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Abstract

Long non-coding RNAs (IncRNAs) are pivotal mediators of systemic immune response to viral infection,
yet most studies concerning their expression and functions upon immune stimulation are limited to in vitro
bulk cell populations. This strongly constrains our understanding of how IncRNA expression varies at
single-cell resolution, and how their cell-type specific immune regulatory roles may differ compared to
protein-coding genes. Here, we perform the first in-depth characterization of IncRNA expression variation
at single-cell resolution during Ebola virus (EBOV) infection in vivo. Using bulk RNA-sequencing from
119 samples and 12 tissue types, we significantly expand the current macaque IncRNA annotation. We then
profile IncRNA expression variation in immune circulating single-cells during EBOV infection and find

that IncRNAs’ expression in fewer cells is a major differentiating factor from their protein-coding gene
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counterparts. Upon EBOV infection, IncRNAs present dynamic and mostly cell-type specific changes in
their expression profiles especially in monocytes, the main cell type targeted by EBOV. Such changes are
associated with gene regulatory modules related to important innate immune responses such as interferon
response and purine metabolism. Within infected cells, several IncRNAs have positively and negatively
correlated expression with viral load, suggesting that expression of some of these IncRNAs might be
directly hijacked by EBOV to attack host cells. This study provides novel insights into the roles that
IncRNAs play in the host response to acute viral infection and paves the way for future IncRNA studies at

single-cell resolution.

Introduction

EBOV is one of the most lethal pathogens to humans and it is infamously notorious for its high
infectiousness and severe case fatality rates (Malvy et al. 2019; Jacob et al. 2020). In the past, EBOV
caused alarming outbreaks and up to the present day, it represents a major global health threat (Ilunga
Kalenga et al. 2019). Previously, bulk tissue transcriptomic analyses improved our understanding of
EBOV’s evoked host immune response (Caballero et al. 2016; Jain et al. 2020). Now, emerging single-cell
RNA sequencing (scRNA-Seq) technologies are refining our understanding of the systemic immune
response mounted upon viral infections (Jain et al. 2020; Kazer et al. 2020; Kotliar et al. 2020) by allowing
the dissection of gene expression dynamics in multiple cell populations simultaneously. More importantly,
in the case of organisms infected with a virus, sScRNA-Seq can identify and profile infected cells separately
from uninfected bystander cells, and thus, distinguish the host cellular transcriptional response triggered by
viral replication versus the inflammatory cytokine milieu. Indeed, recent work on circulating immune cell
types upon EBOV infection in vivo revealed that although host defenses are characterized by strong
activation of innate immunity, within infected cells, EBOV evades cell's defenses by suppressing antiviral
gene expression allowing for uncontrolled viral replication (Messaoudi et al. 2015; Kotliar et al. 2020).

However, previous studies have focused on the host protein-coding gene response and have systematically
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ignored the role that non-coding genes such as IncRNAs may play in the host response to EBOV infection.
This is mostly due to poor IncRNA annotations in non-human primates, the main species of EBOV

research.

Although understudied in the context of EBOV infection, IncRNAs are crucial host immune response
regulators (Heward and Lindsay 2014; Marina R. Hadjicharalambous 2019). LncRNAs regulate the
maturation and development of lymphoid and myeloid cells which are pivotal cell lineages in the immune
response. Specifically, IncRNAs mediate hematopoietic stem cells’ differentiation (Luo et al. 2015),
quiescence maintenance (Venkatraman et al. 2013) and survival (Kotzin et al. 2016). In addition, IncRNAs
are involved in the first line of defense of the innate immune response as they mediate pathogen-induced
monocytes and macrophages activation and the subsequent release of inflammatory factors such as
cytokine and chemokines (Marina R. Hadjicharalambous 2019; Mariotti et al. 2019; Cui et al. 2019).
Finally, they have been shown to participate in antiviral responses, such as interferon signalling (Suarez et
al. 2020) and their transcriptional profiles have been shown to dynamically change upon infection of

several viral pathogens (Fortes and Morris 2016).

The mechanism of action of IncRNAs, together with many intrinsic properties, distinguish IncRNAs from
protein coding genes. LncRNAs often regulate gene expression by acting as signaling molecules (Nicholas
W. Mathy 2017; Wang and Chang 2011; Pandey et al. 2008), decoys (Kallen et al. 2013), molecular guides
(Grote et al. 2013) or through scaffolding (Yang et al. 2014). In addition, despite IncRNAs share similar
biogenesis with protein-coding genes (Quinn and Chang 2016; Derrien et al. 2012), they are distinguishable
by a variety of features, such as lower expression levels (Cabili et al. 2011; Igor Ulitsky 2013; Derrien et al.
2012), higher tissue specificity (Derrien et al. 2012; Cabili et al. 2011, 2015; Hezroni et al. 2015) and lower
splicing efficiency (Tilgner et al. 2012; Melé et al. 2017). However, most of these observations arise from
bulk tissue analyses; therefore, whether their expression kinetics is driven by overall low expression levels

across many cells or by high expression levels in specific cell populations remains unclear. This lack of
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knowledge at single cell resolution hampers our understanding of how IncRNAs function and whether their

regulation and response upon infection is intrinsically different from that of protein coding genes.

In this work, we significantly expand IncRNA macaque annotation to study IncRNA expression dynamics
in circulating immune single-cells infected with EBOV in vivo. The goal of this work is to identify
IncRNAs that may be playing crucial roles in the context of EBOV host response and that may be

manipulated by EBOV to induce viral replication.

Results

De novo annotation largely expands the rhesus macaque non-coding transcriptome

Bulk and single-cell transcriptomic studies in rhesus macaque reported widespread host gene expression
changes upon EBOV infection (Siragam et al. 2018; Nakayama and Saijo 2013; Kotliar et al. 2020).
However, most IncRNAs have been systematically excluded in such studies due to incomplete annotations,
especially in rhesus monkey, where the number of annotated IncRNAs reaches only 28% of that in human
(Supplemental Fig. S1A). To improve the current IncRNA annotation, we generated RNA-sequencing for
12 tissues of healthy and EBOV infected macaques. We additionally combined this data with publicly
available blood RNA-sequencing of healthy and EBOV infected macaques (Cross et al. 2018), adding up to
a total of 119 samples and almost 4 billion reads (Supplemental Table S1). To identify novel IncRNAs, we
implemented a computational pipeline that performs de novo transcriptome assembly, extensive quality
controls, and non-coding transcript selection based on concordance between three different tools (Figure
1B, Supplemental Fig. S1B). Our approach had high accuracy (82%) and specificity (86%) when predicting
Ensembl annotated macaque IncRNAs (Supplemental Fig. S1C). In total, we discovered 3,979 novel
IncRNA genes (5,299 transcripts) (Figure 1C), of which 3,191 (80%) were intergenic and 788 (20%) were

antisense. Consistent with previous studies (Bryzghalov et al. 2019), we identified a human IncRNA
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ortholog for 528 IncRNAs (14%) (Supplemental Fig. S1D). As expected, novel and annotated IncRNA

transcripts were shorter and had fewer and longer exons compared to protein-coding genes (Mann-Whitney

U test, all P-values < 2.2 x10_16) (Derrien et al. 2012; Uszczynska-Ratajczak et al. 2018) (Figure 1D-F).

However, novel IncRNAs were shorter than annotated IncRNAs in macaque (Mann-Whitney U test, all

P-values < 2.2 x 10_16). To discard the possibility that our pipeline detected incomplete transcripts, we
selected novel IncRNAs that had a human ortholog and compared transcript lengths between species. Novel
IncRNAs were not shorter than their human orthologs (Paired Wilcoxon signed-rank test, P-value > 0.05)
(Supplemental Fig. S1E), suggesting that our novel IncRNA annotation captures full-length transcripts. As
expected, both annotated and novel IncRNAs are expressed in fewer tissues and show lower expression
levels than protein-coding genes (Chen et al. 2018; Cabili et al. 2011, 2015; Hezroni et al. 2015) (Figure
1G-H). These observations hold when we analyze intergenic and antisense IncRNAs separately
(Supplemental Fig. S2A-E). In summary, our novel IncRNAs resemble IncRNA reference annotations and

almost double current rhesus macaque reference IncRNA annotation.
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Figure 1. Novel IncRNAs resemble annotated IncRNAs and significantly

expand the current macaque IncRNA annotation. (A) Tissue samples used for

de novo transcriptome assembly. (B) LncRNA discovery pipeline. The number of

IncRNA genes that pass each filtering step are indicated. (C) Number of novel and

annotated IncRNA and protein-coding genes in the macaque and human annotation


https://doi.org/10.1101/2022.01.12.476002
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.12.476002; this version posted January 13, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

(Ensembl release 100). (D) Transcript length, (E) exon length, (F) number of exons
per transcript novel and annotated macaque and human IncRNA (red) and
protein-coding genes (blue). (G) Number of tissues in which macaque genes are
expressed and (H) median expression levels of macaque novel and annotated

IncRNA (red) and protein-coding genes (blue).

LncRNAs are systematically expressed in fewer cells compared to protein-coding genes

LncRNAs are more lowly expressed, more tissue-specific, and often have a more time-dependent
expression in comparison to protein-coding genes. However, these observations have mostly been made in
bulk tissue studies (Cabili et al. 2011; Derrien et al. 2012; Hezroni et al. 2015; Cabili et al. 2015; Mel¢ et
al. 2017), and thus, whether this signal arises from IncRNAs being lowly expressed within individual cells
or from their expression being restricted to only a few cells remains elusive (Katerina AB Gawronski
2017). To address this, we used single-cell transcriptomics data from macaque’s peripheral blood
mononuclear cells (PBMCs) from Kotliar et al. (Kotliar et al. 2020; Bennett et al. 2020). We selected
38,067 cells through rigorous quality control (see Methods) and classified them into 4 major cell-types:
monocytes, neutrophils, B cells and T cells (Figure 2A, Supplemental Fig. S3A). We found that the main
feature distinguishing IncRNAs from protein-coding genes, rather than their median single-cell expression

level (Figure 2B), is that IncRNAs are expressed in fewer cells (Mann-Whitney U test, P-value = 0.017 and

P-value < 2.2 x10_16respectively) (Figure 2C). See figure 2D-E for an example where a IncRNA (Figure
2D) and a protein-coding gene (Figure 2E) are expressed at comparable median expression levels but differ
in the number of cells in which they are expressed. When we inspected cell types separately (Supplemental
Fig. S3B-C), we also found that the biggest difference between the two gene classes is driven by the

fraction of cells in which they are expressed.
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The proportion of cells in which each gene is expressed and its expression levels are tightly correlated
(Supplemental Fig. S3D). To control for this, we tested whether IncRNA expression levels were lower than
those of protein-coding genes when expressed in a comparable number of cells. We found no evidence of
protein-coding genes being expressed at higher levels than IncRNAs when matched by the proportion of
cells in which they are expressed (one-side Wilcoxon signed-rank test, P-value > 0.05) (Figure 2F).
Conversely, IncRNAs were expressed in fewer cells compared to protein-coding genes when controlling for

the median expression levels of the two gene classes (one-side Wilcoxon signed-rank test, P-value < 2.2 x

10_16) (Figure 2G). To assess whether our observations are consistent regardless of single-cell technology,
quality of the gene annotation or infection status, we replicated these analyses using healthy human PBMCs
generated with a different platform (10X Genomics) and observed the same trends (Supplemental Fig.

S3G-I).

LncRNAs are more tissue-specific than protein-coding genes (Cabili et al. 2011; Igor Ulitsky 2013).
However, this pattern could be explained by a greater cell-type specificity of IncRNAs or by IncRNA
expression being restricted to fewer cells independent of cell type. To address this, we used the established
metric Tau (Kryuchkova-Mostacci and Robinson-Rechavi 2017) and also designed a new metric, Upsilon
(see Methods), to estimate the cell-type specificity per gene. Whereas Tau relies mostly on differences in
expression levels (Kryuchkova-Mostacci and Robinson-Rechavi 2017), Upsilon relies exclusively on the
proportion of cells in which each gene is expressed. Both Tau and Upsilon could correctly classify genes as
highly, intermediate or low cell-type specific in simulated scenarios (Methods and Supplemental Fig. S4).
As expected, cell marker genes had high cell-type specificity scores whereas housekeeping genes had low
specificity scores for both metrics. Importantly, Upsilon provided a better separation for intermediate
cell-type specificity stages as well as from marker to housekeeping genes (Figure 2H, Supplemental Fig.
S4A, S5A). Novel IncRNAs showed similar cell-type specificity scores compared to annotated IncRNAs

(Mann-Whitney test, P-value >  0.05). Notably, IncRNAs had higher cell-type specificity than

protein-coding genes (Mann-Whitney U test, P-value <2 xlO_lo) (Figure 2H, Supplemental Fig. S5A), but
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when matched by the number of cells in which they were expressed, they had comparable cell-type
specificity scores (Wilcoxon signed-rank test, P-value > 0.05) (Figure 21, Supplemental Fig. S5C). To
assess whether these observations were independent of species, annotation, infection status, or sequencing
platform, we analyzed healthy human PBMC single-cell data generated with the 10X Genomics platform

and our results were consistent (Supplemental Fig. SS5E-F).

Overall, our results suggest that in circulating immune cells, lower expression levels of IncRNA compared
to protein-coding genes reported in bulk studies could be driven by IncRNAs being expressed in fewer cells

and that IncRNAs are as cell-type specific as protein-coding genes when expressed in the same number of

cells.
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Figure 2. Expression patterns of IncRNAs and protein-coding genes at single-cell
resolution. (A) UMAP embedding of 38,067 cells. Cell-types are indicated by the
different colours. (B) Median expression values (logCP10K) and (C) percentage of cells
(log10) at which IncRNA (red) and protein-coding genes (blue) are expressed. (D) UMAP
embedding showing the expression levels of a IncRNA (ENSMMUG00000045507) and
(E) a protein coding gene (NUDTY), with the same median expression levels but
expressed in a different number of cells. (F) Median expression levels of IncRNAs (red)
and protein-coding genes (blue) when matched by the percentage of cells in which they
are expressed. (G) Percentage of cells in which IncRNAs (red) and protein-coding genes
(blue) are expressed when matched by median expression levels. (H) Boxplot comparing
the cell-type specificity scores of IncRNAs (red) and protein-coding genes (blue).
Cell-type marker genes are highlighted in green, housekeeping genes in purple. (I)
Upsilon specificity score of IncRNAs and protein-coding genes when matched by the
percentage of cells in which they are expressed. (J) UMAP embedding showing
cell-type-specific of IncRNA MSTRG.205441 (Upsilon = 0.9) and (K) protein-coding
gene RORA (Upsilon =0.89), which were matched by the number of cells in which they

are expressed.

Cell-type dynamic regulation of IncRNAs upon EBOYV infection

LncRNAs play crucial roles in the host response to viral infections (Ginn et al.; Kesheh et al.; Fortes and

Morris 2016; Liu and Ding 2017). However, previous studies mostly focused on specific cell lines or bulk

10
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tissues. Cell lines analyses are reductive of in vivo biology, whereas bulk tissue data is not ideal as it
averages gene expression and detects with higher difficulty genes expressed only in few cells, such as
IncRNAs. To overcome these limitations, we leveraged the previously introduced scRNA-Seq dataset. To
identify IncRNAs that may play important cell-type specific immune regulatory roles upon viral infection
we tested for differential gene expression, comparing each stage of the infection (early, middle, late) to
baseline in each cell type separately (monocytes, T and B cells)(see Methods). We detected a total of 110
differentially expressed (DE) IncRNAs in at least one cell type (FDR <0.05, fold change >30%) (Figure
3A-E)(Supplemental Table S2), the majority of which (73 IncRNA, 66%) were novel, underscoring the
importance of refining the annotation of IncRNAs for model organisms such as rhesus monkeys. The
largest number of DE IncRNA was in monocytes (74 DE genes)(Figure 3C, Supplemental Fig. S6A),
consistent with monocytes being the main EBOV target (Geisbert et al. 2003b, 2003a). Most IncRNAs (99
IncRNAs, ~90%) were differentially expressed in exclusively one cell type (Figure 4F); this is a slightly
larger proportion than the one observed for protein-coding genes (Fisher’s exact test, OR = 2.77, P-value =
0.00028; see Methods). However, when matched by the proportion of cells in which they are expressed, the
two gene classes had comparable proportions of cell-type specifically differentially expressed genes
(Fisher’s exact test; OR = 1.1, P-value = 0.5). Also, most IncRNAs (88 IncRNAs, ~80%) were

differentially expressed in only one stage of the infection (Figure 4G) which is a significantly larger

proportion to that of protein-coding genes, (Fisher’s exact test, OR = 3.21, P-value = 1.009 x10_7; see
Methods). However, when comparing genes matched by the number of cells in which they are expressed,
the differences between IncRNAs and protein coding genes in stage-specific differential expression were

reduced (Fisher’s exact test; OR = 2.2, P-value = 0.005).

Twenty-five DE IncRNA had a human ortholog, and, reassuringly, twenty-two of those had been previously
reported to change expression during immune response in humans (Li et al. 2020b) (Figure 3C-E,
Supplemental Fig. S6E). Consistent with previous studies regarding immune response upon infection,

LINCO00877 (Razooky et al. 2017; Policard et al. 2021) was downregulated, and SNHG6 upregulated (Zhao
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et al. 2016; Waickman et al. 2019). Interestingly, the most transcriptionally repressed IncRNA was the
nuclear enriched abundant transcript 1 (NEAT1) (Figure 3C, H). NEAT1 is a well-studied IncRNA known
to play important anti-viral roles. In most studies, however, NEAT1 is upregulated upon viral infections
(Prinz et al. 2019) and downregulation has only been described in dengue and Crimean Congo hemorrhagic
fever (Pandey et al. 2017; Bayyurt et al. 2021). Our results suggest that NEAT1 depletion may be specific
to severe hemorrhagic fevers and it is the first time that such downregulation is shown to occur specifically

in monocytes.

Overall, we show that IncRNAs are dynamically regulated upon EBOV infection suggesting that they play

important roles in the host response to EBOV infection in a time and cell-type specific manner.
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infection in Monocytes (C), T cells (D) and B cells (E). Upset plot showing the overlap of IncRNAs
differentially expressed across cell types (F) and disease progression stages (G). (H) Expression
patterns of the NEAT1 at different stages of infection in monocytes, B and T cells. Marker: mean;
error bars: 95% confidence interval. Dot’s sizes represent the percentage of cells in which the gene is

expressed in each cell type.

LncRNAs are involved in the host innate immune response to EBOV

Although we detected many IncRNAs that change expression upon EBOV infection, the large majority of
those remain functionally uncharacterized. Some IncRNAs exert their modulatory role in a cis-regulatory
fashion (Gil and Ulitsky 2019). To identify possible cis-regulatory IncRNAs, we first detected 76 IncRNAs
protein-coding genes pairs that were both differentially expressed in the same cell type and in close
physical proximity (<1Mbp). From those, however, only 17 pairs were significantly correlated (Spearman
correlation test, P-value < 0.05, Supplemental Fig. S7). Thus, although we found pairs of IncRNA and
protein-coding genes co-located and co-expressed at cell-type resolution, we did not observe them to be
significantly co-located more often than expected by chance (Fisher’s exact test, OR = 0.44, P-value >

0.05) (see Methods).

To explore further the pathways and putative functions of our DE IncRNAs, we built a cell-type specific
co-expression network in monocytes (see Methods) and identified seven modules. The three largest
modules were enriched in different functions related to the innate immune response (Figure 4A,
Supplemental Fig. S8A-E). Module 1 was enriched in “regulation of response to stress” and was mostly
composed of downregulated genes (Figure 4A, Supplemental Fig. S8C, Supplemental Table S3). Cellular
stress and subsequent inhibition of translation is a common host defence response to viral infections
(McCormick and Khaperskyy 2017; Walsh et al. 2013) and might reach its peak at the late stage of the

infection when the amount of infected cells is highest. Consistent with this, most of the genes in the module
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showed the strongest expression changes at late stages (Supplemental Fig. S8A). Also, one of the IncRNAs
in this module, MIR22HG, has been reported to be sensitive to expression changes upon cellular stress
(Tani and Torimura 2013). The second largest module was related to “innate immune response” (Figure 4A,
Figure S8D, Supplemental Table S3). Importantly, it includes many interferon-stimulated genes (ISG) such
as MX1, IFIT2 and ISG15. These ISGs are all up-regulated at early and middle stages of infection (as
expected)(Kotliar et al. 2020)(Figure 4A, Supplemental Fig. S8A-B), as is the IncRNA
ENSMMUGO00000064224  directly connected to them in the network. Similarly to ISG,
ENSMMUGO00000064224 changes its expression in B and T cells as well as in monocytes (Figure 3G,
Supplemental Fig. S8B), supporting the hypothesis that it may play an ISG-like role upon infection that is
shared across cell types (Kotliar et al. 2020). Module 3, had most genes downregulated and was enriched in
purine metabolism (Figure 4A, Figure S8E, Supplemental Table S3). This is consistent with the reported
decreased nucleotide availability interfering with viral replication as an anti-viral host response to EBOV

infection (Luthra et al. 2018).

The remaining modules did not have significant functional enrichments likely due to their smaller sizes.
However, all except one had central regulators or downstream effectors of the innate immune response
(Supplemental Table S3). For example, the smallest module harboured ETS1, a transcription factor that
controls the expression of cytokine and chemokine genes, together with one of its main targets, ILR7

(Grenningloh et al. 2011).

Overall, our co-expression network analysis has allowed assigning some of our DE IncRNAs to specific

functional roles related to innate immune processes such as interferon response, stress response, and purine

metabolism.
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LncRNAs are up and down-regulated upon viral entry and replication in infected monocytes

Upon entry into the cell and replication, EBOV hijacks some of the cells' defenses by down-regulating

anti-viral genes and up-regulating pro-viral genes (Kotliar et al. 2020). To study whether IncRNA

expression is also subject to changes upon viral replication and may be therefore part of pathways that
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EBOV leverages to attack the host cell, we tested for an association between viral load and IncRNA
expression in infected monocytes. We used macaque PBMCs infected ex vivo (Figure 5A, Supplemental
Fig. S9A-E), as studying the ex vivo experimental setup allowed for higher viral exposure and consequently
a higher number of infected cells. We identified 16 IncRNAs significantly correlated with viral load
(Spearman correlation test, g-value < 0.05) (Supplemental Table S4), the majority of which (12) were

positively correlated (Figure 5B).

ENSMMUGO00000058644 and MSTRG.15458, which had the strongest correlations, were also
significantly correlated at nominal P-values in the in vivo dataset (Spearman p= 0.10, P-value=0.03 and
Spearman p= -0.12, P-value=0.01 respectively), suggesting that the in vivo dataset might not have enough
infected cells to identify significant correlations. In line with this, IncRNAs correlated with viral load were

expressed in significantly fewer cells in vivo compared to ex vivo (Mann-Whitney U test, P-value < 2 x

107"

Eleven out of the 16 identified IncRNAs had not been detected as differentially expressed in monocytes
(Figure 3C, Supplemental Table S1, S4) suggesting that most of these IncRNAs change expression
exclusively in infected cells, and it highlights the power of the single-cell analysis. The remaining 5
IncRNAs had been identified as differentially expressed in monocytes upon infection. Strikingly though,
IncRNAs upregulated during infection in the general monocyte population were negatively correlated with
the viral load in infected cells. Conversely, IncRNAs downregulated during infection in monocytes
increased their expression with viral load in infected monocytes (Figure 6C-F, Supplemental Fig. 10A-F).
This suggests that such IncRNAs are part of changes directly triggered by viral cellular entry and

replication.

The IncRNA with the strongest drop in expression upon increased viral load was ENSMMUG00000064224

(Spearman p= -0.11, q =6.50 - 10®) (Figure 5C, Supplemental Table S1, S4). We previously classified
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ENSMMUGO00000064224 as an interferon response IncRNA based on our co-expression network analysis

(Figure 4A). In accordance with this, ENSMMUGO00000064224 is upregulated upon infection but is

negatively correlated with viral load similarly to known ISGs such as IF12, ISG15 and MX1 (Figure 5D).

(Kotliar et al. 2020). Previous work suggested that EBOV actively downregulates the interferon response

pathway to allow viral replication. Our results suggest that some IncRNAs may also be hijacked by EBOV

to promote viral entry and replication.
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Figure 5. LncRNAs undergo expression changes exclusively in infected monocytes. (A) UMAP
embedding of 56,317 cells from the ex vivo dataset. Cell types are indicated by different colours. The
magnified UMAP on the left highlights the cells with viral transcripts. (B) Number of novel and annotated
IncRNA positively and negatively correlated with viral load. (C) Expression of ENSMMUG00000064224
in baseline as well as bystander and infected cells at 24h post-infection. Marker: mean; error bars: 95%
confidence interval. Dot sizes represent the percentage of cells in which the gene is expressed in each cell
group. (D) ENSMMUGO00000064224, TFIT2, ISG15 and MX1 expression changes with viral load. (E)
Expression of MSTRG.181870 in baseline, bystander and infected cells at 24h post-infection. Marker:
mean; error bars: 95% confidence interval. Dot sizes represent the percentage of cells in which the gene is

expressed in each cell group. (F) MSTRG.181870 expression changes with viral load.

Discussion

Despite the growing evidence associating IncRNAs to crucial immune regulatory roles (Heward and
Lindsay 2014; Marina R. Hadjicharalambous 2019), studies focusing on the long non-coding RNA
response upon infection at single-cell resolution are scarce (Li et al. 2020a; Wang et al. 2020). A main
reason for this is that IncRNA annotations remain largely incomplete. Here, we annotated ~4,000 novel
IncRNAs, which almost doubled the size of the current long non-coding annotation and described essential
properties that distinguish IncRNAs from protein-coding genes. ~500 novel IncRNAs are conserved in
human; as they may play biologically comparable functions in both species, our findings may have direct
implications for EBOV infection in humans. In addition, we identified IncRNAs that are up and
down-regulated upon infection in a cell-type and disease-stage specific manner and we were able to
pinpoint the pathways they are related to, including interferon-mediated immune response and host
metabolism. Overall, our expanded IncRNA annotation together with our in-depth characterization will

serve as a reference atlas of macaque IncRNAs for future studies.

19


https://paperpile.com/c/jRBVVD/iSgp+xQLz
https://paperpile.com/c/jRBVVD/iSgp+xQLz
https://paperpile.com/c/jRBVVD/VQWM+ehbh
https://doi.org/10.1101/2022.01.12.476002
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.12.476002; this version posted January 13, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Our results suggest that a main differential property of IncRNAs compared to protein-coding genes is their
expression in fewer cells. More importantly, when controlling for the number of cells in which IncRNAs
are expressed, IncRNAs have similar expression levels, cell-type specificity, and dynamic regulation
compared to protein-coding genes. Liu et al. made a similar observation in brain tissue although their study
was heavily constrained by the number of cells (<250 cells). This result raises the following question: why
do IncRNAs have expression that is restricted to few cells? Previous work showed that IncRNAs have
fewer transcription factor binding sites and higher chromatin repressive marks in their promoter regions
compared to equally expressed protein-coding genes (Melé et al. 2017). In addition, transcription factor
binding sites in IncRNA promoters are less complex than those in protein-coding genes suggesting that
fewer transcription factors can bind to a specific binding site in a IncRNA promoter than in a
protein-coding promoter (Mattioli et al. 2019). Our results are consistent with a model in which promoters
of IncRNAs differ from those of equally expressed protein-coding genes in the probability of engaging in

active transcription rather than in the strength of the transcriptional response.

Additionally, the novel metric Upsilon which we designed to study the cell-type specificity may have wide
use in future sScCRNA-Seq studies. Compared to the alternative metric Tau, repurposed from bulk analyses,
Upsilon is superior in discriminating markers from housekeeping genes as well as genes with intermediate

cell-type specificity patterns.

Our single-cell transcriptomic analysis allowed us to identify cell type specific IncRNA expression changes
correlated with viral load. Recent work has shown that EBOV may induce host gene expression changes to
its benefit, by up- and down-regulating pro- and anti-viral genes respectively (Kotliar et al. 2020). Our
identified IncRNAs could be part of pathways hijacked by EBOV to efficiently attack the host cell,
suggesting that these genes play crucial roles during the host immune response. However, a major

limitation of our analysis is the number of cells we could analyze as the number of infected cells where we
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found IncRNAs expressed is limited, especially in vivo as very few cells are infected even in severely
diseased animals. We speculate that further studies with a higher amount of infected cells will allow for a

more comprehensive detection of IncRNAs changing their expression upon EBOV infection.

In summary, this study sheds light on the roles of IncRNAs in response to EBOV infection and paves the

way for future studies on how to systematically analyze IncRNAs at single-cell resolution.

Material and Methods

RNA sample processing

For de novo annotation, we performed paired-end, strand-specific bulk RNA-sequencing (RNA-Seq) on
high-quality, commercially available rhesus monkey total RNA (Zyagen, San Diego CA, USA; hereafter
referred to as Zyagen) of non-infected samples from 10 different tissues (Supplemental Table S1). Briefly,
we depleted ribosomal RNA and performed random-primed cDNA synthesis (Matranga et al. 2014),
followed by second strand marking and DNA ligation (Levin et al. 2010) with adaptors containing unique
molecular identifiers (UMIs) (MacConaill et al. 2018)(IDT, Coralville IA, USA). We performed a similar
bulk RNA-Seq protocol without UMIs on rhesus monkey RNA samples from the study by (Luke et al.
2018). Additionally, we downloaded bulk RNA-Seq from the NCBI Gene Expression Omnibus (GEO;
http://www.ncbi.nlm.nih.gov/geo/) from the accession number GSE115785. For the single-cell RNA-Seq
analysis, we downloaded the dataset from the NCBI Gene Expression Omnibus (GEO;

http://www.ncbi.nlm.nih.gov/geo/) with accession number GSE158390.

QC and mapping
First, we merged Ensembl Mmul 10 release 100 assembly and Ensembl release 100 gene annotation with
the Ebola virus/H. sapiens-tc/COD/1995/Kikwit-9510621 (GenBank #KU182905.1; Filoviridae: Zaire

ebolavirus) assembly and annotation respectively, and used them throughout all downstream analyses. We
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used Hisat v2.1.0 (Kim et al. 2019) to compute assembly indexes and known splice sites and mapped each
samples’ reads to the merged assembly. We ran Hisat2 with default parameters, except for rna-strandness,
which we set according to the experiments’ strandness (Supplemental Table S1), previously inferred with
InferExperiment.py from RSeQCc v3.0.0 (Wang et al. 2012). We sorted mapped bam files with samtools
sort v1.9 (Li et al. 2009) with default parameters. We retained only paired and uniquely mapped reads using
samtools view with parameters -f3 -g 60. Additionally, we removed duplicates from the samples tagged
with UMIs (Zyagen) (Supplemental Table S1) with umi tools dedup v1.0.0 (Smith et al. 2017). We
excluded all samples with less than 10M sequenced reads, a mapping rate lower than 0.3 or a genic
mapping rate lower than 0.7. We defined the genic mapping rate as the proportion of exonic and intronic
reads, as computed by read distribution.py from RSeQCc v3.0.0 (Wang et al. 2012) (See Supplemental

Table S1).

LncRNA discovery pipeline

We ran de novo transcriptome assembly separately on each sample with Stringtie v1.3.6 (Pertea et al.
2015), with default parameters except for strand information that was set depending on the dataset
(Supplementary Table 1). We used Stringtie to merge all the de novo assemblies using the parameter
“--merge”. To identify novel transcripts absent from the reference annotation, we used Gffcompare v0.10.6
and retained exclusively the transcripts with class code “u” and “x”, corresponding to intergenic and
antisense transcripts. We removed mono-exonic transcripts, transcripts shorter than 200 bp, and transcripts
not expressed (log(TPM) < 1) in at least three samples. To assess the coding potential of the newly
assembled transcripts, we used three sequence-based IncRNAs prediction tools: Coding Potential
Assessment Tool (CPAT)(Wang et al. 2013), Coding Potential Calculator (CPC2)[(Kang et al. 2017)] and
Coding-Non-Coding Identifying Tool (CNIT)(Guo et al. 2019) with default parameters. For each prediction
tool independently, we removed genes with at least one isoform predicted as non-coding and one predicted

as protein-coding. We considered a gene to be a long non-coding RNA if the three tools classified it as

non-coding. We then merged the obtained list of novel IncRNAs to the reference annotation and used it in
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downstream analyses. To benchmark our IncRNAs discovery pipeline, we predicted the biotype of
annotated genes (Ensembl v100) (coding or non-coding) and compared our predictions to their annotated
biotype. To compare IncRNA and protein-coding transcript length, number of exons and exon length, we
considered the longest transcript per gene. To identify IncRNAs orthologs to human, we used the
synteny-based IncRNAs detection tool slnky v1.0 on human hg38 assembly and gencode hg38 v23
annotation (Chen et al. 2016). For the sake of reproducibility, the IncRNAs discovery pipeline is

implemented in Nextflow (Di Tommaso et al. 2017) and combined with Singularity software containers.

Single-cell RNA sequencing data and processing

We used two publicly available single-cell RNA-Seq datasets of macaque PBMCs infected with EBOV in
vivo and ex vivo (Kotliar et al. 2020). For the in vivo dataset, samples were extracted at different days
post-infection (38,067 cells). In the ex vivo dataset, PBMCs were divided into three batches after sampling.
Live virus was added (MOI of 0.1 pfu/cell) to the first batch, hereafter referred to as live; inactivated virus,
which was made unable to replicate through gamma irradiation, was added to the second one, hereafter
referred to as irrad; no addition was made to the third batch which was established as control, hereafter
referred to as media. Each batch was sampled twice, at 4 and 24 hours, and submitted to scRNA-Seq,
performed with Seq-Well (48,350 cells). To obtain gene expression quantification, we implemented the
Drop-seq analysis pipeline (https://github.com/broadinstitute/Drop-seq) in the form of a Nextflow (Di
Tommaso et al. 2017) pipeline combined with Singularity containers for the sake of reproducibility. We
followed the best practices for single-cell analyses as described by (Luecken and Theis 2019). to manually
identify suitable filtering thresholds. For the in vivo dataset, we selected cells with at least 1,000 and a
maximum of 10,000 UMIs, at least 600 and a maximum of 2,000 detected genes. Additionally, we
excluded cells with more than 5% of mitochondrial reads. In the ex vivo dataset, PBMCs were infected with
a higher EBOV dose than in vivo, resulting in an increased number of infected cells and also, an increased

number of viral transcripts within infected cells. To make sure we did not exclude highly infected cells
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from our analysis, we increased the upper thresholds for the number of allowed UMIs per cell to 15,000

and the number of genes detected per cell to 4,000.

Additionally, in both datasets, we excluded genes expressed in fewer than 10 cells. We used Scrublet
v.0.2.1 (Wolock et al. 2019) for doublet detection. In the in vivo dataset, we applied the IntegrateData
method of Seurat v3.0 (Stuart et al. 2019) that uses canonical correlation analysis (CCA) to correct for
fresh versus frozen batch effect. We normalized counts to log(CP10K+1), the default in the Seurat package.
To replicate some of our observations in a human dataset, we used available gene counts of human healthy
PBMCs from 10xGenomics
(https://www.10xgenomics.com/resources/datasets/33-k-pbm-cs-from-a-healthy-donor-1-standard-1-1-0)

(32,738 available cells) and human Ensembl version 100 gene annotation.

Single-cell clustering and cell-type identification

To cluster cells, we used the Louvain algorithm as implemented in the Seurat package (Stuart et al. 2019).
To identify cluster-specific genes, we ran a differential expression analysis between each cluster and all the
remaining ones using the Seurat function FindAllMarkers. Based on the expression levels of known marker

genes, we classified clusters into specific cell types using (Supplemental Fig. 3A, Supplemental Fig. S3A).

LncRNA and protein coding gene comparisons

We used Seurat’s normalization values (log(CP10K+1)) to compare expression levels between IncRNAs
and protein-coding genes. We considered a gene to be expressed in a cell when its normalized expression
value was larger than 1. Median expression values were calculated exclusively across cells in which the
gene was expressed. We used the Matchlt R package (https://www.rdocumentation.org/packages/Matchlt/)
to obtain the pairs of IncRNA and protein-coding genes matched either by median expression or by the

percentage of cells in which they were expressed.
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Cell-type specificity estimates

We considered two distinct cell-type specificity measurements. First, we leveraged Tau
(Kryuchkova-Mostacci and Robinson-Rechavi 2017), a metric originally designed to assess
tissue-specificity. Instead of calculating for each gene the mean expression per tissue, we calculated mean
expression per cell type, including zeros. Tau was calculated as follows:

(1-%) ‘. "

T=—0.i=12.1n ; X, = :
n-1 mﬂxi—l...ﬂ(xa)

where xiis the mean expression of a gene in cell-type i and # is the total number of cell types. Additionally,

we designed a score (Upsilon, v) that relies purely on the proportion of cells in which each gene is
expressed, which was calculated as follows:

i T
_u 2
1-E (2)

U= MAXj=1..n
where:
- O,; is the observed proportion of cells in which gene 7 is found expressed in cell-type j. To calculate the
proportions of cells in which each gene is expressed per cell type, we considered only the cells in which we
detected the gene as expressed, so that, per gene, the proportions assigned to the different cell-types sum up
to one.
- E,; is the expected proportion of cells in which gene i would be expressed in cell-type j if it was not
cell-type specific. The expected proportion of cells for cell type j is equal for all the genes and corresponds
to the proportion of cells of cell-type j in the dataset.
Then, we divided the difference between the observed and expected proportions by the maximum value this
difference could reach. The maximum value is reached when the gene is expressed in all cells of one cell

type, which is the difference between 1 and the expected proportion. The value, therefore, ranges from 0 to
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1. We then calculated the specificity of each gene to each of the cell types and reported the maximum of
these values as the gene’s global specificity score.

To explore the behaviour of the two cell-type specificity metrics, we simulated different scenarios for genes
with three different levels of cell-type specificity (highly, intermediate or lowly cell-type specific genes), in
a dataset with three different cell types in different proportions (50%, 30% and 20% of the total number of

cells) (Supplemental Fig. S4).

Differential expression analysis

We grouped samples of the in vivo dataset into baseline, early, middle and late stages, based on the day
post-infection of the sample (Figure 2A). We performed differential expression analysis comparing each
stage of the infection(early, middle, late) to baseline in Monocytes, B and T cells separately. We excluded
neutrophils because they were detected in PBMCs exclusively at later stages of infection. We adopted the
statistical framework MAST (Finak et al. 2015), using normalized UMI counts as input. As covariates, we
used the number of genes detected per cell and a variable corresponding to whether the sample had been
frozen or not. We used Fisher’s exact test to investigate whether IncRNAs have differential expression
patterns more cell-type specific than protein-coding genes. The two tested variables are gene biotype and

whether the gene is DE in one or more cell types.

Gene colocation analysis

We used the GenomicRanges package
(https://bioconductor.org/packages/release/bioc/html/GenomicRanges.html) to calculate the genomic
distance between genes in the macaque Ensembl v100 annotation. To test whether DE IncRNAs were
closer to DE protein-coding genes more often than not DE IncRNAs, we set up a Fishers’ exact test. The

two tested variables were whether the IncRNA is DE and whether is it in cis to a DE protein-coding gene.

Co-expression network
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We built a co-expression network using all differentially expressed genes in monocytes with GrnBoost2
(Moerman et al. 2019). To focus on the co-regulatory network involving IncRNAs, we only retained edges
connected to at least one IncRNA. Also, we retained exclusively the top 0.5% edges, when sorted by
weight. We identified communities with the Louvain algorithm (Blondel et al. 2008) and reported those
with at least 5 edges. For the functional enrichment of the modules, we used the R package clusterProfiler

v4.2.0 (Wu et al. 2021).

Correlation with viral load

To identify genes whose expression correlates with viral transcripts changes in the cell, we only considered
infected monocytes at a late stage of infection (24h post-infection ex vivo, days post-infection 5-8 in vivo).
We computed the spearman correlation coefficient between the viral load (logl0) and each gene’s
normalized expression (log(CP10K+1)). Normalized expression values were calculated after removing
viral transcripts to avoid library size normalization biases. P-values were corrected with Benjamin and

Hochberg multiple testing correction (Benjamini and Hochberg 1995).

Data access
Sequencing data has been submitted to the NCBI Gene Expression Omnibus (GEO;

http://www.ncbi.nlm.nih.gov/geo/) under accession number GSE192447. All pipelines and scripts used

in this study are available at https://gitlab.bsc.es/melebsc/ebola.
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