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Abstract

Barley yellow dwarf (BYD) is one of the major viral diseases of cereals. Phenotyping BYD in
wheat is extremely challenging due to similarities to other biotic and abiotic stresses. Breeding
for resistance is additionally challenging as the wheat primary germplasm pool lacks genetic
resistance, with most of the few resistance genes named to date originating from a wild relative
species. The objectives of this study were to, 1) evaluate the use of high-throughput phenotyping
(HTP) from unmanned aerial systems to improve BYD assessment and selection, ii) identify
genomic regions associated with BYD resistance, and iii) evaluate genomic prediction models
ability to predict BYD resistance. Up to 107 wheat lines were phenotyped during each of five
field seasons under both insecticide treated and untreated plots. Across all seasons, BYD
severity was lower with the insecticide treatment and plant height (PTHTM) and grain yield
(GY) showed increased values relative to untreated entries. Only 9.2% of the lines were positive
for the presence of the translocated segment carrying resistance gene Bdv2 on chromosome 7DL.
Despite the low frequency, this region was identified through association mapping. Furthermore,
we mapped a potentially novel genomic region for resistance on chromosome 5AS. Given the
variable heritability of the trait (0.211 — 0.806), we obtained relatively good predictive ability for
BYD severity ranging between 0.06 — 0.26. Including Bdv2 on the predictive model had a large
effect for predicting BYD but almost no effect for PTHTM and GY. This study was the first
attempt to characterize BYD using field-HTP and apply GS to predict the disease severity.

These methods have the potential to improve BYD characterization and identifying new sources

of resistance will be crucial for delivering BYD resistant germplasm.
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Introduction

Wheat (Triticum aestivum L.) is one of the most essential food crops in the world and is
constantly threatened by several biotic stresses (Savary et al. 2019). Among the most important
viral stresses is barley yellow dwarf (BYD). This disease is widespread across the world, caused
by viruses and transmitted by aphids (Shah ez al. 2012), and can cause significant yield
reductions in susceptible cultivars. In Kansas, BYD is the fourth most significant wheat disease
in terms of average estimated yield losses with an average yield loss of approximately 1%
estimated over the past 20 years (Hollandbeck et al. 2019), equivalent to a loss of more than $10
million per year. However, yield losses are highly variable ranging from 5% to 80% in a single
field depending on the environment, management practices, the host, and the genetic
background, (Miller and Rasochové 1997; Perry et al. 2000; Gaunce and Bockus 2015).
Moreover, the wide host range and the complex lifestyle of its vectors make BYD extremely
difficult to manage, and different management strategies (e.g., planting date and control of vector
populations) are inconsistent depending on climate and location (Bockus et al. 2016). Thus, in
many production environments, particularly in the Central and Eastern regions of Kansas, BYD

is often the most economically impactful disease.

Barley yellow dwarf disease symptoms are highly variable depending on the crop, variety, time,
and developmental stage when the infection occurs, aphid pressure, and environmental
conditions (Shah ef al. 2012; Choudhury ef al. 2019b). BYD characterization in the field is
extremely challenging as the symptoms can easily be confused with other viral disease
symptoms such as wheat streak mosaic virus symptoms, nutrient deficiencies, or environmental
stresses like waterlogging (Shah et al. 2012). Typical BYD symptoms can be observed at all
levels of plant organization — leaf, roots, and flowers. Leaf discoloration in shades of yellow,
red, or purple, specifically starting at the tip of the leaf and spreading from the margins toward
the base is common as well as a reduction in chlorophyll content (Jensen and Van Sambeek
1972; D’arcy 1995). Often the entire plant visually appears stunted or dwarfed from a reduction
in biomass by reducing tiller numbers. Spike grain yield is decreased through a reduction in
kernels per spike and kernel weight which also affects grain quality (Riedell et al. 2003;
Choudhury et al. 2019b). Quality can be further reduced by a reduction in starch content (Peiris
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84  etal 2019). Below ground effects of BYD have also been reported including reduced root

85  growth (Riedell et al. 2003).

86

87  Currently, there is no simple solution to control BYD (Walls et al. 2019), however, the use of

88  genetic resistance and tolerance is the most appealing and cost-effective option to control this

89  disease (Comeau and Haber 2002; Choudhury et al. 2017; 2019b). Resistance and tolerance

90  could be different genetic mechanisms, namely stopping virus replication and minimizing

91 disease symptoms respectively, but within this paper all mention of resistance includes both

92  genetic resistance and tolerance. Breeding strategies involving genetic resistance can target

93  either the aphids or the virus. Resistance to aphids can be achieved by three different strategies,

94  antixenosis, antibiosis, or tolerance (Girvin et al. 2017). To date, most breeding efforts have

95  been directed to the identification of viral tolerance, also known as ‘field resistance’, that refers

96  to the ability of the plant to yield under BYD infection and is associated with a reduction of

97  symptoms of infection independent of the virus titer (Foresman et al. 2016). Field resistance has

98  been reported to be polygenic, falling under the quantitative resistance class, where several genes

99  with very small effects control the resistance response (Qualset et al. 1973, Cisar et al. 1982;
100  Ayala et al. 2002; Choudhury et al. 2019a; c).
101
102 Presently, no major gene conferring immunity or a strong resistant phenotype to BYD has been
103 identified in bread wheat, and only four resistance genes have been described for BYD. Located
104  on chromosome 7DS, Bdvl is the only gene described from the primary pool of wheat and was
105  originally identified in the wheat cultivar ‘Anza’ (Qualset et al. 1984; Singh et al. 1993). This
106  gene provides resistance to some but not all the viruses that cause BYD (Ayala-Navarrete and
107 Larkin 2011). The other three named genes were all introduced into wheat through wide
108  crossing from intermediate wheatgrass (Thinopyrum intermedium) (Ayala et al. 2001; Zhang et
109  al.2009). Bdv2 and Bdv3 are both located on a translocation segment on wheat chromosome
110  7DL (Brettell et al. 1988; Sharma et al. 1995), while Bdv4 is located on a translocation segment
111 on chromosome 2D (Larkin et al. 1995; Lin et al. 2007). Bdv2 was the first gene successfully
112 introgressed in wheat breeding programs from the tertiary gene pool for BYD resistance (Banks
113 et al. 1995) and deployed into varieties.
114
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115  In addition to the four known resistance genes, other genomic regions associated with BYD

116  resistance have been identified through genetic mapping. These regions have been described on
117  nearly all wheat chromosomes but have not been genetically characterized (Ayala et al. 2002;
118  JaroSova et al. 2016; Choudhury et al. 2019a; b; c). Moreover, two recent studies have reported
119  that some of these new genomic regions display additive effects (Choudhury ef al. 2019a; b).
120 Additive genetic effects had already been reported in lines combining Bdv2 and Bdv4 (Jahier et
121 al.2009).

122

123 Taken together, research indicates that resistance genes to BYD in wheat are rare. With a lack of
124 major genes and difficulty to characterize resistance in the wheat pool likely due to the polygenic
125  nature of many small effect loci, identifying resistance has been limited. Nevertheless, breeding
126  programs have devoted large efforts for breeding BYD resistance due to the economic

127  importance of this disease, with some of the greatest success coming from wide crosses to the
128  tertiary gene pool.

129

130  Breeding for BYD resistance can be improved by applying strategies for more effective

131  evaluation and utilization of the identified resistance. To get a better understanding of BYD and
132 its quantitative nature, consistent and high-throughput methods are needed for the identification
133 of resistant wheat lines for large-scale selection in breeding programs (Aradottir and Crespo-
134 Herrera 2021). Effective selection on the quantitative resistance with low heritability can be

135  aided by the high-throughput genotyping, high-throughput phenotyping (HTP), or a combination
136 of both.

137

138  Access to high-density genetic markers at a very low-cost, owing to the rapid developments in
139  DNA sequencing, have enabled breeding programs to apply molecular breeding for quantitative
140  traits. Genomic selection (GS) is a powerful tool to breed for quantitative traits with complex
141  genetic architecture and low heritability (e.g., yield, quality, and diseases such as Fusarium head
142 blight), because it has greater power to capture loci with small effect compared with other

143 marker-assisted selection strategies (Meuwissen et al. 2001; Poland and Rutkoski 2016). In

144  addition to molecular data, HTP using unmanned aerial systems (UAS), or ground-based sensors

145  is providing high density phenotypic data that can be incorporated into breeding programs to


https://doi.org/10.1101/2022.01.05.475073
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.05.475073; this version posted January 6, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

146  increase genetic gain (Haghighattalab et al. 2016; Crain et al. 2018; Wang et al. 2020). Using
147  precision phenotyping for disease scoring can improve the capacity for rapid and non-biased

148  evaluation of large field-scale numbers of entries (Poland and Nelson 2011). Taken together

149  improvements in genomics and phenomics have the potential to aid breeding progress for BYD
150  resistance.

151

152 In an effort to accelerate the development of resistant lines, we combined high throughput

153  genotyping and phenotyping to assess BYD severity in a large panel of elite wheat lines. We
154  evaluated the potential of HTP data to accurately assess BYD severity as well as identify genetic
155  regions associated with BYD resistance and inform whole genome prediction to identify resistant
156  lines.

157

158  Materials and Methods

159

160  Plant Material

161 A total of 381 different wheat genotypes were characterized for BYD resistance, including 30
162  wheat cultivars and 351 advanced breeding lines in field nurseries over five years (Table S1). In
163  each nursery, an unbalanced set of 52 — 107 wheat entries were evaluated including both

164  cultivars and breeding lines (Table 1). The BYD susceptible cultivar ‘Art’ and BYD resistant
165  cultivar ‘Everest’ were included in all the nurseries (seasons) as checks.

166

167  Field Experiments

168  Nurseries for BYD field-screening were conducted during five consecutive wheat seasons (2015
169 —20161t0 2019 —2020) (Table 1). Seasons 2015 — 16 and 2016 — 17 were conducted at Kansas
170  State University (KSU) Rocky Ford experimental station (39°13'45.60" N, 96°34'41.21" W),

171  while the 2017 — 18, 2018 — 19, and 2019 — 20 nurseries were planted at KSU Ashland Bottoms
172 experimental station (39°07'53.76" N, 96°37'05.20" W). The nurseries were established for

173 natural infections by planting about three weeks earlier than the normal planting window in mid-
174 September. The susceptible cultivar ‘Art’ was planted as a spreader plot in the borders and as a
175  control check plot also with the resistant cultivar ‘Everest’. The experimental unit was 1.5m X

176  2.4m with a six-row plot on 20cm row spacing.
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177

178 A split-plot field design with two or three replications was used where the main plot was

179  insecticide treatment, and the split plot was the wheat genotype. Three replications were used
180  for proof of concept during the first two seasons but then two replications were chosen as a

181  balance of space and number of entries for the following seasons. For the treated replications the
182  seed were treated at planting with Gaucho XT (combination of insecticide and fungicide) at a
183  rate of 0.22 ml/100g of seed, followed with foliar insecticide applications starting from

184  approximately 2 — 3 weeks after planting through heading. Depending on field conditions, spray
185  treatments were conducted every 14 — 21 days if average air temperatures remained above 10°C.
186  Foliar insecticides were applied to the treated replications in a spray volume of 280.5 L/ha using
187  a Bowman MudMaster plot sprayer equipped with TeeJet Turbo TwinJet tips. Insecticide

188  applications consisted of a rotation of Warrior II, Lorsban, and Mustang Max at rates of

189  0.14L/ha, 1.17L/ha, and 0.29L/ha, respectively. For the control insecticide treatment (untreated),
190  the seed were treated with Raxil MD (fungicide) at a rate of 0.28ml/100g of seed, and no foliar
191  insecticide applications were applied. Foliar fungicide Nexicor was applied to the whole

192 experiment at a rate of 0.73L/ha, at both planting and heading, to control all other diseases so the
193  main disease pressure was focused on BYD.

194

195  Phenotypic Data

196  Individual plots were assessed for i) BYD severity characterized as the typical visual symptoms
197  of yellowing or purpling on leaves using a 0 — 100% visual scale, determined directly after spike
198  emergence by recording the proportion of the plot exhibiting the symptoms (Table 1), i1) manual
199  plant height (PTHTy, meters), and iii) grain yield (GY, tons/ha). Experimental plots were

200  harvested using a Kincaid 8XP plot combine (Kincaid Manufacturing., Haven, KS, USA). Grain
201  weight, grain moisture and test weight measurements for each plot was recorded using a Harvest
202  Master Classic GrainGage and Mirus harvest software (Juniper Systems, Logan, UT, USA).

203  Visual phenotypic assessment was recorded using the Field Book phenoapp (Rife and Poland
204 2014).

205
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206  High-Throughput Phenotyping

207  To compliment the manually recorded phenotypic data, we applied HTP using a ground-based
208  proximal sensing platform or an UAS (Table 2). Seasons 2015 — 16 and 2016 — 17 were

209  characterized by the ground platform as described in Barker ez al. (2016) and Wang et al. (2018).
210  For the other three seasons, we used a quadcopter DJI Matrice 100 (DJI, Shenzhen, China)

211  carrying a MicaSense RedEdge-M multispectral camera (MicaSense Inc., United States). The
212 HTP data was collected on multiple dates throughout the growth cycle from stem elongation to
213 ripening (GS 30 — 90; Zadoks et al. 1974) (Table 2). Flight plans were created using CSIRO
214  mission planner application and missions were executed using the Litchi Mobile App (VC

215  Technology Ltd., UK, https://uavmissionplanner.netlify.app/) for DJI Matrice100. The aerial

216  image overlap rate between two geospatially adjacent images was set to 80% both sequentially
217  and laterally to ensure optimal orthomosaic photo stitching quality. All UAS flights were set at
218  20m above ground level at 2m/s and conducted within two hours of solar noon. To improve the
219  geospatial accuracy of orthomosaic images, white square tiles with a dimension of 0.30m x

220  0.30m were used as ground control points and uniformly distributed in the field experiment

221  before image acquisition and surveyed to cm-level resolution using the Emlid REACH RS+
222 Real-Time Kinematic Global Navigation Satellite System unit (Emlid Ltd., HongKong, China).
223

224 An automated image processing pipeline (Wang et al. 2020) was used to generate the

225  orthomosaics and extract plot-level plant height (PTHTp, (m), Singh et al. 2019) and the

226  normalized difference vegetation index (NDVI) (Rouse et al. 1974), calculated as:

227

NIR-Red

228 NDVI =
NIR+Red

[Eq. 1]
229

230  where NIR and Red are the near-infrared and red bands of the multispectral images and NDVI is
231  the output image. Both traits were selected based on potential BYD characterization where the

232 most typical BYD symptoms include chlorosis and stunting of the plants, thus, influencing

233  NDVIand PTHT.
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234

235  Statistical Data Analyses

236  First, the adjusted mean best linear unbiased estimator (BLUE) was calculated for each entry for
237  all the different traits for each season (Table S1), using the following model:

238

239 Yijkim = 1+ G; + Tj + GTyj + Ry + Biejy + Cnejy + €ijrim [Eq. 2]
240

241 where y;jiim is the phenotype for the trait of interest, y is the overall mean, G; is the fixed effect
242 of the i entry (genotype), T; is the fixed effect of the j th insecticide treatment, GT; ; 18 the fixed
243  effect of the interaction between the i entry and the j" insecticide treatment (genotype by

244 treatment effect), Ry (;y is the random effect of the k" replication nested within the j¢"

245 insecticide treatment and distributed as iid Ry (;y~N (0, aZ), By is the random effect of the

246 1" row nested within the k*" replication and j" treatment distributed as iid By jy~N (0, 03),
247 Cpjy 18 the random effect of the mt™" column nested within the k" replication and j* treatment
248  and assumed distributed as iid Gy, jy~N (0, 02),and e; jkim 18 the residual for the ij klm®" plot
249  and distributed as iid e;jy;;m~N (0, 02). The ‘Ime4’ R package (Bates et al. 2014) was used for
250  fitting the models.

251

252  The BLUEs were used to inspect trait distributions and to calculate Pearson correlations between
253  all traits. In addition, BLUE values were used to calculate the reduction in GY for each entry as
254  the difference of GY between the untreated and insecticide treated main plots. This variable

255  reflects the level of BYD resistance of each entry, and it was used to perform GWAS and GS
256  analyses.

257

258  For NDVI and PTHTp, the plot-level observed values extracted for the different phenotypic dates
259  were fitted to a logistic non-linear regression model (Fox and Weisberg 2011) as,

260

0
261 y = HETIZ"'QC’»")-I_ & [Eq 3]

262

10
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263  where is y the phenotype for the trait of interest at the time-point x measured as days after

264  January 1, 0, is the maximum value (upper asymptote) represented by the final PTHT or

265 maximum achieved NDVI, 6, is the inflection point that represents the greatest rate of change in
266  the growth curve, either senescence for NDVI or height of growth, 65 is the lag phase or onset of
267  senescence or growth rate from time x where x is the calendar day of the year since January 1,
268  and ¢ is the residual error (Figure S1). The “nlme” R package was used for model fitting

269  (Pinheiro et al. 2015). The model parameters obtained for each trait (81 ypyi> O2npvi> O3nDVIs
270 61prur)y> O2PTHT,> a0d O3pryT,) Were used in addition to the other phenotypic traits to calculate
271  BLUESs, distributions, correlations, and BLUPs.

272

273  Secondly, we used a mixed linear model to calculate the best linear unbiased predictors (BLUPs)
274  for each entry in each nursery (season) (Table S1), using the same model as described in

275  equation 2 but defining G;, T;, and GT;; as random effects. BLUPs were used because of the

276  unbalanced nature of the data (not all lines were evaluated in all the seasons). The BLUPs

277  calculated for each season were then combined for GWAS and GS. Furthermore, we calculated
278  broad-sense heritability on a line-mean basis by splitting the data based on whole plot treatment

279  for insecticide treatments as:

280

281 H? =S [Eq. 4]
2,03 q.
GG+T

282

283  where 6 is the genotypic variance, 62 is the residual error variance, and 7" is the number of
284  replications.

285

286  Genotypic Data

287 A total of 346 wheat entries were genotyped using genotyping-by-sequencing (GBS) (Poland et
288  al.2012) and sequenced on an Illumina Hi Seq2000. Single nucleotide polymorphisms (SNPs)
289  were called using Tassel GBSv2 pipeline (Glaubitz et al. 2014) and anchored to the Chinese
290  Spring genome assembly v1.0 (Appels ef al. 2018). SNP markers with minor allele frequency <
291  0.01, missing data > 85%, or heterozygosity > 15% were removed from the analysis. After

292  filtering, we retained 29,480 SNPs markers that were used to investigate the population structure

11
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293  through principal component analysis (PCA), genome-wide association analysis (GWAS), and
294  GS. In addition, GBS data was used to run a bioinformatics pipeline to predict the presence or
295  absence of the translocated segment on chromomere 7DL carrying the Bdv2 gene for each entry
296  (Table S1). The prediction was done based on a modified alien predict pipeline (Gao et al.

297  2021). Briefly, alien or wheat specific tags were counted in the 7DL region and tabulated using
298 atraining set of cultivars or lines that are known to be Bdv2 positive and negative. A simple
299 classification was done based on alien to wheat tag counts ratios.

300

301 Genome-Wide Association Analysis

302 The GWAS analysis was performed with a mixed linear model implemented in the ‘GAPIT” R
303  package (Lipka et al. 2012) that includes principal components to account for population

304  structure as fixed effects and the individuals to explains familial relatedness as random effects,
305

306 y=XB+Zu;+e [Eq. 5]
307

308  where y is the vector of phenotypic BLUPs, X and Z are the incidence matrix of £ and u;,

309  respectively, with u; assumed ~ N (0, 2K;0*) where K is the individual kinship matrix, and e is
310  the vector of random residual effects with ~ N (0, I62), where I is the identity matrix and o2 is
311  the unknown residual variance. The false discovery rate correction with an experimental

312 significance level value of 0.01 was used to assess marker-trait associations. Manhattan plots
313 were generated with ‘CMplot’ package in R software (Yin 2020). PCA using GBS-SNPs was
314  performed in R language. Eigenvalues and eigenvectors were computed with ‘e’ function using
315  ‘A.mat’ function and the ‘mean’ imputation method of ‘rrBLUP’ package (Endelman, 2011). To
316  declare a quantitative trait locus (QTL) we considered only the regions having several SNP

317  markers in linkage disequilibrium, clearly showing a peak. We did not consider regions with a
318  single SNP above the significant threshold as a QTL.

319

320  Genomic Selection

321  Using data from the five seasons, GS models using the genomic best linear unbiased predictor
322 (G-BLUP) were developed to assess predictive ability. A five-fold cross-validation method was

323  used to assess model accuracy where the data set was split into five sets based on season, with

12
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324  four seasons forming the training set and the fifth season serving as prediction set. This process
325  was repeated until all seasons were predicted. Along with predicting all other seasons from each
326  season, a model was evaluated with a leave-two-out cross-validation strategy. This strategy was
327  used to get a better mix of years with and without disease incidence, where the training

328  population consisted of three seasons, and the remaining two seasons were predicted from the
329  combined training population. The GS model was fitted with the training population using

330  ‘rrBLUP’ kin.blup function (Endelman 2011), the GS model equation was,

331

332 y=Wg+¢ [Eq. 6]
333

334  where y is a vector of phenotypic BLUPs, W is the design matrix of g, g is the vector of

335  genotypic values ~ N (0, K a;) and ¢ is the vector of residual errors (Endelman 2011).

336  Predictive ability was assessed using Pearson’s correlation (r) between the predicted value (G-
337  BLUP) and the BLUP for the respective phenotype. In addition, for both GS strategies we also
338 tested the effect of adding the genotype of the Bdv2 loci as a fixed effect cofactor, using the

339  model,

340

341 y=u+Xp+Wg+e¢ [Eq. 7]
342

343  which combines parameters described in equation 6 and X is the matrix (n x 1) of individual

344  observation for presence or absence of Bdv2 and f is the fixed effect for the Bdv2 measurements.
345

346  Results

347

348  Phenotypic Data

349  We analyzed five years of BYD field-screening nurseries (seasons 2015-16 to 2019-20)

350  characterizing a total of 381 wheat lines. The disease pressure and the expression of BYD

351  associated symptoms varied each season, however, we were able to observe a significant effect
352 of the insecticide treatment in all seasons (Figure 1). Across all seasons, BYD symptoms were
353  lower on the insecticide treated plots and both PTHTMm and GY increased compared to the non-

354  treated control. Season 2016-17 had the most conducive conditions for BYD screening, resulting
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355 in high average severity and a larger difference between mean values for the treated vs untreated
356  plots for all the collected traits (Figure 1). There was general consistency in order across all

357  seasons with the susceptible check ‘Art’ ranked among the highest in BYD severity (Figure S2).
358

359  Phenotypic correlations between the traits showed a negative correlation between BYD and GY
360 for all the seasons and a negative or no correlation between BYD and PTHTwm (Figure S3). The
361  same correlation trends were observed under insecticide treated and untreated plots. Broad-sense
362  heritability was moderate to high for all the traits, ranging between 0.21 and 0.79 for the

363 insecticide treated plots and between 0.41 and 0.84 for the untreated plots. Across all traits, the
364  untreated insecticide replications showed higher H?values, with season 2016 — 17 showing the
365  highest values (Figure 2).

366

367  For the HTP data collected (Table 2), we obtained three different parameters (6, 8,, and 63) for
368  both PTHTp and NDVI after fitting a logistic regression model using the data collected during
369  the experiments (2015-16 season data was not included due to lack of data quality) (Figure S1).
370  Correlations between these parameters and the phenotypic traits collected manually were

371  different for all the traits (Figure S3). For the insecticide untreated plots, BYD resulted in a

372 negative correlation with 6,5y, and a positive correlation with 85y py;, in most of the field

373  seasons. We did not find a clear correlation pattern between BYD and PTHT,. For PTHTm we

374  detected a positive correlation with 8, pry7 across all seasons, and for GY we observed a

375  positive correlation with 8, ypy; and 8, ypy;, and a negative correlation with 85y py; (Figure S3).
376

377  Prediction of Bdv2 Resistance Gene

378  We used GBS data to genotype the Bdv?2 resistance gene located on a translocation segment from
379  intermediate wheatgrass on chromosome 7DL of bread wheat. In total, 33 of the 346 wheat lines
380 carried the Th. intermedium chromosomal translocation with Bdv2 (Table S1). Interestingly, 28
381  of these Bdv2 lines belonged to the same breeding cycle, entering the advanced yield nursery
382  stage of the KSU breeding program in the 2017 — 18 season. Furthermore, only 7 pedigrees are
383  represented within the 28 Bdv2 entries, meaning that these lines are highly related. The

384  remaining 5 Bdv?2 lines were distributed in 2015 — 16 (n=3), 2018 — 19 (n=1), and 2019 — 20

385  (n=1), and none of the lines from the season 2016 — 17 had the presence of Bdv2 (Table S1).
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386

387  Population Structure

388  We studied the population structure of 346 wheat lines using 29,480 GBS-derived SNP markers.
389  The PCA did not reveal a strong pattern of population structure (Figure 3). Moreover, the

390  variation explained by the first two principal components (4 and 3%, respectively) also supports
391  the hypothesis of minimal population structure within a single breeding program. We observed
392  that most of the wheat cultivars released by KSU breeding program were located outside the
393 cluster grouping all the breeding lines (Figure 3A). Lines with the presence of Bdv2 clustered
394  together (Figure 3B), likely due to a related pedigree to the original source, and we did not

395  identify any evident pattern for BYD severity associated with the population structure (Figure
396  30).

397

398  Genome-Wide Association Analysis

399  To investigate the genetic architecture of BYD we performed GWAS analyses for all collected
400  traits using the BLUP values for 346 lines and 29,480 SNP markers. The first two principal

401  components from PCA and the kinship matrix were included in the mixed model to account for
402  population structure and genetic relatedness. We found significant marker-trait associations for
403  BYD severity on chromosomes 5AS, 7AL, and 7DL (Figure 4A). The highest peak was

404  observed on the proximal end of chromosome 7DL, located at 571 Mbp — 637 Mbp. To test the
405  hypothesis that this association was explained by the resistance gene Bdv2 (located on

406  chromosome 7DL), we investigated the haplotypes defined by the 16 SNP markers associated
407  with BYD severity and were able to identify two haplotypes that exactly matched the presence or
408  absence of Bdv2 (Fig 4A). This same region was mapped using BYD severity and the presence
409  or absence of Bdv?2 as a fixed covariate (Figure 4B). This analysis (Figure 4B) also detected a
410  peak on chromosome 7AL. Lastly, we explored the effect of Bdv2 on both BYD BLUEs and
411  BLUPs, and we observed that the presence of Bdv2 had a positive effect in reducing the disease
412 severity by approximantly 10% (Figure 5A). The significant peak on chromosome 5AS, located
413  at46 Mbp — 103 Mbp, was explained by 10 SNP markers, comprising two main haplotypes, one
414  of them associated with reduced BYD severity (Fig 5B). When we combined the different SAS
415  haplotypes with Bdv2, we observed that the presence of Bdv2 had a positive effect, reducing the
416  levels of BYD when combined with both 5AS haplotypes (Figure 5C), and suggesting an
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417  additive effect. Compared to the associations found for Bdv2 (Fig 4B), we did not find any

418  strong evidence of marker trait associations for the other evaluated traits (Figure S4).

419

420  Genomic Selection

421  To evaluate the potential of GS to predict BYD disease severity, we fit several GS models to the
422 phenotypic BLUPs of BYD, PTHw, and reduction in GY. Across all traits, to determine

423  predictive ability we used a five-fold cross validation where prediction ability ranged from -0.08-
424 0.26. There was relatively good predictive ability for BYD severity ranging between 0.06 —

425  0.26, in comparison with PTHTwm and reduction in GY resulting in a lower range from 0.02 — 017
426  and -0.08 — 0.2, respectively (Figure 6). Evaluating the conformation of the training population,
427  we observed that when including 2016-17 season, prediction abilities were the highest for BYD
428  but the lowest for the other two traits, implying that season 2016 — 17 was either a good season
429  to train the prediction models or a difficult season to predict based on available data.

430

431  To further investigate the power of GS, we developed models using a leave-two-out strategy,
432 where two seasons were excluded from the training population and used as the testing

433  population. We fitted GS models for all possible two-season combinations. This strategy

434 resulted in slightly smaller training populations which decreased overall predictive ability

435  (Figure 6). This result was evident for BYD predictions were excluding two seasons had a larger
436  negative impact.

437

438  Lastly, we evaluated the effect of adding information about the genotype of the Bdv2 resistance
439  gene as a phenotypic fixed covariate into the GS models. There were differences in the effect of
440  Bdv2 on the predictive ability across BYD severity, PTHTwm, and GY, showing a large effect for
441  predicting BYD but almost no effect for PTHTwm and reduction in GY (Figure 6). The improved
442  predictive ability for BYD was clearly reflected with the decrease of prediction ability obtained
443  when season 2017 — 18 was excluded from the training population since most of the lines with
444  the presence of Bdv2 were evaluated in that season.

445
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446  Discussion

447

448  Phenotypic Data

449  The success of breeding for BYD resistance is highly impacted by the ability to precisely

450  characterize breeding material and disease symptoms. Even though BYD is spread worldwide,
451  its incidence in a given year depends on several factors such as aphid pressure, planting date, and
452  environmental conditions (e.g., temperature, rainfall, frost, etc.). In this study, we evaluated
453  winter wheat advanced breeding lines during five seasons implementing a rigorous field-testing
454  approach, that ultimately enabled us to consistently have plots contrasting with BYD infection
455  and uninfected or low incident plots. Moreover, by using large yield-size plots we were able to
456  calculate the reduction in GY and use this parameter as an estimate of field resistance.

457

458  The expression of BYD symptoms, however, was highly inconsistent during the different

459  seasons. Seasons 2015-16 and 2016-17 showed the best expression of the disease symptoms,
460  supported by the wide range of BYD severity between treated and untreated replications (Figure
461  1). Interestingly, both these seasons were conducted in the same experimental field (Table 1),
462  suggesting that this location could favor the expression of BYD. Moreover, weather conditions
463  were variable for all the seasons, suggesting that these had a huge impact on the disease

464  occurrence. While temperature records were similar for all the seasons, precipitation records did
465  show some differences. Season 2017 — 18 was dryer than normal, with 34% less precipitation
466  than the 30 years historical average (1981 — 2010). On the other hand, season 2018-19 was

467  wetter than normal, with 58% more precipitation than the 30 years historical average (Table S2).
468

469  High-Throughput Phenotyping

470  Evaluating BYD resistance using visual phenotypic selection can be challenging due to the

471  complex nature of the disease and rater variability (Poland and Nelson 2011). The use of HTP
472  with UAS is gaining popularity within breeding programs because it further improves selection
473  based on classical phenotyping. Accurate phenotyping is crucial for understanding the genetic
474  basis of quantitative and complex traits like BYD. In this study, we used HTP to complement
475  the visual BYD scoring. This tool improved our capacity for rapid, non-destructive, and non-

476  biased evaluation of large field-scale numbers of entries for BYD resistance. We were able to
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477  determine strong correlation patterns between visual BYD severity and HTP derived parameters
478  (Figure S3). However, none of the traits collected with UAS had a common genetic base with
479  BYD severity (Figure 4 and Figure S4). Disease scoring using HTP is scaling fast among

480  breeding programs; however, how to effectively use this data remains challenging. Some studies
481  have shown that data collected with sensor-based tools can be substituted to improve classical
482  disease visual evaluation (Sankaran et al. 2010; Kumar et al. 2016; Zheng et al. 2018); however,
483  to the best of our knowledge this study is the first attempt to characterize BYD in wheat using
484  HTP.

485

486  Genome-Wide Association Analysis

487  Using GWAS we detected QTLs on chromosomes 5AS, 7AL, and 7DL for BYD severity BLUPs
488  values. Using GBS tags that mapped to known alien fragments, we confirmed Bdv?2 resistance
489  gene was located at 7DL, and confirmed that the 7DL QTL was explained by the presence of the
490  Bdv2 resistance gene. Even though only 33 wheat lines were positive for the presence of Bdv2,
491  we still had enough power to detect its effect, suggesting that Bdv2 has a strong effect on BYD
492  under Kansas field conditions (Figure 5). The associations on chromosome 7AL, observed for
493  both BYD severity and Bdv2, suggest that the SNP markers on the 7AL peak may be miss-

494  anchored markers that should have mapped to 7DL. The relatively high heritability values

495  obtained for the untreated replications (Figure 2) allowed us to detect a minor QTL on 5AS.

496  Marza et al. (2005) reported a QTL at 38cM on the short arm of chromosome 5A associated with
497  yellowing symptoms caused by BYD, and it is possible that this is the same region yet more data
498  is needed to confirm if these QTLs are the same. The only other study reporting GWAS for BYD
499  in wheat was able to identify several markers associated with BYD resistance on chromosomes
500 2A, 2B, 6A, and 7A (Choudhury et al. 2019b). However, most of the association were explained
501 by individual SNP markers, and to date do not have any definitive biological link. GWAS

502  results for the other traits used in this study did not discover genomic regions associated with the
503  traits (Figure S4). Taken together, these results suggest that BYD resistance is not controlled by
504 any large effect loci that could easily be incorporated into the breeding program, thus GS could
505  be an efficient way to enhance BYD resistance.

506
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507  Genomic Selection

508  We evaluated several different GS models to identify the best approach for predicting BYD

509  (Figure 6). Overall, we observed some trends including 1) incorporating years with consistent
510  BYD disease data in the training population increased the model predictive ability, ii) predicting
511  years with high disease pressure is difficult, iii) using major effect QTL, such as Bdv2, had

512 increased prediction performance, suggesting that it is responsible for much of the predictive

513  power. These results suggest that GS based on G-BLUP with Bdv?2 as fixed effects would lead to
514  the greatest genetic gain for BYD breeding. Using selected major QTL as a fixed effect to

515  improve GS models was suggested in a simulation study (Bernardo 2014) and demonstrated with
516  empirical studies (Rutkoski et al. 2014). Nonetheless, using Bdv2 as a fixed effect in our GS
517  strategies did not consistently improve the predictive ability for PTHwm or reduction in GY (Rice
518 and Lipka 2019). However, there was not a consistent distribution of Bdv2 allele across the

519  cohorts. BYD predictions were low compared to other disease (reviewed by Poland and

520  Rutkoski 2016). However, since this is the first report of GS for BYD resistance in wheat, we do
521  not have similar results to make better comparisons. BYD has traditionally been reported to

522 have low H? (Tola and Kronstad 1984; Choudhury et al., 2019b) and in this study, even with
523  well managemed plots that often had H? approaching 0.8, we still had difficulty reproducing

524  these results year to year as evidence of the challenge of studying this pathosystem. Moreover,
525  the correlation between HTP parameters and BYD phenotypes was interesting, but not sufficient
526  to be useful in combination with GS in the germplasm tested.

527

528  Conclusions

529  We were able to show that Bdv2 has a major effect controlling BYD resistance in the KSU

530  breeding germplasm. Apart from the known Bdv2 and a potentially novel SAS region, we did
531 not find evidence of other regions controlling BYD resistance supporting the hypothesis of

532 limited resistance available in the current wheat gene pool and the highly polygenic nature of the
533  trait. Moreover, our study was the first attempt to characterize and improve BYD field-

534  phenotyping using HTP and apply GS to predict the disease. HTP traits showed strong

535  correlation patterns with BYD severity, however, none of these parameters shared a common
536  genetic architecture with BYD severity. The GS predictive ability results that we found in this

537  study open the door for further improvement and testing GS implementation for breeding for
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538  BYD resistance. Continuing the improvement of BYD characterization and the search of new
539  sources of resistance using species related to wheat, will be crucial to broadening the resistant
540  genes available to introgress into wheat germplasm.

541

542

543  Data Availability Statement

544  Supplemental material, including raw and analyzed phenotypic data, genotypic data,

F45 supplementary tables and figures, and basic plot scripts are available at Dyrad

546  doi:10.5061/dryad.ncjsxkswd (temporary link: https://datadryad.org/stash/share/xkKdr62QYB-

547  YA93mkzql8 4yFUgwdnvvOuZUyuEHpAI) and GitHub
548  https://github.com/umngao/wsml bdv2

549  Supplementary data description

550  Table S1 — List of wheat entries phenotypically evaluated in the study. The table includes the
551  type of entry (cultivar or breeding line), the season that the entry was evaluated, the result for the
552 prediction of the presence/absence of the segment carrying the resistance gene Bdv2, and the best
553  linear unbiased predictors (BLUPs) for all the phenotypic traits collected.

554  Table S2 — Precipitation (inches) during the five field seasons in Riley County, KS, where

555  Rocky Ford and Ashland Bottoms experimental units are located. Normal temperature is defined

556  as a 30-—year average from 1981 — 2010. Data was obtained from Kansas State University

557  (http://climate.k-state.edu/precip/county/)

558  Figure S1 — Growth trajectories and adjustment of the non-linear regression model of wheat
559 lines for A-B) normalized difference vegetation index (NDVI) and C-D) digital plant height

560  (meters). The data used correspond to season 2016 — 17 phenotypic data. Calendar days is the
561  number of days starting at January 1, 2017.

562  Figure S2 — Boxplots showing the phenotypic response of the wheat checks ‘Art’ (susceptible)
563  and ‘Everest’ (tolerant) for A) barley yellow dwarf (BYD) disease severity (%), B) manual plant
564  height (PTHTwm) (m) and C) grain yield (GY) (tons/ha). Adjusted phenotypic values are shown
565  for both insecticide treatment replications (treated and untreated).

566  Figure S3 — Scatterplots showing distribution and Pearson’s correlation values for the

567  phenotypic traits studied during all the field seasons under two insecticide treatments (treated
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568  and untreated). A-B) season 2016 — 17, C-D) season 2017 — 18, E-F) season 2018 — 19, and G-H)
569  season 2019 — 20.

570  Figure S4 — Manhattan plots showing genome-wide association analysis (GWAS) results for the
571  phenotypic traits collected during the study.
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Table 1 — Field experimental details for the five wheat nurseries

Season 2015 -2016 2016 —2017 2017 -2018 2018 -2019 2019 -2020
Rocky Ford farm Ashland Bottoms farm

Location

39°13'45.60" N, 96°34'41.21" W 39°07'53.76" N, 96°37'05.20" W
Planting Date Sep. 17, 2015 Sep. 12,2016 Sep. 19, 2017 Sep. 17, 2018 Sep. 17,2019
Number of Entries 68 52 81 81 107
Number of Plots 504 360 400 392 684
Field Design split-plot with insecticide treatment as major factor effect and wheat genotype as secondary factor
Replications 3 3 2 2 2
Plot Size 6 rows plots - 1.5 m x 2.4 m
BYD Evaluation April 28, 2016 May 12, 2017 May 19, 2018 May 13, 2019 May 19, 2020
Harvesting Date June 20, 2016 June 19, 2017 June 23, 2018 June 28, 2019 June 25, 2020
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Table 2 — Dates of high-throughput phenotypic data collection and details of image acquisition
in the five wheat nurseries screened for BYD, Kansas, USA (2015-2020).

Season 2015-2016 2016-2017 2017-2018 2018-2019 2019 -2020

UAS Platform PheMU DIJI Matrice 100

multiple digital single-lens

Imaging Sensor MicaSense RedEdge-M

reflex (DSLR) cameras
Flight/Pass speed 0.3-0.5 m/s 2 m/s
2019-04-01
2019-04-09
2017-03-28
2019-04-19
2017-04-13  2018-03-30 2020-03-20
2019-04-26
2017-05-01  2018-04-04 2020-04-11
2016-03-31 2019-05-02
2017-05-09  2018-04-12 2020-04-23
2016-04-07 2019-05-10
Flight Dates 2017-05-21  2018-04-19 2020-05-03
2016-04-14 2019-05-15
2017-05-23  2018-04-23 2020-05-19
2016-05-06 2019-05-23
2017-05-30  2018-05-16 2020-06-05
2019-05-31
2017-06-05  2018-06-13 2020-06-11
2019-06-05
2017-06-13
2019-06-12
2019-06-17
Flight/Pass altitude 0.5 m above the canopy 20 m AGL
In-Air Flight Duration NA ~11-14 min
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Figure 1 Adjusted phenotypic values for the traits collected manually for five different field
seasons (2015-2016 to 2019-2020). A-E): barley yellow dwarf (BYD) severity (%) characterized
as the typical visual symptoms of yellowing/purpling on leaves using a 0 — 100% visual scale, F-
I) manual plant height/stunting (PTHTwm) (meters), note that the trait was not recorded for the
2015 — 2016 season, and J-N) grain yield (GY) (tons/ha). Insecticide-treated and untreated
replications are represented by purple and green, respectively. The dashed line represents the
mean value for the trait in each treatment
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Figure 2 Broad-sense heritability of wheat phenotypic traits collected manually, including

visual barley yellow dwarf (BYD) score, plant height (PTHTwm) and grain yield (GY)
during five different field seasons under two insecticide treatments.
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Figure 3 Scatterplot of the first two principal component axis, made from principal component
analysis on the marker matrix, n = 357 wheat lines, markers = 29,480. Each data point
represents an individual wheat line that is color-coded by A) breeding status, B) prediction of
Bdv?2 presence/absence, and C) adjusted mean for BYD severity (BYD BLUE) scored visually.
Total variance explained by each principal component (PC) is listed on the axis.
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Figure 4 Manhattan plots showing the marker-trait associations using 346 wheat accessions and 29,480 SNP markers obtained with
genotyping-by-sequencing (GBS) for A) BYD severity and B) presence/absence of Bdv2 resistance gene. The 21 labeled wheat
chromosomes with physical positions are on the x-axis and y-axis is the —log10 of the p-value for each SNP marker. Horizontal
dashed lines represent the false discovery rate threshold at 0.01 level and data points highlighted in purple and above the threshold
represent SNPs significantly associated with the trait. In panel a, the length of the region and the haplotypes defined by the
significant SNP markers is displayed.
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Figure 5 Measurement of barley yellow dwarf disease severity in wheat based on certain haplotype effects were panel A) represents the
translocation segment carrying the resistance gene Bdv2, B) displays the two haplotypes for the significant region on chromosome 5AS,
and C) shows the combination of Bdv2 resistance gene and 5A haplotype. Boxplots showing the significant reduction of BYD disease
severity by averaging the phenotypic best linear unbiased estimated (BLUE) or best linear unbiased predicted (BLUP) values for the
lines.
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Exclude 2019+2020 (186, 171, 2) A
Exclude 2018+2020 (190, 167, 29) -
Exclude 2018+2019 (205, 152, 29) -

Exclude 2017+2020 (215, 142, 1)

Exclude 2017+2019 (230, 127, 1) 4
Exclude 2017+2018 (234, 123, 28) -

Exclude 2016+2020 (201, 156, 4) A

Exclude 2016+2019 (216, 141, 4) A

Exclude 2016+2018 (220, 137, 31) 1

Training Population

Exclude 2016+2017 (245, 112, 3) A
Exclude 2020 (264, 93, 1) 1
Exclude 2019 (279, 78, 1) 1

Exclude 2018 (283, 74, 28)
Exclude 2017 (308, 49, 0) -

Exclude 2016 (294, 63, 3) -

PTHT, PTHTy+ Bdv2 GYRD GYRD + Bdv2

Trait

Predictive Ability H

-0.2-0.1 0.0 0.1 0.2

BYD  BYD +Bdv2

Figure 6 Genomic selection model predictive ability where each column represents one trait, and
each row shows the conformation of the training population including size of training and testing
population and number of lines with presence of Bdv2 resistance gene. The value in each cell
represents the predictive ability which is the correlation between the GS predicted value
(GBLUP) and the phenotypic best linear unbiased predictor (BLUP).
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