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Abstract 

Large reference datasets of protein-coding variation in human populations have allowed us to 1 

determine which genes and genic sub-regions are intolerant to germline genetic variation. There 2 

is also a growing number of genes implicated in severe Mendelian diseases that overlap with 3 

genes implicated in cancer. Here, we hypothesized that mitotically mutable genic sub-regions 4 

that are intolerant to germline variation are enriched for cancer-driving mutations. We introduce 5 

a new metric, OncMTR, which uses 125,748 exomes in the gnomAD database to identify genic 6 

sub-regions intolerant to germline variation but enriched for hematologic somatic variants. We 7 

demonstrate that OncMTR can significantly predict driver mutations implicated in hematologic 8 

malignancies. Divergent OncMTR regions were enriched for cancer-relevant protein domains, 9 

and overlaying OncMTR scores on protein structures identified functionally important protein 10 

residues. Finally, we performed a rare variant, gene-based collapsing analysis on an 11 

independent set of 394,694 exomes from the UK Biobank and find that OncMTR dramatically 12 

improves genetic signals for hematologic malignancies. Our web app enables easy visualization 13 

of OncMTR scores for each protein-coding gene (https://astrazeneca-cgr-14 

publications.github.io/OncMTR-Viewer/).  15 
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Introduction 16 

The availability of large-scale human genetic variation reference datasets has revolutionized our 17 

ability to identify disease-causing mutations (Karczewski et al., 2020; Wang et al., 2021). 18 

Through the effective process of natural selection, variants with severe clinical outcomes are 19 

generally depleted in these datasets. We and others have leveraged this paradigm to develop 20 

intolerance metrics that quantify the extent to which natural selection constrains germline 21 

variation in genes and genic-sub regions (Dhindsa et al., 2020; Petrovski et al., 2013; Samocha 22 

et al., 2014; Traynelis et al., 2017). These methods have proven invaluable in prioritizing which 23 

of the roughly 20,000 protein-coding variants observed in any given individual are most likely to 24 

contribute to disease. Interpreting variants in the context of cancer suffers from similar 25 

challenges as interpreting germline variation: cancer cells often carry thousands of somatic 26 

mutations, but only some of these drive the oncogenic process. Despite their success in 27 

prioritizing germline variants, population genetics-based approaches have yet to be applied in 28 

the context of distinguishing between somatic cancer driving mutations and neutral “passenger” 29 

mutations.  30 

 Many developmental disorder-causing germline mutations occur in essential genic 31 

subregions, leading to dysfunction of crucial cellular biology pathways. We postulated that if 32 

these same mutations arise mitotically later in life, they will not cause the same developmental 33 

disease due to more limited expression of the mutation but could have equally as profound 34 

impacts on cellular biology. Consistent with this, there are several examples whereby identical 35 

point mutations that cause severe developmental syndromes when mutated in the germline 36 

cause cancer when mutated somatically (Hoischen et al., 2014; Petrovski et al., 2016), including 37 

identical mutations in PTEN, ASXL1 (Hoischen et al., 2011), EZH2 (Gibson et al., 2012), and 38 

others (Kaplanis et al., 2020). Many of these genes are involved in cell proliferation, chromatin 39 

remodeling, genome maintenance, and signal transduction pathways. This convergence 40 

highlights a subset of genes in the human genome that are crucial to cell biology, whereby 41 

disruptive mutations can cause different clinical outcomes depending on their timing, 42 

localization, and cellular context.  43 

Here, we hypothesized that regions of genes that are under strong negative selection for 44 

germline variation but are exceptionally mitotically mutable would be enriched for variants that 45 

increase cancer risk. Identifying germline-constrained but mitotically mutable genic subregions 46 

could help prioritize cancer-driving mutations. Here, we focus on missense variants as they are 47 

the most observed protein-coding variant class, are becoming increasingly clinically actionable 48 

(Hyman et al., 2017), but importantly are also more difficult to interpret than protein-truncating 49 
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annotated variants. We previously introduced the missense tolerance ratio (MTR), a sliding 50 

window-based approach that detects genetic sub-regions depleted of missense variation 51 

(Traynelis et al., 2017). In this study, we extended this method to produce a score (OncMTR) to 52 

identify germline intolerant but mitotically mutable genic sub-regions by using exome data from 53 

125,748 individuals in GnomAD (Karczewski et al., 2020). We demonstrate that OncMTR 54 

effectively predicts driver mutations of hematologic malignancies. We also use 394,694 UK 55 

Biobank exomes to illustrate the utility of OncMTR in prioritizing variants in genetic discovery for 56 

cancer phenotypes. This work introduces a population genetics approach to identify genic 57 

subregions enriched for cancer-related somatic missense mutations. 58 

 59 

 60 

Results 61 

Putative somatic variants in gnomAD 62 

Population-level catalogues of human genetic variation allow for the investigation of selective 63 

constraint and mutational patterns in the exome. We used the gnomAD database of 125,748 64 

human exomes to survey both germline and somatic variants (Karczewski et al., 2020). 65 

Although the gnomAD variant calling pipeline was tuned to detect germline variation, we 66 

reasoned that we may also be able to identify somatic variants that reach a sufficiently high 67 

variant allele frequency to be detected through their germline variant caller. Inherited 68 

heterozygous germline variants are expected to have an allelic ratio close to 50%. We observed 69 

that the distribution of median allelic balance (AB_median) values for gnomAD variants followed 70 

a bimodal distribution, with one distribution centered around 50% and another, smaller 71 

distribution centered around 20% (Fig. 1A).  72 

 73 

Defining OncMTR 74 

We previously introduced a sliding window-based metric, the missense tolerance ratio (MTR), 75 

that measures purifying selection on missense variation in genic sub-regions (Traynelis et al., 76 

2017). This score demonstrably detects crucial functional domains of proteins that can cause 77 

Mendelian disease when mutated in the germline. Motivated by the overlap between mutations 78 

associated with Mendelian disease and cancer, we set out to create a cancer-relevant version 79 

of MTR (methods) that captures regions that are depleted of germline variation but also 80 

enriched for somatic variation. In this study, we defined another variation of the MTR score, 81 

namely MTRgermline. In its construction, MTRgermline is restricted to only those variants achieving 82 

an AB_median > 0.3. Taking the well-known cancer gene TP53 as an example, we can observe 83 
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those genic subregions where the two MTR formulations diverged (Fig. 1B). We then define 84 

OncMTR as the difference between these two MTR formulations for each codon and using a 31-85 

codon sliding window (Fig. 1B). Negative scores correspond to regions with the greatest 86 

divergence between germline intolerance and somatic variant enrichment. Overlaying OncMTR 87 

scores on the AlphaFold-predicted structure of TP53 (Jumper et al., 2021) illustrated that the 88 

strongest negative scores correspond to the DNA-binding domain, which is the domain enriched 89 

for mutations known to drive hematologic malignancies (Fig. 1C).   90 

 91 

Figure 1. Defining the OncMTR score. (A) Bi-modal distribution of median allelic 92 

balance values for heterozygous variants in the gnomAD database. We defined putative 93 

somatic variants as those with an AB median ≤ 0.3 (dashed line). (B) The top figure 94 

demonstrates the missense tolerance ratio (MTR) distribution of TP53 when considering 95 

all missense variants (blue) and when restricted to only germline variants (i.e., AB 96 

Median > 0.3, depicted in pink). We defined OncMTR as the difference between these 97 

two distributions (bottom panel). (C) OncMTR scores overlaid on the AlphaFold structure 98 

for TP53. The most intolerant region maps to the DNA-binding domain of the protein, 99 

which is strongly enriched for mutations known to drive hematologic malignancies.  100 

 101 

 102 

Using OncMTR to prioritize driver mutations in hematologic malignancies 103 

Motivated by the positive proof-of-concept demonstrated for TP53, we next tested whether the 104 

MTR and MTRgermline distributions differed across other oncogenes included in the Catalogue of 105 

Somatic Mutations in Cancer (COSMIC) Cancer Gene Census (CGC). The CGC is divided into 106 
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two tiers, with Tier 1 containing bona fide cancer genes (n=556) and Tier 2 containing genes 107 

that have strong indications of playing a role in cancer but with less expansive evidence than 108 

Tier 1 (n=137). The difference between MTR and MTRgermline distributions per gene, calculated 109 

via cross entropy, was significantly higher for Tier 1 genes than a random selection of 556 non-110 

CGC genes (p = 5.7x10-31), the remainder of the exome (p = 2.8x10-67), and Tier 2 genes (p = 111 

1.1x10-7) (Fig. 2A). The cross entropy was also significantly larger for Tier 2 genes than the 112 

remaining genes in the exome (p = 2.6x10-4) (Fig. 2A). Together, these results support the 113 

hypothesis that mitotically mutable genic sub-regions that are intolerant to germline variation are 114 

broadly relevant to cancer.  115 

 116 

 117 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 9, 2022. ; https://doi.org/10.1101/2022.01.07.475416doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.07.475416
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

Figure 2. OncMTR regions are enriched for somatic variants associated with 118 

hematologic malignancies. (A) Cross entropy between the distribution MTR and 119 

MTRAB distributions for Catalogue of Somatic Mutations in Cancer (COSMIC) Cancer 120 

Gene Census (CGC) genes, a random selection of genes, and the rest of the exome. (B) 121 

Receiver operator curve (ROC) depicting the ability of random forest models based on 122 

either the raw OncMTR score, the OncMTR transcript-level percentile scores (“Tx%”), 123 

and a joint model in discriminating between 1,166 leukemogenic variants and a random 124 

size-matched set of variants. AUC = area under the curve. (C) Mean ROC AUCs (with 125 

fivefold cross-validation) of random forest models based on raw OncMTR in predicting 126 

variants involved in leukemia (same variant set as figure B) and hematologic driver 127 

mutations annotated in IntoGen (Tamborero et al., 2018). The putatively neutral variant 128 

sets comprise of random, size-matched selection of variants. (D) The OncMTR 129 

distributions of driver mutations for hematologic malignancies versus solid tumors is 130 

derived from the Cancer Genome Interpreter.   131 

 132 

  133 

Distinguishing between cancer-causing driver mutations and neutral passenger mutations 134 

remains a central challenge in cancer genomics. We thus tested whether OncMTR could help 135 

prioritize somatic mutations that cause hematologic malignancies. We found that the OncMTR 136 

scores of a previously defined list of 1,166 leukemogenic driver mutations (Bick et al., 2020) 137 

(Supplementary Table 1) were significantly lower than a size-matched set of random variants 138 

(Mann Whitney U p=2.97x10-86; Supplementary Fig. 1A). A random forest model using 139 

OncMTR achieved an area under the receiving operator curve (AUC) of 0.74 in discriminating 140 

between these leukemogenic variants and the random set (Fig. 2B). We also calculated 141 

transcript-level percentiles for the MTR scores, in which lower percentiles corresponded to lower 142 

OncMTR scores. The AUC or the OncMTR transcript percentiles was 0.76, and a combined 143 

model that incorporated both the raw OncMTR scores and transcript percentiles achieved an 144 

even higher AUC of 0.78 (Fig. 2B).  145 

 To further assess the capacity of OncMTR to prioritize driver mutations, we trained 146 

random forest models with raw OncMTR scores using 5-fold cross-validation. The mean AUC 147 

for predicting leukemogenic variants was 0.74 (Fig. 2C). We next compared the performance of 148 

OncMTR in distinguishing between a set of random variants and 200 established driver 149 

mutations implicated in acute lymphocytic leukemia (ALL), acute myeloid leukemia (AML), 150 

chronic lymphocytic leukemia (CLL), diffuse large B-cell lymphoma (DLBCL), or multiple 151 

myeloma (MM), achieving an AUC of 0.65 (Fig. 2C) and having significantly disparate OncMTR 152 

distributions from each other (Mann Whitney U p=4.89x10-5; Supplementary Fig. 1B and 153 

Supplementary Table 2). Logistic regression-based classifiers achieved similar, albeit 154 

marginally lower, AUCs than the random forest models (with AUCs of 0.73 and 0.62 for the two 155 

variant sets, respectively), likely due to a small degree of non-linear distribution of OncMTR 156 

scores (Supplementary Fig. 2). Altogether, these results demonstrate the utility of our 157 
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population genetics-based approach in identifying genic sub-regions relevant to hematologic 158 

malignancies.  159 

 Because the somatic mutations used to calculate OncMTR arose in the blood, we 160 

expected that OncMTR would more reliably prioritize driver mutations in hematologic 161 

malignancies than in solid tumors. As expected, the OncMTR scores of driver mutations 162 

implicated in heme malignancies were significantly lower (Mann Whitney U p=2.53x10-9; Fig. 163 

2D). To determine whether OncMTR performs better for certain subtypes of heme malignancies, 164 

we compared OncMTR distributions of putative driver and passenger mutations identified in a 165 

recent comprehensive in silico saturation mutagenesis experiment (Muiños et al., 2021). This 166 

dataset includes simulated variants across 3 genes for CLL, 9 genes for AML, 2 genes for non-167 

Hodgkin lymphoma, 5 genes for lymphoma, 6 genes for multiple myeloma, and 2 genes for ALL 168 

(Supplementary Table 10). The OncMTR scores of predicted driver mutations were 169 

significantly lower than those of passenger mutations for each cancer subtype, though we 170 

observed the strongest separation in CLL (Wilcoxon p<2x10-308) and AML (Wilcoxon p=1.4x10-
171 

155) (Supplementary Fig. 3).  172 

 We next assessed whether OncMTR can successfully distinguish between ClinVar 173 

pathogenic and benign somatic variants. Logistic regression classification between pathogenic 174 

and benign or random variants across all protein-coding genes reached an AUC of 0.60 and 175 

0.58, respectively (Supplementary Fig. 4; P=815 unique pathogenic vs B=58 unique benign 176 

variants; a set R [random] of equal size to P was sampled to compile the random variants - see 177 

also Methods). We next restricted the set of pathogenic somatic variants to those occurring in 178 

genes associated with hematologic malignancies and compared to benign or random variants. 179 

The AUC was 0.62 in distinguishing between pathogenic and benign variants in hematologic 180 

malignancy genes (P=64 vs B=20) and 0.67 when comparing to benign variants across the 181 

entire exome (P=64 vs B=58). The AUCs for pathogenic hematologic malignancy variants 182 

versus random variants were 0.61 for random variants restricted to heme genes (P=64 vs R=64) 183 

and 0.64 for random variants pulled from all protein-coding genes (P=815 vs R=815) 184 

(Supplementary Fig. 4). These results provide support to this blood-based sequencing version 185 

of OncMTR being more powerful in identifying pathogenic mutations implicated with heme 186 

malignancies.  187 

Finally, to further explore OncMTR’s power to agnostically detect putative oncogenic 188 

regions, we scanned all protein-coding genes in ClinVar in search of transcripts that are 189 

preferentially enriched for ClinVar pathogenic somatic variants in regions with OncMTR scores 190 

at the bottom 20-percentile of the full OncMTR distribution (see Methods). We identified 101 191 
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such transcripts from 24 unique genes (Fisher’s exact test p<0.05; Supplementary Table 11), 192 

with several known cancer driver genes captured, such as TP53, IDH1, ALK and HNRNPA1 193 

(Martínez-Jiménez et al., 2020). Many of the top ranked genes are implicated in hematologic 194 

malignancies, including MYC, MSH2, and FBXW7 (Supplementary Fig. 5) (Bhatia et al., 1993; 195 

King et al., 2013; Whiteside et al., 2002). 196 

 197 

Genes carrying mutations implicated in both human Mendelian disease and cancer 198 

The underlying hypothesis in deriving OncMTR is that certain genic regions are critically 199 

important to human biology, and thus germline mutations in these regions cause severe 200 

Mendelian phenotypes, whereas identical somatic mutations–occurring later in life and localized 201 

to specific tissue(s)–in these regions may have an oncogenic effect. To evaluate this, we plotted 202 

OncMTR distributions for three genes implicated in both neurodevelopmental disease and 203 

leukemia: GNB1, NRAS, and DNMT3A (Fig. 3 A-C and Supplementary Table 4).  204 

Germline de novo mutations in GNB1 cause a severe developmental syndrome 205 

characterized by intellectual disability (ID) and other variable features, including hypotonia, 206 

seizures, and poor growth (Petrovski et al., 2016). Somatic mutations in this gene have been 207 

associated with ALL, CLL, and myelodysplastic syndrome (Yoda et al., 2015). Three of the four 208 

somatic driver mutations in this gene overlap with de novo mutations implicated in 209 

developmental delay (p.Asp76Gly, p.Ile80Thr, and p.Ile80Asn) (Fig. 3A) (Petrovski et al., 2016). 210 

All four mutated residues reside in a low OncMTR region (OncMTR < -0.05) of the gene, which 211 

corresponds to the Gβ-protein surface that interacts with Gα subunits and downstream effectors 212 

(Fig. 3A).  213 

NRAS encodes a RAS protein with intrinsic GTPase activity that has been implicated in 214 

multiple hematologic and solid malignancies (Oliveira et al., 2007). There are 28 somatic 215 

missense variants in this gene at four distinct amino acid positions associated with juvenile 216 

myelomonocytic leukemia and AML, and all residing in low OncMTR regions (Fig. 3B) (Bick et 217 

al., 2020). Two of these mutations have also been reported as causal germline de novo 218 

mutations for Noonan syndrome, a developmental delay syndrome that includes congenital 219 

heart defects, short stature, and other features (p.Gly13Asp, p.Gly60Glu) (Fig. 3B) (Cirstea et 220 

al., 2010; Matsuda et al., 2007).  221 

DNMT3A encodes a DNA methyltransferase essential for DNA methylation during 222 

human embryogenesis and, when mutated somatically, increases risk of acute myeloid 223 

leukemia (Kosaki et al., 2017). In a large study on clonal hematopoiesis of indeterminate 224 

potential (CHIP), DNMT3A was found to harbor the largest proportion of CHIP variants of all 225 
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CHIP-associated genes (Jaiswal et al., 2017), suggesting it is highly mitotically mutable. In line 226 

with this, the OncMTR distribution of this gene is highly enriched for negative values, even 227 

compared to GNB1 and NRAS (Fig. 3C). The R882 amino acid residue of DNMT3A 228 

corresponds to a DNA-binding residue that is a major somatic mutation hotspot in CHIP and 229 

AML (Kosaki et al., 2017). De novo germline mutations at this residue are associated with an 230 

overgrowth syndrome called Tatton-Brown-Rahman syndrome characterized by tall stature and 231 

impaired intellectual development (Tatton-Brown et al., 2014). Mutations at the R882 residue 232 

are thought to interfere with DNA binding, resulting in functional impairment of the protein and 233 

aberrant DNA methylation patterns (Zhang et al., 2018). As expected, we identify that the 234 

leukemogenic variants in this gene are enriched in low OncMTR regions (Fig. 3C). Altogether, 235 

these results support the notion that some critically important genic sub-regions are 236 

exceptionally mitotically mutable, and mutations in these regions result in different phenotypic 237 

outcomes depending on timing and cellular context (Hoischen et al., 2011).  238 
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239 

Figure 3. OncMTR distributions for genes implicated in both cancer and Mendelian 240 

disease. (A-C) OncMTR scores for GNB1 (A), NRAS (B), and DNMT3A (C) with 241 

corresponding protein structures from PDB (for NRAS, PDB ID: 6zio) or predicted by 242 

AlphaFold (Jumper et al., 2021). Points on the OncMTR plots and spheres on the protein 243 

structures indicate pathogenic somatic mutations included in TopMED leukemogenic 244 

variant set. Red points indicate variants with OncMTR < -0.05. Points with a pink outline 245 

indicate somatic leukomogenic variants that are also known to cause developmental 246 

delay (DD) when mutated de novo in the germline. De novo mutations were aggregated 247 

from the Online Mendelian Inheritance of Man database.  248 

 249 

 250 

Enrichment of low OncMTR scores in protein domains 251 

One strength of the sliding window approach implemented in OncMTR is that its estimates are252 

independent of biological boundaries, such as annotated protein domains, which are not always253 

 

re 

ys 
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well-annotated. However, it is known that cancer-causing missense mutations tend to cluster in 254 

certain functional domains. We thus tested whether Pfam domains and domain superfamilies 255 

were enriched for low OncMTR regions (defined as OncMTR < -0.05). Across human protein-256 

coding genes, low OncMTR regions were significantly enriched for several protein domains 257 

previously implicated in cancer, such as homeodomains (Fisher’s exact adjusted p-258 

value=4.9x10-46), protein kinase domains (Fisher’s exact adjusted p-value=5.25x10-110), RING 259 

domains (Fisher’s exact adjusted p-value=3.22x10-48), and others (Figure 4 A,B and 260 

Supplementary Tables 5,6). Furthermore, we found that proteins that had functional domains 261 

enriched for low OncMTR scores are significantly enriched in genes with TOPMed 262 

leukemogenic variants and known cancer hotspots (Chang et al., 2018) (Figure 4C and 263 

Supplementary Tables 1-3;7-9). Among these two lists of genes, zinc finger motifs were found 264 

to be the most strongly enriched for low OncMTR scores (Figures 4D-F; most significant 265 

adjusted p-value=2.3x10-52 from the union list, based on Fisher’s exact test), in line with their 266 

well-established role in cancer development (Cassandri et al., 2017). Remarkably, although the 267 

calculation of OncMTR is agnostic to domain annotations, it independently identifies cancer-268 

relevant functional genic sub-regions.  269 

 270 

 271 
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Figure 4. Overlap between OncMTR regions and protein domains. (A) Pfam protein 272 

domains most strongly enriched with low OncMTR regions (OncMTR < -0.05). (B) Pfam 273 

domain clans most strongly enriched with low OncMTR regions. The DNA-binding 274 

superfamily set was defined in a prior publication (Bahrami et al., 2015). (C) Proportions 275 

of genes enriched with low OncMTR scores in annotated protein domains in various 276 

cancer-related gene sets: genes carrying TopMED leukemogenic variants, annotated 277 

cancer hotspots, as well as the union of these three lists. (D-F) The most abundant Pfam 278 

domains enriched with low OncMTR regions in proteins encoded by the labeled sets of 279 

cancer genes. Error bars in each panel represent 95% confidence intervals. P-values 280 

were calculated with Fisher’s exact test and adjusted via Bonferroni correction.  281 

 282 

Informing rare-variant collapsing analysis with OncMTR 283 

With increasing adoption of next generation sequencing to generate case-control cohorts, rare 284 

variant collapsing analysis has emerged as a powerful approach to detect disease-associated 285 

genes for both rare and complex disorders. In this approach, the proportion of cases with a 286 

qualifying variant is compared to the proportion of controls with a qualifying variant in the same 287 

gene. We have previously shown that incorporating an MTR filter in defining QVs dramatically 288 

improves rare variant collapsing analyses (Wang et al., 2021). In that phenome-wide 289 

association study (PheWAS) on approximately 300,000 exomes in the UK Biobank, the 290 

collapsing analyses detected seven genes associated with hematologic malignancies (Wang et 291 

al., 2021). Here, we sought to test whether OncMTR would further improve collapsing analysis 292 

signals for hematologic malignancy associations by performing a collapsing analysis on 394,694 293 

European exomes contained in the UK Biobank focused on 1,394 chapter IX (neoplasm) 294 

phenotypes. We defined a total of eight collapsing models with and without OncMTR filters 295 

(Supplementary Table 12). Imposing an OncMTR filter of -0.05 (i.e., only considering missense 296 

QVs that fall below this threshold) significantly increased the effect sizes of gene-phenotype 297 

associations (p < 0.0001) for each model (Fig. 5A). We observed genome-wide significant 298 

(p<1x10-8) associations between several heme malignancies and DNMT3A, FBXW7, IDH2, 299 

IGLL5, JAK2, SF3B1, SRSF2, TET2, and TP53, in certain cases the effect sizes were 10-fold 300 

greater than without adopting the OncMTR filter (Fig. 5B). We also found that the association 301 

between TP53 and CLL only reached significance in models including our OncMTR filter; for 302 

example, in the ‘raredmg’ model, this association had a p-value of 1.2x10-7 (odds ratio [OR] = 303 

8.8; 95% confidence interval [CI]: 4.8-16.0), whereas in the ‘raredmgoncmtr’ model, the same 304 

association reached a p-value of 3.4x10-10 (OR = 33.2; 95%CI: 16.1-68.7). Thus, applying the 305 

OncMTR filter effectively reduces background variation in the setting of gene-level collapsing 306 

analysis for haematological malignancy phenotypes and we advise future large-scale 307 

haematological malignancy discovery studies to consider adopting OncMTR filter for improved 308 

signal detection.  309 
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 310 

Figure 5. Collapsing analyses using OncMTR. (A) Effect sizes of gene-phenotype 311 

associations derived from a gene-level collapsing analysis performed on neoplasm 312 

phenotypes in 394,694 UK Biobank exomes. Collapsing models are defined in 313 

Supplemental Table 12. (B) Changes in odds ratios observed for selected gene-314 

phenotype associations. MDS = myelodysplastic syndrome; AML = acute myeloid 315 

leukemia; CLL = chronic lymphocytic leukemia.  316 

 317 

 318 

Discussion 319 

Determining the clinical relevance of missense variants in oncogenes remains a central320 

challenge in cancer genetics (Chang et al., 2018; Hyman et al., 2017). Motivated by the321 

observation that missense variants in certain genic sub-regions can cause severe Mendelian322 

disease when mutated in the germline and cancer when mutated somatically, we introduced a323 

population genetics-based framework called OncMTR to quantitate the divergence between324 

germline constraint and somatic mutability across the human exome.  325 

First, we demonstrated that oncogenes are enriched for these critically important regions326 

that do not tolerate germline missense variants but harbor somatic mutations. We then327 

illustrated that OncMTR can effectively distinguish between leukemogenic driver mutations and328 

passenger mutations. Although OncMTR is calculated using a sliding window without any input329 

of domain annotations, we found that genic sub-regions that have low OncMTR scores are330 

significantly enriched for protein domains known to be relevant to cancer. Illustrative of our331 

hypothesis was the observation that identical point mutations implicated in both severe332 

Mendelian disease and leukemia in the genes GNB1, NRAS, and DNMT3A occur in low333 

OncMTR regions. Finally, we found that incorporating OncMTR in a gene-level collapsing334 
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analysis on hematologic malignancy phenotypes using 394,694 UKB exomes improved the 335 

signal-to-noise ratio for detecting hematologic malignancy associations. We have also 336 

developed web server for visualization of OncMTR scores for each human protein-coding gene: 337 

https://astrazeneca-cgr-publications.github.io/OncMTR-Viewer/.  338 

 Our findings have important implications for the disease biology of both severe 339 

Mendelian disorders and cancer. The convergence of genes and genic sub-regions between 340 

these two disease areas suggest that similar biological processes play a fundamental role in 341 

these two groups of phenotypes. Indeed, cellular proliferation, chromatin remodeling, cell 342 

migration, and other cancer-relevant processes have been implicated in neurodevelopmental 343 

diseases (De Rubeis et al., 2014; Dhindsa et al., 2021; Feng et al., 2019; Kaplanis et al., 2020). 344 

Furthermore, our work supports the notion that mutations in these genes have different 345 

phenotypic manifestations based on timing (i.e., zygote versus adulthood), localization 346 

(systemic versus hematological), and cellular context.  347 

There exist many other approaches that aim to predict which genic sub-regions are 348 

relevant to cancer. These methods tend to look for nonrandom clustering patterns of somatic 349 

mutations in either the linear protein sequence or three-dimensional space (Porta-Pardo et al., 350 

2017). To the best of our knowledge, none of these approaches integrate population-level 351 

inferences of genic constraint. OncMTR could improve the predictive performance of other, 352 

orthogonal driver mutation prediction approaches, as a recent in silico saturation mutagenesis 353 

experiment demonstrated the strength of incorporating multiple lines of evidence in prioritizing 354 

driver mutations (Muiños et al., 2021).   355 

One limitation of OncMTR in its current formulation is that it does not reflect the broader 356 

range of solid tumor malignancies since it is based on somatic mutations observed in blood-357 

based sequencing. In future work, the general framework introduced in this study could be 358 

applied to sufficiently large tumor-normal sequence datasets as those numbers increase. 359 

Furthermore, we used gnomAD because it represents the largest collection of publicly available 360 

aggregated allele frequency data. However, gnomAD variants were all called using a germline 361 

variant caller. While we demonstrated that we could detect somatic variants in this database, we 362 

were likely limited to those that reached a sufficiently high variant allele frequency to be 363 

detected. Use of somatic variant callers adopted on these large-scale datasets could further 364 

improve the sensitivity of OncMTR.  365 

  366 
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 367 

Methods 368 

Reconstructing the Missense Tolerance Ratio with 125K samples from gnomAD 369 

We first reconstruct the Missense Tolerance Ratio (MTR) using a cohort of 125,748 exomes 370 

from the gnomAD consortium (v2, GRCh38 liftover). The formula for deriving the window-based 371 

MTR scores has been introduced in the original paper (Traynelis et al., 2017): 372 

 373 
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 374 

where the numerator represents the observed proportion of missense variants among the total 375 

observed protein-coding variation. The numerator is then scaled by the same proportion 376 

computed from the collection of all possible protein-coding variants in the corresponding protein-377 

coding window. A window size of 31 codons has been employed for calculating MTR based on 378 

the gnomAD cohort, in agreement with the previously published score (Traynelis et al., 2017). 379 

 380 

The expected proportion of missense variants in a given protein-coding window was calculated 381 

by annotating all possible variants of a protein-coding transcript with SnpEff 4.3t using 382 

GRCh38.92 as the reference annotation and assuming all events were equally likely to occur. 383 

Annotation with SnpEff focused on single nucleotide variants (SNVs) that were flagged as PASS 384 

variants in the original gnomAD release (v2). Variants annotated as ‘missense_variant’ or 385 

‘missense_variant&splice_region_variant’ by SnpEff represent the set of ‘missense’ variants in 386 

the MTR formula. Variants annotated as 'synonymous_variant', 'stop_retained_variant', 387 

'splice_region_variant&stop_retained_variant' or 'splice_region_variant&synonymous_variant' 388 

by SnpEff were considered as the ‘synonymous’ variants in the same formula. 389 

 390 

OncMTR score construction 391 

Using MTR as our basis, we construct the OncMTR score (i.e. Oncology MTR score) to capture 392 

protein-coding subregions that are depleted of germline missense variants but observe somatic 393 

mutations. We observe that the total distribution of AB_MEDIAN values across all gnomAD 394 

variants (Fig. 1A) is bimodal, with the main peak centered close to 0.5 and a second one 395 

emerging for values approximately around 0.2. The AB_MEDIAN metric represents the allelic 396 

ratio between the alleles for each variant, with values close to 0.5 reflecting an equal number of 397 
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copies being inherited from each parent in heterozygous settings, while truly biological variants 398 

that approach zero increasingly reflect variants that more likely arose somatically. 399 

 400 

We leverage this observation to construct an alternative version of the original MTR score: 401 

excluding any putative somatic variants and employing only germline variants from the gnomAD 402 

dataset. We achieve that by selecting only variants with AB_MEDIAN > 0.3, constructing the 403 

MTRgermline version of the score. OncMTR is then defined as the difference of the original MTR 404 

score from the MTRgermline version: 405 

�
���� �  ����������� � ���  406 

Negative OncMTR values (i.e. MTRgermline < MTR) represent regions that are depleted of 407 

germline variants and are instead enriched for somatic variation, thus allowing to highlight 408 

putative oncogenic subregions in protein coding genes. 409 

 410 

Compilation of variant sets  411 

We used a pre-compiled set of variants known to be drivers of haematologic malignancies in a 412 

total of 160 genes (Jaiswal et al., 2014). This list was generated from recurrent haematologic 413 

somatic mutations in the literature and COSMIC, excluding genes with a relatively high 414 

proportion of loss-of-function germline mutations. A second, smaller pre-compiled list, focused 415 

on genes which were recurrent drivers specifically for myeloid malignancies (Bick et al., 2020). 416 

A third validation set included a list of annotated driver mutations provided through the IntoGen 417 

database (Tamborero et al., 2018). We restricted this set to “Tier 1” (highest confidence) driver 418 

mutations observed in hematologic malignancies, which included ALL, AML, CLL, DLBC, and 419 

MM.  420 

 421 

Classification of oncogenic variant sets with OncMTR 422 

We have performed classification of different oncogenic variant sets (TOPMed leukemogenic 423 

and Intogen drivers) against random variant sets of equal size. We employ two supervised 424 

models for the binary classification task: Logistic Regression with ‘max_iter’=1000 and a 425 

Random Forest classifier with ‘max_depth’=2, to avoid overfitting on the training set. Each 426 

classification was performed as a 5-fold cross-validation task and the mean Area Under Curve 427 

(AUC) from all folds is reported to reflect the total average performance of each learning task. 428 

The implementations of Logistic Regression and Random Forest were derived from the sklearn 429 

Python package (v0.22.1).  430 

 431 
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We also estimated the optimal OncMTR cut point for each classification by calculating the 432 

Youden’s index from each learning task. The average Youden index from all classification tasks 433 

performed with Logistic Regression was YLR = -0.0409 (standard deviation: 0.00126) while for 434 

Random Forest it was YRF = -0.0614 (standard deviation: 0.00057). The mean of the two 435 

averages of Youden indexes is -0.05115 or -0.05, after rounding it up to one decimal point for 436 

simplicity. We thus consider OncMTR values below -0.05 to have the most distinctive power. 437 

 438 

Identifying OncMTR regions significantly enriched for ClinVar somatic variants 439 

For this analysis, we use all ClinVar somatic variants (ORIGIN=2) from the GRCh38 release 440 

(last accessed on 9 June 2019), focusing on those annotated as missense or synonymous. We 441 

consider as pathogenic variants those annotated as “Pathogenic” or “Likely_pathogenic” and as 442 

benign those annotated as “Benign” or “Likely_benign” (based on ClinVar). Classification 443 

between pathogenic and benign (or random) variant sets was performed with a logistic 444 

regression classifier with 5-fold cross validation (sklearn, Python package v0.22.1). When 445 

restricting the classification to heme-implicated genes, we derived those gene sets based on the 446 

Intogen annotation (Supplementary Table 10). 447 

 448 

In order to identify genes/transcripts across the exome that are preferentially enriched for 449 

ClinVar somatic pathogenic variants in regions with low OncMTR scores we employ Fisher’s 450 

exact test. Specifically, we scan across each transcript and identify what percentage of the 451 

codons in each transcript achieve an OncMTR score at the bottom 20-percentile of the full 452 

OncMTR distribution (across the entire transcript). Then, we check whether known pathogenic 453 

or likely pathogenic ClinVar missense variants preferentially land in these codons (i.e. 454 

corresponding to low OncMTR scores) compared to the rest of the transcript. We apply a 455 

Fisher’s exact test (FET) to evaluate the enrichment of each set of regions, i.e., those with low 456 

OncMTR scores vs the rest of the transcript. Eventually, we rank each transcript based on the 457 

odds ratio and significance of the FET enrichments (Supplementary Table 11). 458 

 459 

Enrichment of low OncMTR scores in protein domains 460 

To describe the functional context of OncMTR, we calculated enrichment of constrained regions 461 

in protein domain families. Residues within each canonical transcript (as defined by UniProtKB) 462 

were divided into two classes based on their corresponding OncMTR scores: below -0.05 463 

(constrained; as defined by Youden’s index) and greater or equal -0.05 (relaxed). Domain and 464 

clan annotations for the human proteome were taken from the Pfam 34.0 database. DNA-465 
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binding domains were pulled from a previous compendium (Bahrami et al., 2015). The final set 466 

of the canonical human proteome consisted of 18,313 annotated proteins. Enrichments of the 467 

constrained regions in protein domains were tested with the Fisher’s exact test followed by 468 

Bonferroni correction, and significance level of adjusted p-value of 0.05.  469 

 470 

UK Biobank Collapsing analysis  471 

Collapsing analyses were performed using the 394,694 exomes available in the UK Biobank 472 

(UKB) cohort (Bycroft et al., 2018). The UKB is a prospective study of approximately 500,000 473 

participants aged 40–69 years at time of recruitment. Participants were recruited in the UK 474 

between 2006 and 2010 and are continuously followed. The average age at recruitment for 475 

sequenced individuals was 56.5 years and 54% of the sequenced cohort is of female genetic 476 

sex. Participant data include health records that are periodically updated by the UKB, self-477 

reported survey information, linkage to death and cancer registries, collection of urine and blood 478 

biomarkers, imaging data, accelerometer data and various other phenotypic end points. All 479 

study participants provided informed consent and the UK Biobank has approval from the North-480 

West Multi-centre Research Ethics Committee (MREC; 11/NW/0382). 481 

 We performed a gene-based collapsing analysis on 1,394 chapter IX (neoplasm) 482 

phenotypes adopting our previously described approach (Wang et al., 2021). We implemented a 483 

total of eight dominant collapsing models with and without OncMTR filters (Supplementary 484 

Table 12). Using SnpEff (Cingolani et al., 2012), we defined PTVs as variants annotated as 485 

exon_loss_variant, frameshift_variant, start_lost, stop_gained, stop_lost, 486 

splice_acceptor_variant, splice_donor_variant, gene_fusion, bidirectional_gene_fusion, 487 

rare_amino_acid_variant, and transcript_ablation. We defined missense as: 488 

missense_variant_splice_region_variant, and missense_variant. Non-Synonymous variants 489 

included: exon_loss_variant, frameshift_variant, start_lost, stop_gained, stop_lost, 490 

splice_acceptor_variant, splice_donor_variant, gene_fusion, bidirectional_gene_fusion, 491 

rare_amino_acid_variant, transcript_ablation, conservative_inframe_deletion, 492 

conservative_inframe_insertion, disruptive_inframe_insertion, disruptive_inframe_deletion, 493 

missense_variant_splice_region_variant, missense_variant, and protein_altering_variant. We 494 

derived allele frequencies from gnomAD (Karczewski et al., 2020).  The raredmg, 495 

raredmg_OncMTR, flexdmg, and flexdmg_oncMTR models incorporated a REVEL cutoff of 496 

REVEL >= 0.5 to restrict to putatively damaging missense variants (Ioannidis et al., 2016).  497 

To compute p-values, the carriers of at least one qualifying variant (QV) in a gene were 498 

compared to the non-carriers. The difference in the proportion of cases and controls carrying 499 
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QVs in a gene was tested using a Fisher’s exact two-sided test. we applied the following quality 500 

control filters: minimum coverage 10X; annotation in CCDS transcripts (release 22; 501 

approximately 34 Mb); at most 80% alternate reads in homozygous genotypes; percent of 502 

alternate reads in heterozygous variants ≤ 0.25 and ≥ 0.8; binomial test of alternate allele 503 

proportion departure from 50% in heterozygous state P < 1 × 10-6; GQ ≤ 20; FS ≥ 200 (indels) ≥ 504 

60 (SNVs); MQ ≤ 40; QUAL ≤ 30; read position rank sum score ≤ −2; MQRS ≤ −8; DRAGEN 505 

variant status = PASS; the variant site achieved ten-fold coverage in ≤ 25% of gnomAD 506 

exomes, and if the variant was observed in gnomAD exomes, the variant achieved exome z-507 

score ≤ −2.0 and exome MQ ≤ 30. We excluded 46 genes that we previously found associated 508 

with batch effects (Wang et al., 2021).  509 

For all models, we applied the following quality control filters: minimum coverage 10X; 510 

annotation in CCDS transcripts (release 22; approximately 34 Mb); at most 80% alternate reads 511 

in homozygous genotypes; percent of alternate reads in heterozygous variants ≤ 0.25 and ≥ 0.8; 512 

binomial test of alternate allele proportion departure from 50% in heterozygous state P < 1 × 10-513 

6; GQ ≤ 20; FS ≥ 200 (indels) ≥ 60 (SNVs); MQ ≤ 40; QUAL ≤ 30; read position rank sum score 514 

≤ −2; MQRS ≤ −8; DRAGEN variant status = PASS; the variant site achieved ten-fold coverage 515 

in ≤ 25% of gnomAD exomes, and if the variant was observed in gnomAD exomes, the variant 516 

achieved exome z-score ≤ −2.0 and exome MQ ≤ 30. We excluded 46 genes that we previously 517 

found associated with batch effects10. 518 

We defined the study-wide significance threshold as p<1×10-8. We have previously 519 

shown using an n-of-1 permutation approach and the empirical null synonymous model that this 520 

threshold corresponds to a false positive rate of 9 and 2, respectively, out of ∼346.5 million tests 521 

for binary traits in the setting of collapsing analysis PheWAS (Wang et al., 2021). 522 

  523 
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