

1 **Molecular convergence by differential domain acquisition is a hallmark of**
2 **chromosomal passenger complex evolution**

3 Shinichiro Komaki^{1,*}, Eelco C. Tromer², Geert De Jaeger^{3,4}, Nancy De Winne^{3,4}, Maren Heese⁵, and
4 Arp Schnittger^{5,*}

5 ¹ Nara Institute of Science and Technology, 630-0192 Nara, Japan

6 ² University of Groningen, Faculty of Science and Engineering, Groningen Biomolecular Sciences and
7 Biotechnology Institute, Nijenborgh 4, 9747 AG Groningen, The Netherlands

8 ³ Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium

9 ⁴ VIB Center for Plant Systems Biology, 9052 Ghent, Belgium

10 ⁵ University of Hamburg, Institute for Plant Sciences and Microbiology, Department of Developmental Biology,
11 Ohnhorststr. 18, 22609 Hamburg, Germany

12 *Correspondence can be addressed to Shinichiro Komaki and Arp Schnittger

13 **Email:** shini-komaki@bs.naist.jp, arp.schnittger@uni-hamburg.de

14 **ORCID IDs:** 0000-0002-1189-288X (S.K.); 0000-0003-3540-7727 (E.T.); 0000-0002-1070-9107
15 (M.H.); 0000-0002-8398-5479 (T.H.); 0000-0001-7067-0091 (A.S.).

16 **Author Contributions:**

17 S.K., E.T., M.H., and A.S. designed the research; S.K., and N.D.W. performed the experiments; E.T.
18 and M.H. performed the phylogenetic analyses; S.K., E.T., M.H., G.D.J., N.D.W., and A.S. analyzed
19 and discussed the data; S.K., G.D.J., and A.S. provided material and reagents; S.K., E.T., M.H., and
20 A.S. wrote the article; S.K., E.T., M.H., G.D.J., N.D.W., and A.S. revised and approved the article.

21 **Competing Interest Statement:** None of the authors has competing interests.

22 **Classification:** Cell biology

23 **Keywords:** Cell division, centromere, CPC, Survivin, convergent evolution

24 **This PDF file includes:** Main Text + Figures 1 to 8

25 **Abstract**

26 The chromosomal passenger complex (CPC) is a heterotetrameric regulator of eukaryotic cell
27 division, consisting of an Aurora-type kinase and a scaffold built of INCENP, Borealin and Survivin.
28 While most CPC components are conserved across eukaryotes, orthologs of the chromatin reader
29 Survivin have previously only been found in animals and fungi, raising the question of how its essential
30 role is carried out in other eukaryotes. By characterizing proteins that bind to the *Arabidopsis* Borealin
31 ortholog, we identified BOREALIN RELATED INTERACTOR 1 and 2 (BORI1 and BORI2) as
32 redundant Survivin-like proteins in the context of the CPC in plants. Loss of BORI function is lethal
33 and a reduced expression of *BORIs* causes severe developmental defects. Similar to Survivin, we
34 find that the BORIs bind to phosphorylated histone H3, relevant for correct CPC association with
35 chromatin. However, this interaction is not mediated by a BIR domain as in previously recognized
36 Survivin orthologs, but by an FHA domain, a widely conserved phosphate-binding module. We
37 propose that the unifying criterion of Survivin-type proteins is a helix that facilitates complex formation
38 with the other two scaffold components, and that the addition of a phosphate-binding domain,
39 necessary for concentration at the inner centromere, evolved in parallel in different eukaryotic groups.
40 Using sensitive similarity searches, we indeed find conservation of this helical domain between
41 animals and plants, and identify the missing CPC component in most eukaryotic supergroups.
42 Interestingly, we also detect Survivin orthologs without a defined phosphate-binding domain, possibly
43 reflecting the situation in the last eukaryotic common ancestor.

44 **Significance Statement**

45 The identification of two *SURVIVIN*-type genes in the model plant *Arabidopsis* unfolded the
46 evolutionary trajectories of this central chromosomal passenger complex component and led to the
47 identification of *SURVIVIN* orthologs in almost the entire eukaryotic kingdom. Our work indicates that
48 the central most aspect of the *SURVIVIN* gene family is a helix to make contact with two other core
49 chromosomal passenger complex members whereas the addition of a phosphate-binding domain
50 shown to bind to chromatin in animals and plants evolved in parallel at least 3 times in different
51 eukaryotic branches.

52 **Main Text**

53 **Introduction**

54 Proper chromosome segregation and cytokinesis are essential for every organism to accurately
55 transmit its genomic information to its progeny. For both processes, a precise regulation of the
56 microtubule cytoskeleton is of key importance in plants and other eukaryotes (1). First, the microtubule
57 fibers of the spindle have to be attached to chromosomes so that they will be equally distributed during
58 cell division. The attachment is accomplished and monitored by a conserved large multi-protein
59 structure called the kinetochore, which assembles at the centromeres of chromosomes (2, 3). Second,
60 microtubules need to be precisely arranged to accomplish cytokinesis following chromosome
61 segregation. In animals, microtubules mark the future site of division and facilitate the reorganization
62 of actin and myosin at the cleavage furrow while in plants, microtubules form the scaffold of a cell wall
63 generating structure at the plane of division, the phragmoplast (4).

64 A key regulator of microtubule organization is the multi-member Aurora kinase family that expanded
65 through multiple independent parallel duplications in different eukaryotic clades (5). Aurora activity is
66 linked to a protein assembly called chromosomal passenger complex (CPC) at both the centromeres
67 and at the site of cytokinesis. The CPC is best studied in animals and yeast where besides at least
68 one of the Aurora paralogs, it consists of three additional proteins: INCENP, Borealin, and Survivin.
69 The C-terminus of INCENP contains a conserved motif, called IN-box, that directly binds to Aurora,
70 while the N-terminus of INCENP forms a three-helical bundle with the C-termini of the other two CPC
71 components Borealin and Survivin (6).

72 The localization of the CPC is highly dynamic during cell division and determines its function (6, 7).
73 Before anaphase onset, the CPC localizes to the inner centromere where it monitors inter-kinetochore
74 tension and prevents chromosome missegregation. During anaphase, the complex moves to the
75 spindle midzone to promote cytokinesis (Fig. 1A). Multiple mechanisms have been shown to impinge
76 on the correct localization of the CPC during mitosis. For instance, Borealin has been shown to confer
77 a general affinity for nucleosomes required for chromosome association (8), but the CPC's enrichment
78 at centromeres in metaphase is dependent on at least two additional interconnected pathways (9).
79 On the one hand, Borealin has been shown to interact with Shugoshin, which in turn is able to bind
80 the centromere-associated histone mark H2AT120^{ph} deposited by the spindle checkpoint kinase
81 Bub1. On the other hand Survivin binds via its Baculovirus IAP Repeat (BIR) domain to
82 phosphorylated threonine 3 in the tail of histone H3 (H3T3^{ph}) that becomes phosphorylated by the
83 kinase Haspin (10–12). In addition, a recent study showed that Survivin is also able to bind Shugoshin
84 at its N-terminus which resembles the phosphorylated H3-tail (13). Since both interactions involve the
85 same site of Survivin's BIR domain they are considered mutually exclusive which is in accordance
86 with the model of two spatially distinct CPC pools: a Bub1-dependent kinetochore-proximal
87 centromere pool, involving interactions of Survivin and Borealin with Shugoshin and a Haspin-

88 dependent inner centromere pool entailing the H3T3^{ph} Survivin contact (14–16). The translocation of
89 the CPC to the spindle midzone is then mediated by MKLP2, a member of the kinesin-6 family, which
90 directly binds to the three-helical bundle of the CPC (17). However, this interaction only occurs during
91 anaphase when a Cdk1-mediated inhibitory phosphorylation is removed from INCENP (18).

92 Comparative genomics and molecular analyses have revealed that *Arabidopsis*, and likely all other
93 plants, are also equipped with a CPC similar to those found in animal and fungal model systems,
94 which contains AUR3, one of three Aurora kinase paralogs in plants, INCENP, and a plant ortholog
95 of Borealin, called BOREALIN RELATED (BORR) (2, 19–21). Loss of CPC function leads to
96 gametophytic and sporophytic (embryonic) lethality in *Arabidopsis* underlining its key role in cell
97 proliferation across the eukaryotic tree of life (19, 21). As seen in other eukaryotes, the plant CPC
98 dynamically changes its subcellular localization throughout the cell cycle. It localizes to inner
99 centromeres and prevents chromosome missegregation in early mitosis, and after anaphase onset it
100 relocates to the center of the phragmoplast (21). Additionally, it was shown that plant Haspin
101 phosphorylates histone H3 tails at threonine 3, and that this activity is needed to recruit AUR3 to the
102 inner centromere (22–24). However, an ortholog of the H3T3^{ph}-reader Survivin, needed for
103 concentration of the CPC at the inner centromere, has not been identified in plants, nor any other
104 eukaryotic lineages outside animals and fungi (20) (Fig. 1B).

105 Notably, in animals, next to its role in the CPC, Survivin also controls programmed cell death as a
106 member of the inhibitor of apoptosis (IAP) protein family which is characterized by the presence of
107 one to several BIR domains (25, 26). However, neither the IAP protein family, nor a bona fide BIR
108 domain can be found in plants (27–29). Moreover, plants do not undergo apoptosis but display
109 different mechanisms of programmed cell death instead (27–29).

110 In this study, we isolate BOREALIN-RELATED INTERACTOR 1 and 2 (BORI1 and 2) from
111 *Arabidopsis*, and provide molecular and biochemical evidence that both proteins act as redundant
112 plant analogs of Survivin with respect to its function in the CPC. Notably, instead of a BIR domain,
113 BORIs contain an FHA domain to bind to phosphorylated histones. Furthermore, we reveal through
114 extensive comparative genomics analyses that Survivin and BORI are indeed orthologs, and that the
115 Survivin gene family is widely conserved amongst eukaryotes. The key characteristics of this
116 Survivin/BORI gene family can be delineated to two functional domains with likely different
117 evolutionary history: (I) a structurally conserved helix to make contact with the other subunits of the

118 CPC, and (II) one domain characterized by convergent molecular evolution to mediate the interaction
119 with H3T3^{ph} at the inner centromere.

120 **Results**

121 **Identification of Borealin-interacting proteins in plants**

122 Previously, we identified and functionally characterized a plant homolog of Borealin, called
123 BOREALIN RELATED (BORR). BORR acts together with INCENP, also known as WYRD in
124 *Arabidopsis thaliana* (19), as the scaffold of the presumed equivalent of the Chromosomal Passenger
125 Complex (CPC) in plants (21). However, an ortholog of Survivin, the third essential scaffolding subunit
126 of the CPC, could so far not be detected outside animals and fungi (Fig. 1B), raising multiple different
127 hypotheses on the absence of Survivin in plants and other eukaryotic lineages including: (I) lack of
128 bioinformatic method sensitivity to detect Survivin orthologs, (II) existence of novel CPC subunits co-
129 opting the function of Survivin, similar to CPC2 in the eukaryotic lineage Kinetoplastida (30), (III)
130 coverage of its function by either BORR or WYRD (2, 20, 21), and (IV) lack of the necessity of Survivin
131 function for the CPC in plants, i.e. Survivin representing an evolutionary novelty specific to animals
132 and fungi (Fig. 1B).

133 To identify putative CPC-associated components in plants, we performed tandem affinity purification
134 (TAP) followed by mass spectrometry (MS) using an *Arabidopsis* cell suspension culture expressing
135 BORR with a CGSrhino tag at its C-terminus (31). The experiment was performed in duplicate and in
136 both cases only one protein, At3g02400, passed all thresholds of the TAP evaluation pipeline and
137 was subsequently named BOREALIN RELATED INTERACTOR 1 (BORI1). In addition, the known
138 BORR interactor INCENP/WYRD was found in both experiments although each time only with one
139 peptide, i.e., below the two-peptide cut-off of the standard evaluation pipeline (SI Appendix, Dataset
140 S1).

141 At3g02400 was previously described as FORKHEAD-ASSOCIATED DOMAIN PROTEIN 3 (FHA3)
142 and found to bind *in vitro* to a promoter fragment of PEROXIN 11b (PEX11b), which encodes a
143 peroxisome protein. It was also reported to be nuclear-localized and its overexpression resulted in
144 reduced peroxisome number (32). Notably, the genome of *Arabidopsis* contains one close homolog
145 to BORI1, At4g14490, which we named BORI2. Both BORI1 and 2 are characterized by an N-terminal
146 FHA domain and a helical domain at the C-terminus (Fig. 1C-D). The forkhead-associated (FHA)
147 domain is a small protein module shown to recognize different phospho-epitopes on proteins, with a
148 preference for phosphothreonine. It has been identified in both prokaryotes and eukaryotes in a
149 diverse range of proteins such as kinases, phosphatases, RNA- and DNA-binding proteins as well as
150 metabolic enzymes (33–36). To get hints on the putative function of the BORIs, we performed a
151 phylogenetic analysis of the FHA domain of BORI1 and 2 (see Material and Methods). We found that
152 BORI1 and 2 originated by a duplication in the common ancestor of Brassicaceae (Fig. 1D), and that
153 additional BORI orthologs can only be found in Archaeplastida amongst both Chlorophyta (green

154 algae) and Streptophyta (land plants), but not Rhodophyta (red algae). BORI orthologs are specifically
155 characterized by the presence of a conserved C-terminal helix (Fig. 1D). Using the presence of this
156 domain, we could separate BORI orthologs from its closest paralogous FHA domain, found in the
157 PP2C phosphatase KAPP (kinase associated protein phosphatase (37)), which resulted from a
158 duplication in the common ancestor of Viridiplantae (composed of Chlorophyta and Streptophyta).
159 KAPP interacts with various receptor kinases, and regulates local phosphorylation status of such
160 receptors at the plasma membrane (38, 39). The closest outgroup to KAPP/BORI FHA domains
161 contains deltaproteobacterial proteins, suggesting a potential lateral transfer of FHA proteins from
162 these prokaryotic lineages to the ancestor of Viridiplantae. The function of these prokaryotic homologs
163 however, is unclear.

164 To further test and validate the interaction of both BORIs with BORR, we generated plants producing
165 GFP fusion proteins of BORI1 and 2 ($PRO_{BORI1}:BORI1:GFP$, $PRO_{BORI2}:BORI2:GFP$, see below), and
166 crossed them with plants expressing $PRO_{BORR}:BORR:RFP$. As a control, we combined the previously
167 generated $PRO_{BORR}:BORR:RFP$ plants with plants producing GFP alone ($PRO_{35S}:GFP$) (21, 40). After
168 immunoprecipitation with GFP-Trap beads using protein extracts from seedlings, we detected
169 complex formation between BORR:RFP and BORI1:GFP as well as BORR:RFP and BORI2:GFP but
170 not between BORR:RFP and GFP alone (Fig. 2A).

171 To test for direct interaction and to subsequently map the interaction domains between BORR and
172 the BORIs, we performed yeast two-hybrid assays. Deletion analyses revealed that the conserved C-
173 terminal helix of the BORIs is necessary for the contact with BORR (Fig. 2B). Since this domain
174 configuration is reminiscent of Survivin, which also interacts with Borealin via its C-terminal helix in
175 the context of the three helical bundle formed with INCENP (6), we speculated that the BORIs might
176 be bona fide homologs of Survivin in plants by virtue of their C-terminal domains.

177 **The FHA domain of BORIs specifically binds phosphorylated histone H3 threonine 3**

178 In case of functional conservation, we hypothesized that BORI, like Survivin, should be able to bind
179 to phosphorylated H3T3 presumably via its N-terminal FHA domain. To test this, we first performed
180 co-IP assays using protein extracts of transgenic *Arabidopsis* seedlings expressing
181 $PRO_{BORI1}:BORI1:GFP$ or $PRO_{BORI2}:BORI2:GFP$. Wild-type and $PRO_{35S}:GFP$ -expressing plants were
182 used as negative controls. After immunoprecipitation with GFP-Trap beads, we successfully detected
183 Histone H3 in BORI1:GFP and BORI2:GFP samples but not in the wild-type and GFP-alone samples
184 (Fig. 3A). Next, we performed histone H3 peptide-binding assays to address whether BORIs can
185 interact with phosphorylated histone H3 tails. Synthesized histone-H3 tails with or without a phosphate
186 group at amino acid T3 and/or T11 were conjugated with biotin and incubated with the GST-fused
187 FHA domain of BORI1 or BORI2. Bound proteins were retrieved using streptavidin-coupled magnetic
188 beads and detected by western blotting. As shown in Figure 3B, both FHA domains weakly bound to
189 non-phosphorylated H3 peptides. Notably, the affinities to H3 peptides were strongly enhanced by

190 H3T3^{ph} but not H3T11^{ph}, indicating that the FHA domain of BORIs can specifically recognize the
191 phosphorylation status of histone H3 at threonine 3.

192 According to different structures of FHA domains bound to phosphopeptides, arginine residues in the
193 loops between the β -sheets of the FHA domain are often involved in direct contact with the phosphate
194 residue of the phosphopeptide, including those found in the FHA domain of KAPP (41–44). Using
195 the AlphaFold2 3D predicted structures of BORI1 and 2 (SI Appendix, Dataset S2), we identified three
196 arginine residues present in loops that are potentially facing the phosphorylated histone H3 (Fig. 1C–
197 D). We substituted all three arginine residues in these loops with alanine (Fig. 1C) with the aim to
198 disturb H3T3^{ph} binding. When tested *in vitro*, both mutated FHA domains (R3A mutants) indeed
199 showed drastically reduced H3T3^{ph}-binding affinities (Fig. 3B).

200 **BORIs are required for proper chromosome segregation and cell division**

201 For a functional analysis, we isolated a T-DNA insertion mutant of *BORI1* (*bori1-1*) that did not express
202 full-length *BORI1* transcript (SI Appendix, Fig. S1A–C). Since T-DNA insertion mutants for *BORI2*
203 were not available, we generated a mutant by CRISPR/Cas9. The resulting *bori2-1* allele has an 8-
204 bp deletion that creates a premature stop codon (SI Appendix, Fig. S1A). Since both single mutants
205 showed no obvious mutant phenotypes, we combined *bori1* with *bori2* to overcome a possible
206 functional redundancy. No difference in growth and fertility in comparison to the wildtype were
207 detected in mutants which are homozygous for one and heterozygous for the other *bori* mutant allele
208 (SI Appendix, Fig. S2A–C). However, double homozygous mutants could not be recovered among
209 more than 380 seedlings in the progeny of *bori1^{+/−} bori2^{−/−}* and *bori1^{−/−} bori2^{+/−}* plants. Consistently, we
210 observed aborted seeds and undeveloped ovules in siliques of *bori1^{+/−} bori2^{−/−}* and *bori1^{−/−} bori2^{+/−}* (Fig.
211 4A and B).

212 To confirm that the lethal phenotype was due to the mutated *BORI* genes, we carried out
213 complementation tests using the two *BORI* genomic fragments, each fused with GFP
214 (*PRO_{BORI1}:BORI1:GFP* and *PRO_{BORI2}:BORI2:GFP*, see above). Either construct could fully
215 complement the lethal phenotype of the double homozygous mutants, indicating that *BORI* function
216 is essential in plants, similarly to the previously analyzed other two components of the CPC (SI
217 Appendix, Fig. S2A–C) (19, 21).

218 Since we observed more than 25% aborted and/or undeveloped seeds as well as more than 25%
219 seeds with an abnormal embryo or no embryo (Fig. 4B and D), we performed a reciprocal cross
220 between *bori1^{+/−} bori2^{−/−}* and wild-type plants to examine the transmission efficiency of the *bori1* allele
221 as a proxy for developmental defects of the mutant gametophytes. When we used *bori1^{+/−} bori2^{−/−}* as
222 the male plant, the transmission efficiency was 94.2% (*n* = 200). Conversely, when we used *bori1^{+/−} bori2^{−/−}* as
223 the female plant, the transmission efficiency was reduced to 38.9% (*n* = 200), suggesting
224 that BORIs have an important role in the function and/or development of the female gametophyte.

225 However, when analyzing the mature siliques, we rarely observed unfertilized ovules, indicating that
226 this reduction of the transmission efficiency manifested only after fertilization during embryo
227 development (Fig. 4A and B). Consistently, when *bori1^{+/−} bori2^{−/−}* was used as the female parent and
228 pollinated with wild-type pollen, we frequently found abnormal embryo development (Fig. 4C and D).

229 To study the *BORI* function after embryogenesis, we constructed an artificial microRNA against
230 *BORI2* (*amiBORI2*), and transformed it into *bori1^{−/−}* mutants. Most of the transformants (15 of 18)
231 exhibited a dwarf phenotype. We selected two transformants that showed approximately 34% and
232 66% reduction of *BORI2* transcript levels for further analysis (*amiBORI2#1^{bori1}* and *amiBORI2#2^{bori1}*)
233 (*SI Appendix*, Fig. S1D). Both mutants exhibited a dose-dependent reduction in leaf area and curling
234 of leaves (*SI Appendix*, Fig. S2A). As observed in *BORR* knockdown mutants, the reduction of *BORI*
235 transcript levels also resulted in plants displaying the so-called *bonsai* phenotype with compact
236 inflorescences at flowering stage (*SI Appendix*, Fig. S2B and C). To further test whether compromised
237 CPC function gives rise to a *bonsai* phenotype, we also generated plants expressing a microRNA
238 against *AUR3* (*SI Appendix*, Fig. S1E). Indeed, *AUR3* knockdown plants revealed the same
239 phenotype as *amiBORR* and *amiBORI* mutant plants (*SI Appendix*, Fig. S2A-C).

240 The growth of primary roots was also compromised by the knockdown of *BORI2* in *bori1* mutants (Fig.
241 5A and B). We observed that many cells died in the root meristems of both *amiBORI2#1^{bori1}* and
242 *amiBORI2#2^{bori1}* plants (Fig. 5C and D). In addition, both mutants produced small root meristems with
243 aberrant cell division (Fig. 5C, E and F). We have previously shown that impaired CPC activity in
244 plants causes chromosome segregation defects, for instance lagging chromosomes in anaphase,
245 consistent with compromised CPC activity in animals and yeast (21). To monitor possible mitotic
246 defects, we crossed the *amiBORI2#1^{bori1}* and *amiBORI2#2^{bori1}* mutants with a previously generated
247 transgenic line expressing both a microtubule (*RFP:TUA5*) and a centromere (*GFP:CENH3*) marker
248 (40). Analysis of the resulting plants revealed that both *amiBORI2#1^{bori1}* and *amiBORI2#2^{bori1}* mutants
249 also have lagging chromosomes and the frequency of these segregation defects increased with the
250 level of *BORI* transcript reduction (Fig. 5G and H). Thus, loss of *BORI* function results in aneuploidy
251 and likely in the further course of development, secondary developmental defects and cell death. This
252 finding also could explain the severe embryonic versus rather mild gametophytic defects described
253 above since aneuploidy arisen during gametophyte development might cause embryo abortion only
254 after a few divisions of the zygote.

255 To address whether the *BORI* loss-of-function phenotype was due to mislocalization of *AUR3*, we
256 investigated the *AUR3* accumulation at centromeres and phragmoplast by introducing a
257 *PRO_{AUR3}:AUR3:GFP* reporter (21) into *amiBORI2^{bori1}* plants. Indeed, abundance of *AUR3* at
258 centromeres and phragmoplast was drastically reduced in both *amiBORI2#1^{bori1}* and *amiBORI2#2^{bori1}*
259 mutants, indicating that *BORI*s are required for proper localization of the CPC complex (Fig. 5I-L).

260 **BORIs are needed for proper targeting of the CPC to chromatin *in vivo***

261 Transient expression of the *BORI1* cDNA fused to the ORF of GFP under the control of the constitutive
262 *Cauliflower mosaic virus promoter* 35S was previously found to result in homogeneous accumulation
263 of the fusion protein in the nucleoplasm of mature tobacco leaves (32). To investigate the detailed
264 subcellular localization of BORIs during cell proliferation, we combined each of our genomic
265 *BORI1:GFP* reporters with a *RFP:TUA5* marker line, and analyzed their co-expression pattern in
266 Arabidopsis root tips. *BORI1:GFP* and *BORI2:GFP* showed the same localization pattern throughout
267 the cell cycle (Fig. 6A, *SI Appendix*, Fig. S3A, and Movie S1 and 2) and thus, will be described in the
268 following as *BORI1:GFP*. In interphase, *BORI1:GFP* localized to the nucleoplasm and accumulated in
269 nuclear foci. Co-localization analyses with *RFP:CENH3* revealed that these foci are centromeres.
270 Since *CENH3* marks the kinetochore-proximal centromeres, we further concluded that *BORI1:GFP*
271 resides at inner centromeres similar to the other CPC components (*SI Appendix*, Fig. S3C) (21).

272 In mitotic cells, the *BORI1:GFP* signal rapidly concentrated at the centromeres starting just after nuclear
273 envelope breakdown until metaphase. After anaphase onset, *BORI1:GFP* changed its localization from
274 centromeres to the center of phragmoplasts, and, after completion of cell division, *BORI1:GFP* re-
275 accumulated in the nucleus. The localization pattern of *BORI1:GFP* completely overlapped with that
276 of *BORR:RFP* throughout the cell cycle (Fig. 6B and Movie S3).

277 To understand the spatial regulation of *BORI* during the cell cycle, we generated a *BORI1:GFP*
278 reporter driven by its own promoter but without the *BORR*-interacting helix at the C-terminus of the
279 protein (amino acid 1-293, called *PRO_{BORI1}:BORI1_N:GFP* in the following) *BORI1_N:GFP*
280 accumulated at centromeres from prophase to metaphase similar to the full length *BORI1* fusion with
281 GFP. However, *BORI1_N:GFP* signals were only detected on chromosomes and not at the
282 phragmoplast in late anaphase (Fig. 6C and Movie S4). These results indicate that the interaction of
283 BORIs with *BORR* is necessary for the targeting of BORIs to phragmoplasts but not to centromeres.

284 In other organisms, Survivin concentration at inner centromeres relies on the phosphorylation of
285 histone H3 at threonine 3 (H3T3^{ph}) catalyzed by Haspin. To check whether the H3T3^{ph} mark is also
286 required for proper *BORI* localization to centromeres, *BORI1:GFP* expressing plants were treated with
287 5-Iodotubercidin (5-ITu), a commonly used Haspin inhibitor (23, 45). Although we could still detect
288 *BORI1:GFP* at centromeres after treatment, the GFP signal in metaphase was much more diffuse (*SI*
289 *Appendix*, Fig. S3D). Notably, we could reproduce the same localization defect by introducing the
290 R3A substitution into *BORI1:GFP* (*BORI^{R3A}:GFP*) that reduces the binding affinity to H3T3^{ph} (see
291 above) (Fig. 6D, *SI Appendix*, Fig. S3B, and Movie S5 and 6). To analyze the localization of
292 *BORI^{R3A}:GFP* in detail, we created transgenic plants that expressed a Histone H3 marker (Histone
293 H3:RFP) together with *BORI1:GFP* or *BORI^{R3A}:GFP*. Whereas *BORI1:GFP* only colocalized with Histone
294 H3:RFP at the inner region of the centromere, *BORI^{R3A}:GFP* localized to the entire Histone H3:RFP-

295 marked region (Fig. 6E and F). These results demonstrate that the binding of BORIs to H3T3^{ph}, similar
296 to Survivin in animals and yeast, is crucial for their accumulation at the inner centromere.

297 To address the functional relevance of the precisely targeted centromere localization of BORIs, we
298 expressed the *BORI1^{R3A}:GFP* construct in *bori1 bori2* double homozygous mutants. While the
299 *BORI1^{R3A}:GFP* construct could complement the lethal phenotype of the double homozygous mutants,
300 the resulting plants exhibited a wide range of developmental defects (Fig. 7A and B and *SI Appendix*,
301 Fig. S2D-F). Foremost, these plants displayed severe growth defects and, as observed in *BORI*
302 knockdown plants, the *BORI1^{R3A}:GFP* expressing plants also contained many dying cells in their root
303 meristems possibly caused by aneuploidy (Fig. 7C and D). Indeed, we observed chromosomal
304 variations in *BORI1^{R3A}:GFP*-expressing root cells that contained between 8 and 11 chromosomes in
305 contrast to the invariable 10 chromosomes found in the wildtype (Fig. 7E and F, and Movie S7-9).
306 These results demonstrate that proper centromere localization of BORIs, which is mediated by their
307 recognition of H3T3^{ph}, is required for genome stability.

308 **The defining feature of the Survivin/BORI gene family is a coiled-coil forming helix**

309 Since we found that the BORIs behave analogous to Survivin in animals and fungi with respect to
310 their function in the CPC, and that both Survivin and BORIs harbor a C-terminal conserved helix, we
311 wondered whether these helices would show significant sequence similarity indicating a common
312 evolutionary history. We therefore constructed Hidden Markov Models (HMMs), using the *Arabidopsis*
313 BORI C-terminal helices as a template. Following iterative searches in large eukaryotic sequence
314 databases using our trained HMM, we identified bona fide animal and fungal Survivin homologs, while
315 known unrelated helices were never picked up under the filtering conditions used (for criteria see
316 Material and Methods). This strategy also worked in a reciprocal fashion, i.e., when iterative similarity
317 searches were initiated with the helix of animal Survivin homologs, we were able to identify plant BORI
318 homologs. Such reciprocal similarity connections strongly suggested that Survivin and BORI are bona
319 fide orthologs, belong to the same gene family, and that the BIR/FHA domains should be considered
320 accessory domains. Excitingly, using our helix-specific HMM-based strategy, we could identify
321 Survivin/BORI orthologs in all eukaryotic supergroups in which no Survivin-like protein was previously
322 found (Fig. 8A-B), as earlier searches concentrated on the more distinct BIR domain of animal and
323 fungal Survivins (20). We detected orthologs with four different domain topologies in different
324 eukaryotic clades (Fig. 8A-D): (I) Fungi and Metazoa display the known Survivin structure of 1 or 2 N-
325 terminal BIR domains and a C-terminal helix, (II) Viridiplantae harbor an N-terminal FHA domain and
326 a C-terminal helix, (III) Stramenopila and Haptista have a reversed topology with an FHA domain at
327 the C-terminus following the conserved helix, (IV) finally, Amoebozoa, Rhodophyta, Discoba,
328 Cryptista and Metamonada contain relatively short homologs, which only comprise the helix but no
329 additional recognisable domains, as the phosphate-binding FHA or BIR domains. To determine the
330 evolutionary history of the FHA domain of BORI-like orthologs found in Stramenopila and Haptista,

relative to those found in Viridiplantae BORIs, we performed a phylogenetic analysis (see Material and Methods). We found that both FHA sub-types present amongst BORI-like orthologs are closely related to different FHA domains found in Deltaproteobacteria (Fig. 8C). Such phylogenetic relationships indicate an ancient lateral transfer of prokaryotic FHA domains to at least two ancient eukaryotic ancestral lineages, suggesting a distinct, but ancient prokaryotic evolutionary origin for the FHA domain found in BORI-like orthologs of Viridiplantae as well as Stramenopila and Haptista. Our phylogenetic analyses and sensitive sequence searches point to an evolutionary scenario for the Survivin/BORI gene family in which the ancestral version present in the last eukaryotic common ancestor (LECA) only consisted of a helix contributing to the triple helix structure of the CPC scaffold. The acquisition of a phosphate-binding domain occurred independently in at least three different clades resulting in molecular convergence between Survivin in Fungi and Metazoa (+N-terminal BIR), BORI-like orthologs in Viridiplantae (+N-terminal FHA), and Stramenopila and Haptista (+C-terminal FHA) with respect to their capacity to bind phosphorylated H3T3 (Fig. 8D).

Discussion

A dynamic subcellular localization of the CPC is crucial for its functions in the control of chromosome segregation and cytokinesis. To fulfill these tasks, INCENP, Borealin, and Survivin form a scaffold that guides the catalytic subunit Aurora kinase to its proper locations (Fig. 8). In animals and yeast, one of the scaffolding proteins, Survivin, has two indispensable functions for the CPC. First, Survivin interacts with the other scaffold proteins through its C-terminal alpha helix by engaging in a three-helical bundle, tying these three proteins together. Second, it recognizes the phosphorylation status of Histone H3 tail at threonine 3, a function provided by the BIR domain of Survivin in animals and yeast. However, no BIR-domain containing proteins exist in the plant lineage and only a distantly related BLD-domain has been described in putative IAP paralogs, one of which is involved in DNA demethylation (27, 46). Therefore, Survivins, as part of the CPC, were speculated to be non-existent in plants (47).

Here, we have identified BORI1 and 2, two novel BORR-interacting proteins, that execute the Survivin function in the CPC of *Arabidopsis* in a redundant fashion. The BORIs belong to a Viridiplantae-specific protein family with members of variable size that consists of an N-terminal FHA domain and a conserved C-terminal helix with a propensity to form a coiled-coil (triple helix) structure. We demonstrate that the FHA domain of BORIs act as a H3T3^{ph} reader at inner centromeres, a function fulfilled by the BIR domain in animals and yeast. Although both domains are capable of binding H3T3^{ph}, they are structurally very different. The FHA domain consists of a sandwich of β -sheets while the BIR domain displays three short alpha-helices and is stabilized by a zinc molecule, tetrahedrally coordinated by one histidine and three cysteine residues. Thus, there is no evidence of a common evolutionary history of the two domains. In contrast, the C-terminus of the BORIs, which we showed

366 here to interact with BORR, has residual sequence similarity with the helical domain of Survivin in
367 animals and yeast as found by reciprocal HMM searches indicating a common ancestor.

368 Interestingly, the HMM searches based on the conserved helix also led to the discovery of
369 Survivin/BORI-type proteins in additional phylogenetic groups which either display the helix as the
370 only defined structure in a relatively short protein or the helix plus an FHA-domain at the C-terminal
371 end of the protein (Fig. 8). Based on this, we propose an evolutionary scenario in which the LECA
372 possessed a helix-only version of Survivin to tether the three structural components of the CPC
373 together. Then, in a process of convergent evolution different H3T3^{ph}-binding domains were recruited
374 in the different branches of the eukaryotic domain, likely to optimize and focus CPC localization at the
375 inner centromere. Since several mechanisms contribute to the defined centromere localization of the
376 CPC during mitosis in animals, it is possible that these were added in a stepwise manner. It would be
377 plausible, for example, that binding of the ancestral CPC to centromeres was originally mediated by
378 Borealin interacting with nucleosomes in general and centromere-localized Shugoshin in particular,
379 and that binding to H3T3^{ph} was only added later to optimize the localization or enhance the
380 concentration of the CPC. Consistently, when we disturbed H3T3^{ph} binding by point-mutations in the
381 FHA domain, BORI localization to chromosomes was weaker and not confined to the centromere
382 region in comparison to the non-mutated version, but not completely lost. Notably, the mutant
383 phenotype of *bori1 bori2* double mutants expressing the *BORI1^{R3A}:GFP* construct is also less severe
384 than for a null mutant in any of the CPC components and rather resembled the effect of expressing a
385 BORI-RNAi construct. However, although H3T3^{ph} binding by Survivin-type proteins is not the only
386 pathway for centromere localization, the fact that we observe convergent molecular evolution in
387 animals and plants, and possibly also in Stramenopila and Haptista, where an FHA domain has been
388 added at the C-terminus, suggests that binding to H3T3^{ph} is a very efficient way to concentrate the
389 CPC at the centromeres.

390 Given that not all Survivin candidates identified by the HMM searches display a distinct phosphate-
391 binding domain, it will be interesting to see whether these putative orthologs are still part of the CPC
392 in their respective lineages and whether H3T3^{ph} binding is still somehow mediated by these helix-only
393 Survivin/BORI candidates or taken over by another CPC component. Alternatively, CPC concentration
394 at centromeres in these cases might only be dependent on Borealin and Shugoshin, or yet an
395 unidentified pathway. Noteworthily, studies of *Dictyostelium* INCENP and Aurora kinase, for example,
396 indicate a mitotic CPC localization to centromeres resembling the pattern found in animals and plants
397 (48, 49). Yet, the detailed distribution within the centromeric region is unclear. While a Haspin homolog
398 has been identified in *Dictyostelium* (50), a CPC-Haspin interdependency in this lineage is not clear
399 yet. Thus, it will be interesting to follow up the function of the helix-only variant of Survivin present in
400 this species.

401 Another question is raised by the observation that we were still not able to identify the Survivin/BORI-
402 type scaffolding component of the CPC for some clades while other components are present (e.g.,
403 Alveolata and Rhizaria in Fig. 8). Is the CPC assembled differently in these cases or did we miss
404 proteins with a low homology in our HMM searches? Interestingly, in kinetoplastids where only Aurora
405 and INCENP (TbCPC1) can be identified by homology searches, a structurally unrelated protein,
406 TbCPC2, has been identified as a new component of the CPC (30, 51). In addition, in the brown alga
407 *Ectocarpus siliculosus*, we find a fusion of the Borealin N-terminus with an FHA domain similar to
408 those found in BORI orthologs of associated lineages (Fig. 8A). These changes in CPC composition
409 suggest that a triple helix, as the basis for the CPC scaffold, is not an absolute requirement and
410 alternative conformations may exist.

411 Albeit centromere concentration of the CPC in mitosis seems to be a general requirement in
412 eukaryotes, the molecular machinery to achieve this displays some plasticity. In this respect, it will be
413 interesting to evaluate the relevance of the Borealin – Shugoshin – H2AT120ph pathway for recruiting
414 the CPC to the centromeres in plants. Notably, *bub1* mutants as well as *sgo1 sgo2* double mutants in
415 *Arabidopsis* are viable and do not show any significant growth defects (40, 52). Furthermore,
416 *Arabidopsis* BORIs without a BORR interaction domain still strongly accumulate at centromeres,
417 indicating a prominent role for H3T3^{ph} in recruiting BORIs to centromeres in mitosis while localization
418 of the CPC to the phragmoplast at anaphase is lost. In other organisms, the CPC relocation at
419 anaphase is presumably dependent on the mitotic kinesin MKLP2, a member of the kinesin-6 family
420 (18, 53). Recent study indicates that MKLP2 directly binds to the scaffold proteins of the CPC, and
421 transports the CPC along microtubules to midzone (17). In plants, several kinesins, e.g., NACK1/2,
422 POK1/2, and AtPAKRP1/1L, have been found to accumulate in the midzone of the phragmoplast (54,
423 55), possibly contributing to CPC relocation.

424 The acquisition of the phosphate binding BIR domain in animal Survivin likely linked this CPC scaffold
425 protein to an additional, unrelated function. BIR domains were first identified through sequence
426 similarity among the Inhibitors of Apoptosis (IAP) proteins that counteract spontaneous apoptotic
427 programmed cell death (PCD) by interfering with caspase activities. Indeed, most of the BIR-
428 containing proteins, including Survivin, play an inhibitory role in the caspase-dependent apoptotic
429 pathway. Consistent with an absence of apoptosis in plants (28), early members of the plant lineage
430 have acquired a different phospho-binding domain, the FHA domain, to achieve H3T3^{ph} binding.
431 Curiously, an additional unrelated function has also been described for one of the *Arabidopsis* BORIs,
432 i.e., BORI1, but in this case as a transcriptional repressor of *PEX11b* regulating peroxisome fission
433 (32). DNA binding was suggested to occur via two copies of an AT-hook module, a DNA binding
434 domain that targets AT-rich DNA sequences. Notably, this AT-hook module is only present in the
435 central domain of BORI1 but in BORI2 indicating that it is not required for CPC function.

436 Taken together, our characterization of BORIs in *Arabidopsis* led to a redefinition of the minimal
437 architectural requirement for Survivin-type proteins in the context of the CPC, allowing for the
438 identification of putative orthologs in most eukaryotic clades. The here-described case of molecular
439 convergence by differential domain recruitment indicates that we need to broaden our search
440 algorithms in the hunt for orthologs to incorporate such possibilities, and to be more mindful of short
441 helices/motifs as the basis for defining a gene family. Our analyses furthermore illustrate a new
442 example for the contribution of *delta*proteobacterial genes to the origin of eukaryotic pathways, lateral
443 gene transfers that have gained increasing interest in recent work (56, 57). Finally, our findings
444 indicate flexibility in the molecular solutions for concentrating the CPC at centromeres in
445 (pro)metaphase found amongst different eukaryotic lineages. These patterns of flexibility and
446 recurrent changes are reminiscent of the rapid molecular evolution often observed for kinetochore
447 and centromere-proximal proteins (20), which are well explained by the paradoxical evolutionary arms
448 race between centromeric DNA and its direct interacting proteins caused by asymmetric meiosis in
449 most eukaryotes, also known as the centromere drive hypothesis (58). Recent work on the
450 mechanisms of centromere drive in mice indeed points towards a delicate balance between regulation
451 of the kinetochore superstructure and the (peri)centromeric chromatin environment, to which Aurora
452 kinase activity has broad regulatory input (59, 60). The patterns of recurrent evolution of the
453 Survivin/BORI gene family facilitating the differential recruitment of the CPC to chromatin that we find
454 in our study might thus hallmark evolutionary events that fuel the ongoing war between overzealous
455 centromeres and kinetochores in ancestral eukaryotic lineages.

456 Materials and Methods

457 Plant Materials and Growth Conditions

458 The *Arabidopsis* (*Arabidopsis thaliana*) accession Columbia (Col-0) was used as the wildtype in this
459 study. All mutants are in the Col-0 background. Plants were grown on a solid medium containing half
460 strength Murashige and Skoog salts (MS), 1% (w/v) sucrose, and 1.5% (w/v) agar in a growth
461 chamber at 22°C (16 h of light/8 h of dark). The T-DNA insertion line SALK_095831 (*bori1-1*) was
462 obtained from the Nottingham *Arabidopsis* Stock Center. The *bori2-1* line was generated by
463 CRISPR/CAS9. Primer pairs for genotyping are described in *SI Appendix*, Table S1 and *SI Appendix*,
464 Fig. S1A-C.

465 Tandem Affinity Purification (TAP)

466 Cloning of the transgene encoding a C-terminal GSrhino tag fusion under control of the constitutive
467 cauliflower tobacco mosaic virus 35S promoter and transformation of *Arabidopsis* cell suspension
468 cultures (PSB-D) was carried out as previously described (31, 61). TAP experiments were performed
469 with 100 mg of total protein extract as input as described in Van Leene et al., 2015. Bound proteins
470 were digested on-bead after a final wash with 500 µL 50 mM NH4HCO3 (pH 8.0). Beads were
471 incubated with 1 µg Trypsin/Lys-C in 50 µL 50 mM NH4OH and incubated at 37°C for 4 h in a

472 thermomixer at 800 rpm. Next, the digest was separated from the beads, an extra 0.5 µg Trypsin/Lys-
473 C was added and the digest was further incubated overnight at 37°C. Finally, the digest was
474 centrifuged at 20800 rcf in an Eppendorf centrifuge for 5 min, the supernatant was transferred to a
475 new 1.5 mL Eppendorf tube, and the peptides were dried in a Speedvac and stored at -20°C until LC-
476 MS/MS analysis. For details on LC-MS/MS and data analysis see *SI Appendix*, Dataset S1.

477 **Plasmid construction**

478 To create *BORI*:*GFP* constructs, the genomic fragment of *BORI*1 or *BORI*2 gene was amplified by
479 PCR and cloned into *pDONR221*. A *Smal* site was inserted in front of the stop codon of each
480 construct. Both constructs were linearized by *Smal* digestion and ligated to the monomeric *GFP*
481 (*mGFP*) gene, followed by LR recombination reactions with the destination vector *pGWB501*. To
482 create *BORI_N*:*GFP* constructs, the C-terminal region of each gene was removed from *BORI*:*GFP*
483 constructs by inverse PCR. To create *BORI*^{R3A}:*GFP* constructs, corresponding point mutations were
484 introduced in the *BORI*:*GFP* constructs by inverse PCR. To create the CRISPR/CAS9 construct
485 against *BORI*2 gene, the *BORI*2 gene-specific spacer sequence was cloned into the *pEn-Chimera*,
486 followed by LR recombination reaction with the destination vector *pDe-CAS9*. To create the amiRNA
487 construct against the *BORI*2 gene, 75-bp gene-specific sequences of the *BORI*2 gene were
488 synthesized and cloned into *pENTR-AtMIR390a-B/c*, followed by LR recombination reactions with the
489 destination vector *pGWB602*. All constructs were transformed into *Arabidopsis* plants using the floral
490 dip method. Primer pairs for plasmid construction are described in *SI Appendix*, Table S1.

491 **Production of recombinant *BORI* proteins**

492 The attR1-attR2 Gateway cassette was amplified by PCR and cloned into *pGEX6p-1*, designated
493 *pGEX6p-GW*. *BORI*1 and 2 cDNAs were amplified from 10-day-old seedling RNA and cloned into
494 *pDONR221* followed by LR recombination reactions with the destination vector *pGEX6p-GW*, and
495 expressed in the *Escherichia coli* strain BL21 (DE3) by induction with 0.1 mM IPTG at 16°C for 16 h.
496 Recombinant proteins were purified by affinity chromatography using Glutathione Sepharose 4B
497 (cytiva) and stored at -80°C.

498 **Peptide-binding assay**

499 H3¹⁻²¹ and H3^{1-21T3ph} peptides were purchased from AnaSpec, Inc. (Fremont, USA). H3^{1-21T11ph} and
500 H3^{1-21T3T11ph} peptides were synthesized using SCRUM Inc. (Tokyo, Japan). All peptides were
501 biotinylated at the C-terminus. For the peptide-binding assays, 40 pmol protein was incubated with
502 500 pmol peptide in 200 µl binding buffer (50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 0.1% NP-40) with
503 0.25% (w/v) BSA at 4°C for 3 h. Streptavidin coated magnetic beads (Dynabeads M-280, Thermo
504 Fisher Scientific) were pre-equilibrated in binding buffer with 0.25% (w/v) BSA. 30 µl beads were
505 added per assay and incubated at 4°C for 1 h. Beads were washed three times with binding buffer
506 and proteins were eluted by boiling in SDS loading buffer. Protein samples were analyzed by SDS-

507 PAGE followed by Western Blotting using 1:2000 diluted anti-GST (Proteintech Group, Inc.) and
508 1:10000 diluted anti-rabbit IgG, HRP-linked secondary antibody (cytiva).

509 **Yeast two-hybrid assay**

510 Yeast two-hybrid assays were performed as described in (40). Full length *BORI*1 cDNA and the C-
511 terminus of *BORI*2 cDNA were amplified by PCR using gene-specific primers from cDNA made from
512 total RNA of wild-type *Arabidopsis* plants, followed by PCR with universal *attB* primers and cloned
513 into *pDONR221*. The truncated *BORI*1 constructs were created by inverse PCR. The subcloned cDNA
514 fragments were recombined into the destination vector *pGBT9 (DNA-BD)* by LR reaction. Primer pairs
515 for plasmid construction are described in *SI Appendix*, Table S1.

516 **Embryo observation**

517 Ovules at 4 days after pollination were dissected from siliques and cleared with Herr's solution: Lactic
518 acid: chloral hydrate: phenol: clove oil: xylene (2:2:2:2:1, w/w), and observed by OLYMPUS BX52
519 microscopy with differential interference contrast optics.

520 **Confocal microscopy**

521 For live cell imaging, root tips of 5-day-old seedlings were used. Sample preparation and imaging
522 were performed as described (40).

523 **Protein extraction and coimmunoprecipitation assay from *Arabidopsis* seedlings**

524 Coimmunoprecipitation assays were performed as previously described (21). Protein samples were
525 detected with 1:1000 diluted anti-RFP (AB233; Evrogen) for BORR:RFP detection and 1:2000 diluted
526 anti-Histone H3 (ab1791; Abcam) for Histone H3 as primary antibodies and subsequently with
527 1:10000 diluted anti-rabbit IgG, HRP-linked secondary antibody (cytiva).

528 **RT-qPCR analysis**

529 RT-qPCR assays were performed as previously described (40). *PP2A3* (AT1G13320) was used as
530 the reference gene. Primer pairs for qPCR are described in *SI Appendix*, Table S1. All experiments
531 were performed in three biological replicates.

532 **Detection and definition of the *BORI*/Survivin gene family in eukaryotes**

533 To detect homologs of *BORI*s and Survivin in eukaryotes, we optimized multiple profile Hidden Markov
534 Models (HMMs) based on iterative reciprocal similarity searches using various tools from the HMMER
535 package version 3.1b2 (62), similar to a strategy used in our previous work (63). Iterative searches
536 with 'jackhmmer' were executed with standard inclusion thresholds (E>0.01, bitscore>25) until no new
537 candidate homologs could be included, or as otherwise stated. HMMs were constructed using
538 'hmmbuild' based on multiple sequence alignments of curated homologs. We used both full-length
539 and subdomain (BIR, FHA and helix) HMMs as seeds for reciprocal iterative sequence searches using
540 'hmmersearch'. Our search protocol was based on the following steps/considerations: (I) To limit the

541 amount of homologs to be queried, when searching the widely present BIR and FHA domains and
542 full-length sequences, we used stringent bitscore inclusion cut-offs of 60 up to 70 (--incT 60-70 and -
543 -incdomT 60-70). (II) We only considered sequences as candidate Survivin/BORI orthologs if they
544 harbored both a phosphate-binding domain (FHA/BIR) and/or a conserved helix, on the condition that
545 the helix alone should yield reciprocal best hits (phmmmer) and/or reciprocal iterative (jackhmmer) hits
546 with bona fide homologs. (III) Putative candidates that contained a single short helical domain were
547 only included in case reciprocal similarity searches yielded phosphate-binding domain containing
548 candidates found in other eukaryotic lineages, and when a particular species or lineage did not yet
549 contain a Survivin/BORI homolog (i.e putative candidates in plants, animals and fungi were excluded).
550 (IV) Were possible, we aimed to optimize one single HMM of the conserved helical domain to capture
551 all Survivin/BORI orthologs (see *SI Appendix*, Dataset S5). We therefore trained an HMM of the gene
552 family-defining feature, the conserved helical domain, on large eukaryotic sequence databases,
553 including our in-house dataset (63), EukProt (64), and UniProt (65). Sequences of orthologs and
554 presence-absence patterns of the Survivin/BORI gene family in a subset of representative eukaryotes
555 can be found in separate text files in *SI Appendix*, Dataset S5. Clade-specific HMMs can be found in
556 *SI Appendix*, Dataset S6.

557 **Phylogenetic analyses of FHA domains found in BORI-like homologs**

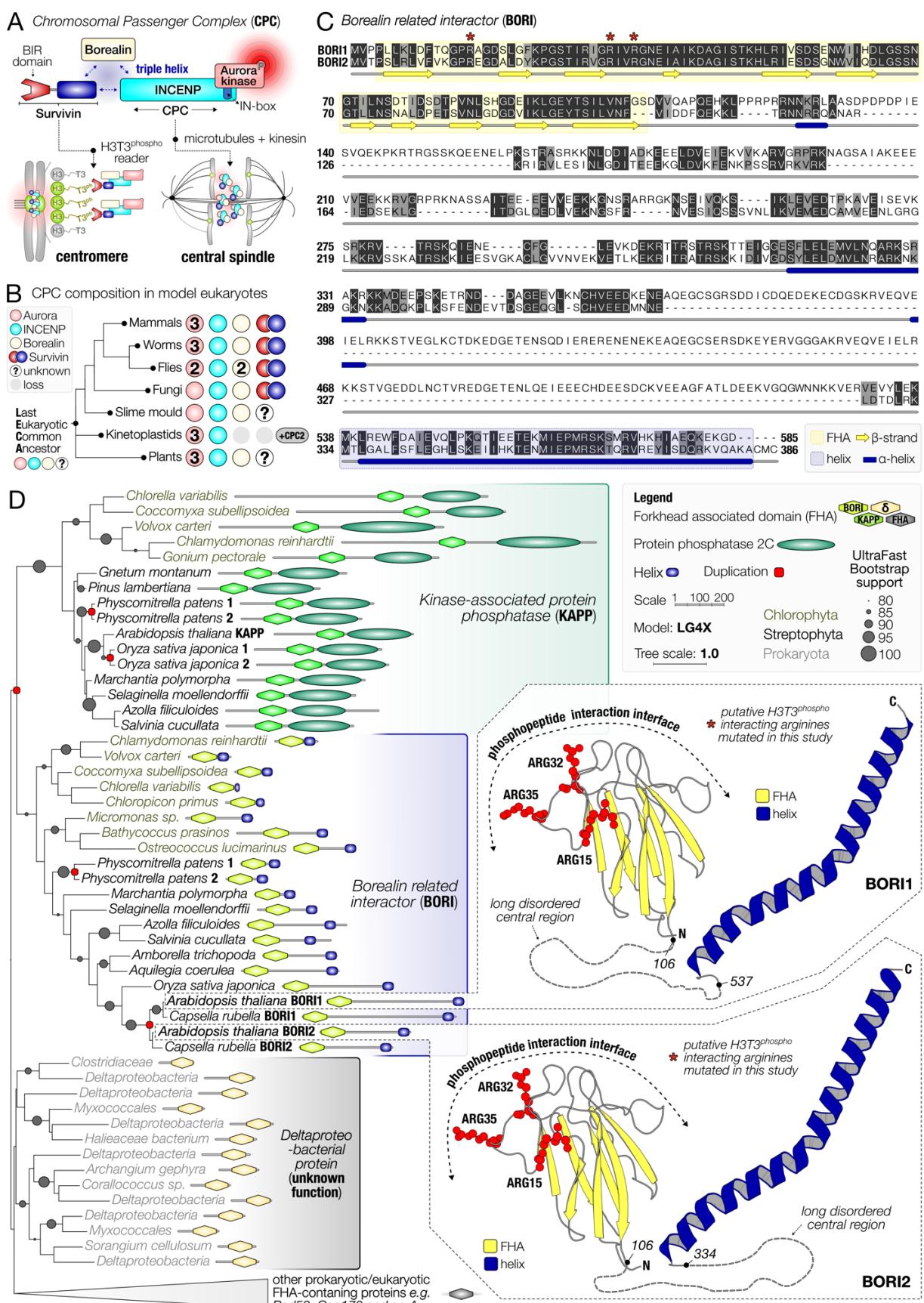
558 To prevent the inclusion of a high number of potential FHA domain-based BORI homologs to consider
559 for phylogenetic analysis, we used a high bitscore cut-off (bitscore>70; see above). Candidate
560 homologs were found in Viridiplantae (Chlorophyta and Streptophyta) and all contained a C-terminal
561 helix (Fig. 1), which strongly suggested that these were orthologous to the BORIs found in
562 Arabidopsis. To find the closest FHA domain to that of BORI, we aligned all Viridiplantae BORI
563 orthologs and generated an HMM of the FHA domain using hmmbuild v3.1b2 (62). Using a similar
564 HMM-based approach, but now with a bitscore cut-off of 60 (--incT 60 --incdomT 60), we found the
565 FHA domains of the PP2C phosphatase KAPP orthologs to be the closest to those of BORI.
566 Subsequent iterations with lower bitscore cut-offs (>50) revealed many non-BORI/KAPP FHA
567 domains to have a roughly similar bitscore, therefore no clear outgroup for BORI and KAPP could be
568 defined in eukaryotes. We therefore searched the Uniprot database for putative prokaryotic homologs.
569 Indeed, Deltaproteobacterial FHA domain-containing sequences were found to be more similar
570 compared to other eukaryotic sequences. To provide an outgroup, we added the seed sequences for
571 the FHA PFAM model (PF00498, see *SI appendix*, Dataset S3). FHA domains were aligned using
572 MAFFT (option g-ins-i) (66). For the phylogenetic analysis in Figure 8C, FHA domain-containing
573 proteins were added that were significantly similar to BORI-like homologs found amongst
574 Stramenopila, Haptista and Cryptista in the EukProt database (64), with a bitscore cut-off (>60).
575 Maximum-likelihood phylogenetic analyses (for analysis files and further description see *SI Appendix*,
576 Supplementary text, Dataset S3 and Dataset S4) were performed with the IQ-Tree webserver (version
577 1.6.12) using standard settings for model selection, including the assessment of all mixture models,

578 1000 Ultrafast bootstrap and SH-like approximate likelihood ratio test replicates (67). Parameters for
579 the final phylogenetic analyses are as follows: analysis Fig. 1C (see *SI Appendix*, Dataset S3 –
580 settings: -m LG4X+F -bb 1000 -alrt 1000 -pers 0.3 -numstop 410; 65 positions, 194 sequences with
581 at least 70% occupancy per column, model: LG4X); Fig. 8C (see *SI Appendix*, Dataset S4 – settings:
582 -m LG4X+F -bb 1000 -alrt 1000 -pers 0.4 -numstop 300; 64 positions, 408 sequences with at least
583 70% occupancy per column, model LG4X). Trees were visualized and annotated using FigTree v1.4.4
584 (68), and/or itol (69).

585 **Accession Numbers**

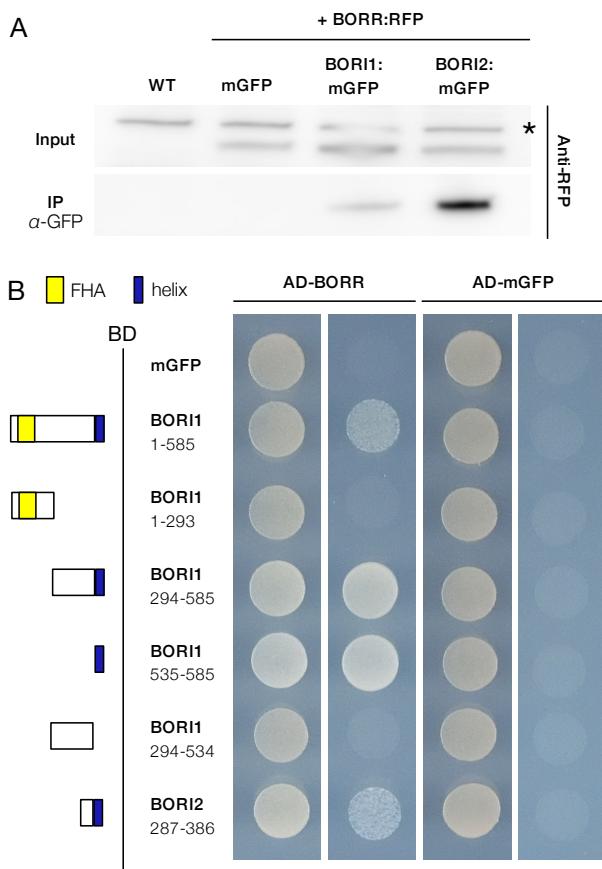
586 Sequence data from this article can be found in the *Arabidopsis Information Resource* database under
587 the following accession numbers: AT2G45490 (AUR3), AT3G02400 (BORI1), AT4G14490 (BORI2),
588 AT4G39630 (BORR), AT5G55820 (INCENP/WYRD), and AT5G19280 (KAPP). Sequences of
589 homologs, and presence-absence patterns of Aurora kinase, INCENP, and Borealin in a subset of
590 representative eukaryotes (see also (20)), can be found in separate text files in *SI Appendix*, Dataset
591 S5.

592 **Graphics and other software**


593 Plots and alignments were manually compiled into figures using the open-source scalable vector
594 graphics editor Inkscape 1.0rc1 for macOS (Inkscape Project 2020, retrieved from
595 <https://inkscape.org>). 3D protein structures were visualized using Pymol v2.5. Alignments were
596 manipulated using Jalview (70)

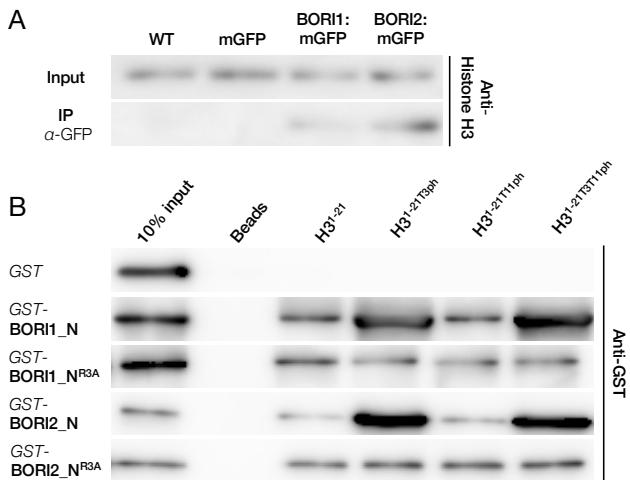
597 **Acknowledgments**

598 We thank Mariana Motta (University of Hamburg) for critical reading and helpful comments on the
599 manuscript. E. T. is supported by a personal fellowship from the Nederlandse Organisatie voor
600 Wetenschappelijk Onderzoek (grant no. VI.Veni.202.223). This work was supported by the Deutsche
601 Forschungsgemeinschaft (grant no. SCHA 736/8–1) to A.S., and the Japan Society for the Promotion
602 of Science (KAKENHI grant no. JP21K06215) to S.K..


603 **Figures**

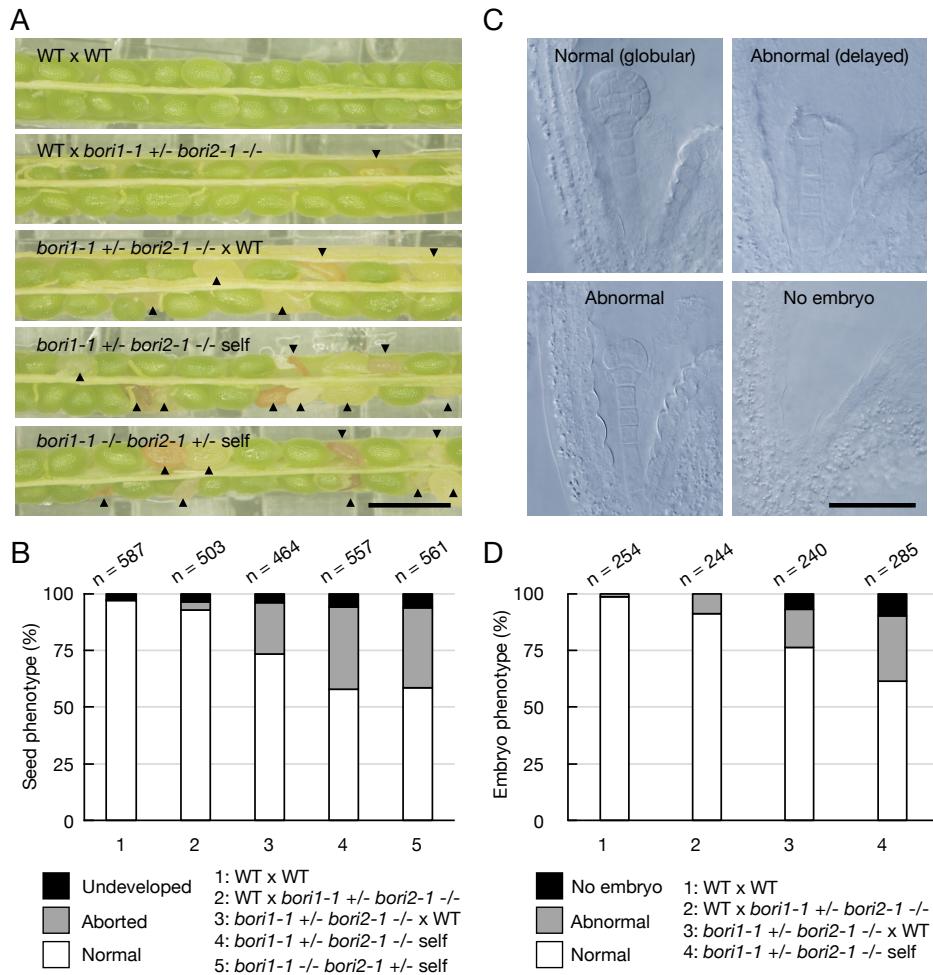
604 **Figure 1**

606 **BOREALIN RELATED INTERACTOR (BORI) genes in plants.** (A) The Chromosomal passenger
607 complex (CPC) consists of an Aurora-type kinase scaffolded by the triple helix-based trimer INCENP,
608 Borealin and Survivin. Metaphase CPC localization at the centromere is dependent on a Survivin-
609 H3T3^{ph} interaction and anaphase localization at the central spindle relies on interactions with
610 microtubules and kinesins (shown below). (B) Presence-absence matrix of CPC components in model
611 organisms that have previously been found throughout the eukaryotic tree of life (2, 20). Colors of the
612 proteins correspond to the cartoon in panel A. Numbers indicate the paralogs of a CPC component
613 found in a particular clade. Question marks indicate the inability to detect orthologues. Greyed out
614 circles indicate loss of components. (C) Multiple alignment of Borealin Related Interactor 1 and 2
615 found in *Arabidopsis thaliana*. FHA domains (yellow); C-terminal helices (dark blue). Secondary
616 structure consensus of the AlphaFold2 predicted 3D structures of BORI1 and 2 is projected below the
617 alignment. Stars indicate three arginine residues (ARG-15-32-35), which likely face the
618 phosphorylated histone H3 tail (see ball-and-sticks representation in panel D). Color scheme: 100%
619 identity (black), similar physicochemical properties (grey), others (white). (D) Unrooted maximum-
620 likelihood phylogenetic tree of FHA domains most similar to that of BORI orthologs, found amongst
621 prokaryotes and eukaryotes. Domains are projected onto the phylogenetic tree and are to scale (see
622 legend). Branch lengths are scaled and indicate the number of substitutions per site (see scale bar in
623 the legend). Circles indicate bootstrap support (1000x replicates, only higher than 80% support
624 shown). Red squares indicate duplication nodes. AthBORI1 and 2 AlphaFold2-predicted 3D structures
625 are shown on the right, with putative phosphate-interacting residues shown in a ball-and-sticks
626 representation (see also panel C). Colors indicate the two different domains: FHA (yellow); helix
627 (blue). Long disordered central regions are represented by dashed lines and are not to scale (see
628 panel C for omitted residues). See *SI Appendix*, Dataset S2 for full-length 3D structures. For
629 phylogenetic analysis details see *SI Appendix*, Dataset S3.


630 **Figure 2**

631

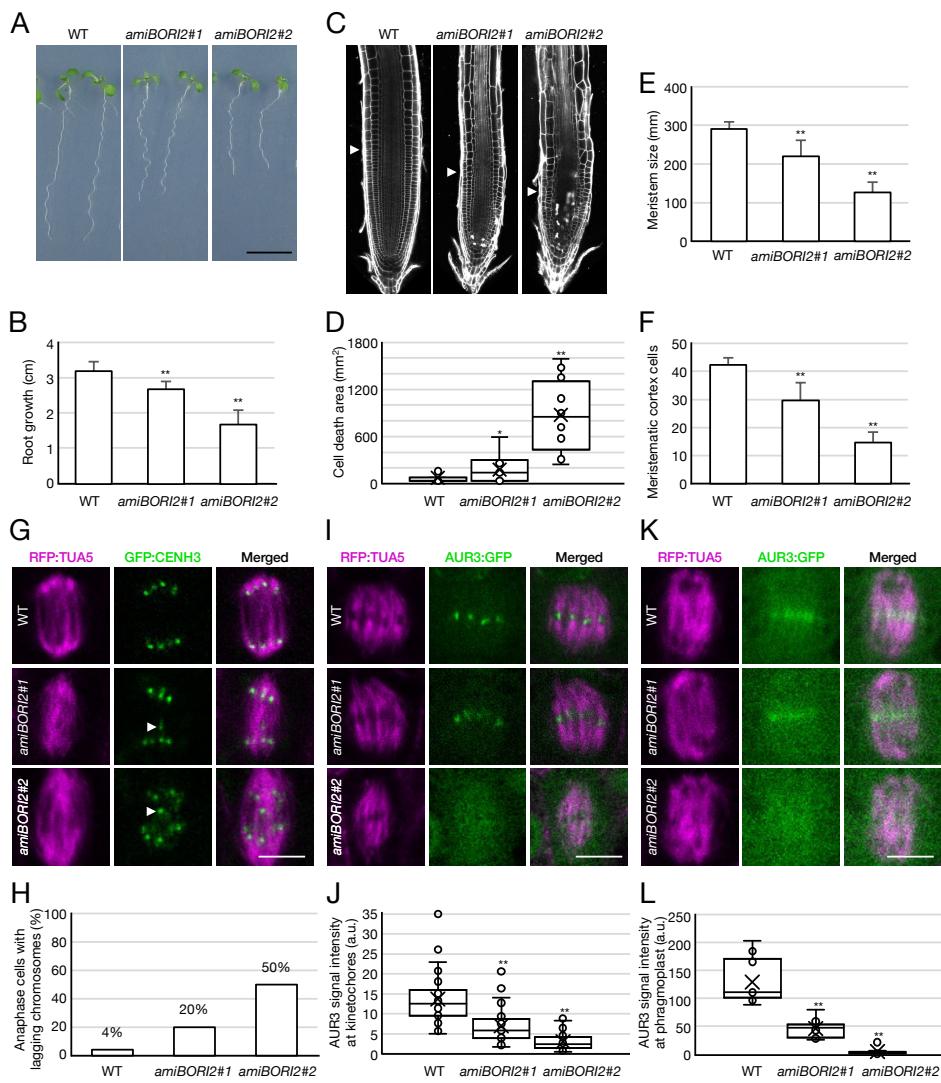
632 **Interaction between BORRs and BORR.** (A) Co-immunoprecipitation of BORRs and BORR from
633 stable transgenic plants. 7-day-old *Arabidopsis* seedlings expressing BORR:RFP and BORI1:mGFP
634 or BORR:RFP and BORI2:mGFP were used for IP with an anti-GFP antibody. Both input and IP
635 fractions were subjected to immunoblotting with an anti-RFP antibody. Seedlings expressing both
636 BORR:RFP and mGFP as well as WT seedlings were used as negative controls. The asterisk
637 indicates a nonspecific band. (B) Identification of the interaction domain between BORRs and BORR
638 by yeast two-hybrid assay. Each strain was spotted on SD plates without Trp and Leu (-TL; control
639 media) or without Trp, Leu, and His (-TLH; selection media) and photographed after incubation at
640 30°C for 2 days. AD, GAL4-activation domain. BD, GAL4-DNA binding domain. mGFP was used as
641 a negative control.


642 **Figure 3**

644 **The FHA domain of BORIs directly binds to H3T3^{ph}.** (A) Co-immunoprecipitation of BORIs and
645 Histone H3 from stable transgenic plants. 7-day-old *Arabidopsis* seedlings expressing BORI1:mGFP
646 or BORI2:mGFP were used for IP with an anti-GFP antibody. Both input and IP fractions were
647 subjected to immunoblotting with an anti-Histone H3 antibody. Seedlings expressing mGFP and WT
648 seedlings were used as negative controls. (B) Peptide-binding assay. All peptides were biotinylated
649 at the C-terminus and were preincubated with streptavidin-coated beads before addition of FHA
650 domains. Protein binding was subjected to immunoblotting with an anti-GFP antibody. GST alone was
651 used as a negative control.

652

Figure 4

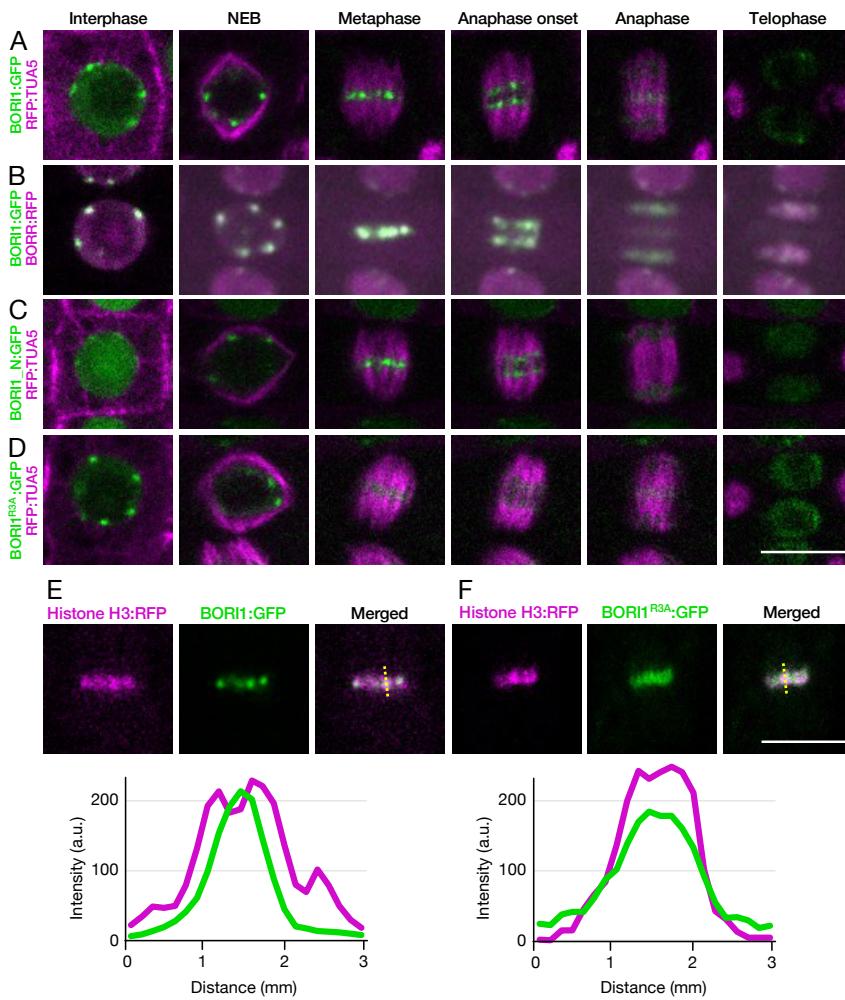


653

654 **Mutants in *BORI* exhibit defects in embryo development.** (A) Developing seeds in a silique resulting from reciprocal crosses between *bori* mutants and the WT. Arrowheads indicate aborted seeds. Scale bar, 1 cm. (B) Frequency of seed phenotypes shown in each cross. (C) Embryo phenotypes observed in *bori* mutants. Whole-mount clearing was conducted 4 days after the pollination. Scale bar, 100 μ m. (D) Frequency of embryo phenotypes shown in each cross.

659

Figure 5

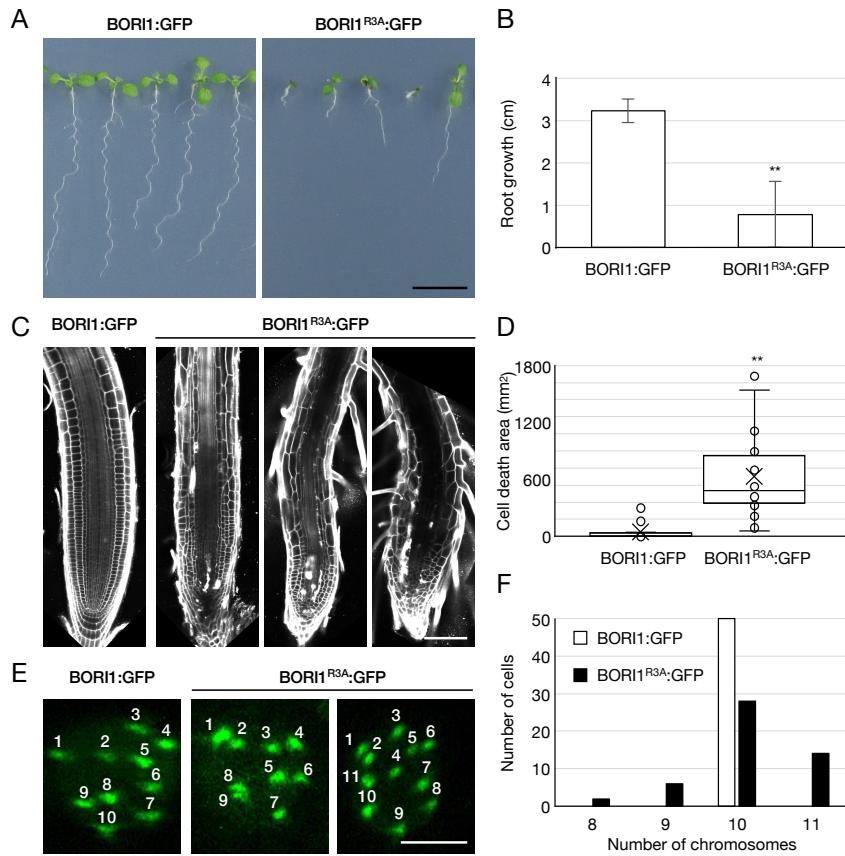

660

661 Phenotypic analysis of amiRNA-mediated *BORI* knockdown plants. (A) 7-day-old WT and *BORI*
662 knockdown seedlings. Scale bar, 1 cm. **(B)** Root length of 7-day-old WT and *BORI* knockdown
663 seedlings. Graph bars represent means \pm SD. Asterisks indicate significant difference between the
664 WT and *BORI* knockdown seedlings tested by Student's t-test (** P < 0.001, n = 30). **(C)** Confocal
665 images of 7-day-old WT and *BORI* knockdown roots stained with 20 μ g/ml propidium iodide to
666 visualize cell walls and dead cells. Arrowheads indicate the boundary between the division region and
667 the elongation region of the root. Scale bar, 100 μ m. **(D)** Cell death area in C. Asterisks indicate
668 significant difference between WT and *BORI* knockdown seedlings tested by Student's t-test (* P <
669 0.01, ** P < 0.001, n = 20). **(E)** Meristem size in C. Meristem size was measured from quiescent center
670 to the first elongated cell in the cortical cell file. Asterisks indicate significant difference between WT
671 and *BORI* knockdown seedlings tested by Student's t-test (** P < 0.001, n = 20). **(F)** Number of
672 meristematic cortex cells in C. Asterisks indicate significant difference between WT and *BORI*
673 knockdown seedlings tested by Student's t-test (** P < 0.001, n = 20). **(G)** Representative images of
674 normally distributed and lagging chromosomes in 5-day-old WT and *BORI* knockdown roots.

675 Microtubules and centromeres were visualized by RFP:TUA5 and GFP:CENH3, respectively.
676 Arrowheads indicate lagging chromosomes. Scale bar, 5 μ m. (H) Frequency of lagging chromosomes
677 in anaphase cells in G. $n = 50$. (I) Representative images of AUR3 accumulation levels at metaphase
678 centromeres in 5-day-old WT and *BOR1* knockdown roots. Microtubules and AUR3 were visualized
679 by RFP:TUA5 and AUR3:GFP, respectively. Scale bar, 5 μ m. (J) AUR3 signal intensity in I.
680 AUR3:GFP signals at metaphase centromeres were measured. Asterisks indicate significant
681 difference between WT and *BOR1* knockdown roots tested by Student's t-test (** $P < 0.001$, $n = 50$).
682 (K) Representative images of AUR3 accumulation levels at the middle part of the phragmoplast in 5-
683 day-old WT and *BOR1* knockdown roots. Microtubules and AUR3 were visualized by RFP:TUA5 and
684 AUR3:GFP, respectively. Scale bar, 5 μ m. (L) AUR3 signal intensity in K. AUR3:GFP signals at the
685 middle part of the phragmoplast were measured. Asterisks indicate significant difference between WT
686 and *BOR1* knockdown roots tested by Student's t-test (** $P < 0.001$, $n = 10$).

687

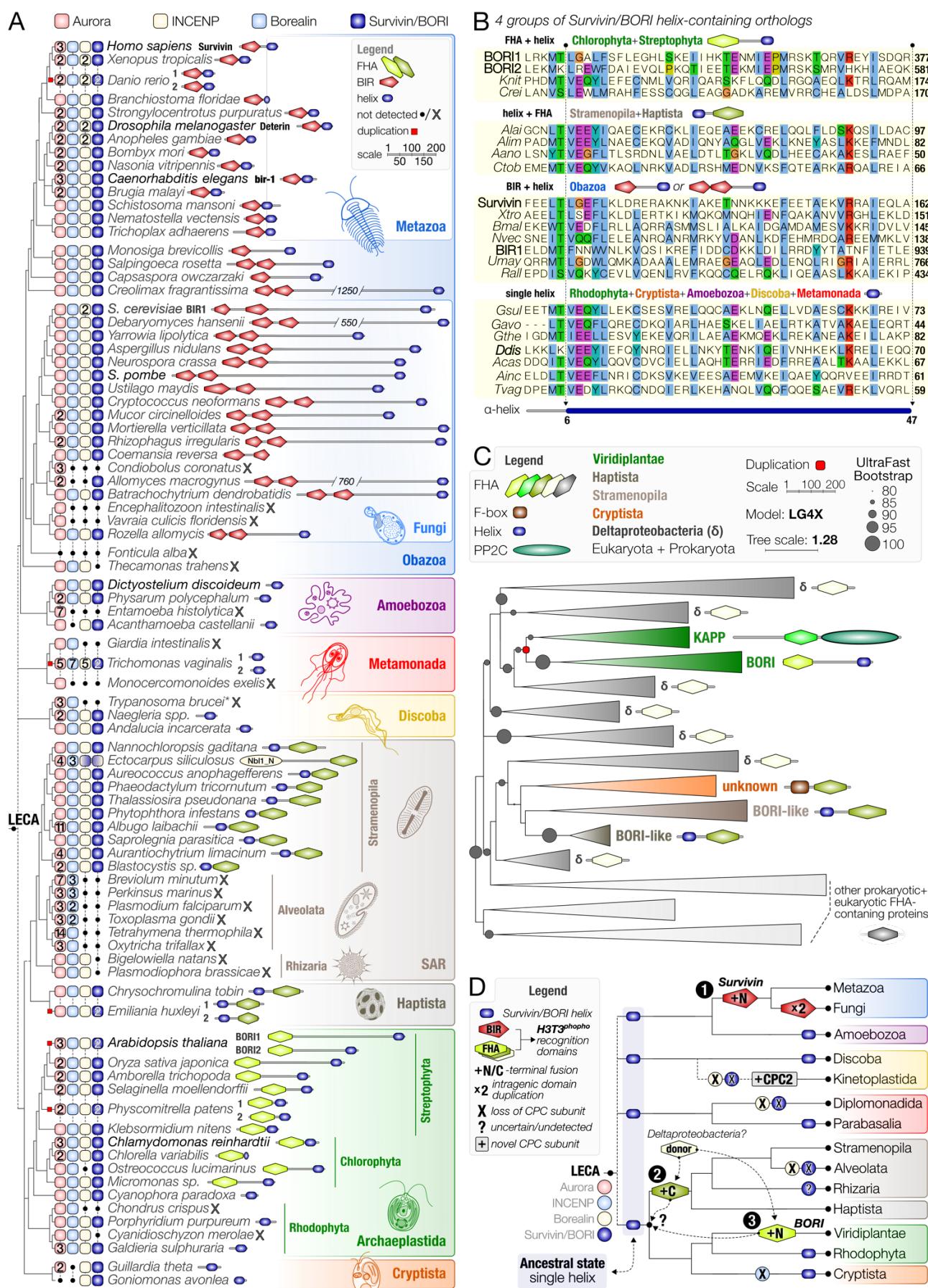
Figure 6



688

689 **Subcellular localization of BORI1 during the cell cycle.** (A) Subcellular localization of BORI1:GFP
690 during the cell cycle. Microtubule structures were visualized by RFP:TUA5. (B) Colocalization of
691 BORI1:GFP and BORR:RFP. (C and D) Subcellular localization of BORI1_N:GFP (C) or
692 BORI1^{R3A}:GFP (D) during the cell cycle. Microtubule structures were visualized by RFP:TUA5. For
693 live imaging, root tips of 5-day-old seedlings were used. Scale bar, 10 μ m. (E and F) Colocalization
694 of Histone H3:RFP and BORI1:GFP (E) or BORI1^{R3A}:GFP (F) in metaphase cells. The yellow dotted
695 line indicates the positions where the line profiles were obtained. Scale bar, 10 μ m.

696


Figure 7

697

698 **Proper centromere localization of BORIs is required for genome stability.** (A) 7-day-old
699 transgenic lines expressing *BORI1:GFP* or *BORI1^{R3A}:GFP* in *bori1 bori2*. Scale bar, 1 cm. (B) Root
700 length of 7-day-old transgenic seedlings. Graph bars represent means \pm SD. Asterisks indicate
701 significant difference tested by Student's t-test (** $P < 0.001$, $n = 30$). (C) Confocal images of 7-day-
702 old *BORI1:GFP* and *BORI1^{R3A}:GFP* seedling roots stained with 20 μ g/ml propidium iodide to visualize
703 cell walls and dead cells. Scale bar, 100 μ m. (D) Cell death area in C. Asterisks indicate significant
704 difference tested by Student's t-test (** $P < 0.001$, $n = 20$). (E) GFP signals in interphase cells of
705 *BORI1:GFP* and *BORI1^{R3A}:GFP* seedling roots. Scale bar, 5 μ m. (F) Number of chromosomes in
706 interphase cells of *BORI1:GFP* and *BORI1^{R3A}:GFP* seedling roots ($n = 50$).

Figure 8

709 **A conserved helix and the recurrent acquisition of a phosphate-binding domain characterize**
710 **the divergent Survivin/BORI gene family. (A)** Presence-absence matrix of the four subunits of the
711 CPC: Aurora kinase, INCENP, Borealin, and Survivin/BORI in a wide variety of eukaryotes, with
712 representatives of all supergroups (different colors) found across the eukaryotic tree of life (according
713 to Burki *et al.* 2019 (71)). Dashed lines indicate uncertain relationships amongst supergroups. LECA
714 refers to the hypothetical position of the last eukaryotic common ancestor. Numbers indicate the
715 paralogs present in a specific clade. Domain topologies for the Survivin/BORI orthologs are shown on
716 the right, with the presence of a conserved helix (blue) as the defining feature of the Survivin/BORI
717 gene family. Different colors for the FHA domains indicate a unique evolutionary origin of those
718 present in BORI orthologs in Archaeplastida as well as SAR and Haptista. **(B)** Multiple alignment of a
719 conserved helix found in four sub-types of Survivin/BORI orthologs found amongst eukaryotes. Four
720 letter abbreviations refer to species that can be found in panel A (a combination of the first letter of
721 the genus name and the first three letters of the species name). A small vertical space in the alignment
722 (e.g. between Aano and Ctob, indicate that those species are part of a different supergroup: SAR and
723 Haptista, respectively). Numbers on the right indicate the position of the most C-terminal residue of a
724 47-residue-long conserved helix. **(C)** Collapsed and unrooted maximum-likelihood phylogenetic tree
725 of eukaryotic and prokaryotic FHA domains most similar to BORI, and Survivin/BORI-like proteins
726 found amongst Archaeplastida, SAR, and Haptista. Representative domains for each collapsed clade
727 are projected onto the phylogenetic tree (see legend). Branch lengths are scaled and indicate the
728 number of substitutions per site (see scale bar). Circles indicate bootstrap support (1000x replicates,
729 only higher than 80% support shown). Colors indicate the different evolutionary histories of various
730 domains (e.g. FHA of KAPPs and BORIs). For phylogenetic analysis details, see *SI Appendix*, Dataset
731 S4. **(D)** Evolutionary scenario of the Survivin/BORI gene family. A helix-only Survivin/BORI gene was
732 present in LECA and independently fused to a phosphate-binding domain at least three different times
733 during eukaryotic evolution, in the ancestors of Fungi and Metazoa (1:BIR), SAR and Haptista (2:C-
734 terminal FHA), and Viridiplantae (3:N-terminal FHA). The FHA domains were likely vertically
735 transferred from Deltaproteobacteria, Colors are similar to panel A and C.

736 **References**

- 737 1. M. R. Motta, A. Schnittger, A microtubule perspective on plant cell division. *Curr. Biol.* **31**,
738 R547–R552 (2021).
- 739 2. E. C. Tromer, J. J. E. van Hooff, G. J. P. L. Kops, B. Snel, Mosaic origin of the eukaryotic
740 kinetochore. *Proc. Natl. Acad. Sci. U. S. A.* **116**, 12873–12882 (2019).
- 741 3. A. Musacchio, A. Desai, A Molecular View of Kinetochore Assembly and Function. *Biology* **6**
742 (2017).
- 743 4. S. Müller, G. Jürgens, Plant cytokinesis—No ring, no constriction but centrifugal construction of
744 the partitioning membrane. *Semin. Cell Dev. Biol.* **53**, 10–18 (2016).
- 745 5. J. R. Brown, K. K. Koretke, M. L. Birkeland, P. Sanseau, D. R. Patrick, Evolutionary
746 relationships of Aurora kinases: implications for model organism studies and the development
747 of anti-cancer drugs. *BMC Evol. Biol.* **4**, 39 (2004).
- 748 6. M. Carmena, M. Wheelock, H. Funabiki, W. C. Earnshaw, The chromosomal passenger
749 complex (CPC): from easy rider to the godfather of mitosis. *Nat. Rev. Mol. Cell Biol.* **13**, 789–
750 803 (2012).
- 751 7. A. van der Horst, S. M. A. Lens, Cell division: control of the chromosomal passenger complex in
752 time and space. *Chromosoma* **123**, 25–42 (2014).
- 753 8. M. A. Abad, *et al.*, Borealin-nucleosome interaction secures chromosome association of the
754 chromosomal passenger complex. *J. Cell Biol.* **218**, 3912–3925 (2019).
- 755 9. F. Wang, *et al.*, A positive feedback loop involving Haspin and Aurora B promotes CPC
756 accumulation at centromeres in mitosis. *Curr. Biol.* **21**, 1061–1069 (2011).
- 757 10. F. Wang, *et al.*, Histone H3 Thr-3 phosphorylation by Haspin positions Aurora B at centromeres
758 in mitosis. *Science* **330**, 231–235 (2010).
- 759 11. A. E. Kelly, *et al.*, Survivin reads phosphorylated histone H3 threonine 3 to activate the mitotic
760 kinase Aurora B. *Science* **330**, 235–239 (2010).
- 761 12. Y. Yamagishi, T. Honda, Y. Tanno, Y. Watanabe, Two histone marks establish the inner
762 centromere and chromosome bi-orientation. *Science* **330**, 239–243 (2010).
- 763 13. M. A. Abad, *et al.*, Molecular Basis for CPC-Sgo1 Interaction: Implications for Centromere
764 Localisation and Function of the CPC. *bioRxiv*, 2021.08.27.457910 (2021).
- 765 14. M. A. Hadders, *et al.*, Untangling the contribution of Haspin and Bub1 to Aurora B function
766 during mitosis. *J. Cell Biol.* **219** (2020).
- 767 15. A. J. Broad, K. F. DeLuca, J. G. DeLuca, Aurora B kinase is recruited to multiple discrete
768 kinetochore and centromere regions in human cells. *J. Cell Biol.* **219** (2020).
- 769 16. C. Liang, *et al.*, Centromere-localized Aurora B kinase is required for the fidelity of chromosome
770 segregation. *J. Cell Biol.* **219** (2020).
- 771 17. I. E. Adriaans, *et al.*, MKLP2 Is a Motile Kinesin that Transports the Chromosomal Passenger
772 Complex during Anaphase. *Curr. Biol.* **30**, 2628–2637.e9 (2020).
- 773 18. S. Hümmer, T. U. Mayer, Cdk1 negatively regulates midzone localization of the mitotic kinesin
774 Mklp2 and the chromosomal passenger complex. *Curr. Biol.* **19**, 607–612 (2009).

775 19. O. Kirioukhova, *et al.*, Female gametophytic cell specification and seed development require
776 the function of the putative *Arabidopsis* INCENP ortholog WYRD. *Development* **138**, 3409–
777 3420 (2011).

778 20. J. J. van Hooff, E. Tromer, L. M. van Wijk, B. Snel, G. J. Kops, Evolutionary dynamics of the
779 kinetochore network in eukaryotes as revealed by comparative genomics. *EMBO Rep.* **18**,
780 1559–1571 (2017).

781 21. S. Komaki, *et al.*, Functional Analysis of the Plant Chromosomal Passenger Complex. *Plant*
782 *Physiol.* **183**, 1586–1599 (2020).

783 22. D. Kurihara, S. Matsunaga, T. Omura, T. Higashiyama, K. Fukui, Identification and
784 characterization of plant Haspin kinase as a histone H3 threonine kinase. *BMC Plant Biol.* **11**,
785 73 (2011).

786 23. E. Kozgunova, T. Suzuki, M. Ito, T. Higashiyama, D. Kurihara, Haspin has Multiple Functions in
787 the Plant Cell Division Regulatory Network. *Plant Cell Physiol.* **57**, 848–861 (2016).

788 24. Y. Liu, C. Wang, H. Su, J. A. Birchler, F. Han, Phosphorylation of histone H3 by Haspin
789 regulates chromosome alignment and segregation during mitosis in maize. *J. Exp. Bot.* **72**,
790 1046–1058 (2021).

791 25. Q. L. Deveraux, J. C. Reed, IAP family proteins--suppressors of apoptosis. *Genes Dev.* **13**,
792 239–252 (1999).

793 26. S. P. Wheatley, D. C. Altieri, Survivin at a glance. *J. Cell Sci.* **132** (2019).

794 27. K. Higashi, *et al.*, Identification of a novel gene family, paralogs of inhibitor of apoptosis proteins
795 present in plants, fungi, and animals. *Apoptosis* **10**, 471–480 (2005).

796 28. A. Daneva, Z. Gao, M. Van Durme, M. K. Nowack, Functions and Regulation of Programmed
797 Cell Death in Plant Development. *Annu. Rev. Cell Dev. Biol.* **32**, 441–468 (2016).

798 29. E. A. Minina, *et al.*, Apoptosis is not conserved in plants as revealed by critical examination of a
799 model for plant apoptosis-like cell death. *BMC Biol.* **19**, 100 (2021).

800 30. Z. Li, *et al.*, Identification of a novel chromosomal passenger complex and its unique
801 localization during cytokinesis in *Trypanosoma brucei*. *PLoS One* **3**, e2354 (2008).

802 31. J. Van Leene, *et al.*, An improved toolbox to unravel the plant cellular machinery by tandem
803 affinity purification of *Arabidopsis* protein complexes. *Nat. Protoc.* **10**, 169–187 (2015).

804 32. M. Desai, R. Pan, J. Hu, *Arabidopsis* Forkhead-Associated Domain Protein 3 negatively
805 regulates peroxisome division. *J. Integr. Plant Biol.* **59**, 454–458 (2017).

806 33. D. Durocher, S. P. Jackson, The FHA domain. *FEBS Lett.* **513**, 58–66 (2002).

807 34. N. Coquelle, J. N. M. Glover, FHA domain pThr binding specificity: it's all about me. *Structure*
808 **18**, 1549–1550 (2010).

809 35. A. W. Almawi, L. A. Matthews, A. Guarné, FHA domains: Phosphopeptide binding and beyond.
810 *Prog. Biophys. Mol. Biol.* **127**, 105–110 (2017).

811 36. J. R. Allen, E. G. Wilkinson, L. C. Strader, Creativity comes from interactions: modules of
812 protein interactions in plants. *FEBS J.* (2021) <https://doi.org/10.1111/febs.15847>.

813 37. J. M. Stone, M. A. Collinge, R. D. Smith, M. A. Horn, J. C. Walker, Interaction of a protein
814 phosphatase with an *Arabidopsis* serine-threonine receptor kinase. *Science* **266**, 793–795

815 (1994).

816 38. R. W. Williams, J. M. Wilson, E. M. Meyerowitz, A possible role for kinase-associated protein
817 phosphatase in the Arabidopsis CLAVATA1 signaling pathway. *Proc. Natl. Acad. Sci. U. S. A.*
818 **94**, 10467–10472 (1997).

819 39. I. M. Rienties, J. Vink, J. W. Borst, E. Russinova, S. C. de Vries, The Arabidopsis SERK1
820 protein interacts with the AAA-ATPase AtCDC48, the 14-3-3 protein GF14lambda and the
821 PP2C phosphatase KAPP. *Planta* **221**, 394–405 (2005).

822 40. S. Komaki, A. Schnittger, The Spindle Assembly Checkpoint in Arabidopsis Is Rapidly Shut Off
823 during Severe Stress. *Dev. Cell* **43**, 172–185.e5 (2017).

824 41. I. J. Byeon, S. Yongkiettrakul, M. D. Tsai, Solution structure of the yeast Rad53 FHA2
825 complexed with a phosphothreonine peptide pTXXL: comparison with the structures of FHA2-
826 pYXL and FHA1-pTXXD complexes. *J. Mol. Biol.* **314**, 577–588 (2001).

827 42. L. J. Alderwick, *et al.*, Molecular structure of EmbR, a response element of Ser/Thr kinase
828 signaling in *Mycobacterium tuberculosis*. *Proc. Natl. Acad. Sci. U. S. A.* **103**, 2558–2563
829 (2006).

830 43. J. Liu, *et al.*, Structural mechanism of the phosphorylation-dependent dimerization of the MDC1
831 forkhead-associated domain. *Nucleic Acids Res.* **40**, 3898–3912 (2012).

832 44. G.-I. Lee, Z. Ding, J. C. Walker, S. R. Van Doren, NMR structure of the forkhead-associated
833 domain from the Arabidopsis receptor kinase-associated protein phosphatase. *Proc. Natl.*
834 *Acad. Sci. U. S. A.* **100**, 11261–11266 (2003).

835 45. J. Eswaran, *et al.*, Structure and functional characterization of the atypical human kinase
836 haspin. *Proc. Natl. Acad. Sci. U. S. A.* **106**, 20198–20203 (2009).

837 46. Y. Lu, *et al.*, Involvement of MEM1 in DNA demethylation in Arabidopsis. *Plant Mol. Biol.* **102**,
838 307–322 (2020).

839 47. M. Yamada, G. Goshima, Mitotic Spindle Assembly in Land Plants: Molecules and
840 Mechanisms. *Biology* **6** (2017).

841 48. Q. Chen, H. Li, A. De Lozanne, Contractile ring-independent localization of DdINCENP, a
842 protein important for spindle stability and cytokinesis. *Mol. Biol. Cell* **17**, 779–788 (2006).

843 49. H. Li, *et al.*, Dictyostelium Aurora kinase has properties of both Aurora A and Aurora B kinases.
844 *Eukaryot. Cell* **7**, 894–905 (2008).

845 50. J. M. Goldberg, *et al.*, The dictyostelium kinome--analysis of the protein kinases from a simple
846 model organism. *PLoS Genet.* **2**, e38 (2006).

847 51. H. Hu, *et al.*, The Aurora B kinase in *Trypanosoma brucei* undergoes post-translational
848 modifications and is targeted to various subcellular locations through binding to TbCPC1. *Mol.*
849 *Microbiol.* **91**, 256–274 (2014).

850 52. L. Cromer, *et al.*, Centromeric cohesion is protected twice at meiosis, by SHUGOSHINs at
851 anaphase I and by PATRONUS at interkinesis. *Curr. Biol.* **23**, 2090–2099 (2013).

852 53. U. Gruneberg, R. Neef, R. Honda, E. A. Nigg, F. A. Barr, Relocation of Aurora B from
853 centromeres to the central spindle at the metaphase to anaphase transition requires MKlp2. *J.*
854 *Cell Biol.* **166**, 167–172 (2004).

855 54. A. Smertenko, *et al.*, Phragmoplast microtubule dynamics - a game of zones. *J. Cell Sci.* **131**

856 (2018).

857 55. A. Herrmann, *et al.*, Dual localized kinesin-12 POK2 plays multiple roles during cell division and
858 interacts with MAP65-3. *EMBO Rep.* **19** (2018).

859 56. Y. Hoshino, E. A. Gaucher, Evolution of bacterial steroid biosynthesis and its impact on
860 eukaryogenesis. *Proc. Natl. Acad. Sci. U. S. A.* **118** (2021).

861 57. P. López-García, D. Moreira, The Syntrophy hypothesis for the origin of eukaryotes revisited.
862 *Nat Microbiol* **5**, 655–667 (2020).

863 58. S. Henikoff, K. Ahmad, H. S. Malik, The centromere paradox: stable inheritance with rapidly
864 evolving DNA. *Science* **293**, 1098–1102 (2001).

865 59. T. Kumon, *et al.*, Parallel pathways for recruiting effector proteins determine centromere drive
866 and suppression. *Cell* **184**, 4904–4918.e11 (2021).

867 60. T. Akera, E. Trimm, M. A. Lampson, Molecular Strategies of Meiotic Cheating by Selfish
868 Centromeres. *Cell* **178**, 1132–1144.e10 (2019).

869 61. J. Van Leene, *et al.*, Isolation of transcription factor complexes from *Arabidopsis* cell
870 suspension cultures by tandem affinity purification. *Methods Mol. Biol.* **754**, 195–218 (2011).

871 62. S. R. Eddy, Accelerated Profile HMM Searches. *PLoS Comput. Biol.* **7**, e1002195 (2011).

872 63. E. C. Tromer, T. A. Wemyss, P. Ludzia, R. F. Waller, B. Akiyoshi, Repurposing of
873 synaptonemal complex proteins for kinetochores in Kinetoplastida. *Open Biol.* **11**, 210049
874 (2021).

875 64. D. J. Richter, C. Berney, J. F. H. Strassert, F. Burki, C. de Vargas, EukProt: a database of
876 genome-scale predicted proteins across the diversity of eukaryotic life. 2020.06.30.180687
877 (2020).

878 65. UniProt Consortium, UniProt: a worldwide hub of protein knowledge. *Nucleic Acids Res.* **47**,
879 D506–D515 (2019).

880 66. K. Katoh, D. M. Standley, MAFFT multiple sequence alignment software version 7:
881 improvements in performance and usability. *Mol. Biol. Evol.* **30**, 772–780 (2013).

882 67. J. Trifinopoulos, L.-T. Nguyen, A. von Haeseler, B. Q. Minh, W-IQ-TREE: a fast online
883 phylogenetic tool for maximum likelihood analysis. *Nucleic Acids Res.* **44**, W232–5 (2016).

884 68. A. Rambaut, FigTree v1. 4. Molecular evolution, phylogenetics and epidemiology. *Edinburgh*,
885 UK: Retrieved from <http://tree.bio.ed.ac.uk/software/figtree> [Google Scholar] (2012).

886 69. I. Letunic, P. Bork, Interactive Tree Of Life (iTOL) v4: recent updates and new developments.
887 *Nucleic Acids Res.* **47**, W256–W259 (2019).

888 70. A. M. Waterhouse, J. B. Procter, D. M. A. Martin, M. Clamp, G. J. Barton, Jalview Version 2--a
889 multiple sequence alignment editor and analysis workbench. *Bioinformatics* **25**, 1189–1191
890 (2009).

891 71. F. Burki, A. J. Roger, M. W. Brown, A. G. B. Simpson, The New Tree of Eukaryotes. *Trends
892 Ecol. Evol.* (2019) <https://doi.org/10.1016/j.tree.2019.08.008>.