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Abstract

Learning plays a key role in the function of many neural circuits. The cerebellum is considered a ‘learning
machine’ essential for time interval estimation underlying motor coordination and other behaviors.
Theoretical work has proposed that the cerebellum’s input recipient structure, the granule cell layer
(GCL), performs pattern separation of inputs that facilitates learning in Purkinje cells (P-cells). However,
the relationship between input reformatting and learning outcomes has remained debated, with roles
emphasized for pattern separation features from sparsification to decorrelation. We took a novel approach
by training a minimalist model of the cerebellar cortex to learn complex time-series data from naturalistic
inputs, in contrast to traditional classification tasks. The model robustly produced temporal basis sets
from naturalistic inputs, and the resultant GCL output supported learning of temporally complex target
functions. Learning favored surprisingly dense granule cell activity, yet the key statistical features in GCL
population activity that drove learning differed from those seen previously for classification tasks.
Moreover, different cerebellar tasks were supported by diverse pattern separation features that matched
the demands of the tasks. These findings advance testable hypotheses for mechanisms of temporal basis
set formation and predict that population statistics of granule cell activity may differ across cerebellar
regions to support distinct behaviors.

Introduction

The cerebellum refines movement and maintains calibrated sensorimotor transformations by learning to
predict outcomes of behaviors through error-based feedback (Ito, 1972; Herzfeld et al., 2015; Medina
2000; Mauk and Buonomano, 2004; Raymond et al., 1996). A major site of cerebellar learning is in the
cerebellar cortex, where Purkinje cells (P-cells) receive sensorimotor information from parallel fibers
(Huang et al. 2013) whose synaptic strengths are modified by the conjunction of presynaptic (parallel
fiber) activity and climbing fiber inputs to P-cells thought to convey instructive feedback (McCormick et
al., 1982; Yang and Lisberger, 2014; Mauk et al., 1986; De Zeeuw et al., 1998). P-cell activity is
characterized by rich temporal dynamics during movements, representing putative computations of
internal models of the body and the physics of the environment (Wolpert et al., 1998; Shadmehr and
Mussa-Ivaldi 1994). Parallel fibers are the axons of cerebellar granule cells (GCs), a huge neuronal
population (comprising roughly half of the neurons in the entire brain; Herculano-Houzel 2010), which
are the major recipient of extrinsic inputs to the cerebellum. Thus, understanding the output of the GCL is
key in determining the encoding capacity and information load of incoming activity projected to the
cerebellum. Inputs to GCs arise from mossy fibers (MFs), which convey sensorimotor information used
by the cerebellum to predict the consequences of motor commands (Rancz et al., 2007; Ishikawa et al.,
2015). There are massively more GCs than MFs and each GC typically receives input from just 4 MFs
(Palkovits et al., 1971), such that the information carried by each MF is spread among many GCs but each
GC samples from only a tiny fraction of total MFs (Jakab and Hamori 1988; Eccles et al., 1967).

The GCL has been the focus of theoretical work spanning decades that has explored the computational
advantages of the unique architecture of the structure. Notably, early studies of the cerebellar circuit by
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Marr (1969) and Albus (1971) proposed that a key component of the cerebellar algorithm is the sparse
representation of MF inputs by GCs. In this view, the cerebellum often must discriminate between
overlapping, highly correlated patterns of MF activity with only subtle differences distinguishing them
(Bengsston and Jorntell 2009). Sparse recoding of MF activity in a much larger population of GCs
("expansion recoding") increases the dimensionality of population representation and transforms
correlated MF activity into independent activity patterns among a subset of GCs (Litwin-Kumar et al.,
2017; Cayco-Gajic et al., 2017; Gilmer and Person 2018). These decorrelated activity patterns are easier
to distinguish by learning algorithms operating in P-cells, leading to better associative learning and credit
assignment (Cayco-Gajic et al., 2017; Sanger et al., 2020).

The machine learning perspective of Marr-Albus theory tends to assume that the cerebellum is presented
with a series of static input patterns that must be distinguished and categorized. However, neuronal
population dynamics are hardly ever static and precise timing of circuit inputs to the cerebellum remains
an essential part of cerebellar function. Mauk and Buonomano (2004) revisited cerebellar expansion
recoding in the context of delayed eyeblink conditioning, a cerebellum-dependent learning task where the
subject hears a tone followed by an aversive air puff to the eye at a fixed delay from tone onset and must
learn to initiate an eyeblink at the correct delay to protect the eye. They proposed that a static activity
pattern in MFs (representing the tone) could be recoded in the GC layer as a temporally evolving set of
distinct activity patterns. P-cells could learn to recognize the GC activity pattern present at the correct
delay and initiate an eyeblink to avert the “error” signal representing the air puff to the eye. In other
words, P-cells would select from a “temporal basis set” for correct error prediction and learning adaptive
behavior.

Expansion recoding creates the possibility of representing a single MF pattern as a series of distinct GC
patterns (a “temporal basis set”’; Albus 1975; Zhou et al., 2020; Tyrrell and Willshaw 1992; Liu et al.,
2019; Kalmbach et al., 2011). The existence of this predicted temporal basis set within the cerebellum has
been supported experimentally in electric fish, where GCs represent the duration of mimicked electric
organ discharge through a range of onsets (Kennedy et al., 2014). Although these studies have been
highly influential, little is known about how the GCL would produce a temporally diverse basis set from
static input data. Local inhibition, short-term synaptic plasticity, and varying GC excitability all may
work together to diversify time-invariant input (Chabrol et al., 2015; Duguid et al, 2012; Crowley et al.,
2009; Rudolph et al., 2015; Buonomano and Mauk 1994; Kanichay and Silver 2008; Simat et al., 2007;
Mapelli et al., 2009; Rossi et al., 1996; Gall et al., 2005; Armano et al., 2000; Rizwan et al. 2016; Tabuchi
et al., 2019; D’Angelo and De Zeeuw 2009). However, the assumption that MFs ever provide truly static
input to the cerebellum is probably unrealistic; even a static stimulus like a tone will generate time-
varying activity patterns in the auditory brainstem as units undergo adaptation (Eriksson and Robert
1999). Moreover, most of the input signals that the cerebellum must process are intrinsically dynamic
(Bengsston and Jorntell 2009; Chabrol et al., 2015). We seek to explore how expansion recoding of
dynamic, naturalistic input activity assists cerebellar function.

To test how expansion recoding of naturalistic input contributes to learning, we developed a simple model
of the GCL and a time-series prediction task to explore the effect of putative GCL filtering mechanisms
on expansion recoding and learning (Fig. 1A). Similar to previous models, this simplified model made
GC activity sparser relative to MF inputs (Marr 1969; Albus 1971) and increased the dimensionality of
the input activity (Litwin-Kumar et al., 2017) while preserving information (Billings et al., 2014). That
these features of GCL function were achieved using only basic approximations of GC physiology
suggests that the crystalline connectivity and feedforward inhibition of the cerebellum incorporated in our
model are sufficient to produce pattern separation of naturalistic time-varying inputs. This model
demonstrates greatly enhanced learning accuracy and speed by P-cells on a difficult time series prediction
task when compared to MF inputs alone. Although we observed robust sparsening of input activity by
GCL output, the relationship between pattern separation metrics and the observed learning was dependent
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99  upon the task being performed, suggesting that GCL output covers a span of modalities supporting
100 flexible feature selection by P-cells to meet the needs of particular learning targets. These findings
101 reinforce the ideas explored previously that the GCL balances input sparsening against information loss to
102  optimize learning (Cayco-Gajic et al., 2017; Cayco-Gajic and Silver 2019), and that the balance between
103  these features of GCL output can be functionally controlled through adjustments in the strength of local
104  inhibition. We conclude by showing that muscle activity during reaching movements (Delis, et al. 2018),
105  aproxy for time-varying efference copy signals received by the cerebellum, gives rise to information-
106  preserving sparseness that supports time-series predictions, suggesting that physiological input sources to
107  the GCL, like the spinocerebellar pathways, are sufficient to drive learning. Together, these results
108  suggest that the cerebellar GCL provides a rich basis for learning in downstream Purkinje cells, providing
109  amixture of lossless representation (Billings et al., 2014) and enhanced spatiotemporal representation
110  (Litwin-Kumar et al. 2017) that are selected for by associative learning to support the learning of diverse
111  outputs that support adaptive outputs in a variety of tasks (Fujita 1982; Dean and Porrill 2008).
112
113  Results
114  Temporal basis set formation as emergent property of GCL filtering of physiological-like inputs
115  The cerebellar granule cell layer (GCL) is theorized to convert spatiotemporally dense inputs into discrete
116  representations through coincidence detection and feedforward and feedback inhibition-mediated
117  thresholding (Marr 1969; Solinas et al., 2010). How the GCL expands spatiotemporal representation has
118  been the subject of debate and scientific inquiry for decades. While cellular and circuit mechanisms have
119  been proposed to expand time invariant signals such as tones (Mauk and Buonomano 2004; Medina
120  2000), naturalistic cerebellar inputs are typically time varying by virtue of dynamic sensorimotor
121  interactions with the environment (Rancz et al., 2007; Eriksson and Robert 1999). Moreover, cerebellar
122 learning is thought to sculpt complex time-varying outputs in Purkinje cells (P-cells) that reflect
123  behavioral adaptations. This observation raises the question of how GCL output supports time series
124  learning, a divergence from traditional classification tasks used in cerebellar models. To address this, we
125 investigated how such naturalistic input patterns were transformed by the GCL to support learning time-
126  varying output patterns, such as those required for generating and correcting movements, or for producing
127  predictions of sensory events (Fig. 1; Izawa et al. 2012).
128
129  We created a simple model capturing the dominant circuit features of the GCL.: sparse sampling of mossy
130 fiber (MFs) inputs by postsynaptic granule cells (GCs) and coincidence detection regulated by cellular
131  excitability and local feedforward inhibition (Figure 1A; Eqg.1,2; Marr 1969; Albus 1971; Palkovits et al.,
132 1971, Chabrol et al., 2015). MF inputs are represented as smooth time-varying functions, i.e., as variable
133  firing rates rather than spike trains. GC output is generated by summing MF inputs and thresholding the
134  resultant sum; anything below threshold is set to zero while suprathreshold summed activity is passed on
135  (minus the threshold) as GC output (Fig. 1A, center). The GC threshold level represents both intrinsic
136  excitability and the effect of local feedforward inhibition on regulating GC activity. To model MF activity
137  patterns, we sought a statistical ensemble that was rich enough to capture the dynamic nature of
138 naturalistic inputs while remaining analytically tractable and easily parameterized. We chose to utilize the
139  Ornstein-Uhlenbeck (OU) stochastic process, whose output is Gaussian and varies over an adjustable
140  timescale. The statistics of an OU process can be fully characterized by just three parameters: mean,
141  standard deviation, and correlation time; samples drawn from an OU process are shown in Fig. 1A (left,
142 blue). Since the input to GCs is Gaussian in our model, the summed activity that is thresholded is
143 Gaussian as well. For that reason, we found it convenient to define the GC threshold in terms of z-scores.
144  Thus a GC with a threshold of “zero” would have its threshold set at the mean value of its MF inputs;
145  such a GC would be silent 50% of the time on average because the Gaussian presynaptic input would be
146  below the mean value half the time. This makes it possible to discuss functionally similar thresholds
147  across varying network architectures (e.g., a GC with a threshold of zero would discard half of its input
148  on average regardless of whether it received 2 or 8 MF inputs). Via this simple mechanism, our model
149  GCL generates temporally sparse activity that could support learning by downstream P-cells (Fig. 1A,
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150 right). Indeed, when subjected to this form of filtering, the resultant representation in the GCL population
151  became spatiotemporally distinct at moderate thresholding levels (near 0, Fig. 1B, center). However, too
152 little thresholding resulted in dense representation (Fig. 1B, left) while too much thresholding resulted in
153  over-sparsening, leading to loss of representation in the temporal domain (Fig. 1B, right, arrows indicate
154  loss of representation). The emergence of sparse spatiotemporal representation under the simplistic

155  constraints of the model suggests that the cerebellum’s intrinsic circuitry is sufficient to produce

156  spatiotemporal separation when given sufficiently time-varying inputs.
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160  Figure 1: Model architecture and effects of thresholding on GCL population activity.

161  A. Diagram of algorithm implmentation. Left shows Ornstein-Uhlenbeck processes (see Methods) as
162  proxies for mossy fiber (MFs, blue) inputs to granule cell (GCs, red) units, with convergence and

163  divergence of MFs to GCs noted beneath MFs. GCs employ threshold-linear filtering shown beneath the
164  red parallel fibers. GC outputs are then transmitted to downstream Purkinje cells (P-cells). P-cells learn
165 to predict target functions based on summation of weighted GC inputs and differences between the

166  prediction and true target are transmitted as an ‘error’, which determines the updates to the weights
167  between GCs and P-cells. B. Example unit GC population rates when threshold is -1.0, 0 and 1.0

168  showing the gradual sparsening of GCL output. Arrows on 1.0 plot indicate regions of gaps in

169  representation (lossiness) by the GCL population due to over-sparsening.
170
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172  Figure 1, figure supplement 1: Example of basis set utility in learning.

173  A. Diagram relating fictive GC activity (top) with resultant learning (bottom) using those fictive signals
174  as the basis for learning. Target functions are shown in black and learned outputs with minimized error
175  are shown in purple. Note that the best learning occurs with uniform, minimally overlapping GCs, tiling
176  the epoch when the target signal is active (red lines; middle panel).

177

178  GCL improves time series learning accuracy

179  Next, we tested whether GCL population activity seen above assisted learning. We devised a learning task
180  where P-cells learned to generate a specific time-varying activity pattern in response to the dynamic

181  activity patterns generated by MFs, which better represents the tasks performed by the cerebellum than
182  pattern classification. The target patterns that P-cells were tasked with generating were drawn from an OU
183  process with an autocorrelation time of 10 ms (see Methods). P-cells initially produced output very unlike
184  the target, but over repeated trials their output converged towards the target function (see Fig. 3A for

185  example progression of learning). We compared this convergence of P-cell output to target when input
186  activity was filtered through the GCL to performance the case when MF activity is sent directly to P-cells
187  (“MFs alone”). The GCL enhanced convergence to target at thresholds between —1 and 1 (Fig. 2A),

188  achieving a minimized mean squared error (MSE) of roughly 0.005 compared to 0.02 when using MFs
189  alone. It may seem that the performance with MFs alone was still quite good, if slightly quantitatively
190 inferior, when compared to the range of the target function (normalized to a range of [0,1]). Thus, to

191  establish intuition into the practical difference of this range of MSEs, we tasked the model with

192  recapitulating a complex image with an identical range of target function values (with identical range of
193  [0,1], Fig. 2B). Importantly, the model GCL generated a recognizable image, with an MSE of 0.002 while
194  experiments using MF alone generated an unrecognizable image with an MSE of 0.02. (The relative
195  MSE, i.e. the ratio of GCL MSE to MFs alone MSE, was 0.08). Thus, this MSE range represented the
196  difference between noise and easily recognizable images and text (Fig. 2B top right vs three thresholds,
197  bottom). This principle was qualitatively true of abstract target functions used in OU input experiments as
198  well (Fig. 3A for example target functions and estimations). Thus, the inclusion of the GCL in the

199 filtering process greatly improves learning of complex functions by P-cells in this task, supporting an

200  order of magnitude improvement in MSE of learned target functions compared to MFs alone. Importantly,
201  this was not a consequence of the large population expansion between MFs and GCs, as increasing the
202  number of MFs alone did not improve performance to the levels observed in the model GCL (Supp. Fig.
203  2A), but a sufficiently large GCL population is required to improve learning (Supp. Fig. 2B).

204

205
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207  Figure 2: Enhanced time series learning using GCL model.

208  A: Relation between mean squared error (MSE) and threshold in a 50 MF, 3000 GC system, showing a
209  significant reduction in error between a threshold of —1 and 1 for the learning model using GCL output
210  (orange) compared to mossy fibers alone (blue). Transparent bounds represent standard deviation of

211  learning outcome. Relative MSE of the GCL is shown on the right margin and represents the ratio of MSE
212  for the GCL compared to MF alone. Values less than 1 indicate GCL outperforming MFs alone. B. An
213 intuitive demonstration of the difference in the small MSE change produced by the MF-direct task, and
214 the much clearer MSE produced by the GCL model used as input to P-cells. Panels show the outcomes of
215  the same task with the target function being an image of a cat, with both handwritten and typeface text,
216 anda 1- and 2-pixel width checkerboard (upper left corner).
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218  Figure 2, Figure Supplement 1: Effects of input and output population sizes on learning.

219  A. Relation between the number of mossy fiber inputs and the resultant MSE, with MFs either inputted
220  directly to P-cells (blue) or fed through 3000 GC unit model (red). B. MSE as a function of GC number
221  compared to 50 MFs alone (blue). GC threshold fixed at O for these simulations.

222

223  GCL model speeds time series learning

224 Having found that the GCL improves the match between predicted output and target output over a range
225  of thresholds, we next examined whether the structure also increased the speed of convergence.

226  Examining the MSE between output and target on each trial as training progresses (Fig. 3C, red circles),
227  we found that output usually converged rapidly at first then more slowly in later stages of training (Fig.
228  3A). The reduction in MSE over training in our model was reasonably well fit by a double exponential
229  (Fig. 3B, red curve), of the form
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231 MSEm) = A;eCFi™ + 4, ek ¢

232

233 where n is the trial number. We measured the convergence speed of a simulation by the rate constants ki
234  and k». In the vast majority cases, one of these rate constants was 5-50 times larger than the other; we
235  denote the larger constant ksast and the other ksiow. FOr most parameter values, kst accounts for more than
236  80% of learning.

237

238  We next examined the influence of key parameters on convergence speed. First, we looked at the effect of
239  the GC threshold. Learning was fastest for GCL thresholds near zero (Fig. 3C, red circles), the level that
240  filters out half of the input received by a GC. Convergence in networks that lack a GCL (MFs directly
241  innervating P-cells) was consistently slower (Fig. 3C, blue line) than networks with a GCL. Convergence
242  can also be sped up by increasing the size of the parameter jumps in synaptic weight space during

243  gradient descent (the “step size”), but only to a limited degree (Supp. Fig. 3A). Indeed, at a GCL

244 threshold of 0, convergence speed decreased as the step size size was increased beyond ~10° (au). We
245  speculated that this trade-off was a consequence of a failure to converge in a subset of simulations. To test
246  this, we looked at the fraction of simulations that converged towards a low MSE as a function of the

247  update magnitude. We found that the fraction of simulations that converged (“fraction successful”)

248  decreased with increasing step size (Supp. Fig. 3B); in simulations that did not converge, the MSE

249  increased explosively and synaptic weights diverged. In such cases, we assume the large weight updates
250  made it impossible to descend the MSE gradient; each network weight update drastically changed the cost
251  function such that local MSE minima were overshot. When larger step sizes did permit convergence,
252  progress was nevertheless slowed, likely because the relatively large learning rates led to inefficient

253  progress towards the MSE minimum.

254

255  Although larger step sizes eventually cause learning to slow and then fail entirely at a given GCL

256  threshold, higher thresholds permitted larger step sizes before failures predominated (Supp. Fig. 3B).
257  Since higher thresholds permit larger step sizes before convergence failure sets in, convergence speed
258  might be maximized by jointly optimizing step size and GCL threshold. We tested this by systematically
259  raising step sizes at each threshold until convergence success fell to 50%. We defined the “maximum
260  convergence rate” for a given threshold as the maximum convergence rate (derived from fitting the MSE
261  trajectory with a double exponential) yielding successful convergence at least 50% of the time. We found
262  that the threshold giving the fastest convergence was indeed higher when step size was also optimized
263  (Supp. Fig. 3B) than when step size was fixed (Fig. 3C). Thus, increased GCL thresholding can allow the
264  network to trade learning accuracy for increased speed of learning.
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266  Figure 3. Learning speed increases with GCL.

267  A. Example of learned predictions after 1,5, and 50 trials of learning, with predictions in red and target
268  function in black. B. Example learning trajectory of MSE fit with a double exponential. Black circles:
269  MSE of network output on each trial. Red line: double exponential fit MSE during learning. Here, step
270  size was 10 and z-scored GCL threshold was 0. We use the exponents k from the exponential fit to
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271  measure learning speed. C. Learning speed as a function of GCL threshold (red dots). Blue line: learning
272  speed in networks lacking GCL, i.e. mossy fibers directly innervate output Purkinje unit, gradient descent
273  step size was 10°.
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275  Figure 3, figure supplement 1: Effects of gradient descent step size on learning speed.

276  A. Learning speeds (exponential time constant) for different simulations using varying gradient descent
277  step sizes, showing differentially maximized learning speeds occurring at different step sizes. B. Fraction
278  of simulations that converge to asymptotic MSE values as a function of gradient descent step sizes for
279  different values of GCL threshold (colors denote threshold values). Note that larger step sizes and faster
280  learning are supported in models with higher thresholds.

281

282

283

284  Recovering GCL input from GCL output

285  Having established a framework for studying GCL processing of naturalistic inputs, we wanted to

286  understand to what extent thresholding GCL activity led to the loss of information supplied by MF inputs,
287  which potentially contains useful features for learning. In other words, would Purkinje neurons be

288  deprived of behaviorally relevant mossy fiber information if these inputs are severely filtered by the

289  GCL? To assess this issue, we used a metric of information preservation called explained variance,

290  (Achen 1982); however, in this special case, we use the term ‘variance retained’, because this metric

291  represents the preservation of information about the input after being subjected to filtering in the GCL
292  layer. Let x; denote the MF input at time t. If the GCL activity preserves the information present in x;, then
293 itshould be possible to reconstruct the activity of MFs from GCL activity (see Methods for details on
294  how this reconstruction was performed). The variance retained is then the mean squared error between the
295  actual MF input x; and the reconstructed input, normalized by the MF input variance:

296

P~ )

297 R?=1
Z?ﬂvar[xt]

298

299  Our primary finding is that the GCL transmits nearly all of the information present in the MF inputs even
300 at fairly high thresholds, but only if the GCL is sufficiently large relative to the MF population. The

301 threshold, feedforward architecture, and relative balance of MF inputs and GC outputs all affect the

302  quality of the reconstruction. Variance retained by the reconstruction layer decreased with the GC layer
303  threshold, since it masked some subthreshold input values (Fig. 4B). Allowing more MF inputs per GC
304 recovered some of this masked information, since some subthreshold values are revealed through

305  summing with sufficiently suprathreshold values. However, these gains cease beyond a few MF inputs
306  per GC, since the exponential growth of MF combinations rapidly exceeds the number that the GCs can
307  represent (Marr 1969; Gilmer and Person 2017).
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308

309  To disentangle the information contained in the summed inputs, many different combinations of inputs
310  must be represented to disambiguate the contributions of each MF input. Increasing the number of GCs
311  generally increases the variance retained, since more combinations of MF inputs are represented, and
312  reveal subthreshold input values (Fig. 4C). Interestingly, variance retained by the network varied non-
313  monotonically with the number of MF inputs (M) when the number of GCs (N) was fixed. This is because
314  having too few MF inputs means there may not be a sufficient number of combinations so that

315  subthreshold values can be revealed (by summing them with suprathreshold inputs) but having too many
316  saturates the information load of the GC layer (Fig. 4D). Lastly, when fixing the number of MF inputs
317  and GCs, there is an optimal number of MF inputs to each GC, which aligns with the anatomical

318  convergence factor of 4 MF/GC (Fig. 4E), related to previous findings that suggest the best way to

319  maximize dimensionality in the GC output layer is to provide sparse input from the mossy fibers (Litwin-
320 Kumar etal., 2017; Cayco-Gajic et al., 2017). Thus, there are two key features that shape the information
321  transferred to the GCL from the MF inputs. First, the way in which MF inputs are combined to form the
322  total input to each GC determines how much information about subthreshold inputs can be transferred
323  through the nonlinearity. Second, the total number of GC outputs determines how many MF input

324  combinations can be represented, so that, ultimately, the random sums of MFs can be disentangled by the
325  downstream reconstruction layer. Together, information transfer requires a combined summation and
326  downstream decorrelation process accomplished by the three layer network.
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329  Figure 4: Recovering inputs with an optimal linear readout.

330  A. Network model schematic. Granule cell (GC, red, center) layer thresholds the sum of (4 here)
331  randomly chosen mossy fiber (MF, black, left) inputs, which are then fed into a reconstruction layer
332  which uses the optimal weighting from all N GCs to approximate each of the M inputs (compare blue
333  readouts to grey inputs). B. Increasing the threshold of the GC layer (N=500 outputs) decreases the
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334  explained variance (i.e. variance retained) of the best reconstruction layer (M=50), but the effect is

335  reduced with an intermediate number of MF inputs per GC. C. Variance retained increases with the ratio
336  of GCs per MF but gains from increasing the number of inputs to each GC are limited (max at 4 inputs).
337  Here there are M=50 MF inputs at the threshold = 0. D. For a fixed number of GC outputs N, there is an
338  optimal number of MF inputs (M) for which the variance retained of the reconstruction layer is

339  maximized. E. i. For a fixed number of GC outputs N and MF inputs M=50, there is an optimal number of
340  inputs per G (around 4) for maximizing variance retained. ii. Same as i, but with each value normalized
341  to its maximum to show maximized values at inputs = 4.

342

343  General statistical features of GCL population activity

344  To better relate the present model to previous theoretical studies we looked at a variety of population
345  metrics to help explain how signal filtering by the GCL improves cerebellar learning and why it

346  ultimately fails as the GC threshold is increased.

347

348  The first set of metrics related to pattern separation: dimensionality (Dim), the number of explanatory
349  principal components (PCs), spatiotemporal sparseness (STS), and population variability (See methods
350  for details). (Although STS is a measure of sparseness, it represents an idealized form of separability

351  where GCs represent unique temporal epochs that do not overlap, providing a perfect basis set when

352  maximized, thus is grouped with pattern separation metrics). Dim, PCs, and STS showed non-monotonic
353  relationships with threshold and peaked at thresholds ranging between 0.5 and 1.5 (Fig. 5 A, B), while
354  population variability decreased with increasing thresholds (Fig. 5C). Intuitively, this relationship

355  captures the effect of low thresholds allowing GC activity to relay the mean input, with no pattern

356  separation occurring, and thus minimizing pattern separation metrics. With increasing threshold, GC

357  activity is driven by coincidence detection leading to high dimensional population output. At high

358  thresholds, inputs rarely summate to threshold, leading to lost representation that drives a roll-off in

359  pattern separation within the population. Notably, Dim, PCs, and STS peaked at thresholds greater than
360  peak learning performance, which was optimized at threshold zero, thus none of these three pattern

361  separation metrics alone account for learning performance. Population variability (i.e. GCL variance per
362  unit) is thought to aid classification and separability of GCL output (Cayco-Gajic et al., 2017). This

363  metric’s decrease with increasing threshold was likely due to the decrease in overall representation by
364  each unit due to sparsening and diminishing the dynamic range of GC rates due to threshold subtraction
365  (Fig. 1, Fig. 5C).

366

367  The second set of metrics are related to sparse representations: temporal sparseness and spatial

368  sparseness. Temporal sparseness — defined by the exponential decay of GC autocovariance, where smaller
369  values typify signals that change quickly with time -- decreased as a function of threshold because of
370  sparsened representation at higher thresholds (Fig. 5D). The mean pairwise GC correlation, (Fig. 5E) i.e.
371  spatial sparseness, shared a drop-off after a threshold of 0, but increased again at high thresholds because
372  only a few MF signals were retained at high threshold and thus were highly correlated. By experimental
373  design, decorrelation was already maximized in OU inputs. Similar to the pattern separation metrics,

374  these sparseness metrics did not show an obvious relationship to the U-shaped learning performance seen
375 inFig. 2A.

376

377  Finally, we examined three metrics of lossiness defined to quantify (1) the fraction of the total epoch with
378  no activity in any GC unit (e.g. with “temporal lossiness” of 0.1, 10% of the total epoch has no activity in
379 any GCs) (2) the proportion of granule cells with any activity over the entire epoch (“population

380  lossiness”) (3) the mean fraction of the epoch in which each granule cell is active (“temporal cover”). Not
381  surprisingly, each lossiness metric increased with high thresholds (Fig. 5F). However, despite diminishing
382  activity in individual GCs with increasing threshold, (the blue curve Fig. 5F), each GC was resistant to
383  becoming completely silent (green curve drop, Fig. 5F), owing to a few dominant inputs.

384
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385  Notably, none of these metrics alone obviously tracked the U-shaped learning performance (Fig. 2A).
386  However, collectively, these descriptive statistics of model GCL population activity set the stage for
387  analyzing how information preprocessing by the basic GCL architecture relates to learning time series,
388  explored below.
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391  Figure 5: Statistical features of GCL output.

392  A. GCL dimensionality (red) and MF dimensionality (blue) as a function of threshold. Note peak near a
393  threshold of 1 for the GCL. B. Two metrics of pattern separation in GCL output -- STS (light orange) and
394  PCs (dark orange) -- as a function of threshold. Note peaks near 1.5 and 0.5, respectively. C. The sum of
395  GCL variance produced by the model as a function of threshold. Note monotonic decrease with threshold.
396 D. Temporal sparseness as a function of thresholding. Note monotonic decrease in GCL with

397 thresholding. E. Mean pairwise correlation of the population plotted as a function of threshold. Note
398 trough near 1. F: Three forms of lossiness in GCL output as a function of threshold. Each metric had
399  differential sensitivity to thresholding but note that all decrease with increasing threshold. Across

400  metrics, function maxima and minima ranged widely and were not obviously related to thresholds of

401  optimized learning.

402

403

404  Optimization of learning through GCL transformations

405  With the knowledge that thresholding drives changes both in learning time series (Fig. 2, 3) and GC

406  population metrics that are theorized to modulate learning (Fig. 4, 5), we next directly investigated the
407  relationships of these metrics to learning performance. To test this, we used a LASSO regression method
408  to identify learning performance-driving variables taken from the metrics described in Figures 4 and 5
409  (Fig. 6A, C). Using the output of the LASSO model, we found that a three-term model using the most
410  explanatory variables -- STS, the number of explanatory PCs and variance retained (Fig. 6B, C, D) --
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411  accounted for 91% of learning variance. The three-term model performance is plotted against the

412  observed MSE over a range of thresholds in Fig. 6D, showing strong similarity.

413

414  These results were somewhat surprising given prior studies showing benefits of population sparseness or
415  decorrelation to learning. To interrogate this seeming disparity, we introduced fictive GCL population
416  activity that had specific statistical features as inputs to P-cells. Consistent with previous reports,

417  decorrelation and temporal sparseness improved learning accuracy, with complete decorrelation and

418  temporally sparse supporting the best performance (Fig. 6 - figure supplement 1; Cayco-Gaijic et al.,

419  2018). Thus, on their own, population, temporal and idealized spatiotemporal sparseness do modulate
420  learning when their contribution is independent, but these features nevertheless do not emerge as features
421  inthe naturalistic GCL model as statistical properties that drive performance of time series. This property
422 s aconsequence of temporal sparseness and decorrelation covarying with lossiness (captured by the

423  variance retained metric), which drives down performance. Rather, the statistical features produced by the
424  model GCL with naturalistic inputs that best explain learning are the number of explanatory PCs, STS,
425  and the amount of input variance retained -- metrics that may align well with recently described GC

426  population activity during locomotion (Lanore et al., 2021).
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429  Figure 6. Relationship between sparseness metrics and MSE.

430  A. LASSO regression model selection as a function of progression of the Lambda parameter (penalty
431  applied to regressor selection). The removal of regressors with increasing Lambda (red steps) selected
432  from the following potential regressors: dimensionality (Dim.), spatiotemporal sparseness (STS),

433  explanatory principal components of the GC population (PCs), population variability (Pop. Var.), spatial
434  sparseness (S. Sparse.), temporal sparseness (T. Sparse.), temporal lossiness (T. Loss.), population
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435  lossiness (P. Loss), and input variance retained (Var. Ret; Figure 4). Arrow shows selection point of

436  LASSO regression MSE using “1SE” (1 standard error) method (see Methods, purple lines, black dot and
437  arrow indicating the selected model, with red arrow showing selection point in the parameter reduction
438  plot, red). B. Relationship between LASSO model (predicted relative MSE) against the observed relative
439  MSE (ratio of GC MSE to MF alone MSE) with fit line and variance explained by regression (R*> = 0.91)
440  C. Regression slopes of the selected LASSO model from A, showing that STS, PCs, and Input Variance
441  Retained are the selected regressors, with Var. Ret. being the largest contributing factor. All factors

442  normalized to a normal distribution for comparison. D. The output of the selected model and the observed
443  MSE plotted against threshold for a comparison of fits, demonstrating high accuracy in the 0-2 range, but
444 less accuracy in the -2-0 range.
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447  Figure 6 figure supplement 1: GC population statistics regulate learning accuracy when independently
448  controlled. Fictive population activity with structured statistics were introduced to P-cells to explicitly
449  test the roles of population decorrelation and structured spatiotemporal sparseness on learning. A-B:
450  Learning performance (MSE) as a function of temporal sparseness (i.e. autocovariance tauy or spatial
451  sparseness (i.e. population correlation). Red dots on A and B indicate values used for input model to GCL
452  inFigs 2, 5, and 6. C: Matrix of effects on MSE when modulating temporal spareness via tau, and spatial
453  sparseness via population correlation. Lower values for both (cooler colors) indicate the best learning
454  accuracy. D: The results of these analyses support the idea that GCL filtering benefits learning through
455  transformation of statistical structure fed to the P-cell. A remaining caveat was that the number of

456  granule cells far exceeded the number mossy fibers, raising the question of whether the learning

457  advantage conferred by the GCL is merely a consequence of this difference. To test this, we fed MFs

458  directly to the P-cell units and varied their numbers between ranges of 2 to 3000. While learning

459  accuracy improved with more MFs, asymptotic MSE values were lower than the GCL, indicating that the
460  filtering properties of GCL are indeed important for this learning task. Figure plots the MSE as a

461  function of the number of inputs to Purkinje cells, showing that too few MFs are insufficient to produce
462  accurate learning, but having a large number makes little difference beyond 10'°~= 31 MFs. E: To test
463  how the uniqueness of individual unit activity across time contributes to learning we selected population
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464  activity that varied in STS from a bank of simulations. Two distribution structures were tested. The first
465  maximized granule cell uniqueness in time and temporal organization — e.g. each granule cell is active
466  only once during the epoch and only one granule cell is active at a given time, such that the population
467  histograms resemble a ‘staircase’ (“ideal STS basis”). Overlap of active granule cells drives decreases in
468  computed STS, or wider steps in the staircase (“‘temporally linked overlap”). The second class of STS
469  maximized uniqueness without requiring temporal organization — e.g. any slice of time is unique, but an
470  individual granule cell can occupy an arbitrary number of time bins (“stochastic overlap”). STS drops
471  when a given granule cell activity occupies more time bins, reducing the uniqueness of the granule cells
472  contribution to the population. Figure shows schematic diagram of these different types of spatiotemporal
473  sparseness, with structured overlap “temporal overlap” and “stochastic overlap” illustrating different
474  ways populations could differ. F: Effect of STS on MSE, where overlap between units is always local to a
475  particular time point, so that units are only active at a particular continuous temporal range, showing a
476  monotonic decrease in error as STS approaches 1. G: Same as F, but the temporal location of overlap
477  between units is random, showing best learning accuracy at STS = 1, and good but less accurate learning
478  at STS = 0. When overlap was decoupled from time in the stochastic overlap case, error was reduced at
479  both maximal and minimal STS simulations with the highest error occurring at intermediate STS values.
480  This may be because the gradient descent algorithm is able to use dense, variable signals, like those seen
481  invery low STS value GCL outputs, to learn essentially as well as the high STS values which have strong
482  isolation in individual unit representation and are guaranteed to be good for learning.

483

484

485  GCL properties that enhance learning in naturalistic tasks

486  Together, these models suggest that the GCL can reformat random inputs suitable to support rapid and
487  accurate learning of time-series. The real cerebellum is topographically organized along multiple

488  parasagittal output modules (Apps and Garwicz, 2005; De Zeeuw, 2020). This organization suggests

489  segregated afferents with specific statistical structure could refine specific behaviors. To examine whether
490  different population statistical features might support distinct learning tasks, we utilized the model to
491  perform a series of naturalistic cerebellar tasks: vestibulo-ocular reflex (VOR) phase adaptation (Ito et al.
492  1974), temporal interval learning (Narain et al., 2018) and kinematic encoding (Herzfeld et al., 2015).
493

494  We speculated that the nature of these tasks might influence the contribution of components of the model
495  to learning accuracy. For example, when VOR is kept in phase, it makes intuitive sense that retention of
496  vestibular input, inherently in-phase with the motor output, would be valuable, with reweighting of GC
497  representations of inputs giving rise to amplitude learning as in VOR gain adaptation. However, if the
498  phase is offset, the relationship between vestibular input and ocular output requires complex mapping
499  (Fig. 7A, top middle inset) and selection of GCs representing sparsened OU processes may be selected
500 instead to allow for reconstruction from high-dimensional outputs. The GCL model supported learning of
501 VOR at all phases, but MFs showed especially poor performance in pi/2 phase shifts (Fig. 7A, ‘out-of-
502  phase’). As a result of this reliance on GCL reformatting, we predicted that the contribution of ‘variance
503 retained’ to learning should decrease depending on the phase shift. In other words, the extent to which the
504  input was inherently related to the output would be of scalable importance. We tested the relationship of
505 input variance retention and phase offset using RIDGE regression (which preserves even small

506  contributions of regressor variables to the model in comparison to LASSO) and found that for in-phase
507 and anti-phase learning input variance retention accounted for most of learning, reflected in large slope
508  coefficients, whereas input retention decreased as an important variable in out-of-phase learning, with
509 shallow slope coefficients (Fig. 7B). Furthermore, the relative magnitude of the slope magnitude of

510  variance retrained is reduced in out-of-phase conditions compared to in-phase and anti-phase (Fig. 7C).
511  This suggests that the learning rule can utilize information preserved by the GCL, as in in-phase learning,
512  but, if necessary, it can learn using information that is so highly reformatted that it no longer retains the
513  original vestibular information.

514
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515  Cerebellar timing tasks, such as delay eyeblink conditioning, involve time estimation over intervals

516  spanning 100-500 ms. Models of delay eyelid conditioning suggested that the cerebellum represents the
517  time interval through decomposition of an invariant signal into many signals that tile across time. This
518  hypothesis provides an interesting test of whether lossiness differentially affects behavioral outcomes
519  depending on whether short or long intervals are being estimated, defined here as the duration of an ‘on’
520  signal. If we assume that an ideal temporal basis (akin to the ‘staircase’ representation in Fig 6 - figure
521  supplement 1E) represents different points in time of the stimulus, one might speculate that lossiness in
522  populations representing long intervals would be more detrimental than in populations representing short
523 intervals -- given that only the temporally aligned subsection of the input is relevant to the output

524  response and the rest is discarded or ignored. We tested this prediction by systematically altering the
525  length of a step target function to occupy 0% to 100% of the response epoch using OU processes as

526  inputs. The model using a GCL was able to perform this task more accurately than with MF inputs alone
527  (Fig 7D), and the magnitude of slope for lossiness-related metrics increased with interval duration (Fig.
528  7E), suggesting that learning short intervals is less sensitive to lossiness than learning long intervals. The
529 relative contribution of lossiness metrics to the overall regression performance also increased with step
530  duration compared to PCs (Fig. 7F), suggesting that lossiness-related metrics have a more powerful

531 influence on learning outcomes as a function of increasing duration that is not true of pattern separation
532 metrics like PCs.

533

534  We next asked whether naturalistic input statistics, derived from electromyogram (EMG) signaling, could
535  support learning. We used EMG signals from human subjects in a point-to-point reaching task as MF
536 inputs, and tested whether the model could learn associated limb kinematics from this input (Fig. 7G;
537  Delisetal. 2018; Tseng et al. 2007; Miall and Wolpert 1996; Wolpert et al., 1998). The GCL was able to
538  produce more accurate predictions of the kinematics when compared to the EMG as MF inputs alone, and
539 the range of thresholds which produced the best accuracy were comparable to the previous findings (Fig.
540  3A), but were slightly negatively shifted, suggesting retained variance of inputs might be beneficial to
541 learning kinematics from associated muscle activity.

542

543  Finally, since EMGs used as MF inputs to the model had some level of baseline utility in predicting

544  kinematics based on their intrinsic relationships, (reflected in MFs alone MSE varying between 0.04 and
545  0.22), we next asked whether this influenced which features of the GCL output were most related to

546  learning. In keeping with intuition, when MF based learning was excellent (low MSE), the slope of the
547  variance retained metric was highest (Fig. 7H, I, blue). Conversely, when MF based learning was poor
548  (high MSE) variance retained slopes dropped. Interestingly, a few GCL population metrics became more
549  important for learning as MF MSE worsened, such as the number of explanatory PCs (Fig. 7H, I,

550  maroon). Together this suggests that different pattern separation features of GCL reformatting may serve
551  learning under different conditions, with Purkinje cells using diverse ‘pattern separation’ features

552  depending on the task and input statistics. When intrinsic relationships are valuable, variance retained is
553  animportant population statistical feature; when they are more arbitrary, pattern separation features are
554  more valuable for learning relationships between the inputs and output. This shifting landscape was a
555  general feature of our models (Fig. 6 & 7), suggesting that “pattern separation” by the GCL is not one
556  universal transform that has broad utility. This observation raises the possibility that regional circuit

557  specializations within the cerebellar cortex, such as density of unipolar brush cells (Dino et al. 2000),
558  Golgi cells, or neuromodulators could bias GCL information reformatting to be more suitable for learning
559  of different tasks.

560
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562  Figure 7. Task-dependent relationships between granule cell population statistics and learning.

563  A. Task structure of a phase-offset VOR-like task (top) and learning performance as a function of phase-
564  offset for GCL and MFs alone (bottom). Here, the phase between the input function and the target

565  function varies between 0 and pi. GCL (red) or MFs alone (blue) were used as inputs to learn the task. As
566 the difference in phase between inputs and targets approaches pi/2 (out of phase), performance from MF
567  alone degrades while GCL performance remains accurate and stable. B. RIDGE regression slopes of the
568  input variance retained (Var. Ret.) metric as a function of phase offset. Variance retained slope is large
569  when phase offset is in the ‘in phase’ and ‘anti-phase’ regions of the task, but is otherwise minimized,
570  suggesting that the utility of this statistical feature varies depending on task. C. Same data as B but

571 normalized to show the relative proportion of all slope magnitudes accounted for by Var. Ret. (slope

572  magnitude of Var. Ret divided by the sum of all slope magnitudes). Var. Ret. is a primary regressor for ‘in
573  phase’ or ‘anti-phase’ learning. D. Task structure (top) and learning performance (bottom) of an interval
574  estimation task, where the model is tasked with learning a step function that varies in length. GCs (red)
575  and MFs alone (blue) were used as inputs to the P-cell. As the interval lengthens, learning using MFs
576  alone was generally poorer than using the GCL. E. RIDGE regression slopes of 4 variables (Var. Ret., T.
577  Loss, P. Loss, PCs) as a function of step length, showing that slopes of lossiness-related metrics (P. & T.


https://doi.org/10.1101/2022.01.06.475265
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.06.475265; this version posted January 6, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

578  Loss, and Var. Ret.) increase in magnitude as the step length increases, whereas slope magnitude of PCs
579  decreases. F. Same as E but showing the relative proportion of all slopes accounted for by these 4

580  regressors. G. Schematic of underlying dataset using recorded EMG as an input to the model GCL to
581  predict kinematics (top). Learning performance of model using EMG alone (MFs; blue) or GCL (red)
582  across varying thresholds. The GCL outperforms MFs alone at a threshold range similar to that observed
583 inFig. 2. H. RIDGE regression slopes of Var. Ret and PCs metrics as a function of the learning

584  performance achieved by using MFs (i.e. EMG) alone, showing that Var. Ret. is a stronger driver of

585  performance when MFs alone supported accurate learning, but not when MFs alone supported poor

586 learning (higher MSE). PCs show the opposite trend, increasing in slope magnitude when MFs alone
587  supported poor learning. 1. Same as H, but showing the relative proportion of slope magnitude accounted
588  for by Var. Ret. and PCs.

589

590

591  Discussion

592  Here we asked a simple question: how does the cerebellar granule layer support temporal learning? This
593  question has captivated theorists for decades, leading to a hypothesis of cerebellar learning that posits that
594  the GCL reformats information to best suit associative learning in Purkinje cells. Recent work has called
595  many of these foundational ideas into question, however, including whether GCL activity is sparse; high
596  dimensional; and what properties of ‘pattern separation’ best support learning (Wagner et al., 2017;

597  Giovannucci et al., 2017; Knogler et al., 2017; Cayco-Gajic et al., 2017; Gilmer and Person 2017). To
598  reconcile empirical observations with theory, we hypothesized that input statistics and task structures
599 influence how the GCL supports learning. Here, we used naturalistic time-varying inputs to a model GCL
600 and identified pattern separation features that supported learning a time series prediction task, with an
601 arbitrary but temporally linked input-output mapping, recapitulating important features of physiological
602  cerebellar learning tasks. This formulation eliminates the possibility of trivial dimensionality changes
603  improving classification performance, thus approaching naturalistic challenges faced by the real circuit.
604  Several important observations stemmed from these simulations: (1) with naturalistic input statistics, the
605  GCL produces temporal basis sets akin to those hypothesized to support learned timing with minimal
606  assumptions; (2) this reformatting is highly beneficial to learning; (3) maximal pattern separation does not
607  support the best learning; (4) rather, tradeoffs between loss of information and reformatting favored best
608 learning at intermediate network thresholds; and finally (5) different “cerebellar” tasks utilized different
609  GCL population statistical features to optimize performance. Together these findings provide insight into
610 the granule cell layer as performing pattern separation of inputs that transform information valuable for
611  gradient descent-like algorithms (akin to Purkinje cell learning rules), but with idiosyncratic population
612  statistics supporting different tasks. This observation makes predictions about the regional specifications
613  that occur across the layer that may specially subserve diverse behaviors.

614

615  Emergence of spatiotemporal representation and contribution to learning

616 A perennial question in cerebellar physiology is how the granule cell layer produces temporally varied
617  outputs that could support learned timing (Mauk and Buonomano 2004). While cellular and synaptic

618 properties have been shown to contribute (Chabrol et al., 2015; Duguid et al, 2012; Guo et al., 2021;

619  Crowley etal., 2009; Rudolph et al., 2015; Buonomano and Mauk 1994; Kanichay and Silver 2008;

620  Simat et al., 2007; Mapelli et al., 2009; Rossi et al., 1996; Gall et al., 2005; Armano et al., 2000; Rizwan
621 etal. 2016; Tabuchi et al., 2019; D’ Angelo and De Zeeuw 2009), we observed that with naturalistic

622  inputs, temporal basis set formation is a robust emergent property of the threshold-linear input-output
623  function of granule cells receiving multiple independent time-varying inputs (Fig. 1B). But is this

624  reformatting beneficial to learning? We addressed this question by comparing learning of a complex time-
625  series in model Purkinje cells receiving either mossy fibers alone or reformatted output from the GCL.
626  We found that indeed the GCL outperformed MFs alone in all tasks (Figs. 2, 3, 7). Nevertheless, we

627  wondered what features of the population activity accounted for this improved learning. While

628  sparseness, decorrelation, dimensionality and lossless encoding have been put forward as preprocessing
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steps supporting learning, we found that none of these alone accounted for the goodness of model
performance. Rather, disparate pattern separation metrics appear to strike a balance between maximizing
sparsenesses without trespassing into lossy encoding space that severely, and necessarily, degrades
learning of time-series.

Moreover, the value of different population metrics to learning varied with the specific task -- with some
tasks relying on input retention for best performance, others relying on absence of lossiness, and some
requiring pattern separation to accomplish accurate predictions (Fig. 7). For instance, when input statistics
are well suited to learning the specific task, as in in-phase VOR, preservation of input variance drives best
performance (Fig. 7A-C). Importantly, although the properties of the GCL selected to improve learning
varied across tasks, the underlying architecture of the GCL and thresholding did not. This suggests that
the output of the GCL is well structured to support a variety of tasks. Thus, Purkinje cells are able to
make use of a spectrum of information formats that, depending on task requirements, are selected to serve
best learning.

These observations are interesting in light of a long history of work on granule layer function. Marr,
Albus, and others proposed that the granule cell layer performs pattern separation useful for classification
tasks. In this framework, sparseness is the key driver of performance, and could account for the vast
number of granule cells. Nevertheless, large-scale GCL recordings unexpectedly showed high levels of
correlation and relatively non-sparse activity (Wagner et al., 2017; Giovannucci et al., 2017; Knogler et
al., 2017). Despite methodological caveats, alternate recording methods seem to support the general
conclusion that sparseness is not as high as originally thought (Lanore et al. 2021; Kita et al., 2021;
Gurgani and Silver 2021). Indeed, subsequent theoretical work showed that sparseness has deleterious
properties (Cayco-Gajic et al., 2017; Billings et al., 2014), also observed in the present study, that may
explain dense firing patterns seen in vivo. Here we found that the best learning occurred when individual
granule cell activity occupied around half of the observed epoch (Fig. 5F, blue trace), achieved with
intermediate thresholding levels. We also observed temporal organization that is consistent with the firing
patterns observed in vivo. While these findings seem to suggest that sparseness is not the ‘goal’ of GCL
processing, our findings and others (Litwin-Kumar et al., 2016; Cayco-Gajic et al., 2017) suggest that
pattern separation broadly is a positive modulator of GCL support of learning processes.

Previous work (Sanger et al., 2020) proposed that time-series prediction was possible with access to a
diverse set of geometric functions represented in the GC population. However, that study left open the
question of how such a diverse collection of basis functions would emerge. The GCL model used here
minimized free parameters by incorporating very few independent circuit elements, suggesting that a
single transform is sufficient to produce a basis set which is universally able to learn arbitrary target
functions. We used a simple threshold-linear filter with a singular global threshold that relied on sparse-
sampling to produce spatiotemporally varied population outputs. This simple function worked to support
learning at a broad range of inputs and thresholding values, ultimately allowing the Purkinje cells
downstream to associate the spatiotemporally sparser inputs with feedback to learn arbitrary, and often
quite difficult, target functions. The emergence of this basis set is remarkable given the very simple
assumptions applied, but is also physiologically realistic, given the simple and well characterized
anatomical properties of the MF divergence and convergence patterns onto GCs, which are among the
simplest neurons in the brain (Jakab and Hamori, 1988; Palay and Chan-Palay, 1974; Palkovits et al.,
1971). Although we suggest that the key regulator of thresholding in the system is the feedforward
inhibition from Golgi cells, many factors may regulate the transformation between input and GC output in
the network, allowing for multiple levels and degrees of control over the tuning of the filter or real
mechanism that controls the outcomes of GCL transformations. Golgi cell dynamics may prove critical
for enforcing the balance between pattern separation metrics and lossy encoding (Hull 2020) thus are
critical players in mean thresholding found here to optimize learning. Additional mechanistic
considerations may also play a role, including short-term synaptic plasticity (Chabrol et al. 2015) and
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680 network recurrence (Gao et al. 2016; Houck and Person 2014; 2015; Judd et al., 2021), allowing for a
681  more nuanced and dynamic regulatory system than the one shown here.

682

683  Recapturing input information in the filtered GCL output

684  Two schools of thought surround what information is relayed to Purkinje cells through GCs. Work in the
685  oculomotor cerebellum and flocculus suggests that Purkinje cells inherit virtually untransformed

686  information encoding eye velocity and visual motion, integrated in P-cells as positional signals (Herzfeld
687 et al., 2020; Krauzlis and Lisberger, 1991). Alternatively, the implication of theories of Marr and Albus
688  suggest that input information is so sparsened that Purkinje cells receive only a small remnant of the

689  sensorimotor information sent to the cerebellum. These divergent views have never been reconciled to our
690  knowledge. We addressed this disconnect by determining the fraction of MF input variance recoverable in
691  GCL output. Interestingly, the GCL population retains sufficient information to recover more than 90%
692  the input variance despite filtering out 50% or more of the original signal (Fig. 4). This information

693  recovery is achieved at the population level and thus requires sufficient numbers of granule cells so that
694  the subset of signals that are subthreshold are also super-threshold in other subsets of GCs through

695  probabilistic integration with other active inputs. While variance recovery is not a true measure of mutual
696 information, it is indicative of the utility that the intersectional filtering performed by the GCL. The

697  expansion of representations in the GCL population achieved by capturing the coincidence of features in
698  the input population creates a flexible representation in the GCL output that has many beneficial

699  properties, including the preservation of information through some degree of preserved mutual

700 information between the GCL and its inputs.

701

702  Enhanced learning speed

703  Our model not only improved learning accuracy, but also speed, compared to MFs alone (Fig. 3). Both
704  learning speed and accuracy progressed in tandem: threshold parameter ranges that enhanced overall

705  learning speed also minimized mean squared error, suggesting that speed and accuracy are enhanced by
706  similar features in GCL output. Learning speed was well described by a double exponential function with
707  aslow and fast component. This dual time course in the model with only one learning rule is interesting
708 in light of observations of behavioral adaptation that also follow dual time courses (Herzfeld et al., 2014;
709  Smith et al., 2006). Some behavioral studies have postulated that these time courses suggest multiple
710  underlying learning processes (Yang and Lisberger, 2014). Our model indicates that even with a single
711  learning rule and site of plasticity, multiple time-courses can emerge, presumably because when error
712  becomes low, update rates also slow down.

713

714  Another observation stemming from simulations studying learning speed was that the behavior of the
715  model varied as a function of the learning ‘step size” parameter of the gradient descent method (Fig 3 —
716  Fig. Supplement 1). The step size -- ie. the, typically small, scalar regulating change in the weights

717  between GCs and P-cells following an error -- determined the likelihood of catastrophically poor learning:
718  when the step size was too large, it led to extremely poor learning because the total output ‘explodes’ and
719  fails to converge on a stable output. Nevertheless, the model tolerated large steps and faster learning

720  under some conditions, since the threshold also influenced the likelihood of catastrophic learning.

721  Generally, higher thresholds prevented large weight changes from exploding, suggesting that sparse

722 outputs may have an additional role in speeding learning by supporting larger weight changes in Purkinje
723 cells. Indeed, appreciable changes in simple spike rates occur on a trial-by-trial basis, gated by the

724  theorized update signals that Purkinje cells receive, climbing fiber mediated complex spikes. These

725  plastic changes in rate could reflect large weight updates associated with error. Moreover, graded

726  complex spike amplitudes that alter the size of trial-over-trial simple spike rate changes suggest that

727  update sizes are not fixed (Najafi et al., 2014; Herzfeld et al., 2020; Medina and Raymond 2018). It is
728  possible that the amplitude of synaptic weight changes following a complex spike might be set by tunable
729  circuitry in the molecular layer to optimize learning speed relative to the statistics of the GCL output.
730
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731  Together, this study advances our understanding of how the GCL may diversify or isolate components of
732 inputs. A number of behavioral observations might be informed by the present findings. The timecourse
733  of learning for instance varies widely across tasks. Eyeblink conditioning paradigms require hundreds of
734 trials to learn (Millenson 1997; Khilkevich et al., 2016; Lincoln et al., 1982), while saccade adaptation
735  and visuomotor adaptation of reaches, which are also mediated by the cerebellum (Raymond and

736  Lisberger; Martin et al. 1996), requires just tens of trials (Tseng et al., 2007; Shadmehr and Mussa-Ivaldi
737  1994; Ruttle et al., 2021; Calame et al., 2021). This discrepancy in learning rates raised the possibility that
738 the learning algorithm used by the cerebellum is better engaged during naturalistic movements compared
739  totime-invariant cues, such as a conditioning stimulus. Such purely time-invariant cues would be

740  difficult, if not impossible, for our model GCL to reformat and sparsen, as they are incompatible with
741  thresholding-based filtering of input signals used here. Supportive of this view, recent work showed that
742  EBC learning was faster if the animal is locomoting during training (Albergaria et al., 2018). We

743  hypothesize that naturalistic time-variant signals associated with ongoing movements inputted to the
744  cerebellum through MFs support robust temporal pattern separation in the GCL, enhancing learning

745  accuracy and speed, while time invariant associative signals used in typical classical conditioning

746  paradigms result in an impoverished ‘basis’, making learning more difficult. That this feature is so robust
747  could explain why tasks like eyeblink conditioning are so difficult to learn, sensorimotor tasks can be
748  adapted rapidly. We speculate that the cerebellum is structured to support fast learning in situations where
749  there are physiologically structured inputs, typified by convergent, temporally varying self-generated
750  efference and reafference, within rich sensory and motor environments, as in normal movements during
751  daily life.

752  Methods

753  Model construction

754  The model presented here incorporated major features of the granule cell layer (GCL) circuit anatomical
755  organization and physiology. The features chosen for the model were the sparse sampling of inputs (GCs
756  have just 4 synaptic input branches in their segregated dendrite complexes on average), which was

757  reflected in the connectivity matrix between the input pool and the GCs, where each GC received 4 inputs
758  with weights of 1/4™ (i.e. 1 divided by the number of inputs; 1/M) of the original input strength, summing
759  to atotal weight of 1 across all inputs. The other features were thresholding, representing inhibition from
760 local inhibitory Golgi neurons and intrinsic excitability of the GCs. The degree of inhibition and intrinsic
761  excitability (threshold) was a free parameter of the model, and the dynamics were normalized to the z-
762  score of the summated inputs. This feature reflects the monitoring of inputs by Golgi cells while

763  maintaining simplicity in their mean output to GCs. While this model simplifies many aspects of previous
764  models of the GCL, it recreated many of the important features of those models, suggesting that the

765  sparse sampling and firing are the main components dictating GCL functionality.

766  The model, in total, uses the following formulas to determine GC output:

767
768 Eql: GC(t) = [(THEDy — g7,
769

770  where k is a random selection of M MFs from the MF population. The inputs are summed and divided by
771  the total number of MF inputs to the GC, M, so that their total weight is equal to 1. Unless noted as a
772  variable, we used M = 4, reflecting the mean connectivity between MFs and GCs, and the optimal ratio
773  for expansion recoding (Litwin-Kumar et al. 2017), and the point of best input variance retention (Fig. 4).
774 This function is then linearly rectified, i.e. [x], = x if x>0 and 0 otherwise so that there are no negative
775  rates present in the GC activity. The 6 function which determines the threshold mimics intrinsic

776  excitability and feedforward inhibition was formulated as:
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777

778 Eq2: 8 = MF + (z * o(MF))

779

780  Here, a function of the mean and standard deviation of the entire MF population, z is a free parameter in
781  the model representing the number of standard deviations from the mean, setting the minimum value
782  below which granule cell activity is suppressed, which is the threshold value reported within this study as
783  ‘threshold’. Note that the summated MF inputs are divided by the number of inputs per GC (N) in Eq. 1
784  such that their received activity relative to 6 is proportional to the input size, M.

785

786  Input construction

787  To provide a range of inputs with physiological-like temporal properties that could be parameterized, we
788  used a class of randomly generated signals called Ornstein-Uhlenbeck Processes (OU), defined by the
789  following formula:

At

790 Eq3:0U(t) = (0U(t —At) * e(_7)) + (0 * \J1— e_z*% * R)

791

792  Heretis the time point being calculated, At is the time interval (the time base is in ms and At is 1 ms). g is
793  the predetermined standard deviation of the signal, and R is a vector of normally distributed random

794  numbers. This process balances a decay term, the exponential with e raised to -At/z, and an additive term
795  which introduces random fluctuations. Without the additive term, this function decays to zero as time
796  progresses. After the complete function has been calculated, the desired mean is added to the timeseries to
797  setthe mean to a predetermined value.

798

799  The vector R can also be drawn from a matrix of correlated numbers, as was the case in Fig. 6 — figure
800  supplement 1 B & C. These numbers were produced with the MATLAB functions randn() for normal
801  random numbers, and mvnrnd() for matrices with a predetermined covariance matrix supplied to the

802  function. The covariance matrix used for these experiments was always a 1-diagonal with a constant,

803  predetermined, covariance value on the off-diagonal coordinates.

804

805  Learning accuracy and speed assay

806  In order to understand how the GCL contributed to learning, we constructed an artificial Purkinje cell (P-
807  cell) layer. The P-cell unit learned to predict a target function through a gradient descent mechanism, such
808 that the change in weight for each step was:

809

810 Eq4: Err(t) = |P(t) — TF(t)|

811

812 Eq5: AW; = W; — (Err(t) * GG; (t) * 1)
813

814  Where P(t) is the output of the P-cell at time t, TF(t) is the target function at time t, Wi is the weight

815  between the Purkinje cell and the i" GC, and 1) is a small scalar termed the “step size’. n was 1E-3 for
816  GCs, and 1E-5 for MF alone in simulations shown in this study where the step size was held fixed, which
817  was chosen to maximize learning accuracy and stability of learning for both populations. The learning
818  processin Eg. 4 and 5 was repeated for T trials at every time point in the desired signal. The number of
819 trials was chosen so that learning reached asymptotic change across subsequent trials. Typically, 1000
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820 trials were more than sufficient to reach asymptote, so that value was used for the experiments in this
821  study.

822

823  The overall accuracy of this process was determined by calculating the mean squared error between the
824  predicted and desired function:

825

826 EQ 6: MSE = XT_, (P(t) — TF(t))?

827

828  The learning speed was determined by fitting an exponential decay function to the MSE across every trial
829  and taking the tau of the decay (See methods: Model output metrics, Time decay).

830

831  Model output metrics

832  To assay the properties of the GCL output that influence learning, we measured the features of GCL
833  output across a spectrum of metrics that have theoretically been associated with GCL functions like

834  pattern separation or expansion, as well as optimization or cost-related metrics developed for this paper.
835  These included: dimensionality, spatiotemporal sparseness, contributing principal components, spatial
836  sparseness (mean population pairwise correlation), temporal sparseness (mean unit autocovariance

837  exponential decay), population variance, temporal lossiness, population lossiness, and temporal cover.
838

839  We considered three forms of lossiness here, two related to the dimensions of sparseness considered
840  above, time and space, and one that is a measure of sparseness on the individual GC level. Temporal
841  lossiness is a measure of the percentage of time points that are not encoded by any members of the GCL
842  population, essentially removing the ability of P-cells to learn at that time point and producing no output
843  at that time in the final estimation of the target function. Increases in the value are guaranteed to degrade
844  prediction accuracy for any target function that does not already contain a zero value at the lossy time
845  point.

846 Eq7:
1% N
847 Temp. Lossiness = T Z X; where x; (Z GG;(1) =0=1
— i=1
=t else=0
848

849  Here, T is the total number of points in the encoding epoch, the bracketed portion of the formula is a

850  summation of inputs from all GCs (N = population size) at that timepoint. When all GCs are silent, the
851  sumis 0, and the temporal lossiness is calculated as 1, and when all time points are covered by at least
852  one GC, total temporal lossiness is 0.

853

854  Spatial lossiness, or population lossiness, is the proportion of GCs in the population that are silent for the
855  entirety of the measured epoch. This is thought to reduce total encoding space and deprive downstream P-
856 cells of potential information channels and could potentially impact learning efficacy. It is defined as:
857

858 Eq 8:
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T
N
1 _
Pop. Lossiness = i Z x; where x; (Z GC) <0=1
- t=1

=1 else=0

Here, N is the total population size of the GCL, and the bracketed portion of the formula is a sum of the
activity of GCs across all timepoints, such that if a GC is silent across all timepoints Xx; is calculated as 1,
indicating the ‘loss’ of that GC unit’s contribution. When all GCs are silent, population lossiness is 1, and
when all GCs are active for at least one time point, population lossiness is 0.

Additionally, we looked at the mean sparseness of activity across the population by measuring the
‘coverage’ or proportion of time points each GC was active during, defined as:

Eq9:
N
X
i=1

T
As before, N is the number of cells in the population and T is the total length of the epoch. The bracketed
function counts the number of time points where GC; is active, and divides that by the total time period
length to get the proportion of time active. This value is summed across all GCs and divided by N to
calculate the average coverage in the population. This value has strong synonymy with population
variance, so it was not used for fitting assays in later experiments (Fig. 6), but reflects the effect of
thresholding on average activity in the GCL population.

GCi(t)>0 = 1})
else=0

=~
~e

Coverage = x; where x; {
1

t=

Dimensionality is a measure of the number of independent dimensions needed to describe a set of signals,
similar in concept to the principal components of a set of signals. This measure is primarily influenced by
covariance between signals, and when dimensionality approaches the number of signals included in the
calculation (n), the signals become progressively independent. The GCL has previously been shown to
enhance the dimensionality of input sets and does so in the model presented here too. Dimensionality is
calculated with:

Eq 10: Dim = (¥, 1)°/(E%; A7)

Provided by Litwin-Kumar, et al, 2016. This is the ratio of the squared sum of the eigenvalues to the sum
of the squared eigenvalues of the covariance matrix of the signals.

Spatiotemporal Sparseness (STS) was a calculated cost function meant to measure the divergence of GC
population encoding from a ‘perfect’ diagonal function where each GC represents one point in time and

does not overlap in representation with other units. This form of representation is guaranteed to produce
perfect learning, and transformations between the diagonal and any target function can be achieved in a

single learning step, making this form of representation an intriguing form of GCL representation, if it is
indeed feasible. We calculated the cost as:

Eq11: STS = (1—Lt)*(§)*(%)
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898  Where (1 —-L.) is the cost of temporal lossiness, defined above (Eg. 7), and T is the total length of the

899  epoch. W is the number of unique combinations (termed ‘words’, akin to a barcode of activity across the
900 population), of GCs across the epoch at each point of discrete time, and GC,, is the average number of
901  words each GC is active at all within the time-bins chosen (e.g. a binary representation of GC activity).
902  The intuition used here is that when there is no temporal lossiness, all points in time are represented,

903 leading the 1 —L; term to have no effect on the STS equation, and when W, the number of unique

904  combinations of GC activities is equal to T, then each point in time has a unique ‘word’ associated with it.
905  Finally, when GCy is 1, W/GCy, is equal to W, which only occurs when each GC contributes to a single
906  word. When these conditions are met, STS = 1, otherwise when GCs contribute to more than one word,
907  GCy increases and W is divided by a number larger than 1, decreasing STS. Alternately, when there are
908 not many unigue combinations, such as when every GC has the exact same output, W/GC,, is equal to
909  (1/T), decreasing STS. Finally, because lossiness causes the occurrence of a ‘special’, but non-associable,
910  word, we multiplied the above calculations by (1 —L;) to account for the effect of the unique non-encoding
911  word (i.e. all GCs inactive) on distance from the ideal diagonal matrix.

912

913  Mean temporal decay, i.e. temporal sparseness, is a measure of variance across time for individual

914  signals, where a low value would indicate that the signals coherence across time is weak, meaning that the
915  signal varies quickly, whereas a high value would mean that trends in the signal persist for long periods of
916 time. This value is extracted by fitting an exponential decay function to the autocovariance of each unit’s
917  signal and measuring the tau of decay in the function:

918

919 Eql2:y=a * e*/D

920

921  This is converted to the ms form by taking the ratio of 1000/t. y here 7 is a description of the

922  autocovariance of the activity of a MF or GC signal, so when the descriptor t is a large number, the decay
923 in autocovariance is longer, or slower, when t is a small number, the autocovariance across time decays
924  more quickly, making the change in activity faster.

925

926  While dimensionality and STS are metrics rooted in a principled understanding of potentially desirable
927  properties of population encoding, the gradient descent algorithm can extract utility from population

928  statistics that are much noisier and correlated than the ideal populations that dimensionality and STS

929  account for. To measure a more general pattern separation feature in GCL output that could still be

930  associated with the complex target function, we turned to principal component analysis (PCA) with the
931 intuition that components which explain variance in the GCL output could be utilized by the downstream
932  Purkinje cell units to extract useful features from the input they receive (Lanore et al., 2021). We

933  parameterized the utility of this measure by taking the proportion of the PCs derived from the GCL output
934  which explained variance (of the GCL output) in that population by more than or equal to 1/N, where N is
935 the number of GCs, suggesting that they explain more variance than would be expected from chance.

936

937  Population correlation, was measured by taking the mean correlation between all pairwise combinations
938  of GCs using the corr() function in MATLAB and excluding the diagonal and top half of the resultant
939  matrix.

940
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941  Population aggregate variance is a measure related to the expansion or collapse of total space covered by
942  the encoding done by a population, and higher or expanded values in this metric are thought to assist in
943  pattern separation and classification learning.

944

945 Eq 13: Pop. Var = ¥N_, (x, — p)?

946

947  Asshown in Cayco-Gajic et al. (2017). Here x is the activity of one of n cells across a measured epoch,
948  and p is the mean of that activity. This value is reported relative to the number of GC units, such that Pop.
949  Var reported in Fig. 5 is normalized to Pop. Var / N.

950

951

952  Variance retained assay

953  To test the recovery of inputs by a feedforward network with a granule cell layer (GCL), we used

954  explained variance, R? , to quantify the quality of recovery of a sequence of normal random variables
955  (Fig. 2) across N, = 1000 numerical experiments. To distinguish this metric from the MSE and R?

956  metrics to evaluate other models in the study, we rename this ‘variance retained’. Within each numerical
957  experiment i, at each time point, a vector of inputs x, of length M (representing the mossy fiber, MF,
958 inputs) was drawn from an M-dimensional normal distribution with no correlations, x, ~ NV'(0, I;). This
959  vector is then left-multiplied by a random binary matrix W with N rows and M columns with n 1°s per
960  row and the rest zeros, followed by a threshold linearization to obtain the GCL output, y, = [Wx; — z]
961  with threshold. This process is then repeated T = 1000 times and a downstream linear readout was fit to
962  optimally recover x; from y;. It can be shown multivariate linear regression (MATLAB’s regress()

963  function, employing least squares to minimize mean squared error) solves this problem, identifying for

964  each MF input stream xQ:T, the optimal weighting B,.r from the GCL to estimate ?LT = Bj1.nY11
965  Acrosstime t = 1: T, we then computed the squared error across the vector, MSE; = ¥\1_, 294:1(3?{; -

966  x))2, as well as the summed variance of the actual input, Var; = %294:1 YT (x) —%)2, where 3 =

967 % I x’t is the mean of the jth MF input stream. Lastly, to compute variance explained, we take R? =

Nw
968 1- % so the higher the relative mean squared error is, the lower the variance explained will be.

i=1 t
969  To generate the panels in Fig. 4, we always kept the number of timepoints and experiments the same, but
970  varied (Fig. 4B) the threshold along the axis and the number of inputs n per GC output; (Fig. 4C) the total
971  number of GC outputs N and input per output n; (Fig. 4D) number of inputs M and outputs N; and finally
972  (Fig. 4E) the number of inputs per GC output n along with the total number of outputs N.
973
974  Independent measures generation
975  To determine if the sparseness measures had inherent benefits for learning, we supplemented the GCL
976  output with OU processes with known temporal and correlational properties to examine their effect on
977  learning accuracy (Figure 6 figure supplement 1). We varied the temporal properties by systematically
978  varying the tau value in the exponential decay function. To vary population correlation, the random draw
979  function in the OU process was replaced with a MATLAB function, mvnrnd(), which allowed for preset
980  covariance values to direct the overall covariance between random samples. We used a square matrix with
981  1son the diagonal and the desired covariance on all off-diagonal locations for this process and varied the
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982  covariance to alter the correlation between signals. The OU outputs from this controlled process were
983  then fed into model P cells with randomized OU targets, as per the normal learning condition described
984  above. To vary the effect of the input population size, the size of the supplemented population varied
985  from 10 to 3000 using a tau of 10 and drawing from normal random numbers.
986
987  To measure the effects of STS on learning, a diagonal matrix was used at the input to a Purkinje unit,
988  which represented population activity with an STS of 1 (see Eq 11 in Model output metrics). To degrade
989  the STS metric, additional overlapping activity was injected either by expanding temporal representation
990 or at random, for example, adding an additional point of activity causes inherent overlap in the diagonal
991  matrix, increasing the GCy denominator of Eq 11 to (1 + 2/N) because the overlapping and overlapped
992  units now each contribute to 1 additional neural word. This process was varied by increasing the amount
993  of overlap to sample STS from 0 to 1.
994
995  GCL output metrics fits to learning
996  To estimate the properties of GCL output that contribute to enhanced learning of time series, we used
997  multiple linear regression to find the fit between measures of GCL population activity and observed MSE
998 in learning. Because there are large inherent correlations between the metrics used (dimensionality,
999  spatiotemporal sparseness, explanatory principal components of the GC population, population
1000 variability, mean pairwise GC correlation, temporal sparseness, temporal lossiness, population lossiness,
1001  and input variance retained) we used two linear regression normalization techniques: LASSO and RIDGE
1002  regression. For Figure 6, LASSO was used to isolate the ‘top’ regressors, while RIDGE was used in
1003  Figure 7 to preserve small contributions from regressors. The RIDGE regression method was then used to
1004  compare resultant regression slopes (beta coefficients) to changes in task parameters (see Methods on
1005  Simulation of cerebellar tasks).
1006
1007  Regressions were performed using the fitrlinear() function in MATLAB, with LASSO selected by using
1008  the ‘SpaRSA’ (Sparse Reconstruction by Separable Approximation; Wright et al., 2009) solver, and
1009 RIDGE selected with the ‘Ibfgs’ (Limited-memory BFGS; Nodecal and Wright 2006) solver techniques.
1010  The potential spread of MSE in the models was determined using a K-fold validation technique, with 10
1011 ‘folds’ used, as well as for determining the range of slopes shown in Figures 7, B, C, E, F, H, and I, of
1012  which the mean and standard deviation of cross-validation trials are plotted with solid lines and shaded
1013  polygons, respectively. Models were selected by choosing the model with the least complex fitting
1014  parameters (i.e. the model with the highest Lamba) while still falling within the bounds of the model with
1015  the minimized MSE plus the standard error (a standard ‘1SE’ method).
1016
1017  To convey the overall contribution of regressors to the above models of MSE, both the slope (e.g. ‘Beta’)
1018 (Fig. 7: B, E, H), and the slope relative to the magnitude of all slopes were used as plotted metrics (Fig. 7:
1019 C,F ).
1020
1021  Simulation of cerebellar tasks
1022  To simulate the input and output relationship observed in cerebellar and cerebellar-related tasks like
1023  vestibulo-ocular reflex adaptation (VOR), interval estimation, and motor-kinematic transformations, we
1024  adjusted the inputs and target functions in the task used above to mimic these scenarios. For the VOR-like
1025  task (Fig. 7 A-C), the inputs were 10% cosines with a fixed period and amplitude (1L0Hz, Amplitude range
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1026 [0, 2]) and the rest were OU processes with taus of 100 and means and standard deviations of 0.5, and 0.2.
1027  The target functions were also cosines whose periods and amplitudes were identical to the inputs, but
1028  which had phase offsets between 0 and pi to mimic phase-offset VOR tasks.

1029

1030  The interval estimation tasks (Fig. 7 D-F) had standard OU inputs with target functions that were step
1031  functions with amplitude ranges from 0 to 1 and intervals that ranged from 0 to 1000 ms, which was the
1032  maximal extent of the epoch.

1033

1034 Finally, to simulate the transformation between motor commands and kinematic predictions, we used
1035  human EMG as a proxy for a motor command-like input signal to the GCL. 30 muscles from 15 bilateral
1036  target muscles were used (Delis et al., 2018; Hilt et al., 2018). The target function was a kinematic

1037  trajectory recorded simultaneously with the recordings of EMG used for the study. Although many body
1038  parts and coordinate dimensions were recorded of the kinematics, we opted to use the kinematic signal
1039  with the largest variance to simplify the experiment to a single target function.
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