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9 Abstract

10 To accurately predict rewards associated with states or actions, the variability of observations has to be 

11 taken into account. In particular, when the observations are noisy, the individual rewards should have less 

12 influence on tracking of average reward, and the estimate of the mean reward should be updated to a 

13 smaller extent after each observation. However, it is not known how the magnitude of the observation 

14 noise might be tracked and used to control prediction updates in the brain reward system. Here, we 

15 introduce a new model that uses simple, tractable learning rules that track the mean and standard 

16 deviation of reward, and leverages prediction errors scaled by uncertainty as the central feedback signal. 

17 We provide a normative analysis, comparing the performance of the new model with that of conventional 

18 models in a value tracking task. We find that the new model has an advantage over conventional models 

19 when tested across various levels of observation noise. Further, we propose a possible biological 

20 implementation of the model in the basal ganglia circuit. The scaled prediction error feedback signal is 

21 consistent with experimental findings concerning dopamine prediction error scaling relative to reward 

22 magnitude, and the update rules are found to be consistent with many features of striatal plasticity. Our 

23 results span across the levels of implementation, algorithm, and computation, and might have important 

24 implications for understanding the dopaminergic prediction error signal and its relation to adaptive and 

25 effective learning.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2022. ; https://doi.org/10.1101/2022.01.10.475599doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.10.475599
http://creativecommons.org/licenses/by/4.0/


3

26 Author Summary

27 The basal ganglia system is a collection of subcortical nuclei in the mammalian brain. This system and its 

28 dopaminergic inputs are associated with learning from rewards. Here, dopamine is thought to signal errors 

29 in reward prediction. The structure and function of the basal ganglia system are not fully understood 

30 yet—for example, the basal ganglia are split into two antagonistic pathways, but the reason for this split 

31 and the role of the two pathways are unknown. Further, it has been found that under some circumstances, 

32 rewards of different sizes lead to dopamine responses of similar size, which cannot be explained with the 

33 reward prediction error theory. Here, we propose a new model of learning in the basal ganglia—the scaled 

34 prediction error model. According to our model, both reward average and reward uncertainty are tracked 

35 and represented in the two basal ganglia pathways. The learned reward uncertainty is then used to scale 

36 dopaminergic reward prediction errors, which effectively renders learning adaptive to reward noise. We 

37 show that such learning is more robust than learning from unscaled prediction errors and that it explains 

38 several physiological features of the basal ganglia system.
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39 Introduction

40 For any organism, better decisions result in better chances of survival. Reward prediction is an important 

41 aspect of this—for example, if an organism can predict the size of a food reward associated with some 

42 behavior, it can decide whether it is worth to engage in that behavior or not. Reward predictions are 

43 typically based on values learned from previous reward observations. An extensive literature describes the 

44 role of reward prediction in behavior, as well as the related neural mechanisms (1).

45 Piray and Daw (2) argue that when trying to predict rewards, the organism faces two challenges. The first 

46 challenge is the dynamic nature of the environment: reward sizes and contingencies might change over 

47 time, in ways that cannot be predicted. Such genuine changes in the environment can be quantified by the 

48 typical rate of change, which is called process noise. The second challenge is observation noise: even if 

49 the environment is stable, rewards will vary from experience to experience. This could be due to the 

50 random nature of the environment, but also to variability in the organism's own behavior, or to noise in 

51 the organism's perception and evaluation systems.

52 The stock market serves as a nice example of the two types of noise: consider the day-to-day change of a 

53 stock price as a reward signal (if the stock price rises from 20 GBP to 21 GBP overnight, then the 

54 shareholders win 1 GBP in that transition). Most of the variability of that signal will be due to random 

55 fluctuations—this can be classified as observation noise. However, a part of the signal's variability will 

56 reflect genuine lasting changes in the stock prize, for example a rise in price when a new product is 

57 released. This part should be classified as process noise.

58 What is the best reward prediction method an organism could use when facing process noise and 

59 observation noise? Similar problems occur in engineering, for example in the context of navigation. 

60 There, a very versatile solution has been found. That solution, called the Kalman filter (3), is very widely 

61 used—it even played a role in the moon landing (4). The Kalman filter describes how estimates of a 

62 variable must be updated when new noisy observations of that variable become available. For certain 
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63 types of signals, it can be shown that the Kalman filter is indeed the optimal method for prediction in the 

64 presence of noise. The method has proven useful not only in engineering, but also as a model of neural 

65 and behavioral processes (5-8).

66 However, if one wants to use a Kalman filter to predict rewards, one runs into a problem: the Kalman 

67 filter requires estimates of the magnitudes of both process noise and observation noise as parameters. 

68 Where to take these values from? An organism might either use fixed (perhaps genetically determined) 

69 values or estimate the values somehow. The former option bears a risk: if the world changes, the quality 

70 of the organism's predictions might decline strongly. The latter option raises the next question: how is this 

71 estimation done?

72 Solutions for this have been proposed. For example, Piray and Daw (9) present a model that tracks both 

73 process noise and observation noise alongside reward, allowing for adaptive Kalman filtering. However, 

74 their model (a variant of the particle filter) is targeted at the computational level, i.e., it is set up to 

75 investigate how the simultaneous adaptation to two noise types of noise affects learning. Questions 

76 concerning the underlying biological mechanisms remain largely unaddressed. The model of Piray and 

77 Daw (9) is hence not suitable to describe biological learning on the mechanistic or the algorithmic level.

78 This leads us to the central question of this paper: how might organisms track observation noise in a 

79 biologically plausible, computationally simple way, and use it for adaptive reward prediction? We 

80 propose that observation noise is tracked in the basal ganglia, and that it is used to improve learning 

81 performance by normalizing reward prediction errors.  This proposal is based on the observation of 

82 dopamine activity patterns consistent with normalized prediction errors (10), as well as on previous 

83 suggestions that reward uncertainty might be represented in the basal ganglia (11, 12). Such scaling of 

84 prediction errors is conceptually related to scaling mechanisms that occur in free energy models, as well 

85 as to techniques such as adaptive momentum that are used to improve fitting algorithms (see Discussion 

86 for details). 
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87 Below, we give a detailed analysis of how the basal ganglia circuit might carry out the computations 

88 necessary to track and utilize reward observation noise. To provide some context for this analysis, we 

89 now move on to a brief review of the main features of that part of the brain. 

90 Fig 1 shows a highly simplified version of the cortico-basal-ganglia-thalamic circuit, with three important 

91 brain regions—the cortex, the striatum, and the thalamus—arranged along the vertical axis.

92

93

94 Fig 1. The simplified basal ganglia circuit. Selected nuclei and connections are shown as circles and 

95 arrows. Green connections correspond to the direct pathway; red connections correspond to the indirect 

96 pathway. Dopamine projections are shown in blue.

97

98 The striatum is the largest nucleus within the basal ganglia system. It includes two populations of medium 

99 spiny projection neurons (SPNs): the D1 and the D2 population (D1 and D2 are the types of dopamine 

100 receptors that the corresponding neurons express). This division of the striatum gives rise to two parallel 

101 descending pathways called the direct/Go and the indirect/No-go pathway, shown in green and red 
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102 respectively in Fig 1 (13-15). The cortical inputs to these two pathways are modulated by the strengths of 

103 the synapses between cortex and the striatal populations, collectively labeled 𝐺 and 𝑁 in Fig 1.

104 The thalamus receives the output of the basal ganglia circuit. The effects of the direct and the indirect 

105 pathway on the thalamus are differential: the direct pathway effectively excites the thalamus; the indirect 

106 pathway effectively inhibits it. Note that the projections from the striatum to the thalamus in Fig 1 are 

107 abstractions—in the brain, there are several intermediate nuclei between the striatum and the thalamus.

108 The final key element of the basal ganglia system are the dopamine projections from midbrain regions 

109 that target the striatal D1 and D2 populations. The effects of dopamine release on the striatal populations 

110 are twofold: dopamine modulates activity, but also triggers plasticity. The direction of those effects 

111 depends on the receptor type of the target neuron: dopamine increases excitability and potentiates 

112 synapses in the D1 population while it decreases excitability and depresses synapses in the D2 population 

113 (13-15). 

114 Overall, we may view the basal ganglia circuit as two parallel descending pathways that converge on the 

115 level of the thalamus, where they have opposite effects. Those pathways are differentially modulated by 

116 dopamine, which also controls synaptic plasticity between the cortex and the striatum.

117 Concerning the function of the elements of this model of the basal ganglia, we follow a popular view 

118 often used in modelling (11, 16, 17): the cortex supplies contextual information, i.e., cues, stimuli, 

119 sensory data or information on the state of the environment; the other populations (D1, D2 and Thalamus) 

120 encode actions. Each action is represented by a distinct subpopulation of each nucleus, and the 

121 connectivity between the nuclei is action specific. For example, assume there is a subpopulation in D1 

122 associated with pressing a lever. A corresponding subpopulation could be found in D2 as well as in the 

123 thalamus, which is known to relay motor commands to the relevant cortical areas (18). The two striatal 

124 subpopulations associated with the lever press would then project exclusively to the lever-press 

125 subpopulation in the thalamus, together forming what is often called an action channel (19). Learning is 
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126 assumed to take place at the interface between the cortex and the striatum (which, in this model, can be 

127 considered a state-action mapping). Learning is implemented through dopamine-mediated plasticity of 

128 cortico-striatal synapses. These synapses within an action channel are assumed to store information on the 

129 action value (the mean reward associated with the action). Action values determine the relative 

130 activations of action channels (i.e., the difference in activation between the Go- and the No-go pathways), 

131 and hence contribute to action selection at the level of the thalamus. It has been proposed (11) that 

132 cortico-striatal synapses additionally encode reward uncertainty (in the sum of the weights in the Go- and 

133 the No-go pathways), as we explain in detail below.

134 In the following sections, we present and analyze a model—the scaled prediction error (SPE) model—that 

135 tracks observation noise and uses it for adaptive reward prediction. In the first part of the paper, we 

136 introduce the model and test its performance. There, we show that it outperforms the classic Rescorla-

137 Wagner (RW) model of associative learning (20) which does not adapt to observation noise, using 

138 simulations of a reward prediction task. In the second part of the paper, we discuss neural mechanisms 

139 that might implement the SPE model in the basal ganglia circuit. We first focus on dopamine signals, and 

140 then move on to the mechanisms behind tracking observation noise and scaling prediction error.
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141 Results

142 The model

143 The SPE model is a model of reward prediction—it predicts the magnitude of the next reward based on 

144 previous reward observations. It can be understood as approximate Bayesian inference with respect to a 

145 particular model of the reward generation process. This model is given by

146 𝑟𝑡 ∼ 𝑁(𝜇, 𝜎)

147 Eq. 1

148 with 𝑟𝑡 the reward in trial 𝑡, 𝜇 the mean reward and 𝜎 the reward observation noise. The SPE model can 

149 be derived by approximating Bayesian inference of the parameters 𝜇 and 𝜎 from the observed rewards 

150 (we show this derivation in Appendix S1). It does this by maintaining estimates 𝑚 and 𝑠 of those 

151 parameters, which it updates whenever a new reward is observed. Though the model is designed to infer 

152 the mean and standard deviation of stationary reward processes, it can also be applied to reward processes 

153 with a drifting mean (i.e., to processes with non-zero process noise). We show this below in our 

154 simulations.

155 The SPE update rules are

156 𝛿 =
𝑟𝑡 ― 𝑚𝑡―1

𝑠𝑡―1

157 Eq. 2

158 𝑚𝑡 = 𝑚𝑡―1 + 𝛼𝑚𝛿

159 Eq. 3

160 𝑠𝑡 = 𝑠𝑡―1 + 𝛼𝑠(𝛿2 ―1).

161 Eq. 4
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162 In these equations 𝛿 is a scaled reward prediction error, while 𝛼𝑚 and 𝛼𝑠 denote the learning rates for the 

163 mean and standard deviation, respectively. We will next show that the equations can indeed recover mean 

164 reward and its standard deviation.

165 Fixed point analysis

166 Do the SPE rules do what they are meant to do? Here, we use a stochastic fixed-point analysis to show 

167 that in theory, 𝑚 and 𝑠 should converge to the mean and the standard deviation of the reward signal. Let 

168 us assume that rewards are indeed generated by sampling from a distribution with mean 𝜇 and standard 

169 deviation 𝜎 (this could be a normal distribution or any other distribution with well defined mean and 

170 standard deviation).

171 We consider a situation in which the learner has already found the correct values of the variables it 

172 maintains, i.e., 𝑚 = 𝜇 and 𝜎 = 𝑠. From there, what are the expected updates? A straightforward 

173 calculation yields

174 𝐸(Δ𝑚) = 𝛼𝑚𝐸(𝑟 ― 𝑚
𝑠 ) = 𝛼𝑚(𝐸𝑟 ― 𝜇

𝜎 ) = 𝛼𝑚(𝜇 ― 𝜇
𝜎 ) = 0

175 Eq. 5

176 𝐸(Δ𝑠) = 𝛼𝑠(𝐸(𝑟 ― 𝑚)2

𝑠2 ― 1) = 𝛼𝑠(𝐸(𝑟 ― 𝜇)2

𝜎2 ― 1) = 𝛼𝑠(𝜎2

𝜎2 ― 1) = 0

177 Eq. 6

178 with 𝐸𝑟 = 𝜇 and 𝐸(𝑟 ― 𝜇)2 = 𝜎2 by definition. We find that the expected change away from (𝑚, 𝑠)

179 = (𝜇,𝜎) is zero, which makes (𝜇, 𝜎) a stochastic fixed-point. We may conclude that in equilibrium, the 

180 rules given in Eq. 2 – 4 should give us unbiased estimates of the reward mean and standard deviation.

181 It can be shown that the SPE model is related to the Kalman filter—it can be viewed as an approximation 

182 to a steady-state Kalman filter, which becomes more accurate if observation noise dominates process 
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183 noise (see Appendix S2 for details). Finally, note that the RW model is a special case of the SPE model 

184 (i.e., if 𝛼𝑆 = 0).

185 Performance

186 How do the SPE rules compare to established rules such as the Rescorla-Wagner model with respect to 

187 accurate reward predictions? To compare the performances of SPE learning and RW learning, we apply 

188 both to a reward prediction task: sequences of rewards are generated according to

189 𝑟𝑡 ∼ 𝑁(𝜇𝑡, 𝜎)

190 𝜇𝑡+1 ∼ 𝑁(𝜇𝑡, 𝜈)

191 In the above equation 𝜈 is the standard deviation of the process noise. Both learners observe the reward 

192 signal and provide reward predictions at every trial. The learners' performance is judged by measuring the 

193 average precision of their predictions.

194 The task is designed to challenge the learners with rewards that change over time, forcing them to 

195 continuously learn. Note that the reward-generating process here is more complex than the generative 

196 model from which SPE learning is derived. This is not a problem—the SPE model is robust with respect 

197 to violation of its assumptions, as we shall see below. Of course, one could derive learning rules tailored 

198 to this reward process. These would involve a representation of the process noise, or volatility. This is not 

199 our goal here. Instead, we are interested in the SPE learning rules as a model of basal ganglia learning and 

200 want to test their performance.

201 We compare the models for different levels of observation noise 𝜎, while keeping the process noise 𝜈 

202 constant at 𝜈 = 1. The results of those comparisons are presented in Fig 2 (see Methods for details of the 

203 implementation).
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204

205 Fig 2. Reward prediction performance of the RW and SPE models. A The first 200 trials of reward 

206 prediction for the RW learner (upper row, orange color) and the SPE learner (lower row, blue color). 

207 The true value (grey line), the observed rewards (grey dots) and the learner's estimate (colored line) are 

208 shown as a function of trial number. Columns correspond to selected levels of observation noise (

209 𝜎 = 1, 5, 15). B Learning performance averaged over trials. We show the logarithm of the mean squared 

210 difference between the mean of the reward distribution and the learner's prediction thereof, as a function 

211 of the observation noise 𝜎. Orange lines correspond to RW learners, the blue line corresponds to a SPE 

212 learner parametrized with 𝛼𝑚 = 1 and 𝛼𝑆 = 0.01. The different shades of orange correspond to different 

213 learning rates, as indicated by the color bar.

214

215 Looking first at the time series in Fig 2A, we find that there is a qualitative difference between the RW 

216 learner in the top row and the SPE learner in the bottom row: as the noise level 𝜎 increases, the RW 

217 learner's predictions increasingly fluctuate, since the reward prediction errors (and hence the updates) 

218 scale proportionally to the amplitude of the observation noise. This is not so for the SPE learner, whose 

219 predictions fluctuate as much for low noise levels as they do for high noise levels.

220

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2022. ; https://doi.org/10.1101/2022.01.10.475599doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.10.475599
http://creativecommons.org/licenses/by/4.0/


13

221 This effect is also visible in the aggregated performance measure, shown in Fig 2B: the mean squared 

222 errors of the learners' predictions grow with observation noise for all learners, but they grow stronger for 

223 the RW learners. We find a very stereotyped effect for the average performance of RW learners: as the 

224 level of noise increases, prediction accuracy does not change much up to a certain point (call this the 

225 plateau) and grows steadily after that point (call this the slope). This is the case irrespective of the 

226 learning rate. Smaller learning rates have a plateau that extends to higher noise levels but also provides a 

227 lower accuracy. The steepness of the slope is invariant across learning rates. 

228 To gain an intuition for the shape of these curves, let us compare two different situations. First, consider 

229 very low levels of observation noise. In this regime, reward observations are almost identical to 

230 observation the underlying mean reward. Hence, if the observed reward changes, this mostly reflects a 

231 genuine change of the underlying mean reward. To keep reward predictions precise, such changes should 

232 be followed. However, for learning rates smaller than one, the RW model does not fully follow the 

233 changes of the reward signal—we may call this underfitting, as the model ignores meaningful variation in 

234 the signal. The resulting error dominates the performance. The magnitude of this error depends on the 

235 volatility of the signal. Since the volatility is kept constant in the simulations in Fig 2B, we see a 

236 performance plateau at low levels of observation noise. 

237 Now, consider very high levels of observation noise. In this case, reward observations are very 

238 inaccurate—an observation tells us very little about the underlying mean reward. Changes in observed 

239 rewards mostly reflect the noisiness of the observations and should be ignored. However, for learning 

240 rates larger than zero, the RW model does not fully ignore those fluctuations, but follows them. This can 

241 be called overfitting, as the model tries to adapt to random fluctuations. 

242 Overall, the behavior of the RW learners is such that for each given level of observation noise there is an 

243 optimal learning rate: if one selects any one position on the x-axis of Fig 2A, there is always a single 

244 orange curve with the lowest y-coordinate (and hence the smallest average error) at that position. In 

245 general, we find: the higher the observation noise, the lower the optimal learning rate. This appears 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2022. ; https://doi.org/10.1101/2022.01.10.475599doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.10.475599
http://creativecommons.org/licenses/by/4.0/


14

246 consistent with intuition—if observation noise is high, there is less useful information in any single 

247 observation and an organism should therefore update its estimate more carefully.

248 The SPE learner shows different behavior. There is also a slope (prediction accuracy steadily decreases 

249 with increasing observation noise), but no plateau. The steepness of the slope changes at 𝜎 = 1. For 

250 higher levels of observation noise, the slope of the SPE learner is shallower than those of the RW 

251 learners. We find that for any given level of noise 𝜎 larger than one, the performance of the SPE model is 

252 about as good as the performance of the best RW model. This suggests that in the regime of high 

253 observation noise we might view the SPE model as an RW learner that reaches optimal performance by 

254 fine-tuning itself to the estimated level of observation noise.

255 Can one do better than this? In fact, one can show that the SPE model (parametrized with 𝛼𝑚 = 1) is 

256 approximately optimal in the situation investigated here: for high levels of observation noise, SPE 

257 learning approximates the steady-state Kalman filter (we show this in Appendix S2), which is 

258 approximately optimal for the types of signals we use here.

259 As mentioned above, to use a Kalman filter, one needs to provide it with the correct values of 𝜎 and 𝜈. 

260 This is also true for the steady-state version of the Kalman filter, but it is not the case for the SPE model: 

261 here one only needs to provide 𝛼𝑚—which corresponds to 𝜈 (see Appendix S2), —but not 𝜎, which the 

262 model can track by itself. We can thus think of SPE learning as adaptive steady-state Kalman filtering.

263 However, to work optimally, the SPE model still needs to be provided with the correct value for 𝛼𝑚. To 

264 make the model more autonomous, one might extend it with a mechanism to track 𝜈 alongside 𝜎, for 

265 example the mechanism proposed by Piray and Daw (2). This is an interesting direction for further 

266 research but goes beyond the scope of this work.

267 In summary, we find that the SPE model is approximately optimal for signals with 𝜈 < 𝜎. In particular, it 

268 will be at least as good as any RW learner, and about as good as a steady-state Kalman filter. SPE learners 

269 thus appear particularly well suited to track signals with unknown or changing levels of observation noise, 
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270 as they can adapt themselves to whatever level of noise they experience. In contrast, an RW learner would 

271 either have to be fine-tuned based on prior knowledge, or it would perform suboptimally due to under- or 

272 overfitting. 

273 The neural implementation of SPE learning

274 Could the SPE learning rules be implemented in the dopamine system and the basal ganglia pathways? In 

275 this section, we propose a possible mechanism. We suggest that striatal dopamine release broadcasts 

276 scaled prediction errors, 𝛿 =
𝑟 ― 𝑚

𝑠 , and that the update rules given in equations Eq. 3 and Eq. 4 are 

277 implemented by dopamine-dependent plasticity in the striatum. In the next subsections, we will analyze 

278 the plausibility of these suggestions. First, we discuss the relationship between dopamine responses and 

279 scaled prediction errors. Then we discuss how the SPE learning rules can be mapped on striatal plasticity 

280 rules. Finally, we propose a mechanism that might implement the scaling.

281 Scaled prediction errors are consistent with dopamine activity

282 In a seminal study, Tobler et al. (10) investigated how the responses of dopamine neurons to 

283 unpredictable rewards depended on reward magnitude, using electrophysiology in monkeys. Three 

284 different visual stimuli were paired with three different reward magnitudes (0.05 ml, 0.15 ml and 0.5 ml 

285 of juice). After being shown one of the stimuli, the monkeys received the corresponding reward with a 

286 probability of 50%. Seeing the stimulus allowed the monkey to predict the magnitude of the reward that 

287 could occur, but not whether it would occur on a given trial. Reward delivery thus came as a surprise and 

288 evoked a dopamine response. Interestingly, these responses did not scale with the magnitude of the 

289 received rewards. The measured dopamine responses are shown in Fig 3B.
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290

291 Fig 3. Dopamine responses to unpredictable rewards—experimental data and simulations. A The 

292 reward distributions used by Tobler et al. (10). Each distribution corresponds to an experimental 

293 condition. B Dopamine responses to rewards sampled from the distributions in A are shown as a function 

294 of reward magnitude, for the three different conditions. The representation of data is similar to that in 

295 figure 4C of Tobler et al. (10). We show experimental data, extracted from figure 4C (animal A) of Tobler 

296 et al. (10) and simulated data, using a standard RW model and the SPE model. The colors relate the 

297 dopamine responses in B to the reward distributions in A. C The reward distributions used by 

298 Rothenhoefer et al. (21). The panel is reproduced from Rothenhoefer et al. (21), figure 1A. D Dopamine 

299 responses to rewards sampled from the distributions in C. We show the empirical values, reproduced 

300 from Rothenhoefer et al. (21), figure 2E, and the responses according to the RW model computed 

301 analytically as 𝛿 = 𝑟 ― 𝜇, and the SPE model computed as 𝛿 =
𝑟 ― 𝜇

𝜎 , where µ and  are the mean and 

302 standard deviation of corresponding reward distributions in C. Purple lines correspond to the uniform 

303 reward distribution, green lines correspond to the normal reward distribution. 

304 This result was unexpected—standard RW learning would predict that the residual prediction errors in 

305 rewarded trials should grow linearly with reward magnitude. Our new SPE rules, on the other hand, 

306 predict exactly what has been observed. See Fig 3B for simulated and experimental DA responses. 
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307 One may object that the results of Tobler et al. (10) might also be explained by scaling with respect to the 

308 reward range—reward range and reward standard deviation cannot be dissociated in that experiment. 

309 While that is true, another recent experiment can dissociate them: Rothenhoefer et al. (21) used two 

310 reward distributions with the same reward range but different reward standard deviations in a Pavlovian 

311 conditioning task (see Fig 3C).

312 After exhaustive training, single unit recordings were performed to measure dopamine responses to 

313 rewards that deviated from the expected value. It was found that the same deviation from the expected 

314 value caused stronger dopamine responses for the distribution with the smaller standard deviation (Fig 

315 3D, first panel). This is consistent with scaling by reward standard deviation, but not with scaling by 

316 reward range---both distributions had the same range, so scaling by range should yield similar responses 

317 for both conditions. These experimental data cannot be accounted for by the RW model (Fig 3D, second 

318 panel), but can be reproduced by the SPE model (Fig 3D, third panel).

319 The SPE learning rules are consistent with striatal plasticity

320 After establishing that dopaminergic scaled prediction errors are plausible, we now move on to discuss 

321 how the update rules given in Eq. 3 and Eq. 4 could be implemented in the basal ganglia circuit. 

322 Mikhael and Bogacz (11) proposed a distributed encoding of the two reward statistics (𝑚 and 𝑠) in the 

323 two main basal ganglia pathways: in their model, the mean of the reward signal is encoded in the 

324 difference between synaptic inputs to striatal neurons in direct (Go) and indirect (NoGo) pathways, 

325 whereas the standard deviation of the signal is encoded in the sum of these inputs. Formally, we write

326 𝑚 =
1
2 (𝐺 ― 𝑁)

327 Eq. 7

328 𝜆𝑠 =
1
2 (𝐺 + 𝑁)
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329 Eq. 8

330 In Eq. 7 and 8, 𝐺 and 𝑁 denote the synaptic inputs in the direct and indirect pathway respectively (22), 

331 and 𝜆 is a coefficient determining the accuracy with which the standard deviation can be encoded (as 

332 explained below). These assumptions can be used to rewrite the learning rules given in Eq. 3 and 4 in 

333 terms of 𝐺 and 𝑁. In particular, note that by combining Eq. 7 and 8, we see that 𝐺 = 𝑚 + 𝜆𝑠 and 

334 𝑁 = 𝜆𝑠 ― 𝑚. Therefore, we can derive the update rules for 𝐺 (or 𝑁) by adding (or subtracting) Eq. 3 and 

335 4, and obtain

336 Δ𝐺 = 𝛼𝑚𝑓𝛽(𝛿) ― 𝜆𝛼𝑠

337 Eq. 9

338 Δ𝑁 = 𝛼𝑚𝑓𝛽( ―𝛿) ― 𝜆𝛼𝑠

339 Eq. 10

340 with 𝑓𝛽(𝛿) = 𝛽𝜆𝛿2 +𝛿 and 𝛽 = 𝛼𝑠/𝛼𝑚. It is worth emphasizing that Eq. 9 and 10 are equivalent to Eq. 3 

341 and 4 (because they are just rewritten in terms of different variables). Therefore, the model described by 

342 Eq. 9 and 10 estimates exactly the same mean and variances as a model described by Eq. 3 and 4, and 

343 hence it produces identical performance in Fig 2 and dopaminergic responses in Fig 3.

344 One important issue while considering biological plausibility of the model is the fact that the synaptic 

345 weights on the indirect pathway N cannot be negative, while the model assumes that these weights encode 

346 𝑁 = 𝜆𝑠 ― 𝑚. Imposing a constraint of N being non-negative will limit the ability of the network to 

347 accurately estimate standard deviation of rewards to cases when it is sufficiently high (i.e. 𝜎 ≥ 𝜇 𝜆). 

348 Hence the parameter 𝜆 controls the accuracy with which the standard deviation can be estimated. 

349 However, according to Eq. 8 there is a cost of high accuracy, because a high value of 𝜆 will result in 

350 overall larger values of the synaptic weights (analogously as in the model of Mikhael and Bogacz (11)), 

351 and hence higher metabolic cost of the computations.
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352 Eq. 9 and 10 show three main features: 1) different overall effects of dopamine on plasticity in each 

353 pathway, 2) nonlinear effects of dopaminergic prediction errors represented by the transformations 𝑓𝛽 and 

354 3) synaptic unlearning represented by decay terms. We will discuss the experimental data supporting the 

355 presence of these features in turn.

356 First, the efficacy of direct pathway synapses is assumed to increase as a result of positive reward 

357 prediction errors (i.e., 𝛿 > 0), and decrease as a result of negative reward prediction errors (i.e., 𝛿 < 0). 

358 The opposite is assumed to hold for indirect pathway synapses: their efficacy should decrease with 

359 positive prediction errors and increase with negative prediction errors. This premise corresponds to the 

360 sign of the prediction error in Eq. 9 and 10, and it is consistent with data obtained in experiments (23).

361 Second, it is assumed that for striatal neurons in the direct pathway, positive prediction errors have a 

362 stronger effect on plasticity than negative prediction errors. This assumption is expressed in the shape of 

363 the function 𝑓𝛽(𝛿), which is plotted in Figure 4Ai. Note that the slope for positive 𝛿 is steeper than for 

364 negative 𝛿, implying that positive prediction errors should lead to bigger changes in 𝐺 than negative 

365 prediction errors. The computational role of this nonlinearity is to filter the reward prediction errors: it 

366 amplifies the positive components while dampening the negative components of the signal.

367 For striatal neurons in the indirect pathway, the SPE model assumes the opposite: negative prediction 

368 errors should have a stronger plasticity effect than positive prediction errors, because the weight 

369 modification is proportional to 𝑓𝛽( ―𝛿), which is plotted in Figure 4Aii. Mikhael and Bogacz (11) argue 

370 that this premise is realistic, based on the different affinities of the D1 and D2 receptors that are present in 

371 striatal neurons in the direct and indirect pathways respectively: while D1 receptors are mostly 

372 unoccupied at baseline dopamine levels, D2 receptors are almost saturated—this is visualized in Fig 4B. 

373 Due to this baseline setting, additional dopamine should lead to a large difference in the occupation of D1 

374 receptors and hence affect the neurons on the direct pathway, but only a small change in the occupancy of 
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375 D2 receptors thus little influence the neurons on the indirect pathway. A decrease in dopamine, on the 

376 other hand, is strongly felt in D2 receptor occupancy but does not change D1 receptor occupancy much.

377

378

379 Fig 4. Plasticity and computations in the basal ganglia circuit. A The nonlinear transformation of 

380 dopaminergic prediction errors in the SPE model. The transformation in the direct pathway (i) and the 

381 transformation in the undirect pathway (ii) are mirror images of each other. B We plot the proportion of 

382 occupied receptors in the striatum as a function of dopamine concentration. The curves are based on the 

383 results of Dreyer et al. (25). The blue vertical lines indicate the baseline dopamine concentration in the 

384 ventral striatum, based on the results of Dodson et al. (26). The green curve corresponds to the 

385 occupancy of D1 receptors, the red curve corresponds to the occupancy of D2 receptors. Panel B is a 

386 partial reproduction of figure 3D of Möller and Bogacz (27). C The connectivity underlying a dynamical 

387 model of the simplified basal ganglia circuit. Circles correspond to neural populations; arrows between 

388 them indicate connections. D The computation of a scaled prediction error in continuous time, according 

389 to a dynamical model of the basal ganglia. We show how the relevant variables, 𝑇 and 𝛿, evolve as a 

390 function of time, assuming a step-function activation for the input nodes 𝐺, 𝑁 and 𝑟. The black line in the 

391 lowest panel indicates the level of dopamine required for exact SPE learning. 

A

B

C D
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392 Third, an activity-dependent decay (or ‘unlearning’) is assumed to occur in the synaptic weights 

393 whenever they are activated in the absence of prediction errors. This is reflected in terms ―𝜆𝛼𝑠 in Eq. 9 

394 and 10. On the neural level, that premise translates into mild long-term depression after co-activation of 

395 the pre- and postsynaptic cells at baseline dopamine levels. Recently, this effect has been observed at 

396 cortico-striatal synapses in vivo (24): in anaesthetized rats, presynaptic activity followed by postsynaptic 

397 activity caused LTD at baseline dopamine levels (i.e. in the absence of dopamine-evoking stimuli).

398 In summary, we discussed the three premises of the learning rules—the different overall effects of 

399 dopamine on plasticity in each pathway, the nonlinear effects of dopaminergic prediction errors and 

400 synaptic unlearning. We saw that all three premises are supported by the physiological properties of 

401 striatal neurons on the direct and indirect pathway.

402 Scaled prediction errors and the basal ganglia circuit

403 Next, we discuss how the scaled prediction error 𝛿 =
𝑟 ― 𝑚

𝑠  might be computed in the basal ganglia 

404 system. Expressed in terms of 𝐺 and 𝑁, the scaled prediction error is given as

405 𝛿 =
𝑟 ― 1

2(𝐺 ― 𝑁)
1

2𝜆(𝐺 + 𝑁)

406 Eq. 11

407 This seems to be a complicated combination of terms, and it is difficult to see how a simple network 

408 might compute it. Surprisingly, there is a simple approximate implementation based on a feedback loop. 

409 Here, we will describe that mechanism, using a minimal dynamical model of the basal ganglia network.

410 First, where is the feedback loop? Let us assume that the prediction error 𝛿 is encoded in the activity of a 

411 population of dopaminergic neurons. This population receives inhibitory input 𝑇 from the thalamus, and 

412 excitatory input 𝑟 that encodes a reward signal. Formally, we assume 𝛿 = 𝑟 ― 𝑇. We follow Möller and 
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413 Bogacz (27) in assuming that the thalamic activity reflects the total output from the basal ganglia—the 

414 difference between the activity in the direct and indirect pathways—which is captured by 

415 𝑇 =
1 + 𝛿/𝜆

2 𝐺 ―
1 ― 𝛿/𝜆

2 𝑁

416 Eq. 12

417 The first term 1 + 𝛿/𝜆
2 𝐺 corresponds to the activity in the direct pathway, which is proportional to synaptic 

418 input 𝐺, and is increased by the dopaminergic modulation, because the gain of striatal neurons in the 

419 direct pathway is enhanced by dopamine. The second term 1 ― 𝛿/𝜆
2 𝑁 corresponds to the activity in the 

420 indirect pathway, which is attenuated by dopamine, because the gain of striatal neurons in the indirect 

421 pathway is reduced by dopamine (13, 14). The proposed model contains a feedback loop: dopamine 

422 release modulates the thalamic activity, which itself inhibits dopamine release. 

423 To examine the computation of scaled prediction errors, we model the relevant populations' activities as 

424 leaky integrators with effective connectivity as sketched in Fig 4C, using differential equations in 

425 continuous time.

426 The dynamical system sketched in Fig 4C corresponds to a set of differential equations,

427 𝜏𝛿𝛿 = ―𝛿 + (𝑟 ― 𝑇)

428 Eq. 13

429 𝜏𝑇𝑇 = ―𝑇 +
1 + 𝛿/𝜆

2 𝐺 ―
1 ― 𝛿/𝜆

2 𝑁

430 Eq. 14

431 Here, 𝜏𝛿 and 𝜏𝑇 are the characteristic timescales of the striatal dopamine release and thalamic activation. 

432 The system is set up such that its equilibrium point is consistent with our trial-wise description (𝛿 = 𝑟 ― 𝑇 

433 and 𝑇 = 1 + 𝛿/𝜆
2 𝐺 ― 1 ― 𝛿/𝜆

2 𝑁 at 𝛿 = 𝑇 = 0). This asserts that the two levels of description are consistent 
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434 with each other. Using these equilibrium equations, we can determine the equilibrium value of 𝛿 (by 

435 inserting one equation into the other and solving for 𝛿). We find

436 𝛿 =
𝑟 ― 1

2(𝐺 ― 𝑁)

1 + 1
2𝜆(𝐺 + 𝑁)

437 Eq. 15

438 For 1
2𝜆(𝐺 + 𝑁) ≫ 1, this approximates the scaled prediction error in Eq. 11. This suggests that the circuit 

439 can compute an approximation to the scaled prediction error. The approximation will be accurate as long 

440 as 𝑠 is sufficiently large (recall from Eq. 8 that 1
2𝜆(𝐺 + 𝑁) = 𝑠). Although the additional term 1 in the 

441 denominator prevents perfect scaling, it might in fact be beneficial: it could prevent catastrophically large 

442 prediction errors that might cause the instabilities when the denominator becomes very small. 

443 So far, it looks as though the circuit has an equilibrium point at approximately the right value. However, it 

444 is not yet clear whether and how this equilibrium is reached. To learn more about these aspects, we need 

445 to simulate the system. To simulate the computation of the prediction error, we assume 𝐺, 𝑁 and 𝑟 to be 

446 provided externally, for example through cortical inputs. 𝐺 and 𝑁 then represent precisely timed reward 

447 predictions, while 𝑟 represents the reward signal itself. We model 𝐺, 𝑁 and 𝑟 as step-functions that jump 

448 from zero to their respective values at the same time, as illustrated by the first panel of Fig 4D. The time 

449 constants 𝜏𝛿 and 𝜏𝑇 are set to realistic values taken from the literature (see Methods for details). A 

450 simulation of the system is shown in Fig 4D. We find that 𝛿 settles to its equilibrium value quite quickly 

451 (after tens of milliseconds) and without oscillations. This is likely due to the difference in time 

452 constants—the thalamic activity changes much faster than the striatal dopamine concentration. Our results 

453 suggests that even a simple system as the one in Fig 4C can compute scaled prediction errors through a 

454 feedback loop.

455
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456 Discussion

457 Above, we presented a new model of error-driven learning: the SPE model. We tested it in simulations 

458 and compared it with neural data. Now, we will discuss the new model more broadly. First, we will 

459 summarize our key findings. Then, we will present several testable predictions that follow from the 

460 model. Finally, we will discuss how the SPE model relates to other models from neuroscience and from 

461 artificial intelligence.

462 Summary

463 This work introduces the SPE model, which describes how an organism might adapt its learning 

464 mechanism to changing levels of reward observation noise 𝜎. First, we proposed the SPE learning rules, 

465 which can track the mean and standard deviation of a reward signal. We then tested the performance of 

466 the new rules. Comparing SPE learning with RW learning, we found that the new learning rules can 

467 improve performance when a learner faces unknown or varying levels of reward observation noise. Next, 

468 we reviewed empirical evidence relating to SPE learning. On the neural level, we found that SPE learning 

469 describes dopamine responses better than conventional models in several studies. We further showed how 

470 the basal ganglia pathways might implement the learning rules of the SPE model, and how scaled 

471 prediction errors could be computed in a dopaminergic feedback loop.

472 Experimental predictions

473 Our model makes several predictions on different levels of analysis. First, SPE learning can be 

474 distinguished from other types of learning on the level of behavior. This is because according to SPE, the 

475 learning rate (and hence the speed of learning) should depend on the stochasticity of the reinforcement 

476 that drives learning. From this, different predictions follow. 

477 For example, reward magnitude should not affect instrumental learning speed if animals were exposed to 

478 the reward prior to the instrumental phase. This is because SPE learning would allow the animal to 

479 normalize the reward magnitude through the adaptive scaling of prediction errors, as in the experiment by 
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480 Tobler et al. (10). The dopamine-guided instrumental learning through normalized prediction errors 

481 would then not be affected by the overall scale of the rewards. Concretely, this could be tested in a 

482 decision-making task with two conditions. In one condition, correct choices are reinforced with high 

483 rewards (for example 0.6 ml of juice). In the other condition, low rewards are provided, for example 0.2 

484 ml of juice. Conditions must be cued, perhaps by two different visual stimuli that precede the decision. 

485 According to the RW model, we expect to see a steeper learning curve in the high reward condition, as in 

486 the experiment of (28). However, SPE theory predicts that this difference between conditions should 

487 vanish if an appropriate pretraining is applied. For example, the cues could be associated with the 

488 different reward sizes through Pavlovian conditioning. According to SPE theory, the pretraining should 

489 establish a condition-specific normalization cued by the stimuli. This normalization should then lead to 

490 normalized learning curves in the instrumental phase. Ultimately, the difference between the learning 

491 curves should vanish. 

492 Furthermore, SPE learning predicts that learning rates should change if reward stochasticity is changed. 

493 This could be tested by having participants track and predict a drifting reward signal which shows 

494 different levels of stochasticity at different times. If participants use SPE, the learning rate should 

495 decrease with increasing stochasticity, which would lead to invariant update magnitudes. On the other 

496 hand, if participants do not use SPE, increasing reward stochasticity would not affect the learning rate, 

497 and hence lead to larger updates.

498 On the neural level, SPE learning predicts trial-by-trial changes of how the dopaminergic prediction error 

499 is normalized to a given reward signal. Neural recordings from the relevant brain areas during the 

500 learning phase could be compared with simulations of the SPE model to test the theory. In particular, SPE 

501 predicts that if reward stochasticity increases slowly, the scale of the corresponding dopamine bursts 

502 should stay invariant. Standard theory, on the other hand, would predict that the scale of dopamine bursts 

503 grows proportional to the scale of rewards, as prediction errors are a linear function of rewards.
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504 Since the SPE model is closely related to the AU model (11), it inherits a prediction on how the activity in 

505 the basal ganglia pathways should depend on reward stochasticity: if reward stochasticity is high, the sum 

506 of the activity in the direct and the indirect pathway should be high—if reward stochasticity is low, the 

507 sum should be low as well. It has been indeed observed that the neural activity in striatum increases with 

508 reward uncertainty (29, 30). Cell-type specific imaging techniques such as photometry could be used to 

509 further assert whether the uncertainty is encoded in the sum of activity of striatal neurons on the direct 

510 and indirect pathways. 

511 Relation to models in neuroscience

512 The AU model

513 The SPE model is closely related to the AU model of Mikhael and Bogacz (11)—both models describe 

514 how the basal ganglia pathways track reward uncertainty; they also share the distributed encoding of 

515 reward statistics. It is thus not surprising that the learning rules of the two models have similarities. 

516 However, the SPE model differs from the AU model in several important aspects.

517 Of course, the scaled prediction error itself is the key new feature that drives most of the interesting 

518 effects we investigated in this work. It is through the scaling of the prediction error that our new model 

519 puts its estimate of the reward observation noise to good use. The AU model tracks reward noise as well 

520 but does not use its estimate to improve learning performance (or for anything else). In contrast, the SPE 

521 model explains not only how to track 𝜎, but also why.

522 Further, the AU model assumes that there are two separate dopamine signals that modulate activity and 

523 plasticity of striatal neurons, namely that the tonic level modulates activity, while the phasic bursts trigger 

524 plasticity. However, it has been recently demonstrated that even a brief, burst-like activation of 

525 dopaminergic neurons changes the activity levels of striatal neurons (31). Additionally, it has been shown 

526 that reward prediction errors modulate the tendency to make risky choices (22), and risk attitudes are 

527 known to depend on the balance between the direct and indirect pathways (32, 33). In this paper, we 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2022. ; https://doi.org/10.1101/2022.01.10.475599doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.10.475599
http://creativecommons.org/licenses/by/4.0/


27

528 demonstrated that a more realistic assumption, that the dopamine signal encoding prediction error also 

529 changes the activity levels in striatum, enables scaling of prediction errors by uncertainty.

530 The Kalman-TD model

531 SPE learning is not the only model that addresses the scaling of dopamine responses. One recent theory—

532 Kalman-TD—explained those responses, as well as other phenomena such as preconditioning, as a 

533 consequence of volatility tracking (5). Kalman-TD applies the Kalman filter method to the computational 

534 problem of TD learning: reward prediction in the time domain. The resulting model features vector-

535 valued learning rates that constantly adapt to observations and outcomes. It elegantly describes how 

536 covariances between cues and cue-specific uncertainties might modulate learning and can be shown to 

537 explain several empirical phenomena. However, the Kalman-TD theory does not address the tracking of 

538 observation noise (the theory focuses on process noise). It also does not discuss how prediction error 

539 scaling might be implemented. We may thus view it as a complement rather than a competitor to the 

540 theory presented above.

541 The reward taxis model

542 Another model was recently proposed to explain the effects reported by Tobler et al. (10) and other 

543 phenomena. The model is called reward taxis (34), and explains the dopaminergic range adaptation using 

544 a logarithm: if both rewards and reward expectations were transformed by a logarithmic function, 

545 prediction errors would be given by 𝛿 = log 𝑟 ― log 𝑚 = log 𝑟
𝑚

. In the experiment of Tobler et al. (10) 

546 rewards were given in 50 % of the trials. For a reward of size 𝑟, the expected reward would then be 𝑚 =
𝑟
2

547 , and the prediction error would be 𝛿 = log 𝑟
𝑟
2

= log 2, i.e., independent of reward size. Reward taxis can 

548 hence explain the results of Tobler et al. (10) quite elegantly.

549 However, that explanation breaks down as we look at other experiments. We have already mentioned the 

550 experiment by Rothenhoefer et al. (21), which featured two reward distributions with equal means and 
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551 ranges but different standard deviations. We show those distributions in Fig 3C. Rothenhoefer et al. (21) 

552 first used Pavlovian conditioning in a way similar way to Tobler et al. (10), pairing the two reward 

553 distributions with two different cues. They then recorded the dopamine responses at reward delivery, for 

554 all reward sizes of each distribution. We reproduce their data in Fig 3D (first panel). The responses to the 

555 middle reward are similar for both distributions, but the responses to the extreme rewards differ: they 

556 seem scaled up for the normal distribution.

557 What would the reward taxis theory predict for the responses in this experiment? Both distributions have 

558 the same mean; reward taxis hence predicts similar responses for both distributions. The experimental 

559 data thus falsifies the reward taxis model in this experiment. In contrast, the SPE model predicts different 

560 responses for the two distributions—we show this in Fig 3D (last panel). Overall, it appears as if 

561 dopamine responses to reward distributions with variable width are better captured by the SPE model than 

562 the reward taxis model.

563 Free energy models

564 Finally, we want to discuss the relation of our model to free-energy models: the scaled reward prediction 

565 errors in this work are formally related to the precision weighted prediction errors of the free-energy 

566 approach, especially when the recognition density (the learner's model of the world) is taken to be 

567 Gaussian (35-37). In that case, the prediction errors that drive inference and learning in free energy 

568 models are often weighted by precisions, i.e., inverse variances. The connection to scaled reward 

569 prediction errors becomes very close when the free energy approach is applied to reward prediction, 

570 dopamine and the basal ganglia system, as has been done in the DopAct framework (38). This framework 

571 integrates several theoretical ideas (free energy, reinforcement learning, habits without values and active 

572 inference), and suggests that dopaminergic prediction errors drive both learning and action planning. 

573 Precision weighted prediction errors encoded by dopamine transients feature in one variant of that model, 

574 but they are not the focus of the theory, and possible implementations or empirical consequences of these 

575 weighted prediction errors have not been investigated so far. Furthermore, it is important to note that 
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576 precision, or inverse variance, scales differently to standard deviation, and might hence not explain 

577 classical observations such as those reported by Tobler et al. (10).

578 Relation to models in artificial intelligence

579 Scaled reward prediction errors have been explored outside of neuroscience as well: in the field of AI-

580 type reinforcement learning, it was noticed that normalizing reward prediction errors can enable an agent 

581 to learn effectively across several different tasks (39). This is consistent with our conclusions: different 

582 tasks come with different levels of reward observation noise, and adaptive scaling can normalize 

583 performance across tasks without requiring the need for fine-tuning. However, the rules for scaling 

584 prediction errors in AI are different from the SPE learning rules and have not been designed with the 

585 intention to model learning in biological systems. Further, Hessel et al. (39) have focused on typical 

586 benchmark tasks of AI-type reinforcement learning (i.e. Atari games and others), while we have explored 

587 the types of tasks that are used in neuroscience and psychology.

588 Prediction error scaling also occurs at a more basic level of AI, inside the optimization algorithms that are 

589 used to improve the parameters of neural networks. A very prominent example is the Adam optimizer 

590 (40), which implements a variant of gradient descent in which all updates are normalized using an 

591 estimate of the second moment of the gradient distribution. By making gradient descent effective across 

592 different gradient magnitudes, adaptive optimizers such as Adam contribute to the spectacular successes 

593 of deep learning. This supports the main idea of this work—that scaling prediction errors can be 

594 beneficial for learning. However, here we only looked at the scaling of reward prediction errors. Adam-

595 style optimization in machine learning, as well as free-energy models in computational neuroscience 

596 suggest that there might be similar mechanisms for other neural error signals as well. Therefore, scaling 

597 of prediction errors may be a fundamental and common mechanism in the brain. While the mechanisms 

598 and evidence presented in this work focus on reward prediction errors and the basal ganglia system, it 

599 would also be an interesting direction for future work to investigate scaled prediction errors in other 

600 systems within the brain.
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601 Methods

602 Reward prediction performance

603 In Fig 2, we compare the performance of the RW model with the performance of the SPE model. The 

604 SPE model was defined by the learning rules given in Eq. 2 – 4. The RW model was defined by 

605 𝛿 = 𝑟 ― 𝑚𝑡

606 Eq. 16

607 𝑚𝑡 = 𝑚𝑡―1 + 𝛼𝛿

608 Eq. 17

609 With a constant learning rate 𝛼.

610 For Fig 2A, the RW model was parametrized with 𝛼 = 0.5 and the SPE learning rules were parametrized 

611 with 𝛼𝑚 = 1 and 𝛼𝑠 = 0.1. Rewards were sampled from a normal distribution with drifting mean. The 

612 process noise was fixed at 𝜈 = 1. We used three different observation noise levels (1, 5 and 15). 

613 For Fig 2B, we used 10 different learning rates for the RW model (ranging from 0.007 to 0.993), the same 

614 parameters as above for the SPE model, and 100 different levels of observation noise, evenly distributed 

615 on a logarithmic scale from 0.1353 to 1096.6. The process noise was fixed at 𝜈 = 1 as above. For each 

616 combination, we simulated 105 trials and computed the average squared difference between the model 

617 predictions 𝑚 and the true mean 𝜇 across all trials.

618 Simulations of the task of Tobler et al.

619 To simulate the relevant parts of the experiment reported by Tobler et al. (10), we modelled Pavlovian 

620 conditioning with three different stimuli, which were associated with three different reward magnitudes (

621 𝑟 = 0.05, 𝑟 = 0.15, 𝑟 = 0.5). The stimuli were followed by the associated reward in one half of the trials 
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622 and by no reward in the other half. The rewarded trials were selected pseudorandomly, such that there 

623 were two rewarded and two non-rewarded trials in every four successive trials.

624 We simulated 2000 trials per stimulus and extracted prediction errors from the last 1500. Discarding the 

625 first 500 trials accounts for the substantial pretraining of Tobler et al. (10).

626 We used two models: an RW model and a SPE model. The learning rules of the RW model are given in 

627 Eq. 16 and Eq. 17. The rules were used with 𝛼𝑚 = 0.0067 and 𝑚0 = 0. The learning rules of the SPE 

628 model are given in Eq. 2 – 4. These rules were used with 𝛼𝑚 = 𝛼𝑠 = 0.0067 and 𝑚0 = 0, 𝑠0 = 1.

629 To compare our simulations to the experimental data from Tobler et al. (10), we extracted the prediction 

630 errors 𝛿 from the simulations and averaged them for each model, outcome and condition separately. There 

631 were three conditions (corresponding to the three reward sizes) with two outcomes (reward or no nothing) 

632 each, resulting in a total of six combinations per model. Finally, we normalized the six averaged 

633 prediction errors by their standard deviation for each model.

634 A dynamical model of the basal ganglia

635 The differential equations Eq. 11 and Eq. 12 were solved using MATLAB’s ode15s, from 𝑡 = ―200 𝑚𝑠 

636 until 𝑡 = 500 𝑚𝑠. As inputs, we used step functions

637 𝑟(𝑡) = 𝜃(𝑡)𝑟𝑠𝑡𝑒𝑝

638 Eq. 18

639 𝐺(𝑡) = 𝜃(𝑡)𝐺𝑠𝑡𝑒𝑝

640 Eq. 19

641 𝑁(𝑡) = 𝜃(𝑡)𝑁𝑠𝑡𝑒𝑝

642 Eq. 20
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643 with 𝜃(𝑡) = 1 for 𝑡 > 0 and 𝜃(𝑡) = 0 for 𝑡 < 0, and 𝐺𝑠𝑡𝑒𝑝 = 10, 𝑁𝑠𝑡𝑒𝑝 = 6, and 𝑟𝑠𝑡𝑒𝑝 = 4. These inputs 

644 correspond to a learned mean 𝑚 = 2 and a learned standard deviation 𝑠 = 8 for 𝜆 = 1.

645 The time constant 𝜏𝑇 of the thalamic population was set to 10 ms, based on the measurement of the 

646 membrane time constant of thalamic neurons reported by Paz et al. (41). The time constant 𝜏𝛿 for striatal 

647 dopamine was set to 300 ms, based on figure 2C of Montague et al. (42): the dopamine transient in that 

648 figure decays to exp ―1 of its peak value in about 300 ms.

649 Supporting information captions

650 Appendix S1. Derivation from Bayesian learning

651 Fig S1. The mode-matching method

652 Appendix S2. The high noise limit of the steady state Kalman filter

653 Fig S2. The learning rate of the steady state Kalman filter

654
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655 Supporting information

656 Appendix S1. Derivation from Bayesian learning

657 One way to derive the scaled prediction error learning rules is the Bayesian mode-matching method, 

658 which is a novel (as far as we know) method to approximate Bayesian learning. We first introduce this 

659 method. We then apply the method to the problem of tracking the mean and standard deviation of a signal 

660 and thus find a new set of learning rules.

661 The mode-matching method

662 The mode-matching method is based on Bayesian principles. Let us consider the problem of learning the 

663 mean and standard deviation of a signal. A fully Bayesian learner would always maintain a belief about 

664 the values of the mean and standard deviation, encoded as a probability distribution over all possible pairs 

665 of values. It would also maintain a generative model of the signal. When the learner is provided with new 

666 information (say another sample of the signal), it applies Bayes’ law to combine its current belief (now 

667 the prior) and the likelihood of the observation (computed using the generative model) into a posterior 

668 distribution, which encodes its belief after observing the sample. This process is then repeated ad 

669 infinitum, with the posterior after one sample turning into the prior for the next.

670 Now, consider a learner that cannot encode arbitrary belief distributions. Instead, it can only adapt a few 

671 of the parameters of a belief distribution with otherwise fixed shape. For example, it might encode a 

672 belief using a normal distribution with fixed width and update it by adapting the mean. How might such a 

673 learner—let us call it a fixed-shape learner—approximate a fully Bayesian learner best?

674 Here, we propose the mode-matching method: after observing a new sample, the fixed-shape learner 

675 should change the parameters of its belief distribution such that the maximum of the distribution (its 

676 mode) is aligned with the maximum of the true posterior. We show this process schematically in Fig S1.
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677

678 Fig S1. The mode-matching method. The fixed-shape belief distribution is represented by a blue 

679 shading; darker shades of blue indicate higher probabilities. Similarly, the true posterior distribution is 

680 represented as an orange shading, and the likelihood of the sample is represented by a grey shading. The 

681 axes represent the mean and standard deviation of a signal. Units are arbitrary. A The fixed-shape belief 

682 distribution encodes the learner's knowledge before a new observation is made. B A new observation is 

683 made. The likelihood of the observed value is indicated by the grey shading. Using the fixed-shape belief 

684 as a prior, a posterior can be computed. The posterior's mode is different from the mode of the fixed-

685 shape belief; therefore, an update (indicated by a white arrow) is required. C The fixed-shape belief has 

686 been modified such that its mode aligns with the mode of the true posterior. D The modified fixed-shape 

687 belief represents the learner's knowledge after the new observation has been taken into account. The 

688 distributions were computed using the densities given in Eq. S7 – S9.

689

690 After the update, the fixed-shape learner's belief is still different from the true posterior. This is because 

691 the shape of the true posterior is generally not the same as the fixed belief shape that the learner uses. 

692 Hence, mode-matching is only an approximation of Bayesian learning, and some features are lost in this 

693 approximation.
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694 Mode-matching is formally related to the variational Bayes scheme (36, 37, 43, 44), which works by 

695 minimizing the Kullback-Leibler divergence between the true posterior and a fixed belief shape (usually a 

696 multivariate normal distribution). However, mode-matching does not minimise the Kullback-Leibler 

697 divergence; instead, it minimises the distance between the modes of the distributions.

698 The learning rules that can be derived with the mode-matching method are not as precise as those derived 

699 from variational Bayes, let alone fully Bayesian learning. What makes mode-matching interesting is that 

700 it can be used to derive relatively simple, tractable learning rules, as we shall see in the next section.

701 New learning rules via mode-matching

702 Let us consider a situation in which an organism tracks the size of a reward associated with some 

703 behavior. By engaging in that behavior, it samples the reward size 𝑟. Using these samples, it attempts to 

704 estimate the mean reward 𝜇 that can be expected from performing the behavior at any given time.

705 To derive the learning rules for this situation, we start with a generative model for the reward process, and 

706 the learner's fixed-shape belief distributions over the process variables. We model rewards as normally 

707 distributed around a mean 𝜇, with a standard deviation 𝜎, as defined in Eq. 1. Note that 𝜎 quantifies trial-

708 by-trial fluctuations, and therefore observation noise. The distribution in Eq. 1 is stationary; this means 

709 that the environment is modelled as stable.

710 We further assume that the learner maintains beliefs 𝑀 and 𝑆 about 𝜇 and 𝜎, in form of a normal 

711 distribution over possible values of 𝜇 and a gamma distribution over possible value of 𝜎:

712 𝑀 ∼ 𝑁(𝑚,𝜎𝑚)

713 Eq. S1

714 𝑆 ∼ Γ(𝑎, 𝑏)

715 Eq. S2
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716 The learner can change its beliefs by adapting the mean (and hence mode) 𝑚 of the normal distribution, 

717 and the mode 𝑎 ― 1
𝑏  of the gamma distribution. The standard deviation 𝜎𝑚 and the rate parameter 𝑏 stay 

718 fixed.

719 How should we interpret this belief encoding? Allowing 𝑚 and 𝑠 to vary implies that the learner considers 

720 both the mean reward 𝜇 and the observation noise 𝜎 as unknown—it can adapt its beliefs about these 

721 variables. Fixing 𝜎𝑚 and 𝑏 implies that the learner's uncertainty about the mean and the standard deviation 

722 of the signal are kept constant—it cannot adapt those. The learner will thus not become more certain 

723 about either the mean or the standard deviation as it gathers more and more data. Fixing 𝜎𝑚 and 𝑏 keeps 

724 the resulting learning rules simple. An additional advantage of this design arises when the environment 

725 fails to be stationary—then, high certainty about the tracked variables would prevent the learner from 

726 adapting to new situations. The model of the reward generating process and the learner's belief system 

727 form our central assumptions—the rest follows. The learner we are about to derive will interpret all 

728 rewards it sees as being sampled from a normal distribution with fixed mean and variance, and it will 

729 make its inferences accordingly.

730 Now, let us use mode-matching to derive learning rules from our assumptions. To find out how the 

731 learner should update 𝑚 and 𝑠 after sampling a reward 𝑟, we must first find the mode of the true posterior 

732 distribution. For this, we can use a well-known way to simplify calculations. Bayes' theorem states that

733 𝑃(𝑥│𝜃) = 𝑃(𝑥|𝜃)𝑃(𝜃)/𝑃(𝑥)

734 Eq. S3

735 with 𝜃 the parameters that are to be inferred and 𝑥 the data that is observed. Now we notice that

736 log 𝑃(𝜃|𝑥) = log 𝑃(𝑥│𝜃) + log 𝑃(𝜃) ― log 𝑃(𝑥)

737 Eq. S4

738 with the last term independent of the parameters θ. We can define the function
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739 𝐸 = log 𝑃(𝑥│θ) + log 𝑃(𝜃)

740 Eq. S5

741 and it is easy to see that the parameters θmax that maximize the function 𝐸 also maximise the posterior 

742 distribution 𝑃(𝜃|𝑥) (this is true because the logarithm is strictly monotonic). The function 𝐸, often called 

743 energy in analogy to statistical physics, is related to the famous of free energy function which plays a key 

744 role in many contemporary theories of brain function (38, 45, 46). In the case at hand, the function 𝐸 is 

745 given as

746 𝐸 = log(𝑃(𝑟│𝑀,𝑆)) + log(𝑃(𝑀│𝑚,𝜎𝑚)𝑃(𝑆│𝑎,𝑏))

747 = log (𝑆―1 exp ( ―
1
2

(𝑟 ― 𝑀)2

𝑆2 ) exp ( ―
1
2

(𝑀 ― 𝑚)2

𝜎2
𝑚

)𝑆𝑎―1 exp( ―𝑆𝑏)) + 𝐶

748 Eq. S6

749 with 𝐶 a term that does not depend on 𝑀 or 𝑆, and

750 𝑃(𝑟│𝑀,𝑆) = (2𝜋𝑆2)―1
2 exp ( ―

1
2

(𝑟 ― 𝑀)2

𝑆2 )
751 Eq. S7

752 𝑃(𝑀│𝑚,𝜎𝑚) = (2𝜋𝜎2
𝑚)―1

2 exp ( ―
1
2

(𝑀 ― 𝑚)2

𝜎2
𝑚

)
753 Eq. S8

754 𝑃(𝑆│𝑎,𝑏) =
𝑏𝑎

Γ(𝑎)𝑆𝑎―1 exp( ―𝑆𝑏)

755 Eq. S9
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756 the probability density functions associated with the distributions Eq. 1, Eq. S1 and Eq. S2. To find the 

757 maximum of 𝐸 with respect to 𝑀 and 𝑆, and hence the mode of the posterior, we can investigate the 

758 gradient (∂𝐸
∂𝑀

, ∂𝐸
∂𝑆

 ) of 𝐸, which vanishes at the maximum. Evaluation the conditions ∂𝐸
∂𝑀 = 0 and ∂𝐸

∂𝑆 = 0, 

759 we find

760 𝑀𝑚𝑎𝑥 ― 𝑚 =
𝜎2

𝑚

𝑆2
𝑚𝑎𝑥

(𝑟 ― 𝑀𝑚𝑎𝑥)

761 Eq. S10

762 𝑆𝑚𝑎𝑥 ― 𝑠 =
1
𝑏 ((𝑟 ― 𝑀𝑚𝑎𝑥

𝑆𝑚𝑎𝑥 )2

― 1)
763 Eq. S11

764 for the location (𝑀𝑚𝑎𝑥,𝑆𝑚𝑎𝑥) of the maximum of E. In Eq. S11, 𝑠 = 𝑎 ― 1
𝑏  is the mode of the gamma 

765 distribution. 

766 To interpret these equations, note that the left-hand side yields the distance of 𝑆𝑚𝑎𝑥 and 𝑀𝑚𝑎𝑥 from the 

767 mode of their respective prior distributions. The right-hand side quantifies the mismatch between what 

768 was expected based on 𝑀𝑚𝑎𝑥 and 𝑆𝑚𝑎𝑥 and what actually happened: based on 𝑀𝑚𝑎𝑥 and 𝑆𝑚𝑎𝑥, the reward 

769 𝑟 was expected to be close to 𝑀𝑚𝑎𝑥 and (𝑟 ― 𝑀𝑚𝑎𝑥)2 was expected to be close to 𝑆𝑚𝑎𝑥
2. The mismatches 

770 are weighted with a measure of prior narrowness, 𝜎2
𝑚 in Eq. S10 and 1𝑏 in Eq. S11.

771 We now must solve these equations for 𝑀𝑚𝑎𝑥 and 𝑆𝑚𝑎𝑥 to find the mode of the true posterior. We could 

772 try and find the exact solutions, but considering that the equations are nonlinear, we would have to expect 

773 complicated expressions. Here we will not choose that route: we shall restrict ourselves to approximate 

774 solutions. 
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775 We focus on the scenario in which the priors of both 𝑀𝑚𝑎𝑥 and 𝑆𝑚𝑎𝑥 are very narrow. Formally, this 

776 corresponds to 𝜎2
𝑚 ≪ 1 and 1𝑏 ≪ 1, or equivalently 𝜎2

𝑚 ∼ 𝜖 and 1𝑏 ∼ 𝜖 with 𝜖 ≪ 1. To derive an approximate 

777 solution for this regime, we use expansions

778 𝑀𝑚𝑎𝑥 = 𝑀𝑚𝑎𝑥, 0 + 𝑀𝑚𝑎𝑥,1 + 𝑂(2)

779 Eq. S12

780 𝑆𝑚𝑎𝑥 = 𝑆𝑚𝑎𝑥, 0 + 𝑆𝑚𝑎𝑥,1 + 𝑂(2)

781 Eq. S13

782 for the variables we want to solve for. Here, 𝑀𝑚𝑎𝑥,1 ∼ 𝜖 and 𝑆𝑚𝑎𝑥,1 ∼ 𝜖 are first order terms with respect 

783 to the small constants 𝜎2
𝑚 and 1𝑏. These expansions can be thought of as Taylor expansions of the variables 

784 of interest, keeping only terms up to first order. To determine the zeroth and first order terms, we insert 

785 these expansions into Eq. S10 and Eq. S11 and collect all terms of a certain order. Using this procedure, 

786 we obtain

787 𝑀𝑚𝑎𝑥,0 = 𝑚

788 Eq. S14

789 𝑆𝑚𝑎𝑥,0 = 𝑠

790 Eq. S15

791 for the zeroth order and 

792 𝑀𝑚𝑎𝑥,1 =
𝜎2

𝑚

𝑆2
𝑚𝑎𝑥,0

(𝑟 ― 𝑀𝑚𝑎𝑥,0) =
𝜎2

𝑚

𝑠2 (𝑟 ― 𝑚) 

793 Eq. S16
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794 𝑆𝑚𝑎𝑥,1 =
1
𝑏 ((𝑟 ― 𝑀𝑚𝑎𝑥,0

𝑆𝑚𝑎𝑥,0 )2

― 1) =
1
𝑏 ((𝑟 ― 𝑚

𝑠 )2
― 1)

795 Eq. S17

796 for the first order, where the zeroth order results in Eq. S14 and Eq. S15 were already used. Reinserting 

797 these contributions into Eq. S12 and Eq. S13, we find that the mode of the posterior is approximately at

798 𝑀𝑚𝑎𝑥 = 𝑚 +
𝜎2

𝑚

𝑠2 (𝑟 ― 𝑚) + 𝑂(2)

799 Eq. S18

800 𝑆𝑚𝑎𝑥 = 𝑠 +
1
𝑏 ((𝑟 ― 𝑚

𝑠 )2
― 1) + 𝑂(2)

801 Eq. S19

802 where 𝑂(2) reminds us that we have neglected terms of second or higher order in 1𝑏 and 𝜎2
𝑚. The mode of 

803 the posterior is now found—at least approximately. The final step of the mode-matching method consists 

804 in updating the mode of the fixed-shape belief distribution—which is (𝑚, 𝑠)—by aligning it with the 

805 maximum of the true posterior, which is (approximately) given by (𝑀𝑚𝑎𝑥, 𝑆𝑚𝑎𝑥) in Eq. S18 and Eq. S19.

806 If we were just looking for computationally lightweight learning rules that approximate Bayesian 

807 learning, we could stop here. However, we are ultimately interested in modelling learning in biological 

808 systems, in particular the basal ganglia system. We must hence consider that changes in synaptic strength 

809 can only depend on local information (such as pre- and postsynaptic potentials) and low-dimensional 

810 global feedback signals (such as dopamine release in the striatum). We can achieve this here by applying 

811 yet another set of approximations. First, we identify certain factors as learning rates: 
𝜎2

𝑚

𝑠2  is replaced by 𝛼𝑚, 

812 and 1𝑏 by 𝛼𝑠. Then, we simplify the equations by making the learning rates constant; we hence omit the 𝑠-

813 dependence of 𝛼𝑚. With these changes, we arrive at the learning rules specified in Eq. 2 – 4. These rules 
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814 feature a global feedback signal 𝛿 and track the mean reward 𝑚 as well as the observation noise 𝑠. Both 

815 𝑚 and 𝑠 are fed back into the learning system as they enter what we will call the scaled prediction error 𝛿.

816 Appendix S2. The high noise limit of the steady state Kalman filter

817 Here, we show that the SPE learning rules approximate the one-dimensional steady-state Kalman filter in 

818 the limit of high observation noise. We start by defining the Kalman filter model. We then derive the 

819 steady-state Kalman filter, and finally take the high-noise limit.

820 The definition of the Kalman filter

821 The Kalman filter is a computational method for state estimation and prediction (3). It can be derived 

822 from Bayesian principles and is optimal for tracking signals with certain characteristics. Here, we focus 

823 on a one-dimensional Kalman filter which is used for predicting rewards, following Piray and Daw (2). 

824 The rules they use are

825 𝑚𝑡 = 𝑚𝑡―1 + 𝑘𝑡(𝑟𝑡 ― 𝑚𝑡―1)

826 Eq. S20

827 𝑘𝑡 =
𝑤𝑡―1 + 𝜈2

𝑤𝑡―1 + 𝜈2 + 𝜎2

828 Eq. S21

829 𝑤𝑡 = (1 ― 𝑘𝑡)(𝑤𝑡―1 + 𝜈2)

830 Eq. S22

831 where 𝑟𝑡 is the reward, 𝑘𝑡 the learning rate or Kalman gain and 𝑤𝑡 the posterior variance in trial in trial 𝑡. 

832 Note that our notation differs slightly from that of Piray and Daw (2), for the sake of consistency within 

833 this work.
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834 The above rules can be shown to be optimal for tracking signals such as those we used above, i.e., signals 

835 that consist of samples drawn from a normal distribution with a drifting mean (3).

836 The steady-state Kalman filter

837 The Kalman filter has several variables that must be updated on every trial. If one requires a simpler 

838 model with almost similar properties, one option is to use a Kalman filter in the limit 𝑡→∞: as for 𝑡→∞, 

839 the posterior variance 𝑤𝑡 and the Kalman gain 𝑘𝑡 converge to limits 𝑤∞ and 𝑘∞.

840 Eq. S20 with 𝑘∞ instead of 𝑘𝑡 is called a steady-state Kalman filter. By construction, the normal Kalman 

841 filter becomes more similar to the steady-state Kalman filter the more trials pass. In practice, performance 

842 often does not differ much between the two (3).

843 What are the limits 𝑤∞ and 𝑘∞? One may use Eq. S21 and Eq. S22 to determine them. By setting 𝑘𝑡 =

844 𝑘𝑡―1 and 𝑤𝑡 = 𝑤𝑡―1, we find

845 𝑤∞ =
𝜈2

2 ( 4
𝜎2

𝜈2 + 1 ― 1)
846 Eq. S23

847 𝑘∞ =
4 𝜎2

𝜈2 + 1 + 1

4 𝜎2

𝜈2 + 1 + 1 + 2 𝜎2

𝜈2

848 Eq. S24

849 To use the steady-state Kalman filter, one just needs to compute 𝑘∞ and plug it into Eq. S20. One can 

850 then use this single equation to track the signal, with no other computations required. The steady-state 

851 Kalman filter is thus equivalent to the RW model in Eq. 14 and Eq. 15, parametrized with an optimal 

852 learning rate (that is to say, optimal for a signal with statistics 𝜈2 and 𝜎2).
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853 The high-noise limit

854 The steady-state Kalman filter is less complex than the full Kalman filter. However, its learning rate 𝑘∞ is 

855 still a complex function of the signal statistics 𝜈 and 𝜎. Can it be simplified? Let us consider of a signal 

856 with high observation noise, i.e., with 𝜎2 much larger than 𝜈2. Using Eq. S24, we find that

857 𝑘∞→
𝜈
𝜎

858 Eq. S25

859 for 𝜎
2

𝜈2→∞. This means that a steady-state Kalman filter with gain 
𝜈
𝜎 is approximately optimal for signals 

860 with 𝜎2 ≫ 𝜈2. In Fig S2, we compare the optimal steady-state learning rate 𝑘∞ with the approximately 

861 optimal learning rate 𝜈/𝜎 for different levels of 𝜎, with 𝜈 fixed at 𝜈 = 1.

862

863

864 Fig S2. The learning rate of the steady state Kalman filter. We show the learning rate 𝑘∞ of the steady 

865 state Kalman filter as a function of the observation noise 𝜎. We provide the exact value (blue line) and the 

866 approximation 𝑘∞ ≈
𝜈
𝜎 (orange line).

867
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868 We find that the approximation becomes very close very quickly—for 
𝜎
𝜈 > 2, the relative difference 

869 between the optimal learning rate and its approximation is already less than 30 %.  Fig S2 further suggests 

870 that the approximation breaks down as 
𝜈
𝜎 approaches unity—the optimal learning rate for signals with 

871 𝜎 = 0 is one; any higher learning rate will be detrimental for the performance.

872 In summary, we find the learning rule

873 𝑚𝑡 = 𝑚𝑡―1 +
𝜈
𝜎 (𝑟𝑡 ― 𝑚𝑡―1)

874 Eq. S26

875 to be approximately optimal for 𝜎 ≪ 𝜈 and large 𝑡. The rule Eq. 26 bears striking resemblance to one of 

876 the SPE learning rules: the rule in Eq. 3. The difference between the two rules is just how the scaling is 

877 attributed: in the Kalman filter, one would perhaps speak of a scaled learning rate, while in the SPE 

878 model, one attributes the scaling to the error term. Mathematically, both formulations are equivalent.

879 A real difference between the Kalman filter and the SPE model is that the latter has a mechanism to track 

880 𝜎. No such mechanism exists in the Kalman filter. Both models require 𝜈 as an external input (for the SPE 

881 model, the corresponding parameter is 𝛼𝑚).

882 We conclude that the SPE model can be viewed as an implementation of approximately optimal one-

883 dimensional state estimation, equipped with a mechanism to supply some of the required parameters—the 

884 observation noise 𝜎. Other models have been proposed to track the process noise 𝜈, for example by Piray 

885 and Daw (2). A combination of these approaches might be an interesting direction for future research.

886
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