

1 **CRISPR/Cas9 knock-in strategy to evaluate phospho-regulation of SAMHD1**

2 Moritz Schüssler¹, Paula Rauch¹, Kerstin Schott¹, Adrian Oo², Nina Verena Fuchs¹,

3 Baek Kim^{2,3}, Renate König^{1, #}

4 ¹Host-Pathogen Interactions, Paul-Ehrlich-Institut, Langen, Germany

5 ²Department of Pediatrics, Emory University, Atlanta, USA

6 ³Center for Drug Discovery, Children's Healthcare of Atlanta, Atlanta, USA

7 #Address correspondence to Renate König, renate.koenig@pei.de

9 Running Title: Gene editing re-evaluates SAMHD1 phospho-regulation

10 Abstract: 246 Words

11 Main Text: 4997 Words

14 **Abstract**

15 Sterile α motif (SAM) and HD domain-containing protein 1 (SAMHD1) is a potent
16 restriction factor for immunodeficiency virus 1 (HIV-1), active in myeloid and resting
17 CD4⁺ T cells. As a dNTP triphosphate triphosphohydrolase (dNTPase), SAMHD1 is
18 proposed to limit cellular dNTP levels correlating with inhibition of HIV-1 reverse
19 transcription. The anti-viral activity of SAMHD1 is regulated by dephosphorylation of
20 the residue T592. However, the impact of T592 phosphorylation on dNTPase activity
21 is still under debate. Whether additional cellular functions of SAMHD1 impact anti-
22 viral restriction is also not completely understood.

23 We use BlaER1 cells as a novel human macrophage transdifferentiation model
24 combined with CRISPR/Cas9 knock-in (KI) to study SAMHD1 mutations in a
25 physiological context. Transdifferentiated BlaER1 cells, resembling primary human
26 macrophages, harbor active dephosphorylated SAMHD1 that blocks HIV-1 reporter
27 virus infection. Co-delivery of Vpx or CRISPR/Cas9-mediated SAMHD1 knock-out
28 relieves the block to HIV-1. Using CRISPR/Cas9-mediated homologous
29 recombination, we introduced specific mutations into the genomic *SAMHD1* locus.
30 Homozygous T592E mutation, but not T592A, leads to loss of HIV-1 restriction,
31 confirming the role of T592 dephosphorylation in the regulation of anti-viral activity.
32 However, T592E KI cells retain wild type dNTP levels, suggesting the antiviral state
33 might not only rely on dNTP depletion.

34 In conclusion, the role of the T592 phospho-site for anti-viral restriction was
35 confirmed in an endogenous physiological context. Importantly, loss of restriction in
36 T592E mutant cells does not correlate with increased dNTP levels, indicating that the
37 regulation of anti-viral and dNTPase activity of SAMHD1 might be uncoupled.

38

39 **Importance**

40 Sterile α motif (SAM) and HD domain-containing protein 1 (SAMHD1) is a potent anti-
41 viral restriction factor, active against a broad range of DNA viruses and retroviruses.
42 In myeloid and resting CD4 $^{+}$ T cells, SAMHD1 blocks reverse transcription of
43 immunodeficiency virus 1 (HIV-1), not only inhibiting viral replication in these cell
44 types, but also limiting the availability of reverse transcription products for innate
45 sensing of HIV-1. Manipulating SAMHD1 activity could be an attractive approach to
46 improve HIV-1 therapy or vaccination strategies. Anti-viral activity is strictly
47 dependent on dephosphorylation of SAMHD1 residue T592, however the
48 mechanistic consequence of T592 phosphorylation is still unclear. Here, we use
49 BlaER1 cells as an alternative myeloid cell model in combination with CRISPR/Cas9-
50 mediated KI to study the influence of SAMHD1 T592 phosphorylation on anti-viral
51 restriction and control of cellular dNTP levels in an endogenous context. By using this
52 novel approach, we were able to genetically uncouple SAMHD1's anti-viral and
53 dNTPase activity with regard to regulation by T592 phosphorylation. This suggests
54 that SAMHD1 dNTPase activity may not exclusively be responsible for the anti-
55 lentiviral activity of SAMHD1 in myeloid cells. In addition, our toolkit may inspire
56 further genetic analysis and investigation of SAMHD1-mediated restriction, as well as
57 its cellular function and regulation, leading to a deeper understanding of SAMHD1
58 and HIV-1 biology.

59

60 **Introduction**

61 Sterile α motif (SAM) and HD domain-containing protein 1 (SAMHD1) is a potent anti-
62 viral restriction factor with broad anti-viral activity against a number of viruses, among
63 them lenti- and non-lenti retroviruses (for review see (1)). In particular, HIV-1
64 replication is restricted in myeloid cells and resting CD4 $^{+}$ T cells (2–6). SAMHD1
65 depletion leads to an increase in intermediates of reverse transcription (RT),
66 especially late cDNA products, indicating that SAMHD1 inhibits the RT process (3, 7,
67 8).

68 SAMHD1 is a cellular dNTP triphosphate triphosphohydrolase (dNTPase). It is active
69 as a tetramer, regulated by binding of GTP/dGTP and dNTPs to primary and
70 secondary allosteric sites, respectively (9). Therefore, the obvious assumption might
71 be that SAMHD1 inhibits HIV-1 replication through depletion of dNTPs, the substrate
72 for HIV-1 RT (10, 11). Providing exogenous desoxyribonucleotides (dNs) rescues
73 HIV-1 replication in cells expressing SAMHD1 (5, 11). In addition, SAMHD1 mutants
74 shown to lack dNTPase activity, both *in vitro* or in cells, lose their restrictive potential,
75 when overexpressed in phorbol 12-myristate-13-acetate (PMA)-activated
76 macrophage-like U937 cells (2, 11–13). However, SAMHD1 dNTPase activity might
77 not be sufficient for HIV-1 restriction (1, 14). It is hypothesized that additional
78 SAMHD1 mediated functions like modulation of immune signaling, resolution of
79 stalled replication forks and R-loops, RNA binding, or its role in DNA damage
80 response, might contribute to the restrictive phenotype (1, 15–18).

81 Only SAMHD1 dephosphorylated at residue T592 is active against HIV-1 (19–21).
82 SAMHD1 is phosphorylated in cycling cells by cyclin dependent kinases CDK1 and
83 CDK2 in complex with Cyclin A2 in S and G₂/M phase (20, 19). At mitotic exit,
84 SAMHD1 is rapidly dephosphorylated at residue T592 due to the action of the PP2A-
85 B55 α phosphatase complex (22). While the effect of SAMHD1 T592 phosphorylation
86 on HIV-1 restriction is consistently demonstrated, the consequence for its dNTPase
87 activity is still under debate. Biochemical approaches to measure the effect of
88 SAMHD1 T592 phosphorylation and phosphomimetic mutants on SAMHD1 tetramer
89 formation and dNTPase activity have not been able to reveal a functional relationship
90 (12, 20, 21, 23, 24). Still, cell cycle dependent SAMHD1 phosphorylation, loss of HIV-
91 1 restriction and increased dNTP levels in S- and G₂/M phase in synchronized HeLa
92 cells show a clear timely correlation (22). In contrast, mutagenic analysis of T592 site
93 in myeloid cells challenges a causative link. Phosphoablative T592A or T592V, but
94 not phosphomimetic T592E or T592D mutants, were able to inhibit HIV-1 replication,
95 when overexpressed in PMA activated U937 cells (12, 20, 21, 25). Conversely, not
96 only phosphoablative but also phosphomimetic SAMHD1 T592 mutants efficiently
97 limited the cellular dNTP pool (14, 20, 21). This obvious discrepancy might be due to
98 biological reasons (for details refer to discussion and review (1)). However, also
99 technical limitations might be the cause for this problem.

100 Genetic studies of SAMHD1 phospho-mutants in myeloid cells are currently limited to
101 PMA-activated macrophage-like THP-1 or U937 cells. As treatment with PMA can

102 activate non-physiological intracellular pathways (26, 27), alternative myeloid models
103 are needed, which ideally be both genetically amendable and based on physiological
104 myeloid differentiation pathways.

105 So far, anti-viral restriction has been tested with mutant constructs of SAMHD1 using
106 lenti- or retroviral transduction. In this case, an exogenous promotor mediates
107 overexpression of SAMHD1. The use of CRISPR/Cas9 allowed us to modify
108 SAMHD1 within the native genetic environment and to analyze the impact of selected
109 mutations on anti-viral restriction in a physiological context, avoiding potential
110 unwanted effects of mutant protein overexpression.

111 Here, we use CRISPR/Cas9-mediated knock-in (KI) in combination with
112 transdifferentiated macrophage-like BlaER1 cells as a tool to study the impact of
113 SAMHD1 T592 phosphorylation on HIV-1 restriction and dNTP pools in myeloid cells.
114 Transdifferentiated macrophage-like BlaER1 cells expressed SAMHD1, which was
115 dephosphorylated at residue T592. Concomitantly, transdifferentiated BlaER1 cells
116 restricted HIV-1 replication in a SAMHD1 dependent manner. Introduction of
117 SAMHD1 homozygous T592E mutations via CRISPR/Cas9 KI led to loss of HIV-1
118 restriction, while SAMHD1 T592A mutants maintained their anti-viral activity.
119 Remarkably, neither endogenous SAMHD1 T592E, nor T592A mutants, had an
120 impact on cellular dNTP levels in transdifferentiated BlaER1 cells, indicating that the
121 regulation of anti-viral and dNTPase activity of SAMHD1 might be uncoupled.

122

123 **Results**

124 **Transdifferentiated BlaER1 cells express SAMHD1 dephosphorylated at 125 residue T592**

126 Myeloid models to study HIV-1 restriction by mutagenesis are very limited.
127 Transdifferentiated BlaER1 cells are a novel myeloid cell model, which has
128 successfully been used to study innate immune signaling in macrophage-like cells
129 (28, 29). Here, the native, B-lineage derived BlaER1 cells undergo macrophage
130 transdifferentiation by induction of the myeloid transcription factor C/EBP α . In order
131 to test whether these cells can serve as a model to study SAMHD1 mediated anti-
132 viral restriction, we analyzed SAMHD1 expression in transdifferentiated BlaER1 cells.
133 Flow cytometry analysis of transdifferentiated BlaER1 cells showed loss of B cell
134 marker CD19 and acquisition of surface expression of the macrophage marker
135 CD11b (Fig. 1A), as demonstrated earlier (29). Transdifferentiation of BlaER1 cells

136 using an adopted protocol, was highly reproducible and yielded $89.3 \pm 8.8\%$ ($n = 33$)
137 of $CD19^- CD11b^+$ cells in living BlaER1 cells expressing GFP (Fig. 1B).
138 Transdifferentiated BlaER1 cells expressed levels of SAMHD1 comparable to cycling
139 THP-1 cells (Fig. 1C), whereas native BlaER1 cells show no SAMHD1 expression.
140 As T592 phosphorylation in SAMHD1 is the major regulator of antiviral restriction (19,
141 20, 22), we analyzed the phosphorylation status in transdifferentiated BlaER1 cells.
142 Relative SAMHD1 T592 phosphorylation was 31-fold lower in transdifferentiated
143 BlaER1 compared to cycling THP-1 cells (0.032 ± 0.013 relative SAMHD1 pT592
144 normalized to cycling THP-1, $n = 6$) and in fact was barely detectable by
145 immunoblotting even after long exposure times (Fig. 1C). Absence of SAMHD1
146 pT592 correlated well with the reported G_1/G_0 cell cycle arrest in transdifferentiated
147 BlaER1 cells (22, 29), as well as with low cyclin A2 expression (Fig. 1C), which in
148 complex with CDK1 and CDK2 is known to mediate T592 phosphorylation (19). Thus,
149 macrophage-like transdifferentiated BlaER1 cells expressed dephosphorylated
150 SAMHD1 at residue T592, suggesting it to be anti-virally active.

151

152 **SAMHD1 is a major restriction factor against HIV-1 in transdifferentiated** 153 **BlaER1 cells**

154 To define the restrictive capacity of SAMHD1 in the context of transdifferentiated
155 BlaER1 cells, we infected the cells with a single-cycle HIV-1 luciferase reporter virus
156 (HIV-1-luc), in presence or absence of virus like particles containing Vpx (VLP-Vpx).
157 VLP-Vpx treatment led to efficient degradation of SAMHD1 (0.013 ± 0.007 relative
158 SAMHD1 expression normalized to no VLP-Vpx, $n = 3$) (Fig. 2A) and increased HIV-
159 1-luc infection. Linear regression revealed a significant ($p = 0.0125$, $n = 3$, unpaired t-
160 test) increase over a wide range of MOIs (Fig. 2B). To validate this further, we
161 generated SAMHD1 knock-out (KO) BlaER1 cells using CRISPR/Cas9
162 ribonucleoprotein (RNP). Three independent SAMHD1 KO BlaER1 single cell clones
163 were analyzed in detail and showed bi-allelic InDels at the intended target site (Fig.
164 2C), leading to a frameshift, the introduction of premature stop codons and therefore,
165 absence of SAMHD1 expression in transdifferentiated BlaER1 cells (Fig. 2D). While
166 SAMHD1 KO did not affect BlaER1 transdifferentiation (Fig. 2E), it strongly increased
167 HIV-1-luc infection at 24 hpi, as compared to wild type (WT) cells. Significance of
168 differences in the slopes of linear regressions are suggesting SAMHD1 to be a major
169 restriction factor in these cells over a wide range of MOIs ($p < 0.0001$ for Clone #1, 2

170 and 3, n = 7, One-way ANOWA) (Fig. 2F). In order to rule out a potential confounding
171 effect of a minor CD11b⁻ native-like population, we developed a flow cytometry
172 workflow combining the use of a single-cycle HIV-1 mCherry (HIV-1-mCherry)
173 reporter virus together with staining for living CD11b⁺ cells. Thereby, we could
174 specifically analyze infection in transdifferentiated CD11b⁺ macrophage-like BlaER1
175 cells. HIV-1-mCherry infection, as measured by %mCherry⁺ cells in CD11b⁺ living
176 GFP⁺ transdifferentiated BlaER1 cells, was strongly increased upon SAMHD1 KO at
177 24 hpi (Clone #1 $p = 0.3633$, #2 $p = 0.0360$, #3 $p = 0.0013$, n = 5, Kruskal–Wallis
178 test) (Fig. 2G and H). This indicates that SAMHD1 is a major anti-lentiviral restriction
179 factor in macrophage-like transdifferentiated BlaER1 cells. We therefore conclude
180 that transdifferentiated BlaER1 cells are an ideal model to study SAMHD1 mediated
181 HIV-1 restriction.

182

183 **A pipeline to generate mutants of SAMHD1 by CRISPR/Cas9 mediated knock-in**
184 So far, mutagenic analysis of SAMHD1 has been limited to model systems in which
185 SAMHD1 is overexpressed by transient transfection or retroviral transduction.
186 Overexpression of SAMHD1, especially in the context of phosphomimetic T592E or
187 phosphoablative T592A mutation and their effect on viral restriction and intracellular
188 dNTP levels, might affect functional readouts due to non-physiological expression
189 levels, abnormal genomic context and altered post-translational regulation (1). To
190 overcome this challenge, we decided to introduce SAMHD1 point mutations directly
191 into the *SAMHD1* gene locus by CRISPR/Cas9 KI. Therefore, we developed a
192 pipeline based on the introduction of RNPs and single-stranded DNA correction
193 templates by electroporation, followed by an allele-specific PCR (KASP-genotyping
194 assay screening) and rigorous validation by Sanger sequencing and quantitative
195 genomic PCR to exclude large genomic deletions (qgPCR) (30) (Fig. 3A). We could
196 identify single cell clones, displaying homozygous introduction of T592A and T592E
197 mutations into the *SAMHD1* locus of BlaER1 cells (Fig. 3B). Quantification of allele
198 numbers of SAMHD1 exon 16 revealed that the majority of homozygous single cell
199 T592A and T592E KI clones still contained two alleles of SAMHD1 exon16 (Fig. 3C).
200 However, we could identify one out of 8 clones analyzed (Clone X), which showed
201 loss of one allele in qgPCR, indicative of pseudo-homozygosity (30). In total, we were
202 able to generate and validate two homozygous T592A, as well as three homozygous
203 T592E BlaER1 KI mutants, corresponding to a homozygous KI frequency of ~1% and

204 highlighting the necessity of KASP-screening to reduce the number of KI candidates
205 (Fig. 3D). Expression of SAMHD1 mutants in transdifferentiated T592A or T592E KI
206 BlaER1 single cell clones is at similar level compared to WT protein in the respective
207 parental cell line (Fig. 3E). SAMHD1 KI had no negative impact on BlaER1
208 transdifferentiation (Fig. 3F). In summary, using our pipeline we were able to
209 introduce homozygous T592A and T592E mutations into the endogenous *SAMHD1*
210 locus of BlaER1 cells.

211

212 **Homozygous SAMHD1 T592E mutation increases HIV-1 infection in
213 transdifferentiated BlaER1 cells**

214 We infected several clones of transdifferentiated homozygous SAMHD1
215 phosphoablative T592A and phosphomimetic T592E KI BlaER1 cell mutants with
216 HIV-1-mCherry reporter virus and measured the fold change of %mCherry⁺ cells in
217 CD19⁺ living GFP⁺ cells relative to infection in WT cells. In all three clones,
218 homozygous SAMHD1 T592E mutation significantly increased HIV-1-mCherry
219 infection up to 31-fold (T592E/T592E Clone #1 $p = 0.0017$, #2 and #3 $p < 0.0001$, $n =$
220 3, One-way ANOWA) (Fig. 4A and 4B). In contrast, SAMHD1 T592A KI mutants
221 completely retained their restrictive potential in transdifferentiated BlaER1 cell clones
222 and behaved similar to WT BlaER1 cells upon challenge with HIV-1-mCherry (Fig. 4A
223 and 4B). Using CRISPR/Cas9 KI, we were able to validate the loss of HIV-1
224 restriction in SAMHD1 phosphomimetic T592E mutants in macrophage-like cells. In
225 this model, mutants of SAMHD1 are analyzed in the native genomic context and
226 show physiological expression levels, confirming the role of T592 phosphorylation in
227 the regulation of the anti-viral activity of SAMHD1.

228

229 **SAMHD1 T592E or T592A knock-in does not affect dNTP levels in
230 transdifferentiated BlaER1 cells**

231 Previous reports on the effect of SAMHD1 T592 phosphorylation on SAMHD1
232 dNTPase activity were in-conclusive (1). In order to correlate HIV-1 restrictive
233 potential in transdifferentiated BlaER1 cells with cellular dNTP pool size and thus
234 SAMHD1 dNTPase activity, we measured intracellular dNTP levels by primer
235 extension assay. Transdifferentiated WT BlaER1 cells contained low amounts of
236 dATP (846 ± 63 fmol/ 10^6 cells, $n = 5$), dCTP (788 ± 117 fmol/ 10^6 cells, $n = 5$), dGTP
237 (724 ± 94 fmol/ 10^6 cells, $n = 5$) and dTTP (933 ± 342 fmol/ 10^6 cells, $n = 5$). Depletion

238 of the minor fraction of CD19⁺ cells after transdifferentiation further reduced the levels
239 of dATP (578 fmol/10⁶ cells), dCTP (661 fmol/10⁶ cells), dGTP (295 fmol/10⁶ cells)
240 and dTTP (448 fmol/10⁶ cells). Since activity of HIV-1 RT is likely to be dependent on
241 cellular dNTP concentrations rather than total dNTP pools, we determined cellular
242 dNTP concentrations as a function of transdifferentiated BlaER1 cell volumes (569 ±
243 138 μm^3 , n_{cells} = 15). We found transdifferentiated WT BlaER1 cells to harbor dNTP
244 concentrations (Tab. 1), similar or lower to those found in resting T cells (31).
245 Depletion of incompletely transdifferentiated (CD19⁺) cells from bulk preparations of
246 transdifferentiated BlaER1 cells further reduced dNTP concentrations (Tab. 1). As
247 expected, SAMHD1 KO led to a significant increase in cellular dATP (2.3-fold, p <
248 0.0001, One-way ANOVA), dGTP (3.2-fold, p < 0.0001, One-way ANOVA) and
249 dTTP (2.2-fold, p < 0.0001, One-way ANOVA) levels in transdifferentiated BlaER1
250 cells, as compared to WT cells (Fig. 5A). In contrast, neither homozygous SAMHD1
251 T592E, nor T592A mutations led to an increase of cellular dNTP levels (Fig. 5A).
252 Since SAMHD1 KO only slightly affected cellular dCTP levels, dNTP composition in
253 transdifferentiated BlaER1 SAMHD1 KO cells was altered. In contrast, neither
254 SAMHD1 T592E nor SAMHD1 T592A KI mutants showed consistent differences in
255 cellular dNTP composition (Fig. 5B). In summary, dNTP measurements in
256 transdifferentiated BlaER1 cells, harboring homozygous phosphomimetic T592E or
257 phosphoablative T592A mutations in the endogenous SAMHD1 locus indicate that
258 phosphorylation at SAMHD1 residue T592 has no impact on cellular dNTP pools and
259 is therefore unlikely to regulate SAMHD1 dNTPase activity in cells.

260

261 **Discussion**

262 SAMHD1 is a major cellular dNTPase and a potent HIV-1 restriction factor (2, 4, 3, 5,
263 6, 10, 32). However, whether SAMHD1 dNTPase activity is mediating its anti-viral
264 activity and how this is regulated by T592 phosphorylation is still a matter of debate
265 (1, 14).

266 To tackle this question with a novel toolkit, we used transdifferentiated BlaER1 cells
267 as an alternative and versatile myeloid model to study HIV-1 infection in
268 macrophage-like cells. Transdifferentiated BlaER1 cells closely resemble human
269 macrophages and have successfully been used to study innate immune signaling
270 (28, 29). In contrast to PMA activated THP-1 or U937 cells, BlaER1 cell
271 transdifferentiation relies on the activation of the fusion protein of the macrophage

272 transcription factor C/EBP α and the estradiol receptor leading to a switch of a
273 myeloid cell program (29, 33). This cell system is an interesting physiological model
274 for HIV-1 infection in macrophage-like cells, as we were able to show that SAMHD1
275 is completely dephosphorylated at residue T592 in transdifferentiated BlaER1 cells
276 and serves as a major restriction factor for HIV-1.

277 To test mutants of SAMHD1 for anti-viral restriction activity in a physiological genetic
278 and relevant cellular context, we combined transdifferentiated BlaER1 cells, as a
279 novel myeloid model, with CRISPR/Cas9 mediated knock-in. We developed a gene
280 editing strategy using CRISPR/Cas9 RNP and ssDNA oligo introduction by
281 nucleofection, KASP screening of single cell clones and rigorous validation by
282 sequencing and qPCR (Fig. 3A). By introducing point mutations that correspond to
283 phosphoablate T592A and phosphomimetic T592E mutations into the genomic
284 SAMHD1 locus, we were able to genetically uncouple SAMHD1 mediated anti-viral
285 restriction and cellular dNTPase activity. For the first time, we were able to validate
286 the phenotypic consequence of SAMHD1 T592E phosphomimetic mutation, and
287 hence the effect of T592 phosphorylation, for its anti-viral restriction activity in a
288 myeloid model that is not based on overexpression.

289 Overexpression of SAMHD1 mutants in U937 background using retroviral
290 transduction has several technical limitations. Even though PMA-activated U937 cells
291 are often considered not to express SAMHD1, they actually can express small
292 amounts of endogenous SAMHD1, which can be further enhanced upon interferon
293 treatment (34). Presence of endogenous WT SAMHD1 might affect the function of
294 overexpressed mutant SAMHD1, especially if heterotetramers are formed. In
295 addition, strong exogenous, often viral, promoters drive SAMHD1 expression here,
296 leading to high expression levels and to non-physiological phosphorylation ratios, *i.e.*
297 hyperphosphorylation (data not shown). In mutants generated by CRISPR/Cas9 KI,
298 modified SAMHD1 is expressed in the physiological genomic context from the
299 endogenous promoter and thus under normal transcriptional regulation. In BlaER1
300 cells, SAMHD1 expression is very low in native cells, but strongly induced upon
301 transdifferentiation (Fig. 1C). This is also the case for SAMHD1 mutants. The use of
302 CRISPR/Cas9 KIs avoids potential effects of constitutively expressed SAMHD1
303 mutants on cycling BlaER1 cells.

304 In transdifferentiated WT BlaER1 cells, we measured dNTP levels and
305 concentrations which were similar or slightly lower than those found in resting T cells

306 (Tab. 1) (31). After depletion of CD19⁺ incompletely transdifferentiated cells from bulk
307 preparations of transdifferentiated BlaER1 cells, we were able to further reduce the
308 levels of all dNTPs (Tab. 1) (31). Considering HIV-1 reverse transcriptase K_m and K_d
309 values measured *in vitro*, this indicates that the dNTP concentrations found in
310 transdifferentiated BlaER1 cells could in principle be low enough to restrict or delay
311 HIV-1 RT (35–38).

312 Concomitantly, SAMHD1 KO increased cellular dNTP concentrations in
313 transdifferentiated BlaER1 cells up to 4-fold (Fig. 5A), which is reminiscent of the 5-
314 to 8-fold increase upon T cell activation (31). In stark contrast however, neither
315 endogenous SAMHD1 T592E nor T592A mutation increased cellular dNTP
316 concentrations in transdifferentiated BlaER1 cells (Fig. 5A). This indicates that the
317 loss of restriction observed in endogenous T592E mutants is probably not caused by
318 increased dNTP levels or reduced SAMHD1 dNTPase activity in transdifferentiated
319 BlaER1 cells. In addition, SAMHD1 T592E and T592A mutations had no consistent
320 effect on dNTP pool composition in transdifferentiated BlaER1 cells (Fig. 5B), ruling
321 out an effect of the phosphomimetic mutation on SAMHD1 dNTPase substrate
322 preferences and thus dNTP ratios, as proposed earlier (39). More specifically,
323 endogenous SAMHD1 T592E mutations did not increase cellular dCTP concentration
324 (Fig. 5A). Taken together mutagenic analysis of SAMHD1 residue T592 indicates that
325 SAMHD1 dNTPase activity or substrate preference in transdifferentiated BlaER1
326 cells is not regulated by phosphorylation at this specific residue. Consequently, loss
327 of HIV-1 restriction in SAMHD1 T592E mutants cannot be attributed to changes in
328 SAMHD1 dNTPase activity. Thus, in line with previous reports, our data confirm that
329 SAMHD1 anti-viral activity is not, or at least not exclusively, mediated by SAMHD1
330 dNTPase activity (14). SAMHD1 T592 phosphorylation might regulate additional
331 functional entities of SAMHD1, which could be necessary for full anti-viral restriction
332 capacity. A deeper investigation is needed to understand the functional cause of
333 restriction in relevant HIV-1 target cells.

334 SAMHD1 regulation certainly is certainly more complex than commonly assumed. In
335 addition to multiple potential phosphorylation sites, SAMHD1 is modified by
336 acetylation, SUMOylation, ubiquitination and O-GlcNAcylation (20, 21, 40–47). Also,
337 SAMHD1 was demonstrated to harbor redox sensitive cysteine residues, which affect
338 both dNTPase and anti-viral activity (48, 49). SAMHD1 acetylation at residue K405
339 was shown to affect SAMHD1 dNTPase activity *in vitro*. However, the effect on its

340 anti-viral restriction activity is unclear (42). O-GlcNAcylation at S93 was proposed to
341 increase SAMHD1 stability and thus hepatitis B virus restriction (47). Recently,
342 SAMHD1 SUMOylation at residue K595 was shown to be required for HIV-1
343 restriction in PMA differentiated U937 cells. PMA differentiated U937 cells in which
344 SAMHD1 mutants that abrogate restriction and SUMOylation at residue K595 were
345 overexpressed did not show increased dATP levels, phenocopying phosphomimetic
346 T592 mutants of SAMHD1 (50). It will be interesting to investigate in more detail how
347 T592 phosphorylation and K595 SUMOylation are integrated and it will be crucial to
348 validate SAMHD1 (co-) regulation via divers proposed post-translational
349 modifications in physiological settings. Post-translational regulation of SAMHD1
350 might not only be achieved by the direct modification of single residues, but also by
351 interaction partners, that could modulate or mediate SAMHD1 anti-viral activity.
352 A better understanding SAMHD1 regulation in relevant HIV-1 target cells, will also
353 improve our understanding of how SAMHD1 inhibits HIV-1 replication and which
354 conditions license SAMHD1 anti-viral capacity.

355

356 **Material and Methods**

357 **Cell lines**

358 Human 293T/17 (ATCC No.: CRL-11268) cells were cultured in DMEM (Sigma-
359 Aldrich) supplemented with 10% fetal calf serum (FCS; Sigma-Aldrich) and 2 mM L-
360 glutamine (Sigma-Aldrich) at 37°C and 5% CO₂. Human BlaER1 cells (a kind gift of
361 Thomas Graf) (29) cells were grown in RPMI (Sigma-Aldrich) supplemented with
362 10% FCS and 2 mM L-glutamine at 37°C and 5% CO₂. For transdifferentiation, 1 x
363 10⁶ BlaER1 cells per well of a 6-well tissue culture plate were treated with 10 ng/ml
364 human recombinant M-CSF and IL-3 (PeproTech) and 100 nM β-estradiol (Sigma-
365 Aldrich) for 7 days. Half of the cell culture supernatant was replaced with medium
366 containing cytokines and β-estradiol at days 2 and 6. All cell lines were free of
367 mycoplasma contamination, as tested by PCR Mycoplasma Test Kit II (PanReac
368 AppliChem).

369

370 **CRISPR/Cas9 knock-out and knock-in**

371 For CRISPR/Cas9 mediated SAMHD1 knock-out (KO), 200 pmol Edit-R Modified
372 Synthetic crRNA targeting *SAMHD1* exon 1 (crSAMHD1_ex1, target sequence: 5'-
373 ATC GCA ACG GGG ACG CTT GG, Dharmacon), 200 pmol Edit-R CRISPR-Cas9

374 Synthetic tracrRNA (Dharmacon) and 40 pmol Cas9-NLS (QB3 Macrolab) were
375 assembled *in-vitro*, as previously described (51). Ribonucleoproteins were introduced
376 into 1 x 10⁶ sub-confluent BlaER1 cells using 4D-Nucleofector X Unit and SF Cell line
377 Kit (Lonza), applying program DN-100. Single cell clones were generated using
378 limited dilution one day after nucleofection. To confirm bi-allelic SAMHD1 KO, the
379 modified region was amplified using primer SAM_Seq_Gen-23_FW (5'-GAT TTG
380 AGG ACG ACT GGA CTG C) and SAM_Seq_Gen1116_RV (5'-GTC AAC TGA ACA
381 ACC CCA AGG T) together with GoTaq polymerase (Promega), followed by cloning
382 into pGEM T-easy vector system (Promega) and Sanger sequencing. For knock-in
383 (KI), 100 pmol of the respective ssDNA homologous recombination template with 30
384 bp homology arms to introduce T592A (5'-TAG GAT GGC GAT GTT ATA GCC CCA
385 CTC ATA GCA CCT CAA AAA AAG GAA TGG AAC GAC AGT A, Dharmacon) or
386 T592E (5'-TAG GAT GGC GAT GTT ATA GCC CCA CTC ATA GAA CCT CAA AAA
387 AAG GAA TGG AAC GAC AGT AC) was nucleofected together with
388 ribonucleoprotein complex containing crSAMHD1_ex16 (target sequence: 5'-TTT
389 TTT TGA GGT GTT ATG AG, Dharmacon). When single cell clones reached
390 confluence, duplicates were generated. One half was lysed (10 min, 65°C; 15 min,
391 95°C) in lysis buffer (0.2 mg/ml Proteinase K, 1 mM CaCl₂, 3 mM MgCl₂, 1 mM
392 EDTA, 1% Triton X-100, 10 mM Tris (pH 7.5)) (52) and screened for successful KI
393 using mutation specific custom designed KASP genotyping assays (LGC) and KASP
394 V4.0 2x Master mix (LGC) on a CFX384 Touch Real-Time PCR Detection System
395 (BioRad). Homozygous KI was confirmed by Sanger sequencing after amplification
396 using primer SAM_Seq_Gen58570_FW (5'-CAT GAA GGC TCT TCC TGC GTA A)
397 and SAM_Seq_Gen59708_RV (5'-ACA AGA GGC GGC TTT ATG TTC C) together
398 with KOD Hot Start DNA Polymerase (Merck). Additionally, allele specific sequencing
399 as described for SAMHD1 KO was performed, if required. Presence of large
400 deletions in the region between amplification primers was excluded by PCR and
401 analytic gel electrophoresis. Presence of both alleles was confirmed by quantitative
402 genomic PCR (30), performed using SAMHD1 exon 16 specific PrimeTime qPCR
403 Assay (FW: 5'-CTG GAT TGA GGA CAG CTA GAA G, RV: 5'-CAG CAT GCG TGT
404 ACA TTC AAA, Probe: /56-FAM/ AAA TCC AAC /Zen/ TCG CCT CCG AGA AGC
405 /3IABkFQ/, IDT), human TERT TaqMan Copy Number Reference (Thermo Fischer)
406 and PrimeTime Gene Expression Master Mix (IDT) on a CFX384 machine.
407

408 **HIV-1 reporter virus infection**

409 VSV-G pseudotyped HIV-1 reporter viruses pNL4.3 E⁻ R⁻ luc (53) (HIV-1-luc) and
410 pNL4.3 IRES mCherry E⁻ R⁺ (HIV-1-mCherry) were produced, as detailed previously
411 (22). Briefly, pNL4.3 E⁻ R⁻ luc (a kind gift of Nathaniel Landau) or pNL4.3 IRES
412 mCherry E⁻ R⁺ (a kind gift of Frank Kirchhoff) were co-transfected together with
413 pCMV-VSV-G into 293T/17 cells using 18 mM polyethylenimine (Sigma-Aldrich).
414 Filtered (0.45 µm) supernatants were treated with 1 U/ml DNase I (NEB; 1 h, RT)
415 and purified through a 20% sucrose cushion (2 h, 106750g, 4°C). Viral stocks were
416 titrated for β-galactosidase activity on TZM-bl cells. Virus-like particles containing Vpx
417 (VLP-Vpx) were produced in an analogue manner using pSIV3+ (54) derived from
418 SIVmac251 (a kind gift of Nicolas Manel) and pCMV-VSV-G. The amount of VLP-Vpx
419 used in all experiments was optimized for complete SAMHD1 degradation. For
420 infection 3 x 10⁴ cells were seeded per well of a 96-well tissue culture plate.
421 Transdifferentiated BlaER1 cells were allowed to settle for 2 h in medium without
422 cytokines and β-estradiol. VSV-G pseudotyped HIV-1 reporter virus at indicated MOI,
423 as well as VLP-Vpx, were added, followed by spin occlusion (1.5 h, 200g, 32°C).
424 Infection was quantified after 24 h by FACS (for HIV-1-mCherry) or by adding 50
425 µl/well britelite plus reagent (PerkinElmer) and measurement on a Pherastar FS
426 (BMG) (for HIV-1-luc). To show VLP-Vpx mediated SAMHD1 degradation, 4.4 x 10⁵
427 transdifferentiated BlaER1 cells were treated in a 12-well tissue culture plate in the
428 same conditions and concentrations as stated above.

429

430 **Flow Cytometry**

431 For FACS analysis of BlaER1 transdifferentiation, 1 x 10⁶ native or transdifferentiated
432 BlaER1 cells were collected, washed once in FACS buffer (10% FCS, 0.1% Sodium
433 acetate in PBS; 10 min, 300g, 4°C) and stained with CD11b-APC (M1/70,
434 Biolegend), CD19-PE (HIB19, Biolegend) or respective isotype controls (Biolegend)
435 and Fixable Viability Dye eFluor 780 (Thermo Fischer) in presence of FC Block (BD,
436 20 min, 4°C). Stained cells were washed in FACS buffer twice and fixed in 2%
437 paraformaldehyde (30 min, RT), before analyzing on a LSR II instrument (BD). For
438 readout of HIV-1-mCherry infection, six wells of a 96-well plate were pooled and
439 stained with CD11b-APC and Fixable Viability Dye eFluor 780 as detailed above.
440 Infected cells were analyzed on a BD LSRFortessa.

441

442 **Immunoblot**

443 For immunoblot, cells were washed in PBS, lysed in radioimmunoprecipitation buffer
444 (RIPA; 2 mM EDTA, 1% glycerol, 137 mM NaCl, 1% NP40, 0.1% SDS, 0.5% sodium
445 deoxycholate, 25 mM Tris (pH 8.0)) supplemented with proteinase and phosphatase
446 inhibitor (Roche) for 30 min on ice. Lysate was cleared (30 min, 15000g, 4°C) and
447 protein content was measured by Bradford assay using Protein Assay Dye Reagent
448 Concentrate (BioRad). 20 µg total protein were denatured (10 min, 70°C) in NuPAGE
449 LDS Sample Buffer and Reducing Reagent (Thermo Fischer) and separated on a
450 NuPAGE 4-12% Bis-Tris gradient gel (Thermo Fischer) in MOPS running buffer (1 M
451 MOPS, 1 M Tris, 69.3 mM SDS, 20.5 mM EDTA Titriflex II). Transfer was performed
452 in an XCell II Blot Module in NuPAGE Transfer Buffer (Thermo Fischer) onto a
453 Hybond P 0.45 PVDF membrane (GE Healthcare). After blocking in 5% BSA or milk
454 powder (Carl Roth) in TBST (Tris-buffered saline, 0.1% Tween; 2 h, 4°C), primary
455 antibodies anti-GAPDH (14C10, CST), anti-Cyclin B1 (4138, CST), anti-Cyclin A2
456 (4656, CST), anti-SAMHD1 (12586-1-AP, Proteintech), anti-SAMHD1 (A303-691A,
457 Bethyl) and anti-SAMHD1-pT592 (D702M, CST) diluted in 5% BSA or milk powder in
458 TBST were applied overnight at 4°C. Subsequent to washing in TBST, anti-rabbit
459 IgG, horseradish peroxidase (HRP)-linked antibody (CST) was applied (2 h, 4°C) and
460 the membrane was washed again before detection on a FUSION FX7 (Vilber
461 Lourmat) using ECL Prime reagent (GE). If required, membranes were stripped of
462 bound antibody in stripping buffer (2% SDS, 62.5 mM Tris-HCl (pH 6.8), 100 mM β-
463 mercaptoethanol; 1 h, 65°C). Band densities were determined with FUSION software
464 (Vilber Lourmat).

465

466 **Cellular dNTP levels and concentrations**

467 For measurement of cellular dNTP levels, 2×10^6 transdifferentiated BlaER1 cells
468 were washed in PBS and subjected to methanol extraction of dNTPs, followed by
469 quantification of all four dNTPs by single nucleotide incorporation assay, as
470 described previously (31). CD19 depletion was performed using CD19 microbeads
471 and MS columns (Miltenyi). Cell volumes were determined by seeding respective cell
472 types on a Poly-D-Lysine (Sigma) coated (10%, 1.5h, RT) Cell Carrier-96 well plate
473 (Perkin Elmer). After centrifugation (5 min, 300g), cells were fixed (4% PFA, 15 min,
474 37°C), permeabilized (0.1% Triton X-100, 5 min, 37°C) and stained using HCS
475 CellMask Deep Red Stain (Thermo Fischer, 30 min, RT). Z-Stack of stained cells was

476 acquired using confocal imaging platform Operetta (Perkin Elmer) and volume was
477 calculated as a sum of cell areas in all relevant Z-stacks using Harmony software
478 (Perkin Elmer).

479

480 **Statistical analysis**

481 Statistical analysis was performed using GraphPad Prism (V8). Mean and standard
482 deviations are shown. Statistical significance was assessed using unpaired two-tailed
483 t-test, as well as non-parametric Kruskal-Wallis test or parametric One-Way ANOWA,
484 corrected against multiple testing using Dunn's or Dunnet correction, respectively.

485

486 **Acknowledgements**

487 The authors thank Michaela Neuenkirch and Saskia Mönch for technical assistance,
488 as well as Thomas Graf (Centre for Genomic Regulation Barcelona, Spain) for the
489 BlaER1 cell line and Stefan Bauer (University of Marburg, Germany) for providing
490 BlaER1 cell transdifferentiation protocols. In addition, the authors thank Nathaniel R.
491 Landau (NYU School of Medicine, USA) for pNL4.3 E⁻ R⁻ luc, Frank Kirchhoff
492 (University of Ulm, Germany) for pNL4.3 IRES mCherry E⁻ R⁺ and Nicolas Manel
493 (Institut Curie, Paris) for pSIV3⁺ plasmid.

494

495 Author Contributions: Conceptualization, M.S., R.K. methodology and formal
496 analysis, M.S., R.K., A.O., N.H.F.; investigation, M.S., P.R., K.S., A.O., N.H.F.;
497 resources, B.K., R.K.; writing—original draft preparation, M.S., R.K.; writing—review
498 and editing, R.K., M.S.; visualization, M.S.; supervision, R.K.; funding acquisition,
499 R.K., B.K.; All authors have read and agreed to the published version of the
500 manuscript.

501

502 Funding: This research was funded by the Deutsche Forschungsgemeinschaft (DFG)
503 SPP1923 Project KO4573/1-1 to R.K. and Collaborative Research Center CRC1292,
504 project TP04 to R.K, by NIH AI162633 to B.K. and NIH AI136581 to B.K..

505 **References**

- 506 1. Majer C, Schüssler JM, König R. 2019. Intertwined. SAMHD1 cellular functions, restriction, and
507 viral evasion strategies. *Med Microbiol Immunol.* doi:10.1007/s00430-019-00593-x.
- 508 2. Laguette N, Sobhian B, Casartelli N, Ringeard M, Chable-Bessia C, Ségral E, Yatim A, Emiliani S,
509 Schwartz O, Benkirane M. 2011. SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1
510 restriction factor counteracted by Vpx. *Nature* 474:654–657. doi:10.1038/nature10117.

511 3. Hrecka K, Hao C, Gierszewska M, Swanson SK, Kesik-Brodacka M, Srivastava S, Florens L,
512 Washburn MP, Skowronski J. 2011. Vpx relieves inhibition of HIV-1 infection of macrophages
513 mediated by the SAMHD1 protein. *Nature* 474:658–661. doi:10.1038/nature10195.

514 4. Berger A, Sommer AFR, Zwarg J, Hamdorf M, Welzel K, Esly N, Panitz S, Reuter A, Ramos I,
515 Jatiani A, Mulder LCF, Fernandez-Sesma A, Rutsch F, Simon V, König R, Flory E. 2011. SAMHD1-
516 deficient CD14+ cells from individuals with Aicardi-Goutières syndrome are highly susceptible to
517 HIV-1 infection. *PLoS Pathogens* 7:e1002425. doi:10.1371/journal.ppat.1002425.

518 5. Baldauf H-M, Pan X, Erikson E, Schmidt S, Daddacha W, Burggraf M, Schenkova K, Ambiel I,
519 Wabnitz G, Gramberg T, Panitz S, Flory E, Landau NR, Sertel S, Rutsch F, Lasitschka F, Kim B,
520 König R, Fackler OT, Keppler OT. 2012. SAMHD1 restricts HIV-1 infection in resting CD4(+) T
521 cells. *Nat Med* 18:1682–1687. doi:10.1038/nm.2964.

522 6. Descours B, Cribier A, Chable-Bessia C, Ayinde D, Rice G, Crow Y, Yatim A, Schwartz O, Laguette
523 N, Benkirane M. 2012. SAMHD1 restricts HIV-1 reverse transcription in quiescent CD4(+) T-cells.
524 *Retrovirology* 9:87. doi:10.1186/1742-4690-9-87.

525 7. Baldauf H-M, Stegmann L, Schwarz S-M, Ambiel I, Trotard M, Martin M, Burggraf M, Lenzi GM,
526 Lejk H, Pan X, Fregoso OI, Lim ES, Abraham L, Nguyen LA, Rutsch F, König R, Kim B, Emerman M,
527 Fackler OT, Keppler OT. 2017. Vpx overcomes a SAMHD1-independent block to HIV reverse
528 transcription that is specific to resting CD4 T cells. *Proc Natl Acad Sci U S A* 114:2729–2734.
529 doi:10.1073/pnas.1613635114.

530 8. Schott K, Fuchs NV, Derua R, Mahboubi B, Schnellbächer E, Seifried J, Tondera C, Schmitz H,
531 Shepard C, Brandariz-Nuñez A, Diaz-Griffero F, Reuter A, Kim B, Janssens V, König R. 2018.
532 Dephosphorylation of the HIV-1 restriction factor SAMHD1 is mediated by PP2A-B55 α
533 holoenzymes during mitotic exit. *Nat Commun* 9:2227. doi:10.1038/s41467-018-04671-1.

534 9. Hansen EC, Seamon KJ, Cravens SL, Stivers JT. 2014. GTP activator and dNTP substrates of HIV-1
535 restriction factor SAMHD1 generate a long-lived activated state. *Proc Natl Acad Sci U S A*
536 111:E1843-51. doi:10.1073/pnas.1401706111.

537 10. Goldstone DC, Ennis-Adeniran V, Hedden JJ, Groom HCT, Rice GI, Christodoulou E, Walker PA,
538 Kelly G, Haire LF, Yap MW, Carvalho LPS de, Stoye JP, Crow YJ, Taylor IA, Webb M. 2011. HIV-1
539 restriction factor SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase. *Nature*
540 480:379–382. doi:10.1038/nature10623.

541 11. Lahouassa H, Daddacha W, Hofmann H, Ayinde D, Logue EC, Dragin L, Bloch N, Maudet C,
542 Bertrand M, Gramberg T, Pancino G, Priet S, Canard B, Laguette N, Benkirane M, Transy C,
543 Landau NR, Kim B, Margottin-Goguet F. 2012. SAMHD1 restricts the replication of human
544 immunodeficiency virus type 1 by depleting the intracellular pool of deoxynucleoside
545 triphosphates. *Nat Immunol* 13:223–228. doi:10.1038/ni.2236.

546 12. Arnold LH, Groom HCT, Kunzelmann S, Schwefel D, Caswell SJ, Ordonez P, Mann MC,
547 Rueschenbaum S, Goldstone DC, Pennell S, Howell SA, Stoye JP, Webb M, Taylor IA, Bishop KN.
548 2015. Phospho-dependent Regulation of SAMHD1 Oligomerisation Couples Catalysis and
549 Restriction. *PLoS Pathogens* 11:e1005194. doi:10.1371/journal.ppat.1005194.

550 13. White TE, Brandariz-Nuñez A, Valle-Casuso JC, Amie S, Nguyen L, Kim B, Brojatsch J, Diaz-
551 Griffero F. 2013. Contribution of SAM and HD domains to retroviral restriction mediated by
552 human SAMHD1. *Virology* 436:81–90. doi:10.1016/j.virol.2012.10.029.

553 14. Welbourn S, Strebel K. 2016. Low dNTP levels are necessary but may not be sufficient for
554 lentiviral restriction by SAMHD1. *Virology* 488:271–277. doi:10.1016/j.virol.2015.11.022.

555 15. Chen S, Bonifati S, Qin Z, St Gelais C, Kodigepalli KM, Barrett BS, Kim SH, Antonucci JM, Ladner
556 KJ, Buzovetsky O, Knecht KM, Xiong Y, Yount JS, Guttridge DC, Santiago ML, Wu L. 2018.
557 SAMHD1 suppresses innate immune responses to viral infections and inflammatory stimuli by
558 inhibiting the NF- κ B and interferon pathways. *Proc Natl Acad Sci U S A*.
559 doi:10.1073/pnas.1801213115.

560 16. Coquel F, Silva M-J, Técher H, Zadorozhny K, Sharma S, Nieminuszczy J, Mettling C, Dardillac E,
561 Barthe A, Schmitz A-L, Promonet A, Cribier A, Sarrazin A, Niedzwiedz W, Lopez B, Costanzo V,
562 Krejci L, Chabes A, Benkirane M, Lin Y-L, Pasero P. 2018. SAMHD1 acts at stalled replication forks
563 to prevent interferon induction. *Nature* 557:57–61. doi:10.1038/s41586-018-0050-1.

564 17. Park K, Ryoo J, Jeong H, Kim M, Lee S, Hwang S-Y, Ahn J, Kim D, Moon HC, Baek D, Kim K, Park
565 HY, Ahn K. 2021. Aicardi-Goutières syndrome-associated gene SAMHD1 preserves genome
566 integrity by preventing R-loop formation at transcription-replication conflict regions. *PLoS Genet*
567 17:e1009523. doi:10.1371/journal.pgen.1009523.

568 18. Daddacha W, Koyen AE, Bastien AJ, Head PE, Dhore VR, Nabeta GN, Connolly EC, Werner E,
569 Madden MZ, Daly MB, Minten EV, Whelan DR, Schlafstein AJ, Zhang H, Anand R, Doronio C,
570 Withers AE, Shepard C, Sundaram RK, Deng X, Dynan WS, Wang Y, Bindra RS, Cejka P,
571 Rothenberg E, Doetsch PW, Kim B, Yu DS. 2017. SAMHD1 Promotes DNA End Resection to
572 Facilitate DNA Repair by Homologous Recombination. *Cell Rep* 20:1921–1935.
573 doi:10.1016/j.celrep.2017.08.008.

574 19. Cribier A, Descours B, Valadão ALC, Laguette N, Benkirane M. 2013. Phosphorylation of SAMHD1
575 by cyclin A2/CDK1 regulates its restriction activity toward HIV-1. *Cell Rep* 3:1036–1043.
576 doi:10.1016/j.celrep.2013.03.017.

577 20. White TE, Bandaliz-Nuñez A, Valle-Casuso JC, Amie S, Nguyen LA, Kim B, Tuzova M, Diaz-
578 Griffero F. 2013. The retroviral restriction ability of SAMHD1, but not its deoxynucleotide
579 triphosphohydrolase activity, is regulated by phosphorylation. *Cell Host Microbe* 13:441–451.
580 doi:10.1016/j.chom.2013.03.005.

581 21. Welbourn S, Dutta SM, Semmes OJ, Strelbel K. 2013. Restriction of virus infection but not
582 catalytic dNTPase activity is regulated by phosphorylation of SAMHD1. *Journal of Virology*
583 87:11516–11524. doi:10.1128/JVI.01642-13.

584 22. Schott K, Fuchs NV, Derua R, Mahboubi B, Schnellbächer E, Seifried J, Tondera C, Schmitz H,
585 Shepard C, Bandaliz-Nuñez A, Diaz-Griffero F, Reuter A, Kim B, Janssens V, König R. 2018.
586 Dephosphorylation of the HIV-1 restriction factor SAMHD1 is mediated by PP2A-B55α
587 holoenzymes during mitotic exit. *Nat Commun* 9:2227. doi:10.1038/s41467-018-04671-1.

588 23. Bhattacharya A, Wang Z, White T, Buffone C, Nguyen LA, Shepard CN, Kim B, Demeler B, Diaz-
589 Griffero F, Ivanov DN. 2016. Effects of T592 phosphomimetic mutations on tetramer stability
590 and dNTPase activity of SAMHD1 can not explain the retroviral restriction defect. *Sci Rep*
591 6:31353. doi:10.1038/srep31353.

592 24. Yan J, Hao C, DeLucia M, Swanson S, Florens L, Washburn MP, Ahn J, Skowronski J. 2015.
593 CyclinA2-Cyclin-dependent Kinase Regulates SAMHD1 Protein Phosphohydrolase Domain. *J Biol
594 Chem* 290:13279–13292. doi:10.1074/jbc.M115.646588.

595 25. Ryoo J, Choi J, Oh C, Kim S, Seo M, Kim S-Y, Seo D, Kim J, White TE, Bandaliz-Nuñez A, Diaz-
596 Griffero F, Yun C-H, Hollenbaugh JA, Kim B, Baek D, Ahn K. 2014. The ribonuclease activity of
597 SAMHD1 is required for HIV-1 restriction. *Nat Med* 20:936–941. doi:10.1038/nm.3626.

598 26. Chanput W, Mes J, Vreeburg RAM, Savelkoul HFJ, Wijchers HJ. 2010. Transcription profiles of
599 LPS-stimulated THP-1 monocytes and macrophages: a tool to study inflammation modulating
600 effects of food-derived compounds. *Food Funct* 1:254–261. doi:10.1039/c0fo00113a.

601 27. Zeng C, Wang W, Yu X, Yang L, Chen S, Li Y. 2015. Pathways related to PMA-differentiated THP1
602 human monocytic leukemia cells revealed by RNA-Seq. *Sci China Life Sci* 58:1282–1287.
603 doi:10.1007/s11427-015-4967-4.

604 28. Gaidt MM, Ebert TS, Chauhan D, Schmidt T, Schmid-Burgk JL, Rapino F, Robertson AAB, Cooper
605 MA, Graf T, Hornung V. 2016. Human Monocytes Engage an Alternative Inflammasome
606 Pathway. *Immunity* 44:833–846. doi:10.1016/j.immuni.2016.01.012.

607 29. Rapino F, Robles EF, Richter-Larrea JA, Kallin EM, Martinez-Climent JA, Graf T. 2013. C/EBP α
608 induces highly efficient macrophage transdifferentiation of B lymphoma and leukemia cell lines
609 and impairs their tumorigenicity. *Cell Rep* 3:1153–1163. doi:10.1016/j.celrep.2013.03.003.

610 30. Weisheit I, Kroeger JA, Malik R, Klimmt J, Crusius D, Dannert A, Dichgans M, Paquet D. 2020.
611 Detection of Deleterious On-Target Effects after HDR-Mediated CRISPR Editing. *Cell Rep*
612 31:107689. doi:10.1016/j.celrep.2020.107689.

613 31. Diamond TL, Roshal M, Jamburuthugoda VK, Reynolds HM, Merriam AR, Lee KY, Balakrishnan
614 M, Bambara RA, Planelles V, Dewhurst S, Kim B. 2004. Macrophage tropism of HIV-1 depends on
615 efficient cellular dNTP utilization by reverse transcriptase. *J Biol Chem* 279:51545–51553.
616 doi:10.1074/jbc.M408573200.

617 32. Franzolin E, Pontarin G, Rampazzo C, Miazzi C, Ferraro P, Palumbo E, Reichard P, Bianchi V.
618 2013. The deoxynucleotide triphosphohydrolase SAMHD1 is a major regulator of DNA precursor
619 pools in mammalian cells. *Proc Natl Acad Sci U S A* 110:14272–14277.
620 doi:10.1073/pnas.1312033110.

621 33. Gaidt MM, Rapino F, Graf T, Hornung V. 2018. Modeling Primary Human Monocytes with the
622 Trans-Differentiation Cell Line BLaER1. *Methods Mol Biol* 1714:57–66. doi:10.1007/978-1-4939-
623 7519-8_4.

624 34. Riess M, Fuchs NV, Idica A, Hamdorf M, Flory E, Pedersen IM, König R. 2017. Interferons Induce
625 Expression of SAMHD1 in Monocytes through Down-regulation of miR-181a and miR-30a. *J Biol
626 Chem* 292:264–277. doi:10.1074/jbc.M116.752584.

627 35. Kennedy EM, Gavegnano C, Nguyen L, Slater R, Lucas A, Fromentin E, Schinazi RF, Kim B. 2010.
628 Ribonucleoside triphosphates as substrate of human immunodeficiency virus type 1 reverse
629 transcriptase in human macrophages. *J Biol Chem* 285:39380–39391.
630 doi:10.1074/jbc.M110.178582.

631 36. Klarman GJ, Schuber CA, Preston BD. 1993. Template-directed pausing of DNA synthesis by
632 HIV-1 reverse transcriptase during polymerization of HIV-1 sequences in vitro. *Journal of
633 Biological Chemistry* 268:9793–9802. doi:10.1016/S0021-9258(18)98417-6.

634 37. Derebail SS, DeStefano JJ. 2004. Mechanistic analysis of pause site-dependent and -independent
635 recombinogenic strand transfer from structurally diverse regions of the HIV genome. *J Biol
636 Chem* 279:47446–47454. doi:10.1074/jbc.M408927200.

637 38. Jacques DA, McEwan WA, Hilditch L, Price AJ, Towers GJ, James LC. 2016. HIV-1 uses dynamic
638 capsid pores to import nucleotides and fuel encapsidated DNA synthesis. *Nature* 536:349–353.
639 doi:10.1038/nature19098.

640 39. Jang S, Zhou X, Ahn J. 2016. Substrate Specificity of SAMHD1 Triphosphohydrolase Activity Is
641 Controlled by Deoxyribonucleoside Triphosphates and Phosphorylation at Thr592. *Biochemistry*
642 55:5635–5646. doi:10.1021/acs.biochem.6b00627.

643 40. Kim ET, Roche KL, Kulej K, Spruce LA, Seeholzer SH, Coen DM, Diaz-Griffero F, Murphy EA,
644 Weitzman MD. 2019. SAMHD1 Modulates Early Steps during Human Cytomegalovirus Infection
645 by Limiting NF- κ B Activation. *Cell Rep* 28:434–448.e6. doi:10.1016/j.celrep.2019.06.027.

646 41. Ochoa D, Jarnuczak AF, Viéitez C, Gehre M, Soucheray M, Mateus A, Kleefeldt AA, Hill A, Garcia-
647 Alonso L, Stein F, Krogan NJ, Savitski MM, Swaney DL, Vizcaíno JA, Noh K-M, Beltrao P. 2020.
648 The functional landscape of the human phosphoproteome. *Nat Biotechnol* 38:365–373.
649 doi:10.1038/s41587-019-0344-3.

650 42. Lee EJ, Seo JH, Park J-H, Vo TTL, An S, Bae S-J, Le H, Lee HS, Wee H-J, Lee D, Chung Y-H, Kim JA,
651 Jang M-K, Ryu SH, Yu E, Jang SH, Park ZY, Kim K-W. 2017. SAMHD1 acetylation enhances its
652 deoxynucleotide triphosphohydrolase activity and promotes cancer cell proliferation.
653 *Oncotarget* 8:68517–68529. doi:10.18632/oncotarget.19704.

654 43. Lamoliatte F, Caron D, Durette C, Mahrouche L, Maroui MA, Caron-Lizotte O, Bonneil E, Chelbi-
655 Alix MK, Thibault P. 2014. Large-scale analysis of lysine SUMOylation by SUMO remnant
656 immunoaffinity profiling. *Nat Commun* 5:5409. doi:10.1038/ncomms6409.

657 44. Hendriks IA, Lyon D, Young C, Jensen LJ, Vertegaal ACO, Nielsen ML. 2017. Site-specific mapping
658 of the human SUMO proteome reveals co-modification with phosphorylation. *Nat Struct Mol*
659 *Biol* 24:325–336. doi:10.1038/nsmb.3366.

660 45. Lumpkin RJ, Gu H, Zhu Y, Leonard M, Ahmad AS, Clauser KR, Meyer JG, Bennett EJ, Komives EA.
661 2017. Site-specific identification and quantitation of endogenous SUMO modifications under
662 native conditions. *Nat Commun* 8:1171. doi:10.1038/s41467-017-01271-3.

663 46. Elia AEH, Boardman AP, Wang DC, Huttlin EL, Everley RA, Dephoure N, Zhou C, Koren I, Gygi SP,
664 Elledge SJ. 2015. Quantitative Proteomic Atlas of Ubiquitination and Acetylation in the DNA
665 Damage Response. *Mol Cell* 59:867–881. doi:10.1016/j.molcel.2015.05.006.

666 47. Hu J, Gao Q, Yang Y, Xia J, Zhang W, Chen Y, Zhou Z, Chang L, Hu Y, Zhou H, Liang L, Li X, Long Q,
667 Wang K, Huang A, Tang N. 2021. Hexosamine biosynthetic pathway promotes the antiviral
668 activity of SAMHD1 by enhancing O-GlcNAc transferase-mediated protein O-GlcNAcylation.
669 *Theranostics* 11:805–823. doi:10.7150/thno.50230.

670 48. Mauney CH, Rogers LC, Harris RS, Daniel LW, Devarie-Baez NO, Wu H, Furdui CM, Poole LB,
671 Perrino FW, Hollis T. 2017. The SAMHD1 dNTP Triphosphohydrolase Is Controlled by a Redox
672 Switch. *Antioxid Redox Signal* 27:1317–1331. doi:10.1089/ars.2016.6888.

673 49. Wang Z, Bhattacharya A, White T, Buffone C, McCabe A, Nguyen LA, Shepard CN, Pardo S, Kim B,
674 Weintraub ST, Demeler B, Diaz-Griffero F, Ivanov DN. 2018. Functionality of Redox-Active
675 Cysteines Is Required for Restriction of Retroviral Replication by SAMHD1. *Cell Rep* 24:815–823.
676 doi:10.1016/j.celrep.2018.06.090.

677 50. Martinat C, Cormier A, Tobaly-Tapiero J, Palmic N, Casartelli N, Mahboubi B, Coggins SA,
678 Buchrieser J, Persaud M, Diaz-Griffero F, Espert L, Bossis G, Lesage P, Schwartz O, Kim B,
679 Margottin-Goguet F, Saïb A, Zamborlini A. 2021. SUMOylation of SAMHD1 at Lysine 595 is
680 required for HIV-1 restriction in non-cycling cells. *Nat Commun* 12:4582. doi:10.1038/s41467-
681 021-24802-5.

682 51. Hultquist JF, Schumann K, Woo JM, Manganaro L, McGregor MJ, Doudna J, Simon V, Krogan NJ,
683 Marson A. 2016. A Cas9 Ribonucleoprotein Platform for Functional Genetic Studies of HIV-Host
684 Interactions in Primary Human T Cells. *Cell Rep* 17:1438–1452.
685 doi:10.1016/j.celrep.2016.09.080.

686 52. Schmid-Burgk JL, Schmidt T, Gaidt MM, Pelka K, Latz E, Ebert TS, Hornung V. 2014. OutKnocker:
687 a web tool for rapid and simple genotyping of designer nuclease edited cell lines. *Genome Res*
688 24:1719–1723. doi:10.1101/gr.176701.114.

689 53. Connor RI, Chen BK, Choe S, Landau NR. 1995. Vpr is required for efficient replication of human
690 immunodeficiency virus type-1 in mononuclear phagocytes. *Virology* 206:935–944.
691 doi:10.1006/viro.1995.1016.

692 54. Nègre D, Mangeot PE, Duisit G, Blanchard S, Vidalain PO, Leissner P, Winter AJ, Rabourdin-
693 Combe C, Mehtali M, Moullier P, Darlix JL, Cosset FL. 2000. Characterization of novel safe
694 lentiviral vectors derived from simian immunodeficiency virus (SIVmac251) that efficiently
695 transduce mature human dendritic cells. *Gene Ther* 7:1613–1623. doi:10.1038/sj.gt.3301292.

696

697 **Figure Legends**

698 **Figure 1: Transdifferentiated BlaER1 cells express SAMHD1 which is
699 dephosphorylated at residue T592. (A)** Representative flow cytometry analysis of
700 CD19 and CD11b surface expression in native (n) and transdifferentiated (td) BlaER1

701 cells. Relative frequencies of CD19⁺ CD11b⁻ and CD19⁻ CD11b⁺ cell populations are
702 indicated as % of living GFP⁺ cells (n = 33). **(B)** Relative quantification of
703 macrophage-like CD19⁻ CD11b⁺ cells in living GFP⁺ native (n) or transdifferentiated
704 (td) BlaER1 cells. Every dot represents an individual transdifferentiation approach.
705 Experiments in which transdifferentiated BlaER1 cells show < 75% CD19⁻ CD11b⁺
706 cells in living GFP⁺ cells were excluded from downstream analysis (open circles).
707 Error bars represent standard deviation (n_n = 30, n_{td} = 33). **(C)** Representative
708 immunoblot analysis of SAMHD1, Cyclin B1 and Cyclin A2 expression in native (n)
709 and transdifferentiated (td) BlaER1 cells, as well as cycling THP-1 cells. GAPDH
710 serves as a loading control. Mean signal of SAMHD1 T592 phosphorylation (pT592)
711 relative to total SAMHD1 expression in transdifferentiated BlaER1 cells was
712 normalized to cycling THP-1 (n = 6).

713

714 **Figure 2: SAMHD1 restricts HIV-1 replication in transdifferentiated BlaER1**
715 **cells. (A)** Transdifferentiated BlaER1 cells were treated with VLP-Vpx or medium for
716 24 h. SAMHD1 degradation was measured by immunoblot and quantified relative to
717 GAPDH expression, followed by normalization to medium treated control (mean of n
718 = 3). **(B)** VLP-Vpx or medium treated transdifferentiated BlaER1 cells were infected
719 with VSV-G pseudotyped HIV-1 single-cycle luciferase reporter virus pNL4.3 E⁻ R⁻ luc
720 at an MOI of 0.1, 0.33 and 1. Relative light units (RLUs) were quantified by luciferase
721 measurement at 24 hpi. Linear regressions (dashed lines) were calculated and
722 differences of slopes were tested for significance (n = 3, t-test). **(C)** BlaER1 cells
723 were treated with CRISPR/Cas9 protein complexed with crRNA-SAMHD1-KO. Single
724 cell clones were Sanger sequenced after TA-cloning to separate alleles and aligned
725 to WT sequence. Insertions (red) and/or deletions (InDel) are indicated, as well as
726 the position of the premature stop codon (gray), introduced by the respective genetic
727 modification. **(D)** Genetically confirmed SAMHD1 knock-out (KO) clones were
728 analyzed via immunoblot for SAMHD1 expression in transdifferentiated BlaER1 cells.
729 GAPDH was used as loading control (n = 7). **(E)** Percentages of CD19⁻ CD11b⁺ cells
730 in living GFP⁺ transdifferentiated WT and SAMHD1 KO cells were quantified by flow
731 cytometry (n = 7, One-way ANOVA). **(F)** RLUs in transdifferentiated BlaER1 WT and
732 KO cell clones were quantified 24 hpi with pNL4.3 E⁻ R⁻ luc (VSV-G). Statistical
733 significance of differences between linear regressions (dashed lines) in SAMHD1 KO

734 clones compared to WT are indicated ($n = 7$, One-way ANOVA). **(G, H)**
735 Transdifferentiated WT and SAMHD1 KO cell clones were infected with VSV-G
736 pseudotyped HIV-1 single cycle mCherry reporter virus pNL4.3 IRES mcherry E⁻ R⁺
737 at MOI 1. Percentage of mCherry⁺ cells was quantified by flow cytometry in living
738 GFP⁺ CD11b⁺ BlaER1 cells 24 hpi. **(G)** Representative histograms are shown for
739 mock and HIV-1 mCherry reporter virus infected cells. Percentage of mCherry⁺ in
740 living GFP⁺ CD11b⁺ BlaER1 cells is indicated. **(H)** Bar graphs indicate mean of
741 experiments, dots individual biological replicates ($n = 5$, Kruskal–Wallis test). **(B, E, F,**
742 **H)** Error bars correspond to standard deviation (* $p < 0.05$; ** $p < 0.01$; *** $p < 0.001$;
743 **** $p < 0.0001$; ns, not significant).

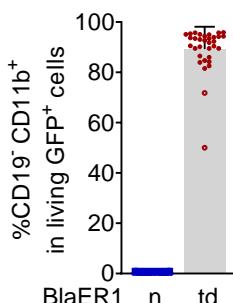
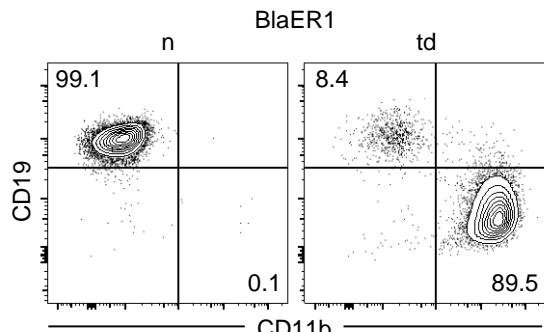
744

745 **Figure 3: A pipeline to generate mutants of SAMHD1 by CRISPR/Cas9 mediated**
746 **knock-in. (A)** Schematic representation of CRISPR/Cas9 mediated knock-in (KI) to
747 generate mutants of SAMHD1 in BlaER1 cells. Cas9 ribonucleoprotein (RNP)
748 together with ssDNA correction template was introduced into BlaER1 cells via
749 nucleofection. Single cell clones generated by limiting dilution were screened using
750 KASP assay and validated by Sanger sequencing and quantitative genomic PCR
751 (qgPCR) (30). **(B)** Representative sections of Sanger sequencing traces obtained
752 from genomic SAMHD1 exon 16, highlighting successful mono- or bi-allelic single
753 base exchange at the base triplet corresponding to amino acid position T592 in
754 BlaER1 SAMHD1 KI T592A and T592E mutant single cell clones. No further
755 mismatches were detected up- or downstream of shown section in the amplified
756 region. Two independent sequencing runs were performed. Homozygous T592E
757 mutants were additionally confirmed by allele specific sequencing after TA-cloning.
758 **(C)** Quantitative genomic PCR for SAMHD1 exon 16 against reference gene *TERT*
759 was performed and $2^{-\Delta ct}$ value obtained from SAMHD1 KI clones normalized to WT in
760 order to obtain the allele number. As a control half of the WT (WT 1/2) DNA was
761 inoculated and Δct of SAMHD1 was calculated against ct of *TERT*, which was
762 obtained in the WT with normal DNA amount. Error bars indicate standard deviation
763 of technical triplicates in a representative experiment ($n = 2$). **(D)** Number of single
764 cell clones obtained from CRISPR/Cas9 RNP and ssDNA correction oligo treated
765 BlaER1 cells and number of clones scoring positive in KASP assay, as well as homo-
766 (Mut/Mut) mutants identified by Sanger sequencing and confirmed by qgPCR are
767 shown. **(E)** Transdifferentiated SAMHD1 KI BlaER1 cells were analyzed by

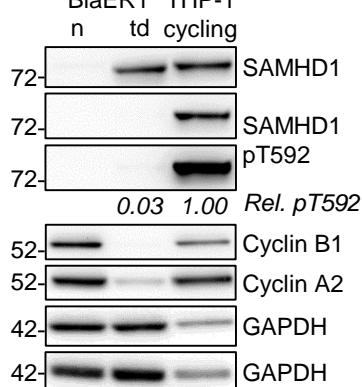
768 immunoblot for SAMHD1 expression and compared to WT cells. GAPDH was used
769 as a loading control (representative for n = 3). **(F)** Percentage of CD19⁻ CD11b⁺ cells
770 in living GFP⁺ transdifferentiated WT and SAMHD1 KI cells were quantified by flow
771 cytometry. Error bars indicated standard deviation of biological replicates (n = 4).
772

773 **Figure 4: Homo- and heterozygous SAMHD1 T592E, but not T592A mutation**
774 **leads to loss of HIV-1 restriction in transdifferentiated BLaER1 cells. (A, B)**
775 Transdifferentiated homozygous SAMHD1 T592E and T592A BLaER1 KI clones were
776 infected with VSV-G pseudotyped HIV-1 single cycle mCherry reporter virus pNL4.3
777 IRES mcherry E⁻ R⁺ at MOI 1. Percentage of mCherry⁺ cells was quantified by flow
778 cytometry in living GFP⁺ CD11b⁺ BLaER1 cells at 24 hpi. **(A)** Representative
779 histograms are shown for mock and HIV-1 mCherry reporter virus infected cells.
780 Percentage of mCherry⁺ cells in living GFP⁺ CD11b⁺ BLaER1 cells is indicated (n = 3).
781 **(B)** To calculate fold change, percentage of mCherry⁺ cells in infected SAMHD1 KI
782 clones was normalized to WT. Bar graphs indicate mean of experiments, dots
783 individual biological replicates. Error bars correspond to standard deviation (n = 3,
784 One-way ANOWA, ** p < 0.01; **** p < 0.0001; ns, not significant).
785

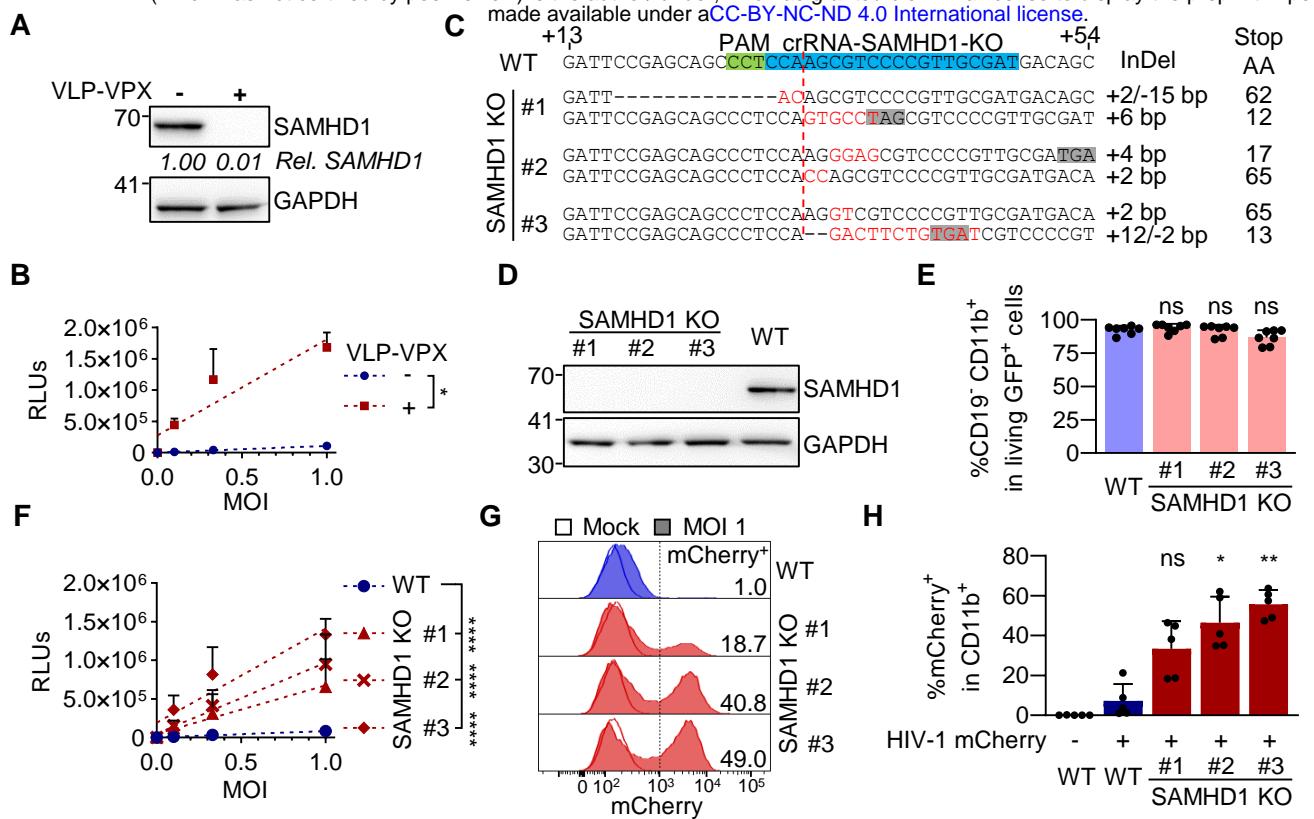
786 **Figure 5: SAMHD1 T592E or T592A knock-in does not affect dNTP levels in**
787 **transdifferentiated BLaER1 cells. (A, B)** Cellular dNTP levels were measured in
788 transdifferentiated homozygous SAMHD1 T592E and T592A BLaER1 KI mutants.
789 dNTP amounts were compared to transdifferentiated WT BLaER1 cells. **(A)** Amount of
790 indicated dNTP is depicted per 1 x 10⁶ cells. Bar graphs indicate mean of
791 experiments, dots individual biological replicates. Error bars correspond to standard
792 deviation (n = 3, One-way ANOWA, *** p < 0.01; **** p < 0.0001; ns, not significant).
793 **(B)** dNTP composition in individual BLaER1 SAMHD1 KI clones is shown, with total
794 dNTP content set as 100%. Error bars indicate standard deviation (n = 3).
795



796 **Table 1: dNTP concentrations in transdifferentiated and CD19 depleted BLaER1**
797 **cells.**

Cellular concentration (μM)	dATP	dCTP	dGTP	dTTP	n
WT BLaER1 cells (td)	1.51	1.22	1.40	1.83	5
SAMHD1 KO BLaER1 cells (td)	4.39	1.89	5.92	5.88	5
WT CD19 ⁻ BLaER1 cells (td)	1.02	1.16	0.52	0.79	1
SAMHD1 KO CD19 ⁻ BLaER1 cells (td)	2.21	1.54	2.31	2.03	1


Resting T cells (31)	1.72	1.88	1.51	1.67	3
Activated T cells (31)	5.09	5.91	4.53	7.91	3

798


A

BlaER1 THP-1

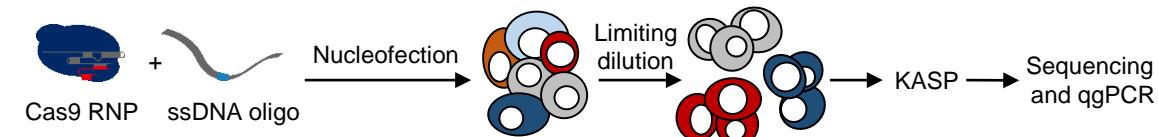


Figure 1: Transdifferentiated BlaER1 cells express SAMHD1 which is dephosphorylated at residue T592. (A) Representative flow cytometry analysis of CD19 and CD11b surface expression in native (n) and transdifferentiated (td) BlaER1 cells. Relative frequencies of CD19⁺ CD11b⁻ and CD19⁻ CD11b⁺ cell populations are indicated as % of living GFP⁺ cells (n = 33). **(B)** Relative quantification of macrophage-like CD19⁻ CD11b⁺ cells in living GFP⁺ native (n) or transdifferentiated (td) BlaER1 cells. Every dot represents an individual transdifferentiation approach. Experiments in which transdifferentiated BlaER1 cells show < 75% CD19⁻ CD11b⁺ cells in living GFP⁺ cells were excluded from downstream analysis (open circles). Error bars represent standard deviation (n_n = 30, n_{td} = 33). **(C)** Representative immunoblot analysis of SAMHD1, Cyclin B1 and Cyclin A2 expression in native (n) and transdifferentiated (td) BlaER1 cells, as well as cycling THP-1 cells. GAPDH was used as a loading control. Mean signal of SAMHD1 T592 phosphorylation (pT592) relative to total SAMHD1 expression in transdifferentiated BlaER1 cells was normalized to cycling THP-1 (n = 6).

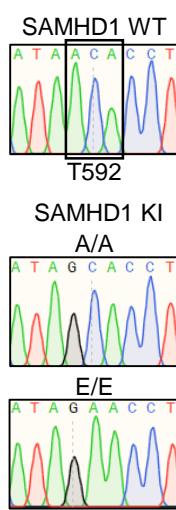
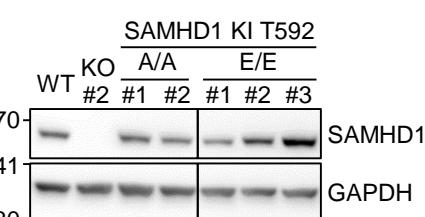
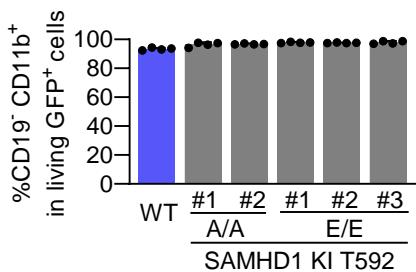


Figure 2: SAMHD1 restricts HIV-1 replication in transdifferentiated BlaER1 cells. **(A)** Transdifferentiated BlaER1 cells were treated with VLP-Vpx or medium for 24 h. SAMHD1 degradation was measured by immunoblot and quantified relative to GAPDH expression, followed by normalization to medium treated control (mean of $n = 3$). **(B)** VLP-Vpx or medium treated transdifferentiated BlaER1 cells were infected with VSV-G pseudotyped HIV-1 single-cycle luciferase reporter virus pNL4.3 E⁻ R⁻ luc at an MOI of 0.1, 0.33 and 1. Relative light units (RLUs) were quantified by luciferase measurement in cells at 24 hpi. Linear regressions (dashed lines) were calculated and differences of slopes tested for significance ($n = 3$, t-test). **(C)** BlaER1 cells were treated with CRISPR/Cas9 protein complexed with crRNA-SAMHD1-KO. Single cell clones were Sanger sequenced after TA-cloning to separate alleles and aligned to WT. The extent of insertions (red) and/or deletions (InDel) are indicated, as well as the position of the premature stop codon (gray), introduced by the respective genetic modification. **(D)** Genetically confirmed SAMHD1 knock-out (KO) clones were analyzed via immunoblot for SAMHD1 expression in transdifferentiated BlaER1 cells. GAPDH was used as loading control ($n = 7$). **(E)** Percentage of CD19⁺ CD11b⁺ cells in living GFP⁺ transdifferentiated WT and SAMHD1 KO cells were quantified by flow cytometry ($n = 7$, One-way ANOVA). **(F)** RLU_s in transdifferentiated BlaER1 WT and KO cell clones were quantified 24 hpi with pNL4.3 E⁻ R⁻ luc (VSV-G). Statistical significance of differences between linear regressions (dashed lines) in SAMHD1 KO clones compared to WT are indicated ($n = 7$, One-way ANOVA). **(G, H)** Transdifferentiated WT and SAMHD1 KO cell clones were infected with VSV-G pseudotyped HIV-1 single cycle mCherry reporter virus pBR HIV1 M NL4.3 IRES mcherry E⁻ R⁺ at MOI 1. Percentage of mCherry⁺ cells was quantified by flow cytometry in living GFP⁺ CD11b⁺ BlaER1 cells at 24 hpi. **(G)** Representative histograms are shown for mock and HIV-1 mCherry reporter virus infected cells. Percentage of mCherry⁺ in living GFP⁺ CD11b⁺ BlaER1 cells is indicated. **(H)** Bar graphs indicate mean of experiments, dots individual biological replicates ($n = 5$, Kruskal-Wallis test). **(B, E, F, H)** Error bars correspond to standard deviation (* $p < 0.05$; ** $p < 0.01$; *** $p < 0.001$; **** $p < 0.0001$; ns, not significant).

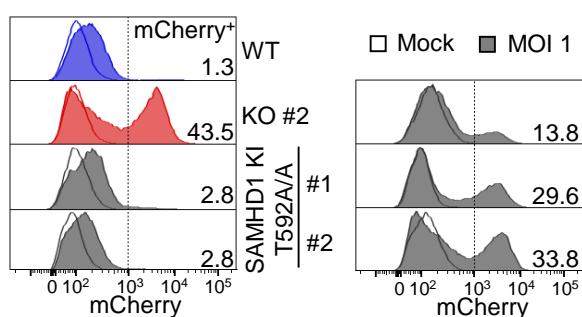
A


B

C


E

D


KI	KASP Assay		Sequencing	
	Clones	KASP ⁺	Mut/Mut	Mut/Mut
T592A	226	22	2	2
T592E	350	48	3	3

F

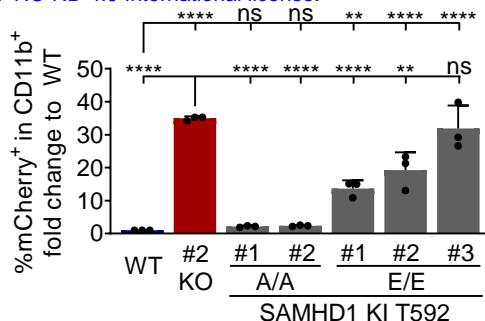
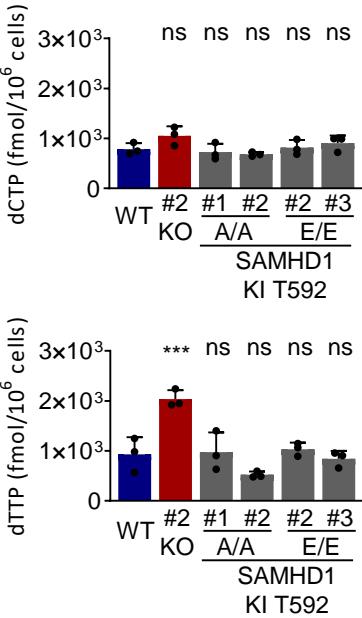
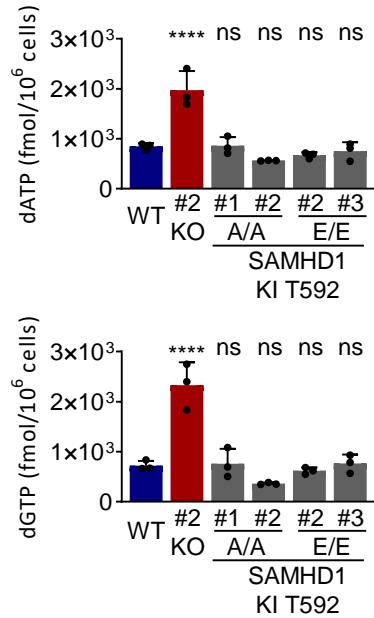


Figure 3: A pipeline to generate mutants of SAMHD1 by CRISPR/Cas9 mediated knock-in. (A) Schematic representation of CRISPR/Cas9 mediated knock-in (KI) to generate mutants of SAMHD1 in BlaER1 cells. Cas9 ribonucleoprotein (RNP) together with ssDNA correction template was introduced into BlaER1 cells via nucleofection. Single cell clones generated by limiting dilution were screened using KASP assay and validated by Sanger sequencing and quantitative genomic PCR (qgPCR) (Weisheit et al. 2021). **(B)** Representative sections of Sanger sequencing traces obtained from genomic SAMHD1 exon 16, highlighting successful mono- or bi-allelic single base exchange at the base triplet corresponding to amino acid position T592 in BlaER1 SAMHD1 KI T592A and T592E mutant single cell clones. No further mismatches were detected up- or downstream of shown section in the amplified region. Two independent sequencing runs were performed. Homozygous T592E mutants were additionally confirmed by allele specific sequencing after TA-cloning. **(C)** Quantitative genomic PCR for SAMHD1 exon 16 against reference gene *TERT* was performed and $2^{-\Delta\text{ct}}$ value obtained from SAMHD1 KI clones normalized to WT in order to obtain the allele number. As a control half of the WT (WT 1/2) DNA was inoculated and Δct of SAMHD1 calculated against ct of *TERT* which was obtained in the WT with normal DNA amount. Error bars indicate standard deviation of technical triplicates in a representative experiment ($n = 2$). **(D)** Number of single cell clones obtained from CRISPR/Cas9 RNP and ssDNA correction oligo treated BlaER1 cells and number of clones scoring positive in KASP assay, as well as homo- (Mut/Mut) mutants identified by Sanger sequencing and confirmed by qgPCR, are shown. **(E)** Transdifferentiated SAMHD1 KI BlaER1 cells were analyzed by immunoblot for SAMHD1 expression and compared to WT cells. GAPDH was used as a loading control (representative for $n = 3$). **(F)** Percentage of CD19⁻ CD11b⁺ cells in living GFP⁺ transdifferentiated WT and SAMHD1 KI cells were quantified by flow cytometry. Error bars indicated standard deviation of biological replicates ($n = 4$).

A

B

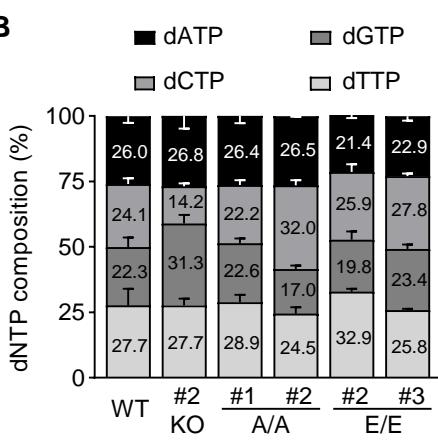


Figure 4: Homo- and heterozygous SAMHD1 T592E, but not T592A mutation leads to loss of HIV-1 restriction in transdifferentiated BLaER1 cells. (A, B) Transdifferentiated homozygous SAMHD1 T592E and T592A BLaER1 KI clones were infected with VSV-G pseudotyped HIV-1 single cycle mCherry reporter virus pBR HIV1 M NL4.3 IRES mcherry E- R+ at MOI 1. Percentage of mCherry+ cells was quantified by flow cytometry in living GFP+ CD11b+ BLaER1 cells at 24 hpi. **(A)** Representative histograms are shown for mock and HIV-1 mCherry reporter virus infected cells. Percentage of mCherry+ cells in living GFP+ CD11b+ BLaER1 cells is indicated (n = 3). **(B)** Percentage of mCherry+ cells in infected SAMHD1 KI clones was normalized to WT to calculate fold change. Bar graphs indicate mean of experiments, dots individual biological replicates. Error bars correspond to standard deviation (n = 3, One-way ANOVA, ** p < 0.01; **** p < 0.0001; ns, not significant).

A

B

Figure 5: SAMHD1 T592E or T592A knock-in does not affect dNTP levels in transdifferentiated BlaER1 cells.

(A, B) Cellular dNTP levels were measured in transdifferentiated homozygous SAMHD1 T592E and T592A BlaER1 KI mutants. dNTP amounts were compared to transdifferentiated WT BlaER1 cells. **(A)** Amount of indicated dNTP is depicted per 1×10^6 cells. Bar graphs indicate mean of experiments, dots individual biological replicates. Error bars correspond to standard deviation (n = 3, One-way ANOVA, *** p < 0.01; **** p < 0.0001; ns, not significant). **(B)** dNTP composition in individual BlaER1 SAMHD1 KI clones is shown, with total dNTP content set as 100%. Error bars indicate standard deviation (n = 3).