of the inhibitors with lower scores. A similar behavior is observed for

DYRK1A knockdowns, with lower NES for the longer time point of knockdown, providing

an excellent confirmation of the validity of our kinase activity annotation (Figure 3A and

S2A). Additionally, iKiP-DB indicated DYRK1A among, when not the most, inhibited

kinase (Figure S2B). Similarly, analysis with iKiP confirms the knockdown of ALK in

neuroblastoma NB1 cells, as well as a dose-dependent inhibition with lorlatinib (Figure

3B, S2C and S2D).

The next two dataset we selected focused on the inhibition of ERK1/2 and CK2,

which are well studied and annotated kinases in PSP (Figure 1E). ERK1/2 inhibitors are

of particular interest due to their role in the clinic, for example for the treatment of

melanoma, especially after the development of metastases37. In their work, Basken and

colleagues tested two potent ERK1/2 inhibitors on WM239 metastatic melanoma cells

and measured their effect on the phosphoproteome24. Kinase activity prediction with

iKiP-DB correctly indicated the strong inhibition of both ERK1 and 2, while prediction

with PSP could only detect the significant depletion of ERK1 (Figure 3C, Supplemental

Table S3). Next, we wanted to test whether our database could be used to unbiasedly

identify the correct target of a kinase inhibitor. For this, we assessed which kinases

were predicted as most inhibited by both drug treatments. Analysis with iKiP-DB

correctly identified ERK2 as the most inhibited kinase by ravoxertinib and SCH772984

(Figure S2E), which is well in line with the lower IC50 values of both compounds for

ERK2 compared to ERK138,39. On the contrary, analysis with PSP did not indicate either

ERK as the most inhibited kinase by either treatment (Figure S2E, Supplemental Table

S3). Finally, in the last study we used for benchmarking, Rosales and colleagues

treated two acute myeloid leukemia cell lines with a peptide-based kinase inhibitor
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targeting CK225. While both PSP and iKiP-DB correctly predicted the inhibition of

CK2A1, our database could also provide information regarding the inhibition of CK2A2,

the other catalytic subunit of the kinase (Figure 3D, Supplemental Table S3). Again, we

assessed which kinases were predicted as most inhibited to evaluate the potential of

our database for unbiased target discovery. Also here, iKiP-DB could be used to

correctly assess the target of the inhibitor in all conditions (Figure S2F, Supplemental

Table S3).

In conclusion, reanalysis of published phosphoproteomic datasets highlights the

ability of iKiP-DB to predict the activity of different kinases in various cell lines and with

data generated via different quantification and enrichment strategies (SILAC, TMT,

EasyPhos, TiO2, anti-p-Tyr antibodies). Hence, iKiP-DB can robustly predict kinase

activity in diverse phosphoproteomic datasets.

iKiP-DB identifies activated kinases upon SARS-CoV-2 infection
As proof of concept, we applied iKiP-DB to a new dataset of SARS-CoV-2

infected lung epithelial cells. Briefly, we infected lung epithelial cells (Calu-3) with

SARS-CoV-2 (Patient isolate, BetaCoV/Munich/BavPat1/2020|EPI_ISL_406862) at a

multiplicity of infection of 0.33, and collected samples at 4, 8 and 12 hours post infection

(hpi) in triplicates, along with mock infected controls. For quantitation and multiplexing

we employed isobaric labelling with tandem mass tags (TMTpro)29,30. From these

samples we acquired total proteome and IMAC-enriched phosphopeptide data (Figure

4A), which yielded over 8000 proteins and approximately 13000 phosphosites with no

missing values. While the impact of the infection on host proteome and

phosphoproteome was modest (Figure S3), we measured a strong increase of all

SARS-CoV-2 proteins, confirming the presence of a productive infection in Calu-3 cells

(Figure 4B, Supplemental Table S4). At the latest time point, we identified several

differentially regulated host proteins (Figure 4C, Supplemental Table S4). Among these,

many interferon-stimulated genes such as IRF7, IFIT1, IFIT2, IFIH1, OAS1 and MX2,

were enriched upon infection. These proteins are well characterized for their antiviral

function40,41, also in the context of SARS-CoV-2 infection27,42,43. We also identified
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downregulation of ACE2, the most important entry factor of SARS-CoV-244 which is in

line with the reported shedding of the receptor from infected cells45.
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Figure 4. Changes in kinase activities upon infection with SARS-CoV-2. (A) Schematic
representation of our infection experiments of lung epithelial cells with SARS-CoV-2. (B)
Variation in abundance of all quantified SARS-CoV-2 proteins throughout the course of the
infection. (C) Volcano plot depicting the significantly regulated proteins (host and viral) at the
latest time point measured. The red lines indicate the cut-off used for significance calling. (D)
Variation in kinase activity caused by the infection, as predicted by iKiP-DB. The heatmap is
colored based on the normalized enrichment score (NES) of the PTM-SEA analysis, and each
cell reports the significance cut-off (Benjamini-Hochberg corrected p-values: * < 10%, ** < 5%,
*** < 1%). Kinases were divided into three clusters by k-means clustering based on the NES
values.

To gain insight on how the virus changes the activity of host kinases, we

analyzed the phosphoproteomic data using iKiP-DB (Figure 4D, Supplemental Table

S4). This analysis divided kinases into three broad groups: early activated, late inhibited

and late activated, with the last group being the largest (Figure 3C). Of particular

interest is the presence of TANK binding kinase 1 (TBK1) among the kinases activated

at the latest time point post infection. This is well in accordance with the role of TBK1 as

a downstream effector of RIG-I-like receptor signaling46 and also with the induction of

interferon stimulated genes we observed at 18 hpi. Additionally, many of the late

activated kinases are known to be involved in the response to viral infections, such as

MAP kinases47 and stress-activated kinases downstream of the MAP/ERK pathway like

RPS6KA148. Among the kinases predicted to be downregulated, several are involved in

cell cycle progression, including Polo-like kinases (PLKs) and NimA related kinases

(NEKs)49,50, in line with the decreased proliferation induced by the infection. Overall, our

analysis is consistent with current knowledge of the effects of SARS-CoV-2 infection at

the cellular and phosphoproteome levels27,51, reflecting the cellular response to infection.
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CONCLUSIONS
Protein phosphorylation is a fundamental and ubiquitous process in biological

systems52, and as such studying the phosphoproteome is highly informative for basic

biology and disease21,53. While novel technologies are rapidly increasing the depth and

coverage of MS-derived phosphoproteomics data, their interpretation remains

challenging, partially due to the scarcity of functional annotations of phosphosites6.

In this work, we described the re-analysis of published in vitro kinase assay data,

which we compiled into a database of kinase-substrate associations we named iKiP-DB.

Compared to PSP as the current gold standard for phosphosite annotation5, our

database increases the range of annotated kinases as well as the number of substrate

sites annotated. Additionally, since our database is derived from experimental data, it is

not biased towards the most well-studied portion of the kinome. We employed iKiP-DB

in conjunction with PTM-SEA15 to predict the activation or inhibition of kinases in

published phosphoproteomics data. Direct comparison demonstrated an equal or higher

degree of accuracy of iKiP-DB compared to the manually annotated data of PSP.

Interestingly, we also observed a superior prediction by iKiP-DB for CK2 and ERK1/2

inhibitor experiments, even though both CK2 and ERK1/2 are well annotated kinases in

PSP. Finally, analysis of newly generated data of SARS-CoV-2 infected lung epithelial

cells recapitulates the phenotypic effects of viral infections, as well as the known biology

of the novel coronavirus.

One important limitation of iKiP-DB is that it is based on in vitro kinase

experiments, which do not necessarily reflect the activity of kinases in vivo. We alleviate

this problem by restricting the database to sites that have been observed in cells (Figure

1B). Nevertheless, individual phosphosites in iKiP-DB are not necessarily

phosphorylated by the corresponding kinase under physiological conditions. Therefore,

iKiP-DB is more useful for the large-scale analysis of kinase signatures, rather than at

the level of individual phosphosites. It is actually surprising how well the in vitro kinase

data alone (without any manual annotation) reflects cellular kinase activity (Figure 2 and

3).

In summary, we demonstrate that integrating phosphoproteomic datasets with in

vitro kinase data via iKiP-DB greatly facilitates detection of altered kinase activity. We
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believe this tool will be broadly useful for phosphoproteomic data analysis. We provide

iKiP-DB in GMT format, ready to use for PTM-SEA using the ssGSEA suite.
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