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Abstract 9 
Learning plays a key role in the function of many neural circuits. The cerebellum is considered a ‘learning 10 
machine’ essential for time interval estimation underlying motor coordination and other behaviors. 11 
Theoretical work has proposed that the cerebellum’s input recipient structure, the granule cell layer 12 
(GCL), performs pattern separation of inputs that facilitates learning in Purkinje cells (P-cells). However, 13 
the relationship between input reformatting and learning outcomes has remained debated, with roles 14 
emphasized for pattern separation features from sparsification to decorrelation. We took a novel approach 15 
by training a minimalist model of the cerebellar cortex to learn complex time-series data from naturalistic 16 
inputs, in contrast to traditional classification tasks. The model robustly produced temporal basis sets 17 
from naturalistic inputs, and the resultant GCL output supported learning of temporally complex target 18 
functions. Learning favored surprisingly dense granule cell activity, yet the key statistical features in GCL 19 
population activity that drove learning differed from those seen previously for classification tasks. 20 
Moreover, different cerebellar tasks were supported by diverse pattern separation features that matched 21 
the demands of the tasks. These findings advance testable hypotheses for mechanisms of temporal basis 22 
set formation and predict that population statistics of granule cell activity may differ across cerebellar 23 
regions to support distinct behaviors. 24 
 25 
Introduction 26 
The cerebellum refines movement and maintains calibrated sensorimotor transformations by learning to 27 
predict outcomes of behaviors through error-based feedback (Ito, 1972; Herzfeld et al., 2015; Medina 28 
2000; Mauk and Buonomano, 2004; Raymond et al., 1996). A major site of cerebellar learning is in the 29 
cerebellar cortex, where Purkinje cells (P-cells) receive sensorimotor information from parallel fibers 30 
(Huang et al. 2013) whose synaptic strengths are modified by the conjunction of presynaptic (parallel 31 
fiber) activity and climbing fiber inputs to P-cells thought to convey instructive feedback (McCormick et 32 
al., 1982; Yang and Lisberger, 2014; Mauk et al., 1986; De Zeeuw et al., 1998). P-cell activity is 33 
characterized by rich temporal dynamics during movements, representing putative computations of 34 
internal models of the body and the physics of the environment (Wolpert et al., 1998; Shadmehr and 35 
Mussa-Ivaldi 1994). Parallel fibers are the axons of cerebellar granule cells (GCs), a huge neuronal 36 
population (comprising roughly half of the neurons in the entire brain; Herculano-Houzel 2010), which 37 
are the major recipient of extrinsic inputs to the cerebellum. Thus, understanding the output of the GCL is 38 
key in determining the encoding capacity and information load of incoming activity projected to the 39 
cerebellum. Inputs to GCs arise from mossy fibers (MFs), which convey sensorimotor information used 40 
by the cerebellum to predict the consequences of motor commands (Rancz et al., 2007; Ishikawa et al., 41 
2015). There are massively more GCs than MFs and each GC typically receives input from just 4 MFs 42 
(Palkovits et al., 1971), such that the information carried by each MF is spread among many GCs but each 43 
GC samples from only a tiny fraction of total MFs (Jakab and Hamori 1988; Eccles et al., 1967).  44 
 45 
The GCL has been the focus of theoretical work spanning decades that has explored the computational 46 
advantages of the unique architecture of the structure. Notably, early studies of the cerebellar circuit by 47 
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Marr (1969) and Albus (1971) proposed that a key component of the cerebellar algorithm is the sparse 48 
representation of MF inputs by GCs. In this view, the cerebellum often must discriminate between 49 
overlapping, highly correlated patterns of MF activity with only subtle differences distinguishing them 50 
(Bengsston and Jorntell 2009). Sparse recoding of MF activity in a much larger population of GCs 51 
("expansion recoding") increases the dimensionality of population representation and transforms 52 
correlated MF activity into independent activity patterns among a subset of GCs (Litwin-Kumar et al., 53 
2017; Cayco-Gajic et al., 2017; Gilmer and Person 2018). These decorrelated activity patterns are easier 54 
to distinguish by learning algorithms operating in P-cells, leading to better associative learning and credit 55 
assignment (Cayco-Gajic et al., 2017; Sanger et al., 2020). 56 
 57 
The machine learning perspective of Marr-Albus theory tends to assume that the cerebellum is presented 58 
with a series of static input patterns that must be distinguished and categorized. However, neuronal 59 
population dynamics are hardly ever static and precise timing of circuit inputs to the cerebellum remains 60 
an essential part of cerebellar function. Mauk and Buonomano (2004) revisited cerebellar expansion 61 
recoding in the context of delayed eyeblink conditioning, a cerebellum-dependent learning task where the 62 
subject hears a tone followed by an aversive air puff to the eye at a fixed delay from tone onset and must 63 
learn to initiate an eyeblink at the correct delay to protect the eye. They proposed that a static activity 64 
pattern in MFs (representing the tone) could be recoded in the GC layer as a temporally evolving set of 65 
distinct activity patterns. P-cells could learn to recognize the GC activity pattern present at the correct 66 
delay and initiate an eyeblink to avert the “error” signal representing the air puff to the eye. In other 67 
words, P-cells would select from a “temporal basis set” for correct error prediction and learning adaptive 68 
behavior.  69 
 70 
Expansion recoding creates the possibility of representing a single MF pattern as a series of distinct GC 71 
patterns (a “temporal basis set”; Albus 1975; Zhou et al., 2020; Tyrrell and Willshaw 1992; Liu et al., 72 
2019; Kalmbach et al., 2011). The existence of this predicted temporal basis set within the cerebellum has 73 
been supported experimentally in electric fish, where GCs represent the duration of mimicked electric 74 
organ discharge through a range of onsets (Kennedy et al., 2014). Although these studies have been 75 
highly influential, little is known about how the GCL would produce a temporally diverse basis set from 76 
static input data. Local inhibition, short-term synaptic plasticity, and varying GC excitability all may 77 
work together to diversify time-invariant input (Chabrol et al., 2015; Duguid et al, 2012; Crowley et al., 78 
2009; Rudolph et al., 2015; Buonomano and Mauk 1994; Kanichay and Silver 2008; Simat et al., 2007; 79 
Mapelli et al., 2009; Rossi et al., 1996; Gall et al., 2005; Armano et al., 2000; Rizwan et al. 2016; Tabuchi 80 
et al., 2019; D’Angelo and De Zeeuw 2009). However, the assumption that MFs ever provide truly static 81 
input to the cerebellum is probably unrealistic; even a static stimulus like a tone will generate time-82 
varying activity patterns in the auditory brainstem as units undergo adaptation (Eriksson and Robert 83 
1999). Moreover, most of the input signals that the cerebellum must process are intrinsically dynamic 84 
(Bengsston and Jorntell 2009; Chabrol et al., 2015). We seek to explore how expansion recoding of 85 
dynamic, naturalistic input activity assists cerebellar function. 86 
 87 
To test how expansion recoding of naturalistic input contributes to learning, we developed a simple model 88 
of the GCL and a time-series prediction task to explore the effect of putative GCL filtering mechanisms 89 
on expansion recoding and learning (Fig. 1A). Similar to previous models, this simplified model made 90 
GC activity sparser relative to MF inputs (Marr 1969; Albus 1971) and increased the dimensionality of 91 
the input activity (Litwin-Kumar et al., 2017) while preserving information (Billings et al., 2014). That 92 
these features of GCL function were achieved using only basic approximations of GC physiology 93 
suggests that the crystalline connectivity and feedforward inhibition of the cerebellum incorporated in our 94 
model are sufficient to produce pattern separation of naturalistic time-varying inputs. This model 95 
demonstrates greatly enhanced learning accuracy and speed by P-cells on a difficult time series prediction 96 
task when compared to MF inputs alone.  Although we observed robust sparsening of input activity by 97 
GCL output, the relationship between pattern separation metrics and the observed learning was dependent 98 
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upon the task being performed, suggesting that GCL output covers a span of modalities supporting 99 
flexible feature selection by P-cells to meet the needs of particular learning targets. These findings 100 
reinforce the ideas explored previously that the GCL balances input sparsening against information loss to 101 
optimize learning (Cayco-Gajic et al., 2017; Cayco-Gajic and Silver 2019), and that the balance between 102 
these features of GCL output can be functionally controlled through adjustments in the strength of local 103 
inhibition. We conclude by showing that muscle activity during reaching movements (Delis, et al. 2018), 104 
a proxy for time-varying efference copy signals received by the cerebellum, gives rise to information-105 
preserving sparseness that supports time-series predictions, suggesting that physiological input sources to 106 
the GCL, like the spinocerebellar pathways, are sufficient to drive learning. Together, these results 107 
suggest that the cerebellar GCL provides a rich basis for learning in downstream Purkinje cells, providing 108 
a mixture of lossless representation (Billings et al., 2014) and enhanced spatiotemporal representation 109 
(Litwin-Kumar et al. 2017) that are selected for by associative learning to support the learning of diverse 110 
outputs that support adaptive outputs in a variety of tasks (Fujita 1982; Dean and Porrill 2008). 111 
 112 
Results  113 
Temporal basis set formation as emergent property of GCL filtering of physiological-like inputs 114 
The cerebellar granule cell layer (GCL) is theorized to convert spatiotemporally dense inputs into discrete 115 
representations through coincidence detection and feedforward and feedback inhibition-mediated 116 
thresholding (Marr 1969; Solinas et al., 2010). How the GCL expands spatiotemporal representation has 117 
been the subject of debate and scientific inquiry for decades. While cellular and circuit mechanisms have 118 
been proposed to expand time invariant signals such as tones (Mauk and Buonomano 2004; Medina 119 
2000), naturalistic cerebellar inputs are typically time varying by virtue of dynamic sensorimotor 120 
interactions with the environment (Rancz et al., 2007; Eriksson and Robert 1999). Moreover, cerebellar 121 
learning is thought to sculpt complex time-varying outputs in Purkinje cells (P-cells) that reflect 122 
behavioral adaptations. This observation raises the question of how GCL output supports time series 123 
learning, a divergence from traditional classification tasks used in cerebellar models. To address this, we 124 
investigated how such naturalistic input patterns were transformed by the GCL to support learning time-125 
varying output patterns, such as those required for generating and correcting movements, or for producing 126 
predictions of sensory events (Fig. 1; Izawa et al. 2012). 127 
 128 
We created a simple model capturing the dominant circuit features of the GCL: sparse sampling of mossy 129 
fiber (MFs) inputs by postsynaptic granule cells (GCs) and coincidence detection regulated by cellular 130 
excitability and local feedforward inhibition (Figure 1A; Eq.1,2; Marr 1969; Albus 1971; Palkovits et al., 131 
1971; Chabrol et al., 2015). MF inputs are represented as smooth time-varying functions, i.e., as variable 132 
firing rates rather than spike trains. GC output is generated by summing MF inputs and thresholding the 133 
resultant sum; anything below threshold is set to zero while suprathreshold summed activity is passed on 134 
(minus the threshold) as GC output (Fig. 1A, center). The GC threshold level represents both intrinsic 135 
excitability and the effect of local feedforward inhibition on regulating GC activity. To model MF activity 136 
patterns, we sought a statistical ensemble that was rich enough to capture the dynamic nature of 137 
naturalistic inputs while remaining analytically tractable and easily parameterized. We chose to utilize the 138 
Ornstein-Uhlenbeck (OU) stochastic process, whose output is Gaussian and varies over an adjustable 139 
timescale. The statistics of an OU process can be fully characterized by just three parameters: mean, 140 
standard deviation, and correlation time; samples drawn from an OU process are shown in Fig. 1A (left, 141 
blue). Since the input to GCs is Gaussian in our model, the summed activity that is thresholded is 142 
Gaussian as well. For that reason, we found it convenient to define the GC threshold in terms of z-scores. 143 
Thus a GC with a threshold of “zero” would have its threshold set at the mean value of its MF inputs; 144 
such a GC would be silent 50% of the time on average because the Gaussian presynaptic input would be 145 
below the mean value half the time. This makes it possible to discuss functionally similar thresholds 146 
across varying network architectures (e.g., a GC with a threshold of zero would discard half of its input 147 
on average regardless of whether it received 2 or 8 MF inputs). Via this simple mechanism, our model 148 
GCL generates temporally sparse activity that could support learning by downstream P-cells (Fig. 1A, 149 
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right). Indeed, when subjected to this form of filtering, the resultant representation in the GCL population 150 
became spatiotemporally distinct at moderate thresholding levels (near 0, Fig. 1B, center). However, too 151 
little thresholding resulted in dense representation (Fig. 1B, left) while too much thresholding resulted in 152 
over-sparsening, leading to loss of representation in the temporal domain (Fig. 1B, right, arrows indicate 153 
loss of representation). The emergence of sparse spatiotemporal representation under the simplistic 154 
constraints of the model suggests that the cerebellum’s intrinsic circuitry is sufficient to produce 155 
spatiotemporal separation when given sufficiently time-varying inputs. 156 
 157 
 158 

 159 
Figure 1: Model architecture and effects of thresholding on GCL population activity.  160 
A. Diagram of algorithm implmentation. Left shows Ornstein-Uhlenbeck processes (see Methods) as 161 
proxies for mossy fiber (MFs, blue) inputs to granule cell (GCs, red) units, with convergence and 162 
divergence of MFs to GCs noted beneath MFs. GCs employ threshold-linear filtering shown beneath the 163 
red parallel fibers. GC outputs are then transmitted to downstream Purkinje cells (P-cells). P-cells learn 164 
to predict target functions based on summation of weighted GC inputs and differences between the 165 
prediction and true target are transmitted as an ‘error’, which determines the updates to the weights 166 
between GCs and P-cells.  B. Example unit GC population rates when threshold is -1.0, 0 and 1.0 167 
showing the gradual sparsening of GCL output. Arrows on 1.0 plot indicate regions of gaps in 168 
representation (lossiness) by the GCL population due to over-sparsening. 169 
  170 
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 171 
Figure 1, figure supplement 1: Example of basis set utility in learning. 172 
A. Diagram relating fictive GC activity (top) with resultant learning (bottom) using those fictive signals 173 
as the basis for learning. Target functions are shown in black and learned outputs with minimized error 174 
are shown in purple. Note that the best learning occurs with uniform, minimally overlapping GCs, tiling 175 
the epoch when the target signal is active (red lines; middle panel). 176 
 177 
GCL improves time series learning accuracy   178 
Next, we tested whether GCL population activity seen above assisted learning. We devised a learning task 179 
where P-cells learned to generate a specific time-varying activity pattern in response to the dynamic 180 
activity patterns generated by MFs, which better represents the tasks performed by the cerebellum than 181 
pattern classification. The target patterns that P-cells were tasked with generating were drawn from an OU 182 
process with an autocorrelation time of 10 ms (see Methods). P-cells initially produced output very unlike 183 
the target, but over repeated trials their output converged towards the target function (see Fig. 3A for 184 
example progression of learning). We compared this convergence of P-cell output to target when input 185 
activity was filtered through the GCL to performance the case when MF activity is sent directly to P-cells 186 
(“MFs alone”). The GCL enhanced convergence to target at thresholds between –1 and 1 (Fig. 2A), 187 
achieving a minimized mean squared error (MSE) of roughly 0.005 compared to 0.02 when using MFs 188 
alone. It may seem that the performance with MFs alone was still quite good, if slightly quantitatively 189 
inferior, when compared to the range of the target function (normalized to a range of [0,1]). Thus, to 190 
establish intuition into the practical difference of this range of MSEs, we tasked the model with 191 
recapitulating a complex image with an identical range of target function values (with identical range of 192 
[0,1], Fig. 2B). Importantly, the model GCL generated a recognizable image, with an MSE of 0.002 while 193 

experiments using MF alone generated an unrecognizable image with an MSE of 0.02. (The relative 194 
MSE, i.e. the ratio of GCL MSE to MFs alone MSE, was 0.08). Thus, this MSE range represented the 195 
difference between noise and easily recognizable images and text (Fig. 2B top right vs three thresholds, 196 
bottom). This principle was qualitatively true of abstract target functions used in OU input experiments as 197 
well (Fig. 3A for example target functions and estimations). Thus, the inclusion of the GCL in the 198 
filtering process greatly improves learning of complex functions by P-cells in this task, supporting an 199 
order of magnitude improvement in MSE of learned target functions compared to MFs alone. Importantly, 200 
this was not a consequence of the large population expansion between MFs and GCs, as increasing the 201 
number of MFs alone did not improve performance to the levels observed in the model GCL (Supp. Fig. 202 
2A), but a sufficiently large GCL population is required to improve learning (Supp. Fig. 2B).  203 
 204 
 205 
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  206 
Figure 2: Enhanced time series learning using GCL model.  207 
A: Relation between mean squared error (MSE) and threshold in a 50 MF, 3000 GC system, showing a 208 
significant reduction in error between a threshold of –1 and 1 for the learning model using GCL output 209 
(orange) compared to mossy fibers alone (blue). Transparent bounds represent standard deviation of 210 
learning outcome. Relative MSE of the GCL is shown on the right margin and represents the ratio of MSE 211 
for the GCL compared to MF alone. Values less than 1 indicate GCL outperforming MFs alone. B. An 212 
intuitive demonstration of the difference in the small MSE change produced by the MF-direct task, and 213 
the much clearer MSE produced by the GCL model used as input to P-cells. Panels show the outcomes of 214 
the same task with the target function being an image of a cat, with both handwritten and typeface text, 215 
and a 1- and 2-pixel width checkerboard (upper left corner). 216 

 217 
Figure 2, Figure Supplement 1: Effects of input and output population sizes on learning. 218 
A. Relation between the number of mossy fiber inputs and the resultant MSE, with MFs either inputted 219 
directly to P-cells (blue) or fed through 3000 GC unit model (red). B. MSE as a function of GC number 220 
compared to 50 MFs alone (blue). GC threshold fixed at 0 for these simulations. 221 
 222 
GCL model speeds time series learning 223 
Having found that the GCL improves the match between predicted output and target output over a range 224 
of thresholds, we next examined whether the structure also increased the speed of convergence. 225 
Examining the MSE between output and target on each trial as training progresses (Fig. 3C, red circles), 226 
we found that output usually converged rapidly at first then more slowly in later stages of training (Fig. 227 
3A). The reduction in MSE over training in our model was reasonably well fit by a double exponential 228 
(Fig. 3B, red curve), of the form 229 
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 230 

𝑀𝑆𝐸(𝑛) = 𝐴1 𝑒(−𝑘1 𝑛) + 𝐴2 𝑒(−𝑘2 𝑛) + 𝐶 231 

 232 
where n is the trial number. We measured the convergence speed of a simulation by the rate constants k1 233 
and k2. In the vast majority cases, one of these rate constants was 5-50 times larger than the other; we 234 
denote the larger constant kfast and the other kslow. For most parameter values, kfast accounts for more than 235 
80% of learning.  236 
 237 
We next examined the influence of key parameters on convergence speed. First, we looked at the effect of 238 
the GC threshold. Learning was fastest for GCL thresholds near zero (Fig. 3C, red circles), the level that 239 
filters out half of the input received by a GC. Convergence in networks that lack a GCL (MFs directly 240 
innervating P-cells) was consistently slower (Fig. 3C, blue line) than networks with a GCL. Convergence 241 
can also be sped up by increasing the size of the parameter jumps in synaptic weight space during 242 
gradient descent (the “step size”), but only to a limited degree (Supp. Fig. 3A). Indeed, at a GCL 243 
threshold of 0, convergence speed decreased as the step size size was increased beyond ~10-6 (au). We 244 
speculated that this trade-off was a consequence of a failure to converge in a subset of simulations. To test 245 
this, we looked at the fraction of simulations that converged towards a low MSE as a function of the 246 
update magnitude. We found that the fraction of simulations that converged (“fraction successful”) 247 
decreased with increasing step size (Supp. Fig. 3B); in simulations that did not converge, the MSE 248 
increased explosively and synaptic weights diverged. In such cases, we assume the large weight updates 249 
made it impossible to descend the MSE gradient; each network weight update drastically changed the cost 250 
function such that local MSE minima were overshot. When larger step sizes did permit convergence, 251 
progress was nevertheless slowed, likely because the relatively large learning rates led to inefficient 252 
progress towards the MSE minimum. 253 
 254 
Although larger step sizes eventually cause learning to slow and then fail entirely at a given GCL 255 
threshold, higher thresholds permitted larger step sizes before failures predominated (Supp. Fig. 3B). 256 
Since higher thresholds permit larger step sizes before convergence failure sets in, convergence speed 257 
might be maximized by jointly optimizing step size and GCL threshold. We tested this by systematically 258 
raising step sizes at each threshold until convergence success fell to 50%. We defined the “maximum 259 
convergence rate” for a given threshold as the maximum convergence rate (derived from fitting the MSE 260 
trajectory with a double exponential) yielding successful convergence at least 50% of the time. We found 261 
that the threshold giving the fastest convergence was indeed higher when step size was also optimized 262 
(Supp. Fig. 3B) than when step size was fixed (Fig. 3C). Thus, increased GCL thresholding can allow the 263 
network to trade learning accuracy for increased speed of learning.  264 

 265 
Figure 3. Learning speed increases with GCL. 266 
A. Example of learned predictions after 1,5, and 50 trials of learning, with predictions in red and target 267 
function in black. B. Example learning trajectory of MSE fit with a double exponential. Black circles: 268 
MSE of network output on each trial. Red line: double exponential fit MSE during learning. Here, step 269 
size was 10-6 and z-scored GCL threshold was 0. We use the exponents k from the exponential fit to 270 
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measure learning speed. C. Learning speed as a function of GCL threshold (red dots). Blue line: learning 271 
speed in networks lacking GCL, i.e. mossy fibers directly innervate output Purkinje unit, gradient descent 272 
step size was 10-6.  273 

 274 
Figure 3, figure supplement 1: Effects of gradient descent step size on learning speed. 275 
A. Learning speeds (exponential time constant) for different simulations using varying gradient descent 276 
step sizes, showing differentially maximized learning speeds occurring at different step sizes. B. Fraction 277 
of simulations that converge to asymptotic MSE values as a function of gradient descent step sizes for 278 
different values of GCL threshold (colors denote threshold values). Note that larger step sizes and faster 279 
learning are supported in models with higher thresholds.  280 
 281 
 282 
 283 
Recovering GCL input from GCL output 284 
Having established a framework for studying GCL processing of naturalistic inputs, we wanted to 285 
understand to what extent thresholding GCL activity led to the loss of information supplied by MF inputs, 286 
which potentially contains useful features for learning. In other words, would Purkinje neurons be 287 
deprived of behaviorally relevant mossy fiber information if these inputs are severely filtered by the 288 
GCL?  To assess this issue, we used a metric of information preservation called explained variance, 289 
(Achen 1982); however, in this special case, we use the term ‘variance retained’, because this metric 290 
represents the preservation of information about the input after being subjected to filtering in the GCL 291 
layer. Let xt denote the MF input at time t. If the GCL activity preserves the information present in xt, then 292 
it should be possible to reconstruct the activity of MFs from GCL activity (see Methods for details on 293 
how this reconstruction was performed). The variance retained is then the mean squared error between the 294 
actual MF input xt and the reconstructed input, normalized by the MF input variance: 295 
 296 

𝑅2 = 1 −
∑𝑡=1

𝑇 〈(𝑥𝑡̂ − 𝑥𝑡)2〉

∑𝑡=1
𝑇 𝑉𝑎𝑟[𝑥𝑡]

 297 

 298 

Our primary finding is that the GCL transmits nearly all of the information present in the MF inputs even 299 
at fairly high thresholds, but only if the GCL is sufficiently large relative to the MF population. The 300 
threshold, feedforward architecture, and relative balance of MF inputs and GC outputs all affect the 301 
quality of the reconstruction. Variance retained by the reconstruction layer decreased with the GC layer 302 
threshold, since it masked some subthreshold input values (Fig. 4B). Allowing more MF inputs per GC 303 
recovered some of this masked information, since some subthreshold values are revealed through 304 
summing with sufficiently suprathreshold values. However, these gains cease beyond a few MF inputs 305 
per GC, since the exponential growth of MF combinations rapidly exceeds the number that the GCs can 306 
represent (Marr 1969; Gilmer and Person 2017). 307 
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 308 
To disentangle the information contained in the summed inputs, many different combinations of inputs 309 
must be represented to disambiguate the contributions of each MF input. Increasing the number of GCs 310 
generally increases the variance retained, since more combinations of MF inputs are represented, and 311 
reveal subthreshold input values (Fig. 4C). Interestingly, variance retained by the network varied non-312 
monotonically with the number of MF inputs (M) when the number of GCs (N) was fixed. This is because 313 
having too few MF inputs means there may not be a sufficient number of combinations so that 314 
subthreshold values can be revealed (by summing them with suprathreshold inputs) but having too many 315 
saturates the information load of the GC layer (Fig. 4D). Lastly, when fixing the number of MF inputs 316 
and GCs, there is an optimal number of MF inputs to each GC, which aligns with the anatomical 317 
convergence factor of 4 MF/GC (Fig. 4E), related to previous findings that suggest the best way to 318 
maximize dimensionality in the GC output layer is to provide sparse input from the mossy fibers (Litwin-319 
Kumar et al., 2017; Cayco-Gajic et al., 2017). Thus, there are two key features that shape the information 320 
transferred to the GCL from the MF inputs. First, the way in which MF inputs are combined to form the 321 
total input to each GC determines how much information about subthreshold inputs can be transferred 322 
through the nonlinearity. Second, the total number of GC outputs determines how many MF input 323 
combinations can be represented, so that, ultimately, the random sums of MFs can be disentangled by the 324 
downstream reconstruction layer. Together, information transfer requires a combined summation and 325 
downstream decorrelation process accomplished by the three layer network.  326 
 327 

 328 
Figure 4: Recovering inputs with an optimal linear readout.  329 
A. Network model schematic. Granule cell (GC, red, center) layer thresholds the sum of (4 here) 330 
randomly chosen mossy fiber (MF, black, left) inputs, which are then fed into a reconstruction layer 331 
which uses the optimal weighting from all N GCs to approximate each of the M inputs (compare blue 332 
readouts to grey inputs). B.  Increasing the threshold of the GC layer (N=500 outputs) decreases the 333 
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explained variance (i.e. variance retained) of the best reconstruction layer (M=50), but the effect is 334 
reduced with an intermediate number of MF inputs per GC. C. Variance retained increases with the ratio 335 
of GCs per MF but gains from increasing the number of inputs to each GC are limited (max at 4 inputs). 336 
Here there are M=50 MF inputs at the threshold = 0. D. For a fixed number of GC outputs N, there is an 337 
optimal number of MF inputs (M) for which the variance retained of the reconstruction layer is 338 
maximized. E. i. For a fixed number of GC outputs N and MF inputs M=50, there is an optimal number of 339 
inputs per G (around 4) for maximizing variance retained. ii. Same as i, but with each value normalized 340 
to its maximum to show maximized values at inputs = 4. 341 
 342 
General statistical features of GCL population activity 343 
To better relate the present model to previous theoretical studies we looked at a variety of population 344 
metrics to help explain how signal filtering by the GCL improves cerebellar learning and why it 345 
ultimately fails as the GC threshold is increased. 346 
 347 
The first set of metrics related to pattern separation: dimensionality (Dim), the number of explanatory 348 
principal components (PCs), spatiotemporal sparseness (STS), and population variability (See methods 349 
for details). (Although STS is a measure of sparseness, it represents an idealized form of separability 350 
where GCs represent unique temporal epochs that do not overlap, providing a perfect basis set when 351 
maximized, thus is grouped with pattern separation metrics). Dim, PCs, and STS showed non-monotonic 352 
relationships with threshold and peaked at thresholds ranging between 0.5 and 1.5 (Fig. 5 A, B), while 353 
population variability decreased with increasing thresholds (Fig. 5C). Intuitively, this relationship 354 
captures the effect of low thresholds allowing GC activity to relay the mean input, with no pattern 355 
separation occurring, and thus minimizing pattern separation metrics. With increasing threshold, GC 356 
activity is driven by coincidence detection leading to high dimensional population output. At high 357 
thresholds, inputs rarely summate to threshold, leading to lost representation that drives a roll-off in 358 
pattern separation within the population. Notably, Dim, PCs, and STS peaked at thresholds greater than 359 
peak learning performance, which was optimized at threshold zero, thus none of these three pattern 360 
separation metrics alone account for learning performance. Population variability (i.e. GCL variance per 361 
unit) is thought to aid classification and separability of GCL output (Cayco-Gajic et al., 2017). This 362 
metric’s decrease with increasing threshold was likely due to the decrease in overall representation by 363 
each unit due to sparsening and diminishing the dynamic range of GC rates due to threshold subtraction 364 
(Fig. 1, Fig. 5C). 365 
 366 
The second set of metrics are related to sparse representations: temporal sparseness and spatial 367 
sparseness. Temporal sparseness – defined by the exponential decay of GC autocovariance, where smaller 368 
values typify signals that change quickly with time -- decreased as a function of threshold because of 369 
sparsened representation at higher thresholds (Fig. 5D). The mean pairwise GC correlation, (Fig. 5E) i.e. 370 
spatial sparseness, shared a drop-off after a threshold of 0, but increased again at high thresholds because 371 
only a few MF signals were retained at high threshold and thus were highly correlated. By experimental 372 
design, decorrelation was already maximized in OU inputs. Similar to the pattern separation metrics, 373 
these sparseness metrics did not show an obvious relationship to the U-shaped learning performance seen 374 
in Fig. 2A. 375 
 376 
Finally, we examined three metrics of lossiness defined to quantify (1) the fraction of the total epoch with 377 
no activity in any GC unit (e.g. with “temporal lossiness” of 0.1, 10% of the total epoch has no activity in 378 
any GCs) (2) the proportion of granule cells with any activity over the entire epoch (“population 379 
lossiness”) (3) the mean fraction of the epoch in which each granule cell is active (“temporal cover”). Not 380 
surprisingly, each lossiness metric increased with high thresholds (Fig. 5F). However, despite diminishing 381 
activity in individual GCs with increasing threshold, (the blue curve Fig. 5F), each GC was resistant to 382 
becoming completely silent (green curve drop, Fig. 5F), owing to a few dominant inputs. 383 
 384 
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Notably, none of these metrics alone obviously tracked the U-shaped learning performance (Fig. 2A). 385 
However, collectively, these descriptive statistics of model GCL population activity set the stage for 386 
analyzing how information preprocessing by the basic GCL architecture relates to learning time series, 387 
explored below. 388 
 389 

 390 
Figure 5: Statistical features of GCL output.  391 
A. GCL dimensionality (red) and MF dimensionality (blue) as a function of threshold. Note peak near a 392 
threshold of 1 for the GCL. B. Two metrics of pattern separation in GCL output -- STS (light orange) and 393 
PCs (dark orange) -- as a function of threshold. Note peaks near 1.5 and 0.5, respectively. C. The sum of 394 
GCL variance produced by the model as a function of threshold. Note monotonic decrease with threshold. 395 
D. Temporal sparseness as a function of thresholding. Note monotonic decrease in GCL with 396 
thresholding. E. Mean pairwise correlation of the population plotted as a function of threshold. Note 397 
trough near 1. F: Three forms of lossiness in GCL output as a function of threshold. Each metric had 398 
differential sensitivity to thresholding but note that all decrease with increasing threshold. Across 399 
metrics, function maxima and minima ranged widely and were not obviously related to thresholds of 400 
optimized learning. 401 
 402 
 403 
Optimization of learning through GCL transformations 404 
With the knowledge that thresholding drives changes both in learning time series (Fig. 2, 3) and GC 405 
population metrics that are theorized to modulate learning (Fig. 4, 5), we next directly investigated the 406 
relationships of these metrics to learning performance. To test this, we used a LASSO regression method 407 
to identify learning performance-driving variables taken from the metrics described in Figures 4 and 5 408 
(Fig. 6A, C).  Using the output of the LASSO model, we found that a three-term model using the most 409 
explanatory variables -- STS, the number of explanatory PCs and variance retained (Fig. 6B, C, D) -- 410 
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accounted for 91% of learning variance. The three-term model performance is plotted against the 411 
observed MSE over a range of thresholds in Fig. 6D, showing strong similarity. 412 
 413 
These results were somewhat surprising given prior studies showing benefits of population sparseness or 414 
decorrelation to learning. To interrogate this seeming disparity, we introduced fictive GCL population 415 
activity that had specific statistical features as inputs to P-cells. Consistent with previous reports, 416 
decorrelation and temporal sparseness improved learning accuracy, with complete decorrelation and 417 
temporally sparse supporting the best performance (Fig. 6 - figure supplement 1; Cayco-Gaijic et al., 418 
2018). Thus, on their own, population, temporal and idealized spatiotemporal sparseness do modulate 419 
learning when their contribution is independent, but these features nevertheless do not emerge as features 420 
in the naturalistic GCL model as statistical properties that drive performance of time series. This property 421 
is a consequence of temporal sparseness and decorrelation covarying with lossiness (captured by the 422 
variance retained metric), which drives down performance. Rather, the statistical features produced by the 423 
model GCL with naturalistic inputs that best explain learning are the number of explanatory PCs, STS, 424 
and the amount of input variance retained -- metrics that may align well with recently described GC 425 
population activity during locomotion (Lanore et al., 2021). 426 
 427 

 428 
Figure 6. Relationship between sparseness metrics and MSE. 429 
A. LASSO regression model selection as a function of progression of the Lambda parameter (penalty 430 
applied to regressor selection). The removal of regressors with increasing Lambda (red steps) selected 431 
from the following potential regressors: dimensionality (Dim.), spatiotemporal sparseness (STS), 432 
explanatory principal components of the GC population (PCs), population variability (Pop. Var.), spatial 433 
sparseness (S. Sparse.), temporal sparseness (T. Sparse.), temporal lossiness (T. Loss.), population 434 
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lossiness (P. Loss), and input variance retained (Var. Ret; Figure 4). Arrow shows selection point of 435 
LASSO regression MSE using “1SE” (1 standard error) method (see Methods, purple lines, black dot and 436 
arrow indicating the selected model, with red arrow showing selection point in the parameter reduction 437 
plot, red). B. Relationship between LASSO model (predicted relative MSE) against the observed relative 438 
MSE (ratio of GC MSE to MF alone MSE) with fit line and variance explained by regression (R2 = 0.91) 439 
C. Regression slopes of the selected LASSO model from A, showing that STS, PCs, and Input Variance 440 
Retained are the selected regressors, with Var. Ret. being the largest contributing factor. All factors 441 
normalized to a normal distribution for comparison. D. The output of the selected model and the observed 442 
MSE plotted against threshold for a comparison of fits, demonstrating high accuracy in the 0-2 range, but 443 
less accuracy in the -2-0 range. 444 
 445 

 446 
Figure 6 figure supplement 1: GC population statistics regulate learning accuracy when independently 447 
controlled. Fictive population activity with structured statistics were introduced to P-cells to explicitly 448 
test the roles of population decorrelation and structured spatiotemporal sparseness on learning. A-B: 449 
Learning performance (MSE) as a function of temporal sparseness (i.e. autocovariance tau) or spatial 450 
sparseness (i.e. population correlation). Red dots on A and B indicate values used for input model to GCL 451 
in Figs 2, 5, and 6. C: Matrix of effects on MSE when modulating temporal spareness via tau, and spatial 452 
sparseness via population correlation. Lower values for both (cooler colors) indicate the best learning 453 
accuracy. D: The results of these analyses support the idea that GCL filtering benefits learning through 454 
transformation of statistical structure fed to the P-cell. A remaining caveat was that the number of 455 
granule cells far exceeded the number mossy fibers, raising the question of whether the learning 456 
advantage conferred by the GCL is merely a consequence of this difference. To test this, we fed MFs 457 
directly to the P-cell units and varied their numbers between ranges of 2 to 3000. While learning 458 
accuracy improved with more MFs, asymptotic MSE values were lower than the GCL, indicating that the 459 
filtering properties of GCL are indeed important for this learning task. Figure plots the MSE as a 460 
function of the number of inputs to Purkinje cells, showing that too few MFs are insufficient to produce 461 
accurate learning, but having a large number makes little difference beyond 101.5 ~= 31 MFs. E: To test 462 
how the uniqueness of individual unit activity across time contributes to learning we selected population 463 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 6, 2022. ; https://doi.org/10.1101/2022.01.06.475265doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.06.475265
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

activity that varied in STS from a bank of simulations. Two distribution structures were tested. The first 464 
maximized granule cell uniqueness in time and temporal organization – e.g. each granule cell is active 465 
only once during the epoch and only one granule cell is active at a given time, such that the population 466 
histograms resemble a ‘staircase’ (“ideal STS basis”). Overlap of active granule cells drives decreases in 467 
computed STS, or wider steps in the staircase (“temporally linked overlap”). The second class of STS 468 
maximized uniqueness without requiring temporal organization – e.g. any slice of time is unique, but an 469 
individual granule cell can occupy an arbitrary number of time bins (“stochastic overlap”). STS drops 470 
when a given granule cell activity occupies more time bins, reducing the uniqueness of the granule cells 471 
contribution to the population. Figure shows schematic diagram of these different types of spatiotemporal 472 
sparseness, with structured overlap “temporal overlap” and “stochastic overlap” illustrating different 473 
ways populations could differ. F: Effect of STS on MSE, where overlap between units is always local to a 474 
particular time point, so that units are only active at a particular continuous temporal range, showing a 475 
monotonic decrease in error as STS approaches 1. G: Same as F, but the temporal location of overlap 476 
between units is random, showing best learning accuracy at STS = 1, and good but less accurate learning 477 
at STS = 0. When overlap was decoupled from time in the stochastic overlap case, error was reduced at 478 
both maximal and minimal STS simulations with the highest error occurring at intermediate STS values. 479 
This may be because the gradient descent algorithm is able to use dense, variable signals, like those seen 480 
in very low STS value GCL outputs, to learn essentially as well as the high STS values which have strong 481 
isolation in individual unit representation and are guaranteed to be good for learning. 482 
 483 
 484 
GCL properties that enhance learning in naturalistic tasks 485 
Together, these models suggest that the GCL can reformat random inputs suitable to support rapid and 486 
accurate learning of time-series. The real cerebellum is topographically organized along multiple 487 
parasagittal output modules (Apps and Garwicz, 2005; De Zeeuw, 2020). This organization suggests 488 
segregated afferents with specific statistical structure could refine specific behaviors. To examine whether 489 
different population statistical features might support distinct learning tasks, we utilized the model to 490 
perform a series of naturalistic cerebellar tasks: vestibulo-ocular reflex (VOR) phase adaptation (Ito et al. 491 
1974), temporal interval learning (Narain et al., 2018) and kinematic encoding (Herzfeld et al., 2015).  492 
 493 
We speculated that the nature of these tasks might influence the contribution of components of the model 494 
to learning accuracy. For example, when VOR is kept in phase, it makes intuitive sense that retention of 495 
vestibular input, inherently in-phase with the motor output, would be valuable, with reweighting of GC 496 
representations of inputs giving rise to amplitude learning as in VOR gain adaptation. However, if the 497 
phase is offset, the relationship between vestibular input and ocular output requires complex mapping 498 
(Fig. 7A, top middle inset) and selection of GCs representing sparsened OU processes may be selected 499 
instead to allow for reconstruction from high-dimensional outputs. The GCL model supported learning of 500 
VOR at all phases, but MFs showed especially poor performance in pi/2 phase shifts (Fig. 7A, ‘out-of-501 
phase’). As a result of this reliance on GCL reformatting, we predicted that the contribution of ‘variance 502 
retained’ to learning should decrease depending on the phase shift. In other words, the extent to which the 503 
input was inherently related to the output would be of scalable importance. We tested the relationship of 504 
input variance retention and phase offset using RIDGE regression (which preserves even small 505 
contributions of regressor variables to the model in comparison to LASSO) and found that for in-phase 506 
and anti-phase learning input variance retention accounted for most of learning, reflected in large slope 507 
coefficients, whereas input retention decreased as an important variable in out-of-phase learning, with 508 
shallow slope coefficients (Fig. 7B). Furthermore, the relative magnitude of the slope magnitude of 509 
variance retrained is reduced in out-of-phase conditions compared to in-phase and anti-phase (Fig. 7C). 510 
This suggests that the learning rule can utilize information preserved by the GCL, as in in-phase learning, 511 
but, if necessary, it can learn using information that is so highly reformatted that it no longer retains the 512 
original vestibular information. 513 
 514 
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Cerebellar timing tasks, such as delay eyeblink conditioning, involve time estimation over intervals 515 
spanning 100-500 ms. Models of delay eyelid conditioning suggested that the cerebellum represents the 516 
time interval through decomposition of an invariant signal into many signals that tile across time. This 517 
hypothesis provides an interesting test of whether lossiness differentially affects behavioral outcomes 518 
depending on whether short or long intervals are being estimated, defined here as the duration of an ‘on’ 519 
signal. If we assume that an ideal temporal basis (akin to the ‘staircase’ representation in Fig 6 - figure 520 
supplement 1E) represents different points in time of the stimulus, one might speculate that lossiness in 521 
populations representing long intervals would be more detrimental than in populations representing short 522 
intervals -- given that only the temporally aligned subsection of the input is relevant to the output 523 
response and the rest is discarded or ignored. We tested this prediction by systematically altering the 524 
length of a step target function to occupy 0% to 100% of the response epoch using OU processes as 525 
inputs. The model using a GCL was able to perform this task more accurately than with MF inputs alone 526 
(Fig 7D), and the magnitude of slope for lossiness-related metrics increased with interval duration (Fig. 527 
7E), suggesting that learning short intervals is less sensitive to lossiness than learning long intervals. The 528 
relative contribution of lossiness metrics to the overall regression performance also increased with step 529 
duration compared to PCs (Fig. 7F), suggesting that lossiness-related metrics have a more powerful 530 
influence on learning outcomes as a function of increasing duration that is not true of pattern separation 531 
metrics like PCs. 532 
 533 
We next asked whether naturalistic input statistics, derived from electromyogram (EMG) signaling, could 534 
support learning. We used EMG signals from human subjects in a point-to-point reaching task as MF 535 
inputs, and tested whether the model could learn associated limb kinematics from this input (Fig. 7G; 536 
Delis et al. 2018; Tseng et al. 2007; Miall and Wolpert 1996; Wolpert et al., 1998). The GCL was able to 537 
produce more accurate predictions of the kinematics when compared to the EMG as MF inputs alone, and 538 
the range of thresholds which produced the best accuracy were comparable to the previous findings (Fig. 539 
3A), but were slightly negatively shifted, suggesting retained variance of inputs might be beneficial to 540 
learning kinematics from associated muscle activity. 541 
 542 
Finally, since EMGs used as MF inputs to the model had some level of baseline utility in predicting 543 
kinematics based on their intrinsic relationships, (reflected in MFs alone MSE varying between 0.04 and 544 
0.22), we next asked whether this influenced which features of the GCL output were most related to 545 
learning. In keeping with intuition, when MF based learning was excellent (low MSE), the slope of the 546 
variance retained metric was highest (Fig. 7H, I, blue). Conversely, when MF based learning was poor 547 
(high MSE) variance retained slopes dropped. Interestingly, a few GCL population metrics became more 548 
important for learning as MF MSE worsened, such as the number of explanatory PCs (Fig. 7H, I, 549 
maroon). Together this suggests that different pattern separation features of GCL reformatting may serve 550 
learning under different conditions, with Purkinje cells using diverse ‘pattern separation’ features 551 
depending on the task and input statistics. When intrinsic relationships are valuable, variance retained is 552 
an important population statistical feature; when they are more arbitrary, pattern separation features are 553 
more valuable for learning relationships between the inputs and output. This shifting landscape was a 554 
general feature of our models (Fig. 6 & 7), suggesting that “pattern separation” by the GCL is not one 555 
universal transform that has broad utility. This observation raises the possibility that regional circuit 556 
specializations within the cerebellar cortex, such as density of unipolar brush cells (Dino et al. 2000), 557 
Golgi cells, or neuromodulators could bias GCL information reformatting to be more suitable for learning 558 
of different tasks. 559 
 560 
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  561 
Figure 7. Task-dependent relationships between granule cell population statistics and learning.   562 
A. Task structure of a phase-offset VOR-like task (top) and learning performance as a function of phase-563 
offset for GCL and MFs alone (bottom). Here, the phase between the input function and the target 564 
function varies between 0 and pi. GCL (red) or MFs alone (blue) were used as inputs to learn the task. As 565 
the difference in phase between inputs and targets approaches pi/2 (out of phase), performance from MF 566 
alone degrades while GCL performance remains accurate and stable. B. RIDGE regression slopes of the 567 
input variance retained (Var. Ret.) metric as a function of phase offset. Variance retained slope is large 568 
when phase offset is in the ‘in phase’ and ‘anti-phase’ regions of the task, but is otherwise minimized, 569 
suggesting that the utility of this statistical feature varies depending on task. C. Same data as B but 570 
normalized to show the relative proportion of all slope magnitudes accounted for by Var. Ret. (slope 571 
magnitude of Var. Ret divided by the sum of all slope magnitudes). Var. Ret. is a primary regressor for ‘in 572 
phase’ or ‘anti-phase’ learning. D. Task structure (top) and learning performance (bottom) of an interval 573 
estimation task, where the model is tasked with learning a step function that varies in length. GCs (red) 574 
and MFs alone (blue) were used as inputs to the P-cell. As the interval lengthens, learning using MFs 575 
alone was generally poorer than using the GCL. E. RIDGE regression slopes of 4 variables (Var. Ret., T. 576 
Loss, P. Loss, PCs) as a function of step length, showing that slopes of lossiness-related metrics (P. & T. 577 
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Loss, and Var. Ret.) increase in magnitude as the step length increases, whereas slope magnitude of PCs 578 
decreases. F. Same as E but showing the relative proportion of all slopes accounted for by these 4 579 
regressors. G. Schematic of underlying dataset using recorded EMG as an input to the model GCL to 580 
predict kinematics (top). Learning performance of model using EMG alone (MFs; blue) or GCL (red) 581 
across varying thresholds. The GCL outperforms MFs alone at a threshold range similar to that observed 582 
in Fig. 2. H. RIDGE regression slopes of Var. Ret and PCs metrics as a function of the learning 583 
performance achieved by using MFs (i.e. EMG) alone, showing that Var. Ret. is a stronger driver of 584 
performance when MFs alone supported accurate learning, but not when MFs alone supported poor 585 
learning (higher MSE). PCs show the opposite trend, increasing in slope magnitude when MFs alone 586 
supported poor learning. I. Same as H, but showing the relative proportion of slope magnitude accounted 587 
for by Var. Ret. and PCs. 588 
  589 
 590 
Discussion 591 
Here we asked a simple question: how does the cerebellar granule layer support temporal learning? This 592 
question has captivated theorists for decades, leading to a hypothesis of cerebellar learning that posits that 593 
the GCL reformats information to best suit associative learning in Purkinje cells. Recent work has called 594 
many of these foundational ideas into question, however, including whether GCL activity is sparse; high 595 
dimensional; and what properties of ‘pattern separation’ best support learning (Wagner et al., 2017; 596 
Giovannucci et al., 2017; Knogler et al., 2017; Cayco-Gajic et al., 2017; Gilmer and Person 2017). To 597 
reconcile empirical observations with theory, we hypothesized that input statistics and task structures 598 
influence how the GCL supports learning. Here, we used naturalistic time-varying inputs to a model GCL 599 
and identified pattern separation features that supported learning a time series prediction task, with an 600 
arbitrary but temporally linked input-output mapping, recapitulating important features of physiological 601 
cerebellar learning tasks. This formulation eliminates the possibility of trivial dimensionality changes 602 
improving classification performance, thus approaching naturalistic challenges faced by the real circuit. 603 
Several important observations stemmed from these simulations: (1) with naturalistic input statistics, the 604 
GCL produces temporal basis sets akin to those hypothesized to support learned timing with minimal 605 
assumptions; (2) this reformatting is highly beneficial to learning; (3) maximal pattern separation does not 606 
support the best learning; (4) rather, tradeoffs between loss of information and reformatting favored best 607 
learning at intermediate network thresholds; and finally (5) different “cerebellar” tasks utilized different 608 
GCL population statistical features to optimize performance. Together these findings provide insight into 609 
the granule cell layer as performing pattern separation of inputs that transform information valuable for 610 
gradient descent-like algorithms (akin to Purkinje cell learning rules), but with idiosyncratic population 611 
statistics supporting different tasks. This observation makes predictions about the regional specifications 612 
that occur across the layer that may specially subserve diverse behaviors. 613 
 614 
Emergence of spatiotemporal representation and contribution to learning 615 
A perennial question in cerebellar physiology is how the granule cell layer produces temporally varied 616 
outputs that could support learned timing (Mauk and Buonomano 2004). While cellular and synaptic 617 
properties have been shown to contribute (Chabrol et al., 2015; Duguid et al, 2012; Guo et al., 2021; 618 
Crowley et al., 2009; Rudolph et al., 2015; Buonomano and Mauk 1994; Kanichay and Silver 2008; 619 
Simat et al., 2007; Mapelli et al., 2009; Rossi et al., 1996; Gall et al., 2005; Armano et al., 2000; Rizwan 620 
et al. 2016; Tabuchi et al., 2019; D’Angelo and De Zeeuw 2009), we observed that with naturalistic 621 
inputs, temporal basis set formation is a robust emergent property of the threshold-linear input-output 622 
function of granule cells receiving multiple independent time-varying inputs (Fig. 1B). But is this 623 
reformatting beneficial to learning? We addressed this question by comparing learning of a complex time-624 
series in model Purkinje cells receiving either mossy fibers alone or reformatted output from the GCL. 625 
We found that indeed the GCL outperformed MFs alone in all tasks (Figs. 2, 3, 7). Nevertheless, we 626 
wondered what features of the population activity accounted for this improved learning. While 627 
sparseness, decorrelation, dimensionality and lossless encoding have been put forward as preprocessing 628 
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steps supporting learning, we found that none of these alone accounted for the goodness of model 629 
performance. Rather, disparate pattern separation metrics appear to strike a balance between maximizing 630 
sparsenesses without trespassing into lossy encoding space that severely, and necessarily, degrades 631 
learning of time-series. 632 
 633 
Moreover, the value of different population metrics to learning varied with the specific task -- with some 634 
tasks relying on input retention for best performance, others relying on absence of lossiness, and some 635 
requiring pattern separation to accomplish accurate predictions (Fig. 7). For instance, when input statistics 636 
are well suited to learning the specific task, as in in-phase VOR, preservation of input variance drives best 637 
performance (Fig. 7A-C). Importantly, although the properties of the GCL selected to improve learning 638 
varied across tasks, the underlying architecture of the GCL and thresholding did not. This suggests that 639 
the output of the GCL is well structured to support a variety of tasks. Thus, Purkinje cells are able to 640 
make use of a spectrum of information formats that, depending on task requirements, are selected to serve 641 
best learning. 642 
 643 
These observations are interesting in light of a long history of work on granule layer function. Marr, 644 
Albus, and others proposed that the granule cell layer performs pattern separation useful for classification 645 
tasks. In this framework, sparseness is the key driver of performance, and could account for the vast 646 
number of granule cells. Nevertheless, large-scale GCL recordings unexpectedly showed high levels of 647 
correlation and relatively non-sparse activity (Wagner et al., 2017; Giovannucci et al., 2017; Knogler et 648 
al., 2017).  Despite methodological caveats, alternate recording methods seem to support the general 649 
conclusion that sparseness is not as high as originally thought (Lanore et al. 2021; Kita et al., 2021; 650 
Gurgani and Silver 2021). Indeed, subsequent theoretical work showed that sparseness has deleterious 651 
properties (Cayco-Gajic et al., 2017; Billings et al., 2014), also observed in the present study, that may 652 
explain dense firing patterns seen in vivo. Here we found that the best learning occurred when individual 653 
granule cell activity occupied around half of the observed epoch (Fig. 5F, blue trace), achieved with 654 
intermediate thresholding levels. We also observed temporal organization that is consistent with the firing 655 
patterns observed in vivo. While these findings seem to suggest that sparseness is not the ‘goal’ of GCL 656 
processing, our findings and others (Litwin-Kumar et al., 2016; Cayco-Gajic et al., 2017) suggest that 657 
pattern separation broadly is a positive modulator of GCL support of learning processes. 658 
 659 
Previous work (Sanger et al., 2020) proposed that time-series prediction was possible with access to a 660 
diverse set of geometric functions represented in the GC population. However, that study left open the 661 
question of how such a diverse collection of basis functions would emerge. The GCL model used here 662 
minimized free parameters by incorporating very few independent circuit elements, suggesting that a 663 
single transform is sufficient to produce a basis set which is universally able to learn arbitrary target 664 
functions. We used a simple threshold-linear filter with a singular global threshold that relied on sparse-665 
sampling to produce spatiotemporally varied population outputs. This simple function worked to support 666 
learning at a broad range of inputs and thresholding values, ultimately allowing the Purkinje cells 667 
downstream to associate the spatiotemporally sparser inputs with feedback to learn arbitrary, and often 668 
quite difficult, target functions. The emergence of this basis set is remarkable given the very simple 669 
assumptions applied, but is also physiologically realistic, given the simple and well characterized 670 
anatomical properties of the MF divergence and convergence patterns onto GCs, which are among the 671 
simplest neurons in the brain (Jakab and Hamori, 1988; Palay and Chan-Palay, 1974; Palkovits et al., 672 
1971). Although we suggest that the key regulator of thresholding in the system is the feedforward 673 
inhibition from Golgi cells, many factors may regulate the transformation between input and GC output in 674 
the network, allowing for multiple levels and degrees of control over the tuning of the filter or real 675 
mechanism that controls the outcomes of GCL transformations. Golgi cell dynamics may prove critical 676 
for enforcing the balance between pattern separation metrics and lossy encoding (Hull 2020) thus are 677 
critical players in mean thresholding found here to optimize learning. Additional mechanistic 678 
considerations may also play a role, including short-term synaptic plasticity (Chabrol et al. 2015) and 679 
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network recurrence (Gao et al. 2016; Houck and Person 2014; 2015; Judd et al., 2021), allowing for a 680 
more nuanced and dynamic regulatory system than the one shown here. 681 
 682 
Recapturing input information in the filtered GCL output 683 
Two schools of thought surround what information is relayed to Purkinje cells through GCs. Work in the 684 
oculomotor cerebellum and flocculus suggests that Purkinje cells inherit virtually untransformed 685 
information encoding eye velocity and visual motion, integrated in P-cells as positional signals (Herzfeld 686 
et al., 2020; Krauzlis and Lisberger, 1991). Alternatively, the implication of theories of Marr and Albus 687 
suggest that input information is so sparsened that Purkinje cells receive only a small remnant of the 688 
sensorimotor information sent to the cerebellum. These divergent views have never been reconciled to our 689 
knowledge. We addressed this disconnect by determining the fraction of MF input variance recoverable in 690 
GCL output. Interestingly, the GCL population retains sufficient information to recover more than 90% 691 
the input variance despite filtering out 50% or more of the original signal (Fig. 4). This information 692 
recovery is achieved at the population level and thus requires sufficient numbers of granule cells so that 693 
the subset of signals that are subthreshold are also super-threshold in other subsets of GCs through 694 
probabilistic integration with other active inputs. While variance recovery is not a true measure of mutual 695 
information, it is indicative of the utility that the intersectional filtering performed by the GCL. The 696 
expansion of representations in the GCL population achieved by capturing the coincidence of features in 697 
the input population creates a flexible representation in the GCL output that has many beneficial 698 
properties, including the preservation of information through some degree of preserved mutual 699 
information between the GCL and its inputs.  700 
 701 
Enhanced learning speed 702 
Our model not only improved learning accuracy, but also speed, compared to MFs alone (Fig. 3). Both 703 
learning speed and accuracy progressed in tandem: threshold parameter ranges that enhanced overall 704 
learning speed also minimized mean squared error, suggesting that speed and accuracy are enhanced by 705 
similar features in GCL output. Learning speed was well described by a double exponential function with 706 
a slow and fast component. This dual time course in the model with only one learning rule is interesting 707 
in light of observations of behavioral adaptation that also follow dual time courses (Herzfeld et al., 2014; 708 
Smith et al., 2006). Some behavioral studies have postulated that these time courses suggest multiple 709 
underlying learning processes (Yang and Lisberger, 2014). Our model indicates that even with a single 710 
learning rule and site of plasticity, multiple time-courses can emerge, presumably because when error 711 
becomes low, update rates also slow down.   712 
 713 
Another observation stemming from simulations studying learning speed was that the behavior of the 714 
model varied as a function of the learning ‘step size’ parameter of the gradient descent method (Fig 3 – 715 
Fig. Supplement 1). The step size -- ie. the, typically small, scalar regulating change in the weights 716 
between GCs and P-cells following an error -- determined the likelihood of catastrophically poor learning: 717 
when the step size was too large, it led to extremely poor learning because the total output ‘explodes’ and 718 
fails to converge on a stable output. Nevertheless, the model tolerated large steps and faster learning 719 
under some conditions, since the threshold also influenced the likelihood of catastrophic learning. 720 
Generally, higher thresholds prevented large weight changes from exploding, suggesting that sparse 721 
outputs may have an additional role in speeding learning by supporting larger weight changes in Purkinje 722 
cells. Indeed, appreciable changes in simple spike rates occur on a trial-by-trial basis, gated by the 723 
theorized update signals that Purkinje cells receive, climbing fiber mediated complex spikes. These 724 
plastic changes in rate could reflect large weight updates associated with error. Moreover, graded 725 
complex spike amplitudes that alter the size of trial-over-trial simple spike rate changes suggest that 726 
update sizes are not fixed (Najafi et al., 2014; Herzfeld et al., 2020; Medina and Raymond 2018). It is 727 
possible that the amplitude of synaptic weight changes following a complex spike might be set by tunable 728 
circuitry in the molecular layer to optimize learning speed relative to the statistics of the GCL output. 729 
 730 
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Together, this study advances our understanding of how the GCL may diversify or isolate components of 731 
inputs. A number of behavioral observations might be informed by the present findings. The timecourse 732 
of learning for instance varies widely across tasks. Eyeblink conditioning paradigms require hundreds of 733 
trials to learn (Millenson 1997; Khilkevich et al., 2016; Lincoln et al., 1982), while saccade adaptation 734 
and visuomotor adaptation of reaches, which are also mediated by the cerebellum (Raymond and 735 
Lisberger; Martin et al. 1996), requires just tens of trials (Tseng et al., 2007; Shadmehr and Mussa-Ivaldi 736 
1994; Ruttle et al., 2021; Calame et al., 2021). This discrepancy in learning rates raised the possibility that 737 
the learning algorithm used by the cerebellum is better engaged during naturalistic movements compared 738 
to time-invariant cues, such as a conditioning stimulus. Such purely time-invariant cues would be 739 
difficult, if not impossible, for our model GCL to reformat and sparsen, as they are incompatible with 740 
thresholding-based filtering of input signals used here. Supportive of this view, recent work showed that 741 
EBC learning was faster if the animal is locomoting during training (Albergaria et al., 2018). We 742 
hypothesize that naturalistic time-variant signals associated with ongoing movements inputted to the 743 
cerebellum through MFs support robust temporal pattern separation in the GCL, enhancing learning 744 
accuracy and speed, while time invariant associative signals used in typical classical conditioning 745 
paradigms result in an impoverished ‘basis’, making learning more difficult. That this feature is so robust 746 
could explain why tasks like eyeblink conditioning are so difficult to learn, sensorimotor tasks can be 747 
adapted rapidly. We speculate that the cerebellum is structured to support fast learning in situations where 748 
there are physiologically structured inputs, typified by convergent, temporally varying self-generated 749 
efference and reafference, within rich sensory and motor environments, as in normal movements during 750 
daily life.  751 

Methods  752 

Model construction  753 

The model presented here incorporated major features of the granule cell layer (GCL) circuit anatomical 754 

organization and physiology. The features chosen for the model were the sparse sampling of inputs (GCs 755 

have just 4 synaptic input branches in their segregated dendrite complexes on average), which was 756 

reflected in the connectivity matrix between the input pool and the GCs, where each GC received 4 inputs 757 

with weights of 1/4th (i.e. 1 divided by the number of inputs; 1/M) of the original input strength, summing 758 

to a total weight of 1 across all inputs.  The other features were thresholding, representing inhibition from 759 

local inhibitory Golgi neurons and intrinsic excitability of the GCs. The degree of inhibition and intrinsic 760 

excitability (threshold) was a free parameter of the model, and the dynamics were normalized to the z-761 

score of the summated inputs. This feature reflects the monitoring of inputs by Golgi cells while 762 

maintaining simplicity in their mean output to GCs. While this model simplifies many aspects of previous 763 

models of the GCL, it recreated many of the important features of those models, suggesting that the 764 

sparse sampling and firing are the main components dictating GCL functionality.   765 

The model, in total, uses the following formulas to determine GC output:  766 

 767 

Eq 1:  𝐺𝐶𝑖(𝑡)  = [( ∑
𝑀𝐹𝑘(𝑡)

𝑀
 

𝑘𝑀
𝑘1

)  −  𝜃 ]+   768 

 769 

where k is a random selection of M MFs from the MF population. The inputs are summed and divided by 770 

the total number of MF inputs to the GC, M, so that their total weight is equal to 1. Unless noted as a 771 

variable, we used M = 4, reflecting the mean connectivity between MFs and GCs, and the optimal ratio 772 

for expansion recoding (Litwin-Kumar et al. 2017), and the point of best input variance retention (Fig. 4). 773 

This function is then linearly rectified, i.e. [𝑥]+ = 𝑥  if x > 0 and 0 otherwise so that there are no negative 774 

rates present in the GC activity. The 𝜃 function which determines the threshold mimics intrinsic 775 

excitability and feedforward inhibition was formulated as:  776 
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 777 

Eq 2:  𝜃 =  𝑀𝐹̅̅̅̅̅  +  (𝑧 ∗  𝜎(𝑀𝐹))  778 

   779 

Here, a function of the mean and standard deviation of the entire MF population, z is a free parameter in 780 

the model representing the number of standard deviations from the mean, setting the minimum value 781 

below which granule cell activity is suppressed, which is the threshold value reported within this study as 782 

‘threshold’.  Note that the summated MF inputs are divided by the number of inputs per GC (N) in Eq. 1 783 

such that their received activity relative to 𝜃 is proportional to the input size, M. 784 

 785 

Input construction  786 

To provide a range of inputs with physiological-like temporal properties that could be parameterized, we 787 

used a class of randomly generated signals called Ornstein-Uhlenbeck Processes (OU), defined by the 788 

following formula:  789 

Eq 3: 𝑂𝑈(𝑡)  = ( 𝑂𝑈(𝑡 − ∆𝑡)  ∗  𝑒
(−

∆𝑡

𝜏
)
)  + (𝜎 ∗  √1 −  𝑒−2∗

∆𝑡

𝜏  ∗  𝑅)  790 

 791 

Here t is the time point being calculated, ∆t is the time interval (the time base is in ms and ∆t is 1 ms). 𝜎 is 792 

the predetermined standard deviation of the signal, and R is a vector of normally distributed random 793 

numbers. This process balances a decay term, the exponential with e raised to -∆t/𝜏, and an additive term 794 

which introduces random fluctuations. Without the additive term, this function decays to zero as time 795 

progresses. After the complete function has been calculated, the desired mean is added to the timeseries to 796 

set the mean to a predetermined value. 797 

 798 

The vector R can also be drawn from a matrix of correlated numbers, as was the case in Fig. 6 – figure 799 

supplement 1 B & C. These numbers were produced with the MATLAB functions randn() for normal 800 

random numbers, and mvnrnd() for matrices with a predetermined covariance matrix supplied to the 801 

function. The covariance matrix used for these experiments was always a 1-diagonal with a constant, 802 

predetermined, covariance value on the off-diagonal coordinates.   803 

 804 

Learning accuracy and speed assay  805 

In order to understand how the GCL contributed to learning, we constructed an artificial Purkinje cell (P-806 

cell) layer. The P-cell unit learned to predict a target function through a gradient descent mechanism, such 807 

that the change in weight for each step was:  808 

 809 

Eq 4:  𝐸𝑟𝑟(𝑡) = |𝑃(𝑡) − 𝑇𝐹(𝑡)|  810 

 811 

Eq 5:  𝛥𝑊𝑖 = 𝑊𝑖 − (𝐸𝑟𝑟(𝑡) ∗ 𝐺𝐺𝑖  (𝑡) ∗  𝜂) 812 

 813 

Where P(t) is the output of the P-cell at time t, TF(t) is the target function at time t, Wi is the weight 814 

between the Purkinje cell and the ith GC, and η is a small scalar termed the ‘step size’. η was 1E-3 for 815 

GCs, and 1E-5 for MF alone in simulations shown in this study where the step size was held fixed, which 816 

was chosen to maximize learning accuracy and stability of learning for both populations. The learning 817 

process in Eq. 4 and 5 was repeated for T trials at every time point in the desired signal. The number of 818 

trials was chosen so that learning reached asymptotic change across subsequent trials. Typically, 1000 819 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 6, 2022. ; https://doi.org/10.1101/2022.01.06.475265doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.06.475265
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

trials were more than sufficient to reach asymptote, so that value was used for the experiments in this 820 

study. 821 

 822 

The overall accuracy of this process was determined by calculating the mean squared error between the 823 

predicted and desired function:  824 

 825 

Eq 6: 𝑀𝑆𝐸 =
1

𝑇
∑ (𝑃(𝑡) − 𝑇𝐹(𝑡))2 𝑇

𝑡=1  826 

  827 

The learning speed was determined by fitting an exponential decay function to the MSE across every trial 828 

and taking the tau of the decay (See methods: Model output metrics, Time decay).  829 

 830 

Model output metrics  831 

To assay the properties of the GCL output that influence learning, we measured the features of GCL 832 

output across a spectrum of metrics that have theoretically been associated with GCL functions like 833 

pattern separation or expansion, as well as optimization or cost-related metrics developed for this paper. 834 

These included: dimensionality, spatiotemporal sparseness, contributing principal components, spatial 835 

sparseness (mean population pairwise correlation), temporal sparseness (mean unit autocovariance 836 

exponential decay), population variance, temporal lossiness, population lossiness, and temporal cover.   837 

 838 

We considered three forms of lossiness here, two related to the dimensions of sparseness considered 839 

above, time and space, and one that is a measure of sparseness on the individual GC level. Temporal 840 

lossiness is a measure of the percentage of time points that are not encoded by any members of the GCL 841 

population, essentially removing the ability of P-cells to learn at that time point and producing no output 842 

at that time in the final estimation of the target function. Increases in the value are guaranteed to degrade 843 

prediction accuracy for any target function that does not already contain a zero value at the lossy time 844 

point.  845 

Eq 7:  846 

𝑇𝑒𝑚𝑝. 𝐿𝑜𝑠𝑠𝑖𝑛𝑒𝑠𝑠 =
1

𝑇
 ∑ 𝑥𝑡  

𝑇

𝑡=1

𝑤ℎ𝑒𝑟𝑒 𝑥𝑡  {(∑ 𝐺𝐶𝑖(𝑡)) 

𝑁

𝑖=1

≤ 0 = 1

𝑒𝑙𝑠𝑒 = 0

} 847 

 848 

Here, T is the total number of points in the encoding epoch, the bracketed portion of the formula is a 849 

summation of inputs from all GCs (N = population size) at that timepoint. When all GCs are silent, the 850 

sum is 0, and the temporal lossiness is calculated as 1, and when all time points are covered by at least 851 

one GC, total temporal lossiness is 0. 852 

 853 

Spatial lossiness, or population lossiness, is the proportion of GCs in the population that are silent for the 854 

entirety of the measured epoch. This is thought to reduce total encoding space and deprive downstream P-855 

cells of potential information channels and could potentially impact learning efficacy. It is defined as: 856 

 857 

Eq 8:  858 
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𝑃𝑜𝑝. 𝐿𝑜𝑠𝑠𝑖𝑛𝑒𝑠𝑠 =
1

𝑁
 ∑ 𝑥𝑖  

𝑁

𝑖=1

𝑤ℎ𝑒𝑟𝑒 𝑥𝑖  {(∑ 𝐺𝐶𝑡) 

𝑇

𝑡=1

≤ 0 = 1

𝑒𝑙𝑠𝑒 = 0

} 859 

 860 

Here, N is the total population size of the GCL, and the bracketed portion of the formula is a sum of the 861 

activity of GCs across all timepoints, such that if a GC is silent across all timepoints xi is calculated as 1, 862 

indicating the ‘loss’ of that GC unit’s contribution. When all GCs are silent, population lossiness is 1, and 863 

when all GCs are active for at least one time point, population lossiness is 0. 864 

 865 

Additionally, we looked at the mean sparseness of activity across the population by measuring the 866 

‘coverage’ or proportion of time points each GC was active during, defined as: 867 

Eq 9: 868 

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =
1

𝑁
 ∑(

1

𝑇
 ∑ 𝑥𝑖  𝑤ℎ𝑒𝑟𝑒 𝑥𝑖  {

GCi(𝑡) > 0 = 1
𝑒𝑙𝑠𝑒 = 0

} )

𝑇

𝑡=1

 

𝑁

𝑖=1

 869 

 870 

As before, N is the number of cells in the population and T is the total length of the epoch. The bracketed 871 

function counts the number of time points where GCi is active, and divides that by the total time period 872 

length to get the proportion of time active. This value is summed across all GCs and divided by N to 873 

calculate the average coverage in the population. This value has strong synonymy with population 874 

variance, so it was not used for fitting assays in later experiments (Fig. 6), but reflects the effect of 875 

thresholding on average activity in the GCL population.  876 

 877 

Dimensionality is a measure of the number of independent dimensions needed to describe a set of signals, 878 

similar in concept to the principal components of a set of signals. This measure is primarily influenced by 879 

covariance between signals, and when dimensionality approaches the number of signals included in the 880 

calculation (n), the signals become progressively independent. The GCL has previously been shown to 881 

enhance the dimensionality of input sets and does so in the model presented here too. Dimensionality is 882 

calculated with:  883 

Eq 10: 𝐷𝑖𝑚 = (∑ 𝜆𝑖
𝑛
𝑖=1 )2/(∑ 𝜆𝑖

2𝑛
𝑖=1 )  884 

   885 

Provided by Litwin-Kumar, et al, 2016. This is the ratio of the squared sum of the eigenvalues to the sum 886 

of the squared eigenvalues of the covariance matrix of the signals.  887 

 888 

Spatiotemporal Sparseness (STS) was a calculated cost function meant to measure the divergence of GC 889 

population encoding from a ‘perfect’ diagonal function where each GC represents one point in time and 890 

does not overlap in representation with other units. This form of representation is guaranteed to produce 891 

perfect learning, and transformations between the diagonal and any target function can be achieved in a 892 

single learning step, making this form of representation an intriguing form of GCL representation, if it is 893 

indeed feasible. We calculated the cost as: 894 

 895 

Eq 11: 𝑆𝑇𝑆 = (1 − 𝐿𝑡  ) ∗ (
1

𝑇
) ∗ (

𝑊

𝐺𝐶𝑤
) 896 

 897 
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Where (1 –Lt) is the cost of temporal lossiness, defined above (Eq. 7), and T is the total length of the 898 

epoch. W is the number of unique combinations (termed ‘words’, akin to a barcode of activity across the 899 

population), of GCs across the epoch at each point of discrete time, and GCw is the average number of 900 

words each GC is active at all within the time-bins chosen (e.g. a binary representation of GC activity). 901 

The intuition used here is that when there is no temporal lossiness, all points in time are represented, 902 

leading the 1 –Lt term to have no effect on the STS equation, and when W, the number of unique 903 

combinations of GC activities is equal to T, then each point in time has a unique ‘word’ associated with it. 904 

Finally, when GCw is 1, W/GCw is equal to W, which only occurs when each GC contributes to a single 905 

word. When these conditions are met, STS = 1, otherwise when GCs contribute to more than one word, 906 

GCw increases and W is divided by a number larger than 1, decreasing STS. Alternately, when there are 907 

not many unique combinations, such as when every GC has the exact same output, W/GCw is equal to 908 

(1/T), decreasing STS. Finally, because lossiness causes the occurrence of a ‘special’, but non-associable, 909 

word, we multiplied the above calculations by (1 –Lt) to account for the effect of the unique non-encoding 910 

word (i.e. all GCs inactive) on distance from the ideal diagonal matrix.  911 

 912 

Mean temporal decay, i.e. temporal sparseness, is a measure of variance across time for individual 913 

signals, where a low value would indicate that the signals coherence across time is weak, meaning that the 914 

signal varies quickly, whereas a high value would mean that trends in the signal persist for long periods of 915 

time. This value is extracted by fitting an exponential decay function to the autocovariance of each unit’s 916 

signal and measuring the tau of decay in the function:  917 

 918 

Eq 12: 𝑦 = 𝑎 ∗  𝑒(−𝑥/𝜏) 919 

  920 

This is converted to the ms form by taking the ratio of 1000/τ. y here τ is a description of the 921 

autocovariance of the activity of a MF or GC signal, so when the descriptor 𝜏 is a large number, the decay 922 

in autocovariance is longer, or slower, when 𝜏 is a small number, the autocovariance across time decays 923 

more quickly, making the change in activity faster. 924 

 925 

While dimensionality and STS are metrics rooted in a principled understanding of potentially desirable 926 

properties of population encoding, the gradient descent algorithm can extract utility from population 927 

statistics that are much noisier and correlated than the ideal populations that dimensionality and STS 928 

account for. To measure a more general pattern separation feature in GCL output that could still be 929 

associated with the complex target function, we turned to principal component analysis (PCA) with the 930 

intuition that components which explain variance in the GCL output could be utilized by the downstream 931 

Purkinje cell units to extract useful features from the input they receive (Lanore et al., 2021). We 932 

parameterized the utility of this measure by taking the proportion of the PCs derived from the GCL output 933 

which explained variance (of the GCL output) in that population by more than or equal to 1/N, where N is 934 

the number of GCs, suggesting that they explain more variance than would be expected from chance. 935 

 936 

Population correlation,  was measured by taking the mean correlation between all pairwise combinations 937 

of GCs using the corr() function in MATLAB and excluding the diagonal and top half of the resultant 938 

matrix.  939 

 940 
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Population aggregate variance is a measure related to the expansion or collapse of total space covered by 941 

the encoding done by a population, and higher or expanded values in this metric are thought to assist in 942 

pattern separation and classification learning.  943 

 944 

Eq 13: Pop. Var = ∑ (𝑥𝑛 − 𝝁)2 𝑁
𝑛=1  945 

 946 

As shown in Cayco-Gajic et al. (2017). Here x is the activity of one of n cells across a measured epoch, 947 

and μ is the mean of that activity. This value is reported relative to the number of GC units, such that Pop. 948 

Var reported in Fig. 5 is normalized to Pop. Var / N. 949 

 950 

 951 

Variance retained assay   952 

To test the recovery of inputs by a feedforward network with a granule cell layer (GCL), we used 953 

explained variance, 𝑅2 , to quantify the quality of recovery of a sequence of normal random variables 954 

(Fig. 2) across 𝑁𝑤 = 1000 numerical experiments. To distinguish this metric from the MSE and R2 955 

metrics to evaluate other models in the study, we rename this ‘variance retained’. Within each numerical 956 

experiment 𝑖, at each time point, a vector of inputs 𝒙𝒕 of length 𝑀 (representing the mossy fiber, MF, 957 

inputs) was drawn from an 𝑀-dimensional normal distribution with no correlations, 𝒙𝒕 ∼ 𝓝(𝟎, 𝑰𝑴). This 958 

vector is then left-multiplied by a random binary matrix 𝑊 with 𝑁 rows and 𝑀 columns with 𝑛 1’s per 959 

row and the rest zeros, followed by a threshold linearization to obtain the GCL output, 𝒚𝒕 = [𝑊𝒙𝒕 − 𝒛]+ 960 

with threshold. This process is then repeated 𝑇 = 1000 times and a downstream linear readout was fit to 961 

optimally recover 𝒙𝒕 from 𝒚𝒕. It can be shown multivariate linear regression (MATLAB’s regress() 962 

function, employing least squares to minimize mean squared error) solves this problem, identifying for 963 

each MF input stream 𝒙𝟏:𝑻
𝒋

, the optimal weighting 𝐵1:𝑇 from the GCL to estimate 𝒙̂𝟏:𝑻
𝒋

= 𝐵𝑗,1:𝑁𝒚𝟏:𝑻. 964 

Across time 𝑡 = 1: 𝑇, we then computed the squared error across the vector, 𝑀𝑆𝐸𝑖 = ∑ ∑ (𝒙̂𝒕
𝒋

−𝑀
𝑗=1

𝑇
𝑡=1965 

𝒙𝒕
𝒋
)2, as well as the summed variance of the actual input, 𝑉𝑎𝑟𝑖 =

1

𝑀𝑇
∑ ∑ (𝒙𝒕

𝒋
− 𝒙̅𝒋)𝟐𝑇

𝑡=1
𝑀
𝑗=1 , where 𝒙̅𝒋 =966 

𝟏

𝑻
∑ 𝒙𝒕

𝒋𝑻
𝒕=𝟏   is the mean of the 𝑗th MF input stream. Lastly, to compute variance explained, we take 𝑅2 =967 

1 −
∑ 𝑀𝑆𝐸𝑖

𝑁𝑤
𝑖=1

∑ 𝑉𝑎𝑟𝑖
𝑁𝑤
𝑖=1

, so the higher the relative mean squared error is, the lower the variance explained will be. 968 

To generate the panels in Fig. 4, we always kept the number of timepoints and experiments the same, but 969 

varied (Fig. 4B) the threshold along the axis and the number of inputs 𝑛 per GC output; (Fig. 4C) the total 970 

number of GC outputs 𝑁 and input per output 𝑛; (Fig. 4D) number of inputs 𝑀 and outputs 𝑁; and finally 971 

(Fig. 4E) the number of inputs per GC output 𝑛 along with the total number of outputs 𝑁.  972 

 973 

Independent measures generation  974 

To determine if the sparseness measures had inherent benefits for learning, we supplemented the GCL 975 

output with OU processes with known temporal and correlational properties to examine their effect on 976 

learning accuracy (Figure 6 figure supplement 1). We varied the temporal properties by systematically 977 

varying the tau value in the exponential decay function. To vary population correlation, the random draw 978 

function in the OU process was replaced with a MATLAB function, mvnrnd(), which allowed for preset 979 

covariance values to direct the overall covariance between random samples. We used a square matrix with 980 

1s on the diagonal and the desired covariance on all off-diagonal locations for this process and varied the 981 
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covariance to alter the correlation between signals. The OU outputs from this controlled process were 982 

then fed into model P cells with randomized OU targets, as per the normal learning condition described 983 

above. To vary the effect of the input population size, the size of the supplemented population varied 984 

from 10 to 3000 using a tau of 10 and drawing from normal random numbers.  985 

 986 

To measure the effects of STS on learning, a diagonal matrix was used at the input to a Purkinje unit, 987 

which represented population activity with an STS of 1 (see Eq 11 in Model output metrics). To degrade 988 

the STS metric, additional overlapping activity was injected either by expanding temporal representation 989 

or at random, for example, adding an additional point of activity causes inherent overlap in the diagonal 990 

matrix, increasing the GCw denominator of Eq 11 to (1 + 2/N) because the overlapping and overlapped 991 

units now each contribute to 1 additional neural word.  This process was varied by increasing the amount 992 

of overlap to sample STS from 0 to 1. 993 

 994 

GCL output metrics fits to learning 995 

To estimate the properties of GCL output that contribute to enhanced learning of time series, we used 996 

multiple linear regression to find the fit between measures of GCL population activity and observed MSE 997 

in learning. Because there are large inherent correlations between the metrics used (dimensionality, 998 

spatiotemporal sparseness, explanatory principal components of the GC population, population 999 

variability, mean pairwise GC correlation, temporal sparseness, temporal lossiness, population lossiness, 1000 

and input variance retained) we used two linear regression normalization techniques: LASSO and RIDGE 1001 

regression. For Figure 6, LASSO was used to isolate the ‘top’ regressors, while RIDGE was used in 1002 

Figure 7 to preserve small contributions from regressors. The RIDGE regression method was then used to 1003 

compare resultant regression slopes (beta coefficients) to changes in task parameters (see Methods on 1004 

Simulation of cerebellar tasks).  1005 

 1006 

Regressions were performed using the fitrlinear() function in MATLAB, with LASSO selected by using 1007 

the ‘SpaRSA’ (Sparse Reconstruction by Separable Approximation; Wright et al., 2009) solver, and 1008 

RIDGE selected with the ‘lbfgs’ (Limited-memory BFGS; Nodecal and Wright 2006) solver techniques. 1009 

The potential spread of MSE in the models was determined using a K-fold validation technique, with 10 1010 

‘folds’ used, as well as for determining the range of slopes shown in Figures 7, B, C, E, F, H, and I, of 1011 

which the mean and standard deviation of cross-validation trials are plotted with solid lines and shaded 1012 

polygons, respectively. Models were selected by choosing the model with the least complex fitting 1013 

parameters (i.e. the model with the highest Lamba) while still falling within the bounds of the model with 1014 

the minimized MSE plus the standard error (a standard ‘1SE’ method). 1015 

 1016 

To convey the overall contribution of regressors to the above models of MSE, both the slope (e.g. ‘Beta’) 1017 

(Fig. 7: B, E, H), and the slope relative to the magnitude of all slopes were used as plotted metrics (Fig. 7: 1018 

C, F, I). 1019 

 1020 

Simulation of cerebellar tasks 1021 

To simulate the input and output relationship observed in cerebellar and cerebellar-related tasks like 1022 

vestibulo-ocular reflex adaptation (VOR), interval estimation, and motor-kinematic transformations, we 1023 

adjusted the inputs and target functions in the task used above to mimic these scenarios. For the VOR-like 1024 

task (Fig. 7 A-C), the inputs were 10% cosines with a fixed period and amplitude (10Hz, Amplitude range 1025 
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[0, 2]) and the rest were OU processes with taus of 100 and means and standard deviations of 0.5, and 0.2. 1026 

The target functions were also cosines whose periods and amplitudes were identical to the inputs, but 1027 

which had phase offsets between 0 and pi to mimic phase-offset VOR tasks.  1028 

 1029 

The interval estimation tasks (Fig. 7 D-F) had standard OU inputs with target functions that were step 1030 

functions with amplitude ranges from 0 to 1 and intervals that ranged from 0 to 1000 ms, which was the 1031 

maximal extent of the epoch.  1032 

 1033 

Finally, to simulate the transformation between motor commands and kinematic predictions, we used 1034 

human EMG as a proxy for a motor command-like input signal to the GCL. 30 muscles from 15 bilateral 1035 

target muscles were used (Delis et al., 2018; Hilt et al., 2018). The target function was a kinematic 1036 

trajectory recorded simultaneously with the recordings of EMG used for the study. Although many body 1037 

parts and coordinate dimensions were recorded of the kinematics, we opted to use the kinematic signal 1038 

with the largest variance to simplify the experiment to a single target function. 1039 
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