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Graphical abstract. The
datasets generated via
transcriptomics, proteomics as
well as blood, histopathological
and biochemical analysis were
analyzed in an independent
and integrative manner. The
independent analysis was
performed via state-of-the-art
statistical approaches i.e.
differential and consistently
regulated genes and proteins.
Combining the results identified
three fibrosis phases. Using
the KiMONo algorithm, a
fibrosis specific multi-omic
network was inferred. Within
this network we identified
several nodes connecting
phase III specific features
forming 13 distinct multi-omic
modules suggesting a
tolerance scheme. Some of
these modules were
experimentally validated and

compared to 11 independent human studies of various liver diseases.

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 12, 2022. ; https://doi.org/10.1101/2022.01.12.476054doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.12.476054
http://creativecommons.org/licenses/by-nc/4.0/


ABSTRACT
The liver has a remarkable capacity to regenerate and thus compensates for
repeated injuries through toxic chemicals, drugs, alcohol or malnutrition for decades.
However, largely unknown is how and when alterations in the liver occur due to
tolerable damaging insults. To that end, we induced repeated liver injuries over ten
weeks in a mouse model injecting carbon tetrachloride (CCl4) twice a week. We lost
10% of the study animals within the first six weeks, which was accompanied by a
steady deposition of extracellular matrix (ECM) regardless of metabolic activity of the
liver. From week six onwards, all mice survived, and in these mice ECM deposition
was rather reduced, suggesting ECM remodeling as a liver response contributing to
better coping with repeated injuries. The data of time-resolved paired transcriptome
and proteome profiling of 18 mice was subjected to multi-level network inference,
using Knowledge guided Multi-Omics Network inference (KiMONo), identified
multi-level key markers exclusively associated with the injury-tolerant liver response.
Interestingly, pathways of cancer and inflammation were lighting up and were
validated using independent data sets compiled of 1034 samples from publicly
available human cohorts. A yet undescribed link to lipid metabolism in this
damage-tolerant phase was identified. Immunostaining revealed an unexpected
accumulation of small lipid droplets (microvesicular steatosis) in parallel to a
recovery of catabolic processes of the liver to pre-injury levels. Further, mild
inflammation was experimentally validated. Taken together, we identified week six as
a critical time point to switch the liver response program from an acute response that
fosters ECM accumulation to a tolerant “survival” phase with pronounced deposition
of small lipid droplets in hepatocytes potentially protecting against the repetitive
injury with toxic chemicals. Our data suggest that microsteatosis formation plus a
mild inflammatory state represent biomarkers and probably functional liver
requirements to resist chronic damage.

Keywords
Multi-Omics, Liver fibrosis, CCl4, KiMONo, Integrative data analysis, liver damage
adaptation, Tolerance
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INTRODUCTION
Independent of etiology, chronic liver injury results in constant necrosis and
apoptosis of liver cells. This triggers a process characterized by infiltration and
activation of the immune cells in the liver leading to both inflammatory and wound
healing responses as well as fibrogenesis (Bataller and Brenner, 2005; Seki and
Schwabe, 2015). Repeated injuries of the liver tissue cause a gradual replacement
of the normal liver with fibrotic tissue and lead, in a long-term process, to cirrhosis
(Pellicoro et al. 2015; Zhou et al. 2014). In addition, hepatic stellate cells (HSC)
change to a myofibroblast phenotype characterized by high proliferative activity,
expression of ECM components, gain of contractility, chemotaxis, and migratory
properties, and the production large amounts of growth factors and profibrogenic
cytokines promoting fibrogenesis i.e. TGF-β (Friedmann, 2008). Maintaining
quiescence and activation of HSC is a highly dynamic and complex process
(Krizhanovsky et al. 2008; Kisseleva et al. 2012; Mercado-Gómez et al. 2020).
Accordingly, the progression and regression of liver disease in response to repetitive
injuries at the patient's level are also highly variable (Bedossa et al. 2003; Sun et al.
2020). Fortunately, as shown previously in experimental and clinical settings
(Sohrabpour et al. 2012), liver fibrosis and even the early stages of cirrhosis are
reversible. Clinically, these liver diseases develop in a long-term process, taking upto
50 years (Pellicoro et al. 2015; Zhou et al. 2014). During this period, the liver can
cope with many repeated small injuries induced by toxic chemicals, drugs, alcohol or
a high fat diet. Therefore, it is crucial to gain deeper insights into differences between
acute and chronic liver response programs that show avenues of potential targets as
well as a time window for therapeutic intervention.

Up to date, studies on liver diseases in response to injury primarily compared stable
disease states, like resistant versus susceptible mouse strains (Tuominen et al.
2021). Tuominen and co-workers examined by transcriptomics the susceptibility of
98 mouse strains (693 livers) to 6 weeks of CCl4 administration (Tuominen et al.
2021). In this report, the top 300 down-regulated targets were assigned to metabolic
pathways i.e. biological oxidations, steroids and lipids (Tuominen et al. 2021). In
addition, several studies analyzed the responses of the liver to CCl4administration for
4-6 weeks of administration (Krizhanovsky et al. 2008; Meng et al. 2012; Cubero et
al. 2016; Liu et al. 2020). However, dynamic changes in the responses of the liver
upon repeated injuries have previously not been addressed.

To study complex molecular processes occurring at the cellular and tissue levels,
high-throughput omics technologies provide an unbiased view. Typically, one omic
level of choice is used, and state-of-the-art data analysis strategies are applied.
Using only a single level of measurement, e.g., transcriptomics or histopathology,
limits the detection of possible alterations to one type, and thus captures changes
only for a small subset of possible components interacting and steering the disease
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progression (Ogris et al. 2021). To obtain a holistic view and reduce the single-level
technical effects, studies utilizing multiple omic measurements are employed to
support findings or identify targetable molecules in a specific disease context
(Mardinoglu et al. 2018; Mercado-Gómez et al. 2020). Approaches using multi-level
analysis outperform single-level analysis, as those are limited in their information
content to one level and therefore may lead to missing and misinterpreted results
(Domenico et al. 2015, Schmitt et al. 2013). Recently, we developed an integrative
approach that is able to exploit the complexity of ‘cross-omics’ relationships of
multi-level data, called KiMONo (Ogris et al. 2021). The method accounts for the
limitations of the level-wise analysis by inferring condition-specific multi-omic
networks. By explicitly associating, for example, a gene’s expression to its coded
protein expression in addition to the expression of protein interaction partners, the
resulting network captures the regulatory footprint that occurs on multiple levels. The
created networks consist of genes, proteins, or blood parameters represented as
nodes, linked if they are affected similarly by the underlying condition.

In this study, we delineated three phases of liver responses, namely, initiation,
progression, and tolerance to repetitive administration of a toxic chemical by utilizing
existing state-of-the-art multi-omic data analysis methods. To that end, we generated
time-resolved measurements from blood and livers of CCl4-exposed mice over a time
course of 10 weeks and analyzed the dynamics of liver responses at the
transcriptomic, and proteomic levels, including blood parameters as indicators for
organ functionality and phenotypic information (Figure 1a). To investigate this large
multi-level dataset, we used a level-wise and an integrative analysis strategy
employing KiMONo. Based on this analysis, we identified 13 functional modules, i.e.
lipid metabolism regulated by differentially expressed genes and proteins during the
tolerance phase fostering the protective response and thus survival of the animals.
Based on KiMONo’s predictions, we found that the liver response of lipid
accumulation was associated with tolerance. Collectively, several tolerance-related
targets were analyzed in publically available human datasets and consistent
deregulation was observed. Besides understanding the dynamics of liver fibrosis,
these pathways were identified and validated for new potential therapeutic targets of
liver fibrosis.

MATERIALS AND METHODS

Animal models of hepatic fibrosis
Adult male C57Bl/6N mice were obtained from the Janvier labs (France), housed
three per cage in a temperature-controlled (24°C) room with a 12-h light/dark cycle,
and given ad libitum access to water and laboratory diet (Ssniff, Germany). Mice
were maintained for 7 days before carbon tetrachloride (CCl4) intoxication. The dose
of CCl4 (Sigma-Aldrich, Cat. no. 319961) was 1.6 g/kg body weight (Hammad et al.
2017) and was prepared as follows: to 3 ml of olive oil, 1 ml of CCl4 was added and
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mixed well. Mice received CCl4intraperitoneally twice per week. In a time-resolved
manner including 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 weeks, mice were sacrificed at day
two after the last CCl4 injection. Identical concentration of olive oil was injected for
control groups for 10 weeks (Figure 1a). At the indicated time point, blood and livers
were harvested. The liver lobes were separated as follows: the caudate lobe (for
hydroxyproline), right lobe (for proteomics and transcriptomics) and median lobe
(cryosectioning) were freshly frozen in liquid nitrogen and stored at -80°C. Further,
left liver lobes were fixed in 4% paraformaldehyde (PFA) and embedded in paraffin
for histopathological investigations. The experimental protocols with animals were
carried out in full compliance with the guidelines for animal care and were approved
by the Animal Care Committee from the German government (Animal permission
number: 35.9185.81/G-216/16).

Clinical Chemistry
Blood was collected in Li-Heparin vials from the retrobulbar plexus and centrifuged at
13,000 rpm at 4°C for 6 min. Plasma was subsequently stored at − 80°C until further
analysis. Then, alanine aminotransferase (ALT), aspartate aminotransferase (AST),
alkaline phosphatase (ALP), glucose (Gluc), triglycerides (TG), total protein (Prot),
blood urea nitrogen (BUN) and cholesterol (Chol) were measured using a Hitachi
automatic analyzer (Core facility-Medical Faculty Mannheim, Germany).

RNA isolation and transcriptome analysis
Pieces of the right liver lobes were used to perform mRNA isolation with the
InviTrap®Spin Universal RNA Mini Kit from Stratec (1060100300, Birkenfeld,
Germany) according to the manufacturer. RNA concentration and integrity were
summarized in Supporting table 1. Transcriptomics using the isolated mRNA from
liver tissues (0, 2, 4, 6, 8 and 10 weeks; n=3 per time point) was performed by
Affymetrix GeneChip®Mouse Gene 2.0 ST Arrays (902118). Affymetrix-based
transcriptomics was performed at Core Facility-University Clinic Mannheim
(Germany; http://zmfsrv1.medma.uni-heidelberg.de/apps/zmf/Affymetrix/).

Transcriptomic data preprocessing and bioinformatic analysis
Gene expression data obtained by the whole-transcript array GeneChip Mouse Gene
2.0 ST were pre-processed using ‘affyPLM’ packages of the Bioconductor Software
(Huber et al. 2015). Genes with the strongest evidence of differential expression
were obtained using a linear model provided by the limma-package (Ritchie et al.
2015). Data obtained from untreated mice were used as a reference. To annotate the
microarrays, a custom chip definition file version 22 from Brainarray (Dai et al. 2005)
based on Entrez ID’s was used. A false-positive rate of α = 0.05 with false discovery
rate (FDR) correction and a fold change greater than 1.5 was taken as the level of
significance. To unravel patterns in the gene expression data for different pathways
heatmaps the ‘ComplexHeatmap’ (Gu et al. 2016) package was used.
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Reverse transcription polymerase chain reaction (RT-PCR)
Using RNA isolated for transcriptomics analysis, cDNA was produced from
oligo(dT)18 primer (SO132, Thermo Scientific, Massachusetts, USA), dNTP Mix
(R0191, Thermo Scientific Massachusetts, USA), and RevertAid H Minus Reverse
Transcriptase (EP0451, Thermo Scientific, Massachusetts, USA), and then used for
real-time (rt)-PCR (5× HOT FIREPol EvaGreen qPCR Mix Plus (ROX), 08-24-00020,
Solis BioDyne, Tartu, Estonia) in a StepOne machine. Sequences of primer pairs
were listed in Supporting table 2. All primers were purchased from Eurofins
Genomics (Ebersberg, Germany). The mRNA expression levels of the detected
genes were normalized to that of Ppia.

Sample preparation for proteome analysis
The proteome profiling of liver tissue was performed on selected time points (0, 1, 2,
4, 6, 8, and 10 weeks; n=3 per time point). Liver tissue was powdered using a
Micro-Dismembrator (B.Braun, Micro-Dismembrator U Ball Mill), and approximately
10 mg aliquots of tissue powder were lysed in 100 µl SDS buffer (4% SDS, 1x Halt
protein inhibitor, 40 mM TCEP, 160 mM CAA, 200 mM TEAB) by sonication on ice
(60 sec, 80% amplitude, 0.1 sec off/0.5 sec on) and centrifugation (15 min, 14,000
rpm, 4°C). The supernatant was incubated at 95°C for 5 min and 70°C for 30 min for
reduction and alkylation. Protein concentrations were determined by BCA assay, and
20 µg of total protein was used for subsequent tryptic digestion. Samples were
prepared using a modified version of the Single-pot, solid-phase-enhanced sample
preparation (SP3) protocol (Hughes et al. 2014). Briefly, a mix of Sera-Mag SP3
beads was added to the protein samples in a 10:1 SP3 beads/protein (wt/wt) ratio.
Acetonitrile was added for a final concentration of 70% organic, and the mix was
incubated for 18 min at room temperature (RT). Protein-bound beads were isolated
on a magnetic rack and washed twice with 70% ethanol. A third wash was performed
using 100% acetonitrile (ACN). Beads were air-dried and reconstituted in 100 mM
TEAB buffer containing Trypsin Gold (Promega) in a 1:25 enzyme/protein (wt/wt)
ratio. Protein digestion was performed for 14 h at 37°C. The digested peptides were
dried by vacuum centrifugation and stored at -20°C until further use. A sample pool,
consisting of 5 µg of each sample in the dataset, was generated. Peptides were then
reconstituted in 50 mm HEPES (pH 8.5), and TMT10-plex reagents (ThermoFisher)
were added to the samples (stocks dissolved in 100% ACN) in a 1:10 sample/TMT
(wt/wt) ratio. The peptide–TMT mixture was incubated for 1 h at RT, and the labeling
reaction was stopped by addition of 5% hydroxylamine to a final concentration of
0.4%. Different samples were combined and the TMT-plexes were fractionated into 6
fractions using stage-tip Strong cation-exchange (SCX) fractionation. Stage-tips
were manually prepared using 3 discs of SCX resin (Empore) and conditioned with
MeOH, followed by 80% ACN, 0.5% AcOH; 0.5% AcOH; 500 mM NH4AcOH, 0.5%
AcOH, 30% ACN; 20mM NH4AcOH, 0.5% AcOH, 30% ACN, and was equilibrated
with 0.5% AcOH successively. Before SCX fractionation, samples were reconstituted
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in 0.5% AcOH, sonicated, incubated on a shaker, and loaded onto the stage tips by
centrifugation. Loaded stage-tips were washed with 0.5% AcOH. For elution,
descending concentrations of elution buffers (20/40/70/100/250/500 mM of
NH4AcOH, 0.5% AcOH, 30% ACN) were used and the flow-through was collected.
Fractions were dried by vacuum centrifugation and stored at -20°C

LC-MS/MS Measurements
Nano-flow LC-MS/MS was performed by coupling an EASY-nLC (Thermo Scientific,
USA) to a Q Exactive HF-X – Orbitrap mass spectrometer (Thermo Scientific,
Germany). The fractions were dissolved in 11 µl loading buffer (0.1% formic acid, 2%
ACN in LC-MS grade water), sonicated and incubated on a shaker. 5 µl of each
fraction was used for each measurement. Peptides were delivered to an analytical
column (75 µm x 30 cm, packed in-house with Reprosil-Pur 120 C18-AQ, 1, 9 µm
resin, Dr. Maisch, Ammerbuch, Germany) at a flow rate of 3 µl/min in 100% buffer A
(0.1% formic acid in LC-MS grade water). After loading, peptides were separated
using a 120 min stepped gradient from 6% to 50% of solvent B (0.1% formic acid,
80% ACN in LC-MS grade water; solvent A: 0.1% formic acid in LC-MS grade water)
at 350 nL/min flow rate. The Q Exactive HF-X was operated in data-dependent mode
(DDA), automatically switching between MS and MS2. Full-scan MS spectra were
acquired in the Orbitrap at 120,000 (m/z 200) resolution after accumulation to a
target value of 3,000,000. Tandem mass spectra were generated for up to 18 peptide
precursors in the Orbitrap (isolation window 0.8 m/z) for fragmentation using higher
energy collisional dissociation (HCD) at normalized collision energy of 32% and a
resolution of 45,000 with a target value of 50,000 charges after accumulation for a
maximum of 96 ms.

Protein identification, quantification and statistical analysis
Raw MS spectra were processed by MaxQuant (version 1.6.0.1) for peak detection
and quantification. MS/MS spectra were searched against the Uniprot mus musculus
reference proteome database (downloaded on October 22nd, 2018) by Andromeda
search engine enabling contaminants and the reversed versions of all sequences
with the following search parameters: Carbamidomethylation of cysteine residues as
fixed modification and Acetyl (Protein N-term), Oxidation (M) as variable
modifications. Trypsin/P was specified as the proteolytic enzyme with up to 3 missed
cleavages allowed. The mass accuracy of the precursor ions was decided by the
time-dependent recalibration algorithm of MaxQuant. The maximum false discovery
rate (FDR) for proteins and peptides was α = 0.01 and a minimum peptide length of
eight amino acids was required. Quantification mode with isobaric labels (TMT
10plex) was selected. All other parameters are defined as default settings in
MaxQuant.

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 12, 2022. ; https://doi.org/10.1101/2022.01.12.476054doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.12.476054
http://creativecommons.org/licenses/by-nc/4.0/


Proteomic data preprocessing and bioinformatic analysis
By filtering out contaminant proteins, as indicated by MaxQuant analysis, and using
the corrected reporter intensity for analysis, all proteins with at least one missing
expression value in one of the samples were removed, leaving 2278 proteins for
subsequent analysis. This stringent cutoff was chosen as visual inspection of the
data showed that missingness increases with reporter intensity, thus protein
expression. We computed the ratio per p protein j on the basis of its sample’s
expression s (pj,s) and the samples-matching protein expression in the TMT10plex
isotope reference channel r (rj) according to (1+pj,s)/(1+rj). One outlier sample was
removed after this stage. Robust quantile normalization was applied to the data
using the MSnSet R package, resulting in final normalized expression ratios used for
statistical analysis. For identification of differentially regulated proteins per time point
(1, 2, 4, 6, 8 and 10 weeks) when compared to the control time point (0 week), we
used a multivariate linear model with time-point specific dummy variables and protein
ratio as a response. To call differential expression, we subjected p-values of all
proteins separately per coefficient to multiple testing correction with the Benjamini
Hochberg procedure, also referred to as False-Discovery Rate. Differential
expression per time-point was set to FDR below α = 0.05.

Multi-omics network inference and analysis
The multi-omic network inference was performed using KiMONo (Ogris et al 2021).
This novel versatile tool can use any kind and any amount of omic data by
leveraging prior knowledge. By doing so KiMONo generates a multi-level network
around an omic type of interest, simplifying downstream analysis, i.e. pathway
analysis. In the final multi-level network nodes represent features like proteins,
genes or clinical variables and the connections between them denote effects
identified within the input data. Here, we used KiMONo to generate three networks
centered around the three given data types and combined them to enhance the
signal within the time-resolved data. This was done by only reporting effects that
were found in all three multi-omic networks. To infer each network, we used three
different priors providing information about already known relations between the
transcriptomic, proteomic, and clinical data. In KiMONo the priors serve as a rough
blueprint, reducing the complexity and improving the algorithm’s performance. The
first priority was obtained via the Biomart tool annotating genes to proteins. The
second priority is based on the BioGRID database to include information about
protein-protein relations (Oughtred et al. 2019). As a third priority, we used all
previous annotations to identify indirect gene-protein interactions. This was done by
using BioGRID interactions information to also annotate genes to proteins of their
coding protein. Finally, we set off to generate a prior which would annotate the omic
information to our clinical data. Therefore, we first inferred the transcriptomic and
proteomic centered networks and used the information about all potential effects of
clinical features as prior for the clinical centered network inference. The importance

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 12, 2022. ; https://doi.org/10.1101/2022.01.12.476054doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.12.476054
http://creativecommons.org/licenses/by-nc/4.0/


of network nodes was estimated via the network’s betweenness centrality. This
measure is estimated by determining the shortest path between all nodes within the
graph. The betweenness centrality for a node is then estimated by the number of
shortest paths that pass through a node. Functional annotation of network modules
was performed by using the online network-based pathway enrichment tool PathwaX
(Ogris et al. 2016) and the KEGG (Kanehisa et al. 2016) and Reactome (Jassal et al.
2019) pathways. Significantly enriched pathways (FDR < 0.05) were manually
curated to identify overarching functional themes which were assigned as labels to
modules. Moreover we also manually annotated small modules (2-3 elements) via
literature search.

Human ortholog comparison
We obtained 1034 human samples across 11 liver disease related datasets via
NCBI’s Gene Expression Omnibus (GEO), see Supporting table 3. Significant
differentially expressed (DE) genes (FDR < 0.1) have been extracted by using the
GEO2R interface and its default settings. Further, we identified mouse orthologous
genes using the Inparanoid 8 database (Sonnhammer and Östlund 2015).

Hepatic hydroxyproline determination
Hydroxyproline (HYP) was determined colorimetrically in triplicates from snap-frozen
liver lobes as described in Fels (1958) with modifications. Briefly, approximately 100
mg of tissue from the caudate liver lobe was homogenized and hydrolyzed in 2 ml of
6 N HCl at 110°C for 16h. HYP content was then measured photometrically at 558
nm. Based on relative HYP (per 100 mg of frozen liver), total hepatic HYP was
calculated (total liver, as obtained by multiplying liver weights with relative hepatic
HYP).

Liver histology and Immunohistochemistry
The left lobe was fixed in 5 ml 4% PFA at 4°C for 2 days for paraffin embedding.
Formalin-fixed, paraffin-embedded (FFPE) liver sections were stained with
hematoxylin and eosin (H&E) for assessment of liver structures and inflammation.
For assessment of hepatic fibrosis, FFPE sections were stained with Sirius Red
(Sigma, 365548-5G). FFPE liver sections were incubated with primary antibodies
against α-smooth muscle actin (αSMA) (Abcam, ab5694, 1:100), rat anti-F4/80
(BioRad, MCA497R, 1:100) or rabbit anti-CYP2E1 (Sigma, HPA009128, 1:100) to
assess activated HSC, resident macrophages and pericentral hepatocytes,
respectively. The slides were scanned shortly after the staining procedure using the
bright field microscope BX41. Digital pathological analysis was performed using
ImageJ (https://imagej.nih.gov/ij/) on an equal number of pictures per mouse (10-15
images) under constant magnification (10X).
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Preparation of cryosections and lipid droplet staining
Part of the median lobe was embedded in tissue-Tek (VWR, 25608-930) and kept at
-80℃ till cryosectioning. Cryo sections (5μm thickness) were fixed in 4% PFA for 15
min, then briefly washed with running tap water and 60% isopropanol. Then
cryosections were incubated with Bodipy (Life Technologies, D-3922, 1:250) for 30
min After rinsing steps with 60% isopropanol, cryosections were incubated for 5 min
with Draq5 (Cell Signaling Technology, 4084L, 1:5000). Two tile scans of 9 images
each per mouse for quantification were acquired using confocal microscopy (Leica
SP8, UMM-Core facility Mannheim, Germany). Lipid droplets quantification was
performed using ImageJ (https://imagej.nih.gov/ij/) on tilescans.

Statistical analyses
Statistical analyses were performed in Prism (Version 8, GraphPad Software). Data
are shown as mean ± SEM of 3-6 mice per group and two-tailed Student’s t test was
calculated when shown. p-values <0.05 (*), < 0.01 (**), < 0.001 (***), < 0.0001 (****)
are indicated.

RESULTS

Liver response to repeated toxic injuries switches at six weeks of exposure
To investigate the dynamics of liver responses to injuries induced by repeated
application of a toxic chemical, we established a mouse model with repetitive CCl4
injections over ten weeks (Figure 1a) and analysed blood and liver samples
harvested every week. For the control samples, we used both mice treated with oil
for one and ten weeks. As shown in the survival analysis, in the first six weeks of
CCl4 exposure per week 5% of mice died, which resulted in total loss of 10% of the
animals by week six. Interestingly, after week six of exposure no further mortality
caused by repeated CCl4 injuries was observed (Figure 1b). During the first six
weeks, mice treated with CCl4 showed a significant gain in the liver to body weight
ratio (Supporting figure 1a and b). Further, during this exposure period alterations in
the survival rate and liver weight in these animals were accompanied by an increase
of serum ALT (Figure 1c) (p < 0.05) and AST (Figure 1c) (p < 0.05), which are
enzymes elevated in the blood in case of liver injury. No further increase of these
values was detected after week six. Blood triglyceride (TG) levels continuously
increased in a time-dependent manner until week five (Figure 1c) and returned to
normal values towards week ten. No significant changes in blood cholesterol (Chol)
was reported (Figure 1c). Markers for bile duct damage (alkaline phosphatase, ALP),
and kidney function (Blood Urea Nitrogen, BUN) showed no major significant
alterations (Supporting figure 1c-e) post week six. A trend for a decrease in glucose
and total protein content was observed (Supporting figure 1f-g). These results
indicate a switch of response program in the liver at six weeks of exposure to
repetitive injuries from the phase of liver damage initiation and progression markers
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to a subsequent phase of adaptation leading to tolerance amongst the surviving
mice.

Time resolved tissue-based analysis divides the disease dynamics into
initiation, progression and tolerance phases
To examine the dynamics of structural changes in the liver in response to repetitive
injuries, we performed staining and quantification of samples from mice that were
exposed to repetitive CCl4 administration for up to ten weeks. Compared to the
control group, H&E staining of CCl4 treated livers demonstrated marked cell necrosis,
inflammatory reaction and formation of septal fibrosis (Figure 1d, HE images).
Moreover, we measured mRNA (Supporting figure 1h) and protein levels (Figure 1e)
of CYP2E1, the key metabolizing enzyme of CCl4 . Both mRNA and protein levels
showed constant levels of CYP2E1 even after week six of repeated liver injury
indicating stable metabolic capacity of the liver. Quantitative morphometric
assessment of ⍺-SMA positive (activated hepatic stellate cells; HSC) revealed
massive accumulation during the first six weeks of repetitive CCl4 exposure (Figure
1f). No further increase in ⍺-SMA positivity of HSC activation was observed at the
later time points despite the continuous CCl4 administration (Figure 1f, ⍺-Sma
positivity). Likewise, the ECM deposition analyzed by the quantification of picrosirius
red (PSR) positive areas showed the same behavior and did not increase beyond six
weeks of exposure (Figure 1g). To ensure that these ECM-related changes are not
local or sparse events, we used a biochemical assay to evaluate the hydroxyproline
levels, HYP, a major component of collagen (Figure 1h), within the liver-tissue. With
these analyses, we confirmed that the results obtained with quantitative
morphometry did not only reflect local events but homogeneously distributed
alterations caused by continuous CCl4 treatment. Our biochemical findings and
histopathological features of the dynamics of fibrosis support the notion of an
adaptive liver response that is able to tolerate repeated injuries after six weeks and
is independent of the liver metabolic bioactivation of CCl4.

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 12, 2022. ; https://doi.org/10.1101/2022.01.12.476054doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.12.476054
http://creativecommons.org/licenses/by-nc/4.0/


Figure 1: Blood, histopathological and biochemical analysis of liver fibrosis dynamics upon

CCl4 injections. (a) Induction of experimental liver fibrosis by CCl4 in mice twice per week for 10

weeks. Blood and liver were collected every week for further multi-levels analysis. (a) Kaplan-Meier
curve for survival analysis. (c) Blood based analysis of ALT, AST, TGs and Chol in a time-resolved

manner. Liver sections were prepared from liver tissue samples of control and mice with CCl4
treatment for 10 weeks and HE (d), CYP2E1 (e), α-Sma (f) and PSR (g) staining was performed and
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positive signals were quantified as a percentage of total area. (h) Biochemical analysis of HYP level in
a time-resolved manner. Results were expressed as mean of 3-6 mice± SD, and were compared by
two-way ANOVA test. *p <0.05, **p <0.01 compared to 0 week (control). CCl4, carbon tetrachloride;
ALT, alanine aminotransferase; AST, aspartate aminotransferase; Chol, cholesterol; Cyp2E1,
Cytochrome P4502e1; TG, triglycerides; HE, hematoxylin & eosin; α-Sma, alpha-smooth muscle
actin; PSR, picrosirius red; HYP, hydroxyproline. n=3-6 per group.

Transcriptomics and proteomics divide the identified regulatory programs of
liver fibrosis into three phases

The dynamics of structural changes detected at the tissue-level are indicative of
underlying molecular alterations, which are best studied at the transcriptional and
proteomic level. With these studies, we aimed at elucidating which regulatory
program enables the liver to tolerate repeated injuries. As many molecular changes
associated with fibrosis may overlay effects in the early adaptation phase, we
profiled the transcriptome of the liver of 18 mice across six time points of our
exposure series using Affymetrix microarrays. We validated the microarray derived
transcriptomic data via RT-PCR of seven known fibrogenic genes, namely Col-1α1,
Col-1α2, α-Sma (Acta2), Timp1, Ctgf, Tgfβr1, and Tgfβ2 (Supporting figure 2a and
b). A significant (p < 0.05) and positive correlation (mean ~0.72) between RT-PCR
and microarray derived data was observed (Supporting figure 2a and b) for all tested
genes. In the transcriptome, volcano plots showed the differentially regulated genes
in 2, 6, and 10 weeks compared with control livers (Figure 2a). We also identified,
per time point, the differentially expressed (DE) genes (FDR < 0.05) (Figure 2b). The
largest differences were obtained at week six, comprising 1812 DE genes, which is
in line with the tissue-level analysis. These highly variable properties were also
observed via Principal Component Analysis (PCA) (Supporting figure 3a). To identify
common differentially expressed genes, venn diagrams were generated based on
deregulated (down and upregulated) targets at 1-2 weeks (phase I), 4-6 weeks
(phase II) and 8-10 weeks (phase III). As shown, we identified 467 genes commonly
regulated across all three phases (Figure 2c). Most of those genes were assigned to
ECM and inflammation pathways. In addition, 210 genes were only differentially
expressed in phase III (Figure 2c). Reduced molecular regulation in phase III after
week six reflected previous findings (Figure 1) suggesting to refer to this phase as
injury tolerance. Annotation of overrepresented pathways based on differentially
expressed genes showed that besides several metabolic pathways the ECM
pathway is induced during the initiation and progression phase (Supporting figure 3)
and stabilized or reduced later. Analysis of time-resolved expression of selected
genes (Figure 2d) showed a dynamic increase of fibrogenic targets e.g. Acta2,
Col1a1, Col1a2 until week 6 and decreased during the tolerance phase. However,
induction of Fasn (lipogenic target) was reported during the tolerance state (Figure
2d). Heatmap of most deregulated genes was shown in Figure 2e.
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Figure 2: Time-resolved transcriptome analysis of liver exposed to CCl4. (a) Volcano plots of DE
genes in 2, 6 and 10 weeks compared with 0 week of CCl4 exposure. (b) The number of differentially
regulated genes is visualized in the bar charts. Time points are grouped into three phases namely,
initiation, progression and tolerance characterizing the disease course of liver fibrosis. (c) Venn
diagrams show the unique and overlapped number of genes between the three phases. Interestingly,
210 genes were deregulated only in the tolerance phase. (d) show the regulation of selected genes in
a time-resolved manner namely, ACTA2, COLaA1, COL1A2 and FASN. (e) Top deregulated genes
during Phase III (tolerance) were visualized by heatmap. Transcriptomics data were obtained from 3
mice per time point.

In addition, determinations of proteomic alterations were performed by multiplexing
using isobaric labeling with TMT 10-plexes followed by MS/MS analysis, which
resulted in the identification of in total 4222 proteins. For 2278 proteins, expression
values were detected in all samples and further subjected to statistical analysis.
Volcano plots showed the differentially regulated proteins in 2, 6, and 10 weeks
compared with control livers (Figure 3a). Overall, similar dynamics as in the
transcriptomics analysis was observed in proteomic data with 225 and 221 proteins
differentially regulated in week four and six (Figure 3b). We performed PCA and
differential expression analysis using linear models comparing each timepoint with
the control time point to identify regulated proteins (Supporting figure 3b).
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Figure 3: Time-resolved proteomic analysis of liver exposed to CCl4. (a) Volcano plots of DE
proteins in 2, 6 and 10 weeks compared with 0 week of CCl4 exposure. (b) The number of differentially
regulated proteins is visualized in the bar charts. Time points are grouped into three phases namely,
initiation, progression and tolerance characterizing the disease course of liver fibrosis. (c) Venn
diagrams show the unique and overlapped number of proteins between the three phases.
Interestingly, 23 proteins were deregulated only in the tolerance phase. (d) show the regulation of
selected proteins in a time-resolved manner namely, Birc6, Cyp2f2, Fasn and Glul. (e) Top
deregulated proteins during Phase III (tolerance) were visualized by heatmap. (f) Integration of
proteomic, transcriptomic, blood and tissue measurements was performed by KiMONo models.
Proteome data were obtained from 2-3 mice per time point.

The number of regulated proteins compared to the amount of proteins identified by
MS/MS was in line with the observed transcriptomic changes. To identify common
differentially expressed proteins, Venn diagrams were generated based on
deregulated (down and upregulated) targets at 1-2 weeks (phase II), 4-6 weeks
(phase II) and 8-10 weeks (injury tolerance, phase III). As shown, we identified 22
common proteins (Figure 3c) across all analyzed time points. In addition, 23 proteins
were only differentially expressed in the tolerance phase (Figure 3c). Furthermore,
the heatmap showed 23 proteins were deregulated during the tolerance state (Figure
3e). Annotation of overrepresented pathways based on differentially expressed
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proteins showed that besides several metabolic pathways the ECM pathway is
induced during the initiation and progression phase (Supporting figure 3). Analysis of
time-resolved expression of selected proteins (Figure 3f) showed a dynamic increase
of fibrogenic targets e.g. collagens, Acta2 and stability of metabolic targets like
Cyp2f2 and Glul during the tolerance state. Taken together with the previous results
obtained at the tissue level, the pattern of differentially expressed genes and proteins
suggest that molecular regulation occurs in three phases: initiation (weeks 1-2) of
immediate response patterns to repeated injuries, progression (weeks 4-6) of
accumulating molecular changes upon repeated injuries and finally tolerance (weeks
8-10). The majority of initiation genes (95%) and proteins (75%) are also found in the
progression phase. This led us to subsume the initiation and progression phase into
the initial response program of liver injuries, which is in line with the survival, blood
and tissue level analysis.

Figure 4: Data analysis workflow. The data sets generated via transcriptomics, proteomics as well
as blood, histopathological and biochemical analysis were analyzed in an independent and integrative
manner. The independent analysis was performed via state-of-the-art statistical approaches i.e.
differential and consistently regulated genes and proteins. Combining the results, we identified three
disease phases. Using the KiMONo algorithm,a fibrosis specific multi-omic network was inferred.
Within this network we identified several nodes connecting tolerance phase specific features forming
13 distinct multi-omic modules. Some of these modules were experimentally validated and compared
to 11 independent human studies of various liver diseases.

Multi-level network of liver tolerance to repeated injuries captures human liver
disease profiles

To dissect key factors determining the response of the liver to repeated injuries, we
generated a fully integrated map combining transcriptomic, proteomic, biochemical
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and histopathological data. Briefly, we integrated and analyzed all available data
using our recently published multi-omic network inference strategy – KiMONo
(pipeline shown in Figure 3f, Figure 4). This allowed us to identify molecular patterns
that covary with tissue-level histological parameters. In this inferred multi-level
fibrosis network, nodes represent features like proteins, genes or biochemical
parameters and connections denote statistically identified effects between them. This
network was trimmed by excluding all node models with a low goodness of fit (R^2 <
0.1) as well as all effects weaker than beta < 0.002. The final network contained
8199 nodes connected via 16398 links (Supporting table 4). We identified tolerance
phase specific network features via extracting nodes and modules associated with
previously detected deregulated genes and proteins. This resulted in 68
injury-tolerant specific nodes and 13 distinct modules, with the smallest and biggest
modules having 2 and 29 nodes respectively (Figure 5a and b). Small modules (2-3
nodes) were manually annotated to biological function using the GeneCards
database (Stelzer et al. 2016), while the rest was annotated using the online
pathway analysis tool PathwaX II (Ogris et. al. 2018). A total of 13 modules were
identified during the tolerance state, of which 3 and 2 modules were related to lipid
and carbohydrate metabolism (Figure 5a-b). The largest module was enriched for
pathways in cancer (Supporting table 4 and 5, Module 11) encompassing key factors
of TNFa, EGFR signaling and cell cycle. This observation triggered the comparison
of the regulation of adaptation/tolerance phase (Figure 5a, b) with a variety of human
diseases. Using eleven publicly available datasets on steatosis, NASH, ALD and
HCC, we compared fold change of regulation of human homologs with the murine
data (Supporting table 3, Figure 5c). Another large module was related to cancer
pathways including 29 targets e.g. CDC42, CDC25, CDK5. Moreover, we detected
several small modules, related to inflammatory and immune system pathways
among the adaptation-specific modules. Here, consistent with human cohorts,
GTF2IRD1, RXRA, JUN, N4BP2 and BCL3 were upregulated targets in inflammatory
pathways. In conclusion, lipid and carbohydrate metabolic targets are predicted as
modules that might play a role during the liver tolerance phase (Figure 4). We next
focused on the known association of inflammation with disease progression
(Supporting figure 5a and b). The results from analysis of F4/80 (marker for resident
macrophages) stained livers and gene expression (Adgre1) revealed that F4/80
positive cells infiltrated in the injured liver (Supporting figure 5a and b) and further
infiltration was observed during the tolerance phase. The detected levels of Adgre1
mRNA was in agreement with results obtained by IHC stained tissues (Figure 5a).
These results demonstrated that the conspicuous pathways identified using KiMONo
can be confirmed experimentally.
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Figure 5: Tolerance specific modules in CCl4 -induced fibrosis. (a) Within the multi-omic fibrosis
network we identified 13 tolerance phase specific modules by extracting differential regulated genes
(green) and proteins (blue) and their 1st degree network neighbors. Network nodes are only
connected when statistical effects are detected within the data. Node sizes refer to their importance
within the network, which relate to high or low effects of CCl4 treatment. (b) Functional annotation and
average regulation of network nodes for initiation, progression and tolerance phase. Significant (FDR
< 0.05) downregulation (blue) and upregulation (red) are visualized within the heatmap. Bold node
names denote uniquely differential regulation within the tolerance phase. (c) Significantly (FDR <
0.05) differential expressed genes of 11 human studies investigating steatosis, NASH, ALD and HCC.
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Accumulation of lipid droplets resulting from increase of lipid metabolism in
phase of toleration to repeated injuries

Lipid metabolism was specifically altered in the tolerance phase upon injuries
induced by repeated CCl4 exposure. Therefore, we used IF, IHC and RT-PCR to
confirm these findings. Firstly, we observed voids in CCl4 exposed liver tissue using
HE, PSR, ɑ-SMA (Supporting figure 5a). By histopathological analysis we observed
that these voids were overloaded-hepatocytes with lipid droplets (Supporting figure
5b).

Figure 6: Lipid metabolism is induced during the adaptation phase as predicted by KiMONo
integration analysis. a) Bodipy staining to visualize and analyze lipid droplet accumulation in a
time-resolved manner. Using a specific lipid droplet staining, namely Bodipy, we show that these voids
are hepatocytes overloaded with lipid droplets. Scale bars are 100µm. b) mRNA levels of lipid
metabolism-related targets i.e. Srbp1c, Scd1 and Fasn are analyzed by RT-PCR. Results were
expressed as the mean of 3-6 mice ± SD, and were compared by two-way ANOVA test. *p <0.05
compared to 0 week (control). n=3-6 per group. c) and d) lower magnification images are shown from
CCl4-induced fibrosis and Stellic animal model (steatosis-NASH based model as a positive control for
lipid droplets recognition).

The presence of steatotic hepatocytes was in line with the KiMONo prediction.
Therefore, we established Bodipy staining of lipid accumulation in the liver cells
using cryosections and analyzed intracellular lipid accumulation using Bodipy
positivity in liver cells. Interestingly, the results showed an increased intracellular lipid
accumulation in a time-dependent manner (Figure 6a). Quantification of lipid droplets
(Bodipy positive areas) revealed further lipid accumulation (Figure 6a) after six
weeks in agreement with KiMONo prediction (Figure 5a). Furthermore, gene analysis
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of key regulators of lipid metabolism were quantified by RT-PCR. Fatty acid synthase
(FASN), sterol regulatory element binding transcription factor 1 (Srebp-1c) and
stearoyl-CoA desaturase 1 (SCD-1) as central regulators of de novo lipogenesis
were significantly upregulated (Figure 6b) in eight and ten weeks of repeated
CCl4exposure (tolerance phase). The same results were observed in CCl4-induced
fibrosis and Stellic animal model (steatosis-NASH based model as a positive control
for lipid droplet recognition) (Figure 6c and d). The expression of carnitine
palmitoyltransferase I (CPT1; a key enzyme of mitochondrial β-oxidation), acyl-CoA
oxidase 1 (ACOX1; a key enzyme of peroxisomal β-oxidation) and peroxisome
proliferator-activated receptors (PPAR-ɑ and ᵞ) was downregulated during the
damage/regeneration phase and recovered to basal level during tolerance phase
(Supporting figure 5c). This indicated that the lipid metabolism is disturbed upon
repeated CCl4 exposure mainly during the tolerance phase. This de novo lipogenesis
in the tolerance phase might lead to increased resistance of liver cells to repeated
toxin exposure.

DISCUSSION

Reversing liver fibrosis requires dissolving fibrous tissue and enhances quiescence
of non-parenchymal cells as well as initiation of hepatocyte cell division. In this study,
by a systematic biological analysis of high-throughput data of liver transcriptomes,
proteomes, and clinical and histopathological parameters, we characterize week six
as a transition time point critical for significant fibrosis development upon repeated
CCl4 exposure. To avoid any interlobar difference, the same liver lobe from all tested
mice was used to investigate downstream analysis. Therefore, the study did not
consider lobe variations. Non-linear, however, significant accumulation of fibrotic
tissue occurs and corresponds to METAVIR stage 2 or 3 during fibrogenesis in the
first six weeks of CCl4. This result was in line with a previous report that an increase
in fibrosis METAVIR stage is associated with a progressive increase in the fibrosis
area, and the increase of fibrous tissue accumulation is not linear (Bedossa et al.
2003). Tissue-based analysis was correlated with other clinical parameters i.e. liver
enzymes. Surprisingly, survival analysis revealed that the critical transition is week
six. CCl4 is metabolized by CYP2E1 to form reactive trichloromethyl free radical and
the trichloromethyl peroxyl radical (Weber et al. 2003). This critical transition in liver
response is independent of CYP2E1 expression. Further, long-term downregulation
of CYP2E1 and other CYPs are confirmed by Ghallab and co-workers (Ghallab et al.
2019) after CCl4 injections. Our results provide further insights for clinically and
reliably signatures of mild and moderate fibrosis in order to achieve a complete
fibrosis reversion. A limitation of this study is that we do not confirm on protein level
identified targets in human fibrotic livers. Furthermore 10% of the mice were unable
to cope with acute injury of CCl4 even though they are genetically identical. This
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might occur due to the interindividual responder effects, which are yet unexplored
and unexplained.

To deepen our understanding on liver response, transcriptomics and proteomics are
performed from the same mouse liver upon repeated CCl4 injections. This means
tissue analysis is complemented with transcriptomics and proteomics data from the
same mouse. Single layer analysis reflects a switch in number and differential
expressed genes and proteins indicating different liver responses. However, the
multi-level extensive profiling of a complex process, together with the employment of
fully integrative approaches have the potential to unravel today's overlooked
features. Single omics have the tendency to result in several directions to follow up,
and might have many bystanding effects. Pathway enrichment analysis annotations
particularly those involved in fibrogenesis i.e. ECM and metabolism are in agreement
with findings reported by Tuominen and co-workers (2021). To be considered, the
dose of CCl4 was 0.8 g/kg and the mouse was sacrificed after 3 days of last injection
in Tuominen et al. work (2021). Another transcriptomics study shows that no clear
alterations of liver response i.e. ECM production and CYPs are between 2 and 6
months (tolerance phase) compared with 12 months after CCl4 administration
(Ghallab et al. 2019). In this report, mice received 1 g/kg of CCl4 and were sacrificed
6 days after the last injection (Ghallab et al. 2019). In a rat study, Dong and
colleagues report induction of ECM targets and metabolic pathways by proteomic
and transcriptomics analysis of 9 weeks exposed rats for 1 ml/kg of CCl4 (Dong et al.
2016). However, the dynamic of the liver response is not studied by Dong and
co-workers (2016) and also by several other reports (Nussler et al. 2014; Ghafoory
et al. 2018; Gong et al. 2018). Overlaying evidence on multiple levels allows us to
capture the major regulatory mechanisms. The overall CCl4 injury map has the
potential to shed light on early injury effects but also mid-phase effects, where
first-responder injury processes, like wound healing (ECM accumulation) are highly
interesting effects to be further investigated. This multilevel analysis indicates a point
where the injured organ, the liver, cannot cope with excessive ECM accumulation
and switches the program to be more tolerant to further damage. This is a
well-known toxicological response called drug tolerance.
KiMONO integration predicted 13 modules to be deregulated in the tolerance phase;
among those cancer pathways, lipid metabolism and inflammation targets were
included. Series of validation experiments for lipid metabolism reveal accumulation
of microvesicular droplets in livers of eight and ten weeks. At these time points,
several lipogenic targets i.e. Srebp1c, Scd1 and Fasn, are significantly induced
compared to control and six weeks mice. It has been shown that PPARα is a key
protein involved in liver lipid metabolism (Kersten 2014) and its induction results in
de novo hepatic lipogenesis (Oosterveer et al. 2009). However, in our study both
PPARα and γ are not significantly induced in tolerance compared with initiation and
progression phase. Moreover, as predicted, sustained inflammatory processes by
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maintaining F4/80 cells in the vicinity of fibrosis are validated. Therefore, in CCl4
-exposed mice after six weeks it seems that reversion of TG in the blood to normal
level and accumulation of microvesicular droplets are features of this liver tolerance.
Careful analysis of the predicted modules in the tolerance phase identified several
targets that were consistently deregulated in human liver diseases. Although our
study has identified high confidence candidate targets for fibrosis tolerance,
follow-up with knockdown/overexpression in specific cell types in the liver will be
required for functional validation. In conclusion, in the present study we report a list
of tolerance-related modules generated by unbiased multi-level analysis of
time-resolved CCl4-exposed mice. Despite CCl4 being well-established hepatotoxic
for regeneration and fibrosis, fatty liver is not carefully reported and studied.
KiMONO prediction followed by experimental validation indicates that at a transition
point the liver is not able to cope with repeated damage and initiates a tolerance
program by sustained inflammation and accumulation of small lipid droplets. Further
experiments are required to mechanistically investigate these protective modules for
therapeutic activation.
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