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Abstract

The heritability of traits such as body mass index (BMI), a measure of obesity,
is generally estimated using family, twin, and increasingly by molecular genetic ap-
proaches. These studies generally assume that genetic effects are uniform across all
trait values, yet there is emerging evidence that this may not always be the case. This
paper analyzes twin data using a recently developed measure of heritability called the
heritability curve. Under the assumption that trait values in twin pairs are governed
by a flexible Gaussian mixture distribution, heritability curves may vary across trait
values. The data consist of repeated measures of BMI on 1506 monozygotic (MZ)
and 2843 like-sexed dizygotic (DZ) adult twin pairs, gathered from multiple surveys
in older Finnish Twin Cohorts. The heritability curve and BMI value-specific MZ and
DZ pairwise correlations were estimated, and these varied across the range of BMI.
MZ correlations were highest at BMI values from 21 to 24, with a stronger decrease
for women than for men at higher values. Models with additive and dominance effects
fit best at low and high BMI values, while models with additive genetic and common
environmental effects fit best in the normal range of BMI. Thus, we demonstrate that
twin and molecular genetic studies need to consider how genetic effects vary across
trait values. Such variation may reconcile findings of traits with high heritabilities and
major differences in mean values between countries or over time.

1 Introduction

Twin and family studies of humans have provided evidence for genetic influences on an-
thropometric measures. One of the most studied phenotypes has been relative weight,
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the degree to which an individual is lean, of normal weight or has excess weight relative
to their height. Body mass index (BMI), weight divided by height squared, is the most
used measure in research due to the ease of its assessment and because among adults
it is at most weakly correlated with height [1]. As excess weight is also associated with
risk of cardiovascular and metabolic diseases [2], BMI is also in widespread clinical use.

Early meta-analyses on twins based on published summary data have shown that
the heritability of BMI is generally high. The estimates based on twins are consistent
with the patterns of resemblance of other first-degree relationships [3, 4]. These studies
indicated that there is relatively little variation over age, but non-genetic familial influ-
ences seen in childhood and adolescence are largely absent in adults [5, 6]. By pooling
individual data on height and weight from twin studies across the globe on over 140,000
twin pairs, [7] show that heritability of BMI decreases from young adulthood to old
age, with relatively little differences by region or calendar time. Using the same re-
source with data from 87,782 twin pairs under the age of 20, [8] show that heritability
of BMI was lowest in early childhood. Cross-sectional data from these twin and family
studies, as well as from large molecular genetic studies [9] imply that genetic influences
are fairly stable over the lifespan from early childhood onwards.

In contrast, longitudinal twin studies indicate that genetic influences do vary with
age. Molecular genetic analyses suggest that different sets of genes act at different ages,
both in childhood and among adults [10]. Twin analyses of children and adolescents
show that as the individual develops and grows, there are novel genetic influences
coming into play at different ages [11, 12]; these may reflect both changes in lean mass,
such as muscle and bone growth, and in fat mass. Among adults, whose growth has
ended, changes in weight result mainly from changes in body fat. Twin models indicate
that genetic effects on weight change are poorly correlated with the stable component
of BMI [13, 14]. Analyses of genetic risk scores at different ages support these results
[10].

At different levels of BMI, the proportions of lean and fat mass differ on average, and
hence it could be expected that genetic effects are not uniform across all BMI values.
In an analysis of extreme leanness vs obesity, [15] found that the two traits were only
partially correlated genetically (rG = 0.49). Using commingling analyses of BMI in MZ
twin pairs, [16] found twin correlations to be lower in overweight and obese twin pairs.
This restricts to a truncated upper-tail of the BMI distribution. The authors did not
have DZ pairs to derive heritability estimates at different levels of obesity. Studies of the
genetics of BMI across the whole spectrum of BMI are rare; a recent study uses parent-
offspring and sibpair relationship and quantile regression to estimate heritability of BMI
at various BMI values [17]. The study finds increasing heritability with increasing BMI
values, a result seen with other measures of fatness but not height. However, using
family relationships or only MZ pairs can be challenging to distinguish between genetic
and non-genetic familial effects contributing to the estimated heritability.

Recently [18] extended the classical notion of heritability to that of a heritability
curve, which allows the heritability to vary with the trait value. Using empirical
data from the Finnish Twin Cohort, we demonstrate that there is variation in the
contribution of genetic factors over the range of BMI values seen in a population sample.

2 Material and Methods
2.1 The dataset

The dataset we use in our analysis contains repeated BMI measurements on 4349 same
sex twin pairs (1506 monozygotic and 2843 dizygotic) from the Finnish Twin Cohort
[14], [19]. Each twin pair was asked to provide BMI measurements at different stages
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(a) Longitudinal BMI measurements (grey dots) pooled (b) Regression standard deviation
across individuals, with data and regression line high-  (SD) against estimated BMI3s.
lighted for three individuals (green, blue, and pink). The

triangles indicate the estimate of BMlIss.

Figure 1: Regression analysis used to estimate BMI3s (BMI at age 35) for each of 8598
individuals in the study.

in life; for each pair we have up to 7 different values, at different ages and waves of
data collections. Each such measurement is accompanied by the following information:
the twin pair it belongs to, the wave number, the age at which the measurement is
taken, the sex of the twins, and their zygosity. The data include information not only
on weight at the current wave, but also recall of weight earlier in life.

Since the measurements were taken at different ages for different twin pairs, we
use linear regression, separately on each individual, to obtain estimates of BMI at
the reference age 35, which we denote with BMIss (Figure 1). To reduce estimation
uncertainty, we consider only twin pairs that have been measured three or more times.
The resulting dataset contains 1493 monozygotic twin pairs (606 males and 887 females)
and 2806 dizygotic twin pairs (1218 males and 1588 females). More details on the
preprocess of the data can be found in the supplementary material.

2.2 Statistical methods
2.2.1 Heritability curve

In biometrical models, heritability is typically defined as the proportion of a trait
variance attributed to genetic effects. Depending on the family structure of the data,
the trait variance can be decomposed in several ways. The most commonly used
biometrical model for twins is the ACE model, where it is assumed that the trait value
can be decomposed into additive genetic effects (A), common (shared) environment (C),
and residual (random) environment (E). The proportion of trait variance explained by
component A is often referred to as narrow-sense heritability. Another frequently used
model for twins is the ADE model, where the C component in the ACE model is
replaced by dominant genetic effects (D). The proportion of trait variance explained
by the components A and D combined is then referred to as the broad sense heritability
[20].

Data on monozygotic and dizygotic twins provide contrasts from which the genetic
variance can be separated from the environmental variance. For the ACE model, it is
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assumed that the amount of shared environment is the same for the two types of twins
and that the amount of shared additive genetic effects is 100% and 50 % for mono- and
dizygotic twins, respectively. If the correlation between the trait values of monozygotic
twins is larger than the correlation between dizygotic twins, the difference is ascribed
to the additive genetic effects alone, and the trait is heritable. The heritability can
be quantified by comparing empirical correlations of monozygotic and dizygotic twins
with the “expected” correlations implied by the model, and for the ACE model, this
results in the well-known Falconer’s formula [21] for heritability:

ol = 2(p(]\/IZ) _ p(DZ))’

2= 2p(DZ) B p(MZ)7 (1)

21— p(JVIZ).

Here a?, ¢ and e? denote the proportions of the total variance explained by the
components A, C, and E, respectively, while p<MZ) and p(DZ) denote the Pearson
intraclass correlation of monozygotic and dizygotic twins, respectively. For the ADE
model, the corresponding equations are given by

a? = 4pP?D) _ ,(M2)
d* = 2(p™M? — 2pP?), (2)
e?=1— p<MZ).

The derivation of equations 1 and 2 can be found in the supplementary material.

Recently, the classical notion of heritability has been extended to that of a heritabil-
ity curve [18] assuming that trait values in pairs are governed by a Gaussian mixture
distribution (see section 2.2.2). This allows the heritability to vary with the trait value,
resulting in a curve aZ(y) that potentially varies for different trait values y. The her-
itability curves are derived based on the same type of variance decomposition as for
ACE and ADE model, but conditionally on a given phenotypic value. In this way, the
heritability curve measures the heritability as a function of the trait itself, and would
not be expected to be constant over the whole phenotypic range. The conditioning on
a phenotype value is done via local correlations curves [22]. Rather than comparing the
ordinary Pearson correlation between phenotype values of monozygotic and dizygotic
twins, we do the same type of comparison (e.g. using Falconer’s formula under the
ACE model) using correlation curves parz(y) and ppz(y), evaluated at different values
of BMI. Note that this procedure also provides curves c?(y) (or d*(y) for the ADE
model) and e?(y) allowing the other components in the biometrical model to vary with
the trait value as well. When there is no variation with trait value, the heritability
curve reduces to the classical heritability coefficient.

2.2.2 Gaussian mixtures

Classical heritability models assume a bivariate Gaussian distribution for pair of traits
in twins, typically with a positive correlation. Under this assumption the heritability
curve reduces to the classical heritability coefficient [18], and does not provide any
additional insight. Bivariate Gaussian mixtures are a more flexible class of bivari-
ate distributions and underlie the implementation of the heritability curve of [18]. A
Gaussian mixture is a weighted sum of Gaussian kernels (Figure 2). The number m of
Gaussian kernels is a data driven parameter, and for this purpose we use the BIC crite-
rion [18]. Note that with m = 1 the mixture reduces to an ordinary bivariate Gaussian
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Figure 2: BMI35 for pairs of female dizygotic twins, obtained by regression analysis. The
three ellipses represent 0.95 probability regions for the three Gaussian kernels of the fitted
mixture distribution. The parameter values associated with each kernel can be found in
Table 2.

distribution. Each bivariate Gaussian kernel has three parameters: mean, variance and
correlation, i.e. mean and variance are assumed identical across the twin individuals,
yielding in total 3 times m unknown parameters. Monozygotic and dizygotic twins are
allowed to have different correlations, which introduces m additional correlation pa-
rameters. Finally, there are m weight parameters, but due to a sum-to-one constraint,
only m — 1 of these need to be estimated. The total of Q = 5m — 1 parameters are
estimated by maximum likelihood [18]. Formulae exist for the marginal mean, variance
and correlation, referred to as “global”, in terms of the kernel-specific parameters.
Covariates can be introduced into both the mean, variance, or covariance part of


https://doi.org/10.1101/2022.01.06.475210
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.06.475210; this version posted January 12, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

the model. In our study sex is the only covariate, and we consider three different
configurations of the model:

1. “Stratified” in which fully separate Gaussian mixtures are fitted for males and
females, except that they are constrained to have the same value of m,

2. “Mean” in which only the mean is sex specific. The mean of each Gaussian kernel
for males is right-shifted by the same amount from females.

3. “Mean+covariance” in which m mean and correlation parameters are sex specific,
but the variance is assumed equal by sex.

A mathematical description of the model is provided in supplementary material.
The supplement also contains details about how the parameters of the Gaussian mixture
were estimated from data using the software package TMB [23].

2.2.3 Biometrical model selection

The choice between the ACE and ADE model relies traditionally on the relationship
between the (empirical) Pearson correlations p™ %) and pP%). More specifically, the
sign of the quantity 2p<DZ> — p(MZ> indicates which model is more appropriate. Under
the ACE model, this quantity corresponds to the proportion of variance explained
by the shared environment, ¢*. By contrasting equations (1) and (2) we obtain the
relationship d? = —2¢? with the proportion of variance explained by the dominant
genetic effects, d°. Consequently, if 2p(P%) — pM%) < 0, i.e. ¢? is negative, the ACE
model is (most likely) misspecified. Vice versa, if 2pP%) — pM2) 5 0 4?2 is negative
and the ADE model is misspecified.

In the context of correlation curves, the ACE model may be suitable in some part of
the phenotypic range, while the ADE model may be more appropriate in the remaining
part. Adopting the above procedure, we can then switch between ACE and ADE model
according to the sign of the quantity 2p”%) (y) — p™ %) (y); the ACE model is preferred
when 2pP#) (y) — p™M%)(y) > 0, and the ADE model otherwise [18].

3 Results

The longitudinal BMI measurements used in the regression analysis are shown in Fig-
ure la. The distribution of uncertainties in fitted BMIss is mostly confined to the
interval from 0 to 2, but some twin pairs have higher uncertainty (Figure 1b). The bi-
variate distribution of BMI3s within twins deviates from normality for DZ females and
is having a pear shape with less association for large BMI values (Figure 2). The same
is true for males, and to a lesser extent for MZ twins (Supplementary material). The
mixture model can accommodate this pear shape, by using m = 3 individual Gaussian
components (Figure 2). The fact that the mixture distribution fits data much better
than a bivariate Gaussian distribution (m = 1) is clear from a comparison of BIC
values (Table 1).

The best fitting covariate model is that in which sex affects only the mean of the
response (Table 1). However, the difference in terms of BIC between this model and
the stratified model or the model with a sex effect also in the correlation structure is
not large. The latter two are both more flexible in their ability to fit the distributional
shape of data but are being penalized by the BIC criterion for having more parameters
than the selected model. The selected model has m = 3 mixture components. The
BIC values in Table 1 are for the entire dataset (male/female and MZ/DZ). In the
stratified model, this amounts to adding the BIC values computed separately for males
and females. In an additional analysis, where males and females were allowed to have a
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m Mean Mean-+covariance Stratified
Q ABIC Q ABIC Q A BIC
1 5 1211.03 | 7 1204.01 8 1125.78
2 | 10 47295 | 12 485.87 18 56.92
3 |15 0* 17 12.46 28 17.30
4 |20 0.65 22 12.33 38 56.57
5 125 11.72 27 24.59 48 94.98

Table 1: Model selection by the BIC criterion among three candidate models for sex effect
(columns) and the number of mixture components (m). @ represents the number of param-
eter estimated, and ABIC shows BIC relative to the best fitting model (*) across the table.
Color red highlights the model with lowest BIC within each column.

different value of m it was found that the best fitting values were m = 2 for males and
m = 3 for females, but the total BIC was not lower than the selected model in Table 1.
A more in depth analysis of the different models can be found in the supplementary
material.

Parameters k=1 k=2 k=3 Global

lmale 2357 26.36 20.82  24.55
Hfemale 21.70 24.49 27.96  22.68
o 194 272 467 284
PMZ 0.74 034 038  0.69
D7 031 -0.19 -0.22  0.36
p 0.70 026  0.04

Table 2: Parameter estimates for the chosen m = 3 component Gaussian mixture assuming
a sex effect in the mean (u). Additional parameters are standard deviation (o), monozygotic
and dizygotic correlation (p), and mixture weights p. Each column (k = 1,2, 3) corresponds
to different mixture components. The final column refers the parameter value for the mixture
as a whole.

The parameter estimates for the mixture model (Table 2; column “Global”) show
that mean BMI is higher for males than for females by 1,016 — Hfemale = 1-86 units.
The global correlation is expectedly stronger in MZ twins than in DZ twins (pp7 = 0.70
versus ppy, = 0.34). By constraint of the chosen model (Table 1), correlations are
the same for males and females. For the three individual Gaussian components of
the mixture, components k = 2,3 have a negative correlation for DZ twins, which is
contributing to the pear shape of the overall mixture (Figure 2). Component k = 3 has
the largest standard deviation (o) and represents 100 X ps = 4% of the data (Table 2).
This part of the data includes twin pairs which may be classified as outliers in the sense
of having a strong negative association in BMI across the twins (Figure 2).

By construction of the selected model, the shape of the correlation curve for males
is identical to that for females, but is right-shifted by an amount ptmate — tt femate = 1.87
(Figure 3). While this might seem like a strong restriction, it is worth noting that our
model is preferred by the BIC criterion over the two other models in Table 1, which
both allow for more flexibility in the correlation curves. Twin [7] and molecular genetic
studies of BMI [9] have shown very little evidence of sex-specific genetic variance or
genes expressed only in one sex. In contrast, the distribution of fat differs between men
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Figure 3: Correlation curves for male and female data for monozygotic (top) and dizygotic
(bottom) twins, with pointwise 95% confidence bands (shaded regions). Vertical dashed
lines show empirical quantiles (not model dependent) separately by sex, but pooled over
MZ and DZ twins.

and women, and is affected by genetic factors.

We observe a drop in the correlation curve for high BMI in both monozygotic and
dizygotic twins (Figure 3). The correlations increase before dropping, but this pattern
is more noticeable in dizygotic twins (it increases up to a BMI value of about 24 for
female data and 26 for male data).

The property that the male correlation curve is, by construction, just a right-shifted
version of the female one carries over to the heritability curves. Hence, we only discuss
female heritability in the following. Figure 4 displays curves obtained using both ACE
and ADE genetic models. The panel labeled “common” contains the dominant genetic
component (which appears in the ADE model) and the shared environment (which
appears in the ACE model). The curve for the residual environment is the same in
both models.

The Pearson correlations are p(M %) = 0.74 for monozygotic twins and p<D 2) = 0.42
for dizygotic twins. The quantity 2p(DZ> - p(MZ) is positive; hence, if we opt to use
one single model for the whole dataset range, the ACE model is most appropriate.
However, as discussed in Section 2.2.3 we can instead switch between ACE and ADE
model depending on the sign of the quantity 2p(DZ)(y) — p(MZ)(y). The dashed line in
Figure 4 indicates the preferred (combined) model. We define the “mid range” of BMI
values (21-27) as the region where the ACE model is preferred and “low/ high range”
BMI values as the region where the ADE model is preferred.

The mid range BMI values are governed by additive genetic effects (A) and to some
extent the shared environment (C). The residual environment (E) plays a larger role
for the upper mid-range BMI values. The heritability curve a? steadily decreases while
the BMI values increase, starting from its highest value of 0.78 for the BMI value 21.
The shared environment curve ¢?, instead, displays a convex shape, increasing together
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Figure 4: Decomposition of total variance into genetic and envirolmental effects by BMI,
sex, and genetic model (ACE/ADE). Shaded areas indicate 95% pointwise confidence bands.
The environmental part is identical for the ACE and ADE models, indicated by the pink
color in the lower part. The dashed black line represents the combination of the ACE and
ADE models.
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with the BMI up until it reaches its maximum value of 0.25 around a BMI value of 24
and decreasing after. By construction, ¢? is zero at both extremes.

Low BMI values are overall governed by the genetic effects A and D. Dominant
genetic effects (D) play a more pronounced role as the BMI values decrease, with its
maximum value (0.73) reached at BMI value of 18, while the opposite trend can be seen
with the additive heritability curve a®>. We also see a slight increase in environmental
effects (E) as the BMI values decrease.

High BMI values are increasingly governed by environmental effects (E) (for a maxi-
mum value of 0.60) while broad sense heritability is decreasing (Figure 4). Interestingly,
a change in type of genetic action is suggested by the curves; while additive genetic
effect, the A component, is the suggested action for BMI values in the normal range,
dominant genetic and weak epistatic effects (the D component) tend to govern the
upper part of the BMI scale effects (D) ((for a maximum value of 0.52 around a BMI
value of 28). The basis for this suggestion follows from decreasing within-pair correla-
tion in BMI among MZ pairs with increasing BMI and similar decreasing within-pair
correlation among DZ pairs, however with larger (or faster) decrease for the DZ pairs
with increasing BMI. Implications of this suggested change in mode of genetic influence
is discussed below.

4 Discussion

In the present analysis, we demonstrate that multiple mixture models account for
the pairwise relationship of BMI rather than a single bivariate distribution assumed
in prior analyses of twin data of BMI. Further, the 95% probability regions of the
kernels of the distributions are shaped differently as seen in Figure 2. The majority of
pairs are in a symmetric circular distribution, while the remainder are in distributions
indicating greater within pair differences, possibly due to greater than average genetic
differences and/or specific environmental triggers affecting body weight development
more in one twin than in the other. Such pairs discordant for BMI have proved very
informative for the study of causes and consequences of obesity [24], [25]. The existence
of several types of bivariate distributions suggests that a single bivariate normal model
of multifactorial inheritance with a polygenic component is not sufficient to account for
the complexity of interplay of genetic and environmental factors in BMI, even though
GWA studies have been highly successful in identifying hundreds of BMI-associated
genes and accounting for about a fifth of the variance in BMI [9]. On the other hand,
rare Mendelian variants and various obesity-related syndromes account for a relatively
small proportion of variance in BMI [26].

When we consider the resulting heritability curves, and associated curves of MZ and
DZ correlations by level of BMI, we observe very high estimates of the contribution
of genetic factors in the region of what is generally termed normal BMI [27]. As
BMI comprises both lean (muscle, organs and bone) as well as fat mass, our results are
consistent with the notion that in the absence of excess fat, body build is highly genetic
determined. As BMI increases, the proportion of weight accounted for by fat mass
increases, and the contribution of genetic variation decreases. This is consistent also
with the rapid increase in obesity in global populations [28] being due to environmental
factors rather than changes in the gene pool over the past decades.

In the ADE model, the genetic effect is split into an additive genetic component
(A) and a dominant genetic component (D). We can compare the curve a*(y)acs,
computed using the ACE model, with the sum a*(y)apr+d*(y), as they both represent
the total heritability of the model (the latter assuming independence of A and D).
Hence, even though a first look at Figure 4 may suggest a contradiction between the
heritability estimate in the ACE and ADE models, we should not compare a2(y) ACE

10
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and a? (y)ape. Instead, we can study the behavior of the separate components of the
total heritability. In particular, the dominant genetic component plays a larger role on
the tails, while the additive genetic component has a larger effect in the middle of the
data range.

Noteworthy, as can be derived from the biometric model, the D component may
reflect some evidence for epistatis besides the dominant effects of variants. Hence the
heritability curves may shed light on values for which such action may take place.

For BMI, it is biologically plausible that the genetic and environmental components
vary over the range of BMI. For example, very large or small values of BMI could be
caused by “sporadic” environmental factors such as accidents or by rare genetic muta-
tions whereas the medium phenotype variation may be dominated by multiple common
genetic factors. The heritability curves then provide insights to an evolutionary nor-
mal spectrum of BMI of which magnitude of genetic variants is observed. Expectedly,
genetic action on BMI for values outside the normal spectrum may stem from different
localizations of variants governing different mechanisms. Hence the curves relate to
some combination of genotypic, environmental and epigenetic interactions, the broad-
sense heritability and it becomes important to study how curves may change given
observed genetic variants which will be a perspective for further studies of correlation
curves.

In this paper, we use a Gaussian mixture distribution to fit the data. To test the
soundness of this assumption, we fitted a non-parametric correlation curve and showed
that it returns similar results to Figure 3 everywhere except for low BMI values for
female dizygotic data, where it estimates a higher correlation. See supplementary
material for more details.

Data Availability

The FTC data is not publicly available due to the restrictions of informed consent.
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which will depend on the nature of the requested data.
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