

1 Thiamine metabolism genes in diatoms are not regulated by thiamine 2 despite the presence of predicted riboswitches

3 **Marcel Llavero Pasquina¹, Katrin Geisler¹, Andre Holzer¹, Payam Mehrshahi¹, Gonzalo I
4 Mendoza-Ochoa¹, Shelby Newsad¹, Matthew P Davey^{1,2}, Alison G. Smith^{1*}**

5 ¹Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA,
6 UK

7 ²Scottish Association of Marine Sciences, Oban, Scotland, UK

8 *** Correspondence:**

9 Alison G. Smith

10 +44 1223 333900

11 as25@cam.ac.uk

12 **ORCID IDs:** Marcel Llavero Pasquina: 0000-0002-7055-0812, Katrin Geisler: 0000-0002-7630-
13 1868, Andre Holzer: 0000-0003-2439-6364, Payam Mehrshahi: 0000-0002-7192-0942, Gonzalo I
14 Mendoza-Ochoa: 0000-0002-7361-8915, Shelby Newsad: 0000-0001-6149-8111, Matthew P.
15 Davey: 0000-0002-5220-4174, Alison G Smith: 0000-0001-6511-5704

16 Word counts

17 Total: 6767 // Introduction: 847 // Materials and Methods: 1706 // Results: 2647 // Discussion:
18 1567

19 Contains nine figures (all in colour), four supplementary figures and four supplementary tables.

20 Summary

21 • Thiamine pyrophosphate (TPP), an essential co-factor for all species, is biosynthesised
22 through a metabolically expensive pathway regulated by TPP riboswitches in bacteria,
23 fungi, plants and green algae. Diatoms are microalgae responsible for approximately 20%
24 of global primary production. They have been predicted to contain TPP aptamers in the
25 3'UTR of some thiamine metabolism-related genes, but little is known about their
26 function and regulation.

27 • We used bioinformatics, antimetabolite growth assays, RT-qPCR, targeted mutagenesis
28 and reporter constructs to test whether the predicted TPP riboswitches respond to
29 thiamine supplementation in diatoms. Gene editing was used to investigate the functions
30 of the genes with associated TPP riboswitches in *Phaeodactylum tricornutum*.

31 • We found that thiamine-related genes with putative TPP aptamers are not responsive to
32 thiamine or its precursor 4-amino-5-hydroxymethyl-2-methylpyrimidine (HMP), and the
33 targeted mutation of the TPP aptamer in the HMP-P synthase (*THIC*) does not deregulate
34 thiamine biosynthesis in *P. tricornutum*. Through genome editing we established that
35 *PtSSSP* is necessary for thiamine uptake and that *PtTHIC* is essential for thiamine
36 biosynthesis.

37 • Our results highlight the importance of experimentally testing bioinformatic aptamer
38 predictions and provide new insights into the thiamine metabolism shaping the structure
39 of marine microbial communities with global biogeochemical importance.

40 **Keywords:** aptamer prediction, CRISPR/Cas9, diatoms, *Phaeodactylum tricornutum*, thiamine
41 biosynthesis, thiamine uptake, TPP riboswitch.

42 Introduction

43 Thiamine pyrophosphate (TPP), the biologically active form of thiamine (vitamin B₁), acts as a co-
44 factor for key enzymes such as pyruvate dehydrogenase, transketolase and pyruvate
45 decarboxylase and is an essential micronutrient for virtually all organisms (Hanson *et al.*, 2018).
46 The widespread use of thiamine across all kingdoms of life suggests a long evolutionary history
47 and supports the hypothesis that B vitamins are remnants of the first organic catalysts in the
48 RNA world (White, 1976). TPP is biosynthesised *de novo* via the condensation of two
49 intermediates: 4-amino-5-hydroxymethyl-2-methylpyrimidine pyrophosphate (HMP-PP) and 4-
50 methyl-5-(2-phosphoxyethyl)thiazole (HET-P), but the production of these precursors follows
51 alternative routes in different kingdoms (Webb *et al.* 2007). In prokaryotes, plants and green
52 algae, the pyrimidine moiety is produced from 5-aminoimidazole ribotide (AIR) by HMP-P
53 synthase (THIC), whereas in fungi it is produced from pyridoxal-5-phosphate (PLP) and histidine
54 by THI5/NMT1 (Coquille *et al.*, 2012). HET-P is produced in eubacteria via THIG from
55 iminoglycine, pyruvate, glyceraldehyde-3-phosphate and cysteine, and in archaea, fungi, plants
56 and green algae it is produced via THI4 using NAD⁺, glycine and a sulphur atom from a cysteine
57 residue in the active site (Jurgenson *et al.*, 2009). THI4 is thus a suicide enzyme only capable of a

58 single turnover, which is also true for *THI5/NMT1*. Moreover, THIC has a very low turnover rate
59 and is inhibited by the 5'-deoxyadenosine radical intermediate (Palmer & Downs, 2013), making
60 thiamine biosynthesis a metabolically expensive process (Hanson *et al.*, 2018).

61 Many microbial species, including bacteria and algae, have lost the ability to produce thiamine
62 *de novo*, thus reducing metabolic costs. But in return this renders them dependent on an
63 environmental source of the vitamin or one or more of its precursors (Croft *et al.*, 2006). Within
64 the algal lineages, thiamine auxotrophy has evolved multiple times (Helliwell *et al.*, 2013) and is
65 widespread in bloom-forming algae, including the picoeukaryotic prasinophytes such as
66 *Ostreococcus tauri* and dinoflagellates. It has been hypothesised that environmental levels of
67 thiamine and its intermediates shape the behaviour of algal blooms and determine microbial
68 community structure with significant implications for oceanic ecosystems and global
69 biogeochemical cycles (Bertrand & Allen, 2012; Gutowska *et al.*, 2017). Thiamine auxotrophy is
70 less common in diatoms, a major group of marine microalgae responsible for up to 20% of global
71 primary productivity (Field *et al.*, 1998; Rousseaux & Gregg, 2014). Interestingly, these
72 organisms are thought to produce HMP-PP via THIC through a pathway homologous to plants
73 and green algae, but HET-P through the bacterial pathway reliant on THIG (Bertrand & Allen,
74 2012).

75 The high metabolic cost of thiamine biosynthesis might also explain the presence of feedback
76 regulation mechanisms in species with a complete biosynthetic pathway. We have previously
77 demonstrated that in the presence of exogenous thiamine, the green alga *Chlamydomonas*
78 *reinhardtii* downregulates the expression of *THIC* and *THI4* via TPP riboswitches, regulatory
79 elements in mRNA that upon direct binding of a ligand, in this case TPP, trigger a change in
80 genetic expression (Croft *et al.*, 2007; Moulin *et al.*, 2013). Similarly, riboswitches control *THIC* in
81 plants (Wachter *et al.*, 2007), and *THI5/NMT1* and *THIA* (equivalent to *THI1/THI4*) in fungi
82 (Cheah *et al.*, 2007). Riboswitches contain two functional units: the aptamer and the expression
83 platform (Roth & Breaker, 2009). The aptamer binds a given ligand with high specificity and
84 often with equilibrium dissociation constants (KDs) in the nanomolar range. Upon binding the
85 substrate, the aptamer undergoes a conformational change that is transduced by the associated
86 expression platform into a change of gene expression. In bacteria, where riboswitches
87 responsive to a range of metabolite ligands are widespread, the expression platform mechanism
88 can involve masking the ribosome binding site, the start codon or termination elements. In

89 eukaryotes, all examples characterised to date are those that respond to TPP, in a mechanism
90 involving alternative splicing (Nguyen *et al.*, 2016).

91 In the past decade, several bioinformatic approaches have been developed to identify putative
92 riboswitches based on sequence information. For instance, Croft *et al.* (2007) analysed sequence
93 conservation between the non-coding regions of the *THIC* gene in the diatoms *Phaeodactylum*
94 *tricornutum* and *Thalassiosira pseudonana* and identified the presence of a putative TPP
95 riboswitch aptamer in the *THIC* 3' untranslated region (3'UTR). Later, McRose *et al.* (2014) used
96 the conserved functional motif “CUGAGA” as query against transcripts of thiamine-related genes
97 in combination with secondary structure predictions and homology searches to identify putative
98 riboswitches in the genomes of a wide variety of eukaryotic supergroups (alveolates,
99 stramenopiles, rhodophytes, rhizaria, chlorophytes, prasinophytes, cryptophytes and
100 haptophytes). In their study, they identified putative riboswitches for *THIC* and *SSSP*, encoding a
101 predicted thiamine transporter, in diatoms *P. tricornutum*, *T. pseudonana*, *Fragilaropsis*
102 *cylindrus* and *Pseudonitzschia multiseries*.

103 In diatoms, both the thiamine biosynthetic pathway and the presence of TPP aptamers have
104 been predicted using bioinformatic methods, but they have not been experimentally studied
105 before now. Here, we experimentally test whether the predicted TPP riboswitches found in
106 diatoms *P. tricornutum* and *T. pseudonana* regulate thiamine biosynthesis at the transcript,
107 protein and intracellular thiamine levels using wildtype and reporter strains. In addition, we use
108 a CRISPR/Cas9 approach to test the predicted function of genes containing TPP riboswitches in
109 *P. tricornutum*.

110 Materials and Methods

111 Strains and culture conditions

112 *Phaeodactylum tricornutum CCAP 1055/1* was grown in f/2 minus silica without vitamins at 18°C
113 and 30 $\mu\text{mol m}^{-2} \text{s}^{-1}$ in a 16:8 hours day-night cycle. *Thalassiosira pseudonana 1085/12* was
114 grown in f/2 plus silica and 0.6 μM cyanocobalamin (Millipore-Sigma) at the same temperature
115 and light regime. *Chlamydomonas reinhardtii UVM4* (Neupert *et al.* 2009) was grown in TAP
116 without vitamins at 24°C and same light regime. Cultures were supplemented with thiamine
117 (Acros Organics, USA), pyrithiamine (Sigma-Aldrich, USA), or 4-amino-5-phosphonooxymethyl-2-
118 methylpyrimidine (HMP)(Sigma-Aldrich, USA), at the indicated concentrations for each of the
119 experiments. Zeocin (InvivoGen, USA) at 75 mg L⁻¹ was used to select transgenic *P. tricornutum*

120 cells and at 10 mg L⁻¹ to select for *C. reinhardtii* transformants. Cell growth was measured as
121 OD₇₃₀ with a ClarioStar plate reader (BMG Labtech, Germany).

122 **Prediction of TPP aptamers in newly sequenced diatom genomes**

123 The sequence spanning from the 3' strand of the P2 stem to the 3' strand of the P4 stem of eight
124 previously predicted TPP aptamers in diatoms (Croft *et al.*, 2007; McRose *et al.*, 2014; Table S1a)
125 were used to create hidden Markov models (HMM) for both the forward and the reverse
126 complement. The models were generated by multiple sequence alignments using MAFFT
127 (v7.475; Katoh & Standley, 2013), followed by HMM model construction in HMMER (v3.1b2;
128 Eddy, 2011). Both profiles were searched for against a custom sequence database of diatom
129 genomes (see Table S2) using HMMER's 'hmmsearch' function with default parameters.
130 Resulting hits were validated manually and their immediate upstream or downstream open
131 reading frame was annotated through a Pfam search and a reciprocal TBLASTN with *P.*
132 *tricornutum* (Table S1b). The secondary structure for each predicted aptamer associated with a
133 thiamine-related gene was annotated manually with the assistance of the RNAfold web server
134 tool (Hofacker, 2003; Table S1c). PolyA signal site prediction on *PtTHIC* 3'UTR was performed
135 with the PASPA server using default parameters (Ji *et al.* 2015).

136 **Identification of thiamine biosynthesis capacity in available diatom genomes**

137 A Benchmarking Universal Single-Copy Ortholog analysis (BUSCO, v5.1.2) was performed using
138 the genome mode to assess completeness of the various assemblies in our custom diatom
139 genome database (Table S2, Seppey *et al.*, 2019). Only assemblies with more than 88%
140 (stramenopiles_odb10) and 55.7% (eukaryota_odb10) complete BUSCOs were analysed further.
141 Nucleotide assembly files from the resulting 19 diatom genomes were used to construct BLAST
142 databases. TBLASTN searches (BLAST+, v2.6.0+) were performed for members of all KEGG
143 orthologues associated with thiamine metabolism (KEGG:ko00730) using reference peptide
144 sequences recovered from the KEGG database (Kanehisa & Goto, 2000; Kanehisa, 2019;
145 Kanehisa *et al.*, 2021) as queries (Table S3a). In addition, we also performed TBLASTN searches
146 with the predicted thiamine biosynthesis proteins THIC, TH1, THIS, THIO, THIG, THIF, DXS, TPK1,
147 THI4, THIM as well as the thiamine-related proteins SSSP, SSUA/THI5-like and TENA from *P.*
148 *tricornutum* or *C. reinhardtii* (Table S3c). The best hit for each genome-protein pair was
149 extracted, with full results reported in Table S3b+d. For species with available annotation data,
150 the overlap of TBLASTN results with genomic loci was determined. In those cases where

151 annotation data was lacking or hits did not directly overlap with a genetic locus, contig/scaffold
152 name together with start and end coordinates of the hit are provided. Categorising presence of
153 thiamine biosynthesis genes in a diatom genome was performed based on hits found by either
154 one of the described TBLASTN searches with an E-value cut-off of $\leq 10^{-20}$, while an E-value
155 between 10^{-3} and 10^{-20} indicated potential existence (Table S3e). Predicted peptide sequences
156 containing NMT1 domains were analysed by multiple sequence alignments in MEGA-X v.10.1.1
157 (Kumar *et al.*, 2018) using MUSCLE (Edgar, 2004) with default parameters and the phylogenetic
158 tree was generated with the default Maximum-Likelihood algorithm and 100 bootstrap
159 iterations.

160 **RNA Isolation and Protein Isolation**

161 RNA was extracted from liquid nitrogen-frozen cell pellets from 20 mL cultures grown to early
162 stationary phase using the RNeasy Plant Mini Kit (Qiagen, Germany). Immediately after
163 extraction, the RNA samples were treated with 1 U of TURBO DNase (Thermo Fisher Scientific,
164 USA) for 30 minutes before cDNA synthesis. Total protein extracts were obtained from 150 mL
165 cultures grown to early stationary phase by resuspending in X mL of 0.2 M sorbitol (Sigma-
166 Aldrich, USA), 1 % β -mercaptoethanol, and 0.8 M Tris-HCl pH 8.3 (Sigma-Aldrich, USA), where X
167 is equal to the culture OD₇₅₀ before harvesting.

168 **Analysis of Gene Expression by quantitative PCR**

169 First strand cDNA was generated with SuperScript III reverse transcriptase (Thermo Fisher
170 Scientific, USA) primed with random hexamers. Quantitative PCR was performed with SybrGreen
171 JumpStart Taq (Sigma-Aldrich, USA) in a RotorGene qPCR thermocycler (QIAGEN, Germany) for
172 40 cycles of 94°C for 20 seconds, 55°C for 20 seconds, and 72°C for 30 seconds (see primers in
173 Table S4). Total transcript levels of genes of interest were normalised to the levels of
174 housekeeping genes histone 4 (H4), ubiquitin conjugating enzyme (UBC) and ubiquitin (UBQ).
175 Relative expression was calculated using the Delta-Delta Ct method adjusted by amplification
176 efficiency. Measurements with amplification efficiency lower than 1.525 (1.67 for cobalamin
177 supplementation experiment) were excluded. Housekeeping genes showing significant
178 differences between treatments were not used for normalisation.

179 **3'RACE**

180 First strand cDNA was synthesised using a polyT-VN primer with two anchor nucleotides at its 3'
181 end and a universal adaptor in its 5' UTR (see Table S4) (Beilharz & Preiss, 2009). The cDNA was

182 diluted 1/8 in nuclease-free water and used as template for a first touch-down RT-PCR reaction
183 primed with a high-specificity primer (71°C annealing Tm) and a universal reverse primer using
184 Q5 High-Fidelity polymerase (New England Biolabs, USA). The PCR product of this first RT-PCR
185 was then diluted 1/100 in nuclease-free water and used as a template for a semi-nested RT-PCR
186 using a gene-specific primer and the universal reverse primer. Q5 polymerase was used again
187 during 35 cycles using annealing temperature of 65°C and 30 seconds extension. RT-PCR
188 products were run in a 2 % agarose gel at 130 mV for 25 minutes unless otherwise stated.
189 Selected bands were cut, purified with the Illustra™ GFX™ PCR DNA and Gel Band Purification Kit
190 (Sigma-Aldrich, USA) and sent for Sanger sequencing (Source Bioscience, UK).

191 **Plasmid construction and algae transformation**

192 All constructs were cloned following the MoClo Golden Gate system (Engler *et al.*, 2014). Level 0
193 parts were reused from existing *P. tricornutum* constructs, from the *C. reinhardtii* MoClo Kit
194 (Crozet *et al.*, 2018), or were amplified from *P. tricornutum* genomic DNA using Q5 High Fidelity
195 polymerase (see Table S4 for primers). Level 1 constructs were assembled by *Bsal* restriction-
196 ligation of Level 0 parts. Level 2 constructs were assembled by *BpI* restriction-ligation of Level 1
197 constructs. Constructs used for CRISPR/Cas9 genome editing were cloned following the sgRNA
198 design strategy described in Hopes *et al.* (2017) and homologous recombination regions were
199 designed to be around 800 bp long and flank the coding sequence of the gene of interest. The
200 level 1 plasmid encoding a Cas9-YFP expression cassette (pICH47742:PtFCP:Cas9YFP), the level 0
201 plasmid containing the *PtU6* promoter to drive expression of the sgRNAs (pCR8/GW:PtU6) and
202 the plasmid used as template to amplify the sgRNA scaffold (pICH86966::AtU6p::sgRNA_PDS)
203 were a kind gift from Dr Amanda Hopes and Prof. Thomas Mock (UEA, UK) and are available on
204 Addgene (Hopes *et al.*, 2016).

205 *C. reinhardtii* transformation was carried out as described in Mehrshahi *et al.* (2020) and *P.*
206 *tricornutum* transformation as in Yu *et al.* (2021). For co-transformation of plasmids in *P.*
207 *tricornutum* 2.5 µg of each plasmid was used. For each construct, up to 96 primary zeocin-
208 resistant transformants were initially selected for PCR genotyping and preliminary phenotyping,
209 and then a subset was taken for further characterisation.

210 **Determination of intracellular vitamin quotas**

211 Cell pellets were harvested from 30 mL cultures 5 days post-inoculation, washed three times
212 with distilled water, and fresh weight of the final pellets was measured before flash freezing in

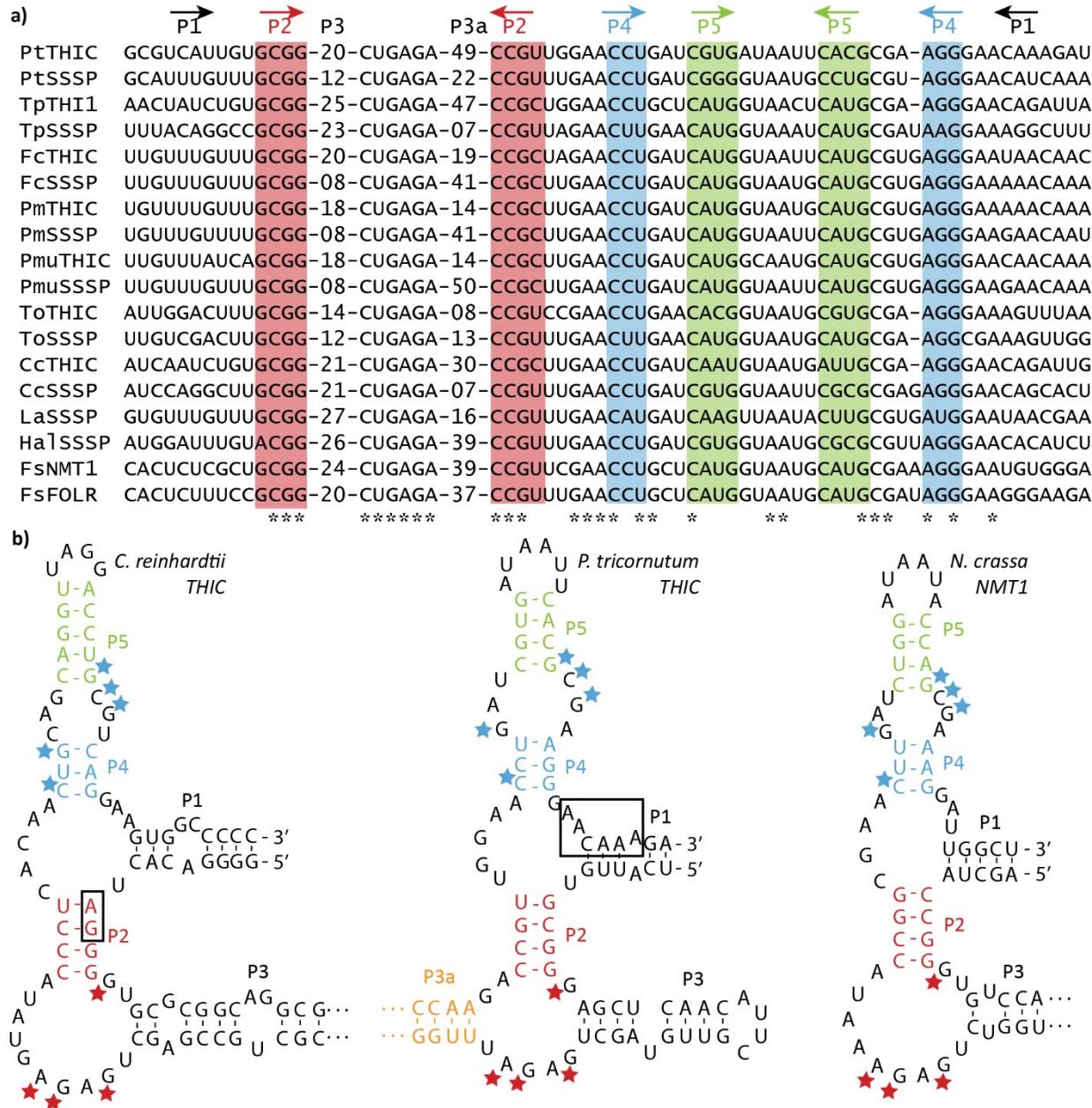
213 liquid nitrogen and storing at -80°C. Pellets were treated with 250 µL 1 % (v/v) trichloroacetic
214 acid (TCA) (Sigma-Aldrich, USA) and centrifuged at 10,000g for 10 minutes recovering the
215 supernatant. TPP and thiamine were then derivatised by mixing 50 µL of the cell extract with 10
216 µL of freshly prepared 30 mM potassium ferricyanide (Sigma-Aldrich, USA) in 15% (w/v) sodium
217 hydroxide, 15 µL 1 M NaOH, and 25 µL methanol (HPLC-grade; Sigma-Aldrich, USA). The
218 derivatisation mix was centrifuged at 4,000g for 10 minutes, and 20 µL of the supernatant were
219 injected for HPLC analysis. An Accela HPLC setup (Thermo Fisher Scientific, USA) was used with a
220 C18 150 x 4.6 mm column (Phenomenex, USA). The fluid phase flowed at 1 mL min⁻¹ with a
221 gradient of 5% methanol up to 47.5% at 10 minutes, 100% at 11 minutes, 100% at 15 minutes,
222 5% at 16 minutes and equilibration at 5% methanol until 21 minutes. The thiamine and TPP
223 derivatives were measured using a Dionex UltiMate 3000 fluorescence detector (Thermo Fisher
224 Scientific, USA) with 375 nm excitation and 450 nm emission. The sensitivity of the fluorescence
225 detector was set at 1 for the first 5 minutes of the HPLC programme and increased to 8 for the
226 rest of the programme. The area of the TPP earlier-half peak at 1.35 minutes and the thiamine
227 peak at 2.1 minutes were used to calculate the amount of each vitamer relative to their
228 respective standard curves.

229 **Western Blots**

230 Crude protein extracts were mixed with 1% Sodium Dodecyl Sulphate (SDS; Sigma-Aldrich, USA)
231 and boiled for 1 min. The samples were centrifuged at 16,000g for 2 minutes, and 15 µL were
232 loaded in a 15% Acrylamide SDS-polyacrylamide gel electrophoresis (SDS-PAGE). The
233 electrophoresis was run at 150 mV for 90 minutes. The proteins were then transferred to a
234 polyvinylidene difluoride (PVDF) membrane applying 20 mA for 20 minutes in a semi-dry
235 transfer cell (Bio-Rad Laboratories, USA). The membrane was blocked in 0.5% powdered milk in
236 TBS-T buffer at 4°C overnight, then incubated for 1 hour with a rabbit anti-HA primary antibody
237 (H6908, Sigma-Aldrich, USA) in 2.5% powdered milk in TBS-T, washed 4 times with TBS-T, then
238 incubated for 1 hour with a goat anti-rabbit secondary antibody conjugated with a Dy800
239 fluorophore (SA5-35571, Thermo Fisher Scientific, USA) in 2.5% powdered milk in TBS-T. The
240 membrane was finally washed 4 times in TBS-T and once in TBS before being imaged in a
241 fluorescence scanner (Odyssey; Li-Cor Biosciences, USA).

242

243


244

Results

245 **Putative TPP aptamers can be found with high conservation in diatom genomes**

246 To analyse the conservation and prevalence of putative TPP aptamers in diatoms, we searched
247 for them in 23 available diatom genomes that were well assembled and annotated (Table S2).
248 We performed HMM searches with a motif based on eight previously predicted diatom TPP
249 aptamer sequences in *P. tricornutum*, *T. pseudonana*, *F. cylindrus* and *P. multiseries* (Croft *et al.*,
250 2007; McRose *et al.*, 2014; Table S1a). We found a total of 40 new putative TPP aptamers (Table
251 S1b). An additional, more targeted, search for the universally conserved “CUGAGA” motif in the
252 UTRs of annotated *THIC* and *SSSP* genes revealed a putative TPP aptamer in the 3'UTR of
253 *Psammoneis japonica* *THIC* that had not been detected by the HMM motif search.

254 All putative diatom TPP aptamers are found in 3'UTRs and share a strong sequence conservation
255 of the P2, P4 and P5 stems as well as a structurally conserved P3a stem of variable length (Fig.
256 **1a**; Table S1c). The P1 stems at the 3' end of the putative aptamers are generally A-rich and, in
257 *PtTHIC* (*Phatr3_J38085*), the P1 stem overlaps with the “AACAAA” motif that has been predicted
258 to be the most likely polyadenylation site in the gene 3'UTR by the PASPA software (Ji *et al.*,
259 2015; Fig. **1b**). The “CUGAGA” motif and overall secondary structure architecture is conserved
260 between diatoms and other aptamers demonstrated to be functional in green algae (Croft *et al.*,
261 2007), plants (Wachter *et al.*, 2007) and fungi (Cheah *et al.*, 2007) (Fig. **1b**). The P4/5 stem
262 sequence is also well conserved between aptamers from the different groups. In contrast, the P2
263 stem differs between diatoms and other characterised TPP riboswitches. While in green algae
264 and plants this includes the “AGGG” sequence, which includes the alternative splicing acceptor
265 (AG) used in the mechanism of action determined experimentally (Croft *et al.*, 2007; Wachter *et*
266 *al.*, 2007), diatoms have a P2 stem with a conserved “GCGG” sequence, with no obvious AG
267 splicing acceptor nearby in the aptamer.

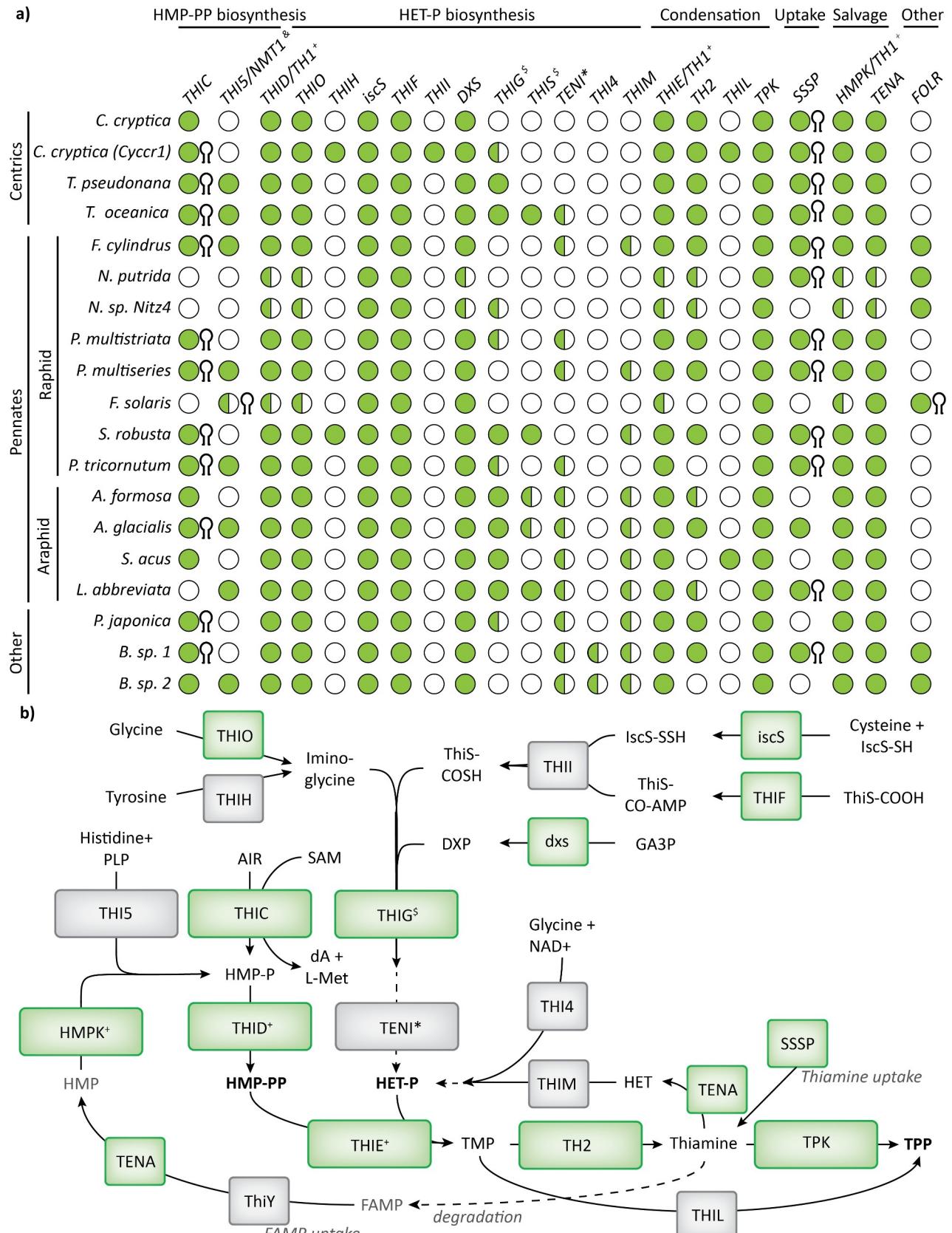

268

Figure 1. Multiple sequence alignment of 16 predicted diatom thiamine pyrophosphate (TPP) aptamers and structural comparison with previously characterised eukaryotic riboswitches. (a) Multiple sequence alignment of previously identified (first eight) and a sample of newly identified TPP aptamers in diatoms. Stems are indicated with arrows and colour coded. See Table S1b and S1c for the full sequences of all predicted TPP aptamers. **(b)** Structural comparison of the predicted *Phaeodactylum tricornutum* THIC aptamer (centre) with experimentally described TPP aptamers in *Chlamydomonas reinhardtii* (left, Croft et al., 2007) and *Neurospora crassa* (right, Cheah et al., 2007). The pyrimidine-binding residues ("CUGAGA" motif, red stars) and the pyrophosphate-binding residues ("GCG" motif, blue stars) are highlighted. Green algae and plant aptamers contain an alternative 3' splicing site used in their mechanisms of action in their P2 stem (AG, boxed). The "AACAAA" sequence overlapping with the PtTHIC aptamer P1 stem (boxed) is predicted to be the most likely polyadenylation site by the PASPA software (Ji et al., 2015). Pt: *Phaeodactylum tricornutum*; Fc: *Fragilariaopsis cylindrus*; Tp: *Thalassiosira pseudonana*; To: *Thalassiosira oceanica*; Cc: *Cyclotella cryptica*; Pm: *Pseudonitzschia multiseries*;

283 *Pmu*: *Pseudonitzschia multistriata*; *La*: *Licmophora abbreviata*; *Hal*: *Halamphora* sp. MG8b; *Fs*:
284 *Fistulifera solaris*.

285

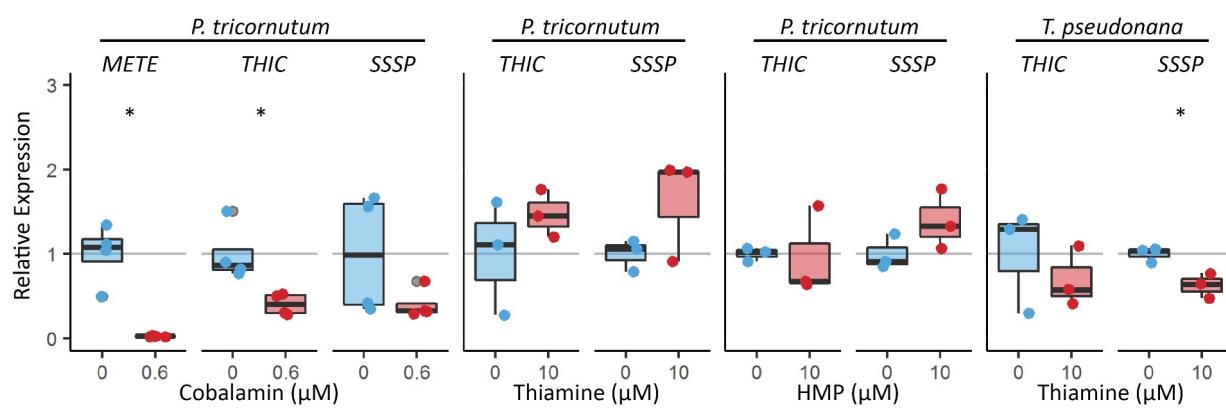
286 Thirty-one (78%) of the newly predicted aptamers were directly associable with a potential
287 genetic locus involved in thiamine metabolism, predominantly *THIC* and *SSSP*. Overall, TPP
288 aptamers were associated with 11 of 15 identified *THIC* genes and 12 of the 13 identified *SSSP*
289 genes (Fig. 2a). In addition, putative TPP aptamers were found in genes encoding FOLR domains
290 (folate receptor domain, PF03024) in *Halamphora* sp. MG8b and *F. solaris*. Proteins with FOLR
291 domains in *F. cylindrus*, *Nitzschia* sp. *Nitz4* and *Bacillariophyta* sp. (ASM1036717v1), but not in *F.*
292 *solaris* *FOLR*, are predicted to have a signal peptide by SignalP 4.1, suggesting a potential role in
293 transport or sensing. Predicted TPP aptamers were also found associated with multiple copies of
294 *F. solaris* genes encoding an NMT1 domain (PF09084; No Message in Thiamine; Maundrell,
295 1990) (Fig. 2a; Table S2c). The bioinformatics analysis also provided the means to construct the
296 complete pathway of thiamine metabolism in diatoms indicating both the biosynthetic and
297 salvage routes for provision of the active cofactor, TPP (Fig. 2b), confirming that synthesis of the
298 pyrimidine moiety uses THIC, as in plants and green algae (as well as bacteria), but that the
299 thiazole group is the bacterial route via ThiG, rather than THI4/THI1 as in all other eukaryotes.

300

301 **Figure 2. Proposed routes for thiamine biosynthesis in diatoms. (a)** A TBLASTN search using
302 selected algal peptide sequences as queries (See Table S3c) was performed against 19 diatom
303 genomes to determine the presence (full circle p -value $> 10^{-20}$; half-full circle p -value $> 10^{-3}$) or
304 absence (empty circle) of different thiamine-related genes. The presence of an associated

305 predicted riboswitch in the 3'UTR of the gene is indicated with a hairpin symbol at the right of
306 the circle. The genome abbreviations, accession numbers and references can be found in Table
307 S2. **(b)** Potential thiamine biosynthetic, salvage and uptake routes in diatoms. The pathway steps
308 with strong support across the diatom lineage are shown in green. AIR: 5-Aminoimidazole
309 ribotide; SAM: S-Adenosyl methionine; dA: 5'-deoxyadenosine; L-Met: L-Methionine; GA3P:
310 Glyceraldehyde 3-phosphate; HMP-P: hydroxymethyl-pyrimidine phosphate; HMP-PP:
311 hydroxymethyl-pyrimidine pyrophosphate; HET-P: hydroxyethyl-thiazole phosphate; FAMP: N-
312 formyl-4-amino-5-aminomethyl-2-methylpyrimidine; DXP: 1-deoxy-D-xylulose 5-phosphate; PLP:
313 pyridoxal 5'-phosphate; NAD: nicotinamide adenine dinucleotide; TMP: thiamine
314 monophosphate; TPP: thiamine pyrophosphate. ^g THI5/NMT1 candidates contain an NMT1 pfam
315 domain (PF09084). ^gTHIG and THIS are encoded in the chloroplast in *P. tricornutum*, so the
316 results can be biased in genomes that do not include chloroplast sequences. ^gTHID, THIE and
317 HMPK functions are performed by a single peptide in diatoms (TH1). ^gIn some bacteria TenI
318 accelerates a thiazole tautomerisation reaction, but it is not necessary to synthesise HET-P
319 (Hazra *et al.*, 2011).

320

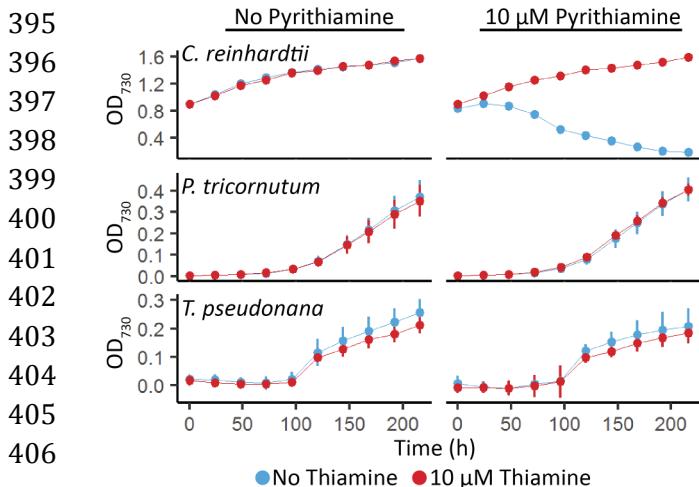

321 In addition to THIC, 9 out of 19 diatom genomes queried revealed at least one gene that
322 encoded a protein with an NMT1 domain. These are associated with THI5, an HMP-P synthase in
323 fungi, but they also have structural homology with ThiY, a bacterial periplasmic component of a
324 pyrimidine precursor ABC transporter (Bale *et al.*, 2010). To investigate whether the diatom
325 candidates with NMT1 domains showed closer similarity to THI5 or ThiY, we aligned 10 diatom
326 protein sequences with NMT1 domains with *Bacillus halodurans* ThiY, *S. cerevisiae* THIS, *N.*
327 *crassa* NMT1 and peptide sequences with NMT1 domains previously identified in other algal
328 species (McRose *et al.*, 2014). Multiple sequence alignment and subsequent phylogenetic tree
329 analysis showed that the diatom candidates clustered with the haptophyte (*Emiliana huxleyi*)
330 and cryptophyte (*Guillardia theta*) candidates in a single branch, except for two candidates
331 found in *F. solaris*, which clustered with the chlorophyte peptides (Fig. S1a). However, the
332 phylogenetic analysis failed to resolve whether the algal proteins containing NMT1 domains are
333 more closely related to THI5 or ThiY, with bootstrap values all <60. The multiple sequence
334 alignment also revealed that the diatom candidates conserve only 4 of the 15 active site
335 residues in THI5, and 4 out of 8 active site residues in ThiY (Fig. S1b). Additionally, except *F.*
336 *solaris*, all diatom candidates show an extended N-terminus as in ThiY, which is predicted to be a
337 signal peptide by SignalP v.4.1 (Petersen *et al.*, 2011). To test whether diatom candidates with
338 NMT1 domains are expressed and regulated by its putative metabolic products, we used RT-
339 qPCR to measure the transcript levels of the *P. tricornutum* and *T. pseudonana* candidates
340 (*Phatr3_J33535* and *THAPS_6708* respectively) in the presence or absence of thiamine or HMP
341 supplementation. The results confirmed the candidates are expressed in both species, but they

342 are not regulated by thiamine (Fig. S2). Finally, we used CRISPR/Cas9 to generate *P. tricornutum*
343 mutants with a deletion of the gene coding for an NMT1 domain. Two independent mutants
344 showed no obvious phenotype compared to wild type and could grow in the absence of
345 exogenous thiamine (Fig. S3).

346

347 **THIC transcript levels are unaffected by exogenous thiamine and *P. tricornutum* and *T.***
348 ***pseudonana* are resistant to pyrithiamine**

349 To investigate whether putative riboswitches in other thiamine-related genes in *P. tricornutum*
350 and *T. pseudonana* respond to exogenous thiamine, an RT-qPCR experiment was carried out
351 with cells grown in the presence and absence of 10 μ M thiamine or 10 μ M HMP, both of which
352 reduce expression of *THIC* in *C. reinhardtii* (Moulin *et al.*, 2013). A previous transcriptomics and
353 proteomics study (Bertrand *et al.*, 2012) had shown that *PtTHIC* was affected by growth of cells
354 in cobalamin (vitamin B₁₂), so this was also included. As expected, in *P. tricornutum* *PtTHIC* levels
355 dropped about two thirds (p-value 0.03) in the presence of cobalamin relative to the
356 unsupplemented condition (Fig. 3). The positive control, *PtMETE* (Helliwell *et al.*, 2011), showed
357 a 97% reduction (p-value 0.01). In contrast, neither thiamine or HMP supplementation caused
358 significant changes in transcript levels of *PtTHIC* or *PtSSSP* (*Phatr3_J50012*). Similarly in *T.*
359 *pseudonana*, *TpTHIC* (*THAPSDRAFT_41733*) transcript levels were unaffected when cells were
360 cultured with 10 μ M thiamine. However, in contrast to *P. tricornutum*, thiamine
361 supplementation resulted in approximately one third downregulation (p-value 0.03) of *TpSSSP*
362 (*THAPSDRAFT_20656*). To rule out the possibility that these results were explained by the
363 inability of exogenous thiamine to enter the cells, we performed a thiamine uptake test and
364 confirmed that thiamine is actively taken up and metabolised to TPP in *P. tricornutum* (Fig. S4).



365

366 **Figure 3. Impact of vitamin supplementation on expression of THIC and SSSP in Phaeodactylum**
367 **tricornutum and Thalassiosira pseudonana.** *P. tricornutum* and *T. pseudonana* were grown in
368 the absence (blue) or presence (red) of 0.6 μM cobalamin (B_{12}), 10 μM thiamine (B_1) or 10 μM 4-
369 Amino-5-hydroxymethyl-2-methylpyrimidine (HMP) for 7 days. Three or four biological replicates
370 were analysed by RT-qPCR in technical duplicate. The technical replicate measurements were
371 averaged for each biological replicate, and transcript levels were normalised for the average
372 transcript levels of three housekeeping genes (H4, UBC, UBQ for *P. tricornutum*; Actin, EF1a, rbcS
373 for *T. pseudonana*). Each dot represents the relative expression value for an individual biological
374 replicate and a box plot summarises the data for each gene and treatment. Two-sided t-tests
375 between supplemented and control conditions were conducted for all genes. * p -value < 0.05.

376 Acknowledging that gene regulation could also happen post-transcriptionally and given the
377 presence of a predicted polyadenylation site overlapping the P1 stem in *PtTHIC*, we used a
378 3'RACE experiment to test whether the putative *PtTHIC* aptamer could regulate gene expression
379 via alternative polyadenylation or alternative splicing. The results showed no substantive
380 difference in *PtTHIC* 3'UTR isoforms between the control and the thiamine or HMP-
381 supplemented conditions (Fig. S5). These results suggest that the *PtTHIC* predicted riboswitch
382 does not regulate expression at a transcriptional or post-transcriptional level in response to
383 thiamine.

384 Finally, to experimentally test whether the putative diatom aptamers can regulate thiamine
385 metabolism, we employed a pyrithiamine growth assay, previously used to study thiamine gene
386 regulation in other organisms (Sudarsan *et al.*, 2005). Briefly, pyrithiamine, a thiamine
387 antimetabolite, binds to the TPP aptamer downregulating the expression of thiamine
388 biosynthesis genes regulated by TPP riboswitches, preventing the production of thiamine and
389 inducing growth arrest. The lethal effect of pyrithiamine can be reversed by adding extracellular
390 thiamine to compensate for the lack of biosynthetic activity. In this study, *C. reinhardtii*, *P.*
391 *tricornutum* and *T. pseudonana* were grown in the presence or absence of 10 μM pyrithiamine
392 and/or 10 μM thiamine (Fig. 4). As can be seen clearly, *C. reinhardtii* growth is disrupted by
393 pyrithiamine and rescued by thiamine supplementation, but *P. tricornutum* and *T. pseudonana*
394 are insensitive to the antimetabolite.

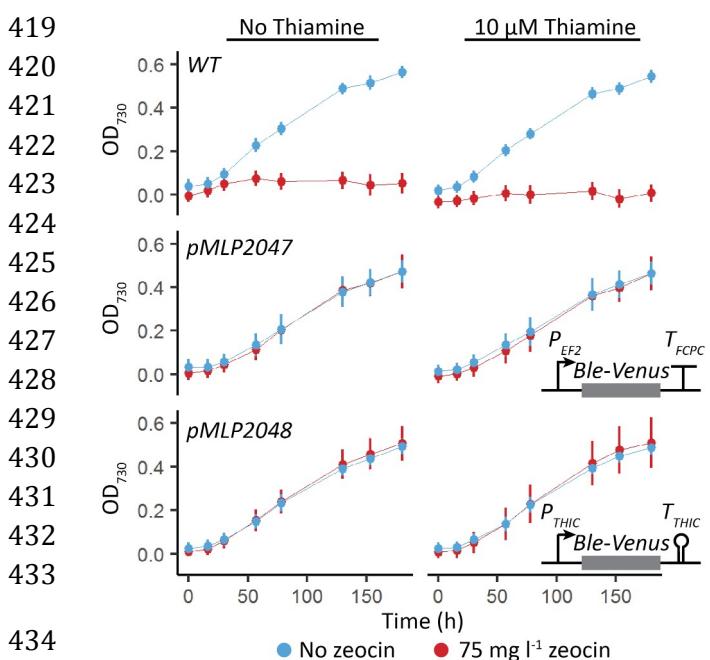
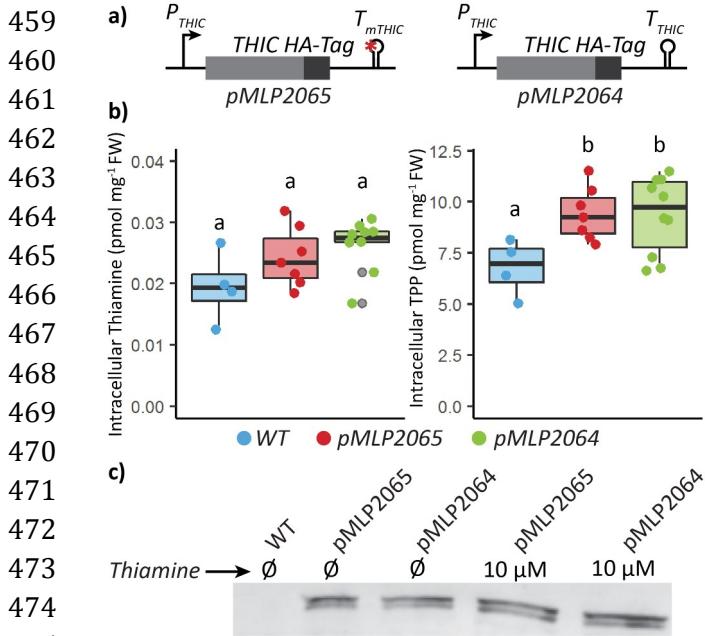


Figure 4. Effect of the thiamine antemetabolite pyrithiamine on the growth of *Chlamydomonas reinhardtii*, *Phaeodactylum tricornutum* and *Thalassiosira pseudonana*. *C. reinhardtii*, *P. tricornutum* and *T. pseudonana* were grown for 9 days in the absence (left column) or presence (right column) of 10 μ M pyrithiamine and the absence (blue) or presence (red) of 10 μ M thiamine in 96 well plates. Growth was measured as OD₇₃₀ every 24 hours. Error bars represent the standard deviation of three biological replicates.

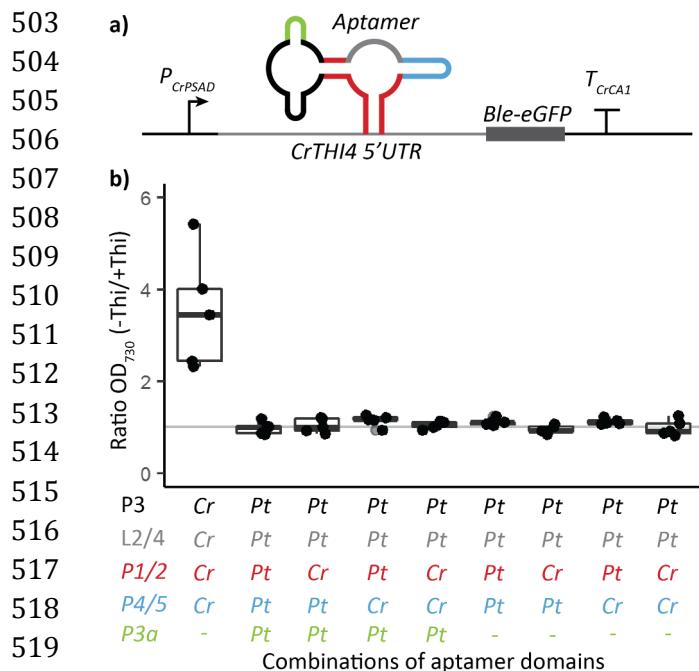
407


408 **The *P. tricornutum* THIC 3'UTR cannot regulate the expression of reporter constructs**

409 As an alternative approach to determine whether the putative TPP aptamers in diatoms can
 410 regulate expression in response to thiamine supplementation, we generated and utilised a set of
 411 constructs where the putative *PtTHIC* riboswitch would regulate the expression of a reporter
 412 gene. We cloned the *PtTHIC* promoter, 5'UTR and 3'UTR so that they flanked a *Ble*-Venus
 413 reporter gene that confers resistance to zeocin. In principle, if the putative *PtTHIC* riboswitch
 414 regulated gene expression, the combined supplementation of thiamine and zeocin would induce
 415 a downregulation of the antibiotic-resistance reporter gene, which would in turn lead to growth
 416 arrest. However, we could not see any impact on growth when the transformants were cultured
 417 in the presence of 10 μ M thiamine and 75 mg L⁻¹ zeocin, providing further evidence that the
 418 putative *PtTHIC* riboswitch does not respond to thiamine supplementation (Fig. 5).

Figure 5. Effect of thiamine supplementation on transformants with *PtTHIC* promoter and 3'UTR driving expression of the *Ble* zeocin resistance gene. Transformants carrying a *Ble*-Venus reporter controlled by the *PtEF2* promoter and *PtFCPC* 3'UTR (*pMLP2047*) or the *PtTHIC* promoter and 3'UTR (*pMLP2048*) were grown in the absence (left column) or presence (right column) of 10 μ M thiamine and the absence (blue) or presence (red) of 75 mg L⁻¹ zeocin. Error bars represent the standard deviation of three biological replicates for each of ten independent transformants for *pMLP2047* and *pMLP2048* and three biological replicates for WT.

435 *P. tricornutum* is unlikely to encounter thiamine concentrations at the micromolar level in
436 oceanic environments where thiamine concentrations have been measured in the picomolar
437 range (Sañudo-Wilhelmy *et al.*, 2012; Monteverde *et al.*, 2015). Thus, we wanted to test
438 whether, despite being unresponsive to high levels of exogenous thiamine, the putative *PtTHIC*
439 riboswitch is responsible for the homeostasis of intracellular TPP concentrations. To address this
440 question, we employed a mutational approach inspired by previous observations in *A. thaliana*
441 and *C. reinhardtii*, where mutations affecting functional TPP riboswitches in thiamine
442 biosynthetic genes led to the overaccumulation of thiamine and TPP in response to a disruption
443 of the negative feedback regulatory mechanism (Bocobza *et al.*, 2013; Moulin *et al.*, 2013). To
444 replicate these experiments in *P. tricornutum*, we transformed WT cells with an extra copy of
445 *PtTHIC* with a targeted mutation in the universally conserved pyrimidine-binding motif of the
446 putative aptamer (“CUGAGA” to “CUCUCU”). To generate a control strain, a construct without
447 this mutation was also transformed (Fig. 6a). We then grew the transformants alongside a WT
448 strain in the absence of exogenous thiamine for 5 days and quantified their intracellular
449 thiamine and TPP levels by HPLC. The strains with the mutated copy of *PtTHIC* did not show any
450 significant increase in intracellular thiamine or TPP compared to the unmutated control
451 suggesting the putative *PtTHIC* aptamer is not required to regulate the homeostasis of thiamine
452 and TPP levels (Fig. 6b). In addition, the heterologous copies of *PtTHIC* in both constructs were
453 tagged with a C-terminal HA-Tag so that we could follow changes in protein levels. If the
454 riboswitch were functional, one would expect that a mutation in the universally conserved
455 “CUGAGA” motif would disrupt feedback regulation and lead to increased protein levels.
456 Western blot assays showed no visible increase in heterologous *PtTHIC* protein levels between
457 the mutated and control constructs (Fig. 6c). Furthermore, we saw no obvious changes in *PtTHIC*
458 levels when 10 µM thiamine was added to transformants for the mutated or control constructs.


Figure 6. Intracellular thiamine and thiamine pyrophosphate (TPP) abundance and *PtTHIC* protein levels determined in transformants carrying a mutated *PtTHIC* aptamer. (a) A construct coding for an extra copy of *PtTHIC* with a targeted mutation in its putative aptamer (*pMLP2065*) and its respective unmutated control (*pMLP2064*) were transformed into *Phaeodactylum tricornutum*. (b) Transformants were grown for 5 days before thiamine and TPP were quantified by HPLC and normalised by fresh weight. Each dot represents the measurement of an independent transformant and a box plot summarises the data. Different letters represent significant differences in average vitamin content between strains in a Tukey

475 *HSD test with a 0.95 confidence level.* (c) An independent transformant for each construct was
476 grown to approximately 5×10^6 cells mL^{-1} in the presence or absence of $10 \mu M$ thiamine, and
477 protein was extracted from $150 mL$ cultures. A western blot analysis with a primary anti-HA
478 antibody on total crude extracts normalised to culture OD is shown.

479 The putative *PtTHIC* aptamer does not mediate switching in the *CrTHI4* 5'UTR aptamer 480 platform

481 To test whether the putative *PtTHIC* aptamer was able to bind TPP and thereby regulate gene
482 expression, we employed an aptamer testing platform that we recently developed in *C.*
483 *reinhardtii* (Mehrshahi *et al.*, 2020), which provides a simple measurable growth readout.
484 Briefly, the aptamer platform allows the introduction of heterologous aptamers into a modified
485 *CrTHI4* 5'UTR containing the riboswitch cloned in front of a *Ble-eGFP* reporter (Fig. 7a). As
486 before, if the introduced aptamers are functional in the platform context, the simultaneous
487 presence of thiamine and zeocin in the medium impairs growth. In this study, we introduced the
488 putative *PtTHIC* aptamer into the aptamer platform and employed the *CrTHIC* aptamer as a
489 positive control to test whether the putative *PtTHIC* aptamer could respond to thiamine. We
490 found that, as seen previously, the transformants with the *CrTHIC* aptamer showed impaired
491 growth in the presence of thiamine and zeocin, with over a 3-fold difference in OD_{730} between
492 the thiamine deplete and supplemented conditions four days post-inoculation (Fig. 7b). In
493 contrast, the transformants with the putative *PtTHIC* aptamer showed no growth difference
494 between thiamine replete and deplete treatments. We then prepared a suite of modified
495 aptamers combining functional domains from *CrTHIC* and *PtTHIC* aptamers to test whether a
496 particular functional domain of the *PtTHIC* aptamer was responsible for the lack of thiamine
497

498 response or was not compatible with the aptamer testing platform (Fig. 7a). We found that
499 neither introducing the P1 and P2 stems and/or the P4/5 stem from *CrTHIC* aptamer into the
500 *PtTHIC* aptamer nor removing the P3a stem led to a responsive aptamer. In one of the modified
501 aptamers, the only difference from the *CrTHIC* positive control was the L2/4 loop and the P3
502 stem from *PtTHIC* aptamer and yet this variant still failed to respond to thiamine (Fig. 7b).

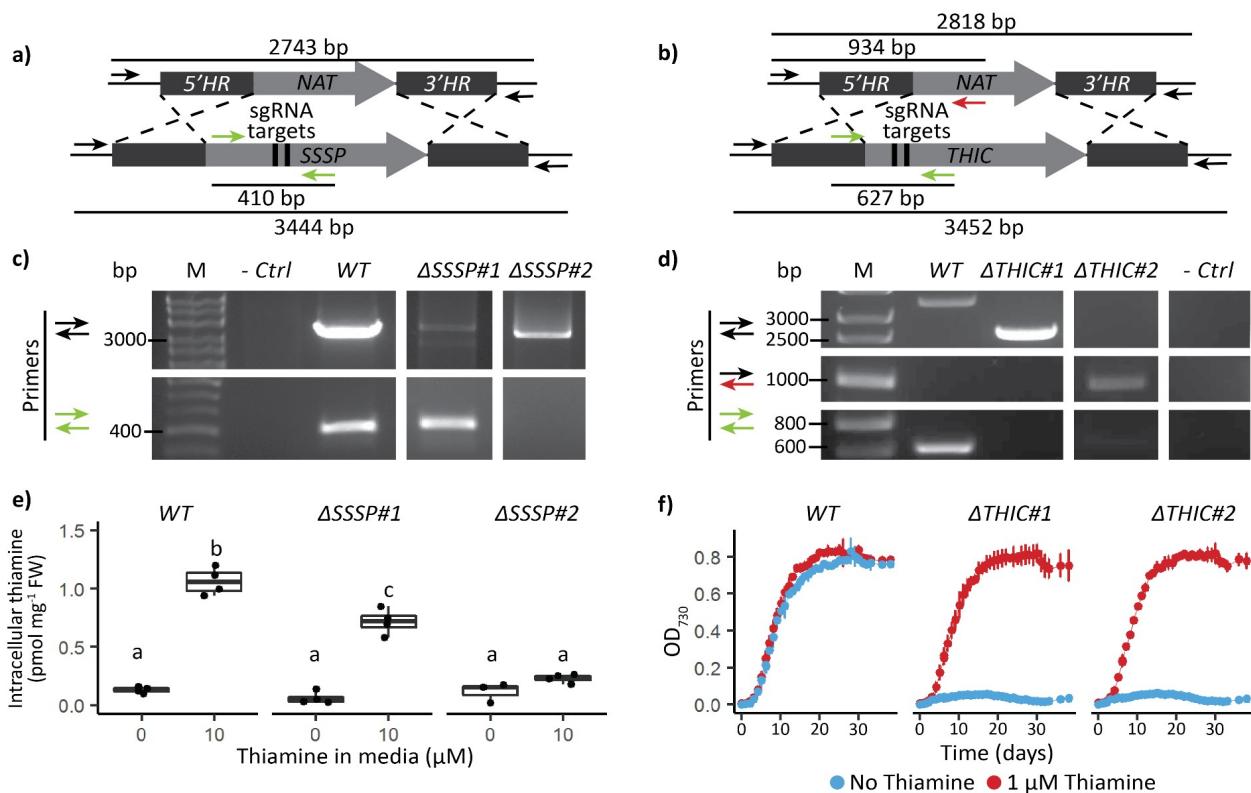
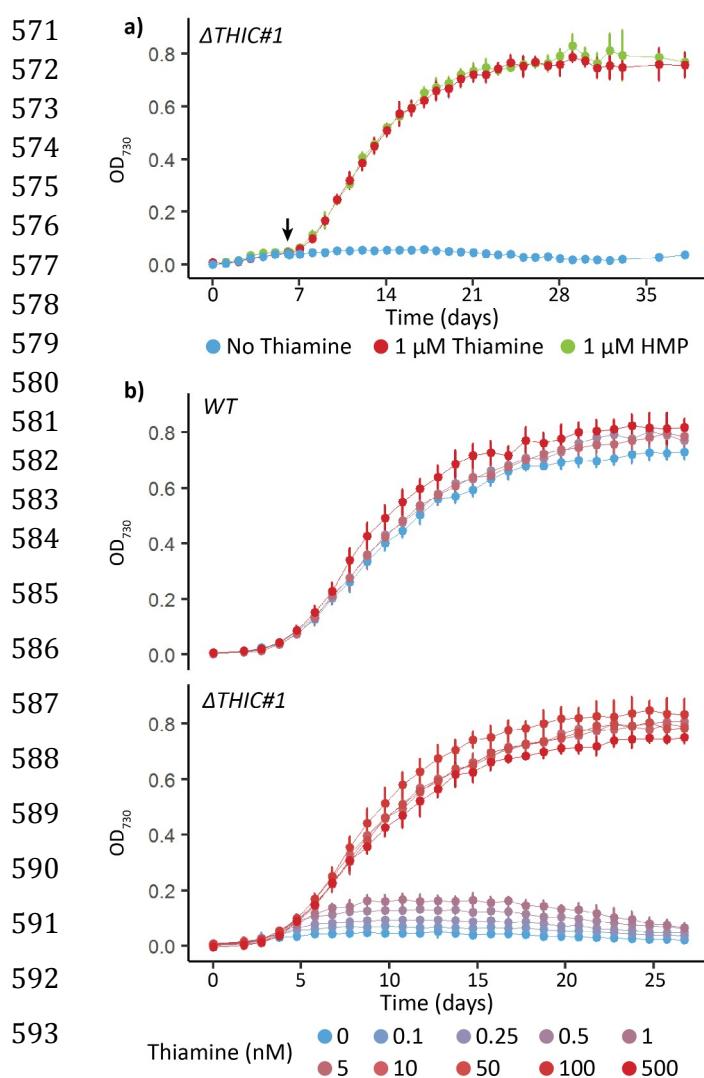


Figure 7. Response of Chlamydomonas reinhardtii carrying the PtTHIC-CrTHIC chimeric riboswitches to thiamine supplementation. (a) The CrTHI4 riboswitch platform previously developed in our lab (Mehrshahi et al., 2020) was cloned in the 5'UTR of a Ble-eGFP zeocin resistance reporter with a CrPSAD promoter and a CrCA1 terminator. A set of modified aptamers combining five structural parts (P1/2, P3, P3a, L2/4 and P4/5; colour coded) from CrTHIC and PtTHIC aptamers was cloned in the platform and the constructs transformed into *C. reinhardtii*. (b) Five independent transformants for each modified aptamer design were grown in the presence of 10 mg L⁻¹ zeocin with or without 10 μM thiamine for four days. The ratio between the OD₇₃₀ in the deplete and the

523 *P. tricornutum* SSSP is necessary for thiamine uptake and THIC is essential for thiamine 524 biosynthesis


525 Having observed that *PtTHIC* is not regulated by thiamine, unlike its homologues in bacteria,
526 plants and chlorophytes, we sought to investigate whether the two *P. tricornutum* genes with
527 putative TPP aptamers, *PtSSSP* and *PtTHIC*, were genuinely involved in thiamine metabolism in
528 this diatom. We used CRISPR/Cas9-induced homologous directed repair to knock-out the genes
529 and study their function. We generated knock-out strains for *PtTHIC* and *PtSSSP* by co-
530 electroporating WT cells with a plasmid coding for Cas9 and a guide RNA pair, and another
531 plasmid encoding a homologous repair template designed to swap the coding sequence of each
532 target gene for a nourseothricin resistance cassette. This design facilitates genotypic screening
533 by PCR and phenotypic screening by nourseothricin resistance (Fig. 8a,d). After an initial screen
534 of several hundred nourseothricin-resistant transformants, we identified several with insertions
535 in the *PtSSSP* gene. Two were characterised further. Genotyping confirmed one mutant, called

536 Δ SSSP#1, with a monoallelic disruption of the coding sequence around the sgRNA target sites,
 537 and a second mutant (Δ SSSP#2) with a biallelic disruption of the genomic sequence, in other
 538 words a complete knock-out (Fig. 8b). When grown in the presence of 10 μ M thiamine,
 539 intracellular thiamine levels in WT cells were substantially higher than in the absence of the
 540 vitamin (1.06 pmol mg⁻¹ fresh weight (FW) compared to 0.13 pmol mg⁻¹ FW), whereas in the
 541 Δ SSSP#1 mutant the increase in intracellular thiamine was only to 0.72 pmol mg⁻¹ FW (Fig. 8c).
 542 There was no statistical difference in intracellular thiamine levels between Δ SSSP#2 cells grown
 543 in the presence or absence of 10 μ M thiamine (0.23 versus 0.09 pmol mg⁻¹ FW) indicating that no
 544 exogenous thiamine had been taken up. This demonstrates that PtSSSP is essential for thiamine
 545 uptake and likely encodes a thiamine transporter (Fig. 8c).

546 **Figure 8. Determination of genotype and phenotype of *Phaeodactylum tricornutum* SSSP and**
 547 **THIC CRISPR/Cas9 mutants. (a) and (b) Schematic representation of the CRISPR-mediated**
 548 **homology recombination strategy to inactivate SSSP (Phatr3_J50012) and THIC (Phatr3_J38085),**
 549 **respectively. (c) and (d) Transformants were genotyped with two or three primer pairs colour-**
 550 **coded in panel a). The negative control did not include any template DNA. (e) WT and two SSSP**
 551 **knock-out strains were grown in the absence or presence of 10 μ M thiamine for 5 days in**
 552 **biological duplicate, and intracellular thiamine levels were measured in technical duplicate.**
 553 **Different letters represent significant differences in average intracellular thiamine content**
 554 **between strains and conditions in a Tukey HSD test with a 0.95 confidence level. (f) WT and two**
 555 **THIC knock-out strains were grown in the absence (blue) or presence (red) of 1 μ M thiamine in**
 556 **24-well plates recording growth as OD₇₃₀ every 24 hours. Error bars represent the standard**
 557 **deviation of three biological replicates.**

558 For *THIC*, again after an initial screen of hundreds of transformants, we characterised two of
559 them further. Both independent mutants showed a biallelic loss of the *PtTHIC* CDS (Fig. 8e).
560 While thiamine supplementation (at 1 μ M) had no effect on growth of a WT control, both Δ *THIC*
561 mutants were able to grow only in the presence of thiamine, with no growth observed in its
562 absence (Fig. 8f). To confirm whether *PtTHIC* encodes an HMP-P synthase, we started three
563 cultures of the Δ *THIC#1* mutant in the absence of thiamine and at day 6 post-inoculation we
564 supplemented the first culture with 1 μ M thiamine, the second with 1 μ M HMP, and the third
565 was left unsupplemented. Both thiamine and HMP supplementation supported the growth of
566 the mutant from that point (Fig. 9a), confirming that *PtTHIC* encodes an HMP-P synthase. Finally,
567 we grew the Δ *THIC#1* mutant in increasing concentrations of thiamine (0-500 nM) to establish the
568 vitamin requirements of the mutant. As little as 5 nM thiamine was sufficient to support the
569 growth of the mutant without detriment, but the mutant could not grow at 1 nM thiamine (Fig.
570 9b).

Figure 9. Phenotype analysis of a *PtTHIC* knockout mutant. (a) The Δ *THIC#1* mutant was initially grown in the absence of supplementation, at day 6 (arrow) 1 μ M thiamine (red) or 1 μ M HMP was supplemented and growth compared to an unsupplemented control (blue). Error bars represent the standard deviation of three biological replicates. (b) WT and the Δ *THIC#1* mutant were grown in increasing concentrations of thiamine (0-500 nM) to determine the thiamine concentration required to support growth of the mutant. Error bars represent the standard deviation of six biological replicates.

595 Discussion

596 Using a bioinformatics approach we screened over 20 published diatom genomes and found 41
597 previously unidentified putative TPP aptamer sequences, 32 of which were associated with four
598 genes: *THIC*, *SSSP*, *SSUA/THI5-like* (encoding NMT1 domains), and *FOLR* (Fig. 2, Table S1b).
599 Riboswitches generally bind ligands related to the function of the genes they are physically
600 associated with (McCown *et al.*, 2017), suggesting that *THIC*, *SSSP*, *SSUA/THI5-like*, and *FOLR* are
601 involved in thiamine metabolism. We have been able to validate experimentally the function of
602 the first two genes in *P. tricornutum*, and yet the putative TPP aptamer sequences do not
603 operate as riboswitches.

604 The thiamine auxotrophy shown by the *P. tricornutum* *THIC* knock-out mutants generated by
605 CRISPR/Cas9 (Fig. 8f) demonstrates that diatom *THICs* encode an HMP-synthase homologous to
606 experimentally validated bacterial and plant HMP-synthases (Raschke *et al.*, 2007; Chatterjee *et*
607 *al.*, 2008). Moreover, the inability of the *P. tricornutum* Δ *SSSP* mutant to uptake exogenous
608 thiamine (Fig. 8c) demonstrates, for the first time in an algal species, that *SSSP* is a thiamine
609 transporter. *SSSP* belongs to the sodium-solute transporter (SSS) family, often associated with B-
610 vitamin transporters (Jaehme & Slotboom, 2015). Members of this family have been found
611 associated with predicted TPP riboswitches in chlorophytes, prasinophytes, cryptophytes,
612 stramenopiles and haptophytes but, to our knowledge, have never been experimentally
613 validated before (McRose *et al.*, 2014). *SSSP* is homologous to the experimentally confirmed
614 thiamine transporter Dur31 in the fungi *Candida parapsilosis*, which is also associated with a TPP
615 aptamer (Donovan *et al.*, 2018).

616 We also identified candidate *SSUA/THI5-like* genes containing NMT1 domains with homologies
617 to the ThiY FAMP transporter (Bale *et al.*, 2010) and the THI5 HMP-synthase (Coquille *et al.*,
618 2012) in 9 diatom genomes. Except for the *F. solaris* candidates, all diatom candidates, together
619 with those in haptophytes and cryptophytes, have a conserved signal peptide, which is present
620 in ThiY but not THI5. In contrast, the multiple copies of the *F. solaris* candidate are
621 phylogenetically more closely related to those in prasinophytes and chlorophytes, in agreement
622 with their suggested horizontal gene transfer origin (Vancaester *et al.*, 2020), and the fact that
623 they are associated with predicted TPP aptamers. None of these have the signal peptide present
624 in ThiY and SSUA, and therefore it is unlikely that they have the same function. Since the *P.*
625 *tricornutum* Δ *THIC* mutants cannot grow in the absence of thiamine (Fig. 8f), the NMT1-domain

626 containing gene is not sufficient for the production of HMP-P. Moreover, we observed that *P.*
627 *tricornutum* CRISPR/Cas9 mutants lacking the NMT1 domain-containing gene are able to grow in
628 the absence of exogenous thiamine and do not show an observable phenotype compared to WT,
629 indicating that the NMT1-containing gene is not involved in the biosynthesis of thiamine (Fig.
630 **S3**). In addition, the haptophyte *Emiliana huxleyi* has a NMT1 domain-containing gene but lacks
631 *THIC* and is unable to grow without thiamine or the HMP derivative 4-amino-5-aminomethyl-2-
632 methylpyrimidine (AmHMP; McRose *et al.*, 2014; Gutowska *et al.*, 2017). We propose that the
633 previously used nomenclature “*SSUA/THI5-like*” (McRose *et al.*, 2014) does not correspond to
634 the actual function of NMT1-domain-containing genes in diatoms and should not be used.
635 Instead we hypothesise that (with the exception of *F. solaris*) they are related to the bacterial
636 *ThiY* and are involved in the salvage of the pyrimidine moiety. Further auxotrophy tests with
637 NMT1 domain-containing gene mutants should be carried out to conclusively test whether these
638 genes are involved in pyrimidine salvage. *FOLR* candidates were identified in 6 diatom genomes,
639 and they are homologous to genes associated with predicted TPP aptamers in prasinophytes and
640 rhizaria (McRose *et al.*, 2014). Although the function of these genes remains unknown, they are
641 predicted to have signal peptides, so they might be involved in thiamine transport through a
642 receptor-mediated endocytosis mechanism similar to their homologous folate (vitamin B₉)
643 receptors in mice and humans (Zhao & Goldman, 2013).

644 The strong sequence conservation between putative diatom TPP aptamers, particularly in their
645 P2, P4 and P5 stems and in the TPP binding motifs (Fig. 1a) indicate that the sequences have
646 likely retained a defined and shared function within the diatom lineage. Given the absence of a
647 conserved splicing acceptor site in P2 stems and the lack of evidence for alternative splicing in
648 the *PtTHIC* 3'UTR in previous transcriptomic studies (Maheswari *et al.*, 2009), our initial
649 hypothesis was that the predicted diatom TPP riboswitches mechanism involved alternative
650 polyadenylation in contrast to the alternative splicing mechanism shown for all previously
651 characterised eukaryotic TPP riboswitches (Nguyen *et al.*, 2016). This hypothesis was further
652 supported by the conservation of A-rich P1 stems and the prediction of a polyadenylation site
653 overlapping the *PtTHIC* aptamer P1 stem. In many eukaryotic genes, alternative polyadenylation
654 determines differences in protein abundance, protein localisation, and/or protein-protein
655 interactions between different transcript isoforms via the inclusion or exclusion of *cis*-regulatory
656 elements bound by RNA binding proteins (Mayr, 2019).

657 However, despite the strong sequence conservation with experimentally characterised
658 eukaryotic riboswitches and despite active thiamine uptake in *P. tricornutum* (Fig S4, Fig. 8c), we
659 were not able to demonstrate a change in transcript levels, nor alternative splicing or alternative
660 polyadenylation in *PtTHIC* 3'UTR in response to thiamine supplementation (Fig. 3, Fig. S5). The
661 failure of *PtTHIC* 3'UTR to regulate a zeocin resistance reporter (Fig. 5) and of the predicted
662 aptamer to mediate a response to thiamine in the *CrTHI4* aptamer platform (Fig. 7) support
663 these observations and lead us to conclude that the predicted *PtTHIC* riboswitch does not
664 regulate gene expression in response to thiamine supplementation. The stable levels of
665 intracellular thiamine and TPP in transformants carrying a mutated *PtTHIC* aptamer (Fig. 6)
666 further demonstrate that in laboratory conditions the predicted *PtTHIC* riboswitch is not
667 necessary to regulate the homeostasis of intracellular thiamine levels either. Although the qPCR
668 results in *T. pseudonana* show a one-third downregulation of *TpSSSP* this change is only
669 supported by a p-value of 0.03, and *TpTHIC* levels did not respond to thiamine (Fig. 3). These
670 qPCR results, together with the *P. tricornutum* and *T. pseudonana* resistance to pyrithiamine
671 (Fig. 4), suggest that the lack of response to thiamine supplementation by the predicted TPP
672 riboswitches could be shared throughout the diatom lineage. It is worth noting that HMP can be
673 obtained from the degradation of pyrithiamine (Sudarsan *et al.*, 2005) and if the thiazol
674 biosynthetic pathway is unaffected, the organisms would be able to survive despite THIC
675 downregulation by pyrithiamine. We have not predicted any TPP riboswitches associated with
676 the thiazol biosynthetic pathway in diatoms, hence the salvage of HMP could mask the results of
677 the pyrithiamine experiment.

678 While all our experimental data coherently demonstrate that the predicted *PtTHIC* riboswitch
679 does not respond to thiamine supplementation, the question remains why there is such
680 sequence conservation across diatom aptamers, especially since these are in an untranslated
681 region of the transcript. In general terms, we propose that while the riboswitch studied here
682 may have lost the function of regulating gene expression in response to thiamine
683 supplementation under laboratory conditions, it may have acquired a new functionality that has
684 kept a high selection pressure. Taken together, our results show the weaknesses of
685 bioinformatic approaches to predict riboswitch function and stress the necessity to
686 experimentally test the functionality of the predicted aptamers before annotating them solely
687 based on sequence or secondary structure conservation.

688 Thiamine is scarce in oceanic surface waters (Sañudo-Wilhelmy *et al.*, 2012) and it is thought of
689 as being growth-limiting for some primary producers in certain environments (Paerl *et al.*, 2015),
690 with special relevance for harmful algal species (Tang *et al.*, 2010). In this context, the
691 experimental confirmation of an HMP synthase and a thiamine transporter conserved in most of
692 the available diatom genomes is of significant ecological relevance, given that these algae are
693 responsible for 20% of global primary production (Field *et al.*, 1998; Rousseaux & Gregg, 2014).
694 The ubiquitous presence of genes encoding thiamine transporters and for the full thiamine
695 biosynthesis pathway in the analysed diatom genomes does not offer sufficient information to
696 hypothesise whether and in which conditions diatoms are net suppliers or consumers of
697 thiamine and/or its moieties. The supply of thiamine and its moieties in oceanic environments
698 has been shown to be dynamic and complex (Carini *et al.*, 2014), and further research is needed
699 to understand the ecological flows of this critical micronutrient in oceanic communities.
700 Additionally, we have provided evidence to propose that genes encoding NMT1 domains found
701 in several diatom, cryptophyte and haptophyte genomes are potentially involved in pyrimidine
702 salvage. This is of special relevance given that some algal species have been shown to be
703 dependent only on one of the thiamine moieties (Gutowska *et al.*, 2017), and some marine
704 bacterial species can grow on HMP but not on thiamine (Carini *et al.*, 2014). Finally, we have
705 found predicted TPP aptamers associated with most *THIC* and *SSSP* genes. Although our results
706 show they are not responsive to thiamine supplementation under our laboratory conditions in
707 *P. tricornutum* and *T. pseudonana*, we cannot rule out they have a conserved function significant
708 for the regulation of thiamine metabolism with implications for thiamine dynamics in oceanic
709 communities.

710 In summary, the findings presented here expand our knowledge on how thiamine is produced
711 and taken up by diatoms and show the regulation of thiamine metabolism is more complex than
712 previously thought. Further research will allow us to understand the full ecological and
713 environmental implications of these findings in diatoms, a key taxonomic group in marine
714 ecosystems and the main oceanic primary producers.

715 Acknowledgments

716 We are grateful for technical support from Lorraine Archer. Jessie Dolliver helped to clone the
717 HA-tagged copies of *THIC* and Astrid Stubbusch provided the zeocin selection cassette Level 1

718 construct used in most *P. tricornutum* constructs. Catherine Sutherland and A. Caroline Faessler
719 helped to transform and maintain CRISPR/Cas9 mutants.

720 **Author Contributions**

721 MLP and AGS conceived and designed the research; MLP, KG, AH, PM and AGS planned the
722 experimental work; MLP, KG, PM, AH, SN and GIMO performed the experiments and data
723 analysis; MLP and AGS wrote the manuscript with contributions from all authors. All authors
724 reviewed and accepted the submitted manuscript.

725 **Data availability**

726 All raw data, query sequences and scripts to generate the figures in this paper can be found in
727 the GitHub online repository: https://github.com/AndreHolzer/Llavero-Pasquina_et_al_2021

728 **Funding Information**

729 This work was supported by the UK's Biotechnology and Biological Sciences Research Council
730 (BBSRC) Doctoral Training grant (grant no. BB/M011194/1 to MLP and AGS); grant no.
731 BB/M018180/1 to PM and AGS, grant no. BB/L002957/1 and BB/R021694/1 to KG and AGS;
732 Cambridge Trusts (PhD scholarship to SN); Bill & Melinda Gates Foundation grant OPP1144 (AH);
733 Leverhulme Trust (grant no. RPG 2017-077 to MPD and AGS).

734 **Conflict of Interest Statement**

735 We declare that the submitted work was carried out in the absence of any personal, professional
736 or financial relationships that could potentially be construed as a conflict of interest.

737 **References**

738 Anthony PC, Perez CF, García-García C, Block SM. 2012. Folding energy landscape of the
739 thiamine pyrophosphate riboswitch aptamer. *Proceedings of the National Academy of Sciences*,
740 109: 1485-1489.

741 Bale S, Rajashankar KR, Perry K, Begley TP, Ealick SE. 2010. HMP binding protein ThiY and HMP-P
742 synthase THI5 are structural homologues. *Biochemistry*, 49: 8929-8936.

743 Beilharz TH, Preiss T. 2009. Transcriptome-wide measurement of mRNA polyadenylation state.
744 *Methods*, 48: 294-300.

745 Bertrand EM, Allen AE. 2012. Influence of vitamin B auxotrophy on nitrogen metabolism in
746 eukaryotic phytoplankton. *Frontiers in microbiology*, 3: 375.

747 Bertrand EM, Allen AE, Dupont CL, Norden-Krichmar TM, Bai J, Valas RE, Saito MA. 2012.
748 Influence of cobalamin scarcity on diatom molecular physiology and identification of a
749 cobalamin acquisition protein. *Proceedings of the National Academy of Sciences*, 109: E1762-
750 E1771.

751 Bocobza SE, Malitsky S, Araújo WL, Nunes-Nesi A, Meir S, Shapira M, Fernie AR, Aharoni A. 2013.
752 Orchestration of thiamin biosynthesis and central metabolism by combined action of the thiamin
753 pyrophosphate riboswitch and the circadian clock in *Arabidopsis*. *The Plant Cell*, 25: 288-307.

754 Carini P, Campbell EO, Morré J, Sanudo-Wilhelmy SA, Thrash JC, Bennett SE, Temperton B,
755 Begley T, Giovannoni SJ. 2014. Discovery of a SAR11 growth requirement for thiamin's
756 pyrimidine precursor and its distribution in the Sargasso Sea. *The ISME journal*, 8: 1727-1738.

757 Chatterjee A, Li Y, Zhang Y, Grove TL, Lee M, Krebs C, Booker SJ, Begley TP, Ealick SE. 2008.
758 Reconstitution of ThiC in thiamine pyrimidine biosynthesis expands the radical SAM superfamily.
759 *Nature chemical biology*, 4: 758-765.

760 Cheah MT, Wachter A, Sudarsan N, Breaker RR. 2007. Control of alternative RNA splicing and
761 gene expression by eukaryotic riboswitches. *Nature*, 447: 497.

762 Coquille S, Roux C, Fitzpatrick TB, Thore S. 2012. The last piece in the vitamin b1 biosynthesis
763 puzzle structural and functional insight into yeast 4-amino-5-hydroxymethyl-2-methylpyrimidine
764 phosphate (hmp-p) synthase. *Journal of Biological Chemistry*, 287: 42333-42343.

765 Croft MT, Moulin M, Webb ME, Smith AG. 2007. Thiamine biosynthesis in algae is regulated by
766 riboswitches. *Proceedings of the National Academy of Sciences*, 104: 20770-20775.

767 Croft MT, Warren, MJ, Smith AG. 2006. Algae need their vitamins. *Eukaryotic cell*, 5: 1175-1183.

768 Crozet P, Navarro FJ, Willmund F, Mehrshahi P, Bakowski K, Lauersen KJ, Pérez-Pérez ME, Auroy
769 P, Gorchs Rovira A, Sauret-Gueto, S et al. 2018. Birth of a photosynthetic chassis: A MoClo

770 toolkit enabling synthetic biology in the microalga *Chlamydomonas reinhardtii*. *ACS synthetic*
771 *biology*, 7: 2074-2086.

772 Donovan PD, Holland LM, Lombardi L, Coughlan AY, Higgins DG, Wolfe KH, Butler G. 2018. TPP
773 riboswitch-dependent regulation of an ancient thiamin transporter in *Candida*. *PLoS genetics*,
774 14: e1007429.

775 Eddy SR. 2011. Accelerated profile HMM searches. *PLoS Comput Biol*, 7: e1002195.

776 Engler C, Youles M, Gruetzner R, Ehnert TM, Werner S, Jones JD, Parton NJ, Marillonnet S. 2014.
777 A golden gate modular cloning toolbox for plants. *ACS synthetic biology*, 3: 839-843.

778 Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput,
779 *Nucleic Acids Research*, 32: 1792-1797.

780 Field CB, Behrenfeld MJ, Randerson JT, Falkowski P. 1998. Primary production of the biosphere:
781 integrating terrestrial and oceanic components. *Science*, 281: 237-240.

782 Gutowska MA, Shome B, Sudek S, McRose DL, Hamilton M, Giovannoni SJ, Begley TP, Worden
783 AZ. 2017. Globally important haptophyte algae use exogenous pyrimidine compounds more
784 efficiently than thiamin. *MBio*, 8: e01459-17.

785 Hanson AD, Amthor JS, Sun J, Niehaus TD, Gregory III JF, Bruner SD, Ding Y. 2018. Redesigning
786 thiamin synthesis: Prospects and potential payoffs. *Plant Science*, 273: 92-99.

787 Hazra, AB, Han, Y, Chatterjee, A, Zhang, Y, Lai, RY, Ealick, SE, Begley, TP. 2011. A missing enzyme
788 in thiamin thiazole biosynthesis: identification of TenI as a thiazole tautomerase. *Journal of the*
789 *American Chemical Society*, 133: 9311-9319.

790 Helliwell KE, Wheeler GL, Smith AG. 2013. Widespread decay of vitamin-related pathways:
791 coincidence or consequence?. *Trends in Genetics*, 29: 469-478.

792 Helliwell KE, Lawrence AD, Holzer A, Kudahl UI, Sasso S, Kräutler B, Scanlan DJ, Warren MJ,
793 Smith AG. 2016. Cyanobacteria and eukaryotic algae use different chemical variants of vitamin
794 B12. *Current Biology*, 26: 999-1008.

795 Hofacker IL. 2003. Vienna RNA secondary structure server. *Nucleic acids research*, 31: 3429-
796 3431.

797 Hopes A, Nekrasov V, Belshaw N, Grouneva I, Kamoun S, Mock T. 2017. Genome Editing in
798 Diatoms Using CRISPR-Cas to Induce Precise Bi-allelic Deletions. *Bio-protocol*, 7: 23.

799 Hopes A, Nekrasov V, Kamoun S, Mock T. 2016. Editing of the urease gene by CRISPR-Cas in the
800 diatom *Thalassiosira pseudonana*. *Plant Methods*, 12: 1-12.

801 Jaehme M, Slotboom DJ. 2015. Diversity of membrane transport proteins for vitamins in bacteria
802 and archaea. *Biochimica et Biophysica Acta (BBA)-General Subjects*, 1850: 565-576.

803 Ji G, Li L, Li QQ, Wu X, Fu J, Chen G, Wu X. 2015. PASPA: a web server for mRNA poly (A) site
804 predictions in plants and algae. *Bioinformatics*, 31: 1671-1673.

805 Jurgenson CT, Begley TP, Ealick SE. 2009. The structural and biochemical foundations of thiamin
806 biosynthesis. *Annual review of biochemistry*, 78: 569-603.

807 Kanehisa M. 2019. Toward understanding the origin and evolution of cellular organisms. *Protein*
808 *Science*, 28: 1947-1951.

809 Kanehisa M, Furumichi M, Sato Y, Ishiguro-Watanabe M, Tanabe M. 2021. KEGG: integrating
810 viruses and cellular organisms. *Nucleic Acids Research*, 49: D545-D551.

811 Kanehisa M, Goto S. 2000. KEGG: kyoto encyclopedia of genes and genomes. *Nucleic acids*
812 *research*, 28: 27-30.

813 Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7:
814 improvements in performance and usability. *Molecular biology and evolution*, 30: 772-780.

815 Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: Molecular Evolutionary Genetics
816 Analysis across computing platforms. *Molecular Biology and Evolution*, 35: 1547-1549.

817 Maheswari U, Mock T, Armbrust EV, Bowler C. 2009. Update of the Diatom EST Database: a new
818 tool for digital transcriptomics. *Nucleic acids research*, 37: D1001-D1005.

819 Mayr C. 2019. What are 3' UTRs doing?. *Cold Spring Harbor perspectives in biology*, 11: a034728.

820 Maundrell K. 1990. nmt1 of fission yeast. A highly transcribed gene completely repressed by
821 thiamine. *Journal of Biological Chemistry*, 265: 10857-10864.

822 McCown PJ, Corbino KA, Stav S, Sherlock ME, Breaker RR. 2017. Riboswitch diversity and
823 distribution. *Rna*, 23: 995-1011.

824 McRose D, Guo J, Monier A, Sudek S, Wilken S, Yan S, Mock T, Archibald JM, Begley TP, Reyes-
825 Prieto A, Worden AZ. 2014. Alternatives to vitamin B 1 uptake revealed with discovery of
826 riboswitches in multiple marine eukaryotic lineages. *The ISME journal*, 8: 2517.

827 Mehrshahi P, Nguyen GTD, Gorchs Rovira A, Sayer A, Llavero-Pasquina M, Lim Huei Sin M,
828 Medcalf EJ, Mendoza-Ochoa GI, Scaife MA, Smith AG. 2020. Development of novel Riboswitches
829 for synthetic biology in the green Alga Chlamydomonas. *ACS synthetic biology*, 9: 1406-1417.

830 Mehta AP, Abdelwahed SH, Fenwick MK, Hazra AB, Taga ME, Zhang Y, Ealick SE, Begley TP. 2015.
831 Anaerobic 5-hydroxybenzimidazole formation from aminoimidazole ribotide: An unanticipated
832 intersection of thiamin and vitamin B12 biosynthesis. *Journal of the American Chemical Society*,
833 137: 10444-10447.

834 Monteverde DR, Gómez-Consarnau L, Cutter L, Chong L, Berelson W, Sañudo-Wilhelmy SA. 2015.
835 Vitamin B1 in marine sediments: pore water concentration gradient drives benthic flux with
836 potential biological implications. *Frontiers in Microbiology*, 6: 434.

837 Moulin M, Nguyen GT, Scaife MA, Smith AG, Fitzpatrick TB. 2013. Analysis of Chlamydomonas
838 thiamin metabolism in vivo reveals riboswitch plasticity. *Proceedings of the National Academy of
839 Sciences*, 110: 14622-14627.

840 Neupert J, Karcher D, Bock R. 2009. Generation of Chlamydomonas strains that efficiently
841 express nuclear transgenes. *The Plant Journal*, 57: 1140-1150.

842 Nguyen GT, Scaife MA, Helliwell KE, Smith AG. 2016. Role of riboswitches in gene regulation and
843 their potential for algal biotechnology. *Journal of phycology*, 52: 320-328.

844 Paerl RW, Bertrand EM, Allen AE, Palenik B, Azam F. 2015. Vitamin B1 ecophysiology of marine
845 picoeukaryotic algae: strain-specific differences and a new role for bacteria in vitamin cycling.
846 *Limnology and Oceanography*, 60: 215-228.

847 Palmer LD, Downs, DM. 2013. The thiamine biosynthetic enzyme ThiC catalyzes multiple
848 turnovers and is inhibited by S-adenosylmethionine (AdoMet) metabolites. *Journal of Biological
849 Chemistry*, 288: 30693-30699.

850 Petersen TN, Brunak S, Von Heijne G, Nielsen H. 2011. SignalP 4.0: discriminating signal peptides
851 from transmembrane regions. *Nature methods*, 8: 785-786.

852 Raschke M, Bürkle L, Müller N, Nunes-Nesi A, Fernie AR, Arigoni D, Amrhein N, Fitzpatrick TB.
853 2007. Vitamin B1 biosynthesis in plants requires the essential iron–sulfur cluster protein, THIC.
854 *Proceedings of the National Academy of Sciences*, 104: 19637-19642.

855 Rodionov DA, Vitreschak AG, Mironov AA, Gelfand MS. 2002. Comparative genomics of thiamin
856 biosynthesis in prokaryotes New genes and regulatory mechanisms. *Journal of Biological*
857 *chemistry*, 277: 48949-48959.

858 Roth A, Breaker RR. 2009. The structural and functional diversity of metabolite-binding
859 riboswitches. *Annual review of biochemistry*, 78: 305-334.

860 Rousseaux CS, Gregg WW. 2014. Interannual variation in phytoplankton primary production at a
861 global scale. *Remote sensing*, 6: 1-19.

862 Sañudo-Wilhelmy SA, Cutter LS, Durazo R, Smail EA, Gómez-Consarnau L, Webb EA, Prokopenko
863 MG, Berelson WM, Karl DM. 2012. Multiple B-vitamin depletion in large areas of the coastal
864 ocean. *Proceedings of the National Academy of Sciences*, 109: 14041-14045.

865 Seppey M, Manni M, Zdobnov EM. 2019. BUSCO: assessing genome assembly and annotation
866 completeness. In: Kollmar M, ed. *Gene prediction*. New York, NY: Humana Press, 227-245.

867 Sudarsan N, Cohen-Chalamish S, Nakamura S, Emilsson GM, Breaker RR. 2005. Thiamine
868 pyrophosphate riboswitches are targets for the antimicrobial compound pyrithiamine.
869 *Chemistry & biology*, 12: 1325-1335.

870 Tang YZ, Koch F, Gobler CJ. 2010. Most harmful algal bloom species are vitamin B1 and B12
871 auxotrophs. *Proceedings of the national academy of sciences*, 107: 20756-20761.

872 Vancaester E, Depuydt T, Osuna-Cruz CM, Vandepoele K. 2020. Comprehensive and functional
873 analysis of horizontal gene transfer events in diatoms. *Molecular Biology and Evolution*, 37:
874 3243-3257.

875 Wachter A, Tunc-Ozdemir M, Grove BC, Green PJ, Shintani DK, Breaker RR. 2007. Riboswitch
876 control of gene expression in plants by splicing and alternative 3' end processing of mRNAs. *The*
877 *Plant Cell*, 19: 3437-3450.

878 Webb ME, Marquet A, Mendel RR, Rébeillé F, Smith AG. 2007. Elucidating biosynthetic pathways
879 for vitamins and cofactors. *Natural product reports*, 24: 988-1008.

880 White HB. 1976. Coenzymes as fossils of an earlier metabolic state. *Journal of Molecular*
881 *Evolution*, 7: 101-104.

882 Winkler W, Nahvi A, Breaker RR. 2002. Thiamine derivatives bind messenger RNAs directly to
883 regulate bacterial gene expression. *Nature*, 419: 95.

884 Yu Z, Geisler K, Leontidou T, Young RE, Vonlanthen, SE, Purton S, Abell C, Smith, AG. 2021.
885 Droplet-based microfluidic screening and sorting of microalgal populations for strain engineering
886 applications. *Algal Research*, 56: 102293.

887 Zhao R, Goldman ID. 2013. Folate and thiamine transporters mediated by facilitative carriers
888 (SLC19A1-3 and SLC46A1) and folate receptors. *Molecular aspects of medicine*, 34: 373-385.

889 **Supplementary Information**

890 Additional Supplementary Information may be found online in the Supporting Information tab
891 for this article:

892 **Fig. S1** Phylogenetic tree and multiple sequence alignment (MSA) for algal gene candidates with
893 NMT1 domains.

894 **Fig. S2** Effect of thiamine and 4-Amino-5-hydroxymethyl-2-methylpyrimidine (HMP) on NMT1
895 domain-containing gene transcript levels in *Phaeodactylum tricornutum* and *Thalassiosira*
896 *pseudonana*.

897 **Fig. S3** Characterisation of NMT1 domain-containing gene knock-out mutants generated by
898 CRISPR/Cas9.

899 **Fig. S4** *C. reinhardtii* and *P. tricornutum* intracellular thiamine and thiamine pyrophosphate (TPP)
900 levels under increasing extracellular thiamine concentrations.

901 **Fig. S5** 3'RACE RT-PCR on *PtTH/C* in the presence or absence of 10 µM thiamine or 4-Amino-5-
902 hydroxymethyl-2-methylpyrimidine (HMP).

903 **Table S1.** Thiamine pyrophosphate (TPP) riboswitch prediction in diatom genomes.

904 **Table S2.** Diatom genomes analysed in this study.

905 **Table S3.** Identification of thiamine-related genes in diatom genomes.

906 **Table S4.** Primers used in this study.

907 **Figure Legends**

908 **Figure 1. Multiple sequence alignment of 16 predicted diatom thiamine pyrophosphate (TPP)**
909 **aptamers and structural comparison with previously characterised eukaryotic riboswitches. (a)**
910 **Multiple sequence alignment of previously identified (first eight) and a sample of newly identified**
911 **TPP aptamers in diatoms. Stems are indicated with arrows and colour coded. See Table S1b and**
912 **S1c for the full sequences of all predicted TPP aptamers. (b) Structural comparison of the**

913 predicted *Phaeodactylum tricornutum THIC* aptamer (centre) with experimentally described TPP
914 aptamers in *Chlamydomonas reinhardtii* (left, Croft et al., 2007) and *Neurospora crassa* (right,
915 Cheah et al., 2007). The pyrimidine-binding residues ("CUGAGA" motif, red stars) and the
916 pyrophosphate-binding residues ("GCG" motif, blue stars) are highlighted. Green algae and plant
917 aptamers contain an alternative 3' splicing site used in their mechanisms of action in their P2
918 stem (AG, boxed). The "AACAAA" sequence overlapping with the PtTHIC aptamer P1 stem
919 (boxed) is predicted to be the most likely polyadenylation site by the PASPA software (Ji et al.,
920 2015). Pt: *Phaeodactylum tricornutum*; Fc: *Fragilariaopsis cylindrus*; Tp: *Thalassiosira*
921 *pseudonana*; To: *Thalassiosira oceanica*; Cc: *Cyclotella cryptica*; Pm: *Pseudonitzschia multiseries*;
922 Pmu: *Pseudonitzschia multistriata*; La: *Licmophora abbreviata*; Hal: *Halamphora* sp. MG8b; Fs:
923 *Fistulifera solaris*.

924 **Figure 2. Proposed routes for thiamine biosynthesis in diatoms. (a)** A TBLASTN search using
925 selected algal peptide sequences as queries (See Table S3c) was performed against 19 diatom
926 genomes to determine the presence (full circle p -value $> 10^{-20}$; half-full circle p -value $> 10^{-3}$) or
927 absence (empty circle) of different thiamine-related genes. The presence of an associated
928 predicted riboswitch in the 3'UTR of the gene is indicated with a hairpin symbol at the right of
929 the circle. The genome abbreviations, accession numbers and references can be found in Table
930 S2. **(b)** Potential thiamine biosynthetic, salvage and uptake routes in diatoms. The pathway steps
931 with strong support across the diatom lineage are shown in green. AIR: 5-Aminomidazole
932 ribotide; SAM: S-Adenosyl methionine; dA: 5'-deoxyadenosine; L-Met: L-Methionine; GA3P:
933 Glyceraldehyde 3-phosphate; HMP-P: hydroxymethyl-pyrimidine phosphate; HMP-PP:
934 hydroxymethyl-pyrimidine pyrophosphate; HET-P: hydroxyethyl-thiazole phosphate; FAMP:
935 N-formyl-4-amino-5-aminomethyl-2-methylpyrimidine; DXP: 1-deoxy-D-xylulose 5-phosphate; PLP:
936 pyridoxal 5'-phosphate; NAD: nicotinamide adenine dinucleotide; TMP: thiamine
937 monophosphate; TPP: thiamine pyrophosphate. ⁸ THI5/NMT1 candidates contain an NMT1 pfam
938 domain (PF09084). ⁵THIG and THIS are encoded in the chloroplast in *P. tricornutum*, so the
939 results can be biased in genomes that do not include chloroplast sequences. ⁷THID, THIE and
940 HMPK functions are performed by a single peptide in diatoms (TH1). ⁶In some bacteria TenI
941 accelerates a thiazole tautomerisation reaction, but it is not necessary to synthesise HET-P
942 (Hazra et al., 2011).

943 **Figure 3. Impact of vitamin supplementation on expression of THIC and SSSP in *Phaeodactylum*
944 *tricornutum* and *Thalassiosira pseudonana*.** *P. tricornutum* and *T. pseudonana* were grown in
945 the absence (blue) or presence (red) of 0.6 μ M cobalamin (B_{12}), 10 μ M thiamine (B_1) or 10 μ M 4-
946 Amino-5-hydroxymethyl-2-methylpyrimidine (HMP) for 7 days. Three or four biological replicates
947 were analysed by RT-qPCR in technical duplicate. The technical replicate measurements were
948 averaged for each biological replicate, and transcript levels were normalised for the average
949 transcript levels of three housekeeping genes (H4, UBC, UBQ for *P. tricornutum*; Actin, EF1a, rbcS
950 for *T. pseudonana*). Each dot represents the relative expression value for an individual biological
951 replicate and a box plot summarises the data for each gene and treatment. Two-sided t-tests
952 between supplemented and control conditions were conducted for all genes. * p -value < 0.05 .

953 **Figure 4. Effect of the thiamine antimetabolite pyrithiamine on the growth of *Chlamydomonas*
954 *reinhardtii*, *Phaeodactylum tricornutum* and *Thalassiosira pseudonana*.** *C. reinhardtii*, *P.*
955 *tricornutum* and *T. pseudonana* were grown for 9 days in the absence (left column) or presence
956 (right column) of 10 μ M pyrithiamine and the absence (blue) or presence (red) of 10 μ M
957 thiamine in 96 well plates. Growth was measured as OD_{730} every 24 hours. Error bars represent
958 the standard deviation of three biological replicates.

959 **Figure 5. Effect of thiamine supplementation on transformants with PtTHIC promoter and**
960 **3'UTR driving expression of the Ble zeocin resistance gene.** Transformants carrying a Ble-Venus
961 reporter controlled by the PtEF2 promoter and PtFCPC 3'UTR (pMLP2047) or the PtTHIC
962 promoter and 3'UTR (pMLP2048) were grown in the absence (left column) or presence (right
963 column) of 10 μ M and thiamine the absence (blue) or presence (red) of 75 mg L⁻¹ zeocin. Error
964 bars represent the standard deviation of three biological replicates for each of ten independent
965 transformants for pMLP2047 and pMLP2048 and three biological replicates for WT.

966 **Figure 6. Intracellular thiamine and thiamine pyrophosphate (TPP) abundance and PtTHIC**
967 **protein levels determined in transformants carrying a mutated PtTHIC aptamer.** (a) A
968 construct coding for an extra copy of PtTHIC with a targeted mutation in its putative aptamer
969 (pMLP2065) and its respective unmutated control (pMLP2064) were transformed into
970 *Phaeodactylum tricornutum*. (b) Transformants were grown for 5 days before thiamine and TPP
971 were quantified by HPLC and normalised by fresh weight. Each dot represents the measurement
972 of an independent transformant and a box plot summarises the data. Different letters represent
973 significant differences in average vitamin content between strains in a Tukey HSD test with a
974 0.95 confidence level. (c) An independent transformant for each construct was grown to
975 approximately 5x10⁶ cells mL⁻¹ in the presence or absence of 10 μ M thiamine, and protein was
976 extracted from 150 mL cultures. A western blot analysis with a primary anti-HA antibody on total
977 crude extracts normalised to culture OD is shown.

978 **Figure 7. Response of *Chlamydomonas reinhardtii* carrying the PtTHIC-CrTHIC chimeric**
979 **riboswitches to thiamine supplementation.** (a) The CrTHI4 riboswitch platform previously
980 developed in our lab (Mehrshahi et al., 2020) was cloned in the 5'UTR of a Ble-eGFP zeocin
981 resistance reporter with a CrPSAD promoter and a CrCA1 terminator. A set of modified aptamers
982 combining five structural parts (P1/2, P3, P3a, L2/4 and P4/5; colour coded) from CrTHIC and
983 PtTHIC aptamers was cloned in the platform and the constructs transformed into *C. reinhardtii*.
984 (b) Five independent transformants for each modified aptamer design were grown in the
985 presence of 10 mg L⁻¹ zeocin with or without 10 μ M thiamine for four days. The ratio between
986 the OD₇₃₀ in the deplete and the thiamine-supplemented conditions is shown.

987 **Figure 8. Determination of genotype and phenotype of *Phaeodactylum tricornutum* SSSP and**
988 **THIC CRISPR/Cas9 mutants.** (a) and (b) Schematic representation of the CRISPR-mediated
989 homology recombination strategy to inactivate SSSP and THIC, respectively. (c) and (d)
990 Transformants were genotyped with two or three primer pairs colour-coded in panel a). The
991 negative control did not include any template DNA. (e) WT and two SSSP knock-out strains were
992 grown in the absence or presence of 10 μ M thiamine for 5 days in biological duplicate, and
993 intracellular thiamine levels were measured in technical duplicate. Different letters represent
994 significant differences in average intracellular thiamine content between strains and conditions
995 in a Tukey HSD test with a 0.95 confidence level. (f) WT and two THIC knock-out strains were
996 grown in the absence (blue) or presence (red) of 1 μ M thiamine in 24-well plates recording
997 growth as OD₇₃₀ every 24 hours. Error bars represent the standard deviation of three biological
998 replicates.

999 **Figure 9. Phenotype analysis of a PtTHIC knock-out mutant.** (a) The Δ THIC#1 mutant was
1000 initially grown in the absence of supplementation, at day 6 (arrow) 1 μ M thiamine (red) or 1 μ M
1001 HMP was supplemented and growth compared to an unsupplemented control (blue). Error bars
1002 represent the standard deviation of three biological replicates. (b) WT and the Δ THIC#1 mutant
1003 were grown in increasing concentrations of thiamine (0-500 nM) to determine the thiamine

1004 *concentration required to support growth of the mutant. Error bars represent the standard*
1005 *deviation of six biological replicates.*