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Abstract

Large reference datasets of protein-coding variation in human populations have allowed us to
determine which genes and genic sub-regions are intolerant to germline genetic variation. There
is also a growing number of genes implicated in severe Mendelian diseases that overlap with
genes implicated in cancer. Here, we hypothesized that mitotically mutable genic sub-regions
that are intolerant to germline variation are enriched for cancer-driving mutations. We introduce
a new metric, OncMTR, which uses 125,748 exomes in the gnomAD database to identify genic
sub-regions intolerant to germline variation but enriched for hematologic somatic variants. We

demonstrate that OncMTR can significantly predict driver mutations implicated in hematologic
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malignancies. Divergent OncMTR regions were enriched for cancer-relevant protein domains,

I
o

and overlaying OncMTR scores on protein structures identified functionally important protein
11  residues. Finally, we performed a rare variant, gene-based collapsing analysis on an
12  independent set of 394,694 exomes from the UK Biobank and find that OncMTR dramatically
13 improves genetic signals for hematologic malignancies. Our web app enables easy visualization
14 of OncMTR scores for each  protein-coding gene  (https://astrazeneca-cgr-
15  publications.github.io/OncMTR-Viewer/).
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Introduction

The availability of large-scale human genetic variation reference datasets has revolutionized our
ability to identify disease-causing mutations (Karczewski et al., 2020; Wang et al., 2021).
Through the effective process of natural selection, variants with severe clinical outcomes are
generally depleted in these datasets. We and others have leveraged this paradigm to develop
intolerance metrics that quantify the extent to which natural selection constrains germline
variation in genes and genic-sub regions (Dhindsa et al., 2020; Petrovski et al., 2013; Samocha
et al., 2014; Traynelis et al., 2017). These methods have proven invaluable in prioritizing which
of the roughly 20,000 protein-coding variants observed in any given individual are most likely to
contribute to disease. Interpreting variants in the context of cancer suffers from similar
challenges as interpreting germline variation: cancer cells often carry thousands of somatic
mutations, but only some of these drive the oncogenic process. Despite their success in
prioritizing germline variants, population genetics-based approaches have yet to be applied in
the context of distinguishing between somatic cancer driving mutations and neutral “passenger”
mutations.

Many developmental disorder-causing germline mutations occur in essential genic
subregions, leading to dysfunction of crucial cellular biology pathways. We postulated that if
these same mutations arise mitotically later in life, they will not cause the same developmental
disease due to more limited expression of the mutation but could have equally as profound
impacts on cellular biology. Consistent with this, there are several examples whereby identical
point mutations that cause severe developmental syndromes when mutated in the germline
cause cancer when mutated somatically (Hoischen et al., 2014; Petrovski et al., 2016), including
identical mutations in PTEN, ASXL1 (Hoischen et al., 2011), EZH2 (Gibson et al., 2012), and
others (Kaplanis et al., 2020). Many of these genes are involved in cell proliferation, chromatin
remodeling, genome maintenance, and signal transduction pathways. This convergence
highlights a subset of genes in the human genome that are crucial to cell biology, whereby
disruptive mutations can cause different clinical outcomes depending on their timing,
localization, and cellular context.

Here, we hypothesized that regions of genes that are under strong negative selection for
germline variation but are exceptionally mitotically mutable would be enriched for variants that
increase cancer risk. ldentifying germline-constrained but mitotically mutable genic subregions
could help prioritize cancer-driving mutations. Here, we focus on missense variants as they are
the most observed protein-coding variant class, are becoming increasingly clinically actionable

(Hyman et al., 2017), but importantly are also more difficult to interpret than protein-truncating
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annotated variants. We previously introduced the missense tolerance ratio (MTR), a sliding
window-based approach that detects genetic sub-regions depleted of missense variation
(Traynelis et al., 2017). In this study, we extended this method to produce a score (OncMTR) to
identify germline intolerant but mitotically mutable genic sub-regions by using exome data from
125,748 individuals in GnomAD (Karczewski et al., 2020). We demonstrate that OncMTR
effectively predicts driver mutations of hematologic malignancies. We also use 394,694 UK
Biobank exomes to illustrate the utility of OncMTR in prioritizing variants in genetic discovery for
cancer phenotypes. This work introduces a population genetics approach to identify genic

subregions enriched for cancer-related somatic missense mutations.

Results

Putative somatic variants in gnomAD

Population-level catalogues of human genetic variation allow for the investigation of selective
constraint and mutational patterns in the exome. We used the gnomAD database of 125,748
human exomes to survey both germline and somatic variants (Karczewski et al., 2020).
Although the gnomAD variant calling pipeline was tuned to detect germline variation, we
reasoned that we may also be able to identify somatic variants that reach a sufficiently high
variant allele frequency to be detected through their germline variant caller. Inherited
heterozygous germline variants are expected to have an allelic ratio close to 50%. We observed
that the distribution of median allelic balance (AB_median) values for gnomAD variants followed
a bimodal distribution, with one distribution centered around 50% and another, smaller
distribution centered around 20% (Fig. 1A).

Defining OncMTR

We previously introduced a sliding window-based metric, the missense tolerance ratio (MTR),
that measures purifying selection on missense variation in genic sub-regions (Traynelis et al.,
2017). This score demonstrably detects crucial functional domains of proteins that can cause
Mendelian disease when mutated in the germline. Motivated by the overlap between mutations
associated with Mendelian disease and cancer, we set out to create a cancer-relevant version
of MTR (methods) that captures regions that are depleted of germline variation but also
enriched for somatic variation. In this study, we defined another variation of the MTR score,
namely MTR%™"® |n its construction, MTR%®™" is restricted to only those variants achieving

an AB_median > 0.3. Taking the well-known cancer gene TP53 as an example, we can observe
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84  those genic subregions where the two MTR formulations diverged (Fig. 1B). We then define
85 OncMTR as the difference between these two MTR formulations for each codon and using a 31-
86 codon sliding window (Fig. 1B). Negative scores correspond to regions with the greatest
87  divergence between germline intolerance and somatic variant enrichment. Overlaying OncMTR
88  scores on the AlphaFold-predicted structure of TP53 (Jumper et al., 2021) illustrated that the
89  strongest negative scores correspond to the DNA-binding domain, which is the domain enriched

90 for mutations known to drive hematologic malignancies (Fig. 1C).
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92 Figure 1. Defining the OncMTR score. (A) Bi-modal distribution of median allelic
93 balance values for heterozygous variants in the gnomAD database. We defined putative
94 somatic variants as those with an AB median < 0.3 (dashed line). (B) The top figure
95 demonstrates the missense tolerance ratio (MTR) distribution of TP53 when considering
96 all missense variants (blue) and when restricted to only germline variants (i.e., AB
97 Median > 0.3, depicted in pink). We defined OncMTR as the difference between these
98 two distributions (bottom panel). (C) OncMTR scores overlaid on the AlphaFold structure
99 for TP53. The most intolerant region maps to the DNA-binding domain of the protein,
100 which is strongly enriched for mutations known to drive hematologic malignancies.
101
102

103  Using OncMTR to prioritize driver mutations in hematologic malignancies

104  Motivated by the positive proof-of-concept demonstrated for TP53, we next tested whether the
105  MTR and MTR®™" distributions differed across other oncogenes included in the Catalogue of
106  Somatic Mutations in Cancer (COSMIC) Cancer Gene Census (CGC). The CGC is divided into
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107  two tiers, with Tier 1 containing bona fide cancer genes (n=556) and Tier 2 containing genes
108 that have strong indications of playing a role in cancer but with less expansive evidence than
109  Tier 1 (n=137). The difference between MTR and MTR%®™" distributions per gene, calculated
110  via cross entropy, was significantly higher for Tier 1 genes than a random selection of 556 non-
111  CGC genes (p = 5.7x10"), the remainder of the exome (p = 2.8x10°®’), and Tier 2 genes (p =
112 1.1x107) (Fig. 2A). The cross entropy was also significantly larger for Tier 2 genes than the
113 remaining genes in the exome (p = 2.6x10™) (Fig. 2A). Together, these results support the
114  hypothesis that mitotically mutable genic sub-regions that are intolerant to germline variation are
115  broadly relevant to cancer.

116
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118 Figure 2. OncMTR regions are enriched for somatic variants associated with
119 hematologic malignancies. (A) Cross entropy between the distribution MTR and
120 MTR"® distributions for Catalogue of Somatic Mutations in Cancer (COSMIC) Cancer
121 Gene Census (CGC) genes, a random selection of genes, and the rest of the exome. (B)
122 Receiver operator curve (ROC) depicting the ability of random forest models based on
123 either the raw OncMTR score, the OncMTR transcript-level percentile scores (“Tx%”"),
124 and a joint model in discriminating between 1,166 leukemogenic variants and a random
125 size-matched set of variants. AUC = area under the curve. (C) Mean ROC AUCs (with
126 fivefold cross-validation) of random forest models based on raw OncMTR in predicting
127 variants involved in leukemia (same variant set as figure B) and hematologic driver
128 mutations annotated in IntoGen (Tamborero et al., 2018). The putatively neutral variant
129 sets comprise of random, size-matched selection of variants. (D) The OncMTR
130 distributions of driver mutations for hematologic malignancies versus solid tumors is
131 derived from the Cancer Genome Interpreter.

132

133

134  Distinguishing between cancer-causing driver mutations and neutral passenger mutations
135 remains a central challenge in cancer genomics. We thus tested whether OncMTR could help
136  prioritize somatic mutations that cause hematologic malignancies. We found that the OncMTR
137  scores of a previously defined list of 1,166 leukemogenic driver mutations (Bick et al., 2020)
138  (Supplementary Table 1) were significantly lower than a size-matched set of random variants
139  (Mann Whitney U p=2.97x10%°; Supplementary Fig. 1A). A random forest model using
140 OncMTR achieved an area under the receiving operator curve (AUC) of 0.74 in discriminating
141  between these leukemogenic variants and the random set (Fig. 2B). We also calculated
142  transcript-level percentiles for the MTR scores, in which lower percentiles corresponded to lower
143 OncMTR scores. The AUC or the OncMTR transcript percentiles was 0.76, and a combined
144  model that incorporated both the raw OncMTR scores and transcript percentiles achieved an
145  even higher AUC of 0.78 (Fig. 2B).

146 To further assess the capacity of OncMTR to prioritize driver mutations, we trained
147  random forest models with raw OncMTR scores using 5-fold cross-validation. The mean AUC
148  for predicting leukemogenic variants was 0.74 (Fig. 2C). We next compared the performance of
149  OncMTR in distinguishing between a set of random variants and 200 established driver
150 mutations implicated in acute lymphocytic leukemia (ALL), acute myeloid leukemia (AML),
151 chronic lymphocytic leukemia (CLL), diffuse large B-cell lymphoma (DLBCL), or multiple
152  myeloma (MM), achieving an AUC of 0.65 (Fig. 2C) and having significantly disparate OncMTR
153  distributions from each other (Mann Whitney U p=4.89x10°; Supplementary Fig. 1B and
154  Supplementary Table 2). Logistic regression-based classifiers achieved similar, albeit
155  marginally lower, AUCs than the random forest models (with AUCs of 0.73 and 0.62 for the two
156  variant sets, respectively), likely due to a small degree of non-linear distribution of OncMTR

157  scores (Supplementary Fig. 2). Altogether, these results demonstrate the utility of our
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158  population genetics-based approach in identifying genic sub-regions relevant to hematologic
159  malighancies.

160 Because the somatic mutations used to calculate OncMTR arose in the blood, we
161  expected that OncMTR would more reliably prioritize driver mutations in hematologic
162  malignancies than in solid tumors. As expected, the OncMTR scores of driver mutations
163  implicated in heme malignancies were significantly lower (Mann Whitney U p=2.53x10"; Fig.
164  2D). To determine whether OncMTR performs better for certain subtypes of heme malignancies,
165 we compared OncMTR distributions of putative driver and passenger mutations identified in a
166  recent comprehensive in silico saturation mutagenesis experiment (Muifios et al., 2021). This
167 dataset includes simulated variants across 3 genes for CLL, 9 genes for AML, 2 genes for non-
168  Hodgkin lymphoma, 5 genes for lymphoma, 6 genes for multiple myeloma, and 2 genes for ALL
169 (Supplementary Table 10). The OncMTR scores of predicted driver mutations were
170  significantly lower than those of passenger mutations for each cancer subtype, though we
171  observed the strongest separation in CLL (Wilcoxon p<2x107°°) and AML (Wilcoxon p=1.4x10
172 ') (Supplementary Fig. 3).

173 We next assessed whether OncMTR can successfully distinguish between ClinVar
174  pathogenic and benign somatic variants. Logistic regression classification between pathogenic
175 and benign or random variants across all protein-coding genes reached an AUC of 0.60 and
176  0.58, respectively (Supplementary Fig. 4; P=815 unique pathogenic vs B=58 unique benign
177  variants; a set R [random] of equal size to P was sampled to compile the random variants - see
178  also Methods). We next restricted the set of pathogenic somatic variants to those occurring in
179  genes associated with hematologic malignancies and compared to benign or random variants.
180 The AUC was 0.62 in distinguishing between pathogenic and benign variants in hematologic
181  malignancy genes (P=64 vs B=20) and 0.67 when comparing to benign variants across the
182  entire exome (P=64 vs B=58). The AUCs for pathogenic hematologic malignancy variants
183  versus random variants were 0.61 for random variants restricted to heme genes (P=64 vs R=64)
184 and 0.64 for random variants pulled from all protein-coding genes (P=815 vs R=815)
185  (Supplementary Fig. 4). These results provide support to this blood-based sequencing version
186 of OncMTR being more powerful in identifying pathogenic mutations implicated with heme
187  malignancies.

188 Finally, to further explore OncMTR’s power to agnostically detect putative oncogenic
189 regions, we scanned all protein-coding genes in ClinVar in search of transcripts that are
190 preferentially enriched for ClinVar pathogenic somatic variants in regions with OncMTR scores
191  at the bottom 20-percentile of the full OncMTR distribution (see Methods). We identified 101
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192  such transcripts from 24 unique genes (Fisher’s exact test p<0.05; Supplementary Table 11),
193  with several known cancer driver genes captured, such as TP53, IDH1, ALK and HNRNPA1
194  (Martinez-Jiménez et al., 2020). Many of the top ranked genes are implicated in hematologic
195  malignancies, including MYC, MSH2, and FBXW?7 (Supplementary Fig. 5) (Bhatia et al., 1993;
196  King et al., 2013; Whiteside et al., 2002).

197

198 Genes carrying mutations implicated in both human Mendelian disease and cancer

199  The underlying hypothesis in deriving OncMTR is that certain genic regions are critically
200 important to human biology, and thus germline mutations in these regions cause severe
201  Mendelian phenotypes, whereas identical somatic mutations—occurring later in life and localized
202  to specific tissue(s)—in these regions may have an oncogenic effect. To evaluate this, we plotted
203 OncMTR distributions for three genes implicated in both neurodevelopmental disease and
204  leukemia: GNB1, NRAS, and DNMT3A (Fig. 3 A-C and Supplementary Table 4).

205 Germline de novo mutations in GNB1 cause a severe developmental syndrome
206  characterized by intellectual disability (ID) and other variable features, including hypotonia,
207  seizures, and poor growth (Petrovski et al., 2016). Somatic mutations in this gene have been
208  associated with ALL, CLL, and myelodysplastic syndrome (Yoda et al., 2015). Three of the four
209 somatic driver mutations in this gene overlap with de novo mutations implicated in
210  developmental delay (p.Asp76Gly, p.lle80Thr, and p.lle80Asn) (Fig. 3A) (Petrovski et al., 2016).
211 All four mutated residues reside in a low OncMTR region (OncMTR < -0.05) of the gene, which
212 corresponds to the GB-protein surface that interacts with Ga subunits and downstream effectors
213 (Fig. 3A).

214 NRAS encodes a RAS protein with intrinsic GTPase activity that has been implicated in
215  multiple hematologic and solid malignancies (Oliveira et al., 2007). There are 28 somatic
216  missense variants in this gene at four distinct amino acid positions associated with juvenile
217  myelomonocytic leukemia and AML, and all residing in low OncMTR regions (Fig. 3B) (Bick et
218  al., 2020). Two of these mutations have also been reported as causal germline de novo
219  mutations for Noonan syndrome, a developmental delay syndrome that includes congenital
220 heart defects, short stature, and other features (p.Gly13Asp, p.Gly60Glu) (Fig. 3B) (Cirstea et
221 al., 2010; Matsuda et al., 2007).

222 DNMT3A encodes a DNA methyltransferase essential for DNA methylation during
223 human embryogenesis and, when mutated somatically, increases risk of acute myeloid
224 leukemia (Kosaki et al., 2017). In a large study on clonal hematopoiesis of indeterminate

225  potential (CHIP), DNMT3A was found to harbor the largest proportion of CHIP variants of all
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226  CHIP-associated genes (Jaiswal et al., 2017), suggesting it is highly mitotically mutable. In line
227  with this, the OncMTR distribution of this gene is highly enriched for negative values, even
228 compared to GNB1 and NRAS (Fig. 3C). The R882 amino acid residue of DNMT3A
229  corresponds to a DNA-binding residue that is a major somatic mutation hotspot in CHIP and
230 AML (Kosaki et al., 2017). De novo germline mutations at this residue are associated with an
231 overgrowth syndrome called Tatton-Brown-Rahman syndrome characterized by tall stature and
232 impaired intellectual development (Tatton-Brown et al., 2014). Mutations at the R882 residue
233 are thought to interfere with DNA binding, resulting in functional impairment of the protein and
234 aberrant DNA methylation patterns (Zhang et al., 2018). As expected, we identify that the
235  leukemogenic variants in this gene are enriched in low OncMTR regions (Fig. 3C). Altogether,
236  these results support the notion that some critically important genic sub-regions are
237  exceptionally mitotically mutable, and mutations in these regions result in different phenotypic

238  outcomes depending on timing and cellular context (Hoischen et al., 2011).
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Figure 3. OncMTR distributions for genes implicated in both cancer and Mendelian
disease. (A-C) OncMTR scores for GNB1 (A), NRAS (B), and DNMT3A (C) with
corresponding protein structures from PDB (for NRAS, PDB ID: 6zio) or predicted by
AlphaFold (Jumper et al., 2021). Points on the OncMTR plots and spheres on the protein
structures indicate pathogenic somatic mutations included in TopMED leukemogenic
variant set. Red points indicate variants with OncMTR < -0.05. Points with a pink outline
indicate somatic leukomogenic variants that are also known to cause developmental
delay (DD) when mutated de novo in the germline. De novo mutations were aggregated
from the Online Mendelian Inheritance of Man database.

Enrichment of low OncMTR scores in protein domains
One strength of the sliding window approach implemented in OncMTR is that its estimates are

independent of biological boundaries, such as annotated protein domains, which are not always
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254  well-annotated. However, it is known that cancer-causing missense mutations tend to cluster in
255  certain functional domains. We thus tested whether Pfam domains and domain superfamilies
256  were enriched for low OncMTR regions (defined as OncMTR < -0.05). Across human protein-
257 coding genes, low OncMTR regions were significantly enriched for several protein domains
258  previously implicated in cancer, such as homeodomains (Fisher's exact adjusted p-
259  value=4.9x10*), protein kinase domains (Fishers exact adjusted p-value=5.25x10"'%), RING
260 domains (Fishers exact adjusted p-value=3.22x10*), and others (Figure 4 A,B and
261  Supplementary Tables 5,6). Furthermore, we found that proteins that had functional domains
262  enriched for low OncMTR scores are significantly enriched in genes with TOPMed
263  leukemogenic variants and known cancer hotspots (Chang et al., 2018) (Figure 4C and
264  Supplementary Tables 1-3;7-9). Among these two lists of genes, zinc finger motifs were found
265 to be the most strongly enriched for low OncMTR scores (Figures 4D-F; most significant
266  adjusted p-value=2.3x10 from the union list, based on Fisher's exact test), in line with their
267  well-established role in cancer development (Cassandri et al., 2017). Remarkably, although the
268 calculation of OncMTR is agnostic to domain annotations, it independently identifies cancer-

269  relevant functional genic sub-regions.

270
A Most enriched Pfam domains B Most entiched CLAN domains & Enrichment of low OncMTR regions
{p-ad] < 0.05) (p—afl] <0.05) for protein domains
#instances winstanges
0 200 40 300 o 2000 4000 B Errichid geries
V-set | -G RRM —5—
Homeodomain {00 -8 RING ——
Collagen = HTH - TopMED leukemogenic p=2.5x10"(n=48)
RRM_1 e Iy *
Pkinase - e | Ank - Cancer hotspots p=A4.1x10"" (n = 225)
Ank_2 0 ] TPR &
EGF i 0] PKinase & Union p=1.1x10"(n=273)
wD40 {1 & | LRR f T T
KRAB {1 I DNA-binding 70 9 03 !
#m 1 PH
16 15 20 25 12 14 16 18
Odds ratio (@) Qdds ratio (@)
D | i E F i " .
TopMED leukemogenic variants Cancer hotspots Union of cancer-specific variants
#instances #instances #instances
. g 2 W & 8 9 5 10 15 20 0 0 20 30
.g% ,_ Prok-RING 44 ] —e—— eaa ] —e—— 2C2H2
E E‘% 2RHCSHCZH, T |—e— #cal | —e— RRM_1 ——
;;, 35 aeied I | HEAT ] —o—— wD40
5 §§ cam{ @] seT{ - GTF2I
E, E% ZTAZ{ & wD40 —5— SET
XL wos T8 ] FHiD
EZ® RRMIS® ] siz{ & | 5H2
T Ras @ | Ras @] Ras
5 sue i S I — pinase
5010 15 20 28 25 5 75 10 125 i & & 3
QOdds ratio (@) Odds ratio (@) Odds ratio (®)

271


https://doi.org/10.1101/2022.01.07.475416
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.07.475416; this version posted January 9, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

272 Figure 4. Overlap between OncMTR regions and protein domains. (A) Pfam protein
273 domains most strongly enriched with low OncMTR regions (OncMTR < -0.05). (B) Pfam
274 domain clans most strongly enriched with low OncMTR regions. The DNA-binding
275 superfamily set was defined in a prior publication (Bahrami et al., 2015). (C) Proportions
276 of genes enriched with low OncMTR scores in annotated protein domains in various
277 cancer-related gene sets: genes carrying TopMED leukemogenic variants, annotated
278 cancer hotspots, as well as the union of these three lists. (D-F) The most abundant Pfam
279 domains enriched with low OncMTR regions in proteins encoded by the labeled sets of
280 cancer genes. Error bars in each panel represent 95% confidence intervals. P-values
281 were calculated with Fisher’s exact test and adjusted via Bonferroni correction.

282

283 Informing rare-variant collapsing analysis with OncMTR

284  With increasing adoption of next generation sequencing to generate case-control cohorts, rare
285  variant collapsing analysis has emerged as a powerful approach to detect disease-associated
286  genes for both rare and complex disorders. In this approach, the proportion of cases with a
287  qualifying variant is compared to the proportion of controls with a qualifying variant in the same
288  gene. We have previously shown that incorporating an MTR filter in defining QVs dramatically
289 improves rare variant collapsing analyses (Wang et al., 2021). In that phenome-wide
290 association study (PheWAS) on approximately 300,000 exomes in the UK Biobank, the
291  collapsing analyses detected seven genes associated with hematologic malignancies (Wang et
292  al., 2021). Here, we sought to test whether OncMTR would further improve collapsing analysis
293  signals for hematologic malignancy associations by performing a collapsing analysis on 394,694
294  European exomes contained in the UK Biobank focused on 1,394 chapter IX (neoplasm)
295  phenotypes. We defined a total of eight collapsing models with and without OncMTR filters
296  (Supplementary Table 12). Imposing an OncMTR filter of -0.05 (i.e., only considering missense
297  QVs that fall below this threshold) significantly increased the effect sizes of gene-phenotype
298  associations (p < 0.0001) for each model (Fig. 5A). We observed genome-wide significant
299  (p<1x10®) associations between several heme malignancies and DNMT3A, FBXW?7, IDH2,
300 IGLL5, JAK2, SF3B1, SRSF2, TETZ2, and TP53, in certain cases the effect sizes were 10-fold
301 greater than without adopting the OncMTR filter (Fig. 5B). We also found that the association
302 between TP53 and CLL only reached significance in models including our OncMTR filter; for
303 example, in the ‘raredmg’ model, this association had a p-value of 1.2x10” (odds ratio [OR] =
304 8.8; 95% confidence interval [CI]: 4.8-16.0), whereas in the ‘raredmgoncmtr’ model, the same
305 association reached a p-value of 3.4x10™ (OR = 33.2; 95%Cl: 16.1-68.7). Thus, applying the
306 OncMTR filter effectively reduces background variation in the setting of gene-level collapsing
307 analysis for haematological malignancy phenotypes and we advise future large-scale
308 haematological malignancy discovery studies to consider adopting OncMTR filter for improved

309 signal detection.
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311 Figure 5. Collapsing analyses using OncMTR. (A) Effect sizes of gene-phenotype
312 associations derived from a gene-level collapsing analysis performed on neoplasm
313 phenotypes in 394,694 UK Biobank exomes. Collapsing models are defined in
314 Supplemental Table 12. (B) Changes in odds ratios observed for selected gene-
315 phenotype associations. MDS = myelodysplastic syndrome; AML = acute myeloid
316 leukemia; CLL = chronic lymphocytic leukemia.
317
318

319 Discussion

320 Determining the clinical relevance of missense variants in oncogenes remains a central
321 challenge in cancer genetics (Chang et al., 2018; Hyman et al., 2017). Motivated by the
322  observation that missense variants in certain genic sub-regions can cause severe Mendelian
323  disease when mutated in the germline and cancer when mutated somatically, we introduced a
324  population genetics-based framework called OncMTR to quantitate the divergence between
325 germline constraint and somatic mutability across the human exome.

326 First, we demonstrated that oncogenes are enriched for these critically important regions
327 that do not tolerate germline missense variants but harbor somatic mutations. We then
328 llustrated that OncMTR can effectively distinguish between leukemogenic driver mutations and
329  passenger mutations. Although OncMTR is calculated using a sliding window without any input
330 of domain annotations, we found that genic sub-regions that have low OncMTR scores are
331  significantly enriched for protein domains known to be relevant to cancer. lllustrative of our
332  hypothesis was the observation that identical point mutations implicated in both severe
333 Mendelian disease and leukemia in the genes GNB1, NRAS, and DNMT3A occur in low

334  OncMTR regions. Finally, we found that incorporating OncMTR in a gene-level collapsing
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335 analysis on hematologic malignancy phenotypes using 394,694 UKB exomes improved the
336 signal-to-noise ratio for detecting hematologic malignancy associations. We have also
337 developed web server for visualization of OncMTR scores for each human protein-coding gene:

338 https://astrazeneca-cgr-publications.github.io/OncMTR-Viewer/.

339 Our findings have important implications for the disease biology of both severe
340 Mendelian disorders and cancer. The convergence of genes and genic sub-regions between
341 these two disease areas suggest that similar biological processes play a fundamental role in
342  these two groups of phenotypes. Indeed, cellular proliferation, chromatin remodeling, cell
343  migration, and other cancer-relevant processes have been implicated in neurodevelopmental
344  diseases (De Rubeis et al., 2014; Dhindsa et al., 2021; Feng et al., 2019; Kaplanis et al., 2020).
345  Furthermore, our work supports the notion that mutations in these genes have different
346  phenotypic manifestations based on timing (i.e., zygote versus adulthood), localization
347  (systemic versus hematological), and cellular context.

348 There exist many other approaches that aim to predict which genic sub-regions are
349 relevant to cancer. These methods tend to look for nonrandom clustering patterns of somatic
350 mutations in either the linear protein sequence or three-dimensional space (Porta-Pardo et al.,
351 2017). To the best of our knowledge, none of these approaches integrate population-level
352  inferences of genic constraint. OncMTR could improve the predictive performance of other,
353  orthogonal driver mutation prediction approaches, as a recent in silico saturation mutagenesis
354  experiment demonstrated the strength of incorporating multiple lines of evidence in prioritizing
355  driver mutations (Muifios et al., 2021).

356 One limitation of ONcMTR in its current formulation is that it does not reflect the broader
357 range of solid tumor malignancies since it is based on somatic mutations observed in blood-
358 based sequencing. In future work, the general framework introduced in this study could be
359 applied to sufficiently large tumor-normal sequence datasets as those numbers increase.
360  Furthermore, we used gnomAD because it represents the largest collection of publicly available
361 aggregated allele frequency data. However, gnomAD variants were all called using a germline
362  variant caller. While we demonstrated that we could detect somatic variants in this database, we
363  were likely limited to those that reached a sufficiently high variant allele frequency to be
364 detected. Use of somatic variant callers adopted on these large-scale datasets could further
365  improve the sensitivity of OncMTR.

366
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367
368 Methods

369 Reconstructing the Missense Tolerance Ratio with 125K samples from gnomAD

370  We first reconstruct the Missense Tolerance Ratio (MTR) using a cohort of 125,748 exomes
371  from the gnomAD consortium (v2, GRCh38 liftover). The formula for deriving the window-based
372  MTR scores has been introduced in the original paper (Traynelis et al., 2017):

373

missense (0bs)

missense (obs) + synonymous (obs)
missense (exp)

missense (exp) + synonymous (exp)

MTR =

374

375  where the numerator represents the observed proportion of missense variants among the total
376  observed protein-coding variation. The numerator is then scaled by the same proportion
377  computed from the collection of all possible protein-coding variants in the corresponding protein-
378 coding window. A window size of 31 codons has been employed for calculating MTR based on
379  the gnomAD cohort, in agreement with the previously published score (Traynelis et al., 2017).
380

381 The expected proportion of missense variants in a given protein-coding window was calculated
382 by annotating all possible variants of a protein-coding transcript with SnpEff 4.3t using
383 GRCh38.92 as the reference annotation and assuming all events were equally likely to occur.
384  Annotation with SnpEff focused on single nucleotide variants (SNVs) that were flagged as PASS
385 variants in the original gnomAD release (v2). Variants annotated as ‘missense_variant’ or
386  ‘missense_variant&splice_region_variant’ by SnpEff represent the set of ‘missense’ variants in
387 the MTR formula. Variants annotated as 'synonymous_variant', 'stop_retained_variant',
388 'splice_region_variant&stop_retained_variant' or ‘splice_region_variant&synonymous_variant'
389 by SnpEff were considered as the ‘synonymous’ variants in the same formula.

390

391 OncMTR score construction

392  Using MTR as our basis, we construct the OncMTR score (i.e. Oncology MTR score) to capture
393  protein-coding subregions that are depleted of germline missense variants but observe somatic
394 mutations. We observe that the total distribution of AB_MEDIAN values across all gnomAD
395 variants (Fig. 1A) is bimodal, with the main peak centered close to 0.5 and a second one
396 emerging for values approximately around 0.2. The AB_MEDIAN metric represents the allelic

397 ratio between the alleles for each variant, with values close to 0.5 reflecting an equal number of
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398 copies being inherited from each parent in heterozygous settings, while truly biological variants
399 that approach zero increasingly reflect variants that more likely arose somatically.

400

401  We leverage this observation to construct an alternative version of the original MTR score:
402  excluding any putative somatic variants and employing only germline variants from the gnomAD
403  dataset. We achieve that by selecting only variants with AB_MEDIAN > 0.3, constructing the
404  MTR®™" yersion of the score. OncMTR is then defined as the difference of the original MTR
405  score from the MTR®™" version:

406 OncMTR = MTRgermline — MTR

407 Negative OncMTR values (i.e. MTR®™"™ < MTR) represent regions that are depleted of
408 germline variants and are instead enriched for somatic variation, thus allowing to highlight
409  putative oncogenic subregions in protein coding genes.

410

411  Compilation of variant sets

412 We used a pre-compiled set of variants known to be drivers of haematologic malignancies in a
413  total of 160 genes (Jaiswal et al., 2014). This list was generated from recurrent haematologic
414  somatic mutations in the literature and COSMIC, excluding genes with a relatively high
415  proportion of loss-of-function germline mutations. A second, smaller pre-compiled list, focused
416  on genes which were recurrent drivers specifically for myeloid malignancies (Bick et al., 2020).
417 A third validation set included a list of annotated driver mutations provided through the IntoGen
418 database (Tamborero et al., 2018). We restricted this set to “Tier 1” (highest confidence) driver
419 mutations observed in hematologic malignancies, which included ALL, AML, CLL, DLBC, and
420 MM.

421

422  Classification of oncogenic variant sets with OncMTR

423  We have performed classification of different oncogenic variant sets (TOPMed leukemogenic
424  and Intogen drivers) against random variant sets of equal size. We employ two supervised
425 models for the binary classification task: Logistic Regression with ‘max_iter'=1000 and a
426  Random Forest classifier with ‘max_depth’=2, to avoid overfitting on the training set. Each
427  classification was performed as a 5-fold cross-validation task and the mean Area Under Curve
428  (AUC) from all folds is reported to reflect the total average performance of each learning task.
429  The implementations of Logistic Regression and Random Forest were derived from the sklearn
430  Python package (v0.22.1).

431
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432  We also estimated the optimal OncMTR cut point for each classification by calculating the
433  Youden’s index from each learning task. The average Youden index from all classification tasks
434  performed with Logistic Regression was Y. g = -0.0409 (standard deviation: 0.00126) while for
435 Random Forest it was Ygr = -0.0614 (standard deviation: 0.00057). The mean of the two
436  averages of Youden indexes is -0.05115 or -0.05, after rounding it up to one decimal point for
437  simplicity. We thus consider OncMTR values below -0.05 to have the most distinctive power.
438

439 Identifying OncMTR regions significantly enriched for ClinVar somatic variants

440  For this analysis, we use all ClinVar somatic variants (ORIGIN=2) from the GRCh38 release
441  (last accessed on 9 June 2019), focusing on those annotated as missense or synonymous. We
442  consider as pathogenic variants those annotated as “Pathogenic” or “Likely_pathogenic” and as
443  benign those annotated as “Benign” or “Likely_benign” (based on ClinVar). Classification
444  between pathogenic and benign (or random) variant sets was performed with a logistic
445  regression classifier with 5-fold cross validation (sklearn, Python package v0.22.1). When
446  restricting the classification to heme-implicated genes, we derived those gene sets based on the
447  Intogen annotation (Supplementary Table 10).

448

449 In order to identify genes/transcripts across the exome that are preferentially enriched for
450  ClinVar somatic pathogenic variants in regions with low OncMTR scores we employ Fisher’s
451  exact test. Specifically, we scan across each transcript and identify what percentage of the
452  codons in each transcript achieve an OncMTR score at the bottom 20-percentile of the full
453  OncMTR distribution (across the entire transcript). Then, we check whether known pathogenic
454  or likely pathogenic ClinVar missense variants preferentially land in these codons (i.e.
455  corresponding to low OncMTR scores) compared to the rest of the transcript. We apply a
456  Fisher's exact test (FET) to evaluate the enrichment of each set of regions, i.e., those with low
457  OncMTR scores vs the rest of the transcript. Eventually, we rank each transcript based on the
458  odds ratio and significance of the FET enrichments (Supplementary Table 11).

459

460  Enrichment of low OncMTR scores in protein domains

461  To describe the functional context of OncMTR, we calculated enrichment of constrained regions
462  in protein domain families. Residues within each canonical transcript (as defined by UniProtKB)
463  were divided into two classes based on their corresponding OncMTR scores: below -0.05
464  (constrained; as defined by Youden's index) and greater or equal -0.05 (relaxed). Domain and

465 clan annotations for the human proteome were taken from the Pfam 34.0 database. DNA-
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466  binding domains were pulled from a previous compendium (Bahrami et al., 2015). The final set
467  of the canonical human proteome consisted of 18,313 annotated proteins. Enrichments of the
468  constrained regions in protein domains were tested with the Fisher's exact test followed by
469  Bonferroni correction, and significance level of adjusted p-value of 0.05.

470

471 UK Biobank Collapsing analysis

472  Collapsing analyses were performed using the 394,694 exomes available in the UK Biobank
473  (UKB) cohort (Bycroft et al., 2018). The UKB is a prospective study of approximately 500,000
474  participants aged 40-69 years at time of recruitment. Participants were recruited in the UK
475  between 2006 and 2010 and are continuously followed. The average age at recruitment for
476  sequenced individuals was 56.5 years and 54% of the sequenced cohort is of female genetic
477  sex. Participant data include health records that are periodically updated by the UKB, self-
478  reported survey information, linkage to death and cancer registries, collection of urine and blood
479  biomarkers, imaging data, accelerometer data and various other phenotypic end points. All
480  study participants provided informed consent and the UK Biobank has approval from the North-
481  West Multi-centre Research Ethics Committee (MREC; 11/NW/0382).

482 We performed a gene-based collapsing analysis on 1,394 chapter IX (neoplasm)
483  phenotypes adopting our previously described approach (Wang et al., 2021). We implemented a
484  total of eight dominant collapsing models with and without OncMTR filters (Supplementary
485  Table 12). Using SnpEff (Cingolani et al., 2012), we defined PTVs as variants annotated as
486  exon_loss_variant, frameshift_variant, start_lost, stop_gained, stop_lost,
487  splice_acceptor_variant,  splice_donor_variant,  gene_fusion, bidirectional_gene_fusion,
488 rare_amino_acid_variant, and transcript_ablation. We defined missense as:
489  missense_variant_splice_region_variant, and missense_variant. Non-Synonymous variants
490 included: exon_loss variant, frameshift_variant, start lost, stop_gained, stop_lost,
491  splice_acceptor_variant,  splice_donor_variant,  gene_fusion,  bidirectional_gene_fusion,
492  rare_amino_acid_variant, transcript_ablation, conservative_inframe_deletion,
493  conservative_inframe_insertion,  disruptive_inframe_insertion,  disruptive_inframe_deletion,
494  missense_variant_splice_region_variant, missense_variant, and protein_altering_variant. We
495 derived allele frequencies from gnomAD (Karczewski et al., 2020). The raredmg,
496 raredmg_OncMTR, flexdmg, and flexdmg_oncMTR models incorporated a REVEL cutoff of
497 REVEL >= 0.5 to restrict to putatively damaging missense variants (loannidis et al., 2016).

498 To compute p-values, the carriers of at least one qualifying variant (QV) in a gene were

499  compared to the non-carriers. The difference in the proportion of cases and controls carrying
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500 QVs in a gene was tested using a Fisher's exact two-sided test. we applied the following quality
501 control filters: minimum coverage 10X; annotation in CCDS transcripts (release 22;
502  approximately 34 Mb); at most 80% alternate reads in homozygous genotypes; percent of
503 alternate reads in heterozygous variants < 0.25 and = 0.8; binomial test of alternate allele
504  proportion departure from 50% in heterozygous state P < 1 x 10®%; GQ < 20; FS = 200 (indels) =
505 60 (SNVs); MQ = 40; QUAL < 30; read position rank sum score < -2; MQRS = -8; DRAGEN
506 variant status = PASS; the variant site achieved ten-fold coverage in < 25% of gnomAD
507 exomes, and if the variant was observed in gnomAD exomes, the variant achieved exome z-
508 score < —-2.0 and exome MQ = 30. We excluded 46 genes that we previously found associated
509  with batch effects (Wang et al., 2021).

510 For all models, we applied the following quality control filters: minimum coverage 10X;
511  annotation in CCDS transcripts (release 22; approximately 34 Mb); at most 80% alternate reads
512  in homozygous genotypes; percent of alternate reads in heterozygous variants < 0.25 and = 0.8;
513  binomial test of alternate allele proportion departure from 50% in heterozygous state P < 1 x 10-
514 6; GQ < 20; FS = 200 (indels) = 60 (SNVs); MQ < 40; QUAL < 30; read position rank sum score
515 < -2; MQRS < -8; DRAGEN variant status = PASS; the variant site achieved ten-fold coverage
516 in < 25% of gnomAD exomes, and if the variant was observed in gnomAD exomes, the variant
517 achieved exome z-score < -2.0 and exome MQ < 30. We excluded 46 genes that we previously
518 found associated with batch effects10.

519 We defined the study-wide significance threshold as p<1x10®. We have previously
520  shown using an n-of-1 permutation approach and the empirical null synonymous model that this
521  threshold corresponds to a false positive rate of 9 and 2, respectively, out of ~346.5 million tests
522  for binary traits in the setting of collapsing analysis PheWAS (Wang et al., 2021).

523
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