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Abstract  27 

Both the environment and our body keep changing dynamically. Hence, ensuring movement 28 

precision requires adaptation to multiple demands occurring simultaneously. Here we show 29 

that the cerebellum performs the necessary multi-dimensional computations for the flexible 30 

control of different movement parameters depending on the prevailing context. This 31 

conclusion is based on the identification of a manifold-like activity in both mossy fibers (MF, 32 

network input) and Purkinje cells (PC, output), recorded from monkeys performing a saccade 33 

task. Unlike MFs, the properties of PC manifolds developed selective representations of 34 

individual movement parameters. Error feedback-driven climbing fiber input modulated the 35 

PC manifolds to predict specific, error type-dependent changes in subsequent actions. 36 

Furthermore, a feed-forward network model that simulated MF-to-PC transformations 37 

revealed that amplification and restructuring of the lesser variability in the MF activity is a 38 

pivotal circuit mechanism. Therefore, flexible control of movement by the cerebellum 39 

crucially depends on its capacity for multi-dimensional computations.  40 

 41 

Main text 42 

Short-term motor learning is a specific variant of sensorimotor learning. It provides the ability 43 

to rapidly acquire a new control scheme that allows the motor system to cope with the 44 

demands of often unexpected or sudden changes in the external environment1. Not only 45 

external but also internal changes may require fast adjustments. For instance, the motor 46 

plant may change due to muscular fatigue slowing movements. Also, boredom and declining 47 

motivation, i.e., cognitive fatigue will reduce the speed of movements. If not too extensive, 48 

this slowing of movements—the decline of movement “vigor”—may not necessarily degrade 49 

endpoint precision as the speed reduction can be compensated by cranking up the overall 50 

movement duration, an adjustment of a distinct parameter that requires the cerebellum2-4. 51 

However, behavioral studies indicate that parametric control by the cerebellum, deployed to 52 

swiftly react to external and internal changes, is not confined to a single kinematic parameter 53 

like movement duration. Rather, work on goal-directed eye movements as models of 54 

cerebellum-based short-term motor learning have established that adaptation to external and 55 

internal changes involves adjustments of several kinematic parameters2,5-11.  56 

How does the cerebellum coordinate the control of multiple kinematic parameters in order to 57 

ensure optimal movements? To answer this question, we should know at which stage of the 58 

cerebellar neural network the information on the various movement parameters and 59 

necessary adjustments is available and how they are transformed within the network. 60 

Previous studies on saccadic eye movements have emphasized the control of particular 61 
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parameters like movement duration12 or velocity13 by the simple spike (SS) discharge of a 62 

population of cerebellar Purkinje cells (PCs)—the output currency of cerebellar cortex. 63 

Although it has been suggested that SS firing rate and spike time can simultaneously 64 

encode the velocity and timing of eye movement at the individual PC level14, ultimately 65 

unifying these divergent views at the population level is challenged by the large cell-to-cell 66 

variability of the discharge of cerebellar neurons. This issue is usually addressed by 67 

extensive averaging of all or categorized subsets of neurons in data6,12,13,15,16. However, 68 

averaging can lead to conclusions that are biased towards a particular parameter within a 69 

space of multiple encoded movement parameters.  70 

Unraveling the information hidden in cell-to-cell variabilities of neuronal populations is where 71 

recent studies of the neural dynamics of cortical motor regions have made remarkable 72 

progress17-20. One of the key ideas is that the apparent substantial heterogeneity or high 73 

dimensionality of the responses of individual neurons can actually be explained by a 74 

combination of a smaller number of underlying patterns, i.e., a low-dimensional latent 75 

structure. This low-dimensional structure, referred to as the ‘manifold’, captures the essential 76 

properties residing inside the population discharge20-23 without the risk of biased conclusions, 77 

inevitably introduced by simple averaging across neurons.  78 

Hence, to address if and how the cerebellum is able to accommodate the multifarious 79 

parametric requirements of short-term sensorimotor learning, we identify the manifold 80 

structure of the activity of key input and output elements of the cerebellar cortical network, 81 

mossy fibers (MFs) and PCs, of nonhuman primates performing a fatigue-inducing repetitive 82 

saccade task entailing different kinematic changes. We report the multi-dimensional 83 

manifolds in the MF and PC activity that simultaneously encode kinematic parameters, eye 84 

movement velocity and duration, by their geometry and dynamics. We then proceed with 85 

considering the influence of climbing fibers, represented by the PC complex spike (CS) 86 

discharge, conveying information on error feedback, on the PC manifolds. We show that 87 

CSs modulate PC manifolds in an error type-dependent manner that predicts 88 

complementary changes in subsequent eye movements by selectively controlling the 89 

individual movement parameters. Finally, we investigate the nature of the interaction 90 

between the input and output neurons and present evidence that the underlying network 91 

computation amplifies the relatively small variability in MF responses to transform them into 92 

representations of individual movement parameters, exhibited by PCs in an error-type-93 

dependent manner. Our results demonstrate an enhanced computational capacity of PCs 94 

that provides the flexible control of more than one kinematic parameter, ensuring the 95 

precision of goal-directed movements. 96 
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Results 97 

Velocity-duration adjustments during a fatigue-inducing repetitive saccade task  98 

We trained two monkeys to execute a long series of visually guided saccades made 99 

centrifugally towards a fixed target location (eccentricity: 15 deg) in a horizontally left- or 100 

rightward direction in order to receive a water-based reward at the end of the movement 101 

(Fig. 1a, see methods for details).  102 

As exemplified in Fig. 1 b-d, saccades exhibited a gradual decline in their peak velocity (PV) 103 

over the course of a session, reflecting a general loss of motivation ("cognitive fatigue”), 104 

arguably due to the fast and repetitive nature of the task4 (Fig. 1b, up). This gradual drop in 105 

saccade velocities was compensated by a likewise gradual upregulation of saccade duration 106 

(Fig. 1b, middle) ensuring that endpoint accuracy was maintained (Fig. 1b, bottom) within 107 

an acceptable range of error (±2 deg around the target). Since inter-trial intervals were short 108 

(~100 ms), the monkeys had to execute rapid saccades back towards the fixation point (i.e., 109 

centripetal saccades) after every centrifugal saccade to get ready for the subsequent trial. 110 

Albeit not directly rewarded, the kinematic structure and the velocity-duration adjustments of 111 

centripetal saccades were very similar to those of centrifugal saccades (red and blue traces, 112 

Fig. 1 b,c). The notion of a viable velocity-duration tradeoff suggested by the exemplary data 113 

received full support from a behavioral population analysis which was based on pooled 114 

saccades from all sessions in which we had recorded the responses of 117 MFs and 115 

complementary dataset of saccades collected while recording from 151 PCs, the latter the 116 

basis of Markanday et. al 202124 (Fig. 1d-f). Relative to the early trials, we observed an 117 

overall decrease of 9.9% in the median PV of late centrifugal and 12.1% decrease in late 118 

centripetal saccades (Fig. 1d), compensated by a 12.2% and 16.5%, respectively, increases 119 

in median saccade duration (Fig. 1e), maintaining the required accuracy (Fig. 1f). 120 

On top of these gradual changes, reflecting the consequences of the development of 121 

cognitive fatigue over many trials, we also observed a within-session, trial-to-trial variability 122 

in centrifugal and centripetal saccade endpoints, (‘motor noise’), which resulted from 123 

saccades randomly overshooting or undershooting the target (Fig. 1a, see schematic 124 

diagrams with green and yellow-colored arrows). As a consequence, both saccade types 125 

could result in retinal errors in both directions that we could resort to when trying to estimate 126 

the preferred error direction of complex spike (CS) firing of individual PCs as projected on 127 

the left-right axis. 128 

 129 
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Mossy fiber discharge encodes saccade kinematics 130 

We recorded the saccade-related discharge of 117 MFs from the oculomotor 131 

vermis(OMV)25,26 and broadly categorized them into three main types—burst-tonic (BT), 132 

short-lead burst (SLB), and long-lead burst (LLB) units (Fig. 2b, see Materials and 133 

Methods for details) considering the timing of a burst-response component and the 134 

presence of subsequent tonic discharge. As demonstrated by an exemplary BT unit (Fig. 2a, 135 

left panels), a strong “burst” discharge for saccades made in the preferred horizontal 136 

direction (here: leftward) direction was followed by an elevated discharge rate (the tonic 137 

component), that persisted throughout the post-saccadic period and stopped only when the 138 

eyes began to move in the opposite (non-preferred) direction. Compared to the SLB units 139 

that started to fire vigorously just a few milliseconds before saccade onset (Fig. 2a, middle; 9 140 

ms in the example), the modulation onset of the LLB units occurred much earlier (Fig. 2a, 141 

right; ~330 ms in the example), reaching its maximum expression in a ramping manner. 142 

Independent of MF unit type, the discharge rate reached its peak during the saccade and 143 

stopped around the end of saccades, made into a unit´s preferred direction.  144 

The discharge of MFs reflected the trial-to-trial changes in saccade kinematics. To 145 

demonstrate this relationship, we calculated the population responses for saccades in a 146 

unit´s preferred direction, separately for BT, SLB, and LLB MFs (n=24, 27 and 60, 147 

respectively, Fig. 2b) and sorted them into bins of PV (bin size=50 deg/s), ranging from low 148 

to high values (and corresponding changes in saccade duration). Comparing the MF 149 

populations responses for the two extreme bins comprising the lowest and highest velocities, 150 

respectively, clearly showed that in all three MF groups (Fig. 2c-e), the peak firing rate was 151 

substantially larger for the high PV bin, associated with clearly shorter burst duration. Note 152 

that in all three classes of MF, the peak discharge rate coincided with saccade onset and, 153 

moreover, that not only the saccade profiles but also the associated mean discharge profiles 154 

were clearly less skewed for the high PV bin. This was due to a shortening of the saccade 155 

deceleration phase and a parallel faster decay of the discharge following the discharge peak. 156 

In fact, the peak discharge rate grew linearly with PV over the full range of PV bins (Fig. 2 f, 157 

h, j), whereas the time of burst offset linearly predicted the time of saccade offset (Fig. 158 

2g,i,k). Even for the tiniest corrective microsaccades that occurred either during the fixation 159 

period or during the post-saccadic period after under or overshooting saccades, we 160 

observed the same linear encoding of these kinematic parameters by the activity of the three 161 

MF types (Supplementary fig. 1).  162 

 163 

 164 
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Simple spikes of Purkinje cells encode saccade kinematics  165 

We also recorded from 151 OMV PCs and analyzed their simple spike (SS) responses. 166 

Whereas MFs exhibited bursting in their preferred saccade direction and little firing in the 167 

non-preferred direction, PC SS patterns for the two opposite directions—although often 168 

clearly different (see Materials and Methods)—did not follow a comparatively simple rule. 169 

Therefore, we considered SS responses for centripetal and centrifugal saccades as 170 

independent units and classified them into four main categories—burst (n=107), pause 171 

(n=99), burst-pause (n=72) and pause-burst types (n=24), using linear discriminant analysis 172 

applied on the first two principal components accrued from a principle component analysis 173 

(PCA) of the discharge patterns (Fig. 3a,c, see Materials and Methods). The response of a 174 

typical “burst” and a “pause” unit was characterized by a saccade-related increase or 175 

decrease in firing rates, whereas “burst-pause” and “pause-burst” units exhibited both types 176 

of changes, yet in opposite succession.  177 

Pooling the responses of all SS units within each category, separately for the 178 

aforementioned PV bins, we obtained a clear linear relationship between the firing rate 179 

extremes (maximum discharge in units with burst components, minimal discharge in units 180 

with pause component) and eye velocity for all four SS categories (Fig. 3d-g and Fig. 3h-k). 181 

To capture saccade duration-related changes in SS firing, we relied on the timing of the first 182 

discharge rate extreme. As summarized in Fig. 3l-o, it shifted to later times in burst-pause 183 

and pause-burst units, while showing the same non-significant tendencies in the other two 184 

categories. Hence, one might conclude that the SS discharge of PCs in our data set 185 

encoded both movement velocity13 and duration12.  186 

 187 

Identifying manifolds from pseudo-populations of MFs and PCs to unveil multi-188 

dimensional coding of eye movements  189 

However, there is a necessary caveat. Individual units were recorded in separate sessions. 190 

As the trial number varied between sessions and also the behavioral state of a monkey 191 

would hardly have been constant over sessions, we cannot exclude that particular velocity 192 

bins in our analysis might have been biased by particular sessions, associated with distinct 193 

states. Therefore, testing the influence of PV at the population level might be confounded by 194 

a potential influence of behavioral state variables, such as movement vigor left uncontrolled. 195 

In order to circumvent this potential confound of kinematic dependencies of MF and SSs of 196 

PC units in our analysis, we resorted to a computational model that predicted the firing rate 197 

of individual MFs and PC-SSs based on a linear combination of a kinematics-independent 198 
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component, namely the mean firing rate of a unit, and a PV- and/or duration-based 199 

modulation as added kinematics-dependent components (see Materials and Methods, 200 

Equation 1). Finally, by combining the linear models of individual units, we obtained a 201 

"pseudo-population" of MFs and PCs (for illustration, using only PV as the kinematic-202 

dependent parameter, see Supplementary fig. 3 and Materials and Methods for more 203 

details) in which virtually every unit's contribution to the population response was equal for 204 

any given PV bin as if all units had been recorded simultaneously during an experimental 205 

session22.  206 

The population responses computed from the pseudo-population model of MFs predicted the 207 

actual peak firing rate and duration of the population burst discharge with high accuracy 208 

(Supplementary fig. 3e). On the other hand, the pseudo-population model for PC-SSs also 209 

predicted the same quantities significantly, but less well, in particular the burst duration 210 

(Supplementary fig. 3g). Note that the quality of the prediction did not improve substantially 211 

by considering both parameters (i.e., PV and duration) or only PV (see Supplementary fig 212 

3e,g and supplementary methods). This is expected, since, for maintenance of endpoint 213 

precision, a change of one kinematic parameter must be compensated by a coupled change 214 

of the other. Therefore, in most cases, we used the PV-only model to probe the effects of the 215 

compensatory duration change correlated to PV change as in Fig. 2,3. However, the PV and 216 

duration-based models were useful for investigating the effects of the residual, uncorrelated 217 

changes in PV and duration (see below). The relatively poor prediction provided by the 218 

pseudo-population of PC-SSs might be affected by a much larger variability of the 219 

kinematics predictions of the individual models, reflected in higher standard errors of 220 

population averages of kinematics-independent and kinematics-dependent components 221 

(Supplementary fig. 3c, bottom panels). A possible source of the high unit-to-unit variability 222 

could be the mixing of SS responses of individual PCs, each preferring a specific direction of 223 

retinal error. In fact, it has been shown that the conventional saccade-related SS population 224 

averages exhibit higher firing rates if the saccades considered are made in a direction that is 225 

opposite to the preferred direction of CSs, the latter the direction associated with the highest 226 

probability of observing CSs (CS-ON direction)13. Hence, could the performance of the PC-227 

SS pseudo-population kinematics prediction be improved by grouping individual PC-SS 228 

responses into two pools that share the preference for error direction, i.e., left and right error, 229 

respectively? Indeed, reorganizing our PC data based on CS error-tuning, approximated by 230 

deciding whether left- or rightward errors evoked larger CS firing rates, led to a clearer 231 

saccade-related burst around the time of the saccade in the CS-OFF direction, whose peak 232 

clearly modulated with PV (Supplementary fig. 4a,b), unlike for saccades made in the CS-233 

ON direction (Supplementary fig. 4c,d). However, despite controlling for preferred error 234 
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directions leading to qualitative differences in the CS-OFF direction, the performance of the 235 

SS model in predicting the actual firing rates and burst duration did not improve, as 236 

compared to the performance of the SS pseudo-population response (Supplementary fig. 237 

3e) obtained by ignoring the CS-ON and CS-OFF directions, possibly due to prevailing large 238 

heterogeneity in SS responses. This is further supported by the results of the PCA of PV-239 

dependent components, where a large number of dimensions were required in the case of 240 

PCs (d=10), as compared to MFs (d=4), to explain ~78% of the total cell-to-cell variability 241 

(Supplementary fig. 4e,f).  242 

In an attempt to mitigate the impact of this apparent large cell-to-cell variability, we referred 243 

to the dimensionally reduced representations of the pseudo-population responses of MFs 244 

and PC-SSs. To this end, we first ran a PCA on the movement parameter-independent 245 

components of the individual MFs and PC-SS firing rate predictions provided by the model to 246 

identify the number of dimensions explaining a majority of the total cell-to-cell variability. 247 

Then, we computed how each of these dimensions encodes movement parameters (PV 248 

or/and duration) using the matrix perturbation theory (see Methods, Equation 2). For MFs, in 249 

the first step, we found two dimensions that explained 87.6% of the total cell-to-cell variability 250 

(Supplementary fig. 5b), where the first dimension represented a burst modulation 251 

(Supplementary fig. 5c, top), similar to the population average firing whose burst size and 252 

duration were modulated by PV. The second dimension (Supplementary fig. 5c, bottom) 253 

represented changes in firing rate that varied more slowly before and after the burst 254 

response (observed in Dimension 1) in a biphasic manner, indicating an anti-correlation 255 

between the pre-and post-burst firing. However, in PCs, capturing 92.3% of the total cell-to-256 

cell variability required four dimensions, where the first two dimensions represented simple 257 

monophasic (i.e., bursting or pausing) and biphasic (burst-pause or pause-burst) firing 258 

patterns, respectively, whereas the remaining two dimensions exhibited more complex 259 

features (Supplementary fig. 5f,g).  260 

Plotting these reduced dimensions as a function of each other, we identified the 2D 261 

manifolds of the pseudo-population of MFs and PCs for different values of PV. While both 262 

MF and PC manifolds appeared as limit cycle-like rotating trajectories, they exhibited crucial 263 

differences from each other (Supplementary fig. 5d,h and Fig. 4). For example, unlike the 264 

MF manifolds that were characterized by an overall PV-related increase in their size almost 265 

symmetrically around the saccade onsets, the PC-SS manifolds based on the first two 266 

dimensions showed no significant changes before saccade onsets, as depicted by the strong 267 

overlapping of the manifolds (Fig. 4a-e). However, the PC manifolds for the third and fourth 268 

dimensions showed clear differences already before saccade onsets. Therefore, PC 269 

manifolds based on different dimensions can selectively encode specific phases of a 270 
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movement, preparation and execution, in the same manner as the "null-space" in cortical 271 

manifolds for the preparation of reaching arm movements18,19, while the MF manifolds lacked 272 

this information suitable to control specific movement phases. 273 

Furthermore, PC manifolds also carried a more disentangled representation of the two 274 

saccade parameters— PV and duration, as compared to MFs. To arrive at this conclusion, 275 

we estimated MF and PC-SS firing rate models based on both PV and duration by 276 

leveraging the residual variabilities in these parameters, apart from their correlated ones. 277 

Then, we independently manipulated these two kinematic parameters (varying one while 278 

keeping the other fixed) and observed concomitant changes in MF manifolds—a change in 279 

PV (Fig. 4f) modulated the manifold size (i.e., geometry) and also the time-dependence (i.e., 280 

rotation dynamics), the latter still reflecting a small remanence of a correlated duration 281 

change (Fig. 4g,h). Manipulating the saccade duration (Fig. 4k) also modified the MF 282 

manifolds (Fig. 4l,m) in a manner quite similar to the one resulting from correlated changes 283 

in PV and duration (Fig. 4a), with PV being the only kinematic parameter in the firing rate 284 

model. In contrast, PV (Fig. 4i,j) and saccade duration (Fig. 4n,o) varied the PC manifold 285 

size and rotation dynamics quite differently. These effects are captured by the slope angles 286 

of curves obtained by plotting the average rotation speed as a function of manifold size. 287 

Therefore, while the slope angles did not differ much in the case of MFs (Fig. 4p), the 288 

differences were much stronger in the case of PCs, indicating significantly more decorrelated 289 

encoding of the two kinematic parameters than MFs (Fig. 5q). 290 

Centrifugal saccades could be either leftwards or rightwards, but, notably, we found that our 291 

results did not depend on saccade direction. To test the potential influence of saccade 292 

direction on MF and PC manifolds, we performed the same analysis on MF and PC data 293 

separated by leftward and rightward saccades. For MFs, the left and right groups showed 294 

qualitatively identical results (Supplementary fig. 6a,b). The canonical correlation analysis 295 

(CCA)23,27 yielded high canonical correlations between the MF manifolds for leftward and 296 

rightward saccades, proving that they were nearly identical (Supplementary fig. 6c). In the 297 

PC case, the size of the manifold was much larger for saccades in the rightward direction as 298 

compared to leftward saccades (Supplementary fig. 6d,e). Since around 80% of the 299 

recorded PCs had their CS-OFF in the rightward direction, the direction-dependent 300 

differences in the size of these manifolds are not surprising and only confirm the gain-field 301 

encoding of SSs13 (Supplementary fig. 6g,h,i). Nevertheless, the shape of these manifolds 302 

was highly similar (Supplementary fig. 6f). Therefore, MFs and PCs had qualitatively 303 

identical manifold structures regardless of the eye movement direction. 304 

 305 
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PC manifolds reveal the structure of plasticity triggered by sensorimotor errors 306 

In the prevailing theory for cerebellum-dependent sensorimotor learning, the climbing fiber-307 

driven CSs convey motor error-related information to prompt parametric adjustments for 308 

correcting future motor behavior, thereby acting as "teacher signals"28-30. Therefore, motor 309 

learning has been attributed to these CSs, serving as a proxy of sensory feedback on motor 310 

errors that, when coincident with the parallel fiber inputs, modify the PC output by inducing a 311 

long-term depression (LTD) at the parallel fiber-PC synapses31.  312 

To understand how the occurrence of CS impacts the multi-dimensional encoding of eye 313 

movements, we investigated how CSs fired during the post-saccadic period of 50-175 ms in 314 

the nth trial (‘CS-trial’), reflecting retinal errors arising from natural end-point variability in 315 

saccades24, modulated the PC-SS manifolds of the subsequent, n+1th trials (‘Post-CS trial’). 316 

In our paradigm, errors occurred mainly when the primary saccade undershot (outward 317 

error) or overshot (inward error) the target location (Fig. 5a). Depending on the direction of 318 

the primary saccade, these inward and outward errors could occur in both left and right 319 

directions (Fig. 1a). Therefore, depending on the CS-ON direction of individual PCs, the 320 

inward and outward errors will elicit CSs with high probability in those PCs whose CS-ON 321 

directions are aligned with the error vector (Fig. 5a, red circles), as compared to those cases 322 

in which the CS-ON direction and the error vector do not match13,15,24,32,33 (Fig. 5a, gray 323 

circles). In other words, for any retinal error in a particular trial, there will always be a 324 

subpopulation of PCs whose CS-ON direction matches the error vector, leading to CS-trials, 325 

and in others not, leading to ‘No-CS’ trials. For a given error in the nth trial, we looked at its 326 

influence on the entire population of PCs in our data set and the consequences for the SS 327 

manifolds of the n+1th trials, rather than restricting our analysis to only CS-ON units (see 328 

Supplementary fig. 7a), assuming that the behavior is based on the concerted action of 329 

both subpopulations. To this end, we combined trials following CS-trials from the pool of CS-330 

ON PCs (i.e., Post-CS trials) and ‘No-CS’ trials from CS-OFF PCs (‘Post-No CS trials’), 331 

separately for outward (Fig. 5b, left) and inward errors (Fig. 5b, right). Importantly, we 332 

included all ‘CS-trials’ from CS-ON PCs (regardless of whether the actual error occurred or 333 

not), assuming that every CS in the error time window of 50-175 ms after the saccade was 334 

fired to report an error (referred to as simulated error trials in Fig. 5).  335 

We found that CS firing associated with inward and outward errors modified the resulting 336 

PC-SS manifolds, based on PV as the kinematic-dependent parameter, differently (Fig. 5c, 337 

top). Relative to the ‘Post-No-CS’ trials, the normalized slope angle, capturing changes in 338 

PV-dependent manifold size relative to the rotation speed, profoundly increased in the post-339 

inward error trials but decreased, albeit only slightly, for post-outward error trials (Fig. 5c, 340 

bottom). Could it be that this result may be influenced by the actual error-direction, rather 341 
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than error-type? Our analysis comparing inward and outward errors made in the same 342 

direction revealed that the PC-SS manifolds of subsequent trials maintained their specificity 343 

for inward and outward errors, even if their vectors pointed in the same direction 344 

(Supplementary fig. 7b-d).  Given that the PC manifold size and speed of the latent 345 

dynamics encode PV and saccade duration almost independently (Fig. 4p,q), this result 346 

suggested that CSs associated with inward and outward errors, potentially engaging the 347 

same population of PCs, tuned the population firing more towards duration coding in post-348 

inward error trials (more compensatory duration change given PV) and PV coding in post-349 

outward error trials (more compensatory PV change given duration).  350 

Therefore, one would expect to see a reduction in subsequent saccade’s duration if a CS 351 

signal reporting an inward error, caused by an overshooting saccade, in the previous trial 352 

was present. On the other hand, in case of an outward error (i.e., undershooting saccade), 353 

CSs should trigger an increase in the PV of the next trial to reduce endpoint error. Indeed, 354 

this is what we found. When comparing the movement velocity of saccades accompanied by 355 

a CS to post-CS saccades, we observed that outward errors (undershooting) were corrected 356 

mainly through increasing the PV of the subsequent saccade with a slight increase in the 357 

velocity at the end of the saccade (Fig. 5d, left). In contrast, inward error-encoding-CSs 358 

prompted a significant decrease in the duration of the subsequent saccade, reflected by the 359 

narrowing of its velocity profile (Fig. 5d, right).  360 

 361 

Linear feed-forward network model shows high-dimensional transformations by the 362 

cerebellar cortex 363 

We demonstrated that, despite the similar limit-cycle-like properties of MF and PC manifolds, 364 

they also exhibited crucial differences in their encoding of kinematic parameters. The 365 

climbing fiber-driven CSs clearly explain some of the differences between the two (Fig. 5, 366 

Supplementary fig. 6). However, additional inputs to PCs arriving from interneurons may 367 

also play a significant role.  368 

Yet, we found that a linear feed-forward network (LFFN) from MFs to PCs34 (Fig. 6a) 369 

predicted the kinematics-independent and dependent activity components of all individual 370 

PCs with high fidelity (R2=0.984±0.018, mean±SD) (Fig. 6b,c), which allowed us to 371 

successfully reproduce the PC-SS manifolds from the MF activity (Fig. 6d; see also 372 

Supplementary fig. 8a,b,c). But how is it possible that already a simple linear 373 

transformation can explain the many differences between MF and PC-SS manifolds? This 374 

paradox led us to examine how many dimensions of MF (dMF) firing are necessary to make 375 

good predictions of the PC manifold. 376 
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We addressed this question by two approaches, both leading to the conclusion that the 377 

number of dimensions that need to be considered while trying to account for the properties 378 

of MF activity is definitely much smaller than the maximum number of dimensions, dMF=116 379 

(corresponding to the number of MFs in our data), but significantly higher than two or four, 380 

the dimensionalities capturing a major chunk of cell-to-cell variability in MFs and PCs, 381 

respectively (Supplementary fig. 5a-h). In the first approach, we first created the dMF-382 

dimensional pseudo-population firing of MFs (Fig. 6e, grey circles) using the dMF-383 

dimensional MF manifold (red circles), then generated the prediction of individual PC-SS 384 

firings using the LFFN (black circles), and finally identified the predicted PC-SS manifold 385 

(green circles). The PC-SS manifold (in the first two dimensions) was relatively poorly 386 

predicted (R2<0.9) when dMF<9 (Fig. 6f,g). In the second approach (Supplementary fig. 387 

8d), we directly tested whether the prediction of individual PC firings requires high 388 

dimensional components in MF firings by another LFFN model, where MFs and PCs 389 

communicate through a dimensionally reduced submanifold, called the ‘communication 390 

subspace’35. This model also showed that a good prediction of individual PC responses 391 

requires a high-dimensional (d>15) communication subspace (Supplementary fig. 8d,e). 392 

Note that, the dimensions higher than four (i.e., d>4) explain only 4.3% of the total MF-to-MF 393 

variance together due to rapid decay (∝1/d3.23) in the explained variance (Supplementary 394 

fig. 5b). Therefore, the properties of PC-SS manifolds emerge as a consequence of a 395 

transformation by the cerebellar cortical circuit that amplifies those small variabilities in MF 396 

inputs. 397 

 398 

Discussion 399 

The present study demonstrated the presence of multi-dimensional manifolds, latent in the 400 

activities of the cerebellar input and output, MFs and PCs respectively, and how their 401 

geometric and dynamic features encode key kinematic eye movement parameters. Climbing 402 

fiber-driven CSs, signaling error-related information to PCs, modify the PC manifolds, 403 

differentially depending not only on the direction of error but also the type of error, which 404 

predicts how the subsequent eye movements are corrected. Finally, we showed that the 405 

cerebellar cortical circuit amplifies seemingly insignificant variabilities in the MF activity to 406 

generate highly selective PC outputs. 407 

The fast and repetitive nature of our paradigm induced cognitive fatigue, a gradual decline in 408 

the speed of saccades, which was compensated by duration upregulation8. However, on top 409 

of fatigue, we also observed natural trial-to-trial changes in the saccade velocity requiring 410 

rapid duration adjustments in order to guarantee endpoint precision. Therefore, the same 411 

velocity-duration trade-off mechanism that maintained movement accuracy across hundreds 412 
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of trials within a session also ensured reduced endpoint variability (motor noise) on a trial-to-413 

trial basis. The residual motor noise led to tiny, albeit specific error types, directed inward 414 

and outward respectively, depending on whether the eye movements were too large or fell 415 

short relative to the target location.  416 

Depending on the firing pattern of individual MFs and SSs of PC units, we could broadly 417 

classify them into different categories by using strict statistical criteria to compute population 418 

averages of each category13,26,36. Yet, in our analysis, these units appeared continuous in 419 

their distribution (Supplementary fig. 2) rather than forming discrete clusters, due to a large 420 

cell-to-cell variability exceeding between-category distances. Therefore, one may question 421 

the reliability of the classify-and-average approach in testing the encoding of specific 422 

kinematic parameters as it may be prone to the risk of sampling bias. This problem gets 423 

even worse if one additionally considers the large between-session variability in eye 424 

movements also influencing the firing rates of individual units. To avoid exactly these biases, 425 

we estimated the firing rates of all individual units, based on a firing rate model that varies 426 

linearly with key kinematic parameters, to obtain a “pseudo-population” of MFs and PC-SSs. 427 

This allowed us to identify multi-dimensional, limit cycle-like manifolds of neuronal activity 428 

from these pseudo-populations capturing a significant proportion of cell-to-cell variability22.  429 

PC discharge, the output of the cerebellar cortex, is only a few synapses away from the final 430 

stage motor neurons. Therefore, moving up the cerebellar circuitry, one would expect the PC 431 

signals to be far more refined and informative about the movements than the signals at 432 

earlier stages, e.g., at the level of MF afferents. At first glance, our results from the 433 

population analysis seemed to contradict this expectation as the MF pseudo-population 434 

exhibits a much more precise encoding of relevant kinematic parameters while PC-SS 435 

pseudo-population responses are sloppy and contaminated by a large heterogeneity in their 436 

firing patterns. However, a very different perspective is opened if one resorts to the low-437 

dimensional pseudo-population manifolds that reveal the hidden dynamics of PC-SS activity 438 

for the flexible control of key movement parameters like velocity and duration in a movement 439 

phase specific manner. Furthermore, the PC manifolds carried significantly more 440 

disentangled representations of movements than the MF manifolds. Unlike MFs, the PC-SS 441 

manifolds exhibited distinct geometric and dynamical properties related to the two specific 442 

kinematic parameters, velocity and duration. This conspicuous difference between the MF 443 

and the PC-SS manifolds indicates a highly nontrivial transformation by the network.  444 

Where do these differences stem from? Notably, our simple model, LFFN, simulating the 445 

MF-to-PC pathway could accurately explain the MF-to-PC transformation at the firing rate 446 

and manifold level, but only if the high dimensional components in the MF inputs, 447 

representing a tiny fraction (<5%) of the total MF-to-MF variability, were preserved. This 448 

result suggests that a disentangled movement encoding at the PC level emerges through 449 
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substantial amplification of those seemingly insignificant variability of MF responses by the 450 

cerebellar network. Highly correlated activity, resulting in an apparently small dimensionality, 451 

has been widely observed in work on the cerebellar input layer37-39 (but see also ref.40). We 452 

found the same in our MF data, but our analysis together with the PC data suggests that 453 

enhancing small input variabilities is a fundamental information processing property of the 454 

cerebellar network. Furthermore, together with the finding that serial single-unit recordings 455 

are sufficient to generate reliable MF and PC manifolds, the prediction power of the LFFN 456 

model implies that MFs should use asynchronous firing rate coding. 457 

PCs are also influenced by the direct climbing fiber pathway, imparting plastic changes in 458 

their activity via CSs. Indeed, we found that CSs modulated the geometry and dynamics of 459 

the PC-SS manifolds, on a trial-to-trial basis, in an error-type dependent manner, predicting 460 

selective post-CS parametric adjustments of eye movements. The forced error-based short-461 

term saccadic adaptation is similarly error-type dependent6, which supports that PCs, by 462 

duration coding, control movements flexibly in response to external and internal (fatigue) 463 

changes8. On the other hand, recent studies have demonstrated the effects of CS-driven 464 

plasticity on the movement velocity, thereby emphasizing velocity-coding by PCs13,15. We 465 

demonstrated that those two mechanisms coexist and can be interwoven to exhibit complex 466 

forms of population-level plasticity. Therefore, the multidimensional nature of cerebellar 467 

computations is necessary for the flexible, context-dependent control of movements and 468 

their rapid adaptation. 469 

The success of the linear model in describing the amplification of the variance as a 470 

consequence of the transformation of the MF input—not considering climbing fiber activity—471 

indicates that the amplification of variance is independent of input from the inferior olive. 472 

However, this amplification is undoubtedly the basis allowing the climbing fiber system to 473 

select those chunks of information needed to optimize the movement.       474 

  475 

 Materials and methods 476 

Animals, preparation, and surgical procedures  477 

Two healthy male rhesus macaques (Macaca mulatta; monkey K and monkey E, age: 10 478 

years and 8 years, respectively), purchased from the German Primate Center in Göttingen, 479 

were used for the purpose of this study. All data presented in this study were collected from 480 

these two animals using procedures that strictly adhered to the rules defined by the German 481 

as well as the European law and guidelines that were approved by the local authority 482 

(Regierungspräsidium Tübingen, veterinary license N7/18 and N4/14) and National Institutes 483 

of Health’s Guide for the Care and Use of Laboratory Animals. All training, experimental and 484 

surgical procedures were supervised by the veterinary service of Tübingen University.     485 
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As a first step, the animals were subjected to chair training which began in the animal facility 486 

where animals were encouraged to voluntarily enter a customized mobile chair for the first 487 

few weeks following which they were transported to the experimental area where they were 488 

gradually acclimatized to the new environment. To proceed with experimental training, it was 489 

necessary to painlessly immobilize the head in order to record eye movements reliably. 490 

Therefore, once the animals felt fully comfortable in the experimental setups, the first major 491 

surgical procedure of installing the foundations of cranial implants was performed. During 492 

this procedure, the scalp was cut open and these foundations, made out of titanium, were 493 

fixed to the skull using titanium bone screws. The scalp was then closed with the help of 494 

sutures under which the foundations were allowed to rest and stabilize for a minimum period 495 

of 3-4 months to ensure their durability and also full recovery of the animals. After this 496 

period, the second surgical procedure was performed in which the scalp was opened just 497 

enough to allow a titanium-based hexagonal tube-shaped head post to be attached to the 498 

base of the implanted head holder. Since this procedure was rather quick, the surgery was 499 

also accompanied by implantation of magnetic scleral search coils41,42 to record high-500 

precision eye movements. After 2-3 weeks of recovery, monkeys were trained further on the 501 

behavioral task until their performance was accurate enough to consider neural recordings. 502 

To this end, the final surgical procedure was performed in which the upper part of the 503 

cylindrical titanium recording chamber (tilting backward by an angle of 30° with respect to 504 

the frontal plane, right above the midline of the cerebellum) was attached to the already 505 

implanted chamber foundation. A small area of the skull within the confines of the chamber 506 

was removed to allow electrode access to our region of interest, the oculomotor vermis 507 

(OMV, lobules VIC/VIIA). The position and orientation of the chamber were carefully planned 508 

and confirmed based on pre-and post-surgical MRI, respectively. All surgical procedures 509 

were performed under aseptic conditions using general anesthesia in which all vital 510 

physiological parameters (blood pressure, body temperature, heart rate, pO2 and pCO2) 511 

were closely monitored43. After surgery, analgesics (buprenorphine) were delivered to 512 

ensure painless recovery which was monitored using regular ethograms under the strict 513 

supervision of animal caretakers and veterinarians.  514 

 515 

Experimental setup and behavioral task 516 

All experiments were performed inside a dark room where monkeys, with their heads fixed, 517 

were seated comfortably in a primate chair placed at a distance of 38 cm in front of a CRT 518 

monitor such that their body axis was aligned to the center of the monitor. All neural and 519 

behavioral data presented in this study were collected during a simple to-and-fro saccade 520 
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task in which monkeys were asked to rapidly shift their eye gaze repeatedly in order to follow 521 

a jumping target that appeared in two fixed locations along the horizontal axis on the monitor 522 

in an alternating manner (Fig. 1a). Before the beginning of each trial, the fixation target (a 523 

red dot of diameter 0.2 deg) appeared at the center of the monitor with an invisible fixation 524 

window of size 2x2 deg centered on it. Only if the monkeys moved their gaze within the 525 

fixation window the trial was initiated. This was followed by a short fixation period ranging 526 

from 400 to 600 ms from trial onset after which the fixation target vanished and, at the same 527 

time, another target (with the same properties as the fixation target) appeared at a new 528 

horizontal location, giving the impression that the target “jumped” centrifugally (Fig. 1a, solid 529 

arrows), i.e., from the center of the screen to this new location. The size (=15 deg) and the 530 

direction (left or right) of the target jump were kept constant within a session. Every target 531 

jump served as a 'go-cue' which prompted the monkey to execute a saccade towards the 532 

new target location within the 2x2 deg fixation window centered on it, in order to receive an 533 

instantaneous reward (water drops) marking the end of a trial. The peripheral target 534 

disappeared approximately 700-900 ms relative to the go-cue, immediately after which the 535 

central fixation dot reappeared indicating the beginning of the next centrifugal trial. In order 536 

to proceed with the next trial, the monkey made a saccade from the peripheral target back to 537 

the central location (i.e., centripetal saccade, see dashed arrows in Fig. 1a). In other words, 538 

the appearance of the central fixation dot served as a go-cue for centripetal saccades, 539 

although these saccades were not rewarded. Depending on the motivation of the monkeys 540 

to perform the task, as well as the duration for which a PC could be kept well isolated, the 541 

number of trials varied in each session (median=307 trials) with each trial lasting for 1200 542 

ms. While the fatigue-inducing fast and repetitive nature of the paradigm allowed us to 543 

capture both trial-by-trial and gradually declining changes in the peak velocity of centrifugal 544 

and centripetal saccades, the natural endpoint variability in saccades, on the other hand, 545 

observed as over-or undershoots resulting in inward (Fig. 1a, see yellow arrows) or outward 546 

errors (Fig. 1a, see green arrows), allowed us to measure the CS's preferred and anti-547 

preferred direction of error for an individual PC. All experimental parameters were designed 548 

and controlled using in‐house Linux-based software, NREC (http://nrec.neurologie.uni-549 

tuebingen.de). 550 

 551 

Electrophysiological recordings, identification of Purkinje cells and mossy fibers in the 552 

oculomotor vermis 553 

All electrophysiological recordings of PCs (n=151) and mossy fibers (n=117) from the OMV 554 

were performed using glass-coated tungsten microelectrodes (impedance: 1-2 MΩ), 555 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 12, 2022. ; https://doi.org/10.1101/2022.01.11.475785doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.11.475785
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 
 

manufactured by Alpha Omega Engineering, Nazareth, Israel. To target the OMV, as 556 

predicted by the MRI scans, the position of electrodes along the rostrocaudal (i.e, Y-axis) 557 

and lateral (i.e, X-axis) axis were manually adjusted with the help of a custom-made 558 

microdrive, temporarily mounted on the recording chamber during each experimental 559 

session. The depth of the electrode was controlled using a modular multi-electrode 560 

manipulator (Electrode Positioning System and Multi-Channel Processor, Alpha Omega 561 

Engineering). The exact location of the OMV was confirmed based on careful inspection of 562 

online audio-visual feedback of the electrode signals, reflecting multi-unit granule cells 563 

activity, that exhibited strong modulations in response to fast eye movements.  564 

For PC recordings, extracellular potentials sampled at 25 KHz were high (300 Hz- 3 KHz) 565 

and low (30 Hz-400 Hz) band-pass filtered to obtain action potentials and LFP signals, 566 

respectively. Individual PC units were identified based on the presence of two types of action 567 

potential signals, high-frequency simple spikes (SSs) and low-frequency complex spikes 568 

(CSs), the latter characterized by a polyphasic wave morphology in the action potential trace 569 

paralleled by large deflections in the LFP signals. The fact that both signals originate from 570 

the same unit was confirmed online by the suppression of SS discharge for 10-20 ms when 571 

aligned to the occurrence of a CS44-46. Although the final characterization of CSs was based 572 

on an offline neural networks approach47, we relied on the performance of Alpha Omega 573 

Engineering´s Multi Spikes Detector for detecting SSs online. 574 

In order to record from mossy fibers (MF) in the granular layer, we adjusted the upper cut-off 575 

frequency of the high band-pass filtered to 5 KHz while keeping the lower cut-off frequency 576 

the same as 300 Hz. The identification of MFs was based on their strong directionally 577 

selective response to saccades, firing up to several hundred spikes per second in the 578 

preferred direction and seldomly in the opposite direction. Unlike the relatively longer 579 

duration SSs (mean duration: 1.5 ms), MF units exhibited much shorter duration (mean 580 

duration: 0.6 ms), mostly mono- and biphasic shaped waveforms while occasionally 581 

exhibiting a negative after-wave16,25,26,48,49. Additionally, MFs exhibited a wide range of inter-582 

spike intervals16 (mean ± sd: 82.7 ± 86 ms) as compared to those of PC SSs (mean ± sd: 583 

19.5 ± 2.6 ms).  584 

 585 

Classification of mossy fiber responses 586 

Unlike the bidirectional SS discharge of PCs, well-isolated MF units exhibited a strong and 587 

clear preference for saccades made in one of the two horizontal directions. This property 588 

allowed us to pre-determine the preferred direction of the MF unit under investigation and 589 

use that direction as the rewarded direction in which the centrifugal saccades were made. A 590 
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majority (115 out of 117) MF units investigated in this study exhibited a much stronger 591 

(“burst-type”) discharge during the peri-saccadic period in their preferred direction 592 

(=centrifugal direction) as compared to the opposite, non-preferred direction (=centripetal 593 

direction) in which very few or almost no spikes fired, resulting in weak modulations. 594 

Therefore, MF responses only in the centrifugal direction were considered for classification 595 

and all analyses. In the other 2 units, we did not observe a peri-saccadic burst  596 

Overall, we observed two main types of burst modulations: the eye position-related tonic 597 

discharge preceded by a saccade-related burst, i.e., the ‘burst-tonic’ type, and the saccade-598 

related burst discharges that remained mostly silent outside the peri-saccadic period, i.e., 599 

‘phasic’ type. In order to identify the ‘burst-tonic’ responses, we first identified those units in 600 

which the difference between the average firing rate in the post-saccadic period (150 to 250 601 

ms from saccade onset) and the pre-saccadic period (-250 to -150 ms from saccade onset) 602 

was larger than 1.5 x standard deviation (SD) of the average firing rate during the pre-603 

saccadic period. Next, we compared the slope values of the linear regression fits applied on 604 

the pre-and post-saccadic firing responses, and only those cases in which no significant 605 

difference between the slopes was observed, were labeled as ‘burst-tonic’ responses (n=24; 606 

Fig. 2a,b; see BT). In other words, if the post-saccadic MF activity was not only larger than 607 

the pre-saccadic activity but also remained elevated after the saccade-related burst 608 

discharge, the unit’s response was classified as a ‘burst-tonic’ type. The ‘phasic bursts’, on 609 

the other hand, were further categorized into ‘long-lead burst’ types and ‘short-lead burst’ 610 

types, based on the timing of each MF unit’s burst modulation onset relative to saccade 611 

onset26. For this, modulation onsets were detected whenever the averaged MF response 612 

crossed a threshold (defined as 3 x SD of baseline activity during -400 to -200 ms from 613 

saccade onset). To this end, all MF units in which the burst modulation led the saccade 614 

onset by more than 15 ms were labeled as ‘long-lead burst’ types (n=60; Fig. 2a,b; see 615 

LLB), whereas those that started firing less than 15 ms before the saccade onset were 616 

classified as ‘short-lead burst’ (SLB) types (n=27; Fig. 2a,b; see SLB). The value 15 ms was 617 

chosen, based on the observed SD value of modulation onsets of ‘long-lead burst’ MF units 618 

identified by Ohstuka and Noda26. Given that the timing of the detected modulation onsets 619 

was a crucial factor in separating these two categories, in addition to the clarity of their firing 620 

patterns, spike data were not smoothened using a Gaussian kernel, as in the case of SSs. 621 

Based on this criteria, 4 units (in addition to 2 non-bursting units) could not be categorized 622 

into any of the three categories as in those cases the onset of burst modulation occurred 623 

after (i.e., lagged) saccade onset.   624 

 625 

 626 
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Classification of simple spike responses 627 

SS responses of individual PCs were broadly categorized into 4 types—burst, pause, burst-628 

pause and pause-burst—based on their pattern of firing during the perisaccadic period of -50 629 

to 150 ms from the end of primary saccades (note: all primary saccades between 13 to 17 630 

degrees of amplitude were detected using a velocity threshold of 30 deg/s). To this end, we 631 

estimated the mean spike density function of the SS discharge of individual PCs by first 632 

convolving the time of each SS event detected within a trial with a normalized Gaussian 633 

kernel (sd=5 ms) and then averaging across all trials.  634 

Given that centrifugal and centripetal saccades were made horizontally in opposite 635 

directions, their SS firing patterns could be entirely different. For instance, a PC could 636 

demonstrate a sharp peri-saccadic increase (or burst) in SS firing for a rightward centripetal 637 

saccade, whereas in the opposite direction (i.e., left centrifugal) the same PC could exhibit a 638 

sudden drop in SS firing (or pause). Therefore, each PC's SS response was characterized 639 

by two response profiles (one for each tested direction) and both were considered 640 

independently, as separate units (n=302; 151 PCs x 2 directions), in our classification 641 

procedure described below.  642 

As the first step, we used threshold-based criteria to label each SS response with one of the 643 

four types based on the polarity of the response modulation. For this, we identified all 644 

maximum (peaks) and minimum (troughs) SS firing rates (detected using the MATLAB 645 

function 'findpeaks', minimum peak distance = 10 ms, minimum peak prominence = 2 646 

spikes/s) during the peri-saccadic period. The modulation was considered significant if the 647 

peaks and troughs crossed an upper and a lower threshold (defined as ± 5 x s.d of baseline 648 

activity during the -250 to -100 ms from saccade onset), respectively. The SS response was 649 

classified as a 'burst' or a 'pause' type if we encountered only a monophasic increase or 650 

decrease in SS firing during the peri-saccadic period. Responses were categorized into 651 

'burst-pause' or a 'pause-burst' types if the first modulation in the biphasic responses 652 

showed an increase (followed by decrease) or a decrease (followed by increase) in SS firing, 653 

respectively. Next, we ran a principal component analysis (PCA) on the 302 SS responses 654 

(CF and CP combined) to obtain a 2D plot (Fig. 3a) of their first two principal components 655 

(explaining 62.2% of the total variance) that seemed to appear as overlapping clusters 656 

organized in a circular pattern, centered around the origin. For better discrimination of these 657 

clusters, we relied on the SS response labels (identified in the first step) to obtain decision 658 

boundaries by resorting to linear discriminant analysis (LDA). As shown in Fig. 3a (dashed 659 

lines), the first decision boundary separated the 'burst' (blue cluster) from 'burst-pause' 660 

(green cluster) types, as well as the 'pause' (orange cluster) from the 'pause-burst' (red 661 
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cluster) types. On the other hand, the second decision boundary separated the 'burst' from 662 

'pause-burst' types, and also the 'pause' from the 'burst-pause' types. As compared to the 663 

threshold-based labeling of these response patterns, the LDA approach was clearly better in 664 

separating these response types (Supplementary fig. 2c,d). 665 

 666 

Rate models for individual MFs and PCs  667 

We constructed the firing rate model of individual MFs and PCs by using a linear 668 

combination of kinematics-independent and kinematics-dependent components. Given the 669 

baseline-subtracted dynamic firing rate of the ith unit, Ri(t,z), where t is the time from saccade 670 

onset and z is a vector of the specific movement kinematic parameter (e.g., z = [PV] or 671 

[duration], or a pair of kinematic parameters, i.e., z = [PV, duration]), we modeled the firing 672 

rate vector of a “pseudo-population” containing N number of neurons, R(t,z) = [R1(t,z); 673 

R2(t,z);…; RN(t,z)], as                                                       674 

���, �� � ����� � 	 
�
�

�� 
����          �1� 

where R0 and ��R are the kinematics-independent and dependent part, respectively, and 675 


�=z-z0 is the deviation of z from the mean value of z, z0. We used the multivariate linear 676 

regression of the firing rate data with respect to the kinematic parameters (Supplementary 677 

fig. 3a) for each unit to find the model components for all unit data (Supplementary fig. 678 

3b,c). See supplementary methods for details. 679 

 680 

Estimation of manifolds 681 

To find the dimensionally reduced approximation of the the population rate model, R(t,z) in 682 

Equation 1, given by R0 and ∂zR, we followed the following steps: First, R0 and ∂zR were 683 

converted to (N,T) matrices by discretizing time where T is a length in time in msec. We 684 

performed PCA on R0, which is the firing rates at z = z0. We obtained a dimensionally 685 

reduced representation, a manifold, PK such that R0 ≈ WPK where W is some (N,K) 686 

dimensional matrix (K<N). We determined K by finding the number of dimensions capturing 687 

>85% of the total variability and confirmed it by the cross-validation analysis. Then, we 688 

estimated the linear approximation of how the kinematics-dependent component, ∂zR, would 689 

change the PCA result of the firing rates if z deviates from z0. Our analytic estimation 690 

showed that it is enough to consider a change in PK as, 691 
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                  �� � �� � 	 
� ����
�

,           ���� � ������� � ��� ���� ���� � ����          �2� 

to predict the PCA results of R(t,z) with sufficient accuracy. ∂zW is a matrix obtained in the 692 

second step and describes how the higher dimensional (>K) components move into the K-693 

dimensional subspace when kinematic parameters change and † represents conjugate 694 

transpose. See supplementary methods for details. 695 

 696 

Analysis of manifolds 697 

Given a manifold of MFs or PCs given movement kinematics, we computed the manifold 698 

size and rotation speed in 2D (Fig. 4-5). We defined the manifold size by an enclosed area 699 

within the circular trajectory in 2D, which is computed by numerically integrating the areas of 700 

triangles defined by two neighboring data points and the origin (0,0). For the rotation speed, 701 

we first computed the phase of rotation θ at each data point (x,y) by θ = tan-1(∆y/∆x) where 702 

(∆x, ∆y) = (x-x0, y-y0) and (x0, y0) is a reference point defined by [(maximum of x coordinate 703 

data)/2, 0]. Then, we estimated the time T3/4 from the trial beginning t = -250 ms, where θ ≈ -704 

180° by definition, to the point θ = 90° (rotation of 3/4 cycles), finally finding the average 705 

rotation speed by 270°/T3/4. We summarized how the manifold size and rotation speed vary 706 

with the kinematic parameters by computing the normalized slope angle in the manifold size 707 

and rotation speed plane (Fig. 4p,q and 5c). To do so, we first normalized the manifold size 708 

and rotation speed data for all cases by the standard deviations of the control case, which 709 

was the correlated variation in Fig. 4p,q and post-no-CS case in Fig 5c. The slope angle 710 

was computed in each case in the normalized coordinates. We also performed the 711 

comparison/alignment analysis of multiple manifolds using the canonical correlation 712 

analysis23,27. See supplementary methods for details. 713 

 714 

Linear feed-forward network models 715 

The LFFN models had movement kinematics-independent and dependent components for 716 

output variables (Y, ∂zY) and input (X, ∂zX), such as PC and MF firing rates in Fig. 6a-b. We 717 

assumed that the movement variable z follows the Gaussian distribution and estimated the 718 

weight matrix T to minimize the least-square error, 719 

       ���� � �� � ���� � 	 	 Cov �, �!" ���� � �����. ����� � ������,           �3�
���
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Performances of all the LFFN models were measured by this least-square error. To prevent 720 

overfitting we used the LASSO regression50 where the hyperparameter is chosen by AIC 721 

minimization. For the manifold-transformation LFFN (Fig. 6e), we reused T from the MF-to-722 

PC LFFN model but replaced the input variables by those approximated by the dMF-723 

dimensional MF manifold. The communication subspace model (Supplementary fig. 8d,e) 724 

was obtained by the rank-reduced regression35 with the error function in Equation 3. See 725 

supplementary methods for details. 726 

 727 

Statistical analysis 728 

In most data analyses, we evaluated a mean and SEM by the jackknife resampling except 729 

for two quantities. In testing the prediction of the population-averaged firing rate by models 730 

(Supplementary fig. 3e,g and 4b,d), we separated trials into two equal-sized sets, trained 731 

the model by only one of them (train data), and tested it on the other data set (test data). In 732 

Fig. 6g, we used the bootstrap procedure that randomly sampled the goodness of fit for 733 

individual time points and computed their averages with 500 repetitions to give the bootstrap 734 

mean and SEM. 735 

 736 
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Main figures and legends 868 

 869 

 870 

Figure 1. Repetitive saccade task induces a gradual decline in saccade velocity. a Behavioral task. Monkeys 871 
were trained to make visually guided saccades to targets, either in left or right directions, in a repetitive manner. 872 
Solid arrows represent all center-out (centrifugal) saccades which were rewarded if the eyes landed within the 873 
2x2 deg fixation window (solid and dashed squares). Saccades made back to the central fixation dot, centripetal 874 
saccades (dashed arrows), were not rewarded. Due to natural variability in eye movements, both centrifugal and 875 
centripetal saccades could either overshoot or undershoot the target leading to errors in leftward (orange arrows) 876 
or rightward (green arrows) direction. b Gradual decay of peak velocity (upper panels) in centrifugal (left) and 877 
centripetal (right) saccades (Wilcoxon signed-rank test, centrifugal:  p<0.001, Z=4.4; centripetal: p<0.001, Z=4.4) 878 
is parallel by an increase in saccade duration (middle panels, Wilcoxon signed-rank test, centrifugal: p<0.001, Z= 879 
-3.7; centripetal: p<0.001, Z=-4.8) to stabilize amplitudes (lower panels, Wilcoxon signed-rank test, centrifugal: 880 
p=0.89, Z= -0.1; centripetal: p=0.95, Z=0.1) within a single session. Each dot represents data from a single trial. 881 
Trends in the data are highlighted by fitting second-order polynomial fits (dark yellow lines) to the data. c 882 
Comparison of horizontal eye position and velocity profiles of early (i.e., first 30 trials, centrifugal: dark blue; 883 
centripetal: dark red) and late (i.e., last 30 trials, centrifugal: light blue; centripetal: light red) trials chosen from the 884 
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experimental session in c. d, e, f Population analysis of 117 behavioral sessions. Box plots showing overall 885 
reduction of peak velocity (Wilcoxon signed-rank test, centrifugal:  p<0.001, Z=8.6; centripetal: p<0.001, Z=9.3) in 886 
late trials (lighter colors) as compared to early (darker colors) ones which is compensated by the upregulation of 887 
saccade duration(Wilcoxon signed-rank test, centrifugal & centripetal: p<0.001, Z= -9.3) during the late trials in 888 
order to maintain saccade amplitude around 15 deg (Wilcoxon signed-rank test, centrifugal: p=0.57, Z= 0.6; 889 
centripetal: p=0.01, Z=2.5). Each data point corresponds to the mean value of the early (first 30, dark-colored 890 
circles) and late (last 30, light-colored circles) centrifugal (blue circles) and centripetal saccades (red circles) of 891 
an individual session. Significant differences are highlighted by asterisks. Data are mean±SEM. 892 

 893 
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 905 
 906 
Figure 2. Encoding of saccade kinematics by mossy fibers (MFs). a Raster plots (up) and average firing 907 
histogram (bottom) of a representative burst-tonic (purple), short-lead burst (yellow) and long-lead burst 908 
(turquoise) MF unit. Solid gray lines between upper and lower panels are the mean horizontal eye position traces. 909 
Data are aligned to saccade onset. b Proportion of MF units in each category. c, d, e Population response of 910 
burst-tonic (purple), short-lead burst (yellow) and long-lead burst (turquoise) MFs to high and low velocity 911 
saccades (see insets for average velocity profiles), represented by lighter and darker shades, respectively. f, h, j 912 
Average peak firing rate as a function of saccade peak velocity (bin size=50 deg/s) for each MF category. Burst-913 
tonic (f): p=0.016, R2=0.83; Short-lead burst (h): p=0.005, R2=0.9; Long-lead burst (j): p=0.006, R2=0.9. g, i, k 914 
Average burst offset relative to saccade onset as a function of saccade duration (calculated from velocity bins) for 915 
each MF category. Burst-tonic (g): p=0.008, R2=0.88; Short-lead burst (i): p=0.0005, R2=0.96; Long-lead burst 916 
(k): p=0.0005, R2=0.97. Solid gray lines represent the linear regression fits. Dark and light-colored bins 917 
correspond to the high and low peak velocity bins, respectively, for which population responses in c, d and e are 918 
plotted for comparison. Data are mean±SEM. 919 
 920 
 921 
 922 
 923 
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 924 
 925 
Figure 3. Encoding of saccade kinematics by simple spikes (SSs) of Purkinje cells (PCs). a Scatter plot of the 926 
first two principal components of SS responses. Classification of PCs into four response categories: burst (blue), 927 
pause (orange), burst-pause (green) and pause-burst (red), separated by decision boundaries (dotted black 928 
lines). Each data point corresponds to a PC's SS response in one of the two directions. b, c Saccade onset-929 
aligned average SS responses of exemplary units of the categories (large black circles in a) and the proportion of 930 
units in each category. d, e, f, g SS population response (baseline corrected, mean±SEM) of burst (blue), pause 931 
(orange), burst-pause (green) and pause-burst (red) units to high and low velocity saccades (see insets for 932 
average velocity profiles), represented by lighter and darker shades, respectively. Data are aligned to saccade 933 
onset. h, i, j, k Baseline corrected, average maximum (h, j) and minimum (i,k) firing rates as a function of 934 
saccade peak velocity (bin size=50 deg/s) for each category. Burst (h): p=0.041, R2=0.69; Pause (i): p=0.0065, 935 
R2=0.87; Burst-pause (j), p=0.00078, R2=0.95; Pause-burst (k): p=0.0062, R2=0.87. l, m, n, o Average peak (for 936 
burst and burst-pause units; l, n) and trough (for pause and pause-burst units; m, o) timing relative to saccade 937 
onset as a function of saccade duration (calculated from velocity bins) for each PC category. Burst (l): p=0.065, 938 
R2=0.61; Pause (m): p=0.087, R2=0.56; Burst-pause (n): p=0.00015, R2=0.98; Pause-burst (o): p=0.0059, 939 
R2=0.88. Solid gray lines represent the linear regression fits. Dark and light-colored bins correspond to the high 940 
and low peak velocity bins, respectively, for which population responses in d, e, f and g are plotted. Data are 941 
mean±SEM. 942 
 943 
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 944 
Figure 4. Manifolds identified in MF and PC-SS activity perform multi-dimensional encoding of eye movements. a 945 

Correlated changes in PV and duration when PV is used as the only control parameter. b 2D plot of the first two 946 

dimensions in the MF manifold. Triangles and circles mark the saccade onsets and 250 ms before saccade 947 

onsets, respectively. Arrows show the direction of rotation. c The first two dimensions in b plotted in time. d,e 948 

Same as b,c for PCs. f Isolated changes in saccade PV with the duration kept constant. g,h  Isolated PV-949 

dependent changes in the MF manifold computed from the rate models parametrized by PV but with fixed 950 

duration. i,j Same as g,h for PCs. k Isolated changes in saccade duration with constant PV. l-o Same as g,h and 951 

i,j for duration change. p Left: MF manifold size versus rotation speed along the MF manifold varying with the 952 

correlated (green; a) and independent (orange and blue; f,k) change of PV and duration. Colors are as the color 953 

bars in c,h,m. Right: Slope angle of the lines in Left. In computing the angles, the x- and y-coordinates (manifold 954 

size and rotation speed) are normalized by the standard deviation of the correlated change case. T-val 955 

(Correlated, PV) =17.97; p=1.27x10-35, T-val (PV, Duration) =-30.37; p=2.44x10-57, T-val (Correlated vs Duration) 956 

=-19.18; p=4.46x10-38. q Same as l for PCs. T-val (Correlated, PV) =19.75; p=5.26x10-44, T-val (PV, Duration) =-957 

47.18; p=1.36x10-92, T-val (Correlated vs Duration) =-48.13; p=8.24x10-94. Data are mean±SEM.  958 
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 959 
 960 
Figure 5. Complex spike (CS)-driven plasticity of PC manifolds is error-state dependent and predicts eye 961 
movement change. a Two different types of eye movement errors and CS firing in PCs encoding the errors. Left: 962 
An undershooting eye movement causes an outward error (orange) and CS firing in a population of PCs with the 963 
same CS-ON direction (red) but not in the other, CS-OFF PCs (grey). Right: Same as Left for an overshooting 964 
saccade causing an inward error (cyan). b Left: PC manifolds reflecting the combined influence of outward error-965 
encoding CS firing pattern in PCs (red and grey circles in a, Left) on subsequent trials. Note that, in simulating 966 
error trials by including all CS trials from CS-ON PCs, we assume that PCs are reported an error by CS firing, 967 
irrespective of the actual presence of an error. Right: Same as Left for the inward error. c Top: Manifold size 968 
versus rotation speed after the outward (red) and inward (blue) error-encoding CS-trials, and after no-CS trials 969 
(grey). Brightness represents PV from 500 deg/s (brightest) to 660 deg/s (darkest). Bottom: Comparison of 970 
normalized slope angles for each condition. T-val (No-CS, Outward) =6.38; p=9.96x10-10, T-val (Outward, 971 
Inward)=-29.13; p=3.72x10-64, T-val (No-CS, Inward)=-28.06; p=4.24x10-62. e Top: Average saccade velocity 972 
profiles in the CS (black) and post-CS trials (colored) for the simulated inward (Left) and outward (Right) errors. 973 
For visual clarity, colored lines represent the effect of five CSs in CS-ON cells. Bottom: Average eye velocity 974 
change from the CS to post-CS trials. Data are mean±SEM. *: p<0.05.  975 
 976 
 977 
 978 

 979 
 980 
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 983 

 984 

Figure 6. Linear feed-forward network (LFFN) model from MFs to PCs. a Left: Schematic diagram showing LFFN 985 

for MF-to-PC firing rate transformation. Right: weight matrix computed from the data. b Goodness of fit (R2) for 986 

individual PCs. The horizontal and vertical bar represents the median and from the first to third quantile, 987 

respectively. Colored circles correspond to examples shown in c. c Firing rates of example PCs (black, Top and 988 

Bottom) and LFFN predictions (color). The baselines are subtracted in the PV-independent component (Left). d 989 

LFFN prediction of PC manifolds in Fig. 4d. e Schematic diagram of the LFFN model for MF manifold-to-PC 990 

manifold transformation. f Examples of the predicted PC manifold from e when MF manifold dimension is dMF=2 991 

(Left), 4 (Middle), and 20 (Right). g Goodness of fit for the predicted PC manifold to the data versus the input MF 992 

manifold dimensions dMF. Dots represent examples in f. Data are mean±SEM. 993 
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Supplementary figures and legends 1016 

 1017 

 1018 

Supplementary figure 1. Linear encoding of microsaccades’ kinematics by mossy fibers (MFs). a, b, c 1019 
Population response of burst-tonic (BT, purple), short-lead burst (SL, yellow) and long-lead burst (LL, green) MFs 1020 
to saccades of different peak velocities (PV, see insets for average velocity profiles), represented by different 1021 
shades. d, e, f Average peak firing rate as a function of saccade peak velocity (bin size=20 deg/s) for each MF 1022 
category. Burst-tonic: p=0.012, R2=0.85; Short-lead burst: p=0.01, R2=0.85; Long-lead burst: p=0.001, R2=0.95. 1023 
g, h, i Average burst offset relative to saccade onset as a function of saccade duration (calculated from velocity 1024 
bins) for each MF category. Burst-tonic: p=0.18, R2=0.21; Short-lead burst: p=0.01, R2=0.02; Long-lead burst: 1025 
p=0.22, R2=0.44. Solid gray lines represent the linear regression fits. Dark and light-colored bins correspond to 1026 
the high and low peak velocity bins, respectively, for which population responses in a, b and c are plotted for 1027 
comparison. Data are mean±SEM. 1028 
 1029 
 1030 

 1031 
 1032 
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 1033 

Supplementary figure 2. MF and PC units appear continuous in their distributions. a Coefficients of MFs for the 1034 
first (Left) and second (Right) dimension in the MF manifold. Horizontal bar: median. Vertical bar: Range from the 1035 
first to third quantile. b 2D scatterplot for the coefficients in a. Note a nearly continuous distribution of data points 1036 
with significant overlaps between BT, SL and LL MF types (denoted by colors). C Average firing response of all 1037 
PCs categorized into burst (blue), pause (orange), burst-pause(green) and pause-burst (red) types by threshold-1038 
based labeling (dashed lines) and linear discriminant analysis (LDA). Purple dashed lines indicate the average 1039 
response of those PCs units which could not be classified into any of the four categories by the threshold-based 1040 
method. d 2D scatterplot of the coefficients of first two principal components identified by the PCA for individual 1041 
PC units recorded for centrifugal (CF, circles) and centripetal (CP, triangles) saccades. Dashed lines indicate the 1042 
decision boundaries estimated by the LDA. Colors represent the PC category. Note, the overlap between 1043 
different categories.            1044 
 1045 
 1046 
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 1047 
 1048 

Supplementary figure 3. MF and PC-SS linear firing rate models. a Schematic illustration showing the steps 1049 

involved in the construction of a rate model for individual (MF and PC) units/neurons using PV as the control 1050 

kinematic parameter for the model. From the time-dependent firing rate estimations for individual trials of a given 1051 

unit (Left), we create the linear regression model of movement kinematics, such as PV, versus firing rates at each 1052 

time point (Middle). For example, given a linear dependence of MF or PC-SS firing rates on saccade PV, a 1053 

randomly chosen saccade with high PV will be associated with higher firing rates (fast trial, dark green) as 1054 

compared to a low PV saccade (slow trial, light green) and the difference between firing rates will be more 1055 

pronounced during the initial phase of a saccade. In pre- and post-saccadic periods, where fast and slow trials 1056 

can no longer be differentiated by PV, the differences in firing rates will also eventually disappear. There the 1057 

slopes of regression will be much steeper at time points that fall within the peri-saccadic period. From the center 1058 

(mean) and slope of the result, we obtain the kinematics-independent and dependent components (Right). b,c 1059 

Top: Heat-map showing PV-independent (R0) and dependent components (∂PVR) for individual MF (b) and PC 1060 

models (c). Bottom: Population averages. The baseline firing rates are subtracted. d Pseudo-population average 1061 

firing rate for different PVs, computed from MF models in b. A red arrow indicates the point of burst offset. e 1062 

Average peak firing rate (Left) and burst offset time (Right) vs PV from the models and test data. Goodness of fit: 1063 
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R2 = 0.929±0.005 (Left), 0.887±0.026 (Right). f,g Same plots as d,e for PCs. R2 = 0.809±0.023 (Left), 1064 
0.619±0.095 (Right). Note that using the PV-and-duration model did not significantly improve the predictions in 1065 
e,g: peak firing rate vs PV, MFs: R2=0.929 ± 0.005, PCs: R2=0.791 ± 0.017; burst offset vs PV, MFs: R2=0.892 ± 1066 
0.021; PCs: R2=0.702 ± 0.05. Data are mean±SEM.   1067 
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 1113 
 1114 
Supplementary figure 4.  Pseudo-population SS response for CS-ON and CS-OFF population of PCs. a PV-1115 
dependent population average firing rates. The red arrow indicates the point of burst offset. b Average peak firing 1116 
rate (Left) and burst offset time (Right) versus PV from the models and test data in CS-OFF direction. Goodness 1117 
of fit: R2 =0.689±0.051 (Left), 0.433±0.121 (Right). c Same as a, but for CS-ON PCs. d The same plots as b for 1118 
CS-ON PCs. R2 = 0.018±0.033 (Left), 0.092±0.088 (Right). The baseline rates are subtracted in all data. e,f 1119 
Variance explained by each dimension in the PCA analysis of the PV-dependent components of the MF (e) and 1120 
PC-SS models (f). Components with >78% are marked in red. Data are mean±SEM. 1121 
 1122 
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 1123 
 1124 
Supplementary figure 5. Step-by-step procedure for identifying manifolds. a Average of all the PV-independent 1125 
components of all MF units (parameter: PV), which are subjected to PCA in the first step. b The first two principal 1126 
components (or dimensions, red dots) of the PV-independent components explains a dominant fraction of cell-to-1127 
cell variability. c Matrix perturbation analysis (see Methods and Supplementary methods) computes PV-1128 
dependent changes in the first two dimensions, plotted against time. d Limit cycle-like 2D MF manifolds are 1129 
identified by plotting the first two dimensions against each other for different values of PV (shades of green). Note 1130 
how the manifolds increase in size, depicted by the separation of curves, with increments in PV, both before and 1131 
after saccade onset (triangles). Arrows indicate the direction of rotation. e-h Same plots as a-d for PCs. Here, 1132 
four dimensions explain a dominant fraction of cell-to-cell variability. Note how the differences in manifold, in the 1133 
first two dimensions, are limited to periods after saccade onset, whereas in the third and fourth dimensions 1134 
changes also appear before saccade onset. Note that the trajectories for the third and fourth dimensions (h, 1135 
bottom) are plotted only until 50 ms after saccade onset to highlight the changes occurring before saccade onset.   1136 
i Comparison of the eigenvalues from PCA (solid) of the PC-SS data and the prediction of the matrix perturbation 1137 
theory (dotted). j Contribution of the original PCA eigenvectors (column) to their PV-dependent perturbative 1138 
changes in each dimension (row), based on the PC-SS data. The coefficients (color) are normalized by N1/2 1139 
where N=151 is a number of PCs. k Fourth principal component of the PC-SS data when PV=500°/s (black 1140 
solid), approximation only by the direct projection (dotted; see Supplementary Methods), approximation with an 1141 
additional indirect projection from the eigenvector perturbation shown in j (red). i Accuracy of the approximated 1142 
PCA components from the PC-SS data with different PVs, with only the direct projection (Left) and direct and 1143 
indirect projection (Right). 1144 
 1145 
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 1146 
 1147 

Supplementary figure 6. MF and PC-SS firing rate models and manifolds for different eye movement directions. 1148 
a,b 2D plots of the MF manifolds from the left- and right-directed saccades. Insets show the population average 1149 
of the PV-independent components of all MF firing rate models (control parameter: PV). c Canonical correlation 1150 
of each dimension in the MF manifold between the left and right directions. Dotted line represents 1151 
correlation=0.9. d-f Same plots as a-c for PC-SS manifolds. g-h 2D manifolds of PC-SSs separately for a 1152 
population of CS-ON and CS-OFF PCs. Note that the similarity to d-f is due to that the CS-ON direction is mostly 1153 
 1154 
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 1160 
 1161 

Supplementary figure 7. CSs influence the PC-SS manifolds differently depending on the type of error, even if 1162 
the error direction is the same. a Up: Manifolds when outward (left) and inward (right) errors occurred in trial ‘n’ 1163 
accompanied by CS firing in the post-saccadic period. Down: Manifolds in the subsequent trial ‘n+1’. Note how 1164 
the manifolds in trial n+1 change differently for outward and inward errors, similar to those for simulated error 1165 
trials shown in Fig. 5b. Filled triangles indicate the saccade onsets and the black arrows indicate the direction of 1166 
rotation for all manifolds shown. b Manifolds for simulated post-inward and post-outward error trials controlled for 1167 
error direction (i.e., Leftward errors). c Rotation speed as a function of manifold size for simulated post-inward 1168 
(blue), post-outward (orange) and no-CS control (gray) trials. d A comparison of normalized slope angles for 1169 
each condition. Note that the error-type specific changes in manifolds are preserved, i.e., an outward error-1170 
related increase in manifold size (indicated by the relatively flatter slope of the orange curve as compared to No-1171 
CS) and inward-error related change in rotation speed (indicated by relatively steeper slope as compared to the 1172 
No-CS condition), despite the error vector pointing in the same left direction. T-value (No-CS, Outward) =5.93, 1173 
p=9.88x10-9; T-value (Outward, Inward) = -28.28, p=1.59x10-62; T-value (No-CS, Inward) =-23.03, p=1.41x10-51. 1174 
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 1188 
 1189 
Supplementary figure 8. Linear feed-forward network (LFFN) model for MF-to-PC transformation with PV and 1190 
duration dependence. a Weight matrix of the MF-to-PC network model. b Goodness of fit for individual PCs. 1191 
Colored circles represent the examples in c. Horizontal bar: Median. Vertical bar: Range from the first to third 1192 
quantile. c PV-independent (Left), PV- (Middle), and duration-dependent component of example PC-SS rate 1193 
models (black) and prediction by LFFN (color). The baseline rates are subtracted in the PV-independent 1194 
components. d A schematic illustration of the communication subspace model of MF-to-PC transformation. A 1195 
communication subspace, of the dimensionality d, limits the feedforward network using all the dimensions in the 1196 
MF rates to predict PC-SS rates. e Goodness of fit for model prediction of PC-SS rates. Red dots represent d=2, 1197 
4, and 20. Data are mean±SEM. 1198 
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