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27 Abstract

28  Both the environment and our body keep changing dynamically. Hence, ensuring movement
29  precision requires adaptation to multiple demands occurring simultaneously. Here we show
30 that the cerebellum performs the necessary multi-dimensional computations for the flexible
31 control of different movement parameters depending on the prevailing context. This
32  conclusion is based on the identification of a manifold-like activity in both mossy fibers (MF,
33  network input) and Purkinje cells (PC, output), recorded from monkeys performing a saccade
34 task. Unlike MFs, the properties of PC manifolds developed selective representations of
35 individual movement parameters. Error feedback-driven climbing fiber input modulated the
36 PC manifolds to predict specific, error type-dependent changes in subsequent actions.
37  Furthermore, a feed-forward network model that simulated MF-to-PC transformations
38 revealed that amplification and restructuring of the lesser variability in the MF activity is a
39 pivotal circuit mechanism. Therefore, flexible control of movement by the cerebellum

40 crucially depends on its capacity for multi-dimensional computations.

41
42 Main text

43  Short-term motor learning is a specific variant of sensorimotor learning. It provides the ability
44  to rapidly acquire a new control scheme that allows the motor system to cope with the
45 demands of often unexpected or sudden changes in the external environment'. Not only
46  external but also internal changes may require fast adjustments. For instance, the motor
47  plant may change due to muscular fatigue slowing movements. Also, boredom and declining
48  motivation, i.e., cognitive fatigue will reduce the speed of movements. If not too extensive,
49  this slowing of movements—the decline of movement “vigor'—may not necessarily degrade
50 endpoint precision as the speed reduction can be compensated by cranking up the overall
51 movement duration, an adjustment of a distinct parameter that requires the cerebellum®*.
52  However, behavioral studies indicate that parametric control by the cerebellum, deployed to
53  swiftly react to external and internal changes, is not confined to a single kinematic parameter
54 like movement duration. Rather, work on goal-directed eye movements as models of
55  cerebellum-based short-term motor learning have established that adaptation to external and

56 internal changes involves adjustments of several kinematic parameters®>**.

57  How does the cerebellum coordinate the control of multiple kinematic parameters in order to
58 ensure optimal movements? To answer this question, we should know at which stage of the
59  cerebellar neural network the information on the various movement parameters and
60 necessary adjustments is available and how they are transformed within the network.

61  Previous studies on saccadic eye movements have emphasized the control of particular
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62 parameters like movement duration** or velocity’® by the simple spike (SS) discharge of a
63  population of cerebellar Purkinje cells (PCs)—the output currency of cerebellar cortex.
64  Although it has been suggested that SS firing rate and spike time can simultaneously

65 encode the velocity and timing of eye movement at the individual PC level*

, Ultimately
66  unifying these divergent views at the population level is challenged by the large cell-to-cell
67 variability of the discharge of cerebellar neurons. This issue is usually addressed by
68 extensive averaging of all or categorized subsets of neurons in data®'****>'®. However,
69 averaging can lead to conclusions that are biased towards a particular parameter within a

70  space of multiple encoded movement parameters.

71 Unraveling the information hidden in cell-to-cell variabilities of neuronal populations is where
72 recent studies of the neural dynamics of cortical motor regions have made remarkable
73 progress’’?°. One of the key ideas is that the apparent substantial heterogeneity or high
74  dimensionality of the responses of individual neurons can actually be explained by a
75 combination of a smaller number of underlying patterns, i.e., a low-dimensional latent
76  structure. This low-dimensional structure, referred to as the ‘manifold’, captures the essential

20-23

77  properties residing inside the population discharge without the risk of biased conclusions,

78 inevitably introduced by simple averaging across neurons.

79 Hence, to address if and how the cerebellum is able to accommodate the multifarious
80 parametric requirements of short-term sensorimotor learning, we identify the manifold
81  structure of the activity of key input and output elements of the cerebellar cortical network,
82  mossy fibers (MFs) and PCs, of nonhuman primates performing a fatigue-inducing repetitive
83 saccade task entailing different kinematic changes. We report the multi-dimensional
84  manifolds in the MF and PC activity that simultaneously encode kinematic parameters, eye
85 movement velocity and duration, by their geometry and dynamics. We then proceed with
86  considering the influence of climbing fibers, represented by the PC complex spike (CS)
87 discharge, conveying information on error feedback, on the PC manifolds. We show that
88 CSs modulate PC manifolds in an error type-dependent manner that predicts
89 complementary changes in subsequent eye movements by selectively controlling the
90 individual movement parameters. Finally, we investigate the nature of the interaction
91 between the input and output neurons and present evidence that the underlying network
92  computation amplifies the relatively small variability in MF responses to transform them into
93 representations of individual movement parameters, exhibited by PCs in an error-type-
94  dependent manner. Our results demonstrate an enhanced computational capacity of PCs
95 that provides the flexible control of more than one kinematic parameter, ensuring the

96  precision of goal-directed movements.
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97 Results

98 Velocity-duration adjustments during a fatigue-inducing repetitive saccade task

99 We trained two monkeys to execute a long series of visually guided saccades made
100 centrifugally towards a fixed target location (eccentricity: 15 deg) in a horizontally left- or
101  rightward direction in order to receive a water-based reward at the end of the movement

102  (Fig. 1a, see methods for details).

103  As exemplified in Fig. 1 b-d, saccades exhibited a gradual decline in their peak velocity (PV)
104 over the course of a session, reflecting a general loss of motivation (“cognitive fatigue”™),
105  arguably due to the fast and repetitive nature of the task* (Fig. 1b, up). This gradual drop in
106  saccade velocities was compensated by a likewise gradual upregulation of saccade duration
107  (Fig. 1b, middle) ensuring that endpoint accuracy was maintained (Fig. 1b, bottom) within
108 an acceptable range of error (+2 deg around the target). Since inter-trial intervals were short
109 (~100 ms), the monkeys had to execute rapid saccades back towards the fixation point (i.e.,
110 centripetal saccades) after every centrifugal saccade to get ready for the subsequent trial.
111  Albeit not directly rewarded, the kinematic structure and the velocity-duration adjustments of
112 centripetal saccades were very similar to those of centrifugal saccades (red and blue traces,
113  Fig. 1 b,c). The notion of a viable velocity-duration tradeoff suggested by the exemplary data
114  received full support from a behavioral population analysis which was based on pooled
115 saccades from all sessions in which we had recorded the responses of 117 MFs and
116  complementary dataset of saccades collected while recording from 151 PCs, the latter the
117  basis of Markanday et. al 2021** (Fig. 1d-f). Relative to the early trials, we observed an
118  overall decrease of 9.9% in the median PV of late centrifugal and 12.1% decrease in late
119  centripetal saccades (Fig. 1d), compensated by a 12.2% and 16.5%, respectively, increases

120  in median saccade duration (Fig. 1e), maintaining the required accuracy (Fig. 1f).

121 On top of these gradual changes, reflecting the consequences of the development of
122 cognitive fatigue over many trials, we also observed a within-session, trial-to-trial variability
123 in centrifugal and centripetal saccade endpoints, (‘motor noise’), which resulted from
124  saccades randomly overshooting or undershooting the target (Fig. la, see schematic
125 diagrams with green and yellow-colored arrows). As a consequence, both saccade types
126 could result in retinal errors in both directions that we could resort to when trying to estimate
127  the preferred error direction of complex spike (CS) firing of individual PCs as projected on
128  the left-right axis.

129
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130 Mossy fiber discharge encodes saccade kinematics

131  We recorded the saccade-related discharge of 117 MFs from the oculomotor
132 vermis(OMV)*>*%* and broadly categorized them into three main types—burst-tonic (BT),
133 short-lead burst (SLB), and long-lead burst (LLB) units (Fig. 2b, see Materials and
134 Methods for details) considering the timing of a burst-response component and the
135  presence of subsequent tonic discharge. As demonstrated by an exemplary BT unit (Fig. 2a,
136 left panels), a strong “burst” discharge for saccades made in the preferred horizontal
137  direction (here: leftward) direction was followed by an elevated discharge rate (the tonic
138 component), that persisted throughout the post-saccadic period and stopped only when the
139  eyes began to move in the opposite (non-preferred) direction. Compared to the SLB units
140 that started to fire vigorously just a few milliseconds before saccade onset (Fig. 2a, middle; 9
141  ms in the example), the modulation onset of the LLB units occurred much earlier (Fig. 2a,
142 right; ~330 ms in the example), reaching its maximum expression in a ramping manner.
143  Independent of MF unit type, the discharge rate reached its peak during the saccade and

144  stopped around the end of saccades, made into a unit’s preferred direction.

145 The discharge of MFs reflected the trial-to-trial changes in saccade kinematics. To
146  demonstrate this relationship, we calculated the population responses for saccades in a
147 unit’'s preferred direction, separately for BT, SLB, and LLB MFs (n=24, 27 and 60,
148  respectively, Fig. 2b) and sorted them into bins of PV (bin size=50 deg/s), ranging from low
149 to high values (and corresponding changes in saccade duration). Comparing the MF
150 populations responses for the two extreme bins comprising the lowest and highest velocities,
151  respectively, clearly showed that in all three MF groups (Fig. 2c-e), the peak firing rate was
152  substantially larger for the high PV bin, associated with clearly shorter burst duration. Note
153 that in all three classes of MF, the peak discharge rate coincided with saccade onset and,
154  moreover, that not only the saccade profiles but also the associated mean discharge profiles
155  were clearly less skewed for the high PV bin. This was due to a shortening of the saccade
156  deceleration phase and a parallel faster decay of the discharge following the discharge peak.
157  In fact, the peak discharge rate grew linearly with PV over the full range of PV bins (Fig. 2 f,
158 h, j), whereas the time of burst offset linearly predicted the time of saccade offset (Fig.
159  2g,i,k). Even for the tiniest corrective microsaccades that occurred either during the fixation
160 period or during the post-saccadic period after under or overshooting saccades, we
161  observed the same linear encoding of these kinematic parameters by the activity of the three

162  MF types (Supplementary fig. 1).

163
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165 Simple spikes of Purkinje cells encode saccade kinematics

166  We also recorded from 151 OMV PCs and analyzed their simple spike (SS) responses.
167 Whereas MFs exhibited bursting in their preferred saccade direction and little firing in the
168 non-preferred direction, PC SS patterns for the two opposite directions—although often
169 clearly different (see Materials and Methods)—did not follow a comparatively simple rule.
170  Therefore, we considered SS responses for centripetal and centrifugal saccades as
171  independent units and classified them into four main categories—burst (n=107), pause
172 (n=99), burst-pause (n=72) and pause-burst types (n=24), using linear discriminant analysis
173  applied on the first two principal components accrued from a principle component analysis
174  (PCA) of the discharge patterns (Fig. 3a,c, see Materials and Methods). The response of a
175 typical “burst” and a “pause” unit was characterized by a saccade-related increase or
176  decrease in firing rates, whereas “burst-pause” and “pause-burst” units exhibited both types

177  of changes, yet in opposite succession.

178 Pooling the responses of all SS units within each category, separately for the
179  aforementioned PV bins, we obtained a clear linear relationship between the firing rate
180 extremes (maximum discharge in units with burst components, minimal discharge in units
181  with pause component) and eye velocity for all four SS categories (Fig. 3d-g and Fig. 3h-k).
182  To capture saccade duration-related changes in SS firing, we relied on the timing of the first
183  discharge rate extreme. As summarized in Fig. 3l-0, it shifted to later times in burst-pause
184  and pause-burst units, while showing the same non-significant tendencies in the other two
185  categories. Hence, one might conclude that the SS discharge of PCs in our data set

186  encoded both movement velocity™® and duration?.

187

188 Identifying manifolds from pseudo-populations of MFs and PCs to unveil multi-

189 dimensional coding of eye movements

190 However, there is a necessary caveat. Individual units were recorded in separate sessions.
191  As the trial number varied between sessions and also the behavioral state of a monkey
192  would hardly have been constant over sessions, we cannot exclude that particular velocity
193  bins in our analysis might have been biased by particular sessions, associated with distinct
194  states. Therefore, testing the influence of PV at the population level might be confounded by
195 a potential influence of behavioral state variables, such as movement vigor left uncontrolled.
196 In order to circumvent this potential confound of kinematic dependencies of MF and SSs of
197  PC units in our analysis, we resorted to a computational model that predicted the firing rate

198  of individual MFs and PC-SSs based on a linear combination of a kinematics-independent
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199 component, namely the mean firing rate of a unit, and a PV- and/or duration-based
200 modulation as added kinematics-dependent components (see Materials and Methods,
201  Equation 1). Finally, by combining the linear models of individual units, we obtained a
202  "pseudo-population” of MFs and PCs (for illustration, using only PV as the kinematic-
203  dependent parameter, see Supplementary fig. 3 and Materials and Methods for more
204  details) in which virtually every unit's contribution to the population response was equal for
205 any given PV bin as if all units had been recorded simultaneously during an experimental

206  session®.

207  The population responses computed from the pseudo-population model of MFs predicted the
208 actual peak firing rate and duration of the population burst discharge with high accuracy
209  (Supplementary fig. 3e). On the other hand, the pseudo-population model for PC-SSs also
210 predicted the same quantities significantly, but less well, in particular the burst duration
211 (Supplementary fig. 3g). Note that the quality of the prediction did not improve substantially
212 by considering both parameters (i.e., PV and duration) or only PV (see Supplementary fig
213  3e,g and supplementary methods). This is expected, since, for maintenance of endpoint
214  precision, a change of one kinematic parameter must be compensated by a coupled change
215  of the other. Therefore, in most cases, we used the PV-only model to probe the effects of the
216  compensatory duration change correlated to PV change as in Fig. 2,3. However, the PV and
217  duration-based models were useful for investigating the effects of the residual, uncorrelated
218 changes in PV and duration (see below). The relatively poor prediction provided by the
219  pseudo-population of PC-SSs might be affected by a much larger variability of the
220 kinematics predictions of the individual models, reflected in higher standard errors of
221  population averages of kinematics-independent and kinematics-dependent components
222 (Supplementary fig. 3c, bottom panels). A possible source of the high unit-to-unit variability
223 could be the mixing of SS responses of individual PCs, each preferring a specific direction of
224  retinal error. In fact, it has been shown that the conventional saccade-related SS population
225  averages exhibit higher firing rates if the saccades considered are made in a direction that is
226 opposite to the preferred direction of CSs, the latter the direction associated with the highest
227  probability of observing CSs (CS-ON direction)™®. Hence, could the performance of the PC-
228  SS pseudo-population kinematics prediction be improved by grouping individual PC-SS
229  responses into two pools that share the preference for error direction, i.e., left and right error,
230  respectively? Indeed, reorganizing our PC data based on CS error-tuning, approximated by
231  deciding whether left- or rightward errors evoked larger CS firing rates, led to a clearer
232 saccade-related burst around the time of the saccade in the CS-OFF direction, whose peak
233 clearly modulated with PV (Supplementary fig. 4a,b), unlike for saccades made in the CS-

234  ON direction (Supplementary fig. 4c,d). However, despite controlling for preferred error
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235  directions leading to qualitative differences in the CS-OFF direction, the performance of the
236 SS model in predicting the actual firing rates and burst duration did not improve, as
237 compared to the performance of the SS pseudo-population response (Supplementary fig.
238  3e) obtained by ignoring the CS-ON and CS-OFF directions, possibly due to prevailing large
239  heterogeneity in SS responses. This is further supported by the results of the PCA of PV-
240  dependent components, where a large number of dimensions were required in the case of
241  PCs (d=10), as compared to MFs (d=4), to explain ~78% of the total cell-to-cell variability
242 (Supplementary fig. 4e,f).

243  In an attempt to mitigate the impact of this apparent large cell-to-cell variability, we referred
244  to the dimensionally reduced representations of the pseudo-population responses of MFs
245 and PC-SSs. To this end, we first ran a PCA on the movement parameter-independent
246 components of the individual MFs and PC-SS firing rate predictions provided by the model to
247  identify the number of dimensions explaining a majority of the total cell-to-cell variability.
248  Then, we computed how each of these dimensions encodes movement parameters (PV
249  or/and duration) using the matrix perturbation theory (see Methods, Equation 2). For MFs, in
250 the first step, we found two dimensions that explained 87.6% of the total cell-to-cell variability
251  (Supplementary fig. 5b), where the first dimension represented a burst modulation
252  (Supplementary fig. 5c, top), similar to the population average firing whose burst size and
253  duration were modulated by PV. The second dimension (Supplementary fig. 5c, bottom)
254  represented changes in firing rate that varied more slowly before and after the burst
255  response (observed in Dimension 1) in a biphasic manner, indicating an anti-correlation
256  between the pre-and post-burst firing. However, in PCs, capturing 92.3% of the total cell-to-
257  cell variability required four dimensions, where the first two dimensions represented simple
258 monophasic (i.e., bursting or pausing) and biphasic (burst-pause or pause-burst) firing
259  patterns, respectively, whereas the remaining two dimensions exhibited more complex

260 features (Supplementary fig. 5f,9).

261 Plotting these reduced dimensions as a function of each other, we identified the 2D
262  manifolds of the pseudo-population of MFs and PCs for different values of PV. While both
263  MF and PC manifolds appeared as limit cycle-like rotating trajectories, they exhibited crucial
264  differences from each other (Supplementary fig. 5d,h and Fig. 4). For example, unlike the
265 MF manifolds that were characterized by an overall PV-related increase in their size almost
266  symmetrically around the saccade onsets, the PC-SS manifolds based on the first two
267  dimensions showed no significant changes before saccade onsets, as depicted by the strong
268  overlapping of the manifolds (Fig. 4a-e). However, the PC manifolds for the third and fourth
269 dimensions showed clear differences already before saccade onsets. Therefore, PC

270  manifolds based on different dimensions can selectively encode specific phases of a
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271 movement, preparation and execution, in the same manner as the "null-space” in cortical

18,19

272 manifolds for the preparation of reaching arm movements ™, while the MF manifolds lacked

273  this information suitable to control specific movement phases.

274  Furthermore, PC manifolds also carried a more disentangled representation of the two
275  saccade parameters— PV and duration, as compared to MFs. To arrive at this conclusion,
276  we estimated MF and PC-SS firing rate models based on both PV and duration by
277  leveraging the residual variabilities in these parameters, apart from their correlated ones.
278  Then, we independently manipulated these two kinematic parameters (varying one while
279  keeping the other fixed) and observed concomitant changes in MF manifolds—a change in
280 PV (Fig. 4f) modulated the manifold size (i.e., geometry) and also the time-dependence (i.e.,
281  rotation dynamics), the latter still reflecting a small remanence of a correlated duration
282  change (Fig. 4g,h). Manipulating the saccade duration (Fig. 4k) also modified the MF
283  manifolds (Fig. 4l,m) in a manner quite similar to the one resulting from correlated changes
284 in PV and duration (Fig. 4a), with PV being the only kinematic parameter in the firing rate
285 model. In contrast, PV (Fig. 4i,j) and saccade duration (Fig. 4n,0) varied the PC manifold
286  size and rotation dynamics quite differently. These effects are captured by the slope angles
287  of curves obtained by plotting the average rotation speed as a function of manifold size.
288  Therefore, while the slope angles did not differ much in the case of MFs (Fig. 4p), the
289  differences were much stronger in the case of PCs, indicating significantly more decorrelated

290  encoding of the two kinematic parameters than MFs (Fig. 5q).

291  Centrifugal saccades could be either leftwards or rightwards, but, notably, we found that our
292  results did not depend on saccade direction. To test the potential influence of saccade
293  direction on MF and PC manifolds, we performed the same analysis on MF and PC data
294  separated by leftward and rightward saccades. For MFs, the left and right groups showed
295 qualitatively identical results (Supplementary fig. 6a,b). The canonical correlation analysis
296  (CCA)*? yielded high canonical correlations between the MF manifolds for leftward and
297  rightward saccades, proving that they were nearly identical (Supplementary fig. 6¢). In the
298  PC case, the size of the manifold was much larger for saccades in the rightward direction as
299 compared to leftward saccades (Supplementary fig. 6d,e). Since around 80% of the
300 recorded PCs had their CS-OFF in the rightward direction, the direction-dependent
301 differences in the size of these manifolds are not surprising and only confirm the gain-field
302  encoding of SSs'® (Supplementary fig. 6g,h,i). Nevertheless, the shape of these manifolds
303 was highly similar (Supplementary fig. 6f). Therefore, MFs and PCs had qualitatively

304 identical manifold structures regardless of the eye movement direction.

305
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306 PC manifolds reveal the structure of plasticity triggered by sensorimotor errors

307 In the prevailing theory for cerebellum-dependent sensorimotor learning, the climbing fiber-
308 driven CSs convey motor error-related information to prompt parametric adjustments for
309  correcting future motor behavior, thereby acting as "teacher signals"?®*°. Therefore, motor
310 learning has been attributed to these CSs, serving as a proxy of sensory feedback on motor
311  errors that, when coincident with the parallel fiber inputs, modify the PC output by inducing a

312 long-term depression (LTD) at the parallel fiber-PC synapses®".

313  To understand how the occurrence of CS impacts the multi-dimensional encoding of eye
314 movements, we investigated how CSs fired during the post-saccadic period of 50-175 ms in
315 the n™ trial (‘CS-trial’), reflecting retinal errors arising from natural end-point variability in
316  saccades®, modulated the PC-SS manifolds of the subsequent, n+1" trials (‘Post-CS trial’).
317 In our paradigm, errors occurred mainly when the primary saccade undershot (outward
318  error) or overshot (inward error) the target location (Fig. 5a). Depending on the direction of
319 the primary saccade, these inward and outward errors could occur in both left and right
320 directions (Fig. 1a). Therefore, depending on the CS-ON direction of individual PCs, the
321  inward and outward errors will elicit CSs with high probability in those PCs whose CS-ON
322  directions are aligned with the error vector (Fig. 5a, red circles), as compared to those cases

323  in which the CS-ON direction and the error vector do not match!®1524:32:33

(Fig. 5a, gray
324  circles). In other words, for any retinal error in a particular trial, there will always be a
325  subpopulation of PCs whose CS-ON direction matches the error vector, leading to CS-trials,
326 and in others not, leading to ‘No-CS’ trials. For a given error in the n™ trial, we looked at its
327 influence on the entire population of PCs in our data set and the consequences for the SS
328  manifolds of the n+1™ trials, rather than restricting our analysis to only CS-ON units (see
329  Supplementary fig. 7a), assuming that the behavior is based on the concerted action of
330  both subpopulations. To this end, we combined trials following CS-trials from the pool of CS-
331 ON PCs (i.e., Post-CS trials) and ‘No-CS’ trials from CS-OFF PCs (‘Post-No CS trials’),
332  separately for outward (Fig. 5b, left) and inward errors (Fig. 5b, right). Importantly, we
333 included all ‘CS-trials’ from CS-ON PCs (regardless of whether the actual error occurred or
334  not), assuming that every CS in the error time window of 50-175 ms after the saccade was

335 fired to report an error (referred to as simulated error trials in Fig. 5).

336 We found that CS firing associated with inward and outward errors modified the resulting
337 PC-SS manifolds, based on PV as the kinematic-dependent parameter, differently (Fig. 5c,
338 top). Relative to the ‘Post-No-CS’ trials, the normalized slope angle, capturing changes in
339  PV-dependent manifold size relative to the rotation speed, profoundly increased in the post-
340 inward error trials but decreased, albeit only slightly, for post-outward error trials (Fig. 5c,

341  bottom). Could it be that this result may be influenced by the actual error-direction, rather

10


https://doi.org/10.1101/2022.01.11.475785
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.11.475785; this version posted January 12, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

342  than error-type? Our analysis comparing inward and outward errors made in the same
343  direction revealed that the PC-SS manifolds of subsequent trials maintained their specificity
344 for inward and outward errors, even if their vectors pointed in the same direction
345  (Supplementary fig. 7b-d). Given that the PC manifold size and speed of the latent
346  dynamics encode PV and saccade duration almost independently (Fig. 4p,q), this result
347 suggested that CSs associated with inward and outward errors, potentially engaging the
348 same population of PCs, tuned the population firing more towards duration coding in post-
349 inward error trials (more compensatory duration change given PV) and PV coding in post-

350 outward error trials (more compensatory PV change given duration).

351  Therefore, one would expect to see a reduction in subsequent saccade’s duration if a CS
352  signal reporting an inward error, caused by an overshooting saccade, in the previous trial
353  was present. On the other hand, in case of an outward error (i.e., undershooting saccade),
354  CSs should trigger an increase in the PV of the next trial to reduce endpoint error. Indeed,
355 this is what we found. When comparing the movement velocity of saccades accompanied by
356 a CSto post-CS saccades, we observed that outward errors (undershooting) were corrected
357 mainly through increasing the PV of the subsequent saccade with a slight increase in the
358 velocity at the end of the saccade (Fig. 5d, left). In contrast, inward error-encoding-CSs
359 prompted a significant decrease in the duration of the subsequent saccade, reflected by the

360 narrowing of its velocity profile (Fig. 5d, right).

361

362 Linear feed-forward network model shows high-dimensional transformations by the
363 cerebellar cortex

364  We demonstrated that, despite the similar limit-cycle-like properties of MF and PC manifolds,
365 they also exhibited crucial differences in their encoding of kinematic parameters. The
366  climbing fiber-driven CSs clearly explain some of the differences between the two (Fig. 5,
367 Supplementary fig. 6). However, additional inputs to PCs arriving from interneurons may

368  also play a significant role.

369 Yet, we found that a linear feed-forward network (LFFN) from MFs to PCs* (Fig. 6a)
370 predicted the kinematics-independent and dependent activity components of all individual
371  PCs with high fidelity (R?=0.984+0.018, mean+SD) (Fig. 6b,c), which allowed us to
372 successfully reproduce the PC-SS manifolds from the MF activity (Fig. 6d; see also
373  Supplementary fig. 8a,b,c). But how is it possible that already a simple linear
374  transformation can explain the many differences between MF and PC-SS manifolds? This
375 paradox led us to examine how many dimensions of MF (dwg) firing are necessary to make

376  good predictions of the PC manifold.
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377 We addressed this question by two approaches, both leading to the conclusion that the
378 number of dimensions that need to be considered while trying to account for the properties
379  of MF activity is definitely much smaller than the maximum number of dimensions, dy-=116
380  (corresponding to the number of MFs in our data), but significantly higher than two or four,
381 the dimensionalities capturing a major chunk of cell-to-cell variability in MFs and PCs,
382  respectively (Supplementary fig. 5a-h). In the first approach, we first created the dye-
383 dimensional pseudo-population firing of MFs (Fig. 6e, grey circles) using the dye-
384 dimensional MF manifold (red circles), then generated the prediction of individual PC-SS
385  firings using the LFFN (black circles), and finally identified the predicted PC-SS manifold
386  (green circles). The PC-SS manifold (in the first two dimensions) was relatively poorly
387  predicted (R?<0.9) when dye<9 (Fig. 6f,g). In the second approach (Supplementary fig.
388 8d), we directly tested whether the prediction of individual PC firings requires high
389 dimensional components in MF firings by another LFFN model, where MFs and PCs
390 communicate through a dimensionally reduced submanifold, called the ‘communication
391  subspace™. This model also showed that a good prediction of individual PC responses
392 requires a high-dimensional (d>15) communication subspace (Supplementary fig. 8d,e).
393  Note that, the dimensions higher than four (i.e., d>4) explain only 4.3% of the total MF-to-MF
394  variance together due to rapid decay («1/d*?) in the explained variance (Supplementary
395 fig. 5b). Therefore, the properties of PC-SS manifolds emerge as a consequence of a
396 transformation by the cerebellar cortical circuit that amplifies those small variabilities in MF

397 inputs.

398
399 Discussion

400 The present study demonstrated the presence of multi-dimensional manifolds, latent in the
401  activities of the cerebellar input and output, MFs and PCs respectively, and how their
402  geometric and dynamic features encode key kinematic eye movement parameters. Climbing
403 fiber-driven CSs, signaling error-related information to PCs, modify the PC manifolds,
404  differentially depending not only on the direction of error but also the type of error, which
405 predicts how the subsequent eye movements are corrected. Finally, we showed that the
406  cerebellar cortical circuit amplifies seemingly insignificant variabilities in the MF activity to

407  generate highly selective PC outputs.

408 The fast and repetitive nature of our paradigm induced cognitive fatigue, a gradual decline in
409 the speed of saccades, which was compensated by duration upregulation®. However, on top
410 of fatigue, we also observed natural trial-to-trial changes in the saccade velocity requiring
411  rapid duration adjustments in order to guarantee endpoint precision. Therefore, the same

412  velocity-duration trade-off mechanism that maintained movement accuracy across hundreds
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413  of trials within a session also ensured reduced endpoint variability (motor noise) on a trial-to-
414 trial basis. The residual motor noise led to tiny, albeit specific error types, directed inward
415 and outward respectively, depending on whether the eye movements were too large or fell
416  short relative to the target location.

417  Depending on the firing pattern of individual MFs and SSs of PC units, we could broadly
418  classify them into different categories by using strict statistical criteria to compute population
419  averages of each category’*?*. Yet, in our analysis, these units appeared continuous in
420 their distribution (Supplementary fig. 2) rather than forming discrete clusters, due to a large
421 cell-to-cell variability exceeding between-category distances. Therefore, one may question
422  the reliability of the classify-and-average approach in testing the encoding of specific
423  kinematic parameters as it may be prone to the risk of sampling bias. This problem gets
424 even worse if one additionally considers the large between-session variability in eye
425 movements also influencing the firing rates of individual units. To avoid exactly these biases,
426  we estimated the firing rates of all individual units, based on a firing rate model that varies
427  linearly with key kinematic parameters, to obtain a “pseudo-population” of MFs and PC-SSs.
428  This allowed us to identify multi-dimensional, limit cycle-like manifolds of neuronal activity
429  from these pseudo-populations capturing a significant proportion of cell-to-cell variability?.
430 PC discharge, the output of the cerebellar cortex, is only a few synapses away from the final
431  stage motor neurons. Therefore, moving up the cerebellar circuitry, one would expect the PC
432  signals to be far more refined and informative about the movements than the signals at
433  earlier stages, e.g., at the level of MF afferents. At first glance, our results from the
434  population analysis seemed to contradict this expectation as the MF pseudo-population
435 exhibits a much more precise encoding of relevant kinematic parameters while PC-SS
436  pseudo-population responses are sloppy and contaminated by a large heterogeneity in their
437  firing patterns. However, a very different perspective is opened if one resorts to the low-
438 dimensional pseudo-population manifolds that reveal the hidden dynamics of PC-SS activity
439 for the flexible control of key movement parameters like velocity and duration in a movement
440 phase specific manner. Furthermore, the PC manifolds carried significantly more
441  disentangled representations of movements than the MF manifolds. Unlike MFs, the PC-SS
442  manifolds exhibited distinct geometric and dynamical properties related to the two specific
443  kinematic parameters, velocity and duration. This conspicuous difference between the MF
444  and the PC-SS manifolds indicates a highly nontrivial transformation by the network.

445  Where do these differences stem from? Notably, our simple model, LFFN, simulating the
446  MF-to-PC pathway could accurately explain the MF-to-PC transformation at the firing rate
447  and manifold level, but only if the high dimensional components in the MF inputs,
448  representing a tiny fraction (<5%) of the total MF-to-MF variability, were preserved. This

449  result suggests that a disentangled movement encoding at the PC level emerges through
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450  substantial amplification of those seemingly insignificant variability of MF responses by the
451  cerebellar network. Highly correlated activity, resulting in an apparently small dimensionality,

3739 (but see also ref.?%). We

452  has been widely observed in work on the cerebellar input layer
453  found the same in our MF data, but our analysis together with the PC data suggests that
454  enhancing small input variabilities is a fundamental information processing property of the
455  cerebellar network. Furthermore, together with the finding that serial single-unit recordings
456  are sufficient to generate reliable MF and PC manifolds, the prediction power of the LFFN
457  model implies that MFs should use asynchronous firing rate coding.

458 PCs are also influenced by the direct climbing fiber pathway, imparting plastic changes in
459  their activity via CSs. Indeed, we found that CSs modulated the geometry and dynamics of
460 the PC-SS manifolds, on a trial-to-trial basis, in an error-type dependent manner, predicting
461  selective post-CS parametric adjustments of eye movements. The forced error-based short-
462  term saccadic adaptation is similarly error-type dependent®, which supports that PCs, by
463  duration coding, control movements flexibly in response to external and internal (fatigue)
464  changes®. On the other hand, recent studies have demonstrated the effects of CS-driven
465  plasticity on the movement velocity, thereby emphasizing velocity-coding by PCs***°. we
466  demonstrated that those two mechanisms coexist and can be interwoven to exhibit complex
467 forms of population-level plasticity. Therefore, the multidimensional nature of cerebellar
468  computations is necessary for the flexible, context-dependent control of movements and
469 their rapid adaptation.

470 The success of the linear model in describing the amplification of the variance as a
471  consequence of the transformation of the MF input—not considering climbing fiber activity—
472  indicates that the amplification of variance is independent of input from the inferior olive.
473  However, this amplification is undoubtedly the basis allowing the climbing fiber system to
474  select those chunks of information needed to optimize the movement.

475

476 Materials and methods

477  Animals, preparation, and surgical procedures

478  Two healthy male rhesus macaques (Macaca mulatta; monkey K and monkey E, age: 10
479 years and 8 years, respectively), purchased from the German Primate Center in Gottingen,
480 were used for the purpose of this study. All data presented in this study were collected from
481  these two animals using procedures that strictly adhered to the rules defined by the German
482 as well as the European law and guidelines that were approved by the local authority
483  (Regierungsprasidium Tubingen, veterinary license N7/18 and N4/14) and National Institutes
484  of Health’'s Guide for the Care and Use of Laboratory Animals. All training, experimental and

485  surgical procedures were supervised by the veterinary service of Tlbingen University.
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486  As a first step, the animals were subjected to chair training which began in the animal facility
487  where animals were encouraged to voluntarily enter a customized mobile chair for the first
488 few weeks following which they were transported to the experimental area where they were
489  gradually acclimatized to the new environment. To proceed with experimental training, it was
490 necessary to painlessly immobilize the head in order to record eye movements reliably.
491  Therefore, once the animals felt fully comfortable in the experimental setups, the first major
492  surgical procedure of installing the foundations of cranial implants was performed. During
493  this procedure, the scalp was cut open and these foundations, made out of titanium, were
494  fixed to the skull using titanium bone screws. The scalp was then closed with the help of
495  sutures under which the foundations were allowed to rest and stabilize for a minimum period
496  of 3-4 months to ensure their durability and also full recovery of the animals. After this
497  period, the second surgical procedure was performed in which the scalp was opened just
498 enough to allow a titanium-based hexagonal tube-shaped head post to be attached to the
499 base of the implanted head holder. Since this procedure was rather quick, the surgery was
500 also accompanied by implantation of magnetic scleral search coils*** to record high-
501  precision eye movements. After 2-3 weeks of recovery, monkeys were trained further on the
502  behavioral task until their performance was accurate enough to consider neural recordings.
503 To this end, the final surgical procedure was performed in which the upper part of the
504  cylindrical titanium recording chamber (tilting backward by an angle of 30° with respect to
505 the frontal plane, right above the midline of the cerebellum) was attached to the already
506 implanted chamber foundation. A small area of the skull within the confines of the chamber
507 was removed to allow electrode access to our region of interest, the oculomotor vermis
508 (OMV, lobules VIC/VIIA). The position and orientation of the chamber were carefully planned
509 and confirmed based on pre-and post-surgical MRI, respectively. All surgical procedures
510 were performed under aseptic conditions using general anesthesia in which all vital
511  physiological parameters (blood pressure, body temperature, heart rate, pO, and pCO,)
512 were closely monitored®®. After surgery, analgesics (buprenorphine) were delivered to
513  ensure painless recovery which was monitored using regular ethograms under the strict

514  supervision of animal caretakers and veterinarians.
515

516  Experimental setup and behavioral task

517  All experiments were performed inside a dark room where monkeys, with their heads fixed,
518  were seated comfortably in a primate chair placed at a distance of 38 cm in front of a CRT
519  monitor such that their body axis was aligned to the center of the monitor. All neural and

520 behavioral data presented in this study were collected during a simple to-and-fro saccade
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521  task in which monkeys were asked to rapidly shift their eye gaze repeatedly in order to follow
522  ajumping target that appeared in two fixed locations along the horizontal axis on the monitor
523 in an alternating manner (Fig. 1a). Before the beginning of each trial, the fixation target (a
524  red dot of diameter 0.2 deg) appeared at the center of the monitor with an invisible fixation
525  window of size 2x2 deg centered on it. Only if the monkeys moved their gaze within the
526 fixation window the trial was initiated. This was followed by a short fixation period ranging
527  from 400 to 600 ms from trial onset after which the fixation target vanished and, at the same
528 time, another target (with the same properties as the fixation target) appeared at a new
529  horizontal location, giving the impression that the target “jumped” centrifugally (Fig. 1a, solid
530 arrows), i.e., from the center of the screen to this new location. The size (=15 deg) and the
531 direction (left or right) of the target jump were kept constant within a session. Every target
532 jump served as a 'go-cue’ which prompted the monkey to execute a saccade towards the
533  new target location within the 2x2 deg fixation window centered on it, in order to receive an
534 instantaneous reward (water drops) marking the end of a trial. The peripheral target
535 disappeared approximately 700-900 ms relative to the go-cue, immediately after which the
536  central fixation dot reappeared indicating the beginning of the next centrifugal trial. In order
537  to proceed with the next trial, the monkey made a saccade from the peripheral target back to
538 the central location (i.e., centripetal saccade, see dashed arrows in Fig. 1a). In other words,
539 the appearance of the central fixation dot served as a go-cue for centripetal saccades,
540 although these saccades were not rewarded. Depending on the motivation of the monkeys
541  to perform the task, as well as the duration for which a PC could be kept well isolated, the
542  number of trials varied in each session (median=307 trials) with each trial lasting for 1200
543 ms. While the fatigue-inducing fast and repetitive nature of the paradigm allowed us to
544  capture both trial-by-trial and gradually declining changes in the peak velocity of centrifugal
545 and centripetal saccades, the natural endpoint variability in saccades, on the other hand,
546  observed as over-or undershoots resulting in inward (Fig. 1a, see yellow arrows) or outward
547 errors (Fig. la, see green arrows), allowed us to measure the CS's preferred and anti-
548  preferred direction of error for an individual PC. All experimental parameters were designed

549 and controlled using in-house Linux-based software, NREC (http://nrec.neurologie.uni-

550 tuebingen.de).

551

552  Electrophysiological recordings, identification of Purkinje cells and mossy fibers in the

553 oculomotor vermis

554  All electrophysiological recordings of PCs (n=151) and mossy fibers (n=117) from the OMV
555 were performed using glass-coated tungsten microelectrodes (impedance: 1-2 MQ),
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556  manufactured by Alpha Omega Engineering, Nazareth, Israel. To target the OMV, as
557 predicted by the MRI scans, the position of electrodes along the rostrocaudal (i.e, Y-axis)
558 and lateral (i.e, X-axis) axis were manually adjusted with the help of a custom-made
559  microdrive, temporarily mounted on the recording chamber during each experimental
560 session. The depth of the electrode was controlled using a modular multi-electrode
561 manipulator (Electrode Positioning System and Multi-Channel Processor, Alpha Omega
562  Engineering). The exact location of the OMV was confirmed based on careful inspection of
563 online audio-visual feedback of the electrode signals, reflecting multi-unit granule cells

564  activity, that exhibited strong modulations in response to fast eye movements.

565 For PC recordings, extracellular potentials sampled at 25 KHz were high (300 Hz- 3 KHz)
566 and low (30 Hz-400 Hz) band-pass filtered to obtain action potentials and LFP signals,
567  respectively. Individual PC units were identified based on the presence of two types of action
568  potential signals, high-frequency simple spikes (SSs) and low-frequency complex spikes
569  (CSs), the latter characterized by a polyphasic wave morphology in the action potential trace
570 paralleled by large deflections in the LFP signals. The fact that both signals originate from
571 the same unit was confirmed online by the suppression of SS discharge for 10-20 ms when
572  aligned to the occurrence of a CS**®. Although the final characterization of CSs was based
573  on an offline neural networks approach*’, we relied on the performance of Alpha Omega

574  Engineering’s Multi Spikes Detector for detecting SSs online.

575  In order to record from mossy fibers (MF) in the granular layer, we adjusted the upper cut-off
576  frequency of the high band-pass filtered to 5 KHz while keeping the lower cut-off frequency
577 the same as 300 Hz. The identification of MFs was based on their strong directionally
578  selective response to saccades, firing up to several hundred spikes per second in the
579 preferred direction and seldomly in the opposite direction. Unlike the relatively longer
580 duration SSs (mean duration: 1.5 ms), MF units exhibited much shorter duration (mean
581 duration: 0.6 ms), mostly mono- and biphasic shaped waveforms while occasionally
582  exhibiting a negative after-wave'®?>?°4%4%  Additionally, MFs exhibited a wide range of inter-
583  spike intervals'® (mean + sd: 82.7 + 86 ms) as compared to those of PC SSs (mean # sd:
584  19.5+ 2.6 ms).

585

586  Classification of mossy fiber responses

587  Unlike the bidirectional SS discharge of PCs, well-isolated MF units exhibited a strong and
588 clear preference for saccades made in one of the two horizontal directions. This property
589 allowed us to pre-determine the preferred direction of the MF unit under investigation and

590 use that direction as the rewarded direction in which the centrifugal saccades were made. A
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591  majority (115 out of 117) MF units investigated in this study exhibited a much stronger
592  (“burst-type”) discharge during the peri-saccadic period in their preferred direction
593  (=centrifugal direction) as compared to the opposite, non-preferred direction (=centripetal
594  direction) in which very few or almost no spikes fired, resulting in weak modulations.
595  Therefore, MF responses only in the centrifugal direction were considered for classification

596 and all analyses. In the other 2 units, we did not observe a peri-saccadic burst

597  Overall, we observed two main types of burst modulations: the eye position-related tonic
598 discharge preceded by a saccade-related burst, i.e., the *burst-tonic’ type, and the saccade-
599 related burst discharges that remained mostly silent outside the peri-saccadic period, i.e.,
600 ‘phasic’ type. In order to identify the ‘burst-tonic’ responses, we first identified those units in
601  which the difference between the average firing rate in the post-saccadic period (150 to 250
602 ms from saccade onset) and the pre-saccadic period (-250 to -150 ms from saccade onset)
603 was larger than 1.5 x standard deviation (SD) of the average firing rate during the pre-
604  saccadic period. Next, we compared the slope values of the linear regression fits applied on
605 the pre-and post-saccadic firing responses, and only those cases in which no significant
606 difference between the slopes was observed, were labeled as ‘burst-tonic’ responses (n=24;
607 Fig. 2a,b; see BT). In other words, if the post-saccadic MF activity was not only larger than
608 the pre-saccadic activity but also remained elevated after the saccade-related burst
609 discharge, the unit's response was classified as a ‘burst-tonic’ type. The ‘phasic bursts’, on
610 the other hand, were further categorized into ‘long-lead burst’ types and ‘short-lead burst’
611 types, based on the timing of each MF unit's burst modulation onset relative to saccade
612  onset®®. For this, modulation onsets were detected whenever the averaged MF response
613  crossed a threshold (defined as 3 x SD of baseline activity during -400 to -200 ms from
614  saccade onset). To this end, all MF units in which the burst modulation led the saccade
615 onset by more than 15 ms were labeled as ‘long-lead burst’ types (n=60; Fig. 2a,b; see
616 LLB), whereas those that started firing less than 15 ms before the saccade onset were
617 classified as ‘short-lead burst’ (SLB) types (n=27; Fig. 2a,b; see SLB). The value 15 ms was
618 chosen, based on the observed SD value of modulation onsets of ‘long-lead burst’ MF units
619 identified by Ohstuka and Noda?®. Given that the timing of the detected modulation onsets
620  was a crucial factor in separating these two categories, in addition to the clarity of their firing
621  patterns, spike data were not smoothened using a Gaussian kernel, as in the case of SSs.
622  Based on this criteria, 4 units (in addition to 2 non-bursting units) could not be categorized
623  into any of the three categories as in those cases the onset of burst modulation occurred

624  after (i.e., lagged) saccade onset.

625
626
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627  Classification of simple spike responses

628  SS responses of individual PCs were broadly categorized into 4 types—burst, pause, burst-
629 pause and pause-burst—based on their pattern of firing during the perisaccadic period of -50
630 to 150 ms from the end of primary saccades (note: all primary saccades between 13 to 17
631 degrees of amplitude were detected using a velocity threshold of 30 deg/s). To this end, we
632 estimated the mean spike density function of the SS discharge of individual PCs by first
633  convolving the time of each SS event detected within a trial with a normalized Gaussian

634  kernel (sd=5 ms) and then averaging across all trials.

635 Given that centrifugal and centripetal saccades were made horizontally in opposite
636  directions, their SS firing patterns could be entirely different. For instance, a PC could
637 demonstrate a sharp peri-saccadic increase (or burst) in SS firing for a rightward centripetal
638 saccade, whereas in the opposite direction (i.e., left centrifugal) the same PC could exhibit a
639  sudden drop in SS firing (or pause). Therefore, each PC's SS response was characterized
640 by two response profiles (one for each tested direction) and both were considered
641 independently, as separate units (n=302; 151 PCs x 2 directions), in our classification

642  procedure described below.

643  As the first step, we used threshold-based criteria to label each SS response with one of the
644  four types based on the polarity of the response modulation. For this, we identified all
645 maximum (peaks) and minimum (troughs) SS firing rates (detected using the MATLAB
646  function ‘findpeaks', minimum peak distance = 10 ms, minimum peak prominence = 2
647  spikes/s) during the peri-saccadic period. The modulation was considered significant if the
648  peaks and troughs crossed an upper and a lower threshold (defined as + 5 x s.d of baseline
649  activity during the -250 to -100 ms from saccade onset), respectively. The SS response was
650 classified as a 'burst' or a 'pause’ type if we encountered only a monophasic increase or
651 decrease in SS firing during the peri-saccadic period. Responses were categorized into
652  'burst-pause' or a 'pause-burst' types if the first modulation in the biphasic responses
653  showed an increase (followed by decrease) or a decrease (followed by increase) in SS firing,
654  respectively. Next, we ran a principal component analysis (PCA) on the 302 SS responses
655 (CF and CP combined) to obtain a 2D plot (Fig. 3a) of their first two principal components
656  (explaining 62.2% of the total variance) that seemed to appear as overlapping clusters
657  organized in a circular pattern, centered around the origin. For better discrimination of these
658  clusters, we relied on the SS response labels (identified in the first step) to obtain decision
659  boundaries by resorting to linear discriminant analysis (LDA). As shown in Fig. 3a (dashed
660 lines), the first decision boundary separated the 'burst' (blue cluster) from 'burst-pause'

661  (green cluster) types, as well as the 'pause' (orange cluster) from the 'pause-burst' (red
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662  cluster) types. On the other hand, the second decision boundary separated the 'burst' from
663  'pause-burst' types, and also the 'pause’ from the 'burst-pause’ types. As compared to the
664 threshold-based labeling of these response patterns, the LDA approach was clearly better in
665  separating these response types (Supplementary fig. 2c,d).

666
667 Rate models for individual MFs and PCs

668 We constructed the firing rate model of individual MFs and PCs by using a linear
669 combination of kinematics-independent and kinematics-dependent components. Given the
670 baseline-subtracted dynamic firing rate of the i unit, Ri(t,z), where t is the time from saccade
671 onset and z is a vector of the specific movement kinematic parameter (e.g., z = [PV] or
672  [duration], or a pair of kinematic parameters, i.e., z = [PV, duration]), we modeled the firing
673 rate vector of a “pseudo-population” containing N number of neurons, R(t,z) = [Ry(t,2);
674 Ry(t,2);...; Ra(t,2)], as

R(t,7) = Ry (t) + Z 520,R(t) (1)

675 where Ry and 0,R are the kinematics-independent and dependent part, respectively, and
676 0z=2-7, is the deviation of z from the mean value of z, zo. We used the multivariate linear
677  regression of the firing rate data with respect to the kinematic parameters (Supplementary
678  fig. 3a) for each unit to find the model components for all unit data (Supplementary fig.

679  3b,c). See supplementary methods for details.

680
681 Estimation of manifolds

682  To find the dimensionally reduced approximation of the the population rate model, R(t,z) in
683  Equation 1, given by Ry and 9,R, we followed the following steps: First, R, and 2,R were
684  converted to (N,T) matrices by discretizing time where T is a length in time in msec. We
685 performed PCA on Ro, which is the firing rates at z = z,. We obtained a dimensionally
686 reduced representation, a manifold, Px such that R, = WPx where W is some (N,K)
687 dimensional matrix (K<N). We determined K by finding the number of dimensions capturing
688 >85% of the total variability and confirmed it by the cross-validation analysis. Then, we
689  estimated the linear approximation of how the kinematics-dependent component, d,R, would
690 change the PCA result of the firing rates if z deviates from z,. Our analytic estimation

691  showed that it is enough to consider a change in Py as,
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P, > Py + z 520,Pc,  0,Px = WI(O,R) + (0,R)T(Ro— WP  (2)
zZ

692 to predict the PCA results of R(t,z) with sufficient accuracy. 9,W is a matrix obtained in the
693  second step and describes how the higher dimensional (>K) components move into the K-
694 dimensional subspace when kinematic parameters change and t represents conjugate

695  transpose. See supplementary methods for details.

696
697  Analysis of manifolds

698 Given a manifold of MFs or PCs given movement kinematics, we computed the manifold
699  size and rotation speed in 2D (Fig. 4-5). We defined the manifold size by an enclosed area
700  within the circular trajectory in 2D, which is computed by numerically integrating the areas of
701  triangles defined by two neighboring data points and the origin (0,0). For the rotation speed,
702 we first computed the phase of rotation 6 at each data point (x,y) by 8 = tan™(Ay/Ax) where
703  (AX, Ay) = (X-Xo, Y-Yo) and (Xo, Yo) is a reference point defined by [(maximum of x coordinate
704  data)/2, 0]. Then, we estimated the time T34 from the trial beginning t = -250 ms, where 6 = -
705  180° by definition, to the point 8 = 90° (rotation of 3/4 cycles), finally finding the average
706  rotation speed by 270°/T3,. We summarized how the manifold size and rotation speed vary
707  with the kinematic parameters by computing the normalized slope angle in the manifold size
708  and rotation speed plane (Fig. 4p,q and 5c¢). To do so, we first normalized the manifold size
709 and rotation speed data for all cases by the standard deviations of the control case, which
710  was the correlated variation in Fig. 4p,q and post-no-CS case in Fig 5c. The slope angle
711  was computed in each case in the normalized coordinates. We also performed the
712 comparison/alignment analysis of multiple manifolds using the canonical correlation

713 analysis®?. See supplementary methods for details.

714
715 Linear feed-forward network models

716  The LFFN models had movement kinematics-independent and dependent components for
717  output variables (Y, d,Y) and input (X, 3.X), such as PC and MF firing rates in Fig. 6a-b. We
718 assumed that the movement variable z follows the Gaussian distribution and estimated the
719  weight matrix T to minimize the least-square error,

E(T) = ||Y = TX|? + z Z Cov[z, z'] (8,Y — T9,X).(9,Y — T, X), 3)
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720  Performances of all the LFFN models were measured by this least-square error. To prevent
721  overfitting we used the LASSO regression®® where the hyperparameter is chosen by AIC
722  minimization. For the manifold-transformation LFFN (Fig. 6e), we reused T from the MF-to-
723  PC LFFN model but replaced the input variables by those approximated by the dme-
724  dimensional MF manifold. The communication subspace model (Supplementary fig. 8d,e)
725  was obtained by the rank-reduced regression® with the error function in Equation 3. See

726  supplementary methods for details.
727
728  Statistical analysis

729 In most data analyses, we evaluated a mean and SEM by the jackknife resampling except
730 for two quantities. In testing the prediction of the population-averaged firing rate by models
731  (Supplementary fig. 3e,g and 4b,d), we separated trials into two equal-sized sets, trained
732 the model by only one of them (train data), and tested it on the other data set (test data). In
733  Fig. 6g, we used the bootstrap procedure that randomly sampled the goodness of fit for
734  individual time points and computed their averages with 500 repetitions to give the bootstrap
735 mean and SEM.

736

737 References

738 1 McLaughlin, S. C. Parametric adjustment in saccadic eye movements. Perception &

739 Psychophysics 2, 359-362 (1967).

740 2 Golla, H. et al. Reduced saccadic resilience and impaired saccadic adaptation due to

741 cerebellar disease. European Journal of Neuroscience 27, 132-144 (2008).

742 3 Markanday, A., Messner, J. & Thier, P. A loss of a velocity-duration trade-off impairs

743 movement precision in patients with cerebellar degeneration. European Journal of

744 Neuroscience 48, 1976-1989 (2018).

745 4 Prsa, M., Dicke, P. W. & Thier, P. The absence of eye muscle fatigue indicates that the
746 nervous system compensates for non-motor disturbances of oculomotor function. Journal of
747 Neuroscience 30, 15834-15842 (2010).

748 5 Barash, S. et al. Saccadic dysmetria and adaptation after lesions of the cerebellar cortex.
749 Journal of Neuroscience 19, 10931-10939 (1999).

750 6 Catz, N., Dicke, P. W. & Thier, P. Cerebellar-dependent motor learning is based on pruning a
751 Purkinje cell population response. Proceedings of the National Academy of Sciences 105,
752 7309-7314 (2008).

753 7 Hopp, J. J. & Fuchs, A. F. The characteristics and neuronal substrate of saccadic eye

754 movement plasticity. Progress in neurobiology 72, 27-53 (2004).

755 8 Prsa, M. & Thier, P. The role of the cerebellum in saccadic adaptation as a window into
756 neural mechanisms of motor learning. European Journal of Neuroscience 33, 2114-2128
757 (2011).

758 9 Straube, A., Fuchs, A. F., Usher, S. & Robinson, F. R. Characteristics of saccadic gain

759 adaptation in rhesus macaques. Journal of neurophysiology 77, 874-895 (1997).

22


https://doi.org/10.1101/2022.01.11.475785
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.11.475785; this version posted January 12, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

760 10 Takagi, M., Zee, D. S. & Tamargo, R. J. Effects of lesions of the oculomotor vermis on eye
761 movements in primate: saccades. Journal of neurophysiology 80, 1911-1931 (1998).

762 11 Xu-Wilson, M., Chen-Harris, H., Zee, D. S. & Shadmehr, R. Cerebellar contributions to

763 adaptive control of saccades in humans. Journal of Neuroscience 29, 12930-12939 (2009).
764 12 Thier, P., Dicke, P. W., Haas, R. & Barash, S. Encoding of movement time by populations of
765 cerebellar Purkinje cells. Nature 405, 72-76 (2000).

766 13 Herzfeld, D. J., Kojima, Y., Soetedjo, R. & Shadmehr, R. Encoding of action by the Purkinje
767 cells of the cerebellum. Nature 526, 439-442 (2015).

768 14 Hong, S. et al. Multiplexed coding by cerebellar Purkinje neurons. Elife 5, 13810 (2016).
769 15 Herzfeld, D. J., Kojima, Y., Soetedjo, R. & Shadmehr, R. Encoding of error and learning to

770 correct that error by the Purkinje cells of the cerebellum. Nature neuroscience 21, 736-743
771 (2018).

772 16 Prsa, M., Dash, S., Catz, N., Dicke, P. W. & Thier, P. Characteristics of responses of Golgi cells
773 and mossy fibers to eye saccades and saccadic adaptation recorded from the posterior

774 vermis of the cerebellum. Journal of Neuroscience 29, 250-262 (2009).

775 17 Churchland, M. M. et al. Neural population dynamics during reaching. Nature 487, 51-56
776 (2012).
777 18 Elsayed, G. F., Lara, A. H., Kaufman, M. T., Churchland, M. M. & Cunningham, J. P.

778 Reorganization between preparatory and movement population responses in motor cortex.
779 Nature communications 7, 1-15 (2016).

780 19 Kaufman, M. T., Churchland, M. M., Ryu, S. I. & Shenoy, K. V. Cortical activity in the null

781 space: permitting preparation without movement. Nature Neuroscience 17, 440-448,

782 doi:10.1038/nn.3643 (2014).

783 20 Vyas, S., O’Shea, D. J., Ryu, S. . & Shenoy, K. V. Causal role of motor preparation during

784 error-driven learning. Neuron 106, 329-339. e324 (2020).

785 21 Cunningham, J. P. & Byron, M. Y. Dimensionality reduction for large-scale neural recordings.
786 Nature neuroscience 17, 1500-1509 (2014).

787 22 Ebitz, R. B. & Hayden, B. Y. The population doctrine in cognitive neuroscience. Neuron 109,
788 3055-3068 (2021).
789 23 Gallego, J. A, Perich, M. G., Miller, L. E. & Solla, S. A. Neural manifolds for the control of

790 movement. Neuron 94, 978-984 (2017).

791 24 Markanday, A., Inoue, J., Dicke, P. W. & Thier, P. Cerebellar complex spikes multiplex

792 complementary behavioral information. PLoS Biology 19, 3001400 (2021).

793 25 Kase, M., Miller, D. C. & Noda, H. Discharges of Purkinje cells and mossy fibres in the

794 cerebellar vermis of the monkey during saccadic eye movements and fixation. The Journal of
795 physiology 300, 539-555 (1980).

796 26 Ohtsuka, K. & Noda, H. Burst discharges of mossy fibers in the oculomotor vermis of

797 macaque monkeys during saccadic eye movements. Neuroscience research 15, 102-114
798 (1992).

799 27 Sussillo, D., Churchland, M. M., Kaufman, M. T. & Shenoy, K. V. A neural network that finds a
800 naturalistic solution for the production of muscle activity. Nature neuroscience 18, 1025-
801 1033 (2015).

802 28 Albus, J. S. A theory of cerebellar function. Mathematical biosciences 10, 25-61 (1971).
803 29 Ito, M. Neural design of the cerebellar motor control system. Brain research 40, 81-84

804 (1972).

805 30 Marr, D. & Thach, W. T. in From the Retina to the Neocortex 11-50 (Springer, 1991).

806 31 Ito, M., Sakurai, M. & Tongroach, P. Climbing fibre induced depression of both mossy fibre
807 responsiveness and glutamate sensitivity of cerebellar Purkinje cells. The Journal of

808 physiology 324, 113-134 (1982).

809 32 Junker, M. et al. Learning from the past: A reverberation of past errors in the cerebellar
810 climbing fiber signal. PLoS biology 16, €2004344 (2018).

23


https://doi.org/10.1101/2022.01.11.475785
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.11.475785; this version posted January 12, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

811 33 Soetedjo, R., Kojima, Y. & Fuchs, A. F. Complex spike activity in the oculomotor vermis of the
812 cerebellum: a vectorial error signal for saccade motor learning? Journal of neurophysiology
813 100, 1949-1966 (2008).

814 34 Tanaka, H., Ishikawa, T. & Kakei, S. Neural Evidence of the Cerebellum as a State Predictor.
815 Cerebellum (London, England) 18, 349-371, doi:10.1007/s12311-018-0996-4 (2019).

816 35 Semedo, J. D., Zandvakili, A., Machens, C. K., Byron, M. Y. & Kohn, A. Cortical areas interact
817 through a communication subspace. Neuron 102, 249-259. e244 (2019).

818 36 Ohtsuka, K. & Noda, H. Discharge properties of Purkinje cells in the oculomotor vermis

819 during visually guided saccades in the macaque monkey. Journal of Neurophysiology 74,
820 1828-1840 (1995).

821 37 Jorntell, H. & Ekerot, C.-F. Properties of somatosensory synaptic integration in cerebellar
822 granule cells in vivo. Journal of Neuroscience 26, 11786-11797 (2006).

823 38 Knogler, L. D., Markov, D. A., Dragomir, E. I., Stih, V. & Portugues, R. Sensorimotor

824 Representations in Cerebellar Granule Cells in Larval Zebrafish Are Dense, Spatially

825 Organized, and Non-temporally Patterned. Current Biology 27, 1288-1302,

826 doi:https://doi.org/10.1016/j.cub.2017.03.029 (2017).

827 39 Wagner, M. J. et al. Shared Cortex-Cerebellum Dynamics in the Execution and Learning of a
828 Motor Task. Cell 177, 669-682.e624, doi:https://doi.org/10.1016/j.cell.2019.02.019 (2019).
829 40 Lanore, F., Cayco-Gajic, N. A., Gurnani, H., Coyle, D. & Silver, R. A. Cerebellar granule cell
830 axons support high-dimensional representations. Nature Neuroscience 24, 1142-1150,

831 do0i:10.1038/s41593-021-00873-x (2021).

832 41 Bechert, K. & Koenig, E. A search coil system with automatic field stabilization, calibration,
833 and geometric processing for eye movement recording in humans. Neuro-ophthalmology 16,
834 163-170 (1996).

835 42 Judge, S. J.,, Richmond, B. J. & Chu, F. C. Implantation of magnetic search coils for

836 measurement of eye position: An improved method. Vision Research 20, 535-538,

837 doi:https://doi.org/10.1016/0042-6989(80)90128-5 (1980).

838 43 Arnstein, D., Junker, M., Smilgin, A., Dicke, P. W. & Thier, P. Microsaccade control signals in
839 the cerebellum. Journal of Neuroscience 35, 3403-3411 (2015).

840 44 Bell, C. C. & Grimm, R. Discharge properties of Purkinje cells recorded on single and double
841 microelectrodes. Journal of Neurophysiology 32, 1044-1055 (1969).

842 45 Latham, A. & Paul, D. Spontaneous activity of cerebellar Purkinje cells and their responses to
843 impulses in climbing fibres. The Journal of Physiology 213, 135-156 (1971).

844 46 McDevitt, C. J., Ebner, T. J. & Bloedel, J. R. The changes in Purkinje cell simple spike activity
845 following spontaneous climbing fiber inputs. Brain research 237, 484-491 (1982).

846 47 Markanday, A. et al. Using deep neural networks to detect complex spikes of cerebellar
847 Purkinje cells. Journal of neurophysiology 123, 2217-2234 (2020).

848 48 Miles, F., Fuller, J., Braitman, D. & Dow, B. Long-term adaptive changes in primate

849 vestibuloocular reflex. llI. Electrophysiological observations in flocculus of normal monkeys.
850 Journal of Neurophysiology 43, 1437-1476 (1980).

851 49 Van Kan, P. L., Gibson, A. R. & Houk, J. C. Movement-related inputs to intermediate

852 cerebellum of the monkey. Journal of neurophysiology 69, 74-94 (1993).

853 50 Hastie, T., Tibshirani, R. & Friedman, J. H. The elements of statistical learning : data mining,
854 inference, and prediction. 2nd edn, (Springer, 2009).

855

856

857

24


https://doi.org/10.1101/2022.01.11.475785
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.11.475785; this version posted January 12, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

858

859

860

861

862

863

864

865

866

867

25


https://doi.org/10.1101/2022.01.11.475785
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.11.475785; this version posted January 12, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

868 Main figures and legends
869

a — —
% undershoot §° undershoot
2| ——>e 2 . —
5 overshoot % — overshoot

OR

=T undershoot =
3 Cereenrreenssnminns £ | undershoot
=% overshoot . E_ ...................... . -
| =< 5 overshoot
o o -

b Left centrifugal Right centripetal

early late  early late

=

g

=T

£%

&8

§ o) 2 deg

20 ms

Duration
[ms]

|
n 15 ..»._-\. A e St sl 7 i R Tt N e
a S RN RS P u’)“%’ s ;\Vvﬁ(fﬁ' S S i T
= D
ag
g=
0
100 200 200 300
Trials Trials
d e f
— — ——n !
* 65
800 16
o
7 700 ss | _
] 7 g
> E = 15 1
= c @
o [+] =
E’ 600 g £
; : £
o 45
500 & 14 1
400 35 4 +
T T T T T T T T T
D P o F R A 0 8 F @ D 0 P
i i e i A1 ¥
@\'&’& v®\'\t\°°? Q-}é\;&é‘ Q,Q’{:\\Qé Pl *‘(,f;&-"o’ P \390? <, P \;Q&
870 g & & & & & g &

871 Figure 1. Repetitive saccade task induces a gradual decline in saccade velocity. a Behavioral task. Monkeys
872 were trained to make visually guided saccades to targets, either in left or right directions, in a repetitive manner.
873 Solid arrows represent all center-out (centrifugal) saccades which were rewarded if the eyes landed within the
874 2x2 deg fixation window (solid and dashed squares). Saccades made back to the central fixation dot, centripetal
875 saccades (dashed arrows), were not rewarded. Due to natural variability in eye movements, both centrifugal and
876 centripetal saccades could either overshoot or undershoot the target leading to errors in leftward (orange arrows)
877 or rightward (green arrows) direction. b Gradual decay of peak velocity (upper panels) in centrifugal (left) and
878 centripetal (right) saccades (Wilcoxon signed-rank test, centrifugal: p<0.001, Z=4.4; centripetal: p<0.001, Z=4.4)
879 is parallel by an increase in saccade duration (middle panels, Wilcoxon signed-rank test, centrifugal: p<0.001, Z=
880 -3.7; centripetal: p<0.001, Z=-4.8) to stabilize amplitudes (lower panels, Wilcoxon signed-rank test, centrifugal:
881 p=0.89, Z= -0.1; centripetal: p=0.95, Z=0.1) within a single session. Each dot represents data from a single trial.
882 Trends in the data are highlighted by fitting second-order polynomial fits (dark yellow lines) to the data. c
883 Comparison of horizontal eye position and velocity profiles of early (i.e., first 30 trials, centrifugal: dark blue;
884 centripetal: dark red) and late (i.e., last 30 trials, centrifugal: light blue; centripetal: light red) trials chosen from the
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885 experimental session in c. d, e, f Population analysis of 117 behavioral sessions. Box plots showing overall
886 reduction of peak velocity (Wilcoxon signed-rank test, centrifugal: p<0.001, Z=8.6; centripetal: p<0.001, Z=9.3) in
887 late trials (lighter colors) as compared to early (darker colors) ones which is compensated by the upregulation of
888 saccade duration(Wilcoxon signed-rank test, centrifugal & centripetal: p<0.001, Z= -9.3) during the late trials in
889 order to maintain saccade amplitude around 15 deg (Wilcoxon signed-rank test, centrifugal: p=0.57, Z= 0.6;
890 centripetal: p=0.01, Z=2.5). Each data point corresponds to the mean value of the early (first 30, dark-colored
891 circles) and late (last 30, light-colored circles) centrifugal (blue circles) and centripetal saccades (red circles) of
892 an individual session. Significant differences are highlighted by asterisks. Data are mean+SEM.
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907 Figure 2. Encoding of saccade kinematics by mossy fibers (MFs). a Raster plots (up) and average firing
908 histogram (bottom) of a representative burst-tonic (purple), short-lead burst (yellow) and long-lead burst
909 (turquoise) MF unit. Solid gray lines between upper and lower panels are the mean horizontal eye position traces.
910 Data are aligned to saccade onset. b Proportion of MF units in each category. c, d, e Population response of
911 burst-tonic (purple), short-lead burst (yellow) and long-lead burst (turquoise) MFs to high and low velocity
912 saccades (see insets for average velocity profiles), represented by lighter and darker shades, respectively. f, h,
913 Average peak firing rate as a function of saccade peak velocny (bin size=50 deg/s) for each MF category Burst-
914 tonic (f): p=0.016, R?=0.83; Short-lead burst (h): p=0.005, R?=0.9; Long-lead burst (j): p=0.006, R?=0.9. g,
915 Average burst offset relative to saccade onset as a function of saccade duration (calculated from velocity blns) for
916 each MF category Burst-tonic (g): p=0.008, R’=0.88; Short-lead burst (i): p=0.0005, R%=0.96; Long-lead burst
917 (K): p=0.0005, R?=0.97. Solid gray lines represent the linear regression fits. Dark and light-colored bins
918 correspond to the high and low peak velocity bins, respectively, for which population responses in c, d and e are
919 plotted for comparison. Data are mean+SEM.
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926 Figure 3. Encoding of saccade kinematics by simple spikes (SSs) of Purkinje cells (PCs). a Scatter plot of the
927 first two principal components of SS responses. Classification of PCs into four response categories: burst (blue),
928 pause (orange), burst-pause (green) and pause-burst (red), separated by decision boundaries (dotted black
929 lines). Each data point corresponds to a PC's SS response in one of the two directions. b, ¢ Saccade onset-
930 aligned average SS responses of exemplary units of the categories (large black circles in a) and the proportion of
931 units in each category. d, e, f, g SS population response (baseline corrected, mean+SEM) of burst (blue), pause
932 (orange), burst-pause (green) and pause-burst (red) units to high and low velocity saccades (see insets for
933 average velocity profiles), represented by lighter and darker shades, respectively. Data are aligned to saccade
934 onset. h, i, j, k Baseline corrected, average maximum (h, j) and minimum (i,k) firing rates as a function of
935 saccade peak velocity (bin size=50 deg/s) for each category. Burst (h): p=0.041, R?=0.69; Pause (i): p=0.0065,
936  R?=0.87; Burst-pause (j), p=0.00078, R°=0.95; Pause-burst (k): p=0.0062, R?*=0.87. |, m, n, o Average peak (for
937 burst and burst-pause units; I, n) and trough (for pause and pause-burst units; m, o) timing relative to saccade
938 onset as a function of saccade duration (calculated from velocity bins) for each PC category. Burst (I): p=0.065,
939  R®=0.61; Pause (m): p=0.087, R?*=0.56; Burst-pause (n): p=0.00015, R?=0.98; Pause-burst (0): p=0.0059,
940 R?=0.88. Solid gray lines represent the linear regression fits. Dark and light-colored bins correspond to the high
941 and low peak velocity bins, respectively, for which population responses in d, e, f and g are plotted. Data are
942 mean+SEM.
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944
945 Figure 4. Manifolds identified in MF and PC-SS activity perform multi-dimensional encoding of eye movements. a

946 Correlated changes in PV and duration when PV is used as the only control parameter. b 2D plot of the first two
947 dimensions in the MF manifold. Triangles and circles mark the saccade onsets and 250 ms before saccade
948 onsets, respectively. Arrows show the direction of rotation. ¢ The first two dimensions in b plotted in time. d,e
949 Same as b,c for PCs. f Isolated changes in saccade PV with the duration kept constant. g,h Isolated PV-
950 dependent changes in the MF manifold computed from the rate models parametrized by PV but with fixed
951 duration. i,j Same as g,h for PCs. k Isolated changes in saccade duration with constant PV. |I-o Same as g,h and
952 i,j for duration change. p Left: MF manifold size versus rotation speed along the MF manifold varying with the
953 correlated (green; a) and independent (orange and blue; f,k) change of PV and duration. Colors are as the color
954 bars in c,h,m. Right: Slope angle of the lines in Left. In computing the angles, the x- and y-coordinates (manifold
955 size and rotation speed) are normalized by the standard deviation of the correlated change case. T-val
956  (Correlated, PV) =17.97; p=1.27x10%, T-val (PV, Duration) =-30.37; p=2.44x10"’, T-val (Correlated vs Duration)
957  =-19.18; p=4.46x10®, q Same as | for PCs. T-val (Correlated, PV) =19.75; p=5.26x10**, T-val (PV, Duration) =-
958 47.18; p=1.36x10'92, T-val (Correlated vs Duration) =-48.13; p=8.24x10'94. Data are meantSEM.
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961 Figure 5. Complex spike (CS)-driven plasticity of PC manifolds is error-state dependent and predicts eye
962 movement change. a Two different types of eye movement errors and CS firing in PCs encoding the errors. Left:
963 An undershooting eye movement causes an outward error (orange) and CS firing in a population of PCs with the
964 same CS-ON direction (red) but not in the other, CS-OFF PCs (grey). Right: Same as Left for an overshooting
965 saccade causing an inward error (cyan). b Left: PC manifolds reflecting the combined influence of outward error-
966 encoding CS firing pattern in PCs (red and grey circles in a, Left) on subsequent trials. Note that, in simulating
967 error trials by including all CS trials from CS-ON PCs, we assume that PCs are reported an error by CS firing,
968 irrespective of the actual presence of an error. Right: Same as Left for the inward error. ¢ Top: Manifold size
969 versus rotation speed after the outward (red) and inward (blue) error-encoding CS-trials, and after no-CS trials
970 (grey). Brightness represents PV from 500 deg/s (brightest) to 660 deg/s (darkest). Bottom: Comparison of
971 normalized slope angles for each condition. T-val (No-CS, Outward) =6.38; p=9.96x10'1°, T-val (Outward,
972  Inward)=-29.13; p=3.72x10"%, T-val (No-CS, Inward)=-28.06; p=4.24x10°?. e Top: Average saccade velocity
973 profiles in the CS (black) and post-CS trials (colored) for the simulated inward (Left) and outward (Right) errors.
974 For visual clarity, colored lines represent the effect of five CSs in CS-ON cells. Bottom: Average eye velocity
975 change from the CS to post-CS trials. Data are mean+SEM. *: p<0.05.
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985 Figure 6. Linear feed-forward network (LFFN) model from MFs to PCs. a Left: Schematic diagram showing LFFN
986 for MF-to-PC firing rate transformation. Right: weight matrix computed from the data. b Goodness of fit (R?) for
987 individual PCs. The horizontal and vertical bar represents the median and from the first to third quantile,
988 respectively. Colored circles correspond to examples shown in c. ¢ Firing rates of example PCs (black, Top and
989 Bottom) and LFFN predictions (color). The baselines are subtracted in the PV-independent component (Left). d
990 LFFN prediction of PC manifolds in Fig. 4d. e Schematic diagram of the LFFN model for MF manifold-to-PC
991 manifold transformation. f Examples of the predicted PC manifold from e when MF manifold dimension is dur=2
992 (Left), 4 (Middle), and 20 (Right). g Goodness of fit for the predicted PC manifold to the data versus the input MF
993 manifold dimensions dur. Dots represent examples in f. Data are mean+SEM.
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1019 Supplementary figure 1. Linear encoding of microsaccades’ kinematics by mossy fibers (MFs). a, b, ¢
1020 Population response of burst-tonic (BT, purple), short-lead burst (SL, yellow) and long-lead burst (LL, green) MFs
1021 to saccades of different peak velocities (PV, see insets for average velocity profiles), represented by different
1022 shades. d, e, f Average peak firing rate as a function of saccade peak velocity (bin size=20 deg/s) for each MF
1023  category. Burst-tonic: p=0.012, R?=0.85; Short-lead burst: p=0.01, R?=0.85; Long-lead burst: p=0.001, R?>=0.95.
1024 g, h, i Average burst offset relative to saccade onset as a function of saccade duration (calculated from velocity
1025 bins) for each MF category. Burst-tonic: p=0.18, R?=0.21; Short-lead burst: p=0.01, R?=0.02; Long-lead burst:
1026 p=0.22, R°=0.44. Solid gray lines represent the linear regression fits. Dark and light-colored bins correspond to
1027 the high and low peak velocity bins, respectively, for which population responses in a, b and c are plotted for
1028 comparison. Data are mean+SEM.
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1034 Supplementary figure 2. MF and PC units appear continuous in their distributions. a Coefficients of MFs for the
1035 first (Left) and second (Right) dimension in the MF manifold. Horizontal bar: median. Vertical bar: Range from the
1036 first to third quantile. b 2D scatterplot for the coefficients in a. Note a nearly continuous distribution of data points
1037 with significant overlaps between BT, SL and LL MF types (denoted by colors). C Average firing response of all
1038 PCs categorized into burst (blue), pause (orange), burst-pause(green) and pause-burst (red) types by threshold-
1039 based labeling (dashed lines) and linear discriminant analysis (LDA). Purple dashed lines indicate the average
1040 response of those PCs units which could not be classified into any of the four categories by the threshold-based
1041 method. d 2D scatterplot of the coefficients of first two principal components identified by the PCA for individual
1042 PC units recorded for centrifugal (CF, circles) and centripetal (CP, triangles) saccades. Dashed lines indicate the
1043 decision boundaries estimated by the LDA. Colors represent the PC category. Note, the overlap between
1044 different categories.
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1048
1049 Supplementary figure 3. MF and PC-SS linear firing rate models. a Schematic illustration showing the steps
1050 involved in the construction of a rate model for individual (MF and PC) units/neurons using PV as the control
1051 kinematic parameter for the model. From the time-dependent firing rate estimations for individual trials of a given
1052 unit (Left), we create the linear regression model of movement kinematics, such as PV, versus firing rates at each
1053 time point (Middle). For example, given a linear dependence of MF or PC-SS firing rates on saccade PV, a
1054 randomly chosen saccade with high PV will be associated with higher firing rates (fast trial, dark green) as
1055 compared to a low PV saccade (slow trial, light green) and the difference between firing rates will be more
1056 pronounced during the initial phase of a saccade. In pre- and post-saccadic periods, where fast and slow trials
1057 can no longer be differentiated by PV, the differences in firing rates will also eventually disappear. There the
1058 slopes of regression will be much steeper at time points that fall within the peri-saccadic period. From the center
1059 (mean) and slope of the result, we obtain the kinematics-independent and dependent components (Right). b,c
1060 Top: Heat-map showing PV-independent (Ro) and dependent components (dryR) for individual MF (b) and PC
1061 models (c). Bottom: Population averages. The baseline firing rates are subtracted. d Pseudo-population average
1062 firing rate for different PVs, computed from MF models in b. A red arrow indicates the point of burst offset. e
1063 Average peak firing rate (Left) and burst offset time (Right) vs PV from the models and test data. Goodness of fit:
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R? = 0.929+0.005 (Left), 0.887+0.026 (Right). f,g Same plots as d,e for PCs. R? = 0.809+0.023 (Left),
0.619+0.095 (Right). Note that using the PV-and-duration model did not significantly improve the predictions in
e,g: peak firing rate vs PV, MFs: R?=0.929 + 0.005, PCs: R*=0.791 + 0.017; burst offset vs PV, MFs: R’=0.892 +
0.021; PCs: R°=0.702 + 0.05. Data are mean+SEM.
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1115 Supplementary figure 4. Pseudo-population SS response for CS-ON and CS-OFF population of PCs. a PV-
1116 dependent population average firing rates. The red arrow indicates the point of burst offset. b Average peak firing
1117 rate (Left) and burst offset time (Right) versus PV from the models and test data in CS-OFF direction. Goodness
1118 of fit: R? =0.689+0.051 (Left), 0.433+0.121 (Right). ¢ Same as a, but for CS-ON PCs. d The same plots as b for
1119 CS-ON PCs. R? = 0.018+0.033 (Left), 0.092+0.088 (Right). The baseline rates are subtracted in all data. e,f
1120 Variance explained by each dimension in the PCA analysis of the PV-dependent components of the MF (e) and

1121 PC-SS models (f). Components with >78% are marked in red. Data are mean+SEM.
1122
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1125 Supplementary figure 5. Step-by-step procedure for identifying manifolds. a Average of all the PV-independent
1126 components of all MF units (parameter: PV), which are subjected to PCA in the first step. b The first two principal
1127 components (or dimensions, red dots) of the PV-independent components explains a dominant fraction of cell-to-
1128 cell variability. ¢ Matrix perturbation analysis (see Methods and Supplementary methods) computes PV-
1129 dependent changes in the first two dimensions, plotted against time. d Limit cycle-like 2D MF manifolds are
1130 identified by plotting the first two dimensions against each other for different values of PV (shades of green). Note
1131 how the manifolds increase in size, depicted by the separation of curves, with increments in PV, both before and
1132 after saccade onset (triangles). Arrows indicate the direction of rotation. e-h Same plots as a-d for PCs. Here,
1133 four dimensions explain a dominant fraction of cell-to-cell variability. Note how the differences in manifold, in the
1134 first two dimensions, are limited to periods after saccade onset, whereas in the third and fourth dimensions
1135 changes also appear before saccade onset. Note that the trajectories for the third and fourth dimensions (h,
1136 bottom) are plotted only until 50 ms after saccade onset to highlight the changes occurring before saccade onset.
1137 i Comparison of the eigenvalues from PCA (solid) of the PC-SS data and the prediction of the matrix perturbation
1138 theory (dotted). j Contribution of the original PCA eigenvectors (column) to their PV-dependent perturbative
1139 changes in each dimension (row), based on the PC-SS data. The coefficients (color) are normalized by NY2
1140 where N=151 is a number of PCs. k Fourth principal component of the PC-SS data when PV=500°/s (black
1141 solid), approximation only by the direct projection (dotted; see Supplementary Methods), approximation with an
1142 additional indirect projection from the eigenvector perturbation shown in j (red). i Accuracy of the approximated
1143 PCA components from the PC-SS data with different PVs, with only the direct projection (Left) and direct and
1144 indirect projection (Right).
1145
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1147

1148 Supplementary figure 6. MF and PC-SS firing rate models and manifolds for different eye movement directions.
1149 a,b 2D plots of the MF manifolds from the left- and right-directed saccades. Insets show the population average
1150 of the PV-independent components of all MF firing rate models (control parameter: PV). ¢ Canonical correlation
1151 of each dimension in the MF manifold between the left and right directions. Dotted line represents
1152 correlation=0.9. d-f Same plots as a-c for PC-SS manifolds. g-h 2D manifolds of PC-SSs separately for a
1153 population of CS-ON and CS-OFF PCs. Note that the similarity to d-f is due to that the CS-ON direction is mostly
1154
1155
1156
1157
1158
1159
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1162 Supplementary figure 7. CSs influence the PC-SS manifolds differently depending on the type of error, even if
1163 the error direction is the same. a Up: Manifolds when outward (left) and inward (right) errors occurred in trial ‘n’
1164 accompanied by CS firing in the post-saccadic period. Down: Manifolds in the subsequent trial ‘n+1". Note how
1165 the manifolds in trial n+1 change differently for outward and inward errors, similar to those for simulated error
1166 trials shown in Fig. 5b. Filled triangles indicate the saccade onsets and the black arrows indicate the direction of
1167 rotation for all manifolds shown. b Manifolds for simulated post-inward and post-outward error trials controlled for
1168 error direction (i.e., Leftward errors). ¢ Rotation speed as a function of manifold size for simulated post-inward
1169 (blue), post-outward (orange) and no-CS control (gray) trials. d A comparison of normalized slope angles for
1170 each condition. Note that the error-type specific changes in manifolds are preserved, i.e., an outward error-
1171 related increase in manifold size (indicated by the relatively flatter slope of the orange curve as compared to No-
1172 CS) and inward-error related change in rotation speed (indicated by relatively steeper slope as compared to the
1173 No-CS condition), despite the error vector pointing in the same left direction. T-value (No-CS, Outward) =5.93,
1174  p=9.88x10; T-value (Outward, Inward) = -28.28, p=1.59x10"®?; T-value (No-CS, Inward) =-23.03, p=1.41x10".
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1190 Supplementary figure 8. Linear feed-forward network (LFFN) model for MF-to-PC transformation with PV and
1191 duration dependence. a Weight matrix of the MF-to-PC network model. b Goodness of fit for individual PCs.
1192 Colored circles represent the examples in c. Horizontal bar: Median. Vertical bar: Range from the first to third
1193 quantile. ¢ PV-independent (Left), PV- (Middle), and duration-dependent component of example PC-SS rate
1194 models (black) and prediction by LFFN (color). The baseline rates are subtracted in the PV-independent
1195 components. d A schematic illustration of the communication subspace model of MF-to-PC transformation. A
1196 communication subspace, of the dimensionality d, limits the feedforward network using all the dimensions in the
1197 MF rates to predict PC-SS rates. e Goodness of fit for model prediction of PC-SS rates. Red dots represent d=2,
1198 4, and 20. Data are mean+SEM.
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