

Functional dissection of neural connectivity in generalized anxiety disorder

Jonas L. Steinhäuser^{1,2}, Adam R. Teed¹, Obada Al-Zoubi^{1,3}, René Hurleman^{4,5}, Gang Chen⁶, Sahib S. Khalsa^{1,7}

¹ Laureate Institute for Brain Research, Tulsa, Oklahoma, USA.

² Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.

¹⁰ ³ Department of Electrical and Computer Engineering, University of Oklahoma, Tulsa,
¹¹ Oklahoma, United States

12 ⁴Department of Psychiatry, School of Medicine & Health Sciences, University of
13 Oldenburg, Oldenburg, Germany

14 ⁵ Research Center Neurosensory Science, University of Oldenburg, Oldenburg,
15 Germany

¹⁶ ⁶Scientific and Statistical Computing Core, National Institute of Mental Health,
¹⁷ Bethesda, Maryland, USA

¹⁸ ⁷Oxley College of Health Sciences, University of Tulsa, Tulsa, Oklahoma, United States

20 Author for correspondence:

21 Jonas Steinhäuser, E-mail: Jonas.Steinhaeuser@tu-dresden.de

22 Sahib Khalsa, E-mail: skhalsa@laureateinstitute.org

23 Laureate Institute for Brain Research, 6655 South Yale Ave. Tulsa, OK 74136, USA

24 **Keywords:** resting state, anxiety, fMRI, Bayesian, functional connectivity

25 **Word count: 4852**

27 **Abstract**

28 Differences in the correlated activity of networked brain regions have been reported in
29 individuals with generalized anxiety disorder (GAD) but an overreliance on the null-
30 hypothesis significance testing (NHST) framework limits the identification and
31 characterization of disorder-relevant relationships. In this preregistered study, we
32 applied a Bayesian statistical framework as well as NHST to the analysis of resting-
33 state fMRI scans from females with GAD and demographically matched healthy
34 comparison females. Eleven *a-priori* hypotheses about functional correlativity (FC) were
35 evaluated using Bayesian (multilevel model) and frequentist (*t*-test) inference. Reduced
36 FC between the ventromedial prefrontal cortex (vmPFC) and the posterior-mid insula
37 (PMI) was confirmed by both statistical approaches. FC between the vmPFC-anterior
38 insula, the amygdala-PMI, and the amygdala-dorsolateral prefrontal cortex (dIPFC)
39 region pairs did not survive multiple comparison correction using the frequentist
40 approach. However, the Bayesian model provided evidence for these region pairs
41 having decreased FC in the GAD group. Leveraging Bayesian modeling, we
42 demonstrate decreased FC of the vmPFC, insula, amygdala, and dIPFC in females with
43 GAD. Exploiting the Bayesian framework revealed FC abnormalities between region
44 pairs excluded by the frequentist analysis, as well as other previously undescribed
45 regions, demonstrating the benefits of applying this statistical approach to resting state
46 FC data.

47

48 **Introduction**

49 Generalized anxiety disorder (GAD) is a psychiatric disorder characterized by
50 disproportionate and uncontrollable worry in addition to somatic symptoms including
51 muscle tension, sleep disturbances, fatigue, and difficulty concentrating (American
52 Psychiatric Association, 2013; Barlow, Blanchard, Vermilyea, Vermilyea, & DiNardo,
53 1986). It is the most common anxiety disorder (Kessler & Wang, 2008), and is associated
54 with substantial functional impairments and economic costs as well as high rates of
55 comorbidity with other psychiatric disorders (Hoge, Ivkovic, & Fricchione, 2012). While
56 the neurobiology of GAD has been investigated extensively (Connor & Davidson, 1998;
57 Stein, 2009), technical advancements in functional neuroimaging in recent decades have
58 afforded insights into abnormalities of regional and network-level neural communication
59 underlying this condition (Fonzo & Etkin, 2017; Holzschneider & Mulert, 2011). Many
60 studies examining brain activity during resting conditions have suggested that specific
61 regions of the brain are organized into functionally dissociable networks that exhibit
62 concurrent activation under varying cognitive conditions, and it is conceivable that
63 functional interdependence between these networks, or nodes within them, is impaired in
64 GAD (Hilbert, Lueken, & Beesdo-Baum, 2014; Kolesar, Bilevicius, Wilson, & Kornelsen,
65 2019). Among the most frequently described neural networks are the default mode
66 network (DMN, active during the absence of a specific task) (Gusnard, Raichle, & Raichle,
67 2001; Raichle, 2015), the salience network (SN, responsible for shifting attention to
68 behaviorally relevant internal and external stimuli) (Menon, 2015; Seeley et al., 2007),
69 and the central executive network (CEN, involved in cognitively demanding functions like
70 management of attention) (Bressler & Menon, 2010; Sridharan, Levitin, & Menon, 2008).

71 Functional connectivity analysis is the most common technique for evaluating neural
72 communication at the network level, which involves assessing temporally dependent co-
73 activation of anatomically separated brain regions during resting conditions (van den
74 Heuvel & Hulshoff Pol, 2010). To reduce causal interpretations of this correlational
75 relationship (Mehler & Kording, 2020), we instead use the term “functional correlativity”
76 (FC). Extant studies on FC in GAD have suggested abnormal relationships between
77 specific brain regions, including the ventromedial prefrontal cortex (vmPFC) (Etkin,
78 Prater, Schatzberg, Menon, & Greicius, 2009; Porta-Casteràs et al., 2020), the insular
79 cortex (Cui et al., 2020; Kolesar et al., 2019; Qiao et al., 2017), the amygdala (Etkin et
80 al., 2009; Hilbert et al., 2014; Kolesar et al., 2019; Li et al., 2016; Roy et al., 2013), and
81 the dorsolateral prefrontal cortex (dlPFC) (Etkin et al., 2009). Additionally, analyses of
82 both task related and resting state functional magnetic resonance imaging (fMRI) data
83 suggest that GAD is characterized by abnormal responses in the dorsal anterior cingulate
84 cortex (dACC) (Blair et al., 2012; Paulesu et al., 2010), the dorsomedial prefrontal cortex
85 (dmPFC) (Mochcovitch, da Rocha Freire, Garcia, & Nardi, 2014), the posterior cingulate
86 cortex (PCC) (Andreescu, Sheu, Tudorascu, Walker, & Aizenstein, 2014), and the
87 temporal pole (TP) (Li et al., 2016). The aforementioned brain regions have been
88 associated with a variety of mental processes including the regulation of emotion (e.g.,
89 vmPFC, amygdala) (Hiser & Koenigs, 2018; Phelps, 2006), interoception (e.g., insula)
90 (Craig, 2002; Khalsa et al., 2018), attention (e.g., PCC) (Leech & Sharp, 2014), executive
91 functioning (e.g., dlPFC) (Mansouri, Tanaka, & Buckley, 2009; Petrides, 2000), decision
92 making (e.g., dACC, vmPFC) (Bechara, Tranel, & Damasio, 2000; Bush et al., 2002),
93 working memory (e.g., dlPFC) (Barbey, Koenigs, & Grafman, 2013; Petrides, 2000),

94 processing of mental states (e.g., dmPFC) (Bzdok et al., 2013), and theory of mind (e.g.,
95 TP) (Gallagher & Frith, 2003), and accordingly, many of these regions are components
96 of the DM, SN, and CEN.

97 To date, most studies on resting state FC in GAD have selectively interrogated
98 relationships between subsets of brain regions, often relying purely on the null-hypothesis
99 significance testing (NHST) framework. While frequentist inference requires several
100 assumptions, one of them is particularly problematic in the context of neuroimaging: the
101 conventional mass-univariate analysis unrealistically assumes uniform distribution across
102 spatial units (i.e., voxels, regions). As effects across brain tend to approximately follow a
103 normal distribution, the conventional approach suffers from issues such as information
104 loss, overfitting, and artificial dichotomization (Chen et al., 2021). This underscores the
105 need for an additional, if not alternative, way of looking at the data.

106 Bayesian inference provides a different statistical viewpoint. It is able to assess evidence
107 in the data both for and against the experimental hypotheses, by allowing the researcher
108 to assess for evidence of invariances as well as differences in a variable of interest
109 (Rouder, Speckman, Sun, Morey, & Iverson, 2009; Wagenmakers et al., 2018). In
110 addition, instead of treating each spatial unit as an isolated entity, as in the conventional
111 mass-univariate analysis, Bayesian multilevel modeling integrates all spatial units into
112 one holistic framework in which all the information is shared and leveraged through partial
113 pooling (Chen et al., 2021). The recent implementation of the multilevel Bayesian
114 modeling matrix-based analysis program (MBA) in AFNI (Cox, 1996) is one such
115 example, which enables researchers to infer the probability of a research hypothesis

116 given the data while overcoming the issue of multiplicity (Chen et al., 2019; Scott &
117 Berger, 2006).

118 In this preregistered study, we applied a Bayesian statistical framework to the analysis of
119 resting state FC in GAD, with the addition of a frequentist analysis for a conventional
120 comparison. We assessed the FC of brain regions commonly implicated in GAD (vmPFC,
121 dmPFC, dlPFC, dACC, insula, amygdala, PCC, TP) with respect to a set of research
122 hypotheses regarding potential group differences relative to healthy comparisons (HC)
123 (Table 1). Thus in addition to testing hypotheses stemming from the prior frequentist
124 literature on GAD, the application of multilevel Bayesian modeling enabled us to more
125 effectively address issues associated with NHST (such as the problem of multiplicity) and
126 to evaluate observed relationships for convergence (i.e., to functionally “dissect” the data)
127 across analysis approaches.

128

129 **Table 1: *A-priori* hypotheses about differences in functional correlativity between**
130 **pre-defined regions of interest in generalized anxiety disorder relative to healthy**
131 **comparisons.**

Region A	Region B	Hypothesis on FC
Posterior cingulate cortex	Ventromedial prefrontal cortex	Decreased
Posterior cingulate cortex	Dorsomedial prefrontal cortex	Decreased
Anterior insula	Dorsal anterior cingulate cortex	Decreased
Dorsolateral prefrontal cortex	Amygdala	Increased
Anterior insula	Ventromedial prefrontal cortex	Decreased
Posterior-mid insula	Ventromedial prefrontal cortex	Decreased
Amygdala	Dorsal anterior cingulate cortex	Decreased
Amygdala	Temporal pole	Increased
Amygdala	Ventromedial prefrontal cortex	Increased
Amygdala	Anterior insula	Increased
Amygdala	Posterior/mid insula	Increased

132
133 Bilateral regions of interest (ROIs) were defined according to the label groupings from the
134 Brainnetome atlas (Fan et al., 2016): Posterior cingulate cortex, ventromedial prefrontal cortex,
135 dorsomedial prefrontal cortex, dorsal anterior cingulate cortex, anterior insula (encompassing the
136 agranular insula in entirety), posterior-mid insula (encompassing the granular and dysgranular insula
137 in entirety), amygdala, dorsolateral prefrontal cortex, temporal pole. The corresponding IDs from the
138 Brainnetome atlas defining each ROI are listed in the materials and methods section.

139 **Results**

140 *Sample characteristics*

141 Demographic and clinical information of the female study sample are summarized in
142 Table 2. The propensity matching process of study participants (based on body mass
143 index (BMI) and age demographics) resulted in a sample of 29 GAD and 29 HC
144 participants. Three were excluded from further analysis due to excessive motion or signal
145 outliers during their resting scan, resulting in a final analysis sample of 27 GAD and 28
146 HC participants (for further details on participant selection and recruitment, please refer
147 to the materials and methods section). The participants did not differ significantly on age
148 or BMI, and as expected, the GAD group exhibited higher psychopathology scores on the
149 Patient Health Questionnaire depression module (PHQ-9) (Williams, 2014), Overall
150 Anxiety Severity and Impairment Scale (OASIS) (Campbell-Sills et al., 2009), GAD-7
151 (Spitzer, Kroenke, Williams, & Löwe, 2006), State-Trait Anxiety Inventory (STAI)
152 (Spielberger, Gorsuch, Lushene, Vagg, & Jacobs, 1983), and Anxiety Sensitivity Index
153 (ASI) (Reiss, Peterson, Gursky, & McNally, 1986) questionnaires (Table 2). The study
154 groups did not differ with respect to average head motion during the resting state scan as
155 indicated by the Wilcoxon signed-rank test ($M_{GAD} = 0.054$, 95% CI [0.044, 0.065]; $M_{HC} =$
156 0.057, 95% CI [0.046, 0.068]; $W = 393$, $p = 0.809$, $\Delta M = 0.003$, 95% CI [-0.011, 0.017]).

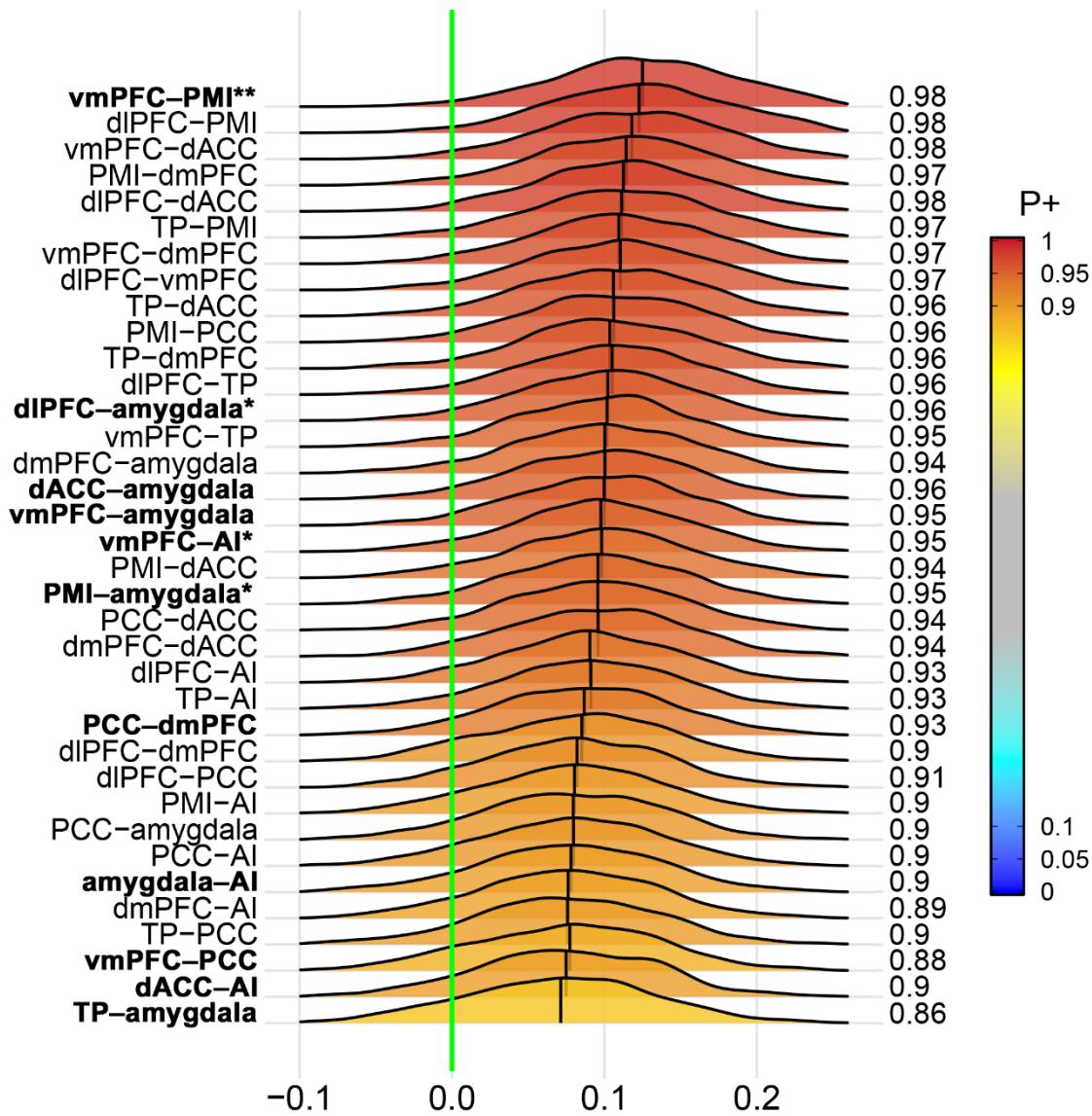
157

158 **Table 2: Demographic and clinical characteristics of study sample**

	GAD <i>n</i> = 27 females	HC <i>n</i> = 28 females	ΔM	95% CI	<i>df</i>	<i>t</i>	<i>p</i>
Age (years)	26.2 \pm 6.5	24.2 \pm 5.1	-1.99	[-5.12, 1.18]	49.23	-1.26	0.214
BMI (kg/m ²)	25.9 \pm 4.7	24 \pm 3.2	-1.86	[-4.04, 0.32]	45.5	-1.72	0.092
PHQ-9	11.5 \pm 5	0.7 \pm 1.1	-10.8	[-12.82, -8.78]	28.37	-10.96	< 0.001
OASIS	11 \pm 2.2	1.1 \pm 1.6	-9.82	[-10.87, -8.78]	46.97	-18.9	< 0.001
GAD-7	13.7 \pm 3.4	1 \pm 1.5	-12.74	[-14.19, -11.29]	35.93	-17.78	< 0.001
STAI-State	44.1 \pm 9.3	24.7 \pm 5.6	-19.37	[-23.59, -15.15]	42.48	-9.26	< 0.001
STAI-Trait	58 \pm 6.7	28.2 \pm 6.9	-29.81	[-33.51, -26.12]	51.93	-16.17	< 0.001
ASI-Total	28 \pm 14.6	7.2 \pm 4	-20.71	[-26.67, -14.76]	29.74	-7.1	< 0.001
ASI-Physical	6.3 \pm 4.8	1.4 \pm 1.7	-4.87	[-6.85, -2.88]	31.98	-4.99	< 0.001
ASI-Cognitive	6.5 \pm 6.6	0.9 \pm 1.6	-5.63	[-8.29, -2.96]	28.85	-4.32	< 0.001
ASI-Social	15.1 \pm 6.7	4.9 \pm 2.6	-10.22	[-13.01, -7.43]	33.55	-7.44	< 0.001

159

160 All values presented as means \pm standard deviation. Differences between group means (ΔM) and
161 corresponding 95% uncertainty intervals (CI) are reported. Welch's independent samples *t*-tests
162 were conducted to assess differences between the groups. Data for the STAI was missing from
163 one HC participant. *GAD* generalized anxiety disorder, *HC* healthy comparison, *df* degrees of
164 freedom, *BMI* body mass index, *PHQ-9* Patient Health Questionnaire-9, *OASIS* Overall Anxiety
165 Severity and Impairment Scale, *GAD-7*-item generalized anxiety scale, *STAI* State-Trait Anxiety
166 Inventory, *ASI* Anxiety Sensitivity Index

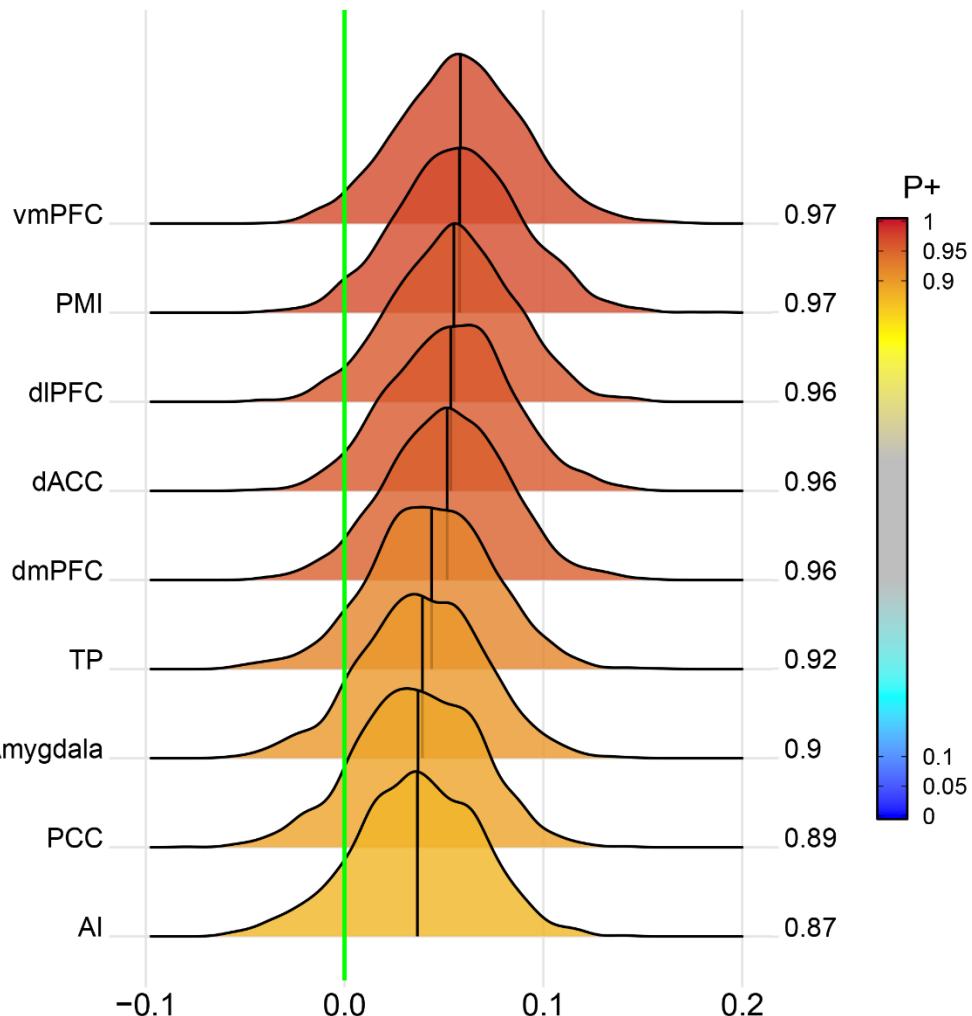

167

168 *Resting-state fMRI analysis*

169 Bayesian multilevel modeling

170 The results obtained from administering the Bayesian multilevel model (BML) (Chen et
171 al., 2019) to our data identified several region pairs with strong evidence for the group
172 difference being greater (or less) than 0, most notably the vmPFC-PMI region pair ($P_+ =$
173 0.98). The BML indicated strong evidence for a group difference for some of the region
174 pairs that were also tested in the NHST model (i.e., dlPFC-amygdala, $P_+ = 0.96$; vmPFC-
175 AI, $P_+ = 0.95$; PMI-amygdala, $P_+ = 0.95$).

176 Interestingly, the BML analysis identified other region pairs to have abnormal FC that
177 were not hypothesized *a-priori* and were therefore not examined in the NHST analysis.
178 These included the dlPFC-PMI, the vmPFC-dACC, the dmPFC-PMI, the dlPFC-dACC,
179 the TP-PMI, and the vmPFC-dmPFC region pairs, all of which indicated high probabilities
180 for a group difference. The complete results of the BML for all region pairs are illustrated
181 in Figure 1.

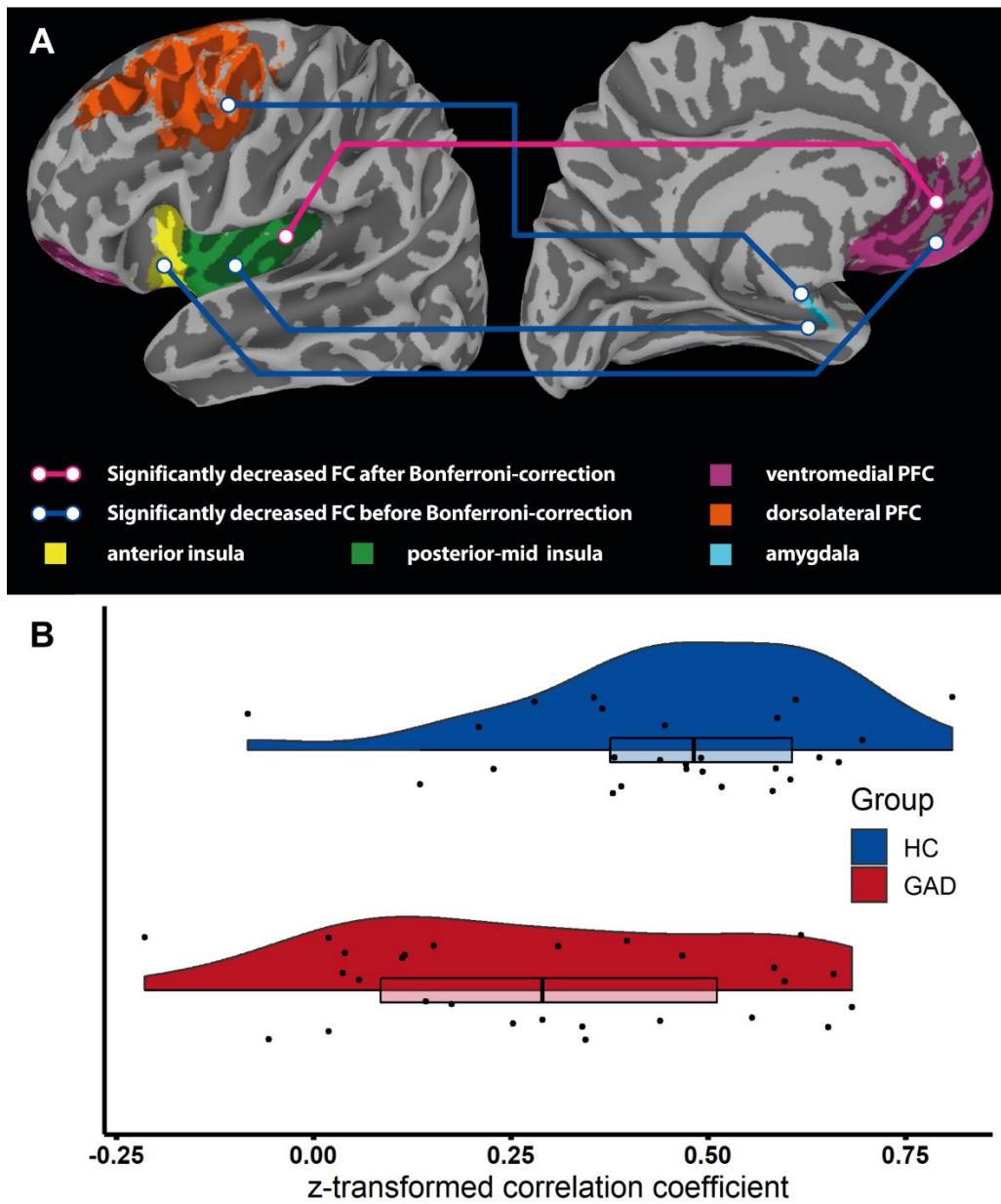


182

183 **Figure 1: Posterior density distributions of the difference in region-pair effect magnitudes**
184 **between the two study groups as revealed by the Bayesian multilevel analysis.** The value at
185 the right end of each curve indicates the posterior probability P_+ for the group difference of the
186 effect being greater than 0 (indicated by the vertical green line). The posterior probability P_+ is
187 additionally color-coded in the plane under each posterior density. The vertical black line in each
188 distribution represents the mean effect difference between the two groups for each region pair.
189 Bold font indicates region pairs included in the NHST analysis, with single asterisks indicating
190 significance in the NHST analysis before, and two asterisks for after, Bonferroni-correction for
191 multiple comparisons. *vmPFC* ventromedial prefrontal cortex, *PMI* posterior-mid insula, *dIPFC*
192 dorsolateral prefrontal cortex, *dACC* dorsal anterior cingulate cortex, *dmPFC* dorsomedial
193 prefrontal cortex, *TP* temporal pole, *PCC* posterior cingulate cortex, *AI* anterior insula

194 The finding of the vmPFC-PMI region pair showing strong evidence for a group
195 difference in the BML was reinforced by regional effect estimates for the group
196 comparisons: Both the vmPFC ($P_+ = 0.972$) and the PMI ($P_+ = 0.972$) showed the
197 highest posterior probabilities of observing a region effect in the HC minus GAD
198 contrast of all areas included in the BML. The complete list of region effects and their
199 respective probabilities are visualized in Figure 2.

200



201 **Figure 2: Bayesian multilevel analysis reveals the vmPFC and PMI to have strong evidence**
202 **for a difference in region effects between the study groups.** Posterior density distributions of
203 the difference in region effects in the HC minus GAD contrast of the Bayesian multilevel model.
204 The value at the right end of each curve indicates the posterior probability P_+ for the group
205 difference of the effect being greater than 0 (indicated by the vertical green line). The posterior
206 probability P_+ is additionally color-coded in the plane under each posterior density. The vertical
207 black line in each distribution represents the mean difference in region effects (as Fishers's z-
208 score) between the two groups for each region in the model. *vmPFC* ventromedial prefrontal
209 cortex, *PMI* posterior-mid insula, *dlPFC* dorsolateral prefrontal cortex, *dACC* dorsal anterior
210 cingulate cortex, *dmPFC* dorsomedial prefrontal cortex, *TP* temporal pole, *PCC* posterior cingulate
211 cortex, *AI* anterior insula

212 Mass-univariate analysis

213 Results from the conventional mass-univariate analysis revealed that participants in the
214 GAD group had significantly lower FC compared to HCs between the vmPFC and
215 posterior-mid insula (PMI) ($M_{GAD} = 0.29$, $SE_{GAD} = 0.05$, $M_{HC} = 0.47$, $SE_{HC} = 0.04$, $t(48.86)$
216 = 2.94, $p = 0.005$), the vmPFC and anterior insula (AI) ($M_{GAD} = 0.41$, $SE_{GAD} = 0.04$, M_{HC}
217 = 0.52, $SE_{HC} = 0.03$, $t(52.50) = 2.18$, $p = 0.034$), the amygdala and PMI ($M_{GAD} = 0.33$,
218 $SE_{GAD} = 0.04$, $M_{HC} = 0.43$, $SE_{HC} = 0.03$, $t(49.60) = 2.26$, $p = 0.029$), and the amygdala
219 and dlPFC ($M_{GAD} = 0.20$, $SE_{GAD} = 0.04$, $M_{HC} = 0.30$, $SE_{HC} = 0.03$, $t(51.52) = 2.16$, $p =$
220 0.036) region pairs. However, after Bonferroni-correction of all hypotheses tested, only
221 the vmPFC and PMI result remained significant ($t(48.86) = 2.94$, $p_{adj} = 0.02$) (Figure 3).
222 This finding is in line with the top result from the BML, that convergently identified the
223 vmPFC-PMI region pair to have the highest probability for a group difference. Detailed
224 results for all 11 hypotheses tested can be found in Table 3.

225

226

227 **Figure 3: Differences in resting-state FC between GAD and HC revealed by the frequentist**
228 **analysis. A)** The pink line indicates a significantly decreased FC between the PMI and vmPFC in
229 GAD participants after multiple comparison correction using the Bonferroni method. Blue lines
230 indicate differences in FC between the PMI and amygdala, AI and vmPFC, and dIPFC and vmPFC
231 that did not remain statistically significant after Bonferroni correction. Each brain region, indicated
232 by different colors, reflects the selected labels drawn from the Brainnetome atlas. B) Raincloud
233 plots of Fisher r -to- z transformed correlation coefficients between the PMI and the vmPFC BOLD-
234 signal time series. FC functional correlativity, GAD generalized anxiety disorder, HC healthy
235 comparison, $vmPFC$ ventromedial prefrontal cortex, PMI posterior-mid insula, AI anterior insula,
236 $dIPFC$ dorsolateral prefrontal cortex

237

Table 3: Results of the frequentist analysis of functional correlativity between selected region pairs

Region A	Region B	M_{GAD}	SE_{GAD}	M_{HC}	SE_{HC}	ΔM	$95\% CI$	df	t	p	p_{adj}
PCC	vmPFC	0.81	0.04	0.86	0.03	0.05	[-0.05, 0.15]	52.4	1.01	0.316	1
PCC	dmPFC	0.43	0.05	0.49	0.05	0.06	[-0.07, 0.18]	53	0.85	0.399	0.797
AI	dACC	0.69	0.03	0.71	0.05	0.03	[-0.08, 0.14]	44.3	0.48	0.636	1
dIPFC	Amygdala	0.20	0.04	0.30	0.03	0.11	[0.01, 0.2]	51.5	2.16	0.036*	0.215
AI	vmPFC	0.41	0.04	0.52	0.03	0.11	[0.01, 0.21]	52.5	2.18	0.034*	0.136
PMI	vmPFC	0.29	0.05	0.47	0.04	0.18	[0.06, 0.3]	48.9	2.94	0.005**	0.02**
Amygdala	dACC	0.18	0.03	0.26	0.04	0.07	[-0.02, 0.17]	50.4	1.53	0.132	0.791
Amygdala	TP	0.45	0.03	0.52	0.03	0.07	[-0.01, 0.16]	52.9	1.69	0.097	0.584
Amygdala	vmPFC	0.33	0.04	0.43	0.03	0.1	[0, 0.2]	52.5	1.99	0.052	0.314
Amygdala	AI	0.25	0.04	0.32	0.03	0.07	[-0.02, 0.16]	46.5	1.58	0.12	0.719
Amygdala	PMI	0.33	0.03	0.43	0.03	0.1	[0.01, 0.19]	49.6	2.26	0.029*	0.171

238

239 Region pairs with significant differences in FC between the groups before multiplicity correction are indicated by a single asterisk (*); the
 240 region pair with a significant difference in FC after multiplicity correction is indicated by double asterisks (**). M mean, SE standard error of
 241 the mean, ΔM differences between group means, CI confidence interval (uncertainty interval), df degrees of freedom, PCC posterior cingulate
 242 cortex, $vmPFC$ ventromedial prefrontal cortex, $dmPFC$ dorsomedial prefrontal cortex, AI anterior insula, $dACC$ dorsal anterior cingulate cortex,
 243 $dIPFC$ dorsolateral prefrontal cortex, PMI posterior-mid insula, TP temporal pole.

244 **Exploring the relationship between ventromedial prefrontal cortex - posterior-mid**
245 **insula correlativity and symptom scores**

246 To investigate whether the reduced FC between the vmPFC and PMI, observed in both
247 frequentist and Bayesian analyses, was related to greater psychopathology we
248 calculated Pearson's r between vmPFC-PMI z-scores and clinical scores assessed by
249 the following validated questionnaires: The GAD-7, the PHQ-9, the ASI, the STAI, and
250 the OASIS. While the vmPFC-PMI z-score – ASI Total score correlation was statistically
251 significant initially in the GAD group, this relationship did not survive correction for
252 multiplicity. All other correlations were non-significant even before correction for multiple
253 comparisons (Table 4).

254

255 **Table 4. Pearson's correlation between vmPFC-PMI functional correlativity and**
 256 **clinical variables**

	GAD	HC
vmPFC-PMI z-score – ASI Total	$r = -0.42$ 95% CI [-0.69, -0.05] $p = 0.029^*$ $p_{adj} = 0.175$	$r = 0.182$ 95% CI [-0.21, 0.52] $p = 0.353$ $p_{adj} = 0.706$
vmPFC-PMI z-score – GAD-7	$r = -0.033$ 95% CI [-0.41, 0.35] $p = 0.872$ $p_{adj} = 0.872$	$r = 0.06$ 95% CI [-0.32, 0.42] $p = 0.762$ $p_{adj} = 0.914$
vmPFC-PMI z-score – PHQ-9	$r = -0.075$ 95% CI [-0.44, 0.31] $p = 0.709$ $p_{adj} = 0.872$	$r = -0.279$ 95% CI [-0.59, 0.11] $p = 0.15$ $p_{adj} = 0.706$
vmPFC-PMI z-score – STAI State	$r = -0.061$ 95% CI [-0.43, 0.33] $p = 0.763$ $p_{adj} = 0.872$	$r = -0.013$ 95% CI [-0.39, 0.37] $p = 0.949$ $p_{adj} = 0.949$
vmPFC-PMI z-score – STAI Trait	$r = 0.05$ 95% CI [-0.37, 0.42] $p = 0.803$ $p_{adj} = 0.872$	$r = 0.205$ 95% CI [-0.19, 0.54] $p = 0.306$ $p_{adj} = 0.706$
vmPFC-PMI z-score – OASIS	$r = -0.174$ 95% CI [-0.52, 0.22] $p = 0.385$ $p_{adj} = 0.872$	$r = -0.125$ 95% CI [-0.48, 0.26] $p = 0.526$ $p_{adj} = 0.789$

257

258 Pearson correlation coefficients are presented as test statistics along with their corresponding raw
 259 p -values and 95% uncertainty intervals (CI). Additionally, p -values have been corrected for multiple
 260 comparisons (p_{adj}) using the false discovery rate (Benjamini & Hochberg, 1995). *HC* healthy
 261 comparison participants, *GAD* participants with generalized anxiety disorder, *vmPFC* ventromedial

262 prefrontal cortex, *PMI* posterior-mid insula, *GAD-7* 7-item generalized anxiety scale, *PHQ-9* Patient
263 Health Questionnaire-9, *ASI* Anxiety Sensitivity Index, *STA* State-Trait Anxiety Inventory, *OAS/S*
264 Overall Anxiety Severity and Impairment Scale. * $p < 0.05$

265 **Discussion**

266 In this preregistered study, we examined FC in females with GAD relative to matched
267 HCs to test a set of *a-priori* hypotheses using dual statistical frameworks: Bayesian
268 multilevel modeling and NHST. Converging results from both analyses confirmed
269 diminished FC between the PMI and the vmPFC in the GAD vs. HC groups. FC between
270 these regions was significantly associated with one clinically relevant trait measure,
271 anxiety sensitivity, in the GAD group, however this relationship did not survive multiple
272 comparison corrections.

273 While the frequentist analysis in convergence with the BML identified the vmPFC and PMI
274 region pair to exhibit decreased functional coupling in our analysis, the NHST framework
275 as a whole has faced growing criticism (Greenland et al., 2016; Nickerson, 2000;
276 Wasserstein & Lazar, 2016). Conceptually, NHST results are often misinterpreted (or
277 misunderstood) given that they assess only whether the experimental result observed
278 (e.g., that two groups differ on a variable of interest) is too unlikely to maintain an
279 assumption that the null hypothesis is true (Chen et al., 2019; Nickerson, 2000). This
280 assumption precludes the ability to distinguish between results that provide evidence of
281 the absence of an effect from null results yielded merely from a lack in statistical power.
282 Additionally, using the same data to test multiple hypotheses in the NHST framework
283 arbitrarily inflates the type I error (Tukey, 1991), resulting in a variety of methods to adjust
284 for this problem of multiplicity (Bender & Lange, 2001; Curran-Everett, 2000). Examining
285 the data using Bayesian multilevel model overcomes these challenges while further
286 providing evidence for abnormal FC among region pairs that were not hypothesized *a-*
287 *priori* and were therefore not tested in the NHST analysis. This included evidence of

288 abnormal FC among several regions including the dlPFC-PMI, the vmPFC-dACC, the
289 dmPFC-PMI, the dlPFC-dACC, the TP-PMI, and the vmPFC-dmPFC. Thus, the
290 application of both statistical frameworks allowed for a functional dissection of neural
291 connectivity in GAD yielding confirmatory results (most notably vmPFC-PMI) and
292 providing indications of other relationships worth examining further.

293 Numerous studies have implicated the vmPFC in key aspects of cognitive functioning
294 such as decision making (Bechara et al., 2001, 2000), generation and regulation of
295 emotion (Diekhof, Geier, Falkai, & Gruber, 2011; Hiser & Koenigs, 2018; Winecoff et al.,
296 2013), and fear conditioning (Quirk & Mueller, 2008; Sotres-Bayon, Cain, & LeDoux,
297 2006). The vmPFC has been previously associated with greater fear generalization in
298 GAD (Cha et al., 2014; T. Greenberg, Carlson, Cha, Hajcak, & Mujica-Parodi, 2013),
299 which fits the clinical picture of excessive worry in individuals with the disorder (Rowa &
300 Antony, 2008). Moreover, abnormal vmPFC functioning has most often been implicated
301 in anxiety disorders in regards to its proposed role of inhibiting amygdala output
302 ((Davidson, 2002; Phelps, Delgado, Nearing, & LeDoux, 2004); but see (Myers-Schulz &
303 Koenigs, 2012)). This seems reasonable considering the widely accepted view of the
304 amygdala as a central hub for fear processing (Davis, 1992; LeDoux, 2003). However,
305 several lines of evidence show the need to distinguish between exteroceptive fear
306 processing, which is most prominently mediated through the amygdala, and interoceptive
307 fear processing, which is most prominently mediated through the insular cortex. For
308 example, studies of individuals with bilateral amygdala lesions have shown a remarkable
309 absence of anxiety or panic in response to exteroceptive fear stimuli (Adolphs & Tranel,
310 2000; Bechara et al., 1995; Becker et al., 2012; Feinstein, Adolphs, Damasio, & Tranel,

311 2011) but experienced fear and panic evoked by interoceptive stimuli (Feinstein et al.,
312 2013; Khalsa et al., 2016). Interoception, which encompasses the sensory processing of
313 internal body signals by the nervous system (Craig, 2002; Khalsa et al., 2018), is a
314 process tightly linked to the insular cortex among other regions including the medial
315 prefrontal cortex and amygdala (Berntson & Khalsa, 2021; Khalsa, Rudrauf, Feinstein, &
316 Tranel, 2009). Models of interoceptive processing have suggested a posterior-to-anterior
317 integration of interoceptive signaling within the human insula (Barrett & Simmons, 2015;
318 Craig, 2009; Seth, Suzuki, & Critchley, 2011) that is supported by its pattern of
319 cytoarchitectonic organization with an agranular rostral and dysgranular/granular mid and
320 posterior divisions across humans and primates (Evrard, Logothetis, & Craig, 2014;
321 Ghaziri et al., 2017; Morel, Gallay, Baechler, Wyss, & Gallay, 2013). Studies examining
322 the functional organization of the insula implicate the AI in task maintenance (Dosenbach
323 et al., 2006), attention control (Nelson et al., 2010), emotion (Cauda et al., 2011; Zaki,
324 Davis, & Ochsner, 2012), and predictive processing (Barrett & Simmons, 2015; Seth et
325 al., 2011), which is in line with increased insula activity during emotional processing tasks
326 in individuals with anxiety disorders (Simmons, Strigo, Matthews, Paulus, & Stein, 2006;
327 Stein, Simmons, Feinstein, & Paulus, 2007). Thus, the reduced vmPFC-PMI FC observed
328 in this current study supports the idea that individuals with GAD may have difficulty
329 exercising top-down regulation of emotion due to aberrant processing of signals flowing
330 through an interoceptive hub: the insula. This hypothesis is backed by the vmPFC and
331 PMI having the highest probabilities for a region effect in the HC minus GAD contrast as
332 well as by FC between the vmPFC and the AI being reduced in the GAD group as

333 convergently confirmed by both statistical approaches (although the NHST-result was
334 only statistically significant before correcting for multiplicity).

335 Other results from the frequentist analysis indicate abnormal FC of the amygdala: though
336 contrary to our hypothesis, we observed decreased, not increased, FC between the
337 amygdala and the PMI. The direction of this finding contrasts with previous reports of an
338 amygdala-insula resting state network in both anxious adults (Baur, Hänggi, Langer, &
339 Jäncke, 2013) and adolescents (Roy et al., 2013) but on the other hand aligns with
340 previous findings of reduced amygdala-insula FC (Etkin et al., 2009). Additionally, FC
341 between the amygdala and the dlPFC was decreased, not increased, in our GAD sample.
342 This was in divergence with our hypothesis which was based on previous literature (Etkin
343 et al., 2009). Decreased FC between the amygdala and the dlPFC, which is a central
344 node in the CEN (Bressler & Menon, 2010; Menon, 2011), could be argued to reflect a
345 dysfunctional management of attention (a key function of the CEN) (Bressler & Menon,
346 2010) towards threat-related stimuli, which is certainly a clinical key-feature of GAD
347 (MacLeod, Mathews, & Tata, 1986; Mathews & MacLeod, 1985; Mogg & Bradley, 2005).
348 However, the overly general view of the amygdala as the central hub of fear processing
349 is challenged by the absence of amygdala involvement in human fear extinction in a
350 recent meta-analysis (Fullana et al., 2018) and heterogenous amygdala findings across
351 reviews of neuroimaging literature in GAD (Goossen, van der Starre, & van der Heiden,
352 2019; Hilbert et al., 2014; Mochcovitch et al., 2014). While the results from our cross-
353 sectional study might hint toward the possibility that the role of the amygdala might not
354 be as pivotal to the maintenance of GAD as expected, both amygdala-related findings
355 (i.e., reduced FC for the PMI-amygdala and the dlPFC-amygdala in the GAD group) did

356 not withstand correction for multiplicity and would therefore not be considered statistically
357 significant using the NHST model framework. On the other hand, evaluation of the results
358 from the BML indicated high probabilities for a group difference regarding those region
359 pairs, raising the question whether overly rigorous multiplicity correction might have
360 induced a type I error in the NHST-analysis of those brain regions. Viewing the data from
361 a different, i.e., Bayesian, perspective thus strengthened the validity of the amygdala
362 findings, permitting us to discuss these results and consider their potential implications
363 for GAD.

364 Bayesian multilevel modeling further allowed us to investigate relationships in GAD that
365 were not hypothesized *a-priori* with minimal risk of information loss. Along with the
366 converging result of decreased vmPFC-PMI FC from both statistical approaches, our
367 analysis identified high probabilities for decreased FC of the PMI with the dlPFC, the
368 dmPFC, and the TP. Decreased functional coupling of the PMI and the dlPFC could be
369 interpreted to reflect abnormal signaling of internal body signals to a key region for
370 executive functions like working memory (Barbey et al., 2013) and attention (Kane &
371 Engle, 2002): aspects of cognition known to be impaired in anxiety (Bar-Haim, Lamy,
372 Pergamin, Bakermans-Kranenburg, & van IJzendoorn, 2007; Vytal, Cornwell, Letkiewicz,
373 Arkin, & Grillon, 2013). The reduced PMI FC between both the dmPFC (a brain area
374 known to be hyperactivated in GAD during emotional processing (Paulesu et al., 2010)
375 and at rest (Wang et al., 2016)), and the TP (an area implicated in social and emotional
376 processing) (Olson, Plotzker, & Ezzyat, 2007; Wong & Gallate, 2012), align well with a
377 proposed model of the insula as an “integral hub” for detecting salient events, and for

378 switching attention to these stimuli in preparation for regulatory (i.e., visceromotor)
379 processing (Menon & Uddin, 2010).

380 The Bayesian multilevel analysis also revealed diminished FC of the vmPFC-dmPFC
381 region pair in GAD, two key components of the DMN (Raichle et al., 2001). This finding
382 is consistent with previous reports of DMN alterations in GAD (Andreescu et al., 2014;
383 Zhao et al., 2007), albeit diminished FC between the vmPFC and dmPFC has not been
384 reported previously. These regions of the DMN are hypothesized to promote functions
385 like processing of emotion and self-referential cognition (Raichle, 2015), which are
386 impaired in GAD (Turk, Heimberg, Luterek, Mennin, & Fresco, 2005; Watson, Timulak, &
387 Greenberg, 2019). Lastly, the Bayesian analysis revealed reduced FC with the vmPFC
388 and the dlPFC. Given that the vmPFC and the dlPFC are key components, respectively,
389 of the DMN and CEN networks (Menon, 2015; Seeley et al., 2007), these reductions in
390 FC could disrupt the contribution of the dACC to switching between the spontaneous
391 cognition of the DMN (Andrews-Hanna, Reidler, Huang, & Buckner, 2010) and executive
392 functioning of the CEN (Seeley et al., 2007) and may ultimately result in impaired action
393 selection in those with GAD, a function for which the dACC is critical (Rushworth, 2008).

394 Limitations

395 Our focus on females with GAD was based on the fact that females outnumber males
396 and that our sample was drawn from a larger study examining psychiatric disorders
397 predominantly affecting females (e.g., anorexia nervosa and GAD). Future research is
398 needed to establish whether our findings extend to males, i.e., whether sex differences in
399 FC play a role in GAD; such discrepancies have not been reported in previous GAD
400 studies. While our sample size is above the median (N = 23-24) for fMRI studies in recent

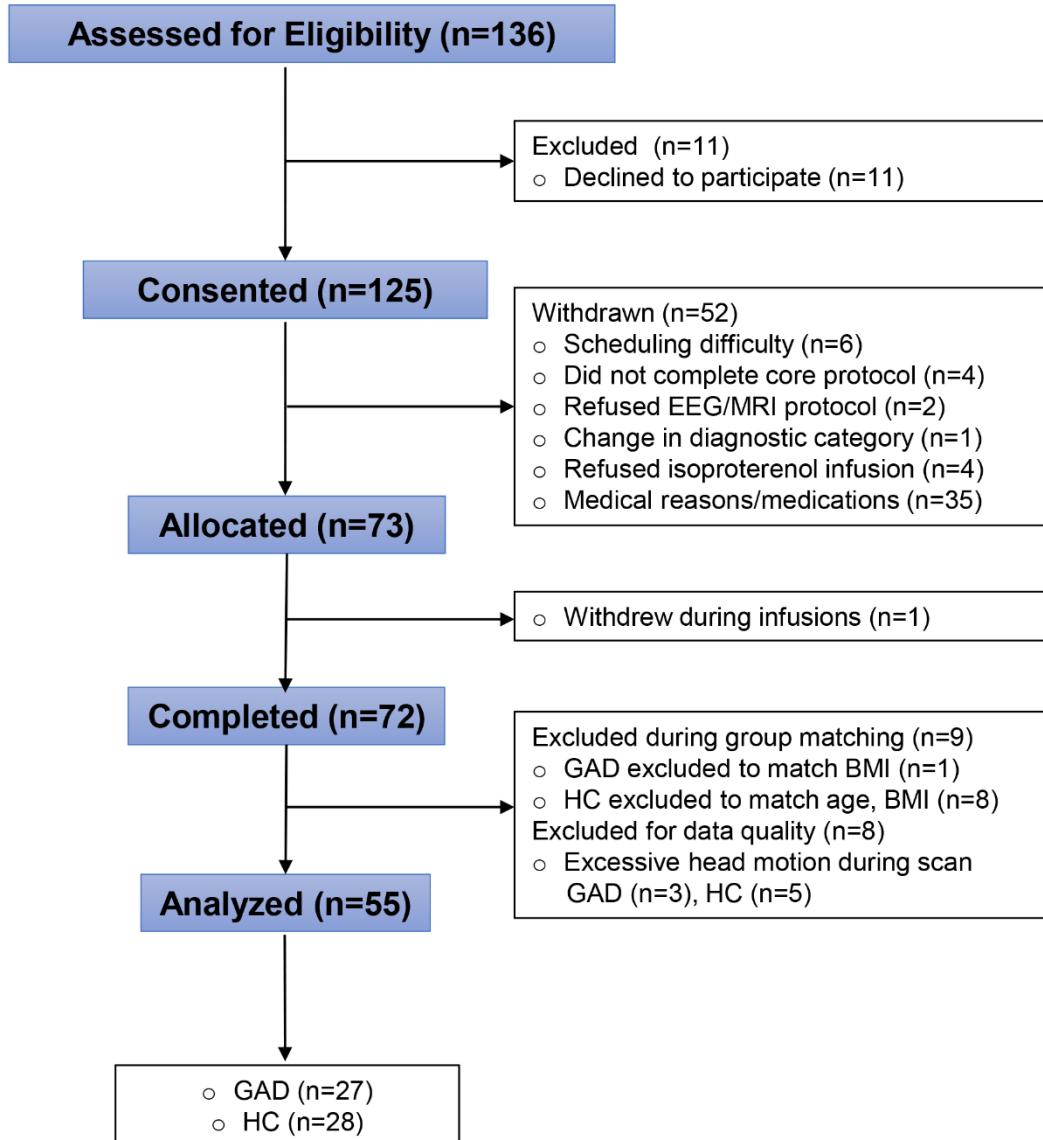
401 years (Szucs & Ioannidis, 2020), it remains modest in light of evolving best practices and
402 estimates of the size necessary to ensure replicability. A general limitation of the FC
403 analysis approach employed here is that it cannot determine the directionality (or
404 responsible region) for impaired functional coupling observed within region pairs. Since
405 we tested hypotheses regarding interrelationships of individual brain regions at rest, we
406 cannot make inferences about network-level FC as commonly assessed by seed-based,
407 voxel-wise whole-brain analyses. Analysis of resting state fMRI data has received
408 growing criticism regarding potential confounds including, most recently, the discovery of
409 “resting state physiological networks” (i.e., physiologically driven FC resembling
410 previously reported neural networks) (J. E. Chen et al., 2020). We addressed this concern
411 by recording and regressing out signals attributed to respiration or cardiac pulsatility
412 (Glover, Li, & Ress, 2000). A recent paper also identified substantial variability of fMRI
413 results across many teams analyzing the same data set (Botvinik-Nezer et al., 2020),
414 underlining the need for standardized fMRI analysis measures. To improve the
415 reproducibility of our findings, we followed several of the recommended steps including
416 1) applying different statistical approaches to the data yielding largely converging results,
417 2) pre-registering our hypotheses and statistical approaches before analyzing any study
418 data, 3) reporting results of all analyses conducted, even if they did not reach statistical
419 significance, and 4) publicly sharing the code of our data processing pipeline and
420 statistical analysis (J. L. Steinhäuser, 2021).

421 Conclusion

422 We leveraged the strengths of the Bayesian inference framework to convergently identify
423 reduced FC between the vmPFC and the PMI in GAD. The Bayesian framework allowed

424 us to identify FC abnormalities between region pairs excluded by the frequentist analysis
425 and other previously undescribed regions, emphasizing the utility of this approach for
426 probing the pathophysiological basis of psychiatric disorders. Future fMRI studies of
427 resting state FC may benefit from a similar approach.

428


429 **Materials and methods**

430 The study hypotheses and data analysis plan were registered (J. Steinhäuser, Teed, &
431 Khalsa, 2020) on the Open Science Framework (Foster & Deardorff, 2017) before any
432 of the study data was accessed or processed. All study data and analysis scripts are
433 available online (J. L. Steinhäuser, 2021).

434 **Participants**

435 Females with GAD and female HCs were recruited for this study from the Tulsa
436 metropolitan area via advertisement in newspaper, radio, and social media outlets as well
437 as via outpatient referral from the Laureate Psychiatric Clinic and Hospital. We report data
438 that was collected as part of a larger, ongoing fMRI study that included an interoceptive
439 perturbation task (isoproterenol infusion) performed after collection of the resting data
440 presented here (Teed et al., 2020). Since this large-scale study focuses on psychiatric
441 disorders that predominantly occur in females, the sample base for this investigation was
442 also female-only. Further details on the aforementioned study can be found on the
443 ClinicalTrials.gov registration NCT02615119 at the U.S. National Library of Medicine
444 (Khalsa, 2015). The selection of participants is visualized in a CONSORT diagram (Figure
445 4). The diagnosis of GAD was verified according to DSM-5 (American Psychiatric
446 Association, 2013) criteria by an experienced clinician administering the M.I.N.I.
447 neuropsychiatric interview (Sheehan et al., 1998). Additional GAD inclusion criteria were
448 a currently elevated level of anxiety as evidenced by a GAD-7 score greater than 10 out
449 of 21 or an OASIS score greater than 7 out of 20. All participants were administered the
450 PHQ-9, the GAD-7 questionnaire, the OASIS, the STAI, and the ASI. For the GAD group,
451 selected psychotropic agents (e.g., serotonergic/noradrenergic) were allowed so long as

452 they were stably medicated (no changes within four weeks). Pro re nata (PRN)
453 medications were not a criterion for exclusion so long as participants were able to abstain
454 from their use for at least two days prior to testing. Any history of a psychotic disorder or
455 bipolar disorder led to exclusion from this study. Because of the cardiovascular
456 implications of the pharmacological task employed as part of the larger study, participants
457 previously diagnosed with cardiac or respiratory diseases were excluded, as well as those
458 with comorbid panic disorder. Individuals in the GAD group had the following psychiatric
459 comorbidities: 11/27 Major depressive disorder (MDD), 9/27 MDD and social anxiety
460 disorder (SAD), 1/27 SAD, 1/27 MDD and post-traumatic stress disorder (PTSD), 1/27
461 MDD and alcohol use disorder (mild), 1/27 SAD and obsessive-compulsive disorder, 1/27
462 MDD, SAD, and agoraphobia, 1/27 MDD, SAD, and PTSD. Individuals in the GAD group
463 reported taking the following psychoactive medication: 3/27 selective serotonin reuptake
464 inhibitor (SSRI), 2/27 selective norepinephrine reuptake inhibitor (SNRI), 1/27
465 SSRI/SNRI, and 1/27 medicinal tetrahydrocannabinol. HCs were required to be without
466 any history of psychiatric illness per the M.I.N.I. interview. The HC group was individually
467 matched to the GAD group so that they would not differ significantly on BMI and age due
468 to the known influence of the former on head motion (Ekhtiari, Kuplicki, Yeh, & Paulus,
469 2019; Van Dijk, Sabuncu, & Buckner, 2012) and the latter on FC (Betzel et al., 2014;
470 Geerligs, Renken, Saliasi, Maurits, & Lorist, 2015).
471 The study was approved by the Western institutional review board and was conducted at
472 the Laureate Institute for Brain Research in accordance with the Declaration of Helsinki.
473 All participants provided written informed consent and received financial compensation
474 for their study involvement.

475

476 **Figure 4: CONSORT diagram of the isoproterenol (ISO) study and its resting state data**
477 **analyzed for this investigation.** Adapted with permission from Teed et al. (2020). *HC* healthy
478 comparison participants, *GAD* participants with generalized anxiety disorder, *ISO* isoproterenol,
479 *rsfMRI* resting state functional magnetic resonance imaging

480

481 Image acquisition

482 Magnetic resonance images were obtained using two identical full-body 3.0 Tesla MR750
483 MRI scanners (GE Healthcare, Milwaukee, WI), equipped with an 8-channel receive-only
484 head array coil (GE Healthcare, Milwaukee, WI). First, a T1-weighted image was acquired
485 as an anatomical reference using a magnetization-prepared rapid gradient echo
486 (MPRAGE) sequence with sensitivity encoding (SENSE) (Pruessmann, Weiger,
487 Scheidegger, & Boesiger, 1999) over the duration of 5 minutes and 40 seconds. The
488 sequence-parameters were: FOV = 240×192 mm, matrix = 256×256, 186 axial slices,
489 slice thickness = 0.9 mm, 0.938×0.938×0.9 mm³ voxel volume, TR = 5 ms, TE = 2.012
490 ms, SENSE acceleration factor R = 2, flip angle = 8°, delay time = 1400 ms, inversion
491 time = 725 ms, sampling bandwidth = 31.25 kHz. Next, a resting-state scan was
492 conducted using a single-shot gradient-recalled echo-planar imaging (EPI) sequence with
493 SENSE and the following parameters: TR = 2000 ms, TE = 27 ms, R = 2, FA = 78°, FOV
494 = 240 mm, 39 axial slices with 2.9 mm thickness with no gap, matrix = 96×96. The EPI
495 images were reconstructed into a 128×128 matrix that produced 1.875×1.875×2.9 mm³
496 voxel volume. Prior to the resting-state scan, participants were instructed to remain as
497 still as possible, to keep their eyes open and fixated on a cross presented at the center
498 of the screen, and to “clear your mind and do not think about anything in particular”. During
499 the scan, respiration was recorded using a pneumatic belt placed around the torso. Heart
500 rate was recorded using a photoplethysmograph with an infrared emitter placed under the
501 pad of the participant’s finger.

502

503 Data analysis

504 *Preprocessing*

505 Preprocessing of fMRI data was conducted using AFNI 20.0.19 (Cox, 1996,
506 RRID:SCR_005927) and Freesurfer 6.0.0 (Fischl, 2012, RRID:SCR_001847). T1-
507 weighted images were skull stripped and nonlinearily warped to Montreal Neurological
508 Institute (MNI) 152 atlas space. White matter and ventricle masks were acquired to later
509 regress out their signal from the data. The first three images of each participant's
510 timeseries were removed to ensure an equilibrium of fMRI signal. EPI volume signal was
511 despiked using AFNI's *3dDespike* program with default parameters. Physiological noise
512 effects (i.e., due to cardiac pulsatility and respiration) (Glover & Lee, 1995; Noll &
513 Schneider, 1994) were regressed out using the RETROICOR method (Glover et al., 2000)
514 implemented in AFNI. Slice timing correction was performed to account for interleaved
515 slice acquisition. Anatomical images and EPI volumes for each participant were aligned
516 to their EPI volume determined to have the minimum outliers according to a *Local*/
517 *Pearson Correlation Signed* cost function in AFNI. Datasets were blurred using a
518 Gaussian kernel with full width half maximum of 4 mm. The time series of each voxel was
519 scaled to a mean of 100, so that values could be interpreted as percentage change from
520 the mean. Subsequently, voxel-values with a percentage increase of $\geq 100\%$ were
521 removed as outliers. Volumes censored due to too much motion or being signal outliers
522 were interpolated using the previous and subsequent volume. Participants displaying
523 excessive motion or signal outliers during their resting scan (i.e., $> 30\%$ volumes being
524 censored because of motion or signal outliers) were excluded.

525

526 *Region of interest definition and data extraction*

527 Based on a careful review of the fMRI literature on GAD we assessed FC between a total
528 of nine regions of interest (ROIs): vmPFC, PMI, dlPFC, dACC, dmPFC, TP, amygdala,
529 PCC, and AI. We then formulated a total of 11 *a-priori* hypotheses about FC between the
530 nine pre-defined ROIs for examination (Table 1). To extract the data for each ROI, a mask
531 was created by collapsing over the relevant labels of the Brainnetome atlas (Fan et al.,
532 2016), which provides a probabilistic cytoarchitectonic parcellation of the human brain.
533 The average timeseries for each ROI was then extracted for each participant using AFNI's
534 3dROIstats program. The following IDs from the Brainnetome atlas were used to create
535 the ROI analysis mask: PCC: 153, 154, 175, 176, 181, 182; vmPFC: 41, 42, 45, 46, 47,
536 48, 49, 50, 187, 188; dmPFC: 1, 2, 11, 12; dACC: 179, 180, 183, 184; AI, encompassing
537 the agranular insula in entirety: 165, 166, 167, 168; PMI, encompassing the
538 granular/dysgranular insula in entirety: 163, 164, 169, 170, 171, 172, 173, 174; amygdala:
539 211, 212, 213, 214; dlPFC: 3, 4, 15, 16, 17, 18, 23, 24, 25, 26; TP: 69, 70. The resulting
540 ROI analysis mask is supplied in MNI-space and AFNI format with this manuscript (J. L.
541 Steinhäuser, 2021).

542 *Statistical analyses*

543 Using the timeseries of our nine ROIs we constructed a 9 x 9 correlation matrix for each
544 participant. The relationship between ROIs was assessed using Pearson's correlation.
545 The resulting sampling distribution of Pearson's r was normalized using the *Fisher r-to-z*
546 *transformation* and the obtained z-scores were used in all further analyses.

547

548 Bayesian modeling

549 A Bayesian multilevel model (BML) (Chen et al., 2019) was applied to our data using the
550 MBA program in AFNI, estimating the posterior probability of the effect being greater than
551 0 (P_+). The BML was also used to explore all other possible region pairs that we did not
552 hypothesize *a-priori* to be aberrant in GAD, and therefore left out of the FC analysis. The
553 BML overcomes limitations of NHST in this context by (a) incorporating the
554 interrelationships between region pairs into one model through partial pooling, (b)
555 addressing the issue of multiplicity in a NHST framework, (c) providing direct evidence
556 for or against the effect of a region pair instead of assuming the null-hypothesis (Chen et
557 al., 2019), (d) estimating the contribution of each individual brain region in the network
558 relative to all other regions as a measurement of “relative importance”, and (e) supporting
559 full result reporting and treating statistical evidence as a continuum instead of arbitrary
560 dichotomization.

561 Mass univariate analysis

562 Welch's independent samples t -tests were used to test the null hypothesis that there was
563 no difference in FC-scores between the two groups. To prevent the inflation of Type I
564 errors (i.e., the problem of multiplicity) the results were Bonferroni corrected. To decrease
565 the likelihood of committing Type II errors, only the region pairs hypothesized to be
566 aberrant in GAD (Table 1) were tested. Since some brain regions were included in more
567 hypotheses than others, their data was used in multiple comparisons. The amygdala was
568 included in six, the vmPFC in four, the AI in three, the PMI, PCC, and dACC in two, and
569 the dmPFC, dlPFC, and TP in one comparison(s). Consequently, the significance level of
570 the test results for each region pair were corrected based on how many comparisons the

571 regions were included in. Finally, exploratory relationships between FC and symptom
572 scores were examined using Pearson's correlation.

573

574

575 **Acknowledgements**

576 The authors wish to acknowledge the support of Valerie Upshaw MSN, APRN-CNP in
577 gathering participants information and Rayus Kuplicki PhD for help with MRI data
578 management.

579 **Financial support**

580 Funding statement: This work was supported by National Institute of General Medical
581 Sciences (NIGMS) Center Grant P20GM121312 (S.S.K.), National Institute of Mental
582 Health Grant K23MH112949 (S.S.K.), The William K. Warren Foundation (S.S.K.) and
583 the German Federal Ministry of Education and Research by providing J.S. with a
584 scholarship for his collaboration with the Laureate Institute for Brain Research. The
585 views expressed in this article are those of the authors and do not necessarily reflect
586 the position or policy of the National Institutes of Health.

587 **Competing interests**

588 The authors declare no competing interests.

589 **Ethical standards**

590 The authors assert that all procedures contributing to this work comply with the ethical
591 standards of the relevant national and institutional committees on human
592 experimentation and with the Helsinki Declaration of 1975, as revised in 2008.

593

594 **References:**

595

596 Adolphs, R., & Tranel, D. (2000). Emotion, recognition and the human amygdala. In *The*
597 *amygdala: A functional analysis* (pp. 587–630). Oxford, OX ; New York: Oxford
598 University Press.

599 American Psychiatric Association. (2013). *Diagnostic and Statistical Manual of Mental*
600 *Disorders* (Fifth Edition). American Psychiatric Association. doi:
601 10.1176/appi.books.9780890425596

602 Andreescu, C., Sheu, L. K., Tudorascu, D., Walker, S., & Aizenstein, H. (2014). The
603 ages of anxiety-differences across the lifespan in the default mode network
604 functional connectivity in generalized anxiety disorder: The ages of anxiety.
605 *International Journal of Geriatric Psychiatry*, 29(7), 704–712. doi:
606 10.1002/gps.4051

607 Andrews-Hanna, J. R., Reidler, J. S., Huang, C., & Buckner, R. L. (2010). Evidence for
608 the Default Network's Role in Spontaneous Cognition. *Journal of*
609 *Neurophysiology*, 104(1), 322–335. doi: 10.1152/jn.00830.2009

610 Barbey, A. K., Koenigs, M., & Grafman, J. (2013). Dorsolateral prefrontal contributions
611 to human working memory. *Cortex*, 49(5), 1195–1205. doi:
612 10.1016/j.cortex.2012.05.022

613 Bar-Haim, Y., Lamy, D., Pergamin, L., Bakermans-Kranenburg, M. J., & van
614 IJzendoorn, M. H. (2007). Threat-related attentional bias in anxious and
615 nonanxious individuals: A meta-analytic study. *Psychological Bulletin*, 133(1), 1–
616 24. doi: 10.1037/0033-2909.133.1.1

617 Barlow, D. H., Blanchard, E. B., Vermilyea, J. A., Vermilyea, B. B., & DiNardo, P. A.

618 (1986). Generalized anxiety and generalized anxiety disorder: Description and

619 reconceptualization. *The American Journal of Psychiatry*, 143(1), 40–44. doi:

620 10.1176/ajp.143.1.40

621 Barrett, L. F., & Simmons, W. K. (2015). Interoceptive predictions in the brain. *Nature*

622 *Reviews Neuroscience*, 16(7), 419–429. doi: 10.1038/nrn3950

623 Baur, V., Hänggi, J., Langer, N., & Jäncke, L. (2013). Resting-State Functional and

624 Structural Connectivity Within an Insula–Amygdala Route Specifically Index State

625 and Trait Anxiety. *Biological Psychiatry*, 73(1), 85–92. doi:

626 10.1016/j.biopsych.2012.06.003

627 Bechara, A., Dolan, S., Denburg, N., Hindes, A., Anderson, S. W., & Nathan, P. E.

628 (2001). Decision-making deficits, linked to a dysfunctional ventromedial prefrontal

629 cortex, revealed in alcohol and stimulant abusers. *Neuropsychologia*, 39(4), 376–

630 389. doi: 10.1016/S0028-3932(00)00136-6

631 Bechara, A., Tranel, D., & Damasio, H. (2000). Characterization of the decision-making

632 deficit of patients with ventromedial prefrontal cortex lesions. *Brain*, 123(11),

633 2189–2202. doi: 10.1093/brain/123.11.2189

634 Bechara, A., Tranel, D., Damasio, H., Adolphs, R., Rockland, C., & Damasio, A. R.

635 (1995). Double dissociation of conditioning and declarative knowledge relative to

636 the amygdala and hippocampus in humans. *Science*, 269(5227), 1115. doi:

637 10.1126/science.7652558

638 Becker, B., Mihov, Y., Scheele, D., Kendrick, K. M., Feinstein, J. S., Matusch, A., ...

639 Hurlemann, R. (2012). Fear processing and social networking in the absence of a

640 functional amygdala. *Biological Psychiatry*, 72(1), 70–77. doi:
641 10.1016/j.biopsych.2011.11.024

642 Bender, R., & Lange, S. (2001). Adjusting for multiple testing—When and how? *Journal*
643 *of Clinical Epidemiology*, 54(4), 343–349. doi: 10.1016/s0895-4356(00)00314-0

644 Benjamini, Y., & Hochberg, Y. (1995). Controlling the False Discovery Rate: A Practical
645 and Powerful Approach to Multiple Testing. *Journal of the Royal Statistical*
646 *Society: Series B (Methodological)*, 57(1), 289–300. doi: 10.1111/j.2517-
647 6161.1995.tb02031.x

648 Berntson, G. G., & Khalsa, S. S. (2021). Neural Circuits of Interoception. *Trends in*
649 *Neurosciences*, 44(1), 17–28. doi: 10.1016/j.tins.2020.09.011

650 Betzel, R. F., Byrge, L., He, Y., Goñi, J., Zuo, X.-N., & Sporns, O. (2014). Changes in
651 structural and functional connectivity among resting-state networks across the
652 human lifespan. *NeuroImage*, 102, 345–357. doi:
653 10.1016/j.neuroimage.2014.07.067

654 Blair, K. S., Geraci, M., Smith, B. W., Hollon, N., DeVido, J., Otero, M., ... Pine, D. S.
655 (2012). Reduced Dorsal Anterior Cingulate Cortical Activity During Emotional
656 Regulation and Top-Down Attentional Control in Generalized Social Phobia,
657 Generalized Anxiety Disorder, and Comorbid Generalized Social
658 Phobia/Generalized Anxiety Disorder. *Biological Psychiatry*, 72(6), 476–482. doi:
659 10.1016/j.biopsych.2012.04.013

660 Botvinik-Nezer, R., Holzmeister, F., Camerer, C. F., Dreber, A., Huber, J.,
661 Johannesson, M., ... Schonberg, T. (2020). Variability in the analysis of a single

662 neuroimaging dataset by many teams. *Nature*, 582(7810), 84–88. doi:
663 10.1038/s41586-020-2314-9

664 Bressler, S. L., & Menon, V. (2010). Large-scale brain networks in cognition: Emerging
665 methods and principles. *Trends in Cognitive Sciences*, 14(6), 277–290. doi:
666 10.1016/j.tics.2010.04.004

667 Bush, G., Vogt, B. A., Holmes, J., Dale, A. M., Greve, D., Jenike, M. A., & Rosen, B. R.
668 (2002). Dorsal anterior cingulate cortex: A role in reward-based decision making.
669 *Proceedings of the National Academy of Sciences*, 99(1), 523–528. doi:
670 10.1073/pnas.012470999

671 Bzdok, D., Langner, R., Schilbach, L., Engemann, D. A., Laird, A. R., Fox, P. T., &
672 Eickhoff, S. B. (2013). Segregation of the human medial prefrontal cortex in
673 social cognition. *Frontiers in Human Neuroscience*, 7, 232. doi:
674 10.3389/fnhum.2013.00232

675 Campbell-Sills, L., Norman, S. B., Craske, M. G., Sullivan, G., Lang, A. J., Chavira, D.
676 A., ... Stein, M. B. (2009). Validation of a brief measure of anxiety-related
677 severity and impairment: The Overall Anxiety Severity and Impairment Scale
678 (OASIS). *Journal of Affective Disorders*, 112(1–3), 92–101. doi:
679 10.1016/j.jad.2008.03.014

680 Cauda, F., D'Agata, F., Sacco, K., Duca, S., Geminiani, G., & Vercelli, A. (2011).
681 Functional connectivity of the insula in the resting brain. *NeuroImage*, 55(1), 8–
682 23. doi: 10.1016/j.neuroimage.2010.11.049

683 Cha, J., Greenberg, T., Carlson, J. M., DeDora, D. J., Hajcak, G., & Mujica-Parodi, L. R.
684 (2014). Circuit-Wide Structural and Functional Measures Predict Ventromedial

685 Prefrontal Cortex Fear Generalization: Implications for Generalized Anxiety
686 Disorder. *Journal of Neuroscience*, 34(11), 4043–4053. doi:
687 10.1523/JNEUROSCI.3372-13.2014

688 Chen, G., Bürkner, P., Taylor, P. A., Li, Z., Yin, L., Glen, D. R., ... Pessoa, L. (2019). An
689 integrative Bayesian approach to matrix-based analysis in neuroimaging. *Human*
690 *Brain Mapping*, 40(14), 4072–4090. doi: 10.1002/hbm.24686

691 Chen, G., Taylor, P. A., Stoddard, J., Cox, R. W., Bandettini, P. A., & Pessoa, L. (2021).
692 *Dichotomous thinking and informational waste in neuroimaging* [Preprint].
693 Neuroscience. doi: 10.1101/2021.05.09.443246

694 Chen, G., Xiao, Y., Taylor, P. A., Rajendra, J. K., Riggins, T., Geng, F., ... Cox, R. W.
695 (2019). Handling Multiplicity in Neuroimaging Through Bayesian Lenses with
696 Multilevel Modeling. *Neuroinformatics*, 17(4), 515–545. doi: 10.1007/s12021-018-
697 9409-6

698 Chen, J. E., Lewis, L. D., Chang, C., Tian, Q., Fultz, N. E., Ohringer, N. A., ... Polimeni,
699 J. R. (2020). Resting-state “physiological networks.” *NeuroImage*, 213, 116707.
700 doi: 10.1016/j.neuroimage.2020.116707

701 Connor, K. M., & Davidson, J. R. (1998). Generalized anxiety disorder: Neurobiological
702 and pharmacotherapeutic perspectives. *Biological Psychiatry*, 44(12), 1286–
703 1294. doi: 10.1016/s0006-3223(98)00285-6

704 Cox, R. W. (1996). AFNI: Software for Analysis and Visualization of Functional Magnetic
705 Resonance Neuroimages. *Computers and Biomedical Research*, 29(3), 162–
706 173. doi: 10.1006/cbmr.1996.0014

707 Craig, A. D. (2002). How do you feel? Interoception: the sense of the physiological
708 condition of the body. *Nature Reviews Neuroscience*, 3(8), 655–666. doi:
709 10.1038/nrn894

710 Craig, A. D. (2009). How do you feel--now? The anterior insula and human awareness.
711 *Nature Reviews Neuroscience*, 10(1), 59–70. doi: 10.1038/nrn2555

712 Cui, H., Zhang, B., Li, W., Li, H., Pang, J., Hu, Q., ... Northoff, G. (2020). Insula shows
713 abnormal task-evoked and resting-state activity in first-episode drug-naïve
714 generalized anxiety disorder. *Depression and Anxiety*, 37(7), 632–644. doi:
715 <https://doi.org/10.1002/da.23009>

716 Curran-Everett, D. (2000). Multiple comparisons: Philosophies and illustrations.
717 *American Journal of Physiology-Regulatory, Integrative and Comparative
718 Physiology*, 279(1), R1–R8. doi: 10.1152/ajpregu.2000.279.1.R1

719 Davidson, R. J. (2002). Anxiety and affective style: Role of prefrontal cortex and
720 amygdala. *Biological Psychiatry*, 51(1), 68–80. doi: 10.1016/S0006-
721 3223(01)01328-2

722 Davis, M. (1992). The role of the amygdala in fear and anxiety. *Annual Review of
723 Neuroscience*, 15, 353–375. doi: 10.1146/annurev.ne.15.030192.002033

724 Diekhof, E. K., Geier, K., Falkai, P., & Gruber, O. (2011). Fear is only as deep as the
725 mind allows. *NeuroImage*, 58(1), 275–285. doi:
726 10.1016/j.neuroimage.2011.05.073

727 Dosenbach, N. U. F., Visscher, K. M., Palmer, E. D., Miezin, F. M., Wenger, K. K.,
728 Kang, H. C., ... Petersen, S. E. (2006). A Core System for the Implementation of
729 Task Sets. *Neuron*, 50(5), 799–812. doi: 10.1016/j.neuron.2006.04.031

730 Ekhtiari, H., Kuplicki, R., Yeh, H., & Paulus, M. P. (2019). Physical characteristics not
731 psychological state or trait characteristics predict motion during resting state
732 fMRI. *Scientific Reports*, 9(1), 419. doi: 10.1038/s41598-018-36699-0

733 Etkin, A., Prater, K. E., Schatzberg, A. F., Menon, V., & Greicius, M. D. (2009).
734 Disrupted Amygdalar Subregion Functional Connectivity and Evidence of a
735 Compensatory Network in Generalized Anxiety Disorder. *Archives of General
736 Psychiatry*, 66(12), 1361–1372. doi: 10.1001/archgenpsychiatry.2009.104

737 Evrard, H. C., Logothetis, N. K., & Craig, A. D. B. (2014). Modular architectonic
738 organization of the insula in the macaque monkey. *The Journal of Comparative
739 Neurology*, 522(1), 64–97. doi: 10.1002/cne.23436

740 Fan, L., Li, H., Zhuo, J., Zhang, Y., Wang, J., Chen, L., ... Jiang, T. (2016). The Human
741 Brainnetome Atlas: A New Brain Atlas Based on Connectional Architecture.
742 *Cerebral Cortex*, 26(8), 3508–3526. doi: 10.1093/cercor/bhw157

743 Feinstein, J. S., Adolphs, R., Damasio, A., & Tranel, D. (2011). The Human Amygdala
744 and the Induction and Experience of Fear. *Current Biology*, 21(1), 34–38. doi:
745 10.1016/j.cub.2010.11.042

746 Feinstein, J. S., Buzzetta, C., Hurlemann, R., Follmer, R. L., Dahdaleh, N. S., Coryell, W.
747 H., ... Wemmie, J. A. (2013). Fear and panic in humans with bilateral amygdala
748 damage. *Nature Neuroscience*, 16(3), 270–272. doi: 10.1038/nn.3323

749 Fischl, B. (2012). FreeSurfer. *NeuroImage*, 62(2), 774–781. doi:
750 10.1016/j.neuroimage.2012.01.021

751 Fonzo, G. A., & Etkin, A. (2017). Affective neuroimaging in generalized anxiety disorder:
752 An integrated review. *Dialogues in Clinical Neuroscience*, 19(2), 169–179.

753 Foster, E. D., & Deardorff, A. (2017). Open Science Framework (OSF). *Journal of the*
754 *Medical Library Association*, 105(2), 203–206. doi: 10.5195/JMLA.2017.88

755 Fullana, M. A., Albajes-Eizagirre, A., Soriano-Mas, C., Vervliet, B., Cardoner, N., Benet,
756 O., ... Harrison, B. J. (2018). Fear extinction in the human brain: A meta-analysis
757 of fMRI studies in healthy participants. *Neuroscience & Biobehavioral Reviews*,
758 88, 16–25. doi: 10.1016/j.neubiorev.2018.03.002

759 Gallagher, H. L., & Frith, C. D. (2003). Functional imaging of ‘theory of mind.’ *Trends in*
760 *Cognitive Sciences*, 7(2), 77–83. doi: 10.1016/S1364-6613(02)00025-6

761 Geerligs, L., Renken, R. J., Saliasi, E., Maurits, N. M., & Lorist, M. M. (2015). A Brain-
762 Wide Study of Age-Related Changes in Functional Connectivity. *Cerebral Cortex*,
763 25(7), 1987–1999. doi: 10.1093/cercor/bhu012

764 Ghaziri, J., Tucholka, A., Girard, G., Houde, J.-C., Boucher, O., Gilbert, G., ... Nguyen,
765 D. K. (2017). The Corticocortical Structural Connectivity of the Human Insula.
766 *Cerebral Cortex*, 27(2), 1216–1228. doi: 10.1093/cercor/bhv308

767 Glover, G. H., & Lee, A. T. (1995). Motion artifacts in fMRI: Comparison of 2DFT with
768 PR and spiral scan methods. *Magnetic Resonance in Medicine*, 33(5), 624–635.
769 doi: 10.1002/mrm.1910330507

770 Glover, G. H., Li, T. Q., & Ress, D. (2000). Image-based method for retrospective
771 correction of physiological motion effects in fMRI: RETROICOR. *Magnetic*
772 *Resonance in Medicine*, 44(1), 162–167. doi: 10.1002/1522-
773 2594(200007)44:1<162::aid-mrm23>3.0.co;2-e

774 Goossen, B., van der Starre, J., & van der Heiden, C. (2019). A review of neuroimaging
775 studies in generalized anxiety disorder: "So where do we stand?" *Journal of*
776 *Neural Transmission*, 126(9), 1203–1216. doi: 10.1007/s00702-019-02024-w

777 Greenberg, T., Carlson, J. M., Cha, J., Hajcak, G., & Mujica-Parodi, L. R. (2013).
778 Ventromedial Prefrontal Cortex Reactivity is Altered in Generalized Anxiety
779 Disorder During Fear Generalization. *Depression and Anxiety*, 30(3), 242–250.
780 doi: 10.1002/da.22016

781 Greenland, S., Senn, S. J., Rothman, K. J., Carlin, J. B., Poole, C., Goodman, S. N., &
782 Altman, D. G. (2016). Statistical tests, P values, confidence intervals, and power:
783 A guide to misinterpretations. *European Journal of Epidemiology*, 31(4), 337–
784 350. doi: 10.1007/s10654-016-0149-3

785 Gusnard, D. A., Raichle, M. E., & Raichle, M. E. (2001). Searching for a baseline:
786 Functional imaging and the resting human brain. *Nature Reviews. Neuroscience*,
787 2(10), 685–694. doi: 10.1038/35094500

788 Hilbert, K., Lueken, U., & Beesdo-Baum, K. (2014). Neural structures, functioning and
789 connectivity in Generalized Anxiety Disorder and interaction with neuroendocrine
790 systems: A systematic review. *Journal of Affective Disorders*, 158, 114–126. doi:
791 10.1016/j.jad.2014.01.022

792 Hiser, J., & Koenigs, M. (2018). The Multifaceted Role of the Ventromedial Prefrontal
793 Cortex in Emotion, Decision Making, Social Cognition, and Psychopathology.
794 *Biological Psychiatry*, 83(8), 638–647. doi: 10.1016/j.biopsych.2017.10.030

795 Hoge, E. A., Ivkovic, A., & Fricchione, G. L. (2012). Generalized anxiety disorder:
796 Diagnosis and treatment. *BMJ*, 345, e7500. doi: 10.1136/bmj.e7500

797 Holzsneider, K., & Mulert, C. (2011). Neuroimaging in anxiety disorders. *Dialogues in*
798 *Clinical Neuroscience*, 13(4), 453–461. doi:
799 10.31887/DCNS.2011.13.4/kholzsneider

800 Kane, M. J., & Engle, R. W. (2002). The role of prefrontal cortex in working-memory
801 capacity, executive attention, and general fluid intelligence: An individual-
802 differences perspective. *Psychonomic Bulletin & Review*, 9(4), 637–671. doi:
803 10.3758/BF03196323

804 Kessler, R. C., & Wang, P. S. (2008). The Descriptive Epidemiology of Commonly
805 Occurring Mental Disorders in the United States. *Annual Review of Public Health*,
806 29(1), 115–129. doi: 10.1146/annurev.publhealth.29.020907.090847

807 Khalsa, S. S. (2015). *Neural Basis of Meal Related Interoceptive Dysfunction in*
808 *Anorexia Nervosa* [Clinical Trial]. Laureate Institute for Brain Research, Inc.
809 Retrieved from <https://clinicaltrials.gov/ct2/show/record/NCT02615119>

810 Khalsa, S. S., Adolphs, R., Cameron, O. G., Critchley, H. D., Davenport, P. W.,
811 Feinstein, J. S., ... Zucker, N. (2018). Interoception and Mental Health: A
812 Roadmap. *Biological Psychiatry: Cognitive Neuroscience and Neuroimaging*,
813 3(6), 501–513. doi: 10.1016/j.bpsc.2017.12.004

814 Khalsa, S. S., Feinstein, J. S., Li, W., Feusner, J. D., Adolphs, R., & Hurlemann, R.
815 (2016). Panic Anxiety in Humans with Bilateral Amygdala Lesions:
816 Pharmacological Induction via Cardiorespiratory Interoceptive Pathways. *The*
817 *Journal of Neuroscience*, 36(12), 3559–3566. doi: 10.1523/JNEUROSCI.4109-
818 15.2016

819 Khalsa, S. S., Rudrauf, D., Feinstein, J. S., & Tranel, D. (2009). The pathways of
820 interoceptive awareness. *Nature Neuroscience*, 12(12), 1494–1496. doi:
821 10.1038/nn.2411

822 Kolesar, T. A., Bilevicius, E., Wilson, A. D., & Kornelsen, J. (2019). Systematic review
823 and meta-analyses of neural structural and functional differences in generalized
824 anxiety disorder and healthy controls using magnetic resonance imaging.
825 *NeuroImage: Clinical*, 24, 102016. doi: 10.1016/j.nicl.2019.102016

826 LeDoux, J. (2003). The Emotional Brain, Fear, and the Amygdala. *Cellular and*
827 *Molecular Neurobiology*, 23(4), 727–738. doi: 10.1023/A:1025048802629

828 Leech, R., & Sharp, D. J. (2014). The role of the posterior cingulate cortex in cognition
829 and disease. *Brain*, 137(1), 12–32. doi: 10.1093/brain/awt162

830 Li, W., Cui, H., Zhu, Z., Kong, L., Guo, Q., Zhu, Y., ... Li, C. (2016). Aberrant Functional
831 Connectivity between the Amygdala and the Temporal Pole in Drug-Free
832 Generalized Anxiety Disorder. *Frontiers in Human Neuroscience*, 10, 549. doi:
833 10.3389/fnhum.2016.00549

834 MacLeod, C., Mathews, A., & Tata, P. (1986). Attentional bias in emotional disorders.
835 *Journal of Abnormal Psychology*, 95(1), 15–20. doi: 10.1037/0021-843X.95.1.15

836 Mansouri, F. A., Tanaka, K., & Buckley, M. J. (2009). Conflict-induced behavioural
837 adjustment: A clue to the executive functions of the prefrontal cortex. *Nature*
838 *Reviews Neuroscience*, 10(2), 141–152. doi: 10.1038/nrn2538

839 Mathews, A., & MacLeod, C. (1985). Selective processing of threat cues in anxiety
840 states. *Behaviour Research and Therapy*, 23(5), 563–569. doi: 10.1016/0005-
841 7967(85)90104-4

842 Mehler, D. M. A., & Kording, K. P. (2020). *The lure of misleading causal statements in*
843 *functional connectivity research*. Retrieved from <https://arxiv.org/abs/1812.03363>

844 Menon, V. (2011). Large-scale brain networks and psychopathology: A unifying triple
845 network model. *Trends in Cognitive Sciences*, 15(10), 483–506. doi:
846 10.1016/j.tics.2011.08.003

847 Menon, V. (2015). Salience Network. In *Brain Mapping* (pp. 597–611). Elsevier. doi:
848 10.1016/B978-0-12-397025-1.00052-X

849 Menon, V., & Uddin, L. Q. (2010). Saliency, switching, attention and control: A network
850 model of insula function. *Brain Structure and Function*, 214(5–6), 655–667. doi:
851 10.1007/s00429-010-0262-0

852 Mochcovitch, M. D., da Rocha Freire, R. C., Garcia, R. F., & Nardi, A. E. (2014). A
853 systematic review of fMRI studies in generalized anxiety disorder: Evaluating its
854 neural and cognitive basis. *Journal of Affective Disorders*, 167, 336–342. doi:
855 10.1016/j.jad.2014.06.041

856 Mogg, K., & Bradley, B. P. (2005). Attentional Bias in Generalized Anxiety Disorder
857 Versus Depressive Disorder. *Cognitive Therapy and Research*, 29(1), 29–45.
858 doi: 10.1007/s10608-005-1646-y

859 Morel, A., Gallay, M. N., Baechler, A., Wyss, M., & Gallay, D. S. (2013). The human
860 insula: Architectonic organization and postmortem MRI registration.
861 *Neuroscience*, 236, 117–135. doi: 10.1016/j.neuroscience.2012.12.076

862 Myers-Schulz, B., & Koenigs, M. (2012). Functional anatomy of ventromedial prefrontal
863 cortex: Implications for mood and anxiety disorders. *Molecular Psychiatry*, 17(2),
864 132–141. doi: 10.1038/mp.2011.88

865 Nelson, S. M., Dosenbach, N. U. F., Cohen, A. L., Wheeler, M. E., Schlaggar, B. L., &
866 Petersen, S. E. (2010). Role of the anterior insula in task-level control and focal
867 attention. *Brain Structure and Function*, 214(5–6), 669–680. doi:
868 10.1007/s00429-010-0260-2

869 Nickerson, R. S. (2000). Null hypothesis significance testing: A review of an old and
870 continuing controversy. *Psychological Methods*, 5(2), 241–301. doi:
871 10.1037/1082-989X.5.2.241

872 Noll, D. C., & Schneider, W. (1994). Theory, simulation, and compensation of
873 physiological motion artifacts in functional MRI. *Proceedings of 1st International
874 Conference on Image Processing*, 3, 40–44. doi: 10.1109/ICIP.1994.413892

875 Olson, I. R., Plotzker, A., & Ezzyat, Y. (2007). The Enigmatic temporal pole: A review of
876 findings on social and emotional processing. *Brain*, 130(7), 1718–1731. doi:
877 10.1093/brain/awm052

878 Paulesu, E., Sambugaro, E., Torti, T., Danelli, L., Ferri, F., Scialfa, G., ... Sassaroli, S.
879 (2010). Neural correlates of worry in generalized anxiety disorder and in normal
880 controls: A functional MRI study. *Psychological Medicine*, 40(1), 117–124. doi:
881 10.1017/S0033291709005649

882 Petrides, M. (2000). The role of the mid-dorsolateral prefrontal cortex in working
883 memory. *Experimental Brain Research*, 133(1), 44–54. doi:
884 10.1007/s002210000399

885 Phelps, E. A. (2006). Emotion and Cognition: Insights from Studies of the Human
886 Amygdala. *Annual Review of Psychology*, 57(1), 27–53. doi:
887 10.1146/annurev.psych.56.091103.070234

888 Phelps, E. A., Delgado, M. R., Nearing, K. I., & LeDoux, J. E. (2004). Extinction
889 Learning in Humans. *Neuron*, 43(6), 897–905. doi: 10.1016/j.neuron.2004.08.042

890 Porta-Casteràs, D., Fullana, M., Tinoco, D., Martínez-Zalacaín, I., Pujol, J., Palao, D., ...
891 Cardoner, N. (2020). Prefrontal-amygdala connectivity in trait anxiety and
892 generalized anxiety disorder: Testing the boundaries between healthy and
893 pathological worries. *Journal of Affective Disorders*, 267, 211–219. doi:
894 10.1016/j.jad.2020.02.029

895 Pruessmann, K. P., Weiger, M., Scheidegger, M. B., & Boesiger, P. (1999). SENSE:
896 Sensitivity encoding for fast MRI. *Magnetic Resonance in Medicine*, 42(5), 952–
897 962. doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S

898 Qiao, J., Li, A., Cao, C., Wang, Z., Sun, J., & Xu, G. (2017). Aberrant Functional
899 Network Connectivity as a Biomarker of Generalized Anxiety Disorder. *Frontiers*
900 in *Human Neuroscience*, 11, 626. doi: 10.3389/fnhum.2017.00626

901 Quirk, G. J., & Mueller, D. (2008). Neural Mechanisms of Extinction Learning and
902 Retrieval. *Neuropsychopharmacology*, 33(1), 56–72. doi:
903 10.1038/sj.npp.1301555

904 Raichle, M. E. (2015). The Brain's Default Mode Network. *Annual Review of*
905 *Neuroscience*, 38(1), 433–447. doi: 10.1146/annurev-neuro-071013-014030

906 Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., &
907 Shulman, G. L. (2001). A default mode of brain function. *Proceedings of the*
908 *National Academy of Sciences*, 98(2), 676–682.

909 Reiss, S., Peterson, R. A., Gursky, D. M., & McNally, R. J. (1986). Anxiety sensitivity,
910 anxiety frequency and the prediction of fearfulness. *Behaviour Research and*
911 *Therapy*, 24(1), 1–8. doi: 10.1016/0005-7967(86)90143-9

912 Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009). Bayesian t
913 tests for accepting and rejecting the null hypothesis. *Psychonomic Bulletin &*
914 *Review*, 16(2), 225–237. doi: 10.3758/PBR.16.2.225

915 Rowa, K., & Antony, M. M. (2008). Generalized anxiety disorder. In *Psychopathology:*
916 *History, diagnosis, and empirical foundations*. (pp. 78–114). Hoboken, NJ, US:
917 John Wiley & Sons Inc.

918 Roy, A. K., Fudge, J. L., Kelly, C., Perry, J. S. A., Daniele, T., Carlisi, C., ... Ernst, M.
919 (2013). Intrinsic Functional Connectivity of Amygdala-Based Networks in
920 Adolescent Generalized Anxiety Disorder. *Journal of the American Academy of*
921 *Child & Adolescent Psychiatry*, 52(3), 290-299.e2. doi:
922 10.1016/j.jaac.2012.12.010

923 Rushworth, M. F. S. (2008). Intention, Choice, and the Medial Frontal Cortex. *Annals of*
924 *the New York Academy of Sciences*, 1124(1), 181–207. doi:
925 10.1196/annals.1440.014

926 Scott, J. G., & Berger, J. O. (2006). An exploration of aspects of Bayesian multiple
927 testing. *Journal of Statistical Planning and Inference*, 136(7), 2144–2162. doi:
928 10.1016/j.jspi.2005.08.031

929 Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., ...
930 Greicius, M. D. (2007). Dissociable intrinsic connectivity networks for salience

931 processing and executive control. *The Journal of Neuroscience*, 27(9), 2349–
932 2356. doi: 10.1523/JNEUROSCI.5587-06.2007

933 Seth, A. K., Suzuki, K., & Critchley, H. D. (2011). An interoceptive predictive coding
934 model of conscious presence. *Frontiers in Psychology*, 2, 395. doi:
935 10.3389/fpsyg.2011.00395

936 Sheehan, D. V., Lecrubier, Y., Sheehan, K. H., Amorim, P., Janavs, J., Weiller, E., ...
937 Dunbar, G. C. (1998). The Mini-International Neuropsychiatric Interview
938 (M.I.N.I.): The development and validation of a structured diagnostic psychiatric
939 interview for DSM-IV and ICD-10. *The Journal of Clinical Psychiatry*, 59 (Suppl
940 20), 22–33.

941 Simmons, A., Strigo, I., Matthews, S. C., Paulus, M. P., & Stein, M. B. (2006).
942 Anticipation of Aversive Visual Stimuli Is Associated With Increased Insula
943 Activation in Anxiety-Prone Subjects. *Biological Psychiatry*, 60(4), 402–409. doi:
944 10.1016/j.biopsych.2006.04.038

945 Sotres-Bayon, F., Cain, C. K., & LeDoux, J. E. (2006). Brain Mechanisms of Fear
946 Extinction: Historical Perspectives on the Contribution of Prefrontal Cortex.
947 *Biological Psychiatry*, 60(4), 329–336. doi: 10.1016/j.biopsych.2005.10.012

948 Spielberger, C., Gorsuch, R., Lushene, R., Vagg, P., & Jacobs, G. (1983). *Manual for
949 the State-Trait Anxiety Inventory*. Palo Alto, CA: Consulting Psychologists Press.

950 Spitzer, R. L., Kroenke, K., Williams, J. B. W., & Löwe, B. (2006). A Brief Measure for
951 Assessing Generalized Anxiety Disorder: The GAD-7. *Archives of Internal
952 Medicine*, 166(10), 1092. doi: 10.1001/archinte.166.10.1092

953 Sridharan, D., Levitin, D. J., & Menon, V. (2008). A critical role for the right fronto-insular
954 cortex in switching between central-executive and default-mode networks.
955 *Proceedings of the National Academy of Sciences*, 105(34), 12569–12574. doi:
956 10.1073/pnas.0800005105

957 Stein, M. B. (2009). Neurobiology of Generalized Anxiety Disorder. *The Journal of
958 Clinical Psychiatry*, 70(suppl 2), 15–19. doi: 10.4088/JCP.s.7002.03

959 Stein, M. B., Simmons, A. N., Feinstein, J. S., & Paulus, M. P. (2007). Increased
960 Amygdala and Insula Activation During Emotion Processing in Anxiety-Prone
961 Subjects. *American Journal of Psychiatry*, 164(2), 318–327. doi:
962 10.1176/ajp.2007.164.2.318

963 Steinhäuser, J. L. (2021). Data and scripts for Steinhäuser et al. Functional dissection of
964 neural connectivity in generalized anxiety disorder using Bayesian and
965 frequentist inference (Version 1.0.0). Retrieved from [https://github.com/Jonas-
Ste/GAD_MBA_FC](https://github.com/Jonas-
966 Ste/GAD_MBA_FC)

967 Steinhäuser, J., Teed, A., & Khalsa, S. (2020). *Correlated activity in generalized anxiety
968 disorder—A resting-state fMRI approach*. doi: 10.17605/OSF.IO/J29QV

969 Szucs, D., & Ioannidis, J. PA. (2020). Sample size evolution in neuroimaging research:
970 An evaluation of highly-cited studies (1990–2012) and of latest practices (2017–
971 2018) in high-impact journals. *NeuroImage*, 221, 117164. doi:
972 10.1016/j.neuroimage.2020.117164

973 Teed, A., Lapidus, R., Upshaw, V., Kuplicki, R., Bodurka, J., Feinstein, J., ... Khalsa, S.
974 (2020). Evidence of Autonomic Hypersensitivity and Blunted Ventromedial
975 Prefrontal Cortex Activity During Interoceptive Perturbation in Generalized

976 Anxiety Disorder. *Neuropsychopharmacology*, 345, 209. doi: 10.1038/s41386-
977 020-00891-6

978 Tukey, J. W. (1991). The Philosophy of Multiple Comparisons. *Statistical Science*, 6(1),
979 100–116. doi: 10.1214/ss/1177011945

980 Turk, C. L., Heimberg, R. G., Luterek, J. A., Mennin, D. S., & Fresco, D. M. (2005).
981 Emotion Dysregulation in Generalized Anxiety Disorder: A Comparison with
982 Social Anxiety Disorder. *Cognitive Therapy and Research*, 29(1), 89–106. doi:
983 10.1007/s10608-005-1651-1

984 van den Heuvel, M. P., & Hulshoff Pol, H. E. (2010). Exploring the brain network: A
985 review on resting-state fMRI functional connectivity. *European
986 Neuropsychopharmacology*, 20(8), 519–534. doi:
987 10.1016/j.euroneuro.2010.03.008

988 Van Dijk, K. R. A., Sabuncu, M. R., & Buckner, R. L. (2012). The influence of head
989 motion on intrinsic functional connectivity MRI. *NeuroImage*, 59(1), 431–438. doi:
990 10.1016/j.neuroimage.2011.07.044

991 Vytal, K. E., Cornwell, B. R., Letkiewicz, A. M., Arkin, N. E., & Grillon, C. (2013). The
992 complex interaction between anxiety and cognition: Insight from spatial and
993 verbal working memory. *Frontiers in Human Neuroscience*, 7, 93. doi:
994 10.3389/fnhum.2013.00093

995 Wagenmakers, E.-J., Marsman, M., Jamil, T., Ly, A., Verhagen, J., Love, J., ... Morey,
996 R. D. (2018). Bayesian inference for psychology. Part I: Theoretical advantages
997 and practical ramifications. *Psychonomic Bulletin & Review*, 25(1), 35–57. doi:
998 10.3758/s13423-017-1343-3

999 Wang, W., Hou, J., Qian, S., Liu, K., Li, B., Li, M., ... Sun, G. (2016). Aberrant regional
1000 neural fluctuations and functional connectivity in generalized anxiety disorder
1001 revealed by resting-state functional magnetic resonance imaging. *Neuroscience
1002 Letters*, 624, 78–84. doi: 10.1016/j.neulet.2016.05.005

1003 Wasserstein, R. L., & Lazar, N. A. (2016). The ASA Statement on *p*-Values: Context,
1004 Process, and Purpose. *The American Statistician*, 70(2), 129–133. doi:
1005 10.1080/00031305.2016.1154108

1006 Watson, J., Timulak, L., & Greenberg, L. S. (2019). Emotion-focused therapy for
1007 generalized anxiety disorder. In L. S. Greenberg & R. N. Goldman (Eds.), *Clinical
1008 handbook of emotion-focused therapy*. (pp. 315–336). Washington: American
1009 Psychological Association. doi: 10.1037/0000112-014

1010 Williams, N. (2014). PHQ-9. *Occupational Medicine*, 64(2), 139–140. doi:
1011 10.1093/occmed/kqt154

1012 Winecoff, A., Clithero, J. A., Carter, R. M., Bergman, S. R., Wang, L., & Huettel, S. A.
1013 (2013). Ventromedial Prefrontal Cortex Encodes Emotional Value. *Journal of
1014 Neuroscience*, 33(27), 11032–11039. doi: 10.1523/JNEUROSCI.4317-12.2013

1015 Wong, C., & Gallate, J. (2012). The function of the anterior temporal lobe: A review of
1016 the empirical evidence. *Brain Research*, 1449, 94–116. doi:
1017 10.1016/j.brainres.2012.02.017

1018 Zaki, J., Davis, J. I., & Ochsner, K. N. (2012). Overlapping activity in anterior insula
1019 during interoception and emotional experience. *NeuroImage*, 62(1), 493–499.
1020 doi: 10.1016/j.neuroimage.2012.05.012

1021 Zhao, X.-H., Wang, P.-J., Li, C.-B., Hu, Z.-H., Xi, Q., Wu, W.-Y., & Tang, X.-W. (2007).

1022 Altered default mode network activity in patient with anxiety disorders: An fMRI

1023 study. *European Journal of Radiology*, 63(3), 373–378. doi:

1024 10.1016/j.ejrad.2007.02.006

1025