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Moment-Based Estimation of State-Switching Rates in Cell Populations

Michael Saint-Antoine! and Abhyudai Singh?

Abstract— In isogenic cell populations, cells can switch back
and forth between different gene expression states. These
expression states can be biologically relevant. For example, a
certain expression state may cause a tumor cell to be resistant
to treatment, while another state may leave it vulnerable to
treatment. However, estimating the rates of state-switching
can be difficult, because experimentally measuring a cell’s
transcriptome often involves destroying the cell, so it can only
be measured once. In this paper, we propose a computational
method to estimate the rate of switching between expression
states, given data from a Luria-Delbriick style fluctuation test
that is experimentally simple and feasible. We then benchmark
this method using simulated data to test its efficacy, with
varying assumptions made about cell cycle timing distribution
in the simulations.

I. INTRODUCTION

Even in clonal groups of cells that share the same genetic
code, cells sometimes exhibit different phenotypic charac-
teristics, caused by different patterns of gene expression [1].
This phenomenon is referred to as “cellular heterogeneity”,
and can arise due to non-genetic factors affecting gene
expression, such as epigenetic regulation and stochastic vari-
ability in the processes of transcription and translation [2]-
[14]. Recent developments in experimental technology, such
as single-cell RNA-seq (scRNA-seq) have made it feasible to
study the transcriptomic profiles of individual cells, yielding
new insights about cellular heterogeneity at the single-cell
level [15]. Heterogeneity in cell populations is known to
play a role in many biological contexts, including drug
response in cancer [16]-[18], latency in HIV cells [19], [20],
immune response in epithelial tissue [21], determination of
cell fate in genetically identical populations [22]-[31], and
“bet-hedging” responses to environmental stresses in bacteria
[32], [33]. For more information, an excellent review of the
study of cellular heterogeneity can be found in the Altschuler
and Wu (2010) paper “Cellular Heterogeneity: When Do
Differences Make a Difference?” [34].

We are especially interested in the phenotypic state-
switching dynamics associated with transient cellular hetero-
geneity — that is, when cells switch back and forth between
different phenotypic states. A fascinating example of this
is related to drug resistance in cancer. Recent research has
uncovered a phenomenon in which melanoma cells switch
back and forth between a common drug-sensitive state and
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a rare pre-resistant state [35], [36]. When the drug is ad-
ministered, cells in the sensitive state die off, while cells
in the pre-resistant state undergo a process in which they
become “locked in” to a state of permanent drug resistance,
and no longer switch back to the sensitive state [35], [36].
Similar phenomena have been observed in many different
types of cancer [37]-[40] and their significance for treatment
scheduling has been explored in theoretical models [41],
[42].

In cases like this, where cells switch back and forth be-
tween different phenotypic states, it can be quite challenging
to estimate the rates of switching between the states. This
is because experimentally measuring a cell’s transcriptome
often involves destroying the cell, so it can only be measured
once for each cell. In this paper, we will propose a compu-
tational method to estimate the rate of switching between
expression states that is experimentally simple and feasible.

II. EXPERIMENTAL SETUP

In 1943, researchers Salvador Luria and Max Delbriick
used a fluctuation test experiment to investigate whether bac-
terial resistance to T1 phage occurred spontaneously or was
induced by the virus [43]. The fluctuation test experiment
involved growing out many colonies of bacteria, and then ex-
posing each colony to the phage. Luria and Delbriick counted
the number of surviving bacteria in each colony, and studied
their distribution. They realized that if resistance were being
induced by the virus, the numbers of surviving bacteria
would follow a Poisson distribution. However, they found
instead that the distribution of surviving bacteria showed
much greater variance, suggesting that resistance to the virus
was caused by a mutation that occurred prior to exposure to
the virus. The results of this experiment were evidence of
Darwinian selection acting on bacteria by way of random
mutations that confer a fitness advantage. Since then, the
experiment has been analyzed theoretically, with researchers
deriving probability distributions for the number of resistant
cells based on different biological assumptions [44]-[46]. An
excellent review of some of the theoretical developments is
available in the Zheng 1999 paper “Progress of a half century
in the study of the Luria-Delbriick distribution™ [47].

We can use a modified fluctuation test to study the rate
at which cells switch between transient phenotypic states.
Consider a population of cells that switch back and forth
between two expression states, an ON state and an OFF
state. This modified fluctuation test will involve a workflow
similar to the original Luria-Delbriick experiment. First,
several individual cells will be isolated from the population.
Then, each of these isolated cells will be grown out into its
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Fig. 1.

Workflow of the modified fluctuation test experiment. We begin with an original population of cells that switch back and forth between an OFF

(Y) state and an ON (X)) state. We isolate many individual cells, and grow each one out into a colony. After some time, we measure the fraction of cells
in the ON state in each colony, and calculate the C'V'2 in these fractions across colonies. All else equal, populations of cells with faster state-switching
rates will tend to have lower variation in these fractions than populations of cells with slower state-switching rates, since the faster-switching populations
will tend to converge back to the steady state fraction of ON cells in the original population more quickly.

own colony. After a set amount of time, the fraction of ON
cells in each colony will be recorded. This may be done by
transcriptome sequencing, using methods such as RNA-Seq.
Or, in cases where the ON state corresponds to resistance to
a drug or virus, the colonies could simply be exposed to the
drug or virus and the survivors counted. Please see Figure 1
for a graphical representation of this experiment.

Once we have recorded the fraction of ON cells in each
colony, we can then look at the coefficient of variation
squared (C'V'2) of these fractions in order to infer the rates
of switching between the ON and OFF states. Slow rates
of switching between ON and OFF states will tend to yield
higher C'V2, while faster rates of switching will tend to yield
lower CV2. The intuition here is that each of the colonies
will eventually converge back to the original population
average of cells in the ON state. However, faster-switching
populations will converge back more quickly, leading to
lower CV?2 in fractions across colonies, and the reverse is
true for slower-switching populations.

Variations of this modified fluctuation test have previously
been used to study HIV [19] and cancer [41], [48], [49]. The
test has also been studied theoretically through mathematical
analysis [50]. However, to our knowledge, there has not yet
been an attempt to benchmark this method on simulated
“gold standard” data, for which the true switching rates
are already known. As we will see in the next section, the
mathematical formula used in this technique is an inexact
approximation. So, it is a pressing issue to validate this
method through a benchmarking process so that we can be
confident in its accuracy as it continues to be used on real-
world experimental datasets.

III. FORMULA DERIVATION

In this section, we will derive a formula for the CV? of
the fractions of ON cells across colonies in the modified

fluctuation test experiment. Let us again consider a popula-
tion in which cells switch back and forth between an OFF
state, which we will call Y, and an ON state, which we will
call X. Please see Figure 2 for a graphical representation of
these dynamics.

k

T T
e @

~

Fig. 2. Cells switch back and forth between states OFF (Y)) and ON (X).
They switch from OFF to ON with rate k, and from ON to OFF with rate
~. Cells in both states proliferate with rate 7.

We assume that the cell cycle time is an exponentially-
distributed random variable with a mean generation time
of 1/r. Hence, starting from a single cell the population
grows exponentially with rate ». We make two simplifying
assumptions: i) The proliferation rate of a cell is the same
irrespective of the cellular state; ii) The population remains
in the exponential growth phase during the timespan of the
experiment. Cells in the OFF state transition to the ON state
with rate k, and switch back to the OFF state with rate . So,
the expected amount of time a cell will spend in the OFF
state is 1/k, and the expected amount of time a cell will
spend in the ON state is 1/+. Since we have defined the cell
proliferation rate as r, the expected number of generations
a cell will spend in the OFF state is r/k, and the expected
number of generations a cell will spend in the ON state is

r/y.
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When discussing the fraction of cells in the ON state, we
will usef to refer to the average fraction of ON cells in the
original population, and F'(t) to refer to the fraction of cells
in the ON state in cell colonies over time.

f can be written in terms of the state switching rates &
and y as

f=re

+7

Individual cells are randomly chosen from the population,

and they will be in the ON state with probability f and in

the OFF state with probability 1 — f. Let X (¢) and Y'(¢)

denote the number of cells within the colony in the ON state

and OFF state, respectively, at time ¢. The time evolution of

integer-valued random processes X (¢) and Y (¢) is governed
by the model illustrated in Table L.

(D

TABLE I
STOCHASTIC MODEL OF CELL PROLIFERATION AND SWITCHING

Stochastic event Reset in Probability event
description population counts | occurs in small time
interval (t,t 4 dt)
ON cell proliferation X —->X+1 rXdt
OFF cell proliferation Y —-Y+1 rYdt
Cell switching OFF to ON Y—-Y -1 kY dt
X—->X+1
Cell switching ON to OFF X—->X-1 yXdt
Y—-Y+1

The model consists of four events that occur probabilis-
tically with rates given in the third column, and whenever
the event occurs, the cell numbers increase/decrease by one
as per the reset map in the second column. Based on this
Markov process, we can derive the time evolution of the joint
probability density function of X (¢) and Y (¢) that evolves
according to the following Chemical Master Equation (CME)

%;(t) DP_1;(t) +r(j—1)P; j-1(t)

+ k(i 4+ 1) P j-1(t) + (G + 1) Py j11(t)
— P, () (ri+rj+ ki +j)

=r(i—

2

where P; ;(t) denotes the probability of observing 4 cells in
the OFF state, and j cells in the ON state at time ¢ [51],
[52]. Previous research has shown how the time evolution of
moments can be derived from the CME [53]-[56].

We are interested in the ratio

X(t)

X() + Y () )

F(t) =

that represents the fraction of cells in the ON state at time

t, and our goal is to quantify statistical fluctuations in this
ratio across colonies. To do this, we derive the time evolution
of the first two statistical moments of X (¢) as well as those
of the total cell count, which we will refer to as T'(t) =
X (t)+ Y (t). For the sake of simplicity, we will refer to the

random variables X (¢t), Y'(¢), T'(t), F(t), as simply X, Y,
T, and F' from now on.

We will use angle brackets to denote the expected value
of a random variable. For example, (X) will denote the
expected value of X, and (X™) will denote the expected
value of X™.

The following equation is a general formula for the
moment dynamics ODE of this system [53].

7d<X;Yn> = (FX)((X + 1Y — X"Y™)
FAX((X — )Y +1)" - XY™
+ (Y)Y (XY 1" - XY™

FEY (X +1D)™(Y = 1) = X™Y™)) (4

We can use this general formula to find differential equa-
tions for the first moments of X and Y, which are shown
below.

B — 1) 4 1Y) (%)

7 (&)
B2 = (¥} +20X) — KV ©

To define the initial conditions for this set of ODEs, we
must consider the state of our experiment at time ¢ = 0. At
time ¢ = 0, each colony is still only a single cell that has
been sampled from the original population. If this individual
cell is ON, then the fraction of cells in the ON state will
be 1. If this cell is OFF, then the fraction of cells in the
ON state will be 0. In other words, the fraction of cells in
the ON state at time ¢ = 0 follows a Bernoulli distribution,
taking the value 1 with probability p(1) = f, and taking the
value 0 with probability p(0) = 1 — f. So, at time ¢ = 0,
(X) = f and (Y) = 1 — f. With this information, we can
solve this set of ODEs and find equations for (X) and (Y)
as functions of time. These are shown below.

M= v @
B ert,y
R ) ®

Adding equations (7) and (8) together yields an expression
for (T'), the total number of cells in both states.

(T) = e )

To compute the second moments of X and Y, we again
use the differential equation technique described in equation
(4). After simplifying, this yields:

d(X?)
dt

= 27 (XD 42k (XY )41 (X)) +k(Y) —2v(X ) +y(X)
(10)
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dgj>::2r0ﬂ>+2y¢¥Y)+rQq+ﬂ4X>_Qkaﬂ>+kﬁq
(11)

d<§ty> = 2r(XY) = y(XY) — k(XY)
+ ’Y<X2> + k‘<Y2> — fy<X> _ k<Y> (12)

Again, we know the initial conditions for this set of ODEs:
at time t = 0, (X2?) = f, (Y?) =1— f, and (XY) = 0.
Using this information, we can again solve these ODEs and
find the second order moments as functions of time.

Equation (13), shown at the top of the next page because
of its length, is the equation for (X?2). We have omitted (Y 2)
and (XY') for now, as they are not needed for our fluctuation
test analysis. To find the second moment of 7', we will again
use the differential equation method described in equation
(4). However, this time, we will ignore state-switching dy-
namics and consider only cell population growth, since 7' is
the total number of all cells in the population.

d(T?)
dt

=2r(T?) + (T (14)
We know the initial condition at time ¢ = 0 is (1) =
1. After solving the ODE with this initial condition, the
resulting equation for (72) is shown below.
(T?) = 2¢*™" — et (15)

Based on equations (9) and (15), we note that the total
number of cells 7" at a given timepoint follows a geometric
distribution.

We have now derived equations for the first and second
order moments of X and 7. However, in order for this
method to be experimentally and computationally feasible,
what we are actually interested in is the first and second
order moments of the fraction F' = %, which is the fraction
of cells in the ON state over time. If we can find the first
and second order moments of this fraction, then we can use
these moments to compute the CV?2 of the fraction of ON
cells across colonies as a function of time.

How can we compute the moments of F'? Please consider
the following:

(X) = (FT) (16)

(X?%) = (F°T?) 17

At this point, we will introduce a simplifying assumption
that will allow us to derive an approximation of the moments
(F) and (F?). We will assume that ' and 7' are indepen-
dent variables. In other words, the fraction of ON cells is
independent of the total number of cells in the colony. In
the next section of the paper, we will discuss how accurate

this assumption is. Making this assumption, we can rewrite
equations (16) and (17) as, respectively:

(X) = (F)(T) (18)

(X?) = (F*)(T?) (19)

Then, simple algebra yields the first and second order
moments of F"

()= 0)
(F?) = g;; 1)

Please note that we have already derived (X), (T"), (X?),
and (T?) in equations (7), (9), (13), and (15) respectively.
So, we can simply plug in those formulas to get the first
and second order moments of F' in terms of k, ~, and ¢.
Equation (22) is the first moment of F', which is equal to f,
the fraction of ON cells in the original population. Equation
(23), shown on the following page because of its size, is the
second moment of F'.

k
F)y=——
(F) k+
Finally, now that we have calculated the first and second
order moments of the fraction of ON cells, we can calculate
the coefficient of variation squared as follows:

(22)

(F?) = (F)*

cv?= 2

(24

The full formula for CV? is a bit long and unwieldy, so
we will define two new parameters to be able to write it
more simply. Let Z = %, and let 7 = tr, so that 7 is the
duration of the experiment normalized to generation time.

Then we can write the formula for CV? as follows.

(20 FZ-2-Z\1—Ff
CV2<(2€T—1)(Z—2)> f

(25)

Equation 26 shows the limit of our CV? formula as ¢
approaches 0. To understand this, consider that at time ¢t = 0,
each colony is still only a single cell that has been sampled
from the original population. So, the fraction of cells in the
ON state will take the value 1 with probability p(1) = f,
and will take the value 0 with probability p(0) =1 — f. In
other words, at time ¢t = 0, the fraction of cells in the ON
state follows a Bernoulli distribution, and the C'V?2 of this
distribution is 151

1-f

lim CV? = — =

t—0 f (26)

Conversely, as t goes to infinity, the fraction of ON cells
in each of the colonies tends back towards the steady state
value of f in the original population, and the C'V? of the
fraction of ON cells in the colonies approaches 0.
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Fig. 3. Comparison between formula noise prediction and noise in
simulations. Simulated data was generated with the Gillespie algorithm
method, further described in Section V. The fraction of ON cells in the
original population (f) was assumed to be 0.10. We set the proliferation
rate (r) to be 1, so that time is normalized to the generation time of the
cells. The simulations were run for 12 generations (¢ = 12), and cv?
was calculated across 40 colonies. The simulations were run 50 times per
parameter set to generate error bars, which show one standard deviation.
Although our formula is not a perfect prediction of the true underlying
CV?2, it is a reasonably good approximation.

lim CV2=0

t—o0

27)

Importantly, at a fixed experimental endpoint ¢, cell pop-
ulations with slower switching rates will tend to have a
higher CV? in the fraction of ON cells across colonies
compared to cell populations with faster switching rates.
The intuition behind this is that colonies from populations
with faster switching rates will tend to converge back to the
steady state fraction of ON cells more quickly, leading to
less variation across colonies, compared those of a slower-
switching population.

Figure 3 shows a comparison of our formula’s C'V?
predictions and C'V? of stochastic simulations of the ex-
periment. Now that we have a formula for the C'V? of the
fraction of ON cells, we can measure the C'V'2 of the fraction
of ON cells in real cell populations, and compare the formula
to the real measurement to fit the state-switching parameters
k and ~. Please note that, based on equation (1), if we
experimentally measure the fraction of cells in the ON state
in the original population, we can write k in terms of v and
this measured fraction.

In practice, we use the Python SciPy library’s opti-
mize.fmin() function to do this error minimization and solve
for .

IV. INDEPENDENT VARIABLE ASSUMPTION

As noted previously, in order to derive the formulas for the
first and second order moments of F', we made a simplifying
assumption: that ' and T' are independent variables (which
would mean that F2 and T? are also independent variables).
To be precise, writing equation (16) as equation (18) is based
on the assumption that F' and 7" are independent, and writing
equation (17) as equation (19) is based on the assumption
that F2 and T? are independent.

However, we tested this assumption by collecting data
from stochastic simulations (discussed further in the next
section), and found that it is not completely correct. For
these simulations, we set the proliferation rate (r) to be 1, so
that time is normalized to the generation time of the cells.
The fraction of ON cells in the original population (f) was
assumed to be 0.10. The switch-off rate () was set at 1/8, so
that the expected number of generations spent in the ON state
is 8. The switch-on rate (k) was set according to equation
(28), using these values of f and ~y. The simulations were
run for 7 generations (t = 7). We ran 10,000 simulations,
and at the end of each one we recorded the total number of
cells (T') and the fraction of cells in the ON state (F'), as
well as the squares of both (F2 and 72).

We observed a very slight Pearson correlation of —0.016
between F' and 7', which was not statistically significant
(p = 0.1087). However, we observed a stronger Pearson
correlation of —0.0439 between F2 and 72, which was
statistically significant (p = 1.1078 x 10~°). This negative
correlation is shown in Figure 4, a plot of the final fraction of
cells in the ON state squared (F'2) against the total number of
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Fig. 4. Fraction of cells in the ON state squared F'? plotted against the
total number of cells squared T2 for 10,000 simulated cell colonies. For
these simulations, we set the proliferation rate () to be 1, so that time is
normalized to the generation time of the cells. The fraction of ON cells in
the original population (f) was assumed to be 0.10. The switch-off rate ()
was set at 1/8, so that the expected number of generations spent in the ON
state is 8. The switch-on rate (k) was set according to equation (28), using
these values of f and ~. The simulations were run for 7 generations (¢t = 7).
We ran 10,000 simulations, and at the end of each one we recorded the
total number of cells squared (T2) and the fraction of cells in the ON state
squared (F'2). We observed a Pearson correlation of —0.0439 between F'2
and T2, which was statistically significant (p = 1.1078 x 107?).

cells squared (7%) for 10,000 simulated cell colonies. This
observed statistical dependence between F? and T2 means
that there must also be some level of dependence between F
and T', even if it was not detected to a statistically significant
extent in our simulation analysis.

So, although the derivation of our CV? formula was
based on a simplifying assumption of independence between
F and T, it appears that there is in fact a very slight
level of statistical dependence between them. Therefore, our
derived formula for the CV? should be thought of as an
approximation, not as an exact analytical formula for the
experimental C'V2. Can this approximation of the C'V? still
be useful in a biological context, even if it is not exact? In
the following sections, we will benchmark our method on
simulated data to test its efficacy.

V. SIMULATING CELL COLONIES
A. Simulations with Gillespie Algorithm

In order to test if our fluctuation test method, based on
the approximation of the C'V2, is useful, we first generated
simulated data by using the Gillespie algorithm [57] to
simulate the stochastic model described previously in Table
L

Please note that for all of our simulations, we set the
proliferation rate » = 1, so the average cell cycle time 1/r
will also be 1 and time is normalized to the generation time
of the cells. This will allow us to discuss results for 1/+ both
as predicted time in the ON state and predicted number of
generations in the ON state.

Figure 5 shows the evolution of the fraction ON, F' = %,
over time in the stochastic simulations (blue dotted curves),

compared to the deterministic steady state fraction ON.

1.0

- T Stochastic Trajectories
—— Deterministic Trajectory

0.8

0.6 q

0.44

Fraction ON

0.24

0.0 — i :
0 6 10
Time (generations)

Fig. 5. This plot shows the evolution of the fraction ON, F' = X over
time in the stochastic simulations (blue dotted curves), compared to the
deterministic steady state fraction ON. The fraction of ON cells in the
original population (f) was assumed to be 0.10. We set the proliferation rate
(r) to be 1, so that time is normalized to the generation time of the cells.
Most colonies begin with a single OFF cell, and the fraction ON increases
up to 0.10 over time as the colony grows. A small number of colonies begin
with a single ON cells, and the fraction ON decreases down to 0.10 over
time as the colony grows.

To simulate a colony of cells, we will run this simulation
starting with one cell that will be randomly chosen to either
be in the X (ON) state with probability f, or the Y (OFF)
state with probability 1 — f. Then we will run the simulation
to some specified end point to simulate the colony of cells
proliferating and switching between the ON and OFF states.
To simulate the modified fluctuation test experiment, we will
simulate many of these colonies so that we can measure the
CV? of the final fraction of ON cells in each colony.

B. Non-Exponential Cell Cycle Time

In our simulations with the Gillespie algorithm, it is as-
sumed that the timing between events follows an exponential
distribution. However, in the biological context, cell cycle
timing does not typically follow an exponential distribution.
More realistic distributions for modeling cell cycle timing are
the log-normal distribution and gamma distribution. So, in
addition to using the Gillespie algorithm, we also developed
an algorithm for simulating cell colonies that can account for
other distributions of cell cycle timing besides the exponen-
tial distribution. More information about these simulations
is available in the Appendix section of this paper, and the
code for these simulations is available upon request from the
authors.

VI. RESULTS

As discussed previously, the formula we derived for the
CV? of the fraction of ON cells across colonies over time
is an inexact approximation. Is this approximation accurate
enough to be useful to biologists in an experimental setting?
To investigate this, we decided to benchmark our formula
by generating simulated data and seeing how effective our
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method was at estimating the true, underlying rates of state-
switching.

We considered two hypothetical cell populations: a fast-
switching population and a slow-switching population. Both
populations have an average of 10% ON cells in the original
populations, so f = 0.10. However, cells in the fast-
switching population spend an expected 4 generations in the
ON state, while cells in the slow-switching population spend
an expected 10 generations in the ON state, so v = 1/4
for the fast-switching population and v = 1/10 for the
slow-switching population. We assumed that our simulated
experiment would run for 12 generations (f = 12), and
CV? would be calculated across 40 colonies. We set the
proliferation rate » = 1, so the average cell cycle time 1/r
will also be 1 and time is normalized to the generation time
of the cells, allowing us to discuss results for 1/ both as
predicted time in the ON state and predicted number of
generations in the ON state.

We used the stochastic simulation methods described in
the previous section to simulate the experimental workflow
of the fluctuation test, generating many simulated datasets
for both the fast-switching and slow-switching scenarios. We
then applied our switch-rate estimation method to each of
these “experimental” datasets, to see how close the predicted
switching rates came to the actual switching rates. To make
our results more intuitive, we have chosen to report 1/7,
which is the expected number of generations in the ON state,
rather than + itself.

The histograms in the following subsections show the
predictions of 1/~ (expected number of generations in the
ON state) for the fast-switching datasets in blue, and for
the slow-switching datasets in red. There are also vertical
lines at 4 and 10 on the horizontal axis, to mark the true,
underlying values of 1/7 in the fast-switching and slow-
switching scenarios, respectively.

A. Exponential Distribution Cell Cycle Time

Figure 6 shows the results of the benchmarking analysis,
for cell colonies simulated with the Gillespie algorithm,
assuming exponentially-distributed cell cycle time. As you
can see, our method’s predictions for the fast-switching
scenario cluster around the true 1/~ value of 4 (meaning
that cells spend an average of 4 generations in the ON state),
while the predictions for the slow-switching scenario cluster
around the true 1/~ value of 10 (meaning that cells spend an
average of 10 generations in the ON state). Table II shows
relevant statistics for the predictions. The mean predicted
1/~ value for the fast-switching scenario was 4.67, while
the mean predicted 1/~ value for the slow-switching scenario
was 11.01.

For both the fast-switching and slow-switching scenarios,
our formula had a tendency to slightly overestimate the num-
ber of generations in the ON state. So, its performance was
not perfect. However, we believe that it was still close enough
to potentially be useful to biologists an approximation.

Occurrences

6 8 10 12 14 16
Predicted Generations in ON State

Fig. 6. Benchmarking with exponentially-distributed cell cycle time, using
data generated with the Gillespie algorithm. The fraction of ON cells in
the original population (f) was assumed to be 0.10. We consider a fast-
switching scenario, in which cells spend an average of 4 generations in the
ON state (1/y = 4), and a slow-switching scenario, in which cells spend
an average of 10 generations in the ON state (1/y = 10). We set the
proliferation rate (r) to be 1, so that time is normalized to the generation
time of the cells. The simulations were run for 12 generations (¢t = 12), and
CV? was calculated across 40 colonies. Our method’s predictions for the
fast-switching scenario (shown in blue) cluster around the true 1/ value of
4 (shown with a dotted line), while the predictions for the slow-switching
scenario (shown in red) cluster around the true 1/ value of 10 (shown
with a dotted line).

TABLE 11
BENCHMARKING RESULTS — EXPONENTIAL DISTRIBUTION OF CELL
CYCLE TIME

Scenario True Predicted Prediction
Generations ON | Generations ON Std. Dev.
Fast-Switching 4 4.67 0.63
Slow-Switching 10 11.01 2.03

B. Log-Normal Distribution Cell Cycle Time

Figure 7 shows the results of the benchmarking analy-
sis, assuming a log-normal distribution of cell cycle time.
Again, we observe that our method’s predictions for the
fast-switching scenario cluster around the true 1/ value
of 4, while the predictions for the slow-switching scenario
cluster around the true 1/~ value of 10. The mean predicted
1/~ value for the fast-switching scenario was 4.77, and the
mean predicted 1/+ value for the slow-switching scenario
was 10.97 (listed in Table III). Just as with the results in the
previous sub-section, our formula again had a tendency to
slightly overestimate the number of generations in the ON
state in both the fast-switching and slow-switching scenarios.
Again, we note that although our formula is not perfect, it
may still be accurate enough to be useful to a biologist as
an approximation.

C. Gamma Distribution Cell Cycle Time

Figure 8 shows the results of the benchmarking analysis,
assuming a gamma distribution of cell cycle time. The
mean predicted 1/ value for the fast-switching scenario
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Fig. 7. Benchmarking with log-normal-distributed cell cycle time. The

fraction of ON cells in the original population (f) was assumed to be 0.10.
We consider a fast-switching scenario, in which cells spend an average of
4 generations in the ON state (1/~ = 4), and a slow-switching scenario, in
which cells spend an average of 10 generations in the ON state (1/v = 10).
We set the proliferation rate () to be 1, so that time is normalized to the
generation time of the cells. The simulations were run for 12 generations
(t = 12), and CV? was calculated across 40 colonies. Our method’s
predictions for the fast-switching scenario (shown in blue) cluster around
the true 1/~ value of 4 (shown with a dotted line), while the predictions
for the slow-switching scenario (shown in red) cluster around the true 1/~
value of 10 (shown with a dotted line).

TABLE IIT
BENCHMARKING RESULTS — LOG-NORMAL DISTRIBUTION OF CELL
CYCLE TIME
Scenario True Predicted Prediction
Generations ON | Generations ON Std. Dev.
Fast-Switching 4 4.77 1.23
Slow-Switching 10 10.97 2.33

was 4.67, and the mean predicted 1/ value for the slow-
switching scenario was 10.87 (listed in Table IV). Just as
with the exponential distribution and log-normal distribution
simulations, we again observe a tendency of our formula
to slightly overestimate the true number of generations in
the ON state. However, yet again the formula estimates of
the number of generations ON are close enough to the true
underlying values to potentially be useful in a biological
context, even though they are not exact.

TABLE IV
BENCHMARKING RESULTS — GAMMA DISTRIBUTION OF CELL CYCLE
TIME
Scenario True Predicted Prediction
Generations ON | Generations ON Std. Dev.
Fast-Switching 4 4.67 0.65
Slow-Switching 10 10.87 2.06

D. Conclusion

Overall, we conclude that this method of switch-rate
estimation is efficacious enough to be useful in certain

Occurrences
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Fig. 8. Benchmarking with gamma-distributed cell cycle time. The fraction
of ON cells in the original population (f) was assumed to be 0.10. We
consider a fast-switching scenario, in which cells spend an average of 4
generations in the ON state (1/y = 4), and a slow-switching scenario, in
which cells spend an average of 10 generations in the ON state (1/v = 10).
We set the proliferation rate () to be 1, so that time is normalized to the
generation time of the cells. The simulations were run for 12 generations
(t = 12), and CV? was calculated across 40 colonies. Our method’s
predictions for the fast-switching scenario (shown in blue) cluster around
the true 1/~ value of 4 (shown with a dotted line), while the predictions
for the slow-switching scenario (shown in red) cluster around the true 1/~
value of 10 (shown with a dotted line).

contexts. Our formula is imperfect and has a tendency to
slightly overestimate the number of generations spent in the
ON state. However, it is close enough to potentially be useful
to biologists as an approximation. Also, our formula has the
advantage of being robust to different distributions of cell
cycle time. This is a non-trivial result, since the moment
analysis techniques used to derive our formula typically
assume an exponential distribution of time between events
in the simulation, and is an important advantage in real
biological contexts, in which the underlying distribution of
cell cycle timing may not be known.

VII. DISCUSSION

In this paper, we described a modified fluctuation test that
can be done to estimate the rates of transient state-switching
in cell populations. We analyzed a stochastic model of the
experiment to derive a moment-based formula for the C'V?
of the fraction of cells in the ON state over time. One step
in this derivation involved making a simplifying assumption,
that the fraction of cells in the ON state F' and the total
number of cells 7" are independent, uncorrelated variables.
This assumption is not completely correct. In fact, there is
a very slight negative correlation between these variables.
So, our formula is not exact, but rather an approximation.
Despite this imperfection, we wondered if this approximation
could still be useful. We benchmarked it on simulated cell
populations, using varied assumptions for the distribution of
cell cycle time. We found that our method was able to differ-
entiate between fast-switching and slow-switching simulated
cell populations to a reasonable degree, suggesting that it
may be a useful tool for biologists despite its imperfection.
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That the method works well for simulations with gamma-
distributed and log-normal-distributed cell cycle times is a
non-trivial result, since the moment analysis techniques used
to derive the formula assumed exponentially-distributed time
between events. Being robust to many potential distributions
of cell cycle time is an important advantage, since in a real
biological setting the exact underlying distribution of the cell
cycle time may not be known.

Future work on this topic will include applying our method
to real biological datasets in collaboration with experimental
biologists working on topics such as drug resistance in
cancer. Also, we will further explore the theory of this
method by relaxing some of the assumptions in our problem
formulation. For example, in this paper we assumed that cells
in both states grow at the same rate, so it will be interesting to
explore the theoretical implications of differences in growth
rates between the states. Furthermore, we hope to expand
this model beyond two states to study systems with three or
more states.

APPENDIX

For readers who are not interested in computer program-
ming or familiar the Python language, this section can be
skipped. Just note that we used a simulation of cell colonies
in which cells switch back and forth between two states,
and divide with cell cycle times that can follow log-normal
or gamma distributions. However, for readers interested in
computer programming and familiar with Python, we will
now describe our simulation code. Please note that this code
is available upon request from the authors. The Python code
is listed below:

import numpy as np

tend = 12
end_states = []

def cell(latest_t ,

tau =

tend , state):
np.random.gamma(1)

next-t = latest_t + tau

if next_.t <= tend:

dt = tau
if state == 0:
switch_on_prob = —((—1 + math.ex*((—off_rate —on_rate)=*dt))x*
on.rate )/(off_rate+on-_rate)
if random.random () <= switch_on_prob:
state = 1

elif state

switch_off_prob =
off_rate )/(off_rate+on_rate)

if random.random () <= switch_off_prob:

state = 0

else:

dt = tend—latest_t

if state ==
switch_on_prob = —((—1 + math.e*x((—off_rate —on_rate)*dt))=*
on.rate )/(off_rate+on_rate)
if random.random () <= switch_on_prob:
state = 1

elif state
switch_off_prob =

off_rate )/( off_rate+on_rate)

—((—1 + math.exx((—off_-rate—on_rate)*dt))x*

—((—1 + math.exx((—off_-rate—on_rate)xdt))x*

if random.random () <= switch_off_prob:
state = 0

if next.t < tend:
recursion_attempt(next_t ,
recursion_attempt(next-t ,
else:

tend , state)
tend , state)

end_states .append(state)

This simulation algorithm is based on a recursive function
cell() which represents a single cell. The function takes three
arguments: latest_t is the timepoint at which the cell is
instantiated, tend is the global variable that defines the end
time of the simulated experiment, and state is the state of
the cell, where O represents the OFF state and 1 represents
the ON state.

After a cell is instantiated, we then determine how long
it will take for the cell to divide by taking a random draw
from some probability distribution, and save this in the local
variable tau. Importantly, we can choose to draw this number
from any distribution, and are not limited to the assumption
of exponential cell cycle time. In the example code, we are
drawing from a gamma distribution with a mean of 1, using
the NumPy library, which we have imported at the top of
the code.

Once we have chosen the cell cycle time of this cell, we
must check to see if it switches states before dividing. To do
this, we have derived formulas for the probability of being
ON after some time ¢ if a cell starts in the OFF state, and vice
versa. Please note that a cell could theoretically switch back
many times before dividing, so in order to calculate these
probability formulas it was necessary to use the moment
analysis techniques described in Section III of this paper.

Next, we check to see if the time of division of this cell
exceeds the end time of the experiment tend. If it doesn’t,
then we recursively call the function to instantiate two new
cells, representing the daughter cells of the original cell,
with their birth timepoints being the division timepoint of
the original cell, and inheriting the state of the original cell.
However, if the division timepoint of the original cell is
greater than the tend endpoint of the experiment, then we do
not call the function again, and instead append the state of
the cell to the global list end_states, which will eventually
record the state of every cell in the colony at the end of the
experiment.

So, we can simulate a colony of cells by calling the cell()
function with a start-time of O, an end time of whatever
we set as our tend, and a randomly-selected initial state,
which will be 1 (ON) with probability f, and 0 (OFF)
with probability 1 — f. After all recursive iterations of the
functions are finished running, it will leave us with our
end _states full of the end states of each cell in the colony at
the end of the experiment. In order to do a full simulation of
the modified fluctuation test experiment, we can simply run
this colony simulation many times, and record the fraction
c<f cells in the ON state each time, which will allow us to
measure the C'V? in these fractions across colonies.
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