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Abstract

Whole-genome bisulfite sequencing (WGBS) is the standard method for profiling DNA
methylation at single-nucleotide resolution. Many WGBS-based studies aim to identify
biologically relevant loci that display differential methylation between genotypes, treatment
groups, tissues, or developmental stages. Over the years, different tools have been developed
to extract differentially methylated regions (DMRs) from whole-genome data. Often, such tools
are built upon assumptions from mammalian data and do not consider the substantially more
complex and variable nature of plant DNA methylation. Here, we present MethylScore, a
pipeline to analyze WGBS data and to account for plant-specific DNA methylation properties.
MethylScore processes data from genomic alignments to DMR output and is designed to be
usable by novice and expert users alike. It uses an unsupervised machine learning approach
to segment the genome by classification into states of high and low methylation, substantially
reducing the number of necessary statistical tests while increasing the signal-to-noise ratio
and the statistical power. We show how MethylScore can identify DMRs from hundreds of
samples and how its data-driven approach can stratify associated samples without prior
information. We identify DMRs in the A. thaliana 1001 Genomes dataset to unveil known and
unknown genotype-epigenotype associations. MethylScore is an accessible pipeline for plant
WGBS data, with unprecedented features for DMR calling in small- and large-scale datasets;
it is built as a Nextflow pipeline and its source code is available at
https://github.com/Computomics/MethylScore.
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Introduction

Cytosine methylation, which is often used synonymously with DNA methylation, describes the
covalent attachment of a methyl group to carbon 5 of cytosine, resulting in 5-methylcytosine
(5mCQC). In plants, as in most eukaryotes, DNA methylation is part of an epigenetic mechanism
involved in transposon silencing (Miura et al., 2001), heterochromatin formation (Lippman et
al., 2004), and gene regulation (Jaenisch and Bird, 2003). It also plays a role in genome
organization (Zemach et al., 2013; Huff and Zilberman, 2014), regulation of development
(Finnegan et al., 1996; Papareddy et al., 2021; Ronemus et al., 1996) and imprinting (Jullien
et al., 2008; Pignatta et al., 2018; Gehring et al., 2006). DNA methylation can also be a source
of phenotypic variation in natural populations (Schmitz et al., 2013; Eichten et al., 2011; Heyn
et al., 2013).

Despite recent advances in long-read sequencing, short-read WGBS is still considered the
gold standard for analysis of DNA methylation at single-base resolution. Treatment of genomic
DNA with sodium bisulfite causes hydrolytic deamination of unmethylated cytosine (C) into
uracil, which upon sequencing library amplification by PCR is converted to thymine (T)
(Frommer et al., 1992). The initial step is kinetically inhibited in the case of 5mC, and so
methylated cytosines will be interpreted normally during short-read sequencing, whereas
unmethylated, converted cytosines will be interpreted as T by the base caller. Comparison to
the known reference genome can subsequently reveal the methylation state of each cytosine.

Features of plant DNA methylation

In many eukaryotic organisms, cytosines can be in a methylated state when they are in a CG
sequence context, i.e., followed by a guanine (G). In mammalian genomes, for example, the
majority of CGs are methylated, while unmethylated cytosines are grouped in so-called CpG
islands, which are non-randomly distributed along the genome and play an important role in
transcriptional regulation (Deaton and Bird, 2011). In plant genomes, however, the situation is
fundamentally different and can vary substantially from one species to another. DNA
methylation in plants occurs in three possible sequence contexts: CG, CHG, and CHH (where
H is any base but G) (Law and Jacobsen, 2010). Each type of methylation is established,
maintained and regulated by a specific molecular machinery (Stroud et al., 2013b; Henderson
and Jacobsen, 2007; Law and Jacobsen, 2010). The frequency of methylation along the
genome differs by sequence context; for example, in the model plant Arabidopsis thaliana,
CGs are methylated most frequently relative to the total number of cytosines in that context
(~24% of all CGs are 5mCGs), followed by CHG (~7%) and CHH (~1.7%) (Cokus et al., 2008).

While DNA methylation in CG and CHG is symmetric, i.e., the complementary sequences on
the opposite strand mirror the methylation state, CHH methylation is asymmetric and occurs
on just one strand at that particular locus. For CG methylation, the information retained by
semi-conservative DNA replication facilitates re-establishment of methylation on the daughter
strand via the methyltransferase METHYLTRANSFERASE 1 (MET1) that, akin to its
mammalian homologue DNA METHYLTRANSFERASE 1 (DNMT1), shows substrate
preference to hemimethylated DNA (Kankel et al., 2003; Jeltsch, 2006; Saze et al., 2003). In
contrast, maintenance of CHG and asymmetric CHH methylation depends on additional
factors such as histone modifications and small RNAs. Methylation of CHG cytosines by
CHROMOMETHYLASE 3 (CMT3) reciprocally depends on H3K9 dimethylation (Jackson et
al., 2002; Du et al., 2012), while CHH methylation requires CHROMOMETHYLASE 2 (CMT2)


https://doi.org/10.1101/2022.01.06.475031
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.06.475031; this version posted January 6, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

(Stroud et al., 2014; Zemach et al, 2013) and DOMAINS REARRANGED
METHYLTRANSFERASE2 (DRM2) recruited through small-RNA-dependent RNA-directed
DNA methylation (RdDM) (Aufsatz et al., 2002; Cao et al., 2003; Cao and Jacobsen, 2002);
(Wassenegger et al., 1994; Matzke and Mosher, 2014).

It is important to note that — at least in some plant species, including A. thaliana — DNA
methylation in the different sequence contexts also differs in terms of methylation rate, i.e., in
the consistency of the methylation status of a given cytosine across different cells. CG
cytosines tend to have a binary methylation state, being either always unmethylated or almost
always methylated in different cells of a given tissue. In contrast, cytosines in CHG and CHH
show more variable methylation status, with mean methylation rates across all methylated
CHG and CHH cytosines of ~50% and ~30%, respectively. This has consequences for the
analysis of differential methylation between samples (Becker et al., 2011), for example in
software which would model the underlying methylation status based on expected distributions
(Hansen et al., 2012; Hebestreit et al., 2013; Korthauer et al., 2018).

Whole-genome DNA methylation analysis as a means to understand natural variation and
stress response

Since the first characterizations of the whole-genome DNA methylation profile in A. thaliana
(Cokus et al., 2008; Lister et al., 2008), there has been a growing interest in studying this
epigenetic mark at the genomic level to better understand developmental processes (Pignatta
et al., 2018; Manning et al., 2006), stress responses (Wibowo et al., 2016; Liu et al., 2018),
phenotypic plasticity, and natural variation (Schmitz et al., 2013; Kawakatsu et al., 2016). For
example, heritable genetic variation alone is not always sufficient to explain the range of
phenotypic diversity observed for individuals of the same species, and epigenetic variation is
likely to account for at least some of the missing heritability (Manolio et al., 2009). Epigenetic
variation, albeit often confounded by genetic variation, has been recognized as a source of
natural diversity (Riddle and Richards, 2002; Cervera et al., 2002; Vaughn et al., 2007). As a
consequence, some phenotypic traits, including floral symmetry (Cubas et al., 1999), fruit
development and morphology (Manning et al., 2006; Ong-Abdullah et al., 2015; Zhong et al.,
2013), plant height (Miura et al., 2009), and resistance to pathogens (Liégard et al., 2019),
have been associated with naturally occurring epigenetic alleles (epialleles) that do not appear
to be due to linked genetic variation. In addition, studying the conditional dynamics of DNA
methylation at the whole-genome level has highlighted the contribution of epigenetic regulation
to stress response and tolerance (Wibowo et al., 2016).

The challenges in determining differential DNA methylation

DNA methylation is highly dynamic, and there is substantial variation among individuals or
(sub)populations. It is important to distinguish specific, relevant differences from stochastically
occuring methylation differences between biological replicates. On a genome-wide scale, this
is challenging without a priori knowledge of stratification, either based on sequence context or
by sample grouping. Most experimental studies contrast DNA methylation from different
samples to each other, be it mutant background and wild type, treatment and control, or
different natural accessions. Statistical comparisons between samples aim to identify DNA
methylation differences at either the single-cytosine (differentially methylated positions; DMPs)
or the region (differentially methylated regions; DMRs) level. While DMPs provide useful
information on the rate at which epigenetic changes occur (Becker et al., 2011; Schmitz et al.,
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2011; van der Graaf et al., 2015), DMRs are arguably more relevant in a functional biological
context because they can affect contiguous stretches of DNA and hence potentially influence
the accessibility of regulatory elements. However, the nature of WGBS data imposes several
caveats to accurately determining DMPs and DMRs. Some of these reside in the experimental
design or the quality of the sequencing library. Insufficient replication, for example, limits the
statistical power of differential analyses. Uneven coverage can bias the base calling because
of sequencing error rates, while incomplete bisulfite conversion can cause a false estimate of
methylated cytosines, as can duplicated reads that arise from library over-amplification.

The statistical analysis of differential methylation often brings along another set of caveats.
For example, strategies that are based on defining DMRs as clusters of spatially adjacent
DMPs, such as DSS (Feng et al., 2014; Ziller et al., 2013; Schultz et al., 2015; Feng et al.,
2014), are subject to a heavy multiple testing burden resulting from the large number of
cytosines in the genome that need to be tested individually. The same applies to window- or
sliding-window-based approaches, as implemented, for example, in methylKit (Akalin et al.,
2012). In contrast, strategies that call DMRs only in pre-defined regions, e.g., in annotated
features, risk missing relevant loci in the analysis.

More recently developed tools for DMR calling are centered around pre-selection of genomic
regions. metilene (Juhling et al., 2016), dmrseq (Korthauer et al., 2018) and HOME (Srivastava
et al., 2019) implement multi-step strategies that first restrict the testable genome space to
candidate regions with evidence of methylation, prior to assessing significant differences. Even
though HOME takes non-CG methylation into account, all three of these tools have been
developed with mammalian (mostly human) DNA methylation data in mind and are therefore
built on assumptions, including most cytosines being methylated, strong local correlation
between methylation states, predominant (or exclusive) CG methylation, and largely binary
methylation states, that do not reflect the distinct genetic control underlying the CG, CHG and
CHH methylation contexts in plants. This implies that if these assumptions are indiscriminately
applied, many methylated cytosines and regions are likely to be falsely discarded.

Here, we set out to address this gap by developing a tool for the robust identification of DMRs
from plant WGBS data that takes into account the complexity and variability of plant DNA
methylation, while using an informed, restricted set of candidate regions for statistical testing.
Furthermore, we aimed to avoid the necessity for pre-defining sample groups, required by
existing tools, to increase the applicability to sample populations with inherent group structure
and to prevent experimenter bias. We present MethylScore, a convenient and stable pipeline
that enables biology researchers with little computational background to process WGBS data,
from read alignments to DMR output. The differential methylation analysis module of
MethylScore is built around the two-state Hidden-Markov-Model-based approach described
by (Molaro et al., 2011). To identify and segment methylated regions in plant genomes,
independent of prior information, we extended the original implementation beyond the CG
sequence context, allowing the algorithm to train distinct parameter sets for each methylation
context.

MethylScore trains on the different properties of CG, CHG, and CHH methylation by estimating
parameters of a beta-binomial distribution for each sequence context, accounting for both
stochastic variance in the coverage distribution (assumed to be beta distributed) as well as
between-sample biological variance (binomially distributed). This means that MethylScore
learns from the actual WGBS data, thus avoiding potentially erroneous or species-specific
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assumptions about the distribution of methylation or arbitrary thresholds. This way, the number
of statistical tests is constrained to regions of interest, curtailing the multiple-testing problem.
Moreover, its built-in population-scale approach allows identifying DMRs in large datasets,
without prior information on sample groups, enabling an unbiased DMR calling. Using publicly
available datasets from A. thaliana (1001 Genomes Consortium, 2016; Kawakatsu et al., 2016;
Tedeschi et al., 2019; Ning et al., 2020; Zhang et al., 2021; 1001 Genomes Consortium, 2016;
Kawakatsu et al., 2016; Wibowo et al., 2018) and rice (Stroud et al., 2013a), we show that
MethylScore is able to segment plant genomes with very different global DNA methylation
profiles. In absence of sample information, MethylScore identified group-specific DMRs and
was able to detect population signals in datasets with hundreds of samples. Ultimately, we
used the DMRs thus identified in the A. thaliana 1001 Genomes and Epigenomes datasets
(1001 Genomes Consortium, 2016; Kawakatsu et al., 2016) to detect known and unknown
genotype-epigenotype associations. MethylScore is built as a Nextflow pipeline, allowing
ease-of-access and broad usability; the pipeline can be downloaded from
https://github.com/Computomics/MethylScore.

Results

Outline of the modular MethylScore pipeline to call DMRs from plant WGBS data

MethylScore is implemented as a modular pipeline that is built in Nextflow (Di Tommaso et al.,
2017) for maximal ease-of-access (Figure 1; Materials and methods). It uses reference-aligned
sequences in bam format or tabular single-cytosine information in bedGraph format as they
are produced by common WGBS primary analysis tools such as bismark (Krueger and
Andrews, 2011) or MethylDackel (https://github.com/dpryan79/MethylDackel). The
MethylScore pipeline performs the following general steps: (i) calling of methylated cytosines
and determining the per-cytosine methylation rate, (ii) identifying contiguous regions with high
DNA methylation in each sample, (iii) determining segments that for statistical testing, and (iv)
performing statistical tests to identify DMRs. To start the pipeline, users need to provide a two-
column sample sheet with sample identifiers and file paths to the respective bam or bedGraph
files as well as to the reference genome sequence in fasta format. If multiple lines in the sample
sheet share the same sample identifier, MethylScore will assume technical replication and
merge the files prior to further processing.

First, the samtools sort (Li et al., 2009) function sorts the alignments by genomic coordinates.
As many library preparation protocols for bisulfite sequencing incorporate a PCR amplification
step during the protocol, alignments can be optionally processed with picard MarkDuplicates
(Picard toolkit, 2019) to avoid potential bias by non-uniform read amplification. For the next
steps up to the methylated region calling, the alignments are split by chromosome or contig,
facilitating full parallelisation of downstream processing, which is open to user configuration in
order to suit the available computational resources. MethylDackel extract
(https://github.com/dpryan79/MethylDackel) is used for tabulation of single-cytosine
information per sample.

The consensus files for each sample and chromosome are merged into a uniform file format
containing methylation information for all cytosines across all samples, together with
information about sequence context and strand information for each cytosine. After merging
individual chromosomes, the resulting genome matrix file is compressed with bgzip and
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indexed with tabix, allowing for targeted queries of regions from the compressed file. The
genome matrix serves as the input for iterative training of one Hidden Markov Model (HMM)
per sample. It is implemented as a two-state (unmethylated/methylated) model, designed to
learn three context-specific methylation rate distributions by fitting distinct beta-binomial
distributions, thus reflecting the underlying biologically distinct control of these sequence
contexts in plants (see Materials and methods).
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Figure 1. Schematic overview of the MethylScore pipeline.
Schematic overview of processing steps (grey). Different workflow entry points based on the type of input data are
indicated as coloured borders. The workflow can be started from genomic alignments (BAM format; yellow) or
tabular single-cytosine methylation information (bedGraph format; green). Chr: chromosome; DMR: differentially
methylated region; MR: methylated region.

Based on the resulting parameterization of the trained model, the genome space is segmented
into methylated and unmethylated regions by probabilistic classification, yielding genomic
coordinates of MRs in bed format. These regions are split into batches to facilitate the parallel
processing of the ensuing statistical testing strategy. Candidate DMRs in MR batches are
preselected based on changes in MR frequency across the sample population for the detection
of plausible region boundaries (Supplementary Figure 1). Using an iterative k-means algorithm
to determine the most suitable number of groups (MacQueen, 1967), samples are clustered
according to their mean methylation rates within candidate DMRs. Clusters for each sequence
context are assessed for statistical significance by employing log-likelihood ratios based on
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observed read counts under the beta-binomial assumption and testing against a chi-squared
distribution with six degrees of freedom as outlined in (Hagmann et al., 2015), followed by FDR
control using Storey’s method (Storey and Tibshirani, 2003). In a last step, DMRs that pass
the FDR-corrected significance threshold are merged, yielding one bed file per methylation
context containing DMRs between sample clusters.

Segmentation of plant genomes with different DNA methylation composition

We first wanted to explore how MethylScore would segment plant genomes with very different
global DNA methylation configurations. In A. thaliana, DNA methylation is unevenly distributed,
with most methylated cytosines located in the centromeric and pericentromeric regions
(Niederhuth et al., 2016). Overall, 11% of cytosines are methylated, with 31.7% of CG, 16.3%
of CHG, and 6.2% of CHH cytosines showing methylation rates above zero. In contrast, in the
genome of rice (Oryza sativa), DNA methylation is more evenly distributed along the
chromosomes and more frequent in general, showing 48% CG, 25.3 % CHG and 5.7% CHH
methylation. When segmenting WGBS data for both species, MethylScore detected 42,478
methylated regions (MRs) in A. thaliana vs. 379,227 in rice, covering 19.5% and 32.5% of the
total genome sequence, respectively. Accordingly, the median length of MRs in Arabidopsis
(111 bp) was much shorter than in rice (188 bp) (Supplementary Figure 2).

MethylScore identifies differentially methylated regions without a priori sample information

We designed MethylScore to be unaware of sample relationships, which means that it does
not require any a priori information about replicate groups and that the analysis will not be
biased by potentially inaccurate assumptions about sample similarities. Instead, for each
candidate DMR, MethylScore groups all samples using an iterative k-means approach (see
Materials and methods), followed by a beta-binomial-based test to statistically assess whether
the group means are significantly different from each other. As a result, grouping may not
necessarily reflect the preconceived biological design of the experiment for each candidate
DMR, yet local grouping of DMRs has the advantage that it allows to identify patterns in the
underlying sample structure that might be overlooked when defining groups beforehand.
Averaged over all candidate DMRs, methylation differences should be apparent between, for
example, treatment groups or developmental stages if the underlying hypothesis for these
groups to differ in DNA methylation was correct. To test if MethylScore accurately differentiates
between-group and within-group differences in this unsupervised approach, we applied it to A.
thaliana datasets that had previously been described as having substantial levels of between-
group methylation divergence.

We first analyzed a relatively simple WGBS dataset of Columbia-0 (Col-0) wild type and two
loss-of-function mutants of EFFECTOR OF TRANSCRIPTION 1 (et1-1) and EFFECTOR OF
TRANSCRIPTION 2 (et2-3), respectively, as well as of an et7-1 et2-3 double mutant, with
three biological replicates per genotype. These mutants had previously been shown to have
local DNA methylation changes compared to wild-type but also compared to each other
(Tedeschi et al., 2019). When running MethylScore on all samples without group replicate
information, methylation differences in DMRs accurately reflected the genotypic relationship,
indicating that the grouping of samples over all DMRs was driven by methylation differences
between genotypic groups (Figure 2). In accordance with the original publication, grouping
was most conspicuous in CG and CHG contexts (Figure 2).
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Figure 2: MethylScore DMR calling clusters samples according to genotype.

Heatmaps and Principal Component Analyses (PCAs) of mean methylation rates in 9,487 CG- (A,D), 1,282 CHG-
(B,E) and 741 CHH- (C,F) context-specific DMRs identified by MethylScore from WGBS data from flowers of A.
thaliana Col-0 wild-type, respective et1-1 and ef2-3 single mutants, and et7-1 et2-3 double mutants. Original data
from Tedeschi et al. (2019) (ENA accession PRJEB12413).

Next, we asked whether MethylScore would accurately classify methylation pathway mutants
with more pronounced DNA methylation differences to wild-type. Some of these mutants have
substantial global loss of cytosine methylation; we therefore wanted to see whether the training
of the HMM, which takes into consideration the methylation rate distributions of each sample,
might be affected by this. We used a dataset comprising loss-of-functions mutants of the CHG-
specific DNA methyltransferase CMT3, the chromatin remodeler DECREASE IN DNA
METHYLATION 1 (DDM1), two regulators of these genes, TESMIN/TSO1-LIKE CXC
DOMAIN-CONTAINING PROTEIN 5 (TCX5) and TCX6, and of combinations thereof (Ning et
al., 2020). Similar to the et mutant analysis (Figure 2), MethylScore accurately clustered the
samples according to genotype based on DNA methylation rates within DMRs (Figure 3).
Context-specific DMRs also resolved CG- and CHG-specific loss of methylation in ddm1 and
cmt3, respectively (Figure 3), indicating that deviations from the standard methylation rate
distributions did not affect MethylScore analysis.
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Figure 3: Unsupervised DMR calling from WGBS data of DNA methylation pathway mutants.

Heatmaps and PCAs of mean methylation rates in 59,153 CG- (A,D), 63,385 CHG- (B,E) and 440 CHH- (C,F)
context-specific DMRs identified by MethylScore from WGBS sequencing data of DNA methylation pathway
mutants. The dataset included ddm1 and cmt3 single mutants, tcx5/6 double mutants, as well as tcx5/6 ddm1 and
tcx5/6 cmt3 triple mutants. DNA had been sampled from leaves and shoot apical meristem (SAM). Original data
from Ning et al. (2020); GEO accession GSE137754.

Clustering of methylated regions across regenerated A. thaliana populations underlines partial
maintenance of organ-specific methylation profiles in CG

Mutants known to be affected in DNA methylation arguably are expected to present relatively
simple cases for genome-wide differential analyses. To test more complex situations, we
applied MethylScore’s population-scale approach to more complex datasets with less
predictable group structure. We re-analysed a published dataset of A. thaliana regenerants
derived from different tissues of origin that had been obtained by induction of somatic
embryogenesis (Wibowo et al., 2018). Instead of employing a pairwise testing strategy
between condition groups as it had been pursued in the original study, we used MethylScore
to preselect candidate regions based on MR frequency changes across the sample population,
and hypothesized that such a strategy should naturally find clusters of regenerants with a
similar epigenetic setup, thus allowing to differentiate between organ-derived methylation
signatures. The data contained three potentially interacting factors that could contribute to
epigenetic variation: regeneration via somatic embryogenesis vs. sexual reproduction; tissue
of origin of the somatic embryos (RO: root origin; LO: leaf origin); and tissue of DNA sampling
(leaf or root) in the progeny of the regenerants.
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Figure 4: MethylScore population clustering partially reflects epigenetic origin of regenerated plant

lineages.

A) Heatmaps show methylation rate averages in regions identified as differentially methylated in CG, CHG, or CHH
methylation contexts (from left to right). The dataset includes leaf and root tissue from Col-0 control plants as well
as from generation 1 (G1) and generation 2 (G2) progeny of somatic regenerants from root origin (RO) and leaf
origin (LO) somatic embryos, and leaf tissue from F1 and F2 backcrosses of RO and LO regenerants to Col-0. B)
PCAs for each methylation context using the same data are shown in A. Original data from Wibowo et al. (2018),
ENA accession PRJEB26932.

Hierarchical clustering of methylation rates in 1,282 CHG- and 741 CHH-DMRs revealed tissue
type during DNA sampling as the major determinant of methylation within these regions (Figure
4A,B). Tissue of origin was subordinated to sampling tissue type. Principal component analysis
(PCA) of methylation rates within the same regions also showed clear ordination based on
sampling tissue type along PC1 (Figure 4B), for both CHH and CHG contexts. In contrast,
among all 9,487 DMRs identified in CG context, tissue of origin appeared to play a role
alongside sampling tissue type. Our analysis also recapitulated the main finding of the original
publication, namely that DNA methylation in leaves of RO progenitors was more similar to that
in root tissue. Our results generally supported the original conclusion of partial maintenance
of epigenetic marks retained from the tissue of origin across generations of sexually
reproduced offspring, yet suggested CG methylation to be the main driver of this observation
(Figure 4A).
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To validate whether MethylScore could accurately resolve complex data structures in larger
plant genomes with much denser DNA methylation profiles, we also re-analysed a
regeneration-related dataset from rice (Stroud et al., 2013a). Similar to the A. thaliana dataset,
MethylScore identified DMRs that separated regenerated from non-regenerated samples
(Supplementary Figure 3). Interestingly, however, clustering of samples based on methylation
rates within DMRs changed considerably depending on the sequence context. For example,
callus samples were similar to control plants and regenerants in CG-DMRs but stood out as
hypermethylated in the CHH context (Supplementary Figure 3).

DMR calling on a population scale can identify unknown underlying sample structures

MethylScore does not require information on sample grouping but instead clusters samples
for each DMR based on methylation rates, so we expected it to be able to call DMRs even in
very large population-scale datasets. We also wanted to explore how combined epigenetic
and genetic variation would affect the algorithm. Natural genetic and epigenetic variation in A.
thaliana has been cataloged in the 1001 Genomes and Epigenomes Project
(www.1001genomes.org) (1001 Genomes Consortium, 2016; Kawakatsu et al., 2016). We
analyzed a subset of 645 A. thaliana accessions that had been sequenced by WGBS at the
SALK Institute, San Diego, USA. Applying the population-scale approach of MethylScore, we
identified 60,797, 16,627, and 8,406 DMRs in CG, CHG, and CHH, respectively. PCA on the
accession-specific methylation rates in these regions revealed geographic clustering that
separated a cluster of Central Asian accessions from the rest (Figure 5). This grouping
occurred for all three sequence contexts and had not been described in the original publication,
indicating that MethylScore’s approach can detect data structures that remain hidden with
conventional DMR calling tools. Moreover, CG, but not CHG or CHH DMRs, resolved a
latitudinal transect for European accessions (Figure 5). We wanted to explore the source of
the signal further and used the geographic coordinates of collection sites for each of the A.
thaliana accessions to retrieve bioclimatic variables from the WorldClimate dataset
(www.worldclim.org) (Fick and Hijmans, 2017). While the Central Asian cluster showed strong
correlation with low annual average temperature (bio1), strongest correlation was observed
for the lowest temperature in the coldest month of the year (bio6). While local climate is
strongly confounded by geographic location and thus population structure, this observation is
in line with previous reports that showed interdependence between DNA methylation and
ambient temperature (Dubin et al., 2015) as well as seasonality (Shen et al., 2014).

To further explore MethylScore’s capability to resolve hidden sample/population structures, we
applied it to WGBS data of 169 epigenetic recombinant inbred lines (epiRILs) (Zhang et al.,
2021). These lines are derived from a cross of Col-0 wild-type and a loss-of-function mutant
of DDM1 and propagated by single-seed-descent. Genetically, these lines can be considered
near-isogenic; previous studies showed that these epiRILs carry marked differences in DNA
methylation in mosaic-like patterns of DNA methylation, some of which are stably inherited
through generations of single-seed descent (Johannes et al., 2009; Colomé-Tatché et al.,
2012). As every epiRIL has been propagated independently and should therefore be
independent from every other line, we did not expect any sample relationships. However, when
analyzing the DMRs returned by MethylScore’s population-scale analysis in a PCA, the
epiRILs formed several clusters (Supplementary Figure 4). In all three sequence contexts,
most lines were contained in one large cluster, with the exception of a few lines that clustered
separately (Supplementary Figure 4). This clustering may reflect the fact that lines were
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selected for WGBS based on phenotypic information (i.e., selected epigenotyping) or yet
unknown sources of sample stratification, including genetic structure due to shared TE
insertion profiles (Quadrana et al., 2019) in a subset of lines.
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Figure 5: Population structure analysis of natural A. thaliana accessions based on DMRs identified by the
population-scale clustering approach of MethylScore.
PCA shows group formation in CG (A), CHG (B) and CHH (C) methylation contexts. Colors indicate admixture
groups (left column) and seasonality with regard to the lowest temperature in the coldest month (right column).
Data was retrieved via geographic coordinates of collection sites for each accession from the worldclim.org bio6
dataset (Fick and Hijmans, 2017). Original WGBS published in Kawakatsu et al. (2016).
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MethylScore DMRs reveal recurrent trans-acting association signals in A. thaliana natural
accessions

MethylScore’s k-means clustering leads to grouping of samples into only a small number of
groups (mostly two or three), hence within-group variance becomes relatively large when
sample numbers are high, as was the case for the 1001 Genomes data. As a result, DMRs
with noticeable between-group differences become rare, explaining the relatively low number
of DMRs we observed in the 1001 Genomes data, in relation to the size of the dataset. To
increase the statistical power to detect genotype-epigenotype associations in a genome-wide
association (GWA) mapping approach that uses methylation rates in each DMR as the
phenotype vector, we changed from a population-scale to a pairwise DMR calling, comparing
each of the 645 accessions individually to the Col-0 reference. On average, each pairwise
comparison identified 1,708, 778, and 3,625 DMRs in CG, CHG, and CHH contexts,
respectively. Many DMRs from different pairwise comparisons partially or fully overlapped, so
we created sets of unions of overlapping DMRs for each context, resulting in 18,044 CG-,
9,674 CHG-, and 25,350 CHH-DMRs.

We queried methylation rates per accession and conducted GWAS analyses, using region-
level methylation averages as the phenotype vector. On the genotype level, we considered all
genotyped SNPs among the 645 accessions that had a minor allele frequency (MAF) > 5%
(1,813,837 SNPs). Using this strategy, we identified 16,083 regions in CG, 8,102 in CHG, and
19,388 in CHH context that yielded at least one SNP association with significance levels that
passed the Bonferroni-corrected significance threshold at a = 0.05 (threshold = 2.8x107%).

Combining these results in a meta-analysis revealed that many of these associations marked
region-proximal SNP locations in cis for CG (Supplementary Figure 5), CHG and CHH (Figure
6) methylation contexts. Intriguingly, a few also tagged several recurring association signals
in trans (Figure 6). For CHG DMRs, we found two recurrent associations with markers on
chromosomes 3 and 5, respectively (Figure 6A,D,E). Chr3:4,496,047 was found to be
associated with mean methylation rates in 97 DMRs with consistently decreased methylation
in accessions carrying the alternative allele (Figure 6F,G). The SNP was located in close
proximity to the miR823A locus, which encodes the primary miRNA (pri-miRNA) of microRNA
(miRNA) 823A, known to target CMT3. CMT3 is the main methyltransferase depositing CHG
methylation (Lindroth et al., 2001) and via its chromodomain provides a direct link between
DNA methylation and H3K9 dimethylation at constitutive heterochromatin in a concerted
feedback loop with KRYPTONITE (KYP) and SUPPRESSOR OF VARIATION 3-9
HOMOLOGUE PROTEIN 5/6 (SUVH5/6) (Du et al., 2012; Jackson et al., 2002; Du et al., 2014;
Ebbs and Bender, 2006).

The second CHG-DMR-associated locus, Chr5:23,553,506, showed association in 44 DMRs,
similarly with relatively lower methylation levels in accessions carrying the alternative allele.
The SNP resolved a genomic region upstream of MULTICOPY SUPPRESSOR OF IRA1
(MSI1) and appeared to be in linkage with several markers in that region (Figure 6D). MSI1
acts in the evolutionarily conserved Retinoblastoma pathway and is implicated in genomic
imprinting of the FLOWERING WAGENINGEN (FWA) and FERTILIZATION INDEPENDENT
SEED 2 (FIS2) in A. thaliana via direct interaction with RETINOBLASTOMA RELATED 1
(RBRT1) protein (Jullien et al., 2008). Interestingly, both RBR1 and MSI1 have also been
identified as integral components of the Arabidopsis DREAM complex (Ning et al., 2020).
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Figure 6: Genome Wide Association (GWA) signals recurrently emerge from differential methylation found
across the A. thaliana 1001 Methylomes panel (Kawakatsu et al., 2016).

GWA analyses on region-level methylation rate averages reveal recurrent signals in CHG (A) and CHH (B)
methylation contexts. For each DMR, only top ranked SNPs that pass the Bonferroni corrected significance
threshold at a = 0.05 are included, based on the number of SNP markers available across all 646 A. thaliana
accessions used in the study (1,813,837 SNPs with minor allele frequency (MAF) > 5%, p < 2.8x10%). C-E)
Genomic loci of recurrent trans-acting SNPs highlighted in (A) and (B). F-H) Effect sizes of SNPs highlighted in (A)
and (B) on methylation rates in regions underlying the SNP association are shown as slopegraphs and bootstrap
estimates for carriers of the alternative (ALT) and reference (REF) alleles, respectively. In each plot, an equally
sized set of randomly selected DMRs (in gray) is included for comparison.
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In the CHH context, our finding of a recurrent association at Chr5:10417744 (Figure 6B,E)
confirms a recent study that identified natural alleles of CHROMOMETHYLASE2 (CMT2) as
determinants of CHH methylation (Sasaki et al., 2019). The association signal emerged from
120 DMRs, showing a general trend of lower methylation in accessions carrying the alternative
allele, with the exception of two regions of overall low CHH methylation (Figure 6H). In
summary, this shows that MethylScore provides context-specific DMRs from large WGBS
datasets that can be used to determine specific genome-epigenotype associations.

Discussion

Genome-wide studies of DNA methylation typically aim to reveal differences in DNA
methylation between samples or groups of samples. This includes identification of
phenotypically relevant epialleles, finding epigenetically controlled regulatory loci, or assessing
naturally occurring epigenetic variation. Here, we have presented MethylScore, a pipeline for
the identification and characterization of differentially methylated loci specifically from plant
WGBS data. We built MethylScore in such a way as to make it accessible to a broad
community of plant researchers, requiring minimal computational background; provided with
alignment files or methylation metrics files and a simple sample information table, MethylScore
can be run with a single command line.

Currently available DMR callers are mostly built on assumptions based on mammalian DNA
methylation, including the sequence context, genomic distribution and frequency of methylated
cytosines, and the average methylation rate. Plant DNA methylation violates many of these
assumptions. Moreover, most DMR callers typically follow one of three general strategies,
DMP clustering, genome tiling, or pre-defining regions of interest, each with their respective
caveats. DMP clustering first tests for DMPs and merges spatially adjacent loci to define
DMRs. Examples of such tools are DSS (Feng et al., 2014), Bisulfighter (Saito et al., 2014),
MOABS (Sun et al., 2014), BSmooth (Hansen et al., 2012), and methylpy (Ziller et al., 2013;
Schultz et al., 2015). DMP analysis typically involves statistical tests on each cytosine in the
genome, racking up a heavy multiple testing burden. If no appropriate region-level testing is
applied, this multiple testing problem is carried over to the DMRs, resulting in inappropriate
false discovery rate (FDR) control caused by significance thresholding at single loci (Korthauer
et al., 2018). In addition, many such approaches classify DMRs based on mere presence of
DMPs without considering the directionality of methylation change. Multiple-testing limitations
also apply to tiling approaches in which testable segments correspond to windows or sliding
windows along the genome, implemented for example in methylKit (Akalin et al., 2012). The
third category of DMR callers use predefined regions, selected based on existing knowledge,
e.g. genome annotation features. These can be gene bodies, promoter regions, transposons,
or predetermined CpG islands. While this reduces the multiple-testing problem, it ignores
potentially relevant loci that are not included in the predefined set, yet makes tools such as
BiSeq (Hebestreit et al., 2013) suited for targeted sequencing approaches such as reduced-
representation bisulfite sequencing (RRBS) (Meissner et al., 2005).

All of the above methods have additional downsides when applied to plant WGBS data.
Methylation occurring in all sequence contexts in plants aggravates the DMP multiple testing
problem. Some approaches, including BSmooth (Hansen et al., 2012), BiSeq (Hebestreit et
al., 2013), and dmrseq (Korthauer et al., 2018), moreover assume local correlation between
spatially adjacent methylated cytosines to compute smoothed methylation estimates. Despite
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the presence of CHH islands that have been reported for some species (Zemach et al., 2010;
Gent et al., 2013), this assumption primarily holds true for studies in mammalian genomes with
high density of methylated CpG regions. It is, however, less applicable in plants and potentially
affects the performance of these methods in determining genomic boundaries of methylated
regions. Similarly, window- or tile-based approaches are best applicable when methylation is
evenly and densely distributed. However, in A. thaliana and other plant genomes, the
overwhelming share of methylated cytosines are concentrated in only a small fraction of the
genome. Window-based approaches therefore cause a substantial penalty in statistical power
when controlling for FDR, because many of the statistical tests lack biological relevance in
absence of methylation in the windows that are tested.

MethylScore does not require a priori information on DNA methylation parameters or dataset
structures

In an unsupervised training step, MethylScore identifies the methylation rate distribution per
sequence context in the actual data, followed by classifying the genome into states of high and
low methylation based on these training parameters. Alternatively, users can decide to train
MethylScore on a reference sample and apply the training parameters on all other samples in
their dataset. Only those regions are tested for differential methylation in which high-
methylation states differ across samples, and so our pipeline avoids testing regions with no or
very little DNA methylation variation across samples, which drastically reduces the number of
necessary statistical tests compared to other methods.

As shown in the test cases above, MethylScore can handle small datasets with only few
samples to very large datasets with hundreds of WGBS runs. Unless users decide to provide
information on replicate groups, the pipeline applies a population-scale analysis, clustering
samples into groups with similar methylation rates for each testable genomic segment. This
has two effects: first, MethylScore is thus able to reveal hidden sample structures that
researchers might not be aware of at the start of the study. Second, substantial within-group
variance, e.g. within a group of replicates of the same treatment condition, will become
apparent in the DMR output and will not be masked by a forced a priori grouping of replicates.

A modular pipeline that can be integrated with other WGBS analysis pipelines

MethylScore is designed as a post-alignment, secondary analysis workflow starting from either
alignments in bam format or pre-existing single-cytosine metrics in bedGraph format, in
contrast to existing end-to-end solutions such as wg-blimp (Wéste et al., 2020) or PiGx bsseq
(Wurmus et al., 2018). However, its modular design also allows for tight integration with
primary analysis pipelines such as nf-core methylseq (Ewels et al., 2020), snakePipes WGBS
(Bhardwaj et al., 2019), or EpiDiverse Toolkit (Nunn et al., 2021). These pipelines take raw
BS-sequencing reads as an input and perform extensive quality control, along with trimming
and read mapping, which is highly advised to rule out or mitigate potential biases arising from
experimental factors such as library preparation protocols, adapter content, and sequence
duplication levels, before attempting to identify DMRs.
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Limitations and shortcomings of the pipeline

MethylScore is extensively parameterised. While we show that the default parameter set is
suitable on data derived from A. thaliana and O. sativa, analysis of other species with different
methylation characteristics might require a parameter sweep for optimal results.

Outlook

Despite recent advances in detecting chemically modified bases in long-read sequencing data,
WGBS remains the current standard for the analysis of whole-genome DNA methylation
profiles. This applies even more to plants, for which the complexity and diversity of base
modifications poses major hurdles to long-read-based technologies. Even if these technical
issues will be overcome in future, statistical analysis of differential methylation to determine
relevant epiallelic loci will remain a key challenge in this type of studies.

Materials and methods

Pipeline strategy

When provided with alignments as input, MethylScore can first merge and coordinate sort
technical replicates using samtools v1.9 (Li et al., 2009) and subsequently deduplicates reads
arisen from PCR amplification using picard v2.26.8 (Picard toolkit, 2019). To enable parallel
processing, alignments are split by chromosome to concurrently extract single cytosine metrics
using MethylDackel v0.4.0 (https://github.com/dpryan79/MethylDackel). The resulting read
counts are collected for all samples and tabulated into an intermediate, custom-format table
containing chromosomal position, sequence context, strand information, unmethylated and
methylated read counts, as well as derived metrics such as coverage and methylation rate per
cytosine. This information is collected in the genome matrix, a single file containing all of the
above information for every sample and for each cytosine covered in at least one sample.

Using this genome-wide information, a two-state HMM is trained iteratively using the Baum-
Welch algorithm for each of the samples as described by (Molaro et al., 2011) with two key
adaptations. First, to account for the fact that, in contrast to DNA methylation in mammals,
plant genomes often only harbor DNA methylation in a small fraction of the genome, the
original implementation was adapted to detect hyper-methylated rather than hypo-methylated
regions, effectively achieved by inverting the methylation rates. Second, we adapted the
extension to a total of three sequence contexts, allowing the model to learn distinct parameters
independently for CG, CHG and CHH sequence contexts for both states. This results in a total
of six distributions with corresponding emission probabilities as well as transition probabilities
between the methylated and unmethylated states.

Given the parameter estimates after model convergence for a maximum of 30 iterations, the
most likely path is determined by Posterior Decoding and used for probabilistic segmentation
of the genome into methylated regions (MRs). During this step, MR breakpoints are introduced
at either chromosome boundaries or when a parameter is exceeded that defines the maximum
sequence length devoid of covered cytosine positions (named “desert size”, default value 100
bp). This user-defined parameter prevents extending MRs over 100 bp without any methylation
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information. Having segmented the genome into MRs, MethylScore then applies two
complementary population-scale approaches to reduce complexity of the statistical testing
framework. First, candidate regions for significance testing are restricted to those with a user-
defined change in MR frequency across samples (default: 20% change of MR frequency within
30 bp), indicative of natural region boundaries that are widespread in the sample population.
Additional filters can be set to avoid testing short or unreliable MRs by requiring a minimum
number of covered cytosines (default: 5) and a lower bound for coverage at those sites
(default: 3). The second approach used by MethylScore to further decrease the number of
statistical tests is to employ k-means clustering in order to group samples by mean methylation
rates within any given MR. For each candidate region, cluster centers are searched to
minimize the within-group variance. The value of k is iteratively incremented starting from k =
2, until the pairwise comparison of all cluster centers results in a methylation difference of less
than a user-defined value, in which case the previous k is chosen. This parameter lets the user
choose a target minimum methylation difference between groups of samples and thus can be
effectively used to discard likely biologically irrelevant DMRs with only a few percentage points
methylation difference.

Remaining regions that fulfill aforementioned criteria are tested for differential methylation
using a beta-binomial-based test; resulting p-values are subsequently corrected for multiple
tests as described in (Becker et al., 2011).

Implementation in Nextflow

To achieve high standards of reproducibility and portability of pipeline execution across
different compute infrastructures, the workflow manager Nextflow (Di Tommaso et al., 2017)
was chosen to implement MethylScore. Nextflow enables containerised execution using a
prebuilt Docker image (available at https://quay.io/repository/beckerlab/methylscore), that
contains all necessary dependencies including perl libraries, the pre-compiled HMM
implementation, and version-pinned bioconda packages. Furthermore, Nextflow ensures
efficient use of available computational infrastructure by straightforward parallelisation of
tasks, following a scatter-gather strategy.

Re-analysis of published datasets

WGBS reads were retrieved from the ENA and GEO repositories PRJEB26932 (Wibowo et
al., 2016), PRJEB12413 (Tedeschi et al., 2019), GSE137754 (Ning et al., 2020) GSE42410
(Stroud et al., 2013a) and GSE171414 (Zhang et al., 2021)

Raw data were trimmed and mapped to the TAIR10 (Lamesch et al., 2012) reference genome
for A. thaliana data and the IGRSP-1.0 genome (Kawahara et al., 2013) for O. sativa spp.
japonica data using v1.6 of the nf-core methylseq pipeline (Ewels et al., 2021). Standard
settings for lllumina adapter trimming, and the default aligner bismark (Krueger and Andrews,
2011) were used with addition of the --relax mismatches preset. The rich quality control
output of the pipeline was used to assess methylation bias on both read ends and affected
bases were ignored for downstream analysis with MethylScore.

1001 Methylomes analysis

Single-cytosine metrics obtained from the A. thaliana 1001 Methylomes dataset (Kawakatsu
et al., 2016) were used to call DMRs in pairwise comparisons between 645 accessions using
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Col-0 as the point of reference. Overlapping regions found in multiple comparisons were
merged using the plyranges (v.1.14.0 (Lee et al., 2019) reduce_ranges() function in R (v4.1.2
(R Core Team, 2021) For each sequence context, methylation rates within all identified DMRs
were retrieved and used to seek associations between the average methylation rate for each
accession within each DMR and the underlying genotype by conducting Genome-Wide
Association Studies (GWAS) using the Limix framework (Lippert et al., 2014) for linear mixed
models using an in-house python implementation packaged into a containerised Nextflow
pipeline (https://gitlab.Irz.de/beckerlab/gwas-nf).

In brief, our GWAS pipeline retrieves the average methylation rate for each accession within
a given DMR and estimates population structure from all SNPs using the
limix.stats.linear_kinship function in Limix. GWAS is performed via the limix.qtl.scan function
after subsetting the full genome SNP matrix (1001 Genomes Consortium, 2016) to include all
polymorphic SNPs that have a minor allele frequency (MAF) of at least 5% across the
population of 645 accessions. For meta analyses, only those SNP positions are reported for
which the significance level exceeds the Bonferroni corrected threshold with respect to the
total number of included SNP markers (1,813,837).

Data visualization

Figures were generated using R 4.1.2 (R Core Team, 2021) and Bioconductor 3.14
(Gentleman et al., 2004; Huber et al., 2015). Heatmaps of methylation rates were generated
using the ComplexHeatmap library (v2.10.0 (Gu et al., 2016). Principal components were
computed using the pcaMethods library (v1.86.0 (Stacklies et al., 2007) and visualized with
ggplot2 (v3.3.5 (Wickham, 2009) and the ggrepel library (v0.9.1 (Slowikowski). SNP linkage
was calculated using the snpStats library (v1.44.0) and genomic locations were illustrated
using the gggenes library (v0.4.1 (Wilkins). Genome wide representations of SNP associations
were drawn using ggplot2 (v3.3.5 (Wickham, 2009) and the ggforce (v0.3.3 (Pedersen) library
for visual annotation. Slopegraphs and Bootstrap Estimation plots were generated using the
dabestr library (v0.3.0 (Ho et al., 2019).
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Supplemental Figure 1
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Supplementary Figure 1: MR-based strategy to determine candidate DMRs.

The top panel shows a methylation region (MR) frequency barplot along the genome, summarizing the counts of
all sample-specific MRs (the MRs are displayed as horizontal petrol-colored lines in the middle). Three parameters
specify the borders of candidate differentially methylated regions (DMRs; orange horizontal bars): 1) the degree of
MR frequency changes along the genome (marked by red vertical arrows), 2) the upstream distance to which MR
frequency is compared to (marked by orange-colored bent arrows), and 3) a minimum number and coverage of
cytosines (blue arrows indicating the length of candidate DMRs).
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Supplementary Figure 2: Genomic distribution of DNA methylation and methylated regions (MRs).
Lineplots (left) show the distribution of average DNA methylation in 150 kb bins along single chromosomes of A.
thaliana (A; data from (Kawakatsu et al., 2016) and O. sativa (B; data from (Stroud et al., 2013a). MRs segmented
by MethylScore are indicated as vertical bars along the x-axis, with corresponding length distributions shown as
violin plots (right).
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Supplementary Figure 3: Differential methylation in rice regenerants.

Heatmaps show methylation rate averages in regions identified as differentially methylated in CG, CHG, or CHH
methylation contexts (from left to right) in WGBS data from different rice regenerants, callus tissue, and non-
regenerated controls. Original data from (Stroud et al., 2013a), GEOaccession GSE42410.
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Supplementary Figure 4: DMR identification across epigenetic recombinant inbred lines (epiRILs).
Principal component analysis (PCA) of mean methylation rates within 46,323 CG-, 8,821 CHG- and 4,121 CHH-
DMRs identified by MethylScore across a population of 169 epiRILs.
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Supplementary Figure 5: GWA analysis on region-level methylation rate averages in CG.
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