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Abstract 
Whole-genome bisulfite sequencing (WGBS) is the standard method for profiling DNA 
methylation at single-nucleotide resolution. Many WGBS-based studies aim to identify 
biologically relevant loci that display differential methylation between genotypes, treatment 
groups, tissues, or developmental stages. Over the years, different tools have been developed 
to extract differentially methylated regions (DMRs) from whole-genome data. Often, such tools 
are built upon assumptions from mammalian data and do not consider the substantially more 
complex and variable nature of plant DNA methylation. Here, we present MethylScore, a 
pipeline to analyze WGBS data and to account for plant-specific DNA methylation properties. 
MethylScore processes data from genomic alignments to DMR output and is designed to be 
usable by novice and expert users alike. It uses an unsupervised machine learning approach 
to segment the genome by classification into states of high and low methylation, substantially 
reducing the number of necessary statistical tests while increasing the signal-to-noise ratio 
and the statistical power. We show how MethylScore can identify DMRs from hundreds of 
samples and how its data-driven approach can stratify associated samples without prior 
information. We identify DMRs in the A. thaliana 1001 Genomes dataset to unveil known and 
unknown genotype-epigenotype associations. MethylScore is an accessible pipeline for plant 
WGBS data, with unprecedented features for DMR calling in small- and large-scale datasets; 
it is built as a Nextflow pipeline and its source code is available at 
https://github.com/Computomics/MethylScore.   
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Introduction 
Cytosine methylation, which is often used synonymously with DNA methylation, describes the 
covalent attachment of a methyl group to carbon 5 of cytosine, resulting in 5-methylcytosine 
(5mC). In plants, as in most eukaryotes, DNA methylation is part of an epigenetic mechanism 
involved in transposon silencing (Miura et al., 2001), heterochromatin formation (Lippman et 
al., 2004), and gene regulation (Jaenisch and Bird, 2003). It also plays a role in genome 
organization (Zemach et al., 2013; Huff and Zilberman, 2014), regulation of development 
(Finnegan et al., 1996; Papareddy et al., 2021; Ronemus et al., 1996) and imprinting (Jullien 
et al., 2008; Pignatta et al., 2018; Gehring et al., 2006). DNA methylation can also be a source 
of phenotypic variation in natural populations (Schmitz et al., 2013; Eichten et al., 2011; Heyn 
et al., 2013). 

Despite recent advances in long-read sequencing, short-read WGBS is still considered the 
gold standard for analysis of DNA methylation at single-base resolution. Treatment of genomic 
DNA with sodium bisulfite causes hydrolytic deamination of unmethylated cytosine (C) into 
uracil, which upon sequencing library amplification by PCR is converted to thymine (T) 
(Frommer et al., 1992). The initial step is kinetically inhibited in the case of 5mC, and so 
methylated cytosines will be interpreted normally during short-read sequencing, whereas 
unmethylated, converted cytosines will be interpreted as T by the base caller. Comparison to 
the known reference genome can subsequently reveal the methylation state of each cytosine. 

Features of plant DNA methylation  

In many eukaryotic organisms, cytosines can be in a methylated state when they are in a CG 
sequence context, i.e., followed by a guanine (G). In mammalian genomes, for example, the 
majority of CGs are methylated, while unmethylated cytosines are grouped in so-called CpG 
islands, which are non-randomly distributed along the genome and play an important role in 
transcriptional regulation (Deaton and Bird, 2011). In plant genomes, however, the situation is 
fundamentally different and can vary substantially from one species to another. DNA 
methylation in plants occurs in three possible sequence contexts: CG, CHG, and CHH (where 
H is any base but G) (Law and Jacobsen, 2010). Each type of methylation is established, 
maintained and regulated by a specific molecular machinery (Stroud et al., 2013b; Henderson 
and Jacobsen, 2007; Law and Jacobsen, 2010). The frequency of methylation along the 
genome differs by sequence context; for example, in the model plant Arabidopsis thaliana, 
CGs are methylated most frequently relative to the total number of cytosines in that context 
(~24% of all CGs are 5mCGs), followed by CHG (~7%) and CHH (~1.7%) (Cokus et al., 2008).  

While DNA methylation in CG and CHG is symmetric, i.e., the complementary sequences on 
the opposite strand mirror the methylation state, CHH methylation is asymmetric and occurs 
on just one strand at that particular locus. For CG methylation, the information retained by 
semi-conservative DNA replication facilitates re-establishment of methylation on the daughter 
strand via the methyltransferase METHYLTRANSFERASE 1 (MET1) that, akin to its 
mammalian homologue DNA METHYLTRANSFERASE 1 (DNMT1), shows substrate 
preference to hemimethylated DNA (Kankel et al., 2003; Jeltsch, 2006; Saze et al., 2003). In 
contrast, maintenance of CHG and asymmetric CHH methylation depends on additional 
factors such as histone modifications and small RNAs. Methylation of CHG cytosines by 
CHROMOMETHYLASE 3 (CMT3) reciprocally depends on H3K9 dimethylation (Jackson et 
al., 2002; Du et al., 2012), while CHH methylation requires CHROMOMETHYLASE 2 (CMT2) 
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(Stroud et al., 2014; Zemach et al., 2013) and DOMAINS REARRANGED 
METHYLTRANSFERASE2 (DRM2) recruited through small-RNA-dependent RNA-directed 
DNA methylation (RdDM) (Aufsatz et al., 2002; Cao et al., 2003; Cao and Jacobsen, 2002); 
(Wassenegger et al., 1994; Matzke and Mosher, 2014). 

It is important to note that — at least in some plant species, including A. thaliana — DNA 
methylation in the different sequence contexts also differs in terms of methylation rate, i.e., in 
the consistency of the methylation status of a given cytosine across different cells. CG 
cytosines tend to have a binary methylation state, being either always unmethylated or almost 
always methylated in different cells of a given tissue. In contrast, cytosines in CHG and CHH 
show more variable methylation status, with mean methylation rates across all methylated 
CHG and CHH cytosines of ~50% and ~30%, respectively. This has consequences for the 
analysis of differential methylation between samples (Becker et al., 2011), for example in 
software which would model the underlying methylation status based on expected distributions 
(Hansen et al., 2012; Hebestreit et al., 2013; Korthauer et al., 2018). 

Whole-genome DNA methylation analysis as a means to understand natural variation and 
stress response 

Since the first characterizations of the whole-genome DNA methylation profile in A. thaliana 
(Cokus et al., 2008; Lister et al., 2008), there has been a growing interest in studying this 
epigenetic mark at the genomic level to better understand developmental processes (Pignatta 
et al., 2018; Manning et al., 2006), stress responses (Wibowo et al., 2016; Liu et al., 2018), 
phenotypic plasticity, and natural variation (Schmitz et al., 2013; Kawakatsu et al., 2016). For 
example, heritable genetic variation alone is not always sufficient to explain the range of 
phenotypic diversity observed for individuals of the same species, and epigenetic variation is 
likely to account for at least some of the missing heritability (Manolio et al., 2009). Epigenetic 
variation, albeit often confounded by genetic variation, has been recognized as a source of 
natural diversity (Riddle and Richards, 2002; Cervera et al., 2002; Vaughn et al., 2007). As a 
consequence, some phenotypic traits, including floral symmetry (Cubas et al., 1999), fruit 
development and morphology (Manning et al., 2006; Ong-Abdullah et al., 2015; Zhong et al., 
2013), plant height (Miura et al., 2009), and resistance to pathogens (Liégard et al., 2019), 
have been associated with naturally occurring epigenetic alleles (epialleles) that do not appear 
to be due to linked genetic variation. In addition, studying the conditional dynamics of DNA 
methylation at the whole-genome level has highlighted the contribution of epigenetic regulation 
to stress response and tolerance (Wibowo et al., 2016). 

The challenges in determining differential DNA methylation 

DNA methylation is highly dynamic, and there is substantial variation among individuals or 
(sub)populations. It is important to distinguish specific, relevant differences from stochastically 
occuring methylation differences between biological replicates. On a genome-wide scale, this 
is challenging without a priori knowledge of stratification, either based on sequence context or 
by sample grouping. Most experimental studies contrast DNA methylation from different 
samples to each other, be it mutant background and wild type, treatment and control, or 
different natural accessions. Statistical comparisons between samples aim to identify DNA 
methylation differences at either the single-cytosine (differentially methylated positions; DMPs) 
or the region (differentially methylated regions; DMRs) level. While DMPs provide useful 
information on the rate at which epigenetic changes occur (Becker et al., 2011; Schmitz et al., 
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2011; van der Graaf et al., 2015), DMRs are arguably more relevant in a functional biological 
context because they can affect contiguous stretches of DNA and hence potentially influence 
the accessibility of regulatory elements. However, the nature of WGBS data imposes several 
caveats to accurately determining DMPs and DMRs. Some of these reside in the experimental 
design or the quality of the sequencing library. Insufficient replication, for example, limits the 
statistical power of differential analyses. Uneven coverage can bias the base calling because 
of sequencing error rates, while incomplete bisulfite conversion can cause a false estimate of 
methylated cytosines, as can duplicated reads that arise from library over-amplification.  

The statistical analysis of differential methylation often brings along another set of caveats. 
For example, strategies that are based on defining DMRs as clusters of spatially adjacent 
DMPs, such as DSS (Feng et al., 2014; Ziller et al., 2013; Schultz et al., 2015; Feng et al., 
2014), are subject to a heavy multiple testing burden resulting from the large number of 
cytosines in the genome that need to be tested individually. The same applies to window- or 
sliding-window-based approaches, as implemented, for example, in methylKit (Akalin et al., 
2012). In contrast, strategies that call DMRs only in pre-defined regions, e.g., in annotated 
features, risk missing relevant loci in the analysis.  

More recently developed tools for DMR calling are centered around pre-selection of genomic 
regions. metilene (Jühling et al., 2016), dmrseq (Korthauer et al., 2018) and HOME (Srivastava 
et al., 2019) implement multi-step strategies that first restrict the testable genome space to 
candidate regions with evidence of methylation, prior to assessing significant differences. Even 
though HOME takes non-CG methylation into account, all three of these tools have been 
developed with mammalian (mostly human) DNA methylation data in mind and are therefore 
built on assumptions, including most cytosines being methylated, strong local correlation 
between methylation states, predominant (or exclusive) CG methylation, and largely binary 
methylation states, that do not reflect the distinct genetic control underlying the CG, CHG and 
CHH methylation contexts in plants. This implies that if these assumptions are indiscriminately 
applied, many methylated cytosines and regions are likely to be falsely discarded.  

Here, we set out to address this gap by developing a tool for the robust identification of DMRs 
from plant WGBS data that takes into account the complexity and variability of plant DNA 
methylation, while using an informed, restricted set of candidate regions for statistical testing. 
Furthermore, we aimed to avoid the necessity for pre-defining sample groups, required by 
existing tools, to increase the applicability to sample populations with inherent group structure 
and to prevent experimenter bias. We present MethylScore, a convenient and stable pipeline 
that enables biology researchers with little computational background to process WGBS data, 
from read alignments to DMR output. The differential methylation analysis module of 
MethylScore is built around the two-state Hidden-Markov-Model-based approach described 
by (Molaro et al., 2011). To identify and segment methylated regions in plant genomes, 
independent of prior information, we extended the original implementation beyond the CG 
sequence context, allowing the algorithm to train distinct parameter sets for each methylation 
context. 

MethylScore trains on the different properties of CG, CHG, and CHH methylation by estimating 
parameters of a beta-binomial distribution for each sequence context, accounting for both 
stochastic variance in the coverage distribution (assumed to be beta distributed) as well as 
between-sample biological variance (binomially distributed). This means that MethylScore 
learns from the actual WGBS data, thus avoiding potentially erroneous or species-specific 
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assumptions about the distribution of methylation or arbitrary thresholds. This way, the number 
of statistical tests is constrained to regions of interest, curtailing the multiple-testing problem. 
Moreover, its built-in population-scale approach allows identifying DMRs in large datasets, 
without prior information on sample groups, enabling an unbiased DMR calling. Using publicly 
available datasets from A. thaliana (1001 Genomes Consortium, 2016; Kawakatsu et al., 2016;  
Tedeschi et al., 2019; Ning et al., 2020; Zhang et al., 2021; 1001 Genomes Consortium, 2016; 
Kawakatsu et al., 2016; Wibowo et al., 2018) and rice (Stroud et al., 2013a), we show that 
MethylScore is able to segment plant genomes with very different global DNA methylation 
profiles. In absence of sample information, MethylScore identified group-specific DMRs and 
was able to detect population signals in datasets with hundreds of samples. Ultimately, we 
used the DMRs thus identified in the A. thaliana 1001 Genomes and Epigenomes datasets 
(1001 Genomes Consortium, 2016; Kawakatsu et al., 2016) to detect known and unknown 
genotype-epigenotype associations. MethylScore is built as a Nextflow pipeline, allowing 
ease-of-access and broad usability; the pipeline can be downloaded from 
https://github.com/Computomics/MethylScore. 

Results 

Outline of the modular MethylScore pipeline to call DMRs from plant WGBS data 

MethylScore is implemented as a modular pipeline that is built in Nextflow (Di Tommaso et al., 
2017) for maximal ease-of-access (Figure 1; Materials and methods). It uses reference-aligned 
sequences in bam format or tabular single-cytosine information in bedGraph format as they 
are produced by common WGBS primary analysis tools such as bismark (Krueger and 
Andrews, 2011) or MethylDackel (https://github.com/dpryan79/MethylDackel). The 
MethylScore pipeline performs the following general steps: (i) calling of methylated cytosines 
and determining the per-cytosine methylation rate, (ii) identifying contiguous regions with high 
DNA methylation in each sample, (iii) determining segments that for statistical testing, and (iv) 
performing statistical tests to identify DMRs. To start the pipeline, users need to provide a two-
column sample sheet with sample identifiers and file paths to the respective bam or bedGraph 
files as well as to the reference genome sequence in fasta format. If multiple lines in the sample 
sheet share the same sample identifier, MethylScore will assume technical replication and 
merge the files prior to further processing. 

First, the samtools sort (Li et al., 2009) function sorts the alignments by genomic coordinates. 
As many library preparation protocols for bisulfite sequencing incorporate a PCR amplification 
step during the protocol, alignments can be optionally processed with picard MarkDuplicates 
(Picard toolkit, 2019) to avoid potential bias by non-uniform read amplification. For the next 
steps up to the methylated region calling, the alignments are split by chromosome or contig, 
facilitating full parallelisation of downstream processing, which is open to user configuration in 
order to suit the available computational resources. MethylDackel extract 
(https://github.com/dpryan79/MethylDackel) is used for tabulation of single-cytosine 
information per sample.  

The consensus files for each sample and chromosome are merged into a uniform file format 
containing methylation information for all cytosines across all samples, together with 
information about sequence context and strand information for each cytosine. After merging 
individual chromosomes, the resulting genome matrix file is compressed with bgzip and 
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indexed with tabix, allowing for targeted queries of regions from the compressed file. The 
genome matrix serves as the input for iterative training of one Hidden Markov Model (HMM) 
per sample. It is implemented as a two-state (unmethylated/methylated) model, designed to 
learn three context-specific methylation rate distributions by fitting distinct beta-binomial 
distributions, thus reflecting the underlying biologically distinct control of these sequence 
contexts in plants (see Materials and methods). 

 
Figure 1. Schematic overview of the MethylScore pipeline. 
Schematic overview of processing steps (grey). Different workflow entry points based on the type of input data are 
indicated as coloured borders. The workflow can be started from genomic alignments (BAM format; yellow) or 
tabular single-cytosine methylation information (bedGraph format; green). Chr: chromosome; DMR: differentially 
methylated region; MR: methylated region. 

Based on the resulting parameterization of the trained model, the genome space is segmented 
into methylated and unmethylated regions by probabilistic classification, yielding genomic 
coordinates of MRs in bed format. These regions are split into batches to facilitate the parallel 
processing of the ensuing statistical testing strategy. Candidate DMRs in MR batches are 
preselected based on changes in MR frequency across the sample population for the detection 
of plausible region boundaries (Supplementary Figure 1). Using an iterative k-means algorithm 
to determine the most suitable number of groups (MacQueen, 1967), samples are clustered 
according to their mean methylation rates within candidate DMRs. Clusters for each sequence 
context are assessed for statistical significance by employing log-likelihood ratios based on 
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observed read counts under the beta-binomial assumption and testing against a chi-squared 
distribution with six degrees of freedom as outlined in (Hagmann et al., 2015), followed by FDR 
control using Storey’s method (Storey and Tibshirani, 2003). In a last step, DMRs that pass 
the FDR-corrected significance threshold are merged, yielding one bed file per methylation 
context containing DMRs between sample clusters. 

Segmentation of plant genomes with different DNA methylation composition 

We first wanted to explore how MethylScore would segment plant genomes with very different 
global DNA methylation configurations. In A. thaliana, DNA methylation is unevenly distributed, 
with most methylated cytosines located in the centromeric and pericentromeric regions 
(Niederhuth et al., 2016). Overall, 11% of cytosines are methylated, with 31.7% of CG, 16.3% 
of CHG, and 6.2% of CHH cytosines showing methylation rates above zero. In contrast, in the 
genome of rice (Oryza sativa), DNA methylation is more evenly distributed along the 
chromosomes and more frequent in general, showing 48% CG, 25.3 % CHG and 5.7% CHH 
methylation. When segmenting WGBS data for both species, MethylScore detected 42,478 
methylated regions (MRs) in A. thaliana vs. 379,227 in rice, covering 19.5% and 32.5% of the 
total genome sequence, respectively. Accordingly, the median length of MRs in Arabidopsis 
(111 bp) was much shorter than in rice (188 bp) (Supplementary Figure 2).  

MethylScore identifies differentially methylated regions without a priori sample information 

We designed MethylScore to be unaware of sample relationships, which means that it does 
not require any a priori information about replicate groups and that the analysis will not be 
biased by potentially inaccurate assumptions about sample similarities. Instead, for each 
candidate DMR, MethylScore groups all samples using an iterative k-means approach (see 
Materials and methods), followed by a beta-binomial-based test to statistically assess whether 
the group means are significantly different from each other. As a result, grouping may not 
necessarily reflect the preconceived biological design of the experiment for each candidate 
DMR, yet local grouping of DMRs has the advantage that it allows to identify patterns in the 
underlying sample structure that might be overlooked when defining groups beforehand. 
Averaged over all candidate DMRs, methylation differences should be apparent between, for 
example, treatment groups or developmental stages if the underlying hypothesis for these 
groups to differ in DNA methylation was correct. To test if MethylScore accurately differentiates 
between-group and within-group differences in this unsupervised approach, we applied it to A. 
thaliana datasets that had previously been described as having substantial levels of between-
group methylation divergence.  

We first analyzed a relatively simple WGBS dataset of Columbia-0 (Col-0) wild type and two 
loss-of-function mutants of EFFECTOR OF TRANSCRIPTION 1 (et1-1) and EFFECTOR OF 
TRANSCRIPTION 2 (et2-3), respectively, as well as of an et1-1 et2-3 double mutant, with 
three biological replicates per genotype. These mutants had previously been shown to have 
local DNA methylation changes compared to wild-type but also compared to each other 
(Tedeschi et al., 2019). When running MethylScore on all samples without group replicate 
information, methylation differences in DMRs accurately reflected the genotypic relationship, 
indicating that the grouping of samples over all DMRs was driven by methylation differences 
between genotypic groups (Figure 2). In accordance with the original publication, grouping 
was most conspicuous in CG and CHG contexts (Figure 2). 
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Figure 2: MethylScore DMR calling clusters samples according to genotype. 
Heatmaps and Principal Component Analyses (PCAs) of mean methylation rates in 9,487 CG- (A,D), 1,282 CHG- 
(B,E) and 741 CHH- (C,F) context-specific DMRs identified by MethylScore from WGBS data from flowers of A. 
thaliana Col-0 wild-type, respective et1-1 and et2-3 single mutants, and et1-1 et2-3 double mutants. Original data 
from Tedeschi et al. (2019) (ENA accession PRJEB12413). 

Next, we asked whether MethylScore would accurately classify methylation pathway mutants 
with more pronounced DNA methylation differences to wild-type. Some of these mutants have 
substantial global loss of cytosine methylation; we therefore wanted to see whether the training 
of the HMM, which takes into consideration the methylation rate distributions of each sample, 
might be affected by this. We used a dataset comprising loss-of-functions mutants of the CHG-
specific DNA methyltransferase CMT3, the chromatin remodeler DECREASE IN DNA 
METHYLATION 1 (DDM1), two regulators of these genes, TESMIN/TSO1-LIKE CXC 
DOMAIN-CONTAINING PROTEIN 5 (TCX5) and TCX6, and of combinations thereof (Ning et 
al., 2020). Similar to the et mutant analysis (Figure 2), MethylScore accurately clustered the 
samples according to genotype based on DNA methylation rates within DMRs (Figure 3). 
Context-specific DMRs also resolved CG- and CHG-specific loss of methylation in ddm1 and 
cmt3, respectively (Figure 3), indicating that deviations from the standard methylation rate 
distributions did not affect MethylScore analysis. 

 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 6, 2022. ; https://doi.org/10.1101/2022.01.06.475031doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.06.475031
http://creativecommons.org/licenses/by/4.0/


 

 

 
Figure 3: Unsupervised DMR calling from WGBS data of DNA methylation pathway mutants. 
Heatmaps and PCAs of mean methylation rates in 59,153 CG- (A,D), 63,385 CHG- (B,E) and 440 CHH- (C,F) 
context-specific DMRs identified by MethylScore from WGBS sequencing data of DNA methylation pathway 
mutants. The dataset included ddm1 and cmt3 single mutants, tcx5/6 double mutants, as well as tcx5/6 ddm1 and 
tcx5/6 cmt3 triple mutants. DNA had been sampled from leaves and shoot apical meristem (SAM). Original data 
from Ning et al. (2020); GEO accession GSE137754. 

Clustering of methylated regions across regenerated A. thaliana populations underlines partial 
maintenance of organ-specific methylation profiles in CG 

Mutants known to be affected in DNA methylation arguably are expected to present relatively 
simple cases for genome-wide differential analyses. To test more complex situations, we 
applied MethylScore’s population-scale approach to more complex datasets with less 
predictable group structure. We re-analysed a published dataset of A. thaliana regenerants 
derived from different tissues of origin that had been obtained by induction of somatic 
embryogenesis (Wibowo et al., 2018). Instead of employing a pairwise testing strategy 
between condition groups as it had been pursued in the original study, we used MethylScore 
to preselect candidate regions based on MR frequency changes across the sample population, 
and hypothesized that such a strategy should naturally find clusters of regenerants with a 
similar epigenetic setup, thus allowing to differentiate between organ-derived methylation 
signatures. The data contained three potentially interacting factors that could contribute to 
epigenetic variation: regeneration via somatic embryogenesis vs. sexual reproduction; tissue 
of origin of the somatic embryos (RO: root origin; LO: leaf origin); and tissue of DNA sampling 
(leaf or root) in the progeny of the regenerants. 
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Figure 4: MethylScore population clustering partially reflects epigenetic origin of regenerated plant 
lineages. 
A) Heatmaps show methylation rate averages in regions identified as differentially methylated in CG, CHG, or CHH 
methylation contexts (from left to right). The dataset includes leaf and root tissue from Col-0 control plants as well 
as from generation 1 (G1) and generation 2 (G2) progeny of somatic regenerants from root origin (RO) and leaf 
origin (LO) somatic embryos, and leaf tissue from F1 and F2 backcrosses of RO and LO regenerants to Col-0. B) 
PCAs for each methylation context using the same data are shown in A. Original data from Wibowo et al. (2018), 
ENA accession PRJEB26932. 
 
Hierarchical clustering of methylation rates in 1,282 CHG- and 741 CHH-DMRs revealed tissue 
type during DNA sampling as the major determinant of methylation within these regions (Figure 
4A,B). Tissue of origin was subordinated to sampling tissue type. Principal component analysis 
(PCA) of methylation rates within the same regions also showed clear ordination based on 
sampling tissue type along PC1 (Figure 4B), for both CHH and CHG contexts. In contrast, 
among all 9,487 DMRs identified in CG context, tissue of origin appeared to play a role 
alongside sampling tissue type. Our analysis also recapitulated the main finding of the original 
publication, namely that DNA methylation in leaves of RO progenitors was more similar to that 
in root tissue. Our results generally supported the original conclusion of partial maintenance 
of epigenetic marks retained from the tissue of origin across generations of sexually 
reproduced offspring, yet suggested CG methylation to be the main driver of this observation 
(Figure 4A).  
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To validate whether MethylScore could accurately resolve complex data structures in larger 
plant genomes with much denser DNA methylation profiles, we also re-analysed a 
regeneration-related dataset from rice (Stroud et al., 2013a). Similar to the A. thaliana dataset, 
MethylScore identified DMRs that separated regenerated from non-regenerated samples 
(Supplementary Figure 3). Interestingly, however, clustering of samples based on methylation 
rates within DMRs changed considerably depending on the sequence context. For example, 
callus samples were similar to control plants and regenerants in CG-DMRs but stood out as 
hypermethylated in the CHH context (Supplementary Figure 3). 

DMR calling on a population scale can identify unknown underlying sample structures 

MethylScore does not require information on sample grouping but instead clusters samples 
for each DMR based on methylation rates, so we expected it to be able to call DMRs even in 
very large population-scale datasets. We also wanted to explore how combined epigenetic 
and genetic variation would affect the algorithm. Natural genetic and epigenetic variation in A. 
thaliana has been cataloged in the 1001 Genomes and Epigenomes Project 
(www.1001genomes.org) (1001 Genomes Consortium, 2016; Kawakatsu et al., 2016). We 
analyzed a subset of 645 A. thaliana accessions that had been sequenced by WGBS at the 
SALK Institute, San Diego, USA. Applying the population-scale approach of MethylScore, we 
identified 60,797, 16,627, and 8,406 DMRs in CG, CHG, and CHH, respectively. PCA on the 
accession-specific methylation rates in these regions revealed geographic clustering that 
separated a cluster of Central Asian accessions from the rest (Figure 5). This grouping 
occurred for all three sequence contexts and had not been described in the original publication, 
indicating that MethylScore’s approach can detect data structures that remain hidden with 
conventional DMR calling tools. Moreover, CG, but not CHG or CHH DMRs, resolved a 
latitudinal transect for European accessions (Figure 5). We wanted to explore the source of 
the signal further and used the geographic coordinates of collection sites for each of the A. 
thaliana accessions to retrieve bioclimatic variables from the WorldClimate dataset 
(www.worldclim.org) (Fick and Hijmans, 2017). While the Central Asian cluster showed strong 
correlation with low annual average temperature (bio1), strongest correlation was observed 
for the lowest temperature in the coldest month of the year (bio6). While local climate is 
strongly confounded by geographic location and thus population structure, this observation is 
in line with previous reports that showed interdependence between DNA methylation and 
ambient temperature (Dubin et al., 2015) as well as seasonality (Shen et al., 2014).  

To further explore MethylScore’s capability to resolve hidden sample/population structures, we 
applied it to WGBS data of 169 epigenetic recombinant inbred lines (epiRILs) (Zhang et al., 
2021). These lines are derived from a cross of Col-0 wild-type and a loss-of-function mutant 
of DDM1 and propagated by single-seed-descent. Genetically, these lines can be considered 
near-isogenic; previous studies showed that these epiRILs carry marked differences in DNA 
methylation in mosaic-like patterns of DNA methylation, some of which are stably inherited 
through generations of single-seed descent (Johannes et al., 2009; Colomé-Tatché et al., 
2012). As every epiRIL has been propagated independently and should therefore be 
independent from every other line, we did not expect any sample relationships. However, when 
analyzing the DMRs returned by MethylScore’s population-scale analysis in a PCA, the 
epiRILs formed several clusters (Supplementary Figure 4). In all three sequence contexts, 
most lines were contained in one large cluster, with the exception of a few lines that clustered 
separately (Supplementary Figure 4). This clustering may reflect the fact that lines were 
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selected for WGBS based on phenotypic information (i.e., selected epigenotyping) or yet 
unknown sources of sample stratification, including genetic structure due to shared TE 
insertion profiles (Quadrana et al., 2019) in a subset of lines. 
 

 
Figure 5: Population structure analysis of natural A. thaliana accessions based on DMRs identified by the 
population-scale clustering approach of MethylScore. 
PCA shows group formation in CG (A), CHG (B) and CHH (C) methylation contexts. Colors indicate admixture 
groups (left column) and seasonality with regard to the lowest temperature in the coldest month (right column). 
Data was retrieved via geographic coordinates of collection sites for each accession from the worldclim.org bio6 
dataset (Fick and Hijmans, 2017). Original WGBS published in Kawakatsu et al. (2016). 
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MethylScore DMRs reveal recurrent trans-acting association signals in A. thaliana natural 
accessions 

MethylScore’s k-means clustering leads to grouping of samples into only a small number of 
groups (mostly two or three), hence within-group variance becomes relatively large when 
sample numbers are high, as was the case for the 1001 Genomes data. As a result, DMRs 
with noticeable between-group differences become rare, explaining the relatively low number 
of DMRs we observed in the 1001 Genomes data, in relation to the size of the dataset. To 
increase the statistical power to detect genotype-epigenotype associations in a genome-wide 
association (GWA) mapping approach that uses methylation rates in each DMR as the 
phenotype vector, we changed from a population-scale to a pairwise DMR calling, comparing 
each of the 645 accessions individually to the Col-0 reference. On average, each pairwise 
comparison identified 1,708, 778, and 3,625 DMRs in CG, CHG, and CHH contexts, 
respectively. Many DMRs from different pairwise comparisons partially or fully overlapped, so 
we created sets of unions of overlapping DMRs for each context, resulting in 18,044 CG-, 
9,674 CHG-, and 25,350 CHH-DMRs. 

We queried methylation rates per accession and conducted GWAS analyses, using region-
level methylation averages as the phenotype vector. On the genotype level, we considered all 
genotyped SNPs among the 645 accessions that had a minor allele frequency (MAF) > 5% 
(1,813,837 SNPs). Using this strategy, we identified 16,083 regions in CG, 8,102 in CHG, and 
19,388 in CHH context that yielded at least one SNP association with significance levels that 
passed the Bonferroni-corrected significance threshold at α = 0.05 (threshold = 2.8×10-8). 

Combining these results in a meta-analysis revealed that many of these associations marked 
region-proximal SNP locations in cis for CG (Supplementary Figure 5), CHG and CHH (Figure 
6) methylation contexts. Intriguingly, a few also tagged several recurring association signals 
in trans (Figure 6). For CHG DMRs, we found two recurrent associations with markers on 
chromosomes 3 and 5, respectively (Figure 6A,D,E). Chr3:4,496,047 was found to be 
associated with mean methylation rates in 97 DMRs with consistently decreased methylation 
in accessions carrying the alternative allele (Figure 6F,G). The SNP was located in close 
proximity to the miR823A locus, which encodes the primary miRNA (pri-miRNA) of microRNA 
(miRNA) 823A, known to target CMT3. CMT3 is the main methyltransferase depositing CHG 
methylation (Lindroth et al., 2001) and via its chromodomain provides a direct link between 
DNA methylation and H3K9 dimethylation at constitutive heterochromatin in a concerted 
feedback loop with KRYPTONITE (KYP) and SUPPRESSOR OF VARIATION 3-9 
HOMOLOGUE PROTEIN 5/6 (SUVH5/6) (Du et al., 2012; Jackson et al., 2002; Du et al., 2014; 
Ebbs and Bender, 2006). 

The second CHG-DMR-associated locus, Chr5:23,553,506, showed association in 44 DMRs, 
similarly with relatively lower methylation levels in accessions carrying the alternative allele. 
The SNP resolved a genomic region upstream of MULTICOPY SUPPRESSOR OF IRA1 
(MSI1) and appeared to be in linkage with several markers in that region (Figure 6D). MSI1 
acts in the evolutionarily conserved Retinoblastoma pathway and is implicated in genomic 
imprinting of the FLOWERING WAGENINGEN (FWA) and FERTILIZATION INDEPENDENT 
SEED 2 (FIS2) in A. thaliana via direct interaction with RETINOBLASTOMA RELATED 1 
(RBR1) protein (Jullien et al., 2008). Interestingly, both RBR1 and MSI1 have also been 
identified as integral components of the Arabidopsis DREAM complex (Ning et al., 2020).  
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Figure 6: Genome Wide Association (GWA) signals recurrently emerge from differential methylation found 
across the A. thaliana 1001 Methylomes panel (Kawakatsu et al., 2016). 
GWA analyses on region-level methylation rate averages reveal recurrent signals in CHG (A) and CHH (B) 
methylation contexts. For each DMR, only top ranked SNPs that pass the Bonferroni corrected significance 
threshold at α = 0.05 are included, based on the number of SNP markers available across all 646 A. thaliana 
accessions used in the study (1,813,837 SNPs with minor allele frequency (MAF) > 5%, p < 2.8×10-8). C-E) 
Genomic loci of recurrent trans-acting SNPs highlighted in (A) and (B). F-H) Effect sizes of SNPs highlighted in (A) 
and (B) on methylation rates in regions underlying the SNP association are shown as slopegraphs and bootstrap 
estimates for carriers of the alternative (ALT) and reference (REF) alleles, respectively. In each plot, an equally 
sized set of randomly selected DMRs (in gray) is included for comparison. 
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In the CHH context, our finding of a recurrent association at Chr5:10417744 (Figure 6B,E) 
confirms a recent study that identified natural alleles of CHROMOMETHYLASE2 (CMT2) as 
determinants of CHH methylation (Sasaki et al., 2019). The association signal emerged from 
120 DMRs, showing a general trend of lower methylation in accessions carrying the alternative 
allele, with the exception of two regions of overall low CHH methylation (Figure 6H). In 
summary, this shows that MethylScore provides context-specific DMRs from large WGBS 
datasets that can be used to determine specific genome-epigenotype associations.  

Discussion 
Genome-wide studies of DNA methylation typically aim to reveal differences in DNA 
methylation between samples or groups of samples. This includes identification of 
phenotypically relevant epialleles, finding epigenetically controlled regulatory loci, or assessing 
naturally occurring epigenetic variation. Here, we have presented MethylScore, a pipeline for 
the identification and characterization of differentially methylated loci specifically from plant 
WGBS data. We built MethylScore in such a way as to make it accessible to a broad 
community of plant researchers, requiring minimal computational background; provided with 
alignment files or methylation metrics files and a simple sample information table, MethylScore 
can be run with a single command line. 

Currently available DMR callers are mostly built on assumptions based on mammalian DNA 
methylation, including the sequence context, genomic distribution and frequency of methylated 
cytosines, and the average methylation rate. Plant DNA methylation violates many of these 
assumptions. Moreover, most DMR callers typically follow one of three general strategies, 
DMP clustering, genome tiling, or pre-defining regions of interest, each with their respective 
caveats. DMP clustering first tests for DMPs and merges spatially adjacent loci to define 
DMRs. Examples of such tools are DSS (Feng et al., 2014), Bisulfighter (Saito et al., 2014), 
MOABS (Sun et al., 2014), BSmooth (Hansen et al., 2012), and methylpy (Ziller et al., 2013; 
Schultz et al., 2015). DMP analysis typically involves statistical tests on each cytosine in the 
genome, racking up a heavy multiple testing burden. If no appropriate region-level testing is 
applied, this multiple testing problem is carried over to the DMRs, resulting in inappropriate 
false discovery rate (FDR) control caused by significance thresholding at single loci (Korthauer 
et al., 2018). In addition, many such approaches classify DMRs based on mere presence of 
DMPs without considering the directionality of methylation change. Multiple-testing limitations 
also apply to tiling approaches in which testable segments correspond to windows or sliding 
windows along the genome, implemented for example in methylKit (Akalin et al., 2012). The 
third category of DMR callers use predefined regions, selected based on existing knowledge, 
e.g. genome annotation features. These can be gene bodies, promoter regions, transposons, 
or predetermined CpG islands. While this reduces the multiple-testing problem, it ignores 
potentially relevant loci that are not included in the predefined set, yet makes tools such as 
BiSeq (Hebestreit et al., 2013) suited for targeted sequencing approaches such as reduced-
representation bisulfite sequencing (RRBS) (Meissner et al., 2005).  

All of the above methods have additional downsides when applied to plant WGBS data. 
Methylation occurring in all sequence contexts in plants aggravates the DMP multiple testing 
problem. Some approaches, including BSmooth (Hansen et al., 2012), BiSeq (Hebestreit et 
al., 2013), and dmrseq (Korthauer et al., 2018), moreover assume local correlation between 
spatially adjacent methylated cytosines to compute smoothed methylation estimates. Despite 
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the presence of CHH islands that have been reported for some species (Zemach et al., 2010; 
Gent et al., 2013), this assumption primarily holds true for studies in mammalian genomes with 
high density of methylated CpG regions. It is, however, less applicable in plants and potentially 
affects the performance of these methods in determining genomic boundaries of methylated 
regions. Similarly, window- or tile-based approaches are best applicable when methylation is 
evenly and densely distributed. However, in A. thaliana and other plant genomes, the 
overwhelming share of methylated cytosines are concentrated in only a small fraction of the 
genome. Window-based approaches therefore cause a substantial penalty in statistical power 
when controlling for FDR, because many of the statistical tests lack biological relevance in 
absence of methylation in the windows that are tested. 

MethylScore does not require a priori information on DNA methylation parameters or dataset 
structures 

In an unsupervised training step, MethylScore identifies the methylation rate distribution per 
sequence context in the actual data, followed by classifying the genome into states of high and 
low methylation based on these training parameters. Alternatively, users can decide to train 
MethylScore on a reference sample and apply the training parameters on all other samples in 
their dataset. Only those regions are tested for differential methylation in which high-
methylation states differ across samples, and so our pipeline avoids testing regions with no or 
very little DNA methylation variation across samples, which drastically reduces the number of 
necessary statistical tests compared to other methods. 

As shown in the test cases above, MethylScore can handle small datasets with only few 
samples to very large datasets with hundreds of WGBS runs. Unless users decide to provide 
information on replicate groups, the pipeline applies a population-scale analysis, clustering 
samples into groups with similar methylation rates for each testable genomic segment. This 
has two effects: first, MethylScore is thus able to reveal hidden sample structures that 
researchers might not be aware of at the start of the study. Second, substantial within-group 
variance, e.g. within a group of replicates of the same treatment condition, will become 
apparent in the DMR output and will not be masked by a forced a priori grouping of replicates. 

A modular pipeline that can be integrated with other WGBS analysis pipelines  

MethylScore is designed as a post-alignment, secondary analysis workflow starting from either 
alignments in bam format or pre-existing single-cytosine metrics in bedGraph format, in 
contrast to existing end-to-end solutions such as wg-blimp (Wöste et al., 2020) or PiGx bsseq 
(Wurmus et al., 2018). However, its modular design also allows for tight integration with 
primary analysis pipelines such as nf-core methylseq (Ewels et al., 2020), snakePipes WGBS 
(Bhardwaj et al., 2019), or EpiDiverse Toolkit (Nunn et al., 2021). These pipelines take raw 
BS-sequencing reads as an input and perform extensive quality control, along with trimming 
and read mapping, which is highly advised to rule out or mitigate potential biases arising from 
experimental factors such as library preparation protocols, adapter content, and sequence 
duplication levels, before attempting to identify DMRs.  
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Limitations and shortcomings of the pipeline  

MethylScore is extensively parameterised. While we show that the default parameter set is 
suitable on data derived from A. thaliana and O. sativa, analysis of other species with different 
methylation characteristics might require a parameter sweep for optimal results. 

Outlook 

Despite recent advances in detecting chemically modified bases in long-read sequencing data, 
WGBS remains the current standard for the analysis of whole-genome DNA methylation 
profiles. This applies even more to plants, for which the complexity and diversity of base 
modifications poses major hurdles to long-read-based technologies. Even if these technical 
issues will be overcome in future, statistical analysis of differential methylation to determine 
relevant epiallelic loci will remain a key challenge in this type of studies.  

Materials and methods 
Pipeline strategy 

When provided with alignments as input, MethylScore can first merge and coordinate sort 
technical replicates using samtools v1.9 (Li et al., 2009) and subsequently deduplicates reads 
arisen from PCR amplification using picard v2.26.8 (Picard toolkit, 2019). To enable parallel 
processing, alignments are split by chromosome to concurrently extract single cytosine metrics 
using MethylDackel v0.4.0 (https://github.com/dpryan79/MethylDackel). The resulting read 
counts are collected for all samples and tabulated into an intermediate, custom-format table 
containing chromosomal position, sequence context, strand information, unmethylated and 
methylated read counts, as well as derived metrics such as coverage and methylation rate per 
cytosine. This information is collected in the genome matrix, a single file containing all of the 
above information for every sample and for each cytosine covered in at least one sample. 

Using this genome-wide information, a two-state HMM is trained iteratively using the Baum-
Welch algorithm for each of the samples as described by (Molaro et al., 2011) with two key 
adaptations. First, to account for the fact that, in contrast to DNA methylation in mammals, 
plant genomes often only harbor DNA methylation in a small fraction of the genome, the 
original implementation was adapted to detect hyper-methylated rather than hypo-methylated 
regions, effectively achieved by inverting the methylation rates. Second, we adapted the 
extension to a total of three sequence contexts, allowing the model to learn distinct parameters 
independently for CG, CHG and CHH sequence contexts for both states. This results in a total 
of six distributions with corresponding emission probabilities as well as transition probabilities 
between the methylated and unmethylated states.  

Given the parameter estimates after model convergence for a maximum of 30 iterations, the 
most likely path is determined by Posterior Decoding and used for probabilistic segmentation 
of the genome into methylated regions (MRs). During this step, MR breakpoints are introduced 
at either chromosome boundaries or when a parameter is exceeded that defines the maximum 
sequence length devoid of covered cytosine positions (named “desert size”, default value 100 
bp). This user-defined parameter prevents extending MRs over 100 bp without any methylation 
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information. Having segmented the genome into MRs, MethylScore then applies two 
complementary population-scale approaches to reduce complexity of the statistical testing 
framework. First, candidate regions for significance testing are restricted to those with a user-
defined change in MR frequency across samples (default: 20% change of MR frequency within 
30 bp), indicative of natural region boundaries that are widespread in the sample population. 
Additional filters can be set to avoid testing short or unreliable MRs by requiring a minimum 
number of covered cytosines (default: 5) and a lower bound for coverage at those sites 
(default: 3). The second approach used by MethylScore to further decrease the number of 
statistical tests is to employ k-means clustering in order to group samples by mean methylation 
rates within any given MR. For each candidate region, cluster centers are searched to 
minimize the within-group variance. The value of k is iteratively incremented starting from k = 
2, until the pairwise comparison of all cluster centers results in a methylation difference of less 
than a user-defined value, in which case the previous k is chosen. This parameter lets the user 
choose a target minimum methylation difference between groups of samples and thus can be 
effectively used to discard likely biologically irrelevant DMRs with only a few percentage points 
methylation difference. 

Remaining regions that fulfill aforementioned criteria are tested for differential methylation 
using a beta-binomial-based test; resulting p-values are subsequently corrected for multiple 
tests as described in (Becker et al., 2011). 

Implementation in Nextflow 

To achieve high standards of reproducibility and portability of pipeline execution across 
different compute infrastructures, the workflow manager Nextflow (Di Tommaso et al., 2017) 
was chosen to implement MethylScore. Nextflow enables containerised execution using a 
prebuilt Docker image (available at https://quay.io/repository/beckerlab/methylscore), that 
contains all necessary dependencies including perl libraries, the pre-compiled HMM 
implementation, and version-pinned bioconda packages. Furthermore, Nextflow ensures 
efficient use of available computational infrastructure by straightforward parallelisation of 
tasks, following a scatter-gather strategy.  

Re-analysis of published datasets 

WGBS reads were retrieved from the ENA and GEO repositories PRJEB26932 (Wibowo et 
al., 2016), PRJEB12413 (Tedeschi et al., 2019), GSE137754 (Ning et al., 2020) GSE42410 
(Stroud et al., 2013a) and GSE171414 (Zhang et al., 2021) 

Raw data were trimmed and mapped to the TAIR10 (Lamesch et al., 2012) reference genome 
for A. thaliana data and the IGRSP-1.0 genome (Kawahara et al., 2013) for O. sativa spp. 
japonica data using v1.6 of the nf-core methylseq pipeline (Ewels et al., 2021). Standard 
settings for Illumina adapter trimming, and the default aligner bismark (Krueger and Andrews, 
2011) were used with addition of the --relax_mismatches preset. The rich quality control 
output of the pipeline was used to assess methylation bias on both read ends and affected 
bases were ignored for downstream analysis with MethylScore. 

1001 Methylomes analysis 

Single-cytosine metrics obtained from the A. thaliana 1001 Methylomes dataset (Kawakatsu 
et al., 2016) were used to call DMRs in pairwise comparisons between 645 accessions using 
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Col-0 as the point of reference. Overlapping regions found in multiple comparisons were 
merged using the plyranges (v.1.14.0 (Lee et al., 2019) reduce_ranges() function in R (v4.1.2 
(R Core Team, 2021) For each sequence context, methylation rates within all identified DMRs 
were retrieved and used to seek associations between the average methylation rate for each 
accession within each DMR and the underlying genotype by conducting Genome-Wide 
Association Studies (GWAS) using the Limix framework (Lippert et al., 2014) for linear mixed 
models using an in-house python implementation packaged into a containerised Nextflow 
pipeline (https://gitlab.lrz.de/beckerlab/gwas-nf). 

In brief, our GWAS pipeline retrieves the average methylation rate for each accession within 
a given DMR and estimates population structure from all SNPs using the 
limix.stats.linear_kinship function in Limix. GWAS is performed via the limix.qtl.scan function 
after subsetting the full genome SNP matrix (1001 Genomes Consortium, 2016) to include all 
polymorphic SNPs that have a minor allele frequency (MAF) of at least 5% across the 
population of 645 accessions. For meta analyses, only those SNP positions are reported for 
which the significance level exceeds the Bonferroni corrected threshold with respect to the 
total number of included SNP markers (1,813,837). 

Data visualization 

Figures were generated using R 4.1.2 (R Core Team, 2021) and Bioconductor 3.14 
(Gentleman et al., 2004; Huber et al., 2015). Heatmaps of methylation rates were generated 
using the ComplexHeatmap library (v2.10.0 (Gu et al., 2016). Principal components were 
computed using the pcaMethods library (v1.86.0 (Stacklies et al., 2007) and visualized with 
ggplot2 (v3.3.5 (Wickham, 2009) and the ggrepel library (v0.9.1 (Slowikowski). SNP linkage 
was calculated using the snpStats library (v1.44.0) and genomic locations were illustrated 
using the gggenes library (v0.4.1 (Wilkins). Genome wide representations of SNP associations 
were drawn using ggplot2 (v3.3.5 (Wickham, 2009) and the ggforce (v0.3.3 (Pedersen) library 
for visual annotation. Slopegraphs and Bootstrap Estimation plots were generated using the 
dabestr library (v0.3.0 (Ho et al., 2019).  
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Supplemental Figure 1 

 
Supplementary Figure 1: MR-based strategy to determine candidate DMRs.  
The top panel shows a methylation region (MR) frequency barplot along the genome, summarizing the counts of 
all sample-specific MRs (the MRs are displayed as horizontal petrol-colored lines in the middle). Three parameters 
specify the borders of candidate differentially methylated regions (DMRs; orange horizontal bars): 1) the degree of 
MR frequency changes along the genome (marked by red vertical arrows), 2) the upstream distance to which MR 
frequency is compared to (marked by orange-colored bent arrows), and 3) a minimum number and coverage of 
cytosines (blue arrows indicating the length of candidate DMRs). 
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Supplemental Figure 2 

 
Supplementary Figure 2: Genomic distribution of DNA methylation and methylated regions (MRs).  
Lineplots (left) show the distribution of average DNA methylation in 150 kb bins along single chromosomes of A. 
thaliana (A; data from (Kawakatsu et al., 2016) and O. sativa (B; data from (Stroud et al., 2013a). MRs segmented 
by MethylScore are indicated as vertical bars along the x-axis, with corresponding length distributions shown as 
violin plots (right). 
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Supplemental Figure 3 

 
Supplementary Figure 3: Differential methylation in rice regenerants. 
Heatmaps show methylation rate averages in regions identified as differentially methylated in CG, CHG, or CHH 
methylation contexts (from left to right) in WGBS data from different rice regenerants, callus tissue, and non-
regenerated controls. Original data from (Stroud et al., 2013a), GEOaccession GSE42410. 
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Supplemental Figure 4 

 
 
Supplementary Figure 4: DMR identification across epigenetic recombinant inbred lines (epiRILs). 
Principal component analysis (PCA) of mean methylation rates within 46,323 CG-, 8,821 CHG- and 4,121 CHH-
DMRs identified by MethylScore across a population of 169 epiRILs. 
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Supplemental Figure 5 

 
Supplementary Figure 5: GWA analysis on region-level methylation rate averages in CG. 
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