

1 **Title Page**

2 **1. Title:**

3 Drosophila Mechanical Nociceptors Preferentially Sense Localized Poking

4 **2. Authors and affiliations:**

5 Zhen Liu¹ (zliu15@tsinghua.org.cn)

6 Qi-Xuan Wang¹ (wqx15@mails.tsinghua.edu.cn)

7 Meng-Hua Wu¹ (wumenghua@mail.tsinghua.edu.cn)

8 Shao-Zhen Lin² (linshaozhen91@gmail.com)

9 Xi-Qiao Feng² (fengxq@tsinghua.edu.cn)

10 Bo Li² (libome@mail.tsinghua.edu.cn)

11 Xin Liang^{1,*} (xinliang@tsinghua.edu.cn)

12 1 School of Life Sciences, Tsinghua University, Beijing 100084, China

13 2 Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics,
14 Tsinghua University, Beijing 100084, China

15 **3. Corresponding author:**

16 **Name:** Xin Liang

17 **Address:** Room E118, Medical School, Tsinghua University, 100084 Beijing, China

18 **Tel:** +86-10-62772563

19 **Email:** xinliang@tsinghua.edu.cn

20 **ORCID:** 0000-0001-7915-8094

21 **4. Key words**

22 Nociception

23 Mechanosensation

24 Dendritic morphology

25 Ppk1/Ppk26

26 Piezo

27 Ca- α 1D

Drosophila Mechanical Nociceptors Preferentially Sense Localized Poking

Zhen Liu¹, Qi-Xuan Wang¹, Meng-Hua Wu¹, Shao-Zhen Lin², Xi-Qiao Feng², Bo Li², Xin Liang^{1,*}

¹ School of Life Sciences, Tsinghua University, Beijing 100084, China

² Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China

* Correspondence: xinliang@tsinghua.edu.cn

Abstract

Mechanical nociception is an evolutionarily conserved sensory process required for the survival of living organisms. Previous studies have revealed much about the neural circuits and key sensory molecules in mechanical nociception, but the cellular mechanisms adopted by nociceptors in force detection remain elusive. To address this issue, we study the mechanosensation of a fly larval nociceptor (class IV da neurons, c4da) using a customized mechanical device. We find that c4da are sensitive to mN-scale forces and make uniform responses to the forces applied at different dendritic regions. Moreover, c4da showed a greater sensitivity to more localized forces, consistent with them being able to sense the poking of sharp objects, such as wasp ovipositor. Further analysis reveals that high morphological complexity, mechanosensitivity to lateral tension and active signal propagation in the dendrites altogether facilitate the mechanosensitivity and sensory features of c4da. In particular, we discover that Piezo and Ppk1/Ppk26, two key mechanosensory molecules, make differential but additive contributions to the mechanosensation of c4da. In all, our results provide updates into understanding how c4da process mechanical signals at the cellular level and reveal the contributions of key molecules.

Key words

Nociception

Mechanosensation

Dendritic morphology

Ppk1/Ppk26

Piezo

Ca- α 1D

59 **Introduction**

60 Mechanosensation is a physiological process that transduces mechanical stimuli
61 into neural signals (Chalfie, 2009; Marshall and Lumpkin, 2012). It underlies the per-
62 ception of gentle touch, sound, acceleration and noxious force. To cope with manifold
63 environmental forces, mechanoreceptor cells are diversified (Lumpkin et al., 2010;
64 Zimmerman et al., 2014). Among different types of mechanoreceptor cells, those acti-
65 vated by noxious forces, i.e. mechanical nociceptors, are of particular importance be-
66 cause they are essential for the survival of living organisms (Lumpkin et al., 2010;
67 Tracey, 2017).

68 Much effort has been made to understand the mechanical nociception in several
69 model organisms. In mammals, free nerve endings of nociceptive neurons penetrate the
70 keratinocyte layer of skin and serve as the primary nociceptors. The axons of these
71 neurons output to neural circuits in the spinal cord, which then transmit pain signals to
72 local interneurons or up to the brain to initiate neural reflexes (Tracey, 2017). At the
73 molecular level, transient receptor potential (TRP) channels, Piezo and other channels
74 are found to be involved in mechanical nociception (Kwan et al., 2006; Murthy et al.,
75 2018; Tracey, 2017). In lower animals (such as worms and flies), mechanical nocicep-
76 tion has also been extensively studied (Chatzigeorgiou et al., 2010; Tracey, 2017). A
77 widely used model is fly larval mechanical nociception mediated by class IV dendritic
78 arborization neurons (c4da). C4da are polymodal nociceptors that can be activated by
79 light, thermal and mechanical (e.g. harsh touch) stimuli (Hwang et al., 2007; Kim et al.,
80 2012; Terada et al., 2016; Xiang et al., 2010). The axon of c4da synapses to several
81 targets in the ventral nerve cord, which then output signals to trigger the rolling behavior,
82 a stereotyped locomotion in escaping from nociceptive stimuli (Burgos et al., 2018;
83 Grueber et al., 2007; Yoshino et al., 2017). Furthermore, two parallel pathways in c4da,
84 one mediated by Ppk1/Ppk26 and the other by Piezo, are required for the behavioral
85 responses in mechanical but not thermal nociception (Gorczyca et al., 2014; Guo et al.,
86 2014; Kim et al., 2012; Mauthner et al., 2014).

87 Despite the known information about the neural circuits and sensory molecules in
88 the c4da-mediated mechanical nociception, the cellular mechanism of how c4da detect
89 forces remains unclear. A recent study shows that the nociceptive responses of c4da to
90 thermal stimuli depend on the dendritic calcium influx through two TRPA channels and
91 the L-type voltage-gated calcium channel, suggesting the presence of neuronal pro-
92 cessing of heat-induced responses (Terada et al., 2016). In a more general sense, it is
93 also intriguing how mechanoreceptor cells are optimized for their specific stimuli. An
94 interesting study reports unique neuronal mechanisms in the mechanosensory neurons
95 in tactile-foraging birds (Schneider et al., 2014), also demonstrating the presence of
96 cellular mechanisms that facilitate the response to specific stimuli. So far, how c4da
97 process mechanical inputs in nociception at the neuronal level remains unclear.

98 To address this issue, we build a “mechanical-optical” recording system that is able
99 to measure the *in vivo* sensory response of c4da to the stimulating forces with controlled
100 strength, contact area and force application point. We find that c4da are sensitive to

101 mN-scale force, and moreover, c4da use their entire dendritic territory as the force-
102 receptive field. In particular, c4da show greater responses to the stimuli delivered using
103 small probes, suggesting their preferential sensitivity to localized forces. Further anal-
104 ysis reveals the cellular mechanisms that facilitate the sensory features of c4da and ex-
105 amines the contributions of key molecules. These findings update the current model for
106 the c4da-mediated mechanical nociception and provide mechanistic insights into how
107 mechano-nociceptor cells process force signals at the cellular level.

108 **Results**

109 **Mechanical recording and the “sphere-surface” contact model**

110 We set out by building a mechanical device that was able to exert and measure
111 compressive forces on fly larval fillets (**Fig. 1A**). This device contained three parts: a
112 piezo stack actuator, a metal beam coupled with a strain gauge and a force probe made
113 of capillary glass tube (**Fig. 1A** and **Fig. s1**). The whole device was mounted on the
114 working stage of an inverted spinning-disk confocal microscope (**Fig. 1A** and **Fig. s1**).
115 To record the force-evoked response of sensory neurons, freshly prepared larval fillet
116 was spread and mounted on a polydimethylsiloxane (PDMS) pad (thickness: 1 mm)
117 with the exterior surface of the cuticle accessible to the force probe and the interior
118 surface visible to the confocal microscope (**Fig. 1A**). When the force probe, driven by
119 the piezo actuator, delivered compressive forces onto the larval fillet, the strain gauge
120 converted the deflection of the metal beam into an electrical signal. This electrical sig-
121 nal could be translated into a force signal using the calibration curve (**Fig. 1 B-C**, see
122 Methods). By making spherical probes in different diameters (**Fig. 1D**), we can study
123 how mechanoreceptor cells respond to the probes of different sizes. In the meantime,
124 we also monitored the position of force probes, dendritic morphology (membrane
125 marker) and neuronal response (GCaMP6s) (**Fig. 1E**).

126 The contact mechanics between the force probe and fillet can be approximated
127 using a classic “sphere-surface” contact model (Johnson, 1985), which would allow us
128 to distinguish the effects of different parameters, such as pressure and contact area. Note
129 that to guarantee the accuracy of the contact model, the indentation depth (d) needs to
130 be smaller than the radius of the spherical probe (r) (**Fig. 1F**). This prerequisite is ac-
131 ceptable for our measurements because pilot experiments showed that when the step
132 distance (D) of the piezo actuator was greater than r , the force probe often penetrated
133 the cuticle and caused tissue damage. This would interfere with our focus on mechanical
134 nociception by introducing potential effects of chemo-nociception. To confirm if the
135 modeling approximation is valid, we calculated the contact force (f_{model}) from d (**Eq. 1**
136 and **2**, see Methods), which could be obtained from the measured values of D and beam
137 deflection (B) (**Eq. 3**, see Methods). f_{model} was then compared to the experimentally
138 measured forces (f_{exp}) (**Fig. 1 G-I**). As shown in **Fig. 1I**, the relationship between f_{exp}
139 and d fell in the range of model calculations, demonstrating that the model approxima-
140 tion is valid. Note that different values for the elastic modulus of PDMS (E_{PDMS})
141 (Sharfeddin et al., 2015; Vlassov et al., 2018) were used to calculate the upper and lower
142 bounds of contact forces (**Fig. 1I**).

143 **C4da are sensitive to mN-scale forces and more sensitive to small probes**

144 Using the customized mechanical device, we applied poking forces onto the c4da
145 at the positions about 100 μm away from the soma (i.e. the “proximal” region, denoted
146 as p in the figures) (**Fig. 2A**). By simultaneously monitoring probe location and neu-
147 ronal morphology, we ensured that the probe made direct compression onto the den-
148 drites. Force titration experiments using a 60 μm probe showed the half-activation force

149 (f_{50}) of ~3 mN and the full-activation force (f_{90}) of ~4 mN, while those using a 30 μm
150 probe showed the f_{50} of ~0.7 mN and the f_{90} of ~1.5 mN (**Fig. 2 B-C**), suggesting that
151 c4da have different sensitivities to different probe sizes. To explore the entire dendritic
152 field, we then compressed the dendrites of c4da at the positions about 200 μm away
153 from the soma (i.e. the “distal” region, denoted as d in the figures) (**Fig. 2D**). In the
154 condition of using a 60 μm probe and the saturating force (4 mN), the responses of c4da
155 were not significantly different from those to the proximal stimuli (**Fig. 2E**). In the case
156 of using a 30 μm probe and also a saturating force (1.5 mN), the responses of c4da were
157 slightly weaker than those to the proximal stimuli, but most of the neurons did make
158 clear responses (**Fig. 2E**). Therefore, our results showed that c4da use their entire den-
159 dritic field as the force-receptive field.

160 To further justify the validity of this assay, we performed the same assay on c1da
161 (class I da neuron) and c3da (class III da neuron). C1da showed no responses to com-
162 pressive forces (**Fig. s2**), in consistence with their function being a proprioceptor rather
163 than a tactile receptor (Guo et al., 2016). C3da showed a much smaller threshold of
164 activation, suggesting a higher sensitivity in detecting tactile forces (using both 30 and
165 60 μm probes). This is consistent with their known function as the larval gentle touch
166 receptor (**Fig. s2**) (Yan et al., 2013).

167 The observation of different responses of c4da to 30 and 60 μm probes suggests
168 that c4da may be more sensitive to smaller probes. To test this idea, we stimulated c4da
169 using probes of different diameters (30, 60, 100 and 200 μm) at the distal regions (**Fig.**
170 **2F**). At the same force, c4da made stronger responses ($\Delta F/F_0$) to smaller probes (**Fig.**
171 **2G**). Furthermore, the slope of the force- $\Delta F/F_0$ curve increased as the probe became
172 smaller (**Fig. 2G**), reflecting an enhanced mechanosensitivity to the change in stimulat-
173 ing force. To further understand this result, we calculated central pressure (P_0) and con-
174 tact area (A_c) based on the “sphere-surface” model (**Eq. 4-7**, see Methods), and then
175 plotted the responses against these two parameters separately (**Fig. 2H**). In the P_0 - $\Delta F/F_0$
176 plots (left panel in **Fig. 2H**), we found that increasing contact area decreased the thresh-
177 old of cell activation but had only minor impact on the slope of the curves, suggesting
178 that c4da have a robust sensitivity to the change in pressure. Similar observations were
179 obtained when the pressures at other positions ($P_{x \mu\text{m}}$) were plotted against the responses
180 ($\Delta F/F_0$) (**Fig. s3**). In the A_c - $\Delta F/F_0$ plots (right panel in **Fig. 2H**), when the contact area
181 was the same, higher pressure led to stronger responses (**Fig. 2H**), also in consistence
182 with c4da being a pressure sensor. The comparison of the ΔP (the change of pressure)
183 and ΔA_c (the change of contact area) of different probes showed that for a given change
184 of forces, the smaller probes caused a smaller ΔA_c but a greater ΔP in comparison to
185 the larger probes (**Fig. 2H**), which explains the higher sensitivity of c4da to sharper
186 probes.

187 To further understand how the preferential sensitivity of c4da to localized force
188 contributes to larval responses in nociception, we performed the behavior assay of me-
189 chanical nociception using a modified Von Frey fiber. To test the effect of different
190 probe sizes, we attached the glass probes (shorter than 1 mm) of different diameters

191 (from 30 to 200 μm) to one end of a Von Frey fiber (**Fig. 2I**). These modified fibers
192 were used to poke fly larvae with a stimulating force of 10-20 mN. The defensive rolling
193 behaviors were recorded and graded to reflect the sensory response of c4da. We found
194 that in general, the larvae showed stronger behavioral responses to smaller probes (**Fig.**
195 **2G**), in consistence with our finding that c4da make stronger cellular responses to
196 smaller probes.

197 In summary, our results demonstrate that c4da are sensitive to mN-scale com-
198 pressive forces and use their entire dendritic arbor as the force receptive field. In par-
199 ticular, c4da are more sensitive to forces delivered using the small probes, consistent
200 with c4da acting as nociceptors to sense mechanical poking or sting from sharp objects,
201 e.g. the ovipositor of wasp (Cerkvenik et al., 2017; Hwang et al., 2007).

202 **Morphological complexity contributes to the sensory features of c4da**

203 Having characterized the mechanosensory responses of c4da, we wondered what
204 could be the cellular mechanisms underlying the sensory features of c4da, in particular
205 the preferential sensitivity to small probes? The key thing is to ensure that an adequate
206 number of mechanosensory molecules can be activated, even in the dendrites in distal
207 regions or under a localized stimulation. Intuitively, a dense and uniform distribution
208 of dendrites might facilitate these sensory features. We tested this hypothesis by study-
209 ing the sensory responses of a knock-down mutant of *cut* (*ctⁱ*), a key transcription factor
210 that is known to determine the high complexity of c4da (Jinushi-Nakao et al., 2007;
211 Sulkowski et al., 2011).

212 C4da-*ctⁱ* neurons showed a much sparser dendritic morphology than c4da-*wt* (**Fig.**
213 **3A**). Modified Sholl analysis showed that the dendritic density of c4da-*wt* was uniform
214 across the entire dendritic field, while that of c4da-*ctⁱ* was similar to c4da-*wt* in the
215 proximal region but rapidly decreased towards the distal region (**Fig. 3B**). In compari-
216 son to c4da-*wt* or c4da-scrambled RNAi, c4da-*ctⁱ* showed similar responses to the stim-
217 ulti on proximal dendrites, but significantly weaker responses to those on distal dendrites
218 (**Fig. 3C**). These results show that with a reduced morphological complexity, c4da-*ctⁱ*
219 cannot use its entire dendritic arbor as an effective force receptive field. We also studied
220 the responses of c4da-*ctⁱ* to the probes of different sizes. Although c4da-*ctⁱ* still showed
221 force-dependent sensory responses, the overall response amplitudes were significantly
222 reduced. In particular, the cellular responses to the 30 μm probe were reduced to the
223 greatest extent (**Fig. 3D**). In consistence with the cellular observations, the defensive
224 rolling behaviors of c4da-*ctⁱ* in response to the mechanical poking of small probes (30
225 and 60 μm) were largely weakened in comparison to those of c4da-*wt*, while those to
226 large probes (e.g. 100 μm) showed nearly no change (**Fig. 3E**). Based on these obser-
227 vations, we conclude that the sensory preference of c4da to small probes was lost in
228 c4da-*ctⁱ*.

229 As Cut is a transcription factor, the reduction of its expression level might lead to
230 other changes in addition to the disrupted morphology (Jack and DeLotto, 1995;

231 Jinushi-Nakao et al., 2007; Sulkowski et al., 2011). To explore the effects of these po-
232 tential factors, we performed several control experiments. First, we checked the expres-
233 sion level and subcellular localization of two mechanosensory molecules, i.e. Piezo and
234 Ppk1/Ppk26, in c4da-*ctⁱ*. They showed similar expression and localization as in c4da-
235 *wt*. Second, the changes in dendritic cytoskeleton might indirectly affect mechanosen-
236 sation by altering the mechanical property of dendrites, so we also checked dendritic
237 signals of F-actin and microtubules. No significant differences were found (**Fig. s4**).
238 These two observations show that although the reduction in the expression level of Cut
239 decreases the number of dendritic branches, the expression and localization of mecha-
240 nosensory molecules and cytoskeletal elements are unchanged in the existing dendrites
241 of c4da-*ctⁱ*. Third, we also performed the same set of mechanical recording experiments
242 on c3da-*wt*, whose mechanosensory machinery is wild-type but dendritic density
243 changes in the way as in the case of c4da-*ctⁱ* (**Fig. s2**). The responses of c3da-*wt* to the
244 distal stimuli were significantly weaker than those to the proximal stimuli (**Fig. s2**). In
245 addition, no preference to small probes was found in c3da-*wt* (**Fig. s2**). These sensory
246 features were markedly different from those in c4da-*wt*, but similar to those in c4da-*ctⁱ*.
247 In all, our observations are consistent with the dendritic morphology of c4da making
248 direct contributions in supporting the sensory features. Note that the potential contribu-
249 tions of other unknown factors cannot be absolutely excluded (see Discussion).

250 **Mechanosensitivity to lateral tension expands the force-receptive field**

251 An unexpected finding in studying c4da-*ctⁱ*, primarily due to their sparse dendritic
252 morphology, was that when the force probe did not exert forces on a dendrite but on an
253 adjacent region without any dendrite (i.e. the “dendrite-off” mode, denoted as “**d-off**”
254 in **Fig. 3A**), the response of c4da was nearly unchanged, as if the force was directly
255 applied on the dendrite (**Fig. 3C**). We wondered if this reflects impalpable difference
256 due to the overall reduction in the sensory response of c4da-*ctⁱ* or the dendrites of c4da
257 have an expanded force receptive field. To verify this, we performed the same experi-
258 ments on c4da-*wt* (**Fig. 2D**). The responses of c4da-*wt* to the “dendrite-off” stimuli were
259 also unchanged from those to the distal stimuli. Further analysis showed that the re-
260 sponses of c4da kept nearly constant until the force was applied at least 40-60 μm from
261 a dendrite (**Fig. 4A**). Based on these results, we conclude that the dendrites of c4da have
262 an expanded force-receptive field.

263 The expansion of force-receptive field suggests that in addition to the sensitivity to
264 the pressure perpendicular to cuticle surface (P_p), c4da also possess mechanosensitivity
265 to lateral tension (parallel to cuticle surface, T_L). By simulating tissue mechanics of
266 larval fillet (**Fig. s5**, also see Methods), we calculated the distribution of P_p and T_L
267 caused by a 60 μm probe (indentation depth: 20 μm , force: ~ 4 mN). We noted that as
268 the distance to the center of the force probe increased, P_p showed a monotonic decrease
269 but T_L peaked at around 20 μm from the force application point (**Fig. 4B**). This modeling
270 analysis predicts that if c4da were only sensitive to ΔP_p , their sensory response should
271 decrease when the force is not directly on the dendrites. However, if c4da were also
272 sensitive to ΔT_L , the increase in T_L would compensate for the reduction in P_p . In this

273 scenario, the effective force-receptive field is expanded.

274 Morphological analysis showed that almost all positions in the dendritic territory
275 of a c4da were within 20 μm distance from a dendrite (Fig. 4C). To examine how the
276 sensitivity to T_L promotes the likelihood of cell activation, we overlaid the 2D profiles
277 of P_p and T_L to the dendrites of c4da at random spots (Fig. 4C) and calculated the prob-
278 ability of cell activation. Note that the calculation had two assumptions. First, we as-
279 sumed 10% of the peak value of P_p or T_L as the activation threshold of a dendritic seg-
280 ment. Second, we assumed a dendritic coverage threshold (C_d), i.e. the minimal amount
281 of excited dendritic segments that would lead to neuronal excitation. To explore the
282 parameter space, we tested three values for C_d , i.e. 0.1% (20 μm) (low threshold), 1%
283 (200 μm) (intermediate threshold) and 2% (400 μm) (high threshold) of the total den-
284 dritic length (mean \pm std: $19560 \pm 1667 \mu\text{m}$, $n=5$ cells). In simulations, we considered
285 three scenarios, in which the cell is sensitive to either P_p or T_L or to both. Simulation
286 results showed that with the lower threshold assumption (e.g. $C_d=20 \mu\text{m}$), the cells
287 could be activated in all three conditions. However, if the threshold was of intermediate
288 (e.g. $C_d=200 \mu\text{m}$) or high (e.g. $C_d=400 \mu\text{m}$) level, the mechanosensitivity to the change
289 in T_L could largely enhance the probability of neuronal excitation (Fig. 4D), consistent
290 with our hypothesis. In all, our analysis suggests that the sensitivity to lateral tension
291 enhances the efficiency of c4da in force detection, especially when dendritic coverage
292 is small.

293 **Piezo and Ppk1/Ppk26 differentially contribute to the mechanosensitivity of c4da**

294 We then wondered what is the molecular basis underlying the mechanosensitivity
295 of c4da, especially the sensitivity to lateral tension? Previous behavior assays suggest
296 that Ppk1/Ppk26 and Piezo mediate two parallel mechanosensory pathways in c4da
297 (Kim et al., 2012). This remains to be confirmed at the cellular level. Moreover, it is
298 also unclear how Ppk1/Ppk26 and Piezo contribute to the mechanosensitivity of c4da
299 respectively.

300 We first confirmed that the dendritic morphologies of c4da-*piezo*^{KO}, c4da-*ppk26*¹
301 (a null mutant) and c4da-*piezo*^{KO}, *ppk1*^{Δ5} (a double null mutant) were not affected (Fig.
302 5 A-B), excluding the potential effect of morphological changes. We then measured the
303 force-evoked responses of these mutants using two types of probes (30 and 60 μm) and
304 at different dendritic regions (proximal and distal). In all conditions, the responses of
305 c4da-*ppk26*¹ were significantly reduced and the preference to small probes was com-
306 pletely lost (Fig. 5 C-D). In contrast, the response of c4da-*piezo*^{KO} was changed in a
307 different way. C4da-*piezo*^{KO} showed a mild reduction in the response to the large probe
308 (60 μm) but a much lower response to the small probe (30 μm). This phenotype was
309 more prominent for the distal stimuli than for the proximal stimuli (Fig. 5 C-D). As a
310 result, the preference to small probes was only attenuated for the proximal stimuli but
311 completely lost for the distal stimuli (Fig. 5 C-D). Based on these measurements, we
312 conclude that while Ppk1/Ppk26 contributes to the overall mechanosensitivity of c4da,
313 Piezo is particularly important for detecting more localized forces. Furthermore, c4da-
314 *piezo*^{KO}, *ppk1*^{Δ5} (the double mutant) showed almost no response to any force stimuli

315 (Fig. 5E), suggesting that the contributions of Ppk1/Ppk26 and Piezo are additive. Fi-
316 nally, the responses of c4da-*piezo*^{KO} and c4da-*ppk26*¹ at the “dendrite-off” mode were
317 comparable to the responses to the distal stimuli, showing that both mutants are still
318 able to sense lateral tension (Fig. 5F). However, their responses to the “dendrite-off”
319 stimuli were both significantly weaker than that of c4da-wt (Fig. 5F), suggesting that
320 Ppk1/Ppk26 and Piezo both make contributions to the lateral mechanosensitivity of
321 c4da.

322 To further verify the physiological contributions of Ppk1/Ppk26 and Piezo in me-
323 chanical nociception, we performed the behavior assay of mechanical nociception on
324 these three mutants using the 30 and 60 μm probes. C4da-*piezo*^{KO} showed a largely
325 reduced response to the 30 μm probe but an almost unchanged response to the 60 μm
326 probe. Meanwhile, c4da-*ppk26*¹ showed very weak responses to both of the probes and
327 the double mutant (i.e. c4da-*piezo*^{KO}, *ppk1* ^{$\Delta 5$}) showed almost no responses to all me-
328 chanical stimuli (Fig. 5G). In all, these behavioral observations are consistent with our
329 cellular observations.

330 **Ca- α 1D contributes to the dendritic signal propagation in c4da**

331 Finally, we addressed if the cellular mechanosensitivity of c4da relies on active
332 signal propagation in the dendrites. The unchanged responses to the distal and proximal
333 stimuli using the 60 μm probe (Fig. 2E) support the idea of active propagation in the
334 dendrites. Meanwhile, the lower response to the distal stimuli than that to the proximal
335 stimuli using the 30 μm probe (smaller contact interface) in both c4da-wt (Fig. 2E) and
336 c4da-*piezo*^{KO} (Fig. 5 C-D) suggests that the dendritic signal propagation mechanism is
337 not all-or-none but graded, likely dependent on the amount of dendritic segments being
338 activated. This hypothesis predicts that if the dendritic signal propagation is weakened,
339 the cellular response of c4da to smaller probes would be affected to a greater extent.
340 We then tested this hypothesis.

341 A previous study showed that Ca- α 1D, a voltage-gated calcium channel (VGCC),
342 contributes to the heat-evoked calcium transient in the dendrites of c4da (Terada et al.,
343 2016), suggesting its function in facilitating dendritic signal propagation. Therefore, we
344 first examined the roles of VGCCs in force-evoked responses. We noted that upon the
345 mechanical stimuli delivered using a 60 μm probe, calcium increase can be observed in
346 the dendrites around the force application point and the soma (Fig. 6A), reflecting the
347 propagating signals in the dendrites. The response in the dendrites can be suppressed
348 by nimodipine (5 μM), an antagonist of VGCCs, or by knocking down the expression
349 level of *Ca- α 1D* (*Ca- α 1D*ⁱ) (Fig. 6 A-B). Therefore, Ca- α 1D also contributes to den-
350 dritic signal propagation in the force-evoked responses of c4da.

351 Drug titration experiments showed that in the condition of using a 60 μm probe, 5
352 μM nimodipine, the full inhibition concentration in the literatures (Scriabine and van
353 den Kerckhoff, 1988; Terada et al., 2016), significantly suppressed the responses of
354 c4da to both proximal and distal stimuli, while 2.5 μM nimodipine showed no effect on
355 the response to the proximal stimuli but a moderate suppression on that to the distal

356 stimuli (**Fig. 6C**). We interpreted this observation as when the VGCCs in the dendrites
357 of c4da were partially inhibited, the responses to the distal stimuli were affected to a
358 greater extent, in consistence with the idea that active signal propagation is more im-
359 portant in sensing distal stimuli. When a 30 μm probe was used, 2.5 μM nimodipine
360 showed an inhibitory effect on the response to the proximal stimuli and an even stronger
361 inhibition on that to the distal stimuli (**Fig. 6D**). Further measurements on the responses
362 of c4da to the full range of stimulating forces in the presence of 2.5 μM nimodipine
363 showed that the drug largely suppressed the responses to the 30 μm probe but had only
364 a mild effect on those to the 60 μm probe (**Fig. 6 E-F**). In this condition, the sensory
365 preference of c4da to small probes was completely lost (**Fig. 6 E-F**), consistent with
366 the idea that the inhibition of the VGCCs reduces the responses to small probes to a
367 greater extent.

368 In comparison to c4da-wt, c4da-*Ca- α 1Dⁱ* showed significantly reduced responses
369 to the stimuli delivered using the probes of two different sizes (30 and 60 μm) or at
370 different dendritic regions (**Fig. 6G**), suggesting that Ca- α 1D is likely a major contrib-
371 utoring VGCC for active signal propagation in the dendrites of c4da. Using the behavior
372 assays of mechanical nociception, we found that the defensive response of the *Ca- α 1Dⁱ*
373 larvae in response to mechanical poking was largely weakened, especially the responses
374 to the smaller probes (**Fig. 6H**). These results accord with our cellular observations.

375 **Discussion**

376 In the present study, we show that c4da are sensitive to mN-scale forces and uni-
377 formly respond to the forces applied at different dendritic regions. In particular, c4da
378 appear to be more sensitive to small probes, given that the applied forces are the same.
379 We reveal three cellular mechanisms that facilitate the sensory features of c4da (**Fig. 7**).
380 First, the high morphological complexity ensures dense and uniform distribution of
381 mechanosensory molecules across the entire dendritic tree. Second, the mechanosensi-
382 tivity to lateral tension, which depends on Ppk1/Ppk26 and Piezo, expands the force-
383 receptive field of the dendrites. Third, the active signal propagation in the dendrites
384 promotes the overall mechanosensitivity of c4da and has a more prominent effect on
385 the sensitivity to small probes. Ca- α 1D, a voltage-gated calcium channel, is a major
386 contributing molecule in mediating the dendritic signal propagation. We now discuss
387 the potential implications of these findings in understanding the mechanosensory and
388 nociceptive functions of c4da.

389 **Implications for the mechano-nociceptive functions of c4da**

390 C4da are first implicated as mechanoreceptor cells using the behavior assays
391 (Gorczyca et al., 2014; Guo et al., 2014; Kim et al., 2012; Mauthner et al., 2014; Zhong
392 et al., 2010). Cellular responses to force stimuli are observed on isolated *ppk1*-positive
393 cells and whole mount larval fillet preparations (Guo et al., 2014; Kim et al., 2012;
394 Tsubouchi et al., 2012; Walcott et al., 2018; Yan et al., 2013). Here, we provide quanti-
395 tative characterizations on the responses of c4da to the force stimuli with controlled
396 strength, contact area and force application position. Our conclusions add to the current
397 model of understanding how c4da act as a mechanical nociceptor in two aspects.

398 At the cellular level, we find that with the same force, c4da show a greater sensi-
399 tivity to smaller probes than to larger probes. This provides a cellular basis to under-
400 stand the physiological function of c4da in sensing mechanical poking from sharp ob-
401 jects, e.g. the ovipositor of wasp (Hwang et al., 2007). Geometry of the force probes
402 determines that for a given change of force, smaller probes caused a smaller ΔA_c but a
403 greater ΔP in comparison to larger probes. We find that c4da develop several cellular
404 mechanisms to ensure that the pressure change over a small contact interface could be
405 collected, amplified and finally encoded into neuronal responses. First, the high den-
406 dritic density allows an adequate dendritic coverage for small probes. Second, the lat-
407 eral mechanosensitivity expands the force-receptive field of dendrites, acting as a me-
408 chanical amplifier in receiving a localized force. Third, the active signal propagation,
409 as an intracellular electrochemical amplifier, compensates for signal attenuation in the
410 dendrites. These mechanisms optimize the mechanosensitivity of c4da from structural,
411 mechanical and signaling aspects, respectively. In essence, they all serve to increase the
412 probability of activating the mechanosensory pathways that are required to excite neu-
413 ronal responses.

414 At the molecular level, we find that Piezo and Ppk1/Ppk26 make differential con-
415 tributions to the mechanosensitivity of c4da. Previous behavior assays suggest that

416 Ppk1/Ppk26 and Piezo in c4da mediate two parallel pathways in mechanical nocicep-
417 tion (Gorczyca et al., 2014; Guo et al., 2014; Kim et al., 2012; Mauthner et al., 2014).
418 This raises the question of why c4da need two sets of mechanosensory pathways. Fur-
419 thermore, patch clamp recordings show that the force-evoked electrical response of iso-
420 lated *ppk*-positive cells is entirely dependent on Piezo (Kim et al., 2012), which contra-
421 dicts the inference based on the behavior assays. Due to the unsolved issues and incon-
422 sistency, it is necessary to explore how Ppk1/Ppk26 and Piezo contribute to the in-vivo
423 mechanosensitivity of c4da. Here, we discover that Piezo is particularly important for
424 c4da to detect localized forces but plays a relatively minor role in sensing large probes.
425 In contrast, the loss of Ppk1/Ppk26 reduces the responses of c4da to the entire range of
426 stimulating forces used in our experiments, suggesting the contribution of Ppk1/Ppk26
427 to the overall mechanosensitivity. In addition, the lack of responses in the double knock-
428 out mutant strain confirms that the contributions of Ppk1/Ppk26 and Piezo are additive,
429 as suggested by the previous behavior assays. Therefore, our findings add to the current
430 model by showing a more specific role of Piezo. Furthermore, we also show that
431 Ppk1/Ppk26 and Piezo both contribute to the sensitivity of c4da to lateral tension. In
432 consistence with this idea, members in the Piezo and the DEG/ENaC channel families
433 have been proposed to be gated by the changes in lateral membrane tension (Cueva et
434 al., 2007; Guo and MacKinnon, 2017; Liang and Howard, 2018; Lin et al., 2019). How-
435 ever, it remains unclear how Piezo could facilitate the greater sensitivity to localized
436 forces. The underlying mechanism may reside in the gating property of Piezo, such as
437 gating sensitivity and conductance. This issue awaits future studies.

438 **Contribution of dendritic morphology**

439 Based on the observations in the *ctⁱ* strain (**Fig. 3**), we argue that the morphological
440 complexity is a key factor in supporting the sensory features of c4da. We note that Cut
441 is a transcription factor that contributes to the morphological determination of c4da. Is
442 it possible that the altered mechanosensory responses observed in the *ctⁱ* mutant is due
443 to other downstream changes? While this possibility cannot be absolutely excluded, we
444 think that the contribution of dendritic morphology is valid based on several lines of
445 evidence and thoughts. First, the responses of c4da-*ctⁱ* to the stimuli on the proximal
446 dendritic region, where the dendritic density is similar to that of c4da-*wt*, is comparable
447 to those of c4da-*wt*, suggesting that the essential mechanosensory elements are fairly
448 normal in the existing dendrites of c4da-*ctⁱ* (**Fig. 3C**). Second, the expression and lo-
449 calization of mechanosensory molecules (Piezo and Ppk1/Ppk26) and cytoskeletal ele-
450 ments (F-actin and microtubule) in c4da-*ctⁱ* are comparable to those in c4da-*wt* (**Fig.**
451 **s4**), although it is formally possible that the fine organization of these molecular com-
452 ponents could still be different in c4da-*ctⁱ*. Third, at least in terms of how a cell responds
453 to different probe sizes and to the stimuli at different dendritic regions, c4da-*ctⁱ* are
454 similar to c3da-*wt*, whose morphological pattern is markedly different from c4da-*wt* but
455 close to c4da-*ctⁱ* (**Fig. s2**). This similarity, if neglecting the differences between c3da
456 and c4da at the molecular level, reflects the contribution of dendritic morphology.

457 **Materials and Methods**

458 **Fly stocks**

459 All flies were maintained on standard medium at 23-25°C in 12:12 light-dark cy-
460 *cles. 20×uas-ivs-gcamp6s* (BL42746, BL42749), *ppk-gal4* (BL32078, BL32079), *uas-*
461 *cd4-tdTom* (BL35837, BL35841), *ppk-cd4-tdtom* (BL35845), *ppk-cd4-tdgfp* (BL35843)
462 and *uas-lifeact-rfp* (BL58715) were from Bloomington Drosophila Stock Center
463 (BDSC). *Gal4-19-12* was from the Jan Lab (UCSF). *ppk26-gfp* was from the Tracey
464 Lab (Indiana University). *Uas-mcherry-jupiter* was from the Han Lab (Cornell Univer-
465 sity). *Tmc-gal4*, *piezo-gfp*, *piezo^{KO}*, *ppk26¹* and *piezo^{KO}*, *ppk^{Δ5}* and were from Wei
466 Zhang (Tsinghua University). *Ciⁱ* (THU1309), *Ca-a1Dⁱ* (THU0766) and the control
467 strains were from Tsinghua Fly Center.

468 **Larval fillet preparation**

469 Third instar larvae were dissected on a 35 mm dish coated with a PDMS pad
470 (thickness: 1 mm) in the insect hemolymph-like (HL) buffer (Stewart et al., 1994). The
471 cuticle, epidermis and muscle tissue were kept as intact as possible. The fillet was
472 mounted on the PDMS pad using 8-10 insect pins (Austerlitz Insect Pins, Czech) and
473 kept as stretched. HL buffer: 103 mM NaCl (10019318 Sinopharm Chemical Reagent
474 Co., Ltd., Shanghai, China), 3 mM KCl (P9541 Sigma-Aldrich, USA), 5 mM TES
475 (T5691 Sigma-Aldrich, USA), 8 mM trehalose (T1067 Sigma-Aldrich, USA), 10 mM
476 glucose (G7528 Sigma-Aldrich, USA), 5 mM sucrose (V900116 Sigma-Aldrich, USA),
477 26 mM NaHCO₃ (A500873 Sangon Biotech, Co., Lt., Shanghai, China), 1 mM
478 NaH₂PO₄ (S8282 Sigma-Aldrich, USA), 2 mM CaCl₂ (Xilong Scientific Co., Ltd.,
479 Shantou, China), and 4 mM MgCl₂ (M8266 Sigma-Aldrich, USA). The PDMS pad was
480 made using the Sylgard 184 kit (Dow, UAS).

481 **Mechanical device setup and calibration**

482 The mechanical device consisted of a piezo actuator (PZT 150/7/60 VS12, SuZhou
483 Micro Automation Technology Co., Ltd., Suzhou, China), a strain gauge (customized
484 in Nanjing Bio-inspired-tech Co., Ltd., Nanjing, China) and a force probe. The stepping
485 distance (*D*) of the piezo actuator and the deflection of the metal beam (*B*) were mea-
486 sured using a digital camera with a pixel size of 1.1 μm (AO-3M630, AOSVI optical
487 instrument Co., Ltd. Shenzhen, China). The voltage readout of the strain gauge after the
488 addition of pure water with a minimal step of 100 μL (i.e. 0.98 mN) was recorded using
489 a data acquisition card (NBIT-DSU-2404A, Nanjing Bio-inspired-tech Co., Ltd., Nan-
490 jing, China). The force probes were made from capillary glass tubes using an electrode
491 puller (PC-10, Narishige, Japan) and then polished using a microforge (MF-830,
492 Narishige, Japan). Finally, the assembled mechanical device was mounted on the work-
493 ing stage of the spinning-disk confocal microscope (Andor, UK).

494 **Confocal microscopy**

495 The calcium fluorescent signals were recorded using an Andor inverted spinning
496 disk confocal system (Andor, UK) equipped with an inverted microscope (Olympus,

497 IX73), an iXon 897 EMCCD and a long working-distance 20× objective (UCPlanFL
498 N, N.A. 0.70, working distance: 2.1 mm) (Olympus, Japan).

499 The images of Piezo-GFP, Ppk26-GFP, mCherry-Jupiter and Lifeact-RFP were ac-
500 quired using a Zeiss 780 confocal microscope equipped with a 63× objective (Zeiss
501 Plan-Apochromat, 1.4 N.A., Germany) and GaAsP detectors (Zeiss, Germany).

502 **Scanning electron microscopy**

503 The scanning electron microscopy (SEM) pictures of the glass probes were imaged
504 using FEI Quanta 200 (Thermofisher, USA) with 15-kV voltages and 500×magnifica-
505 tion in the high vacuum mode.

506 **Modified behavior assay**

507 The Von Frey fiber (6lb. Omniflex Line, Zebco) was mounted onto a holder. The
508 free fiber was 20 mm long. The customized glass probe was then fixed at the free end
509 of the fiber with ergo 5400 (Kisling, Switzerland). The poking forces were measured
510 using an electronic balance (XPR204S, Mettler Toledo, USA). The behavior assays
511 were carried on as the previously described (Hwang et al., 2007; Zhong et al., 2010).
512 Briefly, we used the modified fiber to poke the dorsal side of larval middle segments
513 and recorded their behavioral responses, which were then graded for statistical analysis
514 (rolling over 2 turns, rolling over 1 turn, rolling less than 1 turn or no response).

515 **Drug treatment**

516 Nimodipine (N149 Sigma-Aldrich, USA) was dissolved in DMSO (276855
517 Sigma-Aldrich, USA). The incubation time for all drugs was 20 min.

518 **The “sphere-surface” contact mechanics model**

519 Based on the classical “sphere-surface” contact model (Johnson, 1985), we had

520
$$f = \frac{4}{3} E^* r^{\frac{1}{2}} d^{\frac{3}{2}} \quad \text{Eq. 1}$$

521
$$E^* \approx \frac{E_{\text{PDMS}}}{1 - \nu^2} \quad \text{Eq. 2}$$

522 where f was the total force, r was the radius of the sphere, E_{PDMS} was the elastic modulus
523 of PDMS, E^* was the effective modulus, ν was the Poisson's ratio of PDMS and d was
524 the indentation depth. d can be calculated as

525
$$d = D - B \quad \text{Eq. 3}$$

526 where D was the stepping displacement generated by the piezo stack actuator and B was
527 the bending deflection of the metal beam (**Fig. 1A**). In this model, the pressure at the
528 center of contact area (P_0) can be calculated as

529

$$P_0 = \frac{3f}{2\pi a^2} \quad \text{Eq. 4}$$

530 where a was the radius of the contact area and could be calculated as

531

$$a = \sqrt{rd} \quad \text{Eq. 5}$$

532 The area of contact surface (A_c) can be calculated as

533

$$A_c = 2\pi r(r - \sqrt{r^2 - rd}) \quad \text{Eq. 6}$$

534 The pressures at a given point to the soma can be calculated as

535

$$P_{x \mu\text{m}} = P_0 \left(1 - \frac{x^2}{a^2}\right)^{\frac{1}{2}} \quad \text{Eq. 7}$$

536 where x (μm) was the distance to the center of contact area.

537 Finite element analysis

538 To theoretically investigate the stress field in the cuticle caused by indentation,
539 finite element simulations were performed using the commercial software ABAQUS
540 6.14.1. (Dassault Systèmes, France). Due to symmetry of the load and the geometry, an
541 axisymmetric mechanical model was established (Fig. s5). The model includes the
542 spherical probe and the underlying composite that consists of two layers of materials:
543 (1) i.e. the cuticle layer (thickness 10 μm , elastic modulus $E_{\text{cuticle}}=10$ MPa, Poisson's
544 ratio $\nu_{\text{cuticle}}=0.45$); (2) the underlying PDMS substrate (thickness 1000 μm , elastic mod-
545 ulus $E_{\text{PDMS}}=2.6$ MPa, Poisson's ratio $\nu_{\text{PDMS}}=0.45$). Because the muscle layer (elastic
546 modulus $E_{\text{muscle}}=10$ kPa) was much more compliant than cuticle and PDMS (Kot et al.,
547 2012), it is expected to make little contribution to the force distribution. Therefore, we
548 omitted the muscle layer in our finite element model for simplicity. The probe was
549 treated as a rigid object, while the cuticle layer and PDMS substrate were assumed to
550 be linearly elastic. Displacement load in the vertical direction was applied to the probe.
551 The lower surface of the cuticle layer and the upper surface of the PDMS substrate were
552 assumed to be tightly coupled. Fixed boundary conditions were applied to the bottom
553 surface of the PDMS substrate. The compressive pressure (perpendicular to cuticle sur-
554 face) and lateral (parallel to cuticle surface) tension were both calculated. The simula-
555 tion of random positioned stimuli was performed using MATLAB (MathWorks, USA).

556 Image analysis

557 GCaMP6s signal was measured using Fiji (Schindelin et al., 2012). The calibration
558 bars and scale bars were generated in Fiji. Sholl analysis on neuronal morphology was
559 carried out using Fiji (Ferreira et al., 2014). The density of intersections was calculated
560 as the number of intersections divided by the circumference of corresponding circle in

561 the Sholl analysis (**Fig. 3, Fig. 5** and **Fig. s2**).

562 **Conventional data plotting and statistical analysis**

563 Data plotting and statistical analysis were performed using Origin (OriginLab,
564 UAS). The heat maps of the P_P and T_L were generated using MATLAB. Statistical anal-
565 ysis (Student's t test) was performed using Origin.

566 References

567 Burgos, A., Honjo, K., Ohyama, T., Qian, C.S., Shin, G.J., Gohl, D.M., Silies, M., Tracey, W.D., Zlatic, M.,
568 Cardona, A., *et al.* (2018). Nociceptive interneurons control modular motor pathways to promote escape
569 behavior in *Drosophila*. *Elife* 7.

570 Cerkvenik, U., van de Straat, B., Gussekloo, S.W.S., and van Leeuwen, J.L. (2017). Mechanisms of
571 ovipositor insertion and steering of a parasitic wasp. *Proc Natl Acad Sci U S A* 114, E7822-E7831.

572 Chalfie, M. (2009). Neurosensory mechanotransduction. *Nat Rev Mol Cell Biol* 10, 44-52.

573 Chatzigeorgiou, M., Yoo, S., Watson, J.D., Lee, W.H., Spencer, W.C., Kindt, K.S., Hwang, S.W., Miller, D.M.,
574 3rd, Treinin, M., Driscoll, M., *et al.* (2010). Specific roles for DEG/ENaC and TRP channels in touch and
575 thermosensation in *C. elegans* nociceptors. *Nat Neurosci* 13, 861-868.

576 Cueva, J.G., Mulholland, A., and Goodman, M.B. (2007). Nanoscale organization of the MEC-4 DEG/ENaC
577 sensory mechanotransduction channel in *Caenorhabditis elegans* touch receptor neurons. *J Neurosci*
578 27, 14089-14098.

579 Ferreira, T.A., Blackman, A.V., Oyrer, J., Jayabal, S., Chung, A.J., Watt, A.J., Sjostrom, P.J., and van Meyel,
580 D.J. (2014). Neuronal morphometry directly from bitmap images. *Nat Methods* 11, 982-984.

581 Gorczyca, David A., Younger, S., Meltzer, S., Kim, Sung E., Cheng, L., Song, W., Lee, Hye Y., Jan, Lily Y., and
582 Jan, Yuh N. (2014). Identification of Ppk26, a DEG/ENaC Channel Functioning with Ppk1 in a Mutually
583 Dependent Manner to Guide Locomotion Behavior in *Drosophila*. *Cell Reports* 9, 1446-1458.

584 Grueber, W.B., Ye, B., Yang, C.H., Younger, S., Borden, K., Jan, L.Y., and Jan, Y.N. (2007). Projections of
585 *Drosophila* multidendritic neurons in the central nervous system: links with peripheral dendrite
586 morphology. *Development* 134, 55-64.

587 Guo, Y., Wang, Y., Wang, Q., and Wang, Z. (2014). The role of PPK26 in *Drosophila* larval mechanical
588 nociception. *Cell Rep* 9, 1183-1190.

589 Guo, Y., Wang, Y., Zhang, W., Meltzer, S., Zanini, D., Yu, Y., Li, J., Cheng, T., Guo, Z., Wang, Q., *et al.* (2016).
590 Transmembrane channel-like (tmc) gene regulates *Drosophila* larval locomotion. *Proc Natl Acad Sci U S
591 A* 113, 7243-7248.

592 Guo, Y.R., and MacKinnon, R. (2017). Structure-based membrane dome mechanism for Piezo
593 mechanosensitivity. *Elife* 6.

594 Hwang, R.Y., Zhong, L., Xu, Y., Johnson, T., Zhang, F., Deisseroth, K., and Tracey, W.D. (2007). Nociceptive
595 neurons protect *Drosophila* larvae from parasitoid wasps. *Curr Biol* 17, 2105-2116.

596 Jack, J., and DeLotto, Y. (1995). Structure and regulation of a complex locus: the cut gene of *Drosophila*.
597 *Genetics* 139, 1689-1700.

598 Jinushi-Nakao, S., Arvind, R., Amikura, R., Kinameri, E., Liu, A.W., and Moore, A.W. (2007). Knot/Collier
599 and cut control different aspects of dendrite cytoskeleton and synergize to define final arbor shape.
600 *Neuron* 56, 963-978.

601 Johnson, K.L. (1985). *Contact Mechanics* (Cambridge: Cambridge University Press).

602 Kim, S.E., Coste, B., Chadha, A., Cook, B., and Patapoutian, A. (2012). The role of *Drosophila* Piezo in
603 mechanical nociception. *Nature* 483, 209-212.

604 Kot, B.C.W., Zhang, Z.J., Lee, A.W.C., Leung, V.Y.F., and Fu, S.N. (2012). Elastic Modulus of Muscle and
605 Tendon with Shear Wave Ultrasound Elastography: Variations with Different Technical Settings. *PLOS
606 ONE* 7, e44348.

607 Kwan, K.Y., Allchorne, A.J., Vollrath, M.A., Christensen, A.P., Zhang, D.S., Woolf, C.J., and Corey, D.P.
608 (2006). TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-

609 cell transduction. *Neuron* 50, 277-289.

610 Liang, X., and Howard, J. (2018). Structural Biology: Piezo Senses Tension through Curvature. *Curr Biol*
611 28, R357-R359.

612 Lin, Y.C., Guo, Y.R., Miyagi, A., Levring, J., MacKinnon, R., and Scheuring, S. (2019). Force-induced
613 conformational changes in PIEZO1. *Nature* 573, 230-234.

614 Lumpkin, E.A., Marshall, K.L., and Nelson, A.M. (2010). Review series: The cell biology of touch. *The*
615 *Journal of Cell Biology* 191, 237-248.

616 Marshall, K.L., and Lumpkin, E.A. (2012). The molecular basis of mechanosensory transduction. *Adv Exp*
617 *Med Biol* 739, 142-155.

618 Mauthner, S.E., Hwang, R.Y., Lewis, A.H., Xiao, Q., Tsubouchi, A., Wang, Y., Honjo, K., Skene, J.H., Grandl,
619 J., and Tracey, W.D., Jr. (2014). Balboa binds to pickpocket in vivo and is required for mechanical
620 nociception in Drosophila larvae. *Curr Biol* 24, 2920-2925.

621 Murthy, S.E., Loud, M.C., Daou, I., Marshall, K.L., Schwaller, F., Kuhnemund, J., Francisco, A.G., Keenan,
622 W.T., Dubin, A.E., Lewin, G.R., *et al.* (2018). The mechanosensitive ion channel Piezo2 mediates
623 sensitivity to mechanical pain in mice. *Sci Transl Med* 10.

624 Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C.,
625 Saalfeld, S., Schmid, B., *et al.* (2012). Fiji: an open-source platform for biological-image analysis. *Nat*
626 *Methods* 9, 676-682.

627 Schneider, E.R., Mastrotto, M., Laursen, W.J., Schulz, V.P., Goodman, J.B., Funk, O.H., Gallagher, P.G.,
628 Gracheva, E.O., and Bagriantsev, S.N. (2014). Neuronal mechanism for acute mechanosensitivity in
629 tactile-foraging waterfowl. *Proc Natl Acad Sci U S A* 111, 14941-14946.

630 Scriabine, A., and van den Kerckhoff, W. (1988). Pharmacology of Nimodipine. *Annals of the New York*
631 *Academy of Sciences* 522, 698-706.

632 Sharfeddin, A., Volinsky, A.A., Mohan, G., and Gallant, N.D. (2015). Comparison of the macroscale and
633 microscale tests for measuring elastic properties of polydimethylsiloxane. *Journal of Applied Polymer*
634 *Science* 132.

635 Stewart, B.A., Atwood, H.L., Renger, J.J., Wang, J., and Wu, C.F. (1994). Improved stability of Drosophila
636 larval neuromuscular preparations in haemolymph-like physiological solutions. *J Comp Physiol A* 175,
637 179-191.

638 Sulkowski, M.J., Iyer, S.C., Kurosawa, M.S., Iyer, E.P., and Cox, D.N. (2011). Turtle functions downstream
639 of Cut in differentially regulating class specific dendrite morphogenesis in Drosophila. *PLoS One* 6,
640 e22611.

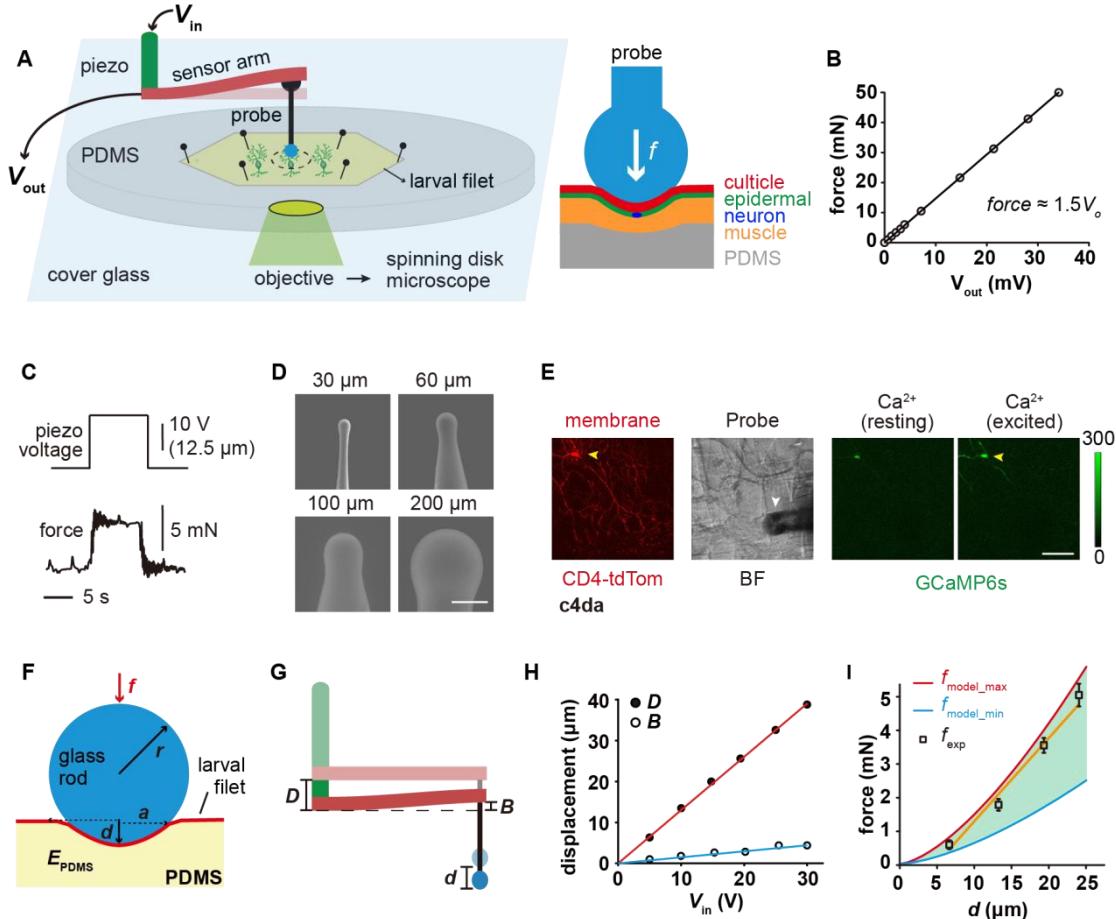
641 Terada, S., Matsubara, D., Onodera, K., Matsuzaki, M., Uemura, T., and Usui, T. (2016). Neuronal
642 processing of noxious thermal stimuli mediated by dendritic Ca(2+) influx in Drosophila somatosensory
643 neurons. *Elife* 5.

644 Tracey, W.D., Jr. (2017). Nociception. *Curr Biol* 27, R129-R133.

645 Tsubouchi, A., Caldwell, Jason C., and Tracey, W.D. (2012). Dendritic Filopodia, Ripped Pocket, NOMPC,
646 and NMDARs Contribute to the Sense of Touch in Drosophila Larvae. *Current Biology* 22, 2124-2134.

647 Vlassov, S., Oras, S., Antsov, M., Sosnin, I., Polyakov, B., Shutka, A., Krauchanka, M.Y., and Dorogin, L.M.
648 (2018). Adhesion and Mechanical Properties of PDMS-Based Materials Probed with AFM: A Review.
649 *REVIEWS ON ADVANCED MATERIALS SCIENCE* 56, 62-78.

650 Walcott, K.C.E., Mauthner, S.E., Tsubouchi, A., Robertson, J., and Tracey, W.D. (2018). The Drosophila
651 Small Conductance Calcium-Activated Potassium Channel Negatively Regulates Nociception. *Cell Rep* 24,
652 3125-3132 e3123.


653 Xiang, Y., Yuan, Q., Vogt, N., Looger, L.L., Jan, L.Y., and Jan, Y.N. (2010). Light-avoidance-mediating
654 photoreceptors tile the *Drosophila* larval body wall. *Nature* **468**, 921-926.

655 Yan, Z., Zhang, W., He, Y., Gorczyca, D., Xiang, Y., Cheng, L.E., Meltzer, S., Jan, L.Y., and Jan, Y.N. (2013).
656 *Drosophila* NOMPC is a mechanotransduction channel subunit for gentle-touch sensation. *Nature* **493**,
657 221-225.

658 Yoshino, J., Morikawa, R.K., Hasegawa, E., and Emoto, K. (2017). Neural Circuitry that Evokes Escape
659 Behavior upon Activation of Nociceptive Sensory Neurons in *Drosophila* Larvae. *Curr Biol* **27**, 2499-2504
660 e2493.

661 Zhong, L., Hwang, R.Y., and Tracey, W.D. (2010). Pickpocket is a DEG/ENaC protein required for
662 mechanical nociception in *Drosophila* larvae. *Curr Biol* **20**, 429-434.

663 Zimmerman, A., Bai, L., and Ginty, D.D. (2014). The gentle touch receptors of mammalian skin. *Science*
664 **346**, 950-954.

665 **Figure 1** The “mechanical-optical” recording system.

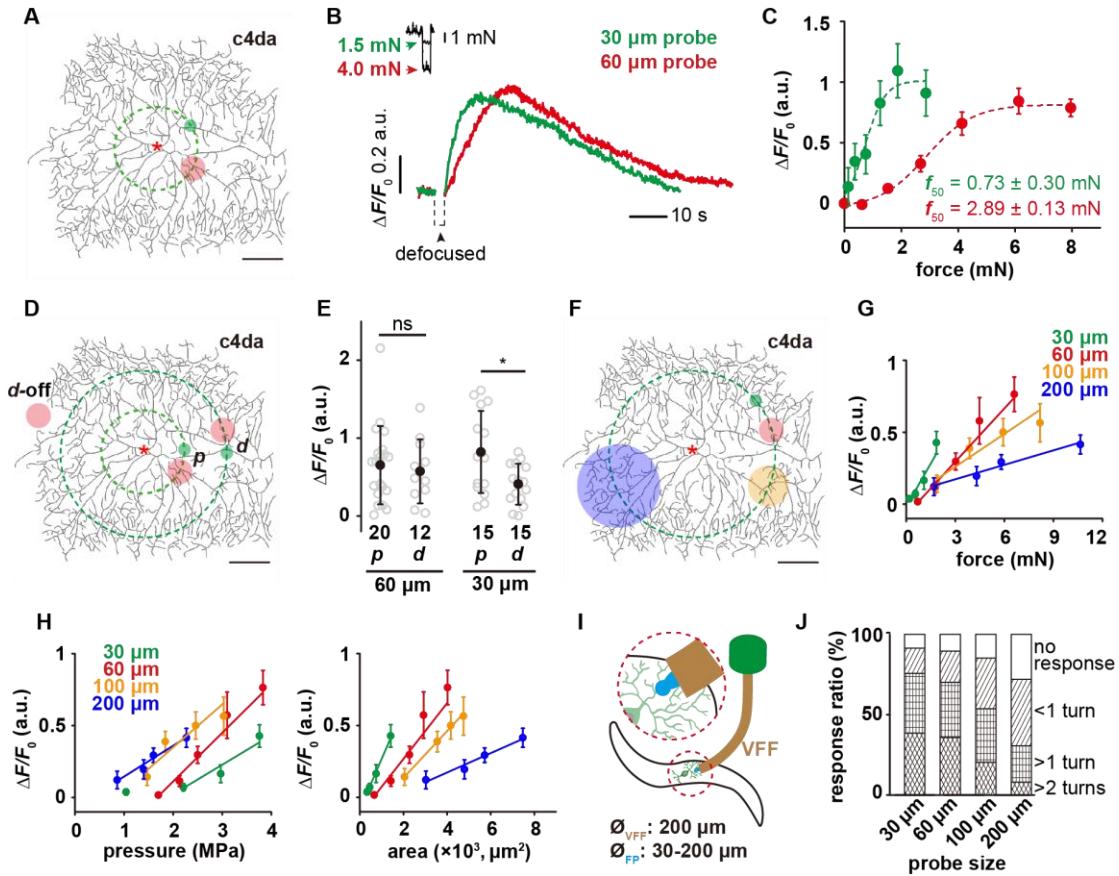
666 (A) The cartoon schematics for the “mechanical-optical” recording system (left) and
667 the contact model between a spherical probe and larval fillet (right). V_{in} was the driving
668 voltage of the piezo actuator. V_{out} was the readout voltage of the strain gauge.

669 (B) The force calibration curve of the strain gauge. The data points were mean values
670 from three measurements.

671 (C) Representative traces for the input (driving voltage of the piezo actuator, upper
672 panel) and the mechanical output (force, lower panel) of the recording system.

673 (D) The scanning electron microscopy images of glass force probes of different sizes.
674 Scale bar, 100 μ m.

675 (E) Left panel: a representative image of c4da (membrane, red channel), Middle panel:
676 a bright field image of larval fillet. Right panel: representative images showing
677 GCaMP6s signals in c4da at resting (left) and exciting (right) conditions. Yellow arrowhead:
678 soma. White arrowhead: force probe. Scale bar, 100 μ m. Genotype: *uas-cd4-tdTom; ppk-gal4/20×uas-ivs-gcamp6s*.


680 (F) The mechanical schematics of the “sphere-surface” model. Note that the contact
681 interface had a spherical crown shape. The definitions of all model parameters were

682 described in Methods.

683 **(G)** The cartoons schematics showing the relationship among indentation depth of the
684 force probe (d), deflection of the beam (B) and stepping distance of the piezo (D).

685 **(H)** The plots of D (red) and B (blue) versus the driving voltage of the piezo (V_{in}).

686 **(I)** The comparison between the calculated (red and blue) and experimentally measured
687 (black) contact forces. In our calculations, the maximal (4 MPa, red) and minimal (1.6
688 MPa, blue) values of the elastic modules of PDMS were from literatures (Sharfeddin et
689 al., 2015; Vlassov et al., 2018). Data were presented as mean \pm std ($n=9$ assays).

690 **Figure 2 The mechanosensory features of c4da.**

691 **(A)** A representative image of c4da. The forces were applied at about 100 μm from the
692 soma, i.e. along the green dashed circle. The representative force application points
693 were marked using the filled circles (Green: 30 μm probe. Red: 60 μm probe). Genotype:
694 *uas-cd4-tdtom; ppk-gal4*.

695 **(B)** Representative responses of c4da ($\Delta F/F_0$, i.e. the change in calcium signal) to mN-
696 scale forces delivered using the 30 μm (green) and 60 μm (red) probes. The black arrowhead
697 indicated the defocused period of the soma caused by the stimulating force (2
698 s). Genotype: *ppk-gal4/+; ppk-cd4-tdtom/20 \times uas-ivs-gcamp6s*.

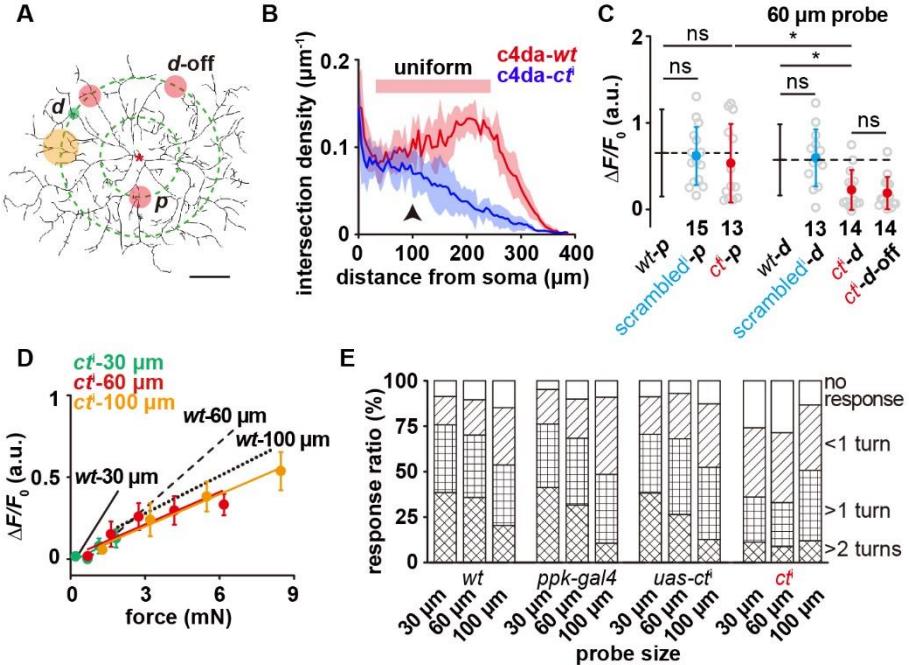
699 **(C)** The force-response ($\Delta F/F_0$) plots of c4da ($n=12$ cells) at two different probe sizes.
700 The dashed lines were Boltzmann fitting.

701 **(D)** The schematic showing the force application points (filled circles, green: 30 μm
702 probe, red: 60 μm probe) of different stimuli. The dashed concentric circles were 100
703 and 200 μm in radius, respectively. *p*: proximal dendrite. *d*: distal dendrite. *d-off*: the
704 “dendrite-off” region.

705 **(E)** The responses of c4da to the proximal and distal stimuli using the 30 (1.5 mN) and
706 60 μm (4 mN) probes.

707 **(F)** The schematic showing the stimuli (filled circles, green: 30 μm probe, red: 60 μm

708 probe, orange: 100 μm probe, blue: 200 μm probe) delivered using the probes of differ-
709 ent sizes. The dashed circle was 200 μm in radius.


710 **(G)** The responses of c4da ($n=10$ cells) to the forces applied on distal dendrites using
711 the probes of different sizes.

712 **(H)** The plots of the responses of c4da to distal stimuli versus central pressure (P_0) (left
713 panel) and contact areas (A_c) (right panel), respectively. Also see **Fig. s3** for the plots
714 of the responses versus the pressures at other positions ($P_{x \mu\text{m}}$).

715 **(I)** The cartoon schematics for the modified behavior assay for mechanical nociception.
716 VFF: Von Frey fiber, FP: force probe.

717 **(G)** The behavioral responses of wild-type larvae to the mechanical poking stimuli us-
718 ing the probes of different sizes. 30 μm probe ($n = 87$ larvae), 60 μm probe ($n = 102$
719 larvae), 100 μm probe ($n = 92$ larvae), 200 μm probe ($n = 72$ larvae).

720 In panels **A**, **D** and **F**, scale bar: 100 μm . In panels **C**, **G** and **H**, data were presented as
721 mean \pm sem. In panel **E**, data were presented as mean \pm std and the numbers of cells were
722 indicated below the scattered data points. Asterisk: the soma. *: $p<0.05$. ns: no signifi-
723 cance.

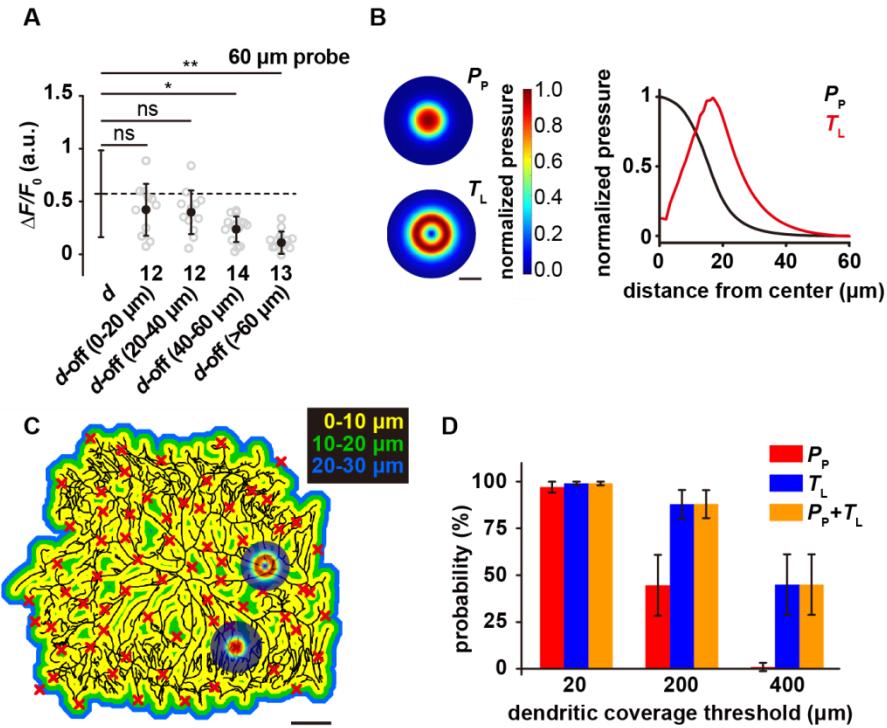
724

725

726 **Figure 3 The contribution of dendritic morphology to the sensory features of c4da**

727 (A) The schematic showing the force application points (filled circles, green: 30 μm
728 probe, red: 60 μm probe, orange: 100 μm probe) on c4da-*ctⁱ*. The dashed concentric
729 circles were 100 and 200 μm in radius, respectively. *p*: proximal dendrite. *d*: distal den-
730 drite. *d-off*: the “dendrite-off” region. Asterisk: the soma. Scale bar, 100 μm. Genotype:
731 *ppk-gal4/+*, *ppk-cd4-tdtom/uas-ctⁱ*.

732 (B) Modified Sholl analysis on the morphology of c4da-wt and c4da-*ctⁱ*. Note that there
733 was a broad region in c4da-wt (red bar) in which the dendritic arbor showed a uniform
734 morphology. The shadow areas represented standard deviations. *n*=5 cells for each gen-
735 otype. The black arrowhead indicated the regions of proximal dendrites.

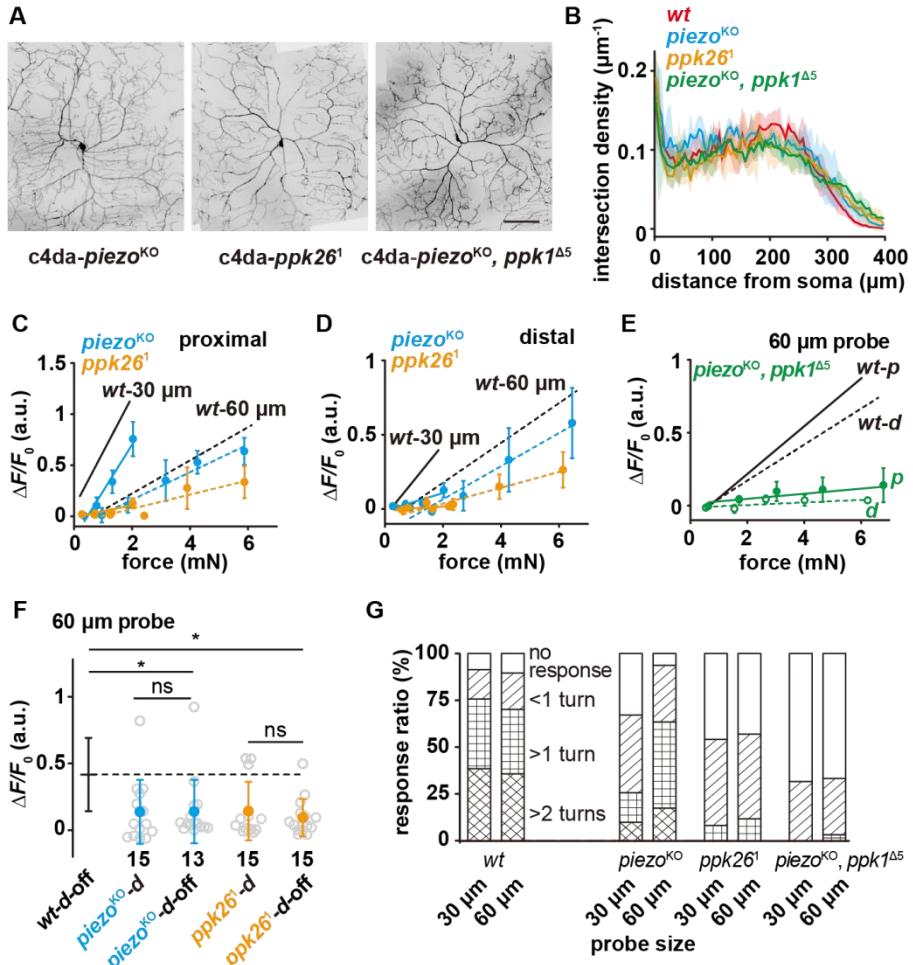

736 (C) The responses of c4da-*ctⁱ* to the force stimuli (4 mN) applied onto the proximal and
737 distal dendrites using a 60 μm probe. The numbers of cells were indicated below the
738 scattered data points. Data were presented as mean±std. *: *p*<0.05. ns: no significance.
739 *ctⁱ*: *ppk-gal4/20×uas-ivs-gcamp6s*, *ppk-cd4-tdtom/uas-ctⁱ*. *scrambledⁱ*: *ppk-
740 gal4/20×uas-ivs-gcamp6s*, *ppk-cd4-tdtom/uas-scrambledⁱ*.

741 (D) The responses of c4da-*ctⁱ* to the forces applied on distal dendrites using the probes
742 of different sizes. Data were presented as mean±sem (*n*=10 cells).

743 (E) The behavioral responses of *ctⁱ* larvae to mechanical poking using the probes of
744 different sizes. *wt*: *w1118*. *ppk-gal4*: *ppk-gal4*; *+/+*. *uas-ctⁱ*: *+/+*; *uas-ctⁱ*. *ctⁱ*: *ppk-
745 gal4/+*; *uas-ctⁱ/+*. *ppk-gal4* larvae: 30 μm probe (*n*=80 larvae), 60 μm probe (*n*=78 larvae)
746 and 100 μm probe (*n*=75 larvae). *uas-ctⁱ* larvae: 30 μm probe (*n*=81 larvae), 60 μm probe
747 (*n*=75 larvae) and 100 μm probe (*n*=75 larvae). *ctⁱ* larvae: 30 μm probe (*n*=92

748 larvae), 60 μ m probe ($n=81$ larvae) and 100 μ m probe ($n=72$ larvae).

749 In panels **C**, **D** and **E**, the corresponding data from c4da-*wt* were provided for compar-
750 ison.


751 **Figure 4 The mechanosensitivity of c4da to lateral tension**

752 (A) The responses of c4da to the “dendrite-off” stimuli (4 mN, 60 μm probe) applied at
 753 different positions. The numbers of cells were indicated below the scattered data points.
 754 Data were presented as mean \pm std. **: $p<0.01$. *: $p<0.05$. ns: no significance. Genotype:
 755 *ppk-gal4/+; ppk-cd4-tdtom/20* \times *uas-ivs-gcamp6s*.

756 (B) Left panel: representative heat maps showing the 2D distributions of pressure per-
 757 pendicular to the cuticle surface (P_p) (upper) and tension parallel with the cuticle sur-
 758 face (T_L) (lower). Scale bar, 30 μm . Right panel: representative line profiles (normal-
 759 ized) showing the distribution of P_p and T_L versus the distance to the center of the
 760 force probe. Indentation depth: 20 μm . The diameter of the simulated probe is 60 μm .

761 (C) Representative color map for the distance to the nearest dendrite, in which the dis-
 762 tance was labeled by different colors as indicated. Random positions were chosen (red
 763 cross) as the force application points in our simulations. Scale bar, 100 μm .

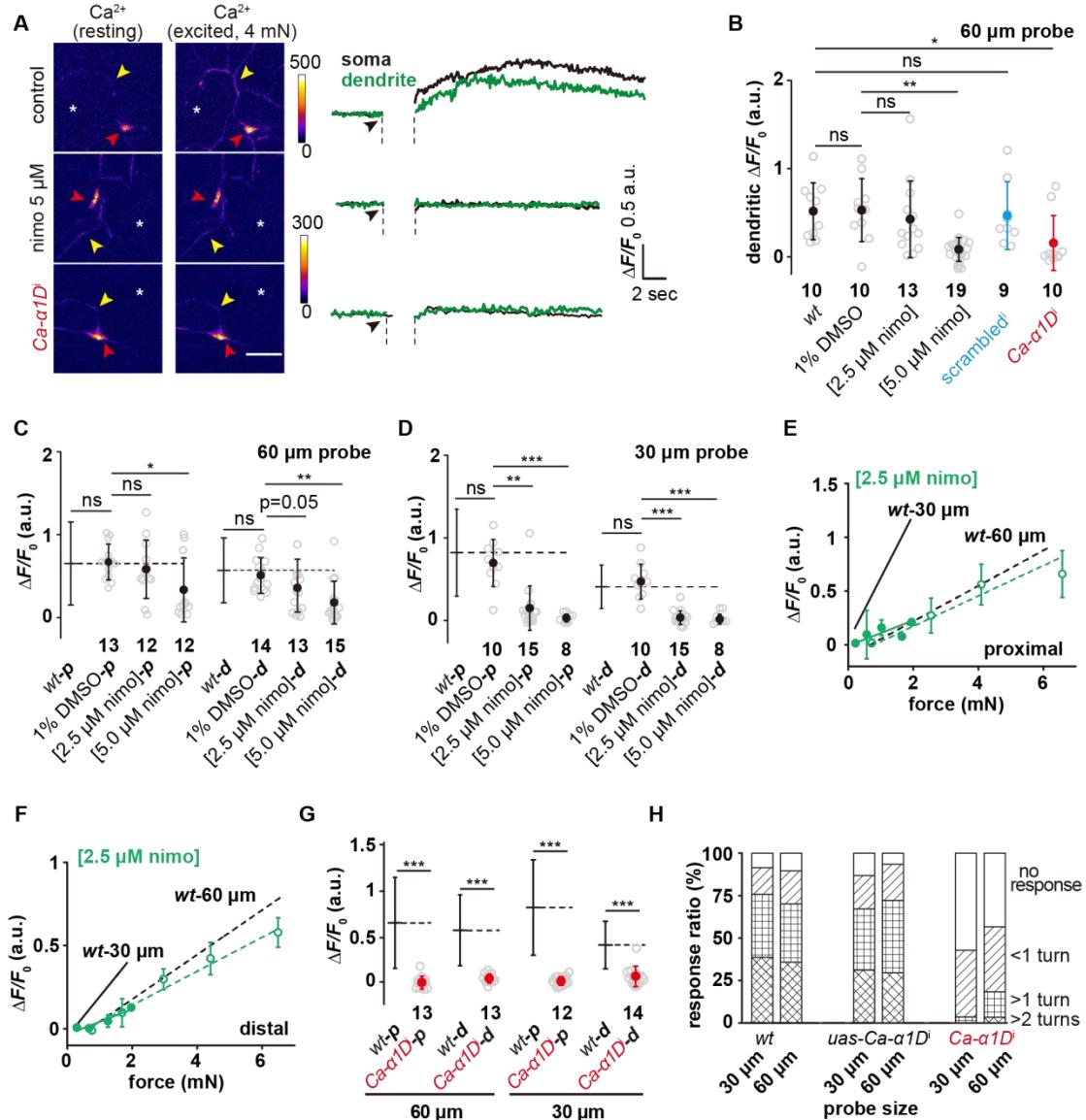
764 (D) The activation probability in three conditions: (1) only sensitive to P_p ; (2) only
 765 sensitive to T_L ; (3) sensitive to both P_p and T_L . The dendritic coverage threshold (C_d)
 766 is the minimal length of activated dendrites that could excite neuronal responses. For
 767 each condition, 100 random positions were simulated for each cell. Data were pre-
 768 sented as mean \pm std ($n=5$ cells).

769 **Figure 5 The differential contributions of Piezo and Ppk1/Ppk26 to the mechanosensitivity of c4da**
770

771 (A) Representative images of c4da-*piezo*^{KO} (*piezo*^{KO}; *ppk*-cd4-*tdtom*+/+), c4da-*ppk26*¹
772 (*uas*-cd4-*tdtom*/*ppk*-*gal4*; *ppk26*¹), c4da-*piezo*^{KO}, *ppk*^{Δ5} (*piezo*^{KO}, *ppk*^{Δ5}; *ppk*-cd4-
773 *tdtom*+/+). Scale bar: 100 μm.

774 (B) Modified Sholl analysis on the morphologies of c4da-*wt* (n=5), c4da-*piezo*^{KO} (n=3),
775 c4da-*ppk26*¹ (n=3) and c4da-*piezo*^{KO}, *ppk*^{Δ5} (n=3). The shadow areas represented stand-
776 ard deviations.

777 (C) and (D) The responses of c4da-*piezo*^{KO} and c4da-*ppk26*¹ to the proximal (C) and
778 distal (D) stimuli delivered using the probes of two different sizes. Solid lines: 30 μm
779 probe. Dashed lines: 60 μm probe. *piezo*^{KO}: *piezo*^{KO}; *ppk*-*gal4*/20×*uas*-*ivs*-*gcamp6s*
780 (n=12 cells). *ppk26*¹: *ppk*-*gal4*/20×*uas*-*ivs*-*gcamp6s*; *ppk26*¹ (n=12 cells).


781 (E) The responses of c4da-*piezo*^{KO}, *ppk*^{Δ5} to the proximal and distal stimuli delivered
782 using a 60 μm probe. Solid lines: proximal stimuli. Dashed lines: distal stimuli. Geno-
783 type: *piezo*^{KO}, *ppk1*^{Δ5}: *piezo*^{KO}, *ppk1*^{Δ5}; *ppk*-*gal4*/20×*uas*-*ivs*-*gcamp6s* (n=8 cells).

784 (F) The responses of c4da-*piezo*^{KO} and c4da-*ppk26*¹ to the “dendrite-off” stimuli (4 mN)
785 delivered using a 60 μm probe. The numbers of cells were indicated below the scattered

786 data points. Data were presented as mean±std. *: p<0.05. ns: no significance.

787 (G) The behavioral responses of the c4da-*piezo*^{KO}, c4da-*ppk26*¹ and c4da-*piezo*^{KO},
788 *ppk*^{Δ5} larvae to mechanical poking using the probes of different sizes. *wt*: *w1118*. *pie-*
789 *zo*^{KO}; *piezo*^{KO}; *+/+*. *ppk26*¹; *+/+*; *ppk26*¹. *piezo*^{KO}, *ppk1*^{Δ5}; *+/+*. *pie-*
790 *zo*^{KO} larvae: 30 μm probe (n = 77 larvae), 60 μm probe (n = 78 larvae). *ppk26*¹ larvae:
791 30 μm probe (n = 77 larvae), 60 μm probe (n = 74 larvae). *piezo*^{KO}, *ppk1*^{Δ5} larvae: 30
792 μm probe (n = 62 larvae), 60 μm probe (n = 63 larvae).

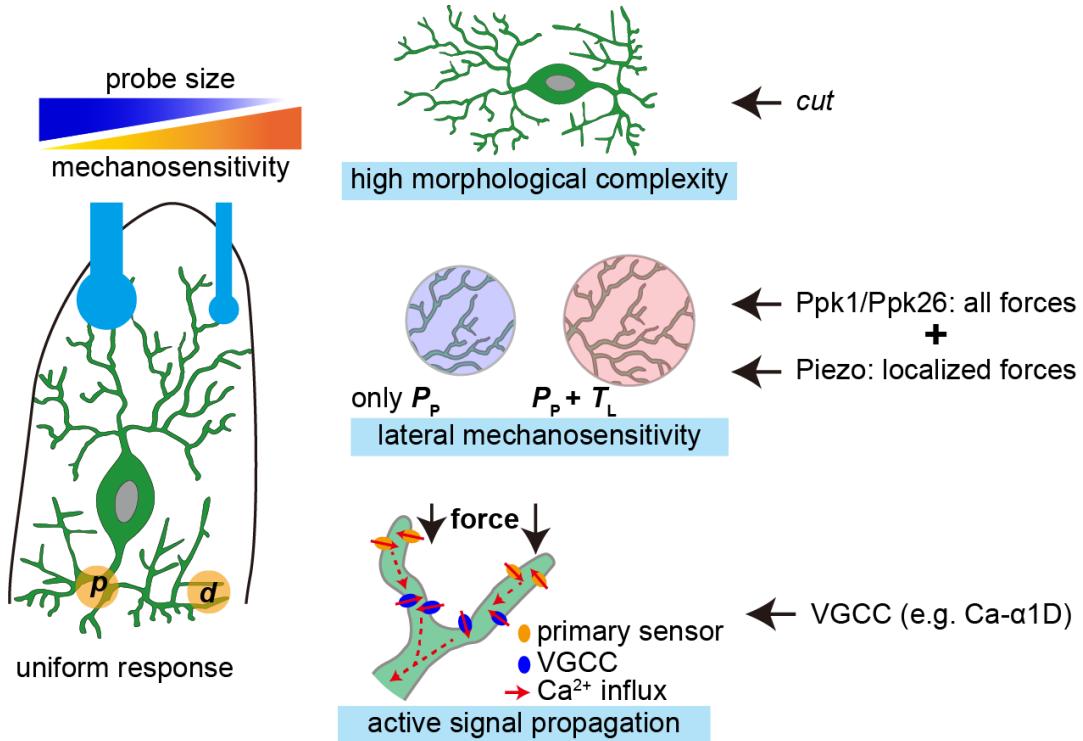
793 In panel **C**, **D** and **E**, data were presented as mean±sem. In panels **C**, **D**, **E**, **F** and **G**,
794 the corresponding data from c4da-*wt* were provided for comparison.

795 **Figure 6 Active signal propagation in the dendrites of c4da**

796 **(A)** Representative images and curves showing the somatic (red arrowhead) and den-
797 dritic (yellow arrowhead) responses (calcium increase) of c4da to the stimuli (4 mN, 60
798 μ m probe) in c4da-wt, nimodipine-treated c4da-wt and c4da-*Ca- α 1Dⁱ*. The asterisk in-
799 dicated the force application point. Scale bar: 50 μ m. C4da-wt and nimodipine treated:
800 *ppk-gal4/+; ppk-cd4-tdtom/20×uas-ivs-gcamp6s*. *Ca- α 1Dⁱ*: *ppk-gal4/20×uas-ivs-*
801 *gcamp6s; ppk-cd4-tdtom/uas-Ca- α 1Dⁱ*.

802 **(B)** Statistics quantification of calcium increase in the dendrites in response to the stim-
803 uli (4 mN, 60 μ m probe). C4da-wt and nimodipine treated c4da-wt: *ppk-gal4/+; ppk-*
804 *cd4-tdtom/20×uas-ivs-gcamp6s*. *Ca- α 1Dⁱ*: *ppk-gal4/20×uas-ivs-gcamp6s; ppk-cd4-*
805 *tdtom/uas-Ca- α 1Dⁱ*. *Scrambledⁱ*: *ppk-gal4/20×uas-ivs-gcamp6s, ppk-cd4-tdtom/uas-*
806 *Scrambledⁱ*.

807 **(C)** and **(D)** The responses of nimodipine treated c4da-wt to the proximal and distal


808 stimuli to the probes of different sizes. **(C)**: 60 μ m probe stimuli. **(D)**: 30 μ m probe
809 stimuli.

810 **(E)** and **(F)** The responses of c4da-*wt* ($n=10$ cells) treated with 2.5 μ M nimodipine to
811 the proximal **(E)** and distal **(F)** stimuli delivered using the probes of two different sizes.
812 Solid lines: 30 μ m probe. Dashed lines: 60 μ m probe.

813 **(G)** The responses of c4da-*Ca- α 1Dⁱ* to the stimuli applied at different dendritic regions
814 (proximal and distal) and delivered using the probes of two different sizes (60 μ m: 4
815 mN, 30 μ m: 1.5 mN).

816 **(H)** The behavioral responses of the c4da-*Ca- α 1Dⁱ* larvae to mechanical poking using
817 the probes of two different sizes. *wt*: *w1118*. *ppk-gal4*: *ppk-gal4*; $+/+$. *uas-*Ca- α 1Dⁱ*:
818 $+/+$; *uas-*Ca- α 1Dⁱ*. *Ca- α 1Dⁱ*: *ppk-gal4/+;uas-*Ca- α 1Dⁱ*/+*. *uas-ctⁱ* larvae: 30 μ m
819 probe ($n=72$ larvae), 60 μ m probe ($n=71$ larvae). *ctⁱ* larvae: 30 μ m probe ($n=65$ lar-
820 vae), 60 μ m probe ($n=71$ larvae).**

821 In panels **B**, **C**, **D**, **G**, the numbers of cells were indicated below the scattered data
822 points and data were presented as mean \pm std. ***: $p<0.001$. **: $p<0.01$. *: $p<0.05$. ns:
823 no significance. In panel **E** and **F**, data were presented as mean \pm sem. In panels **C**, **D**,
824 **E**, **F**, **G** and **H**, the corresponding data from c4da-*wt* were provided for comparison.

825 **Figure 7 The mechanisms underlying the mechanosensory features of c4da.**

826 Left panel: c4da showed a greater sensitivity to localized poking forces and made uni-
827 form responses to the forces applied at different dendritic regions (*p*: proximal stimuli.
828 *d*: distal stimuli). Right panel: the key cellular mechanisms that facilitate the sensory
829 features of c4da and the important contributing molecules.

830

Supplementary Materials

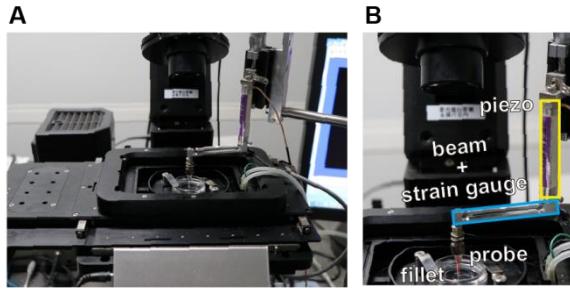
831

832 **Drosophila Mechanical Nociceptors Preferentially Sense Localized Poking**

833 Zhen Liu¹, Qi-Xuan Wang¹, Meng-Hua Wu¹, Shao-Zhen Lin², Xi-Qiao Feng², Bo Li², Xin Liang^{1,*}

834 ¹ School of Life Sciences, Tsinghua University, Beijing 100084, China

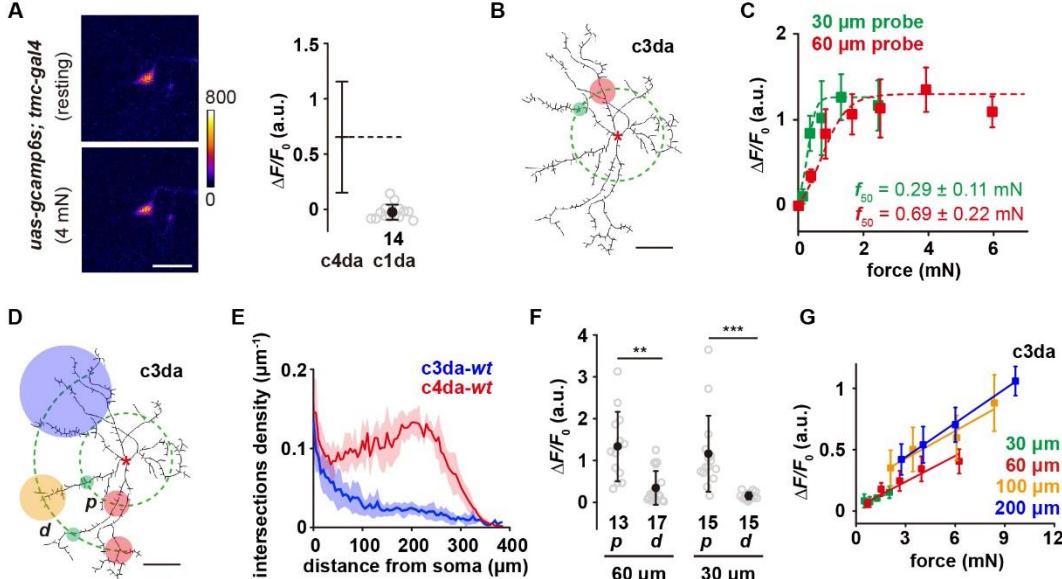
835 ² Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua
836 University, Beijing 100084, China


837 * Correspondence: xinliang@tsinghua.edu.cn (ORCID: 0000-0001-7915-8094)

838

839 **List of supplementary materials:**

840 1. Figure s1-s5 with legends


841 2. Movie s1 (legends)

842 **Figure s1 The customized mechanical device**

843 (A) The mechanical device was mounted on the working stage of a spinning-disk con-
844 focal microscope.

845 (B) The mechanical device. Yellow box: the piezo actuator. Cyan box: the beam cou-
846 pled with a strain gauge. Red bar: the glass probe.

847

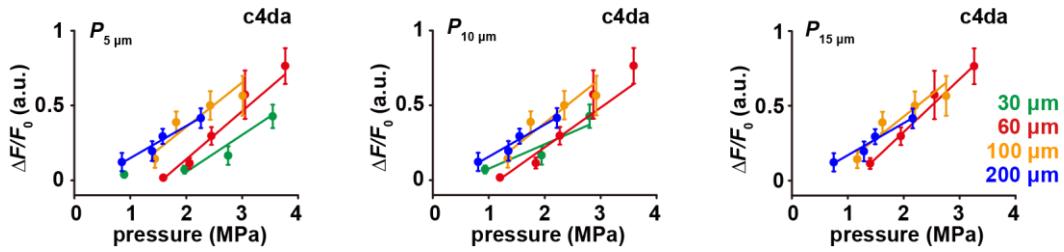
848 **Figure s2 Mechanosensory responses of c1da and c3da**

849 (A) Left panel: the representative image showing that c1da make no response to a 4 mN
850 forces stimulus. Right panel: Statistical quantification of the responses of c1da to com-
851 pressive forces (4 mN, 60 μm probe).

852 (B) A representative image of c3da. The forces were applied at about 100 μm from the
853 soma, i.e. along the green dashed circle. The representative force application points
854 were marked using the filled circles (Green: 30 μm probe. Red: 60 μm probe). The data
855 of c4da-wt (see **Fig. 2E**) were provided for comparison. Genotype: *uas-cd4-tdtom*;
856 *gal4-19-12*.

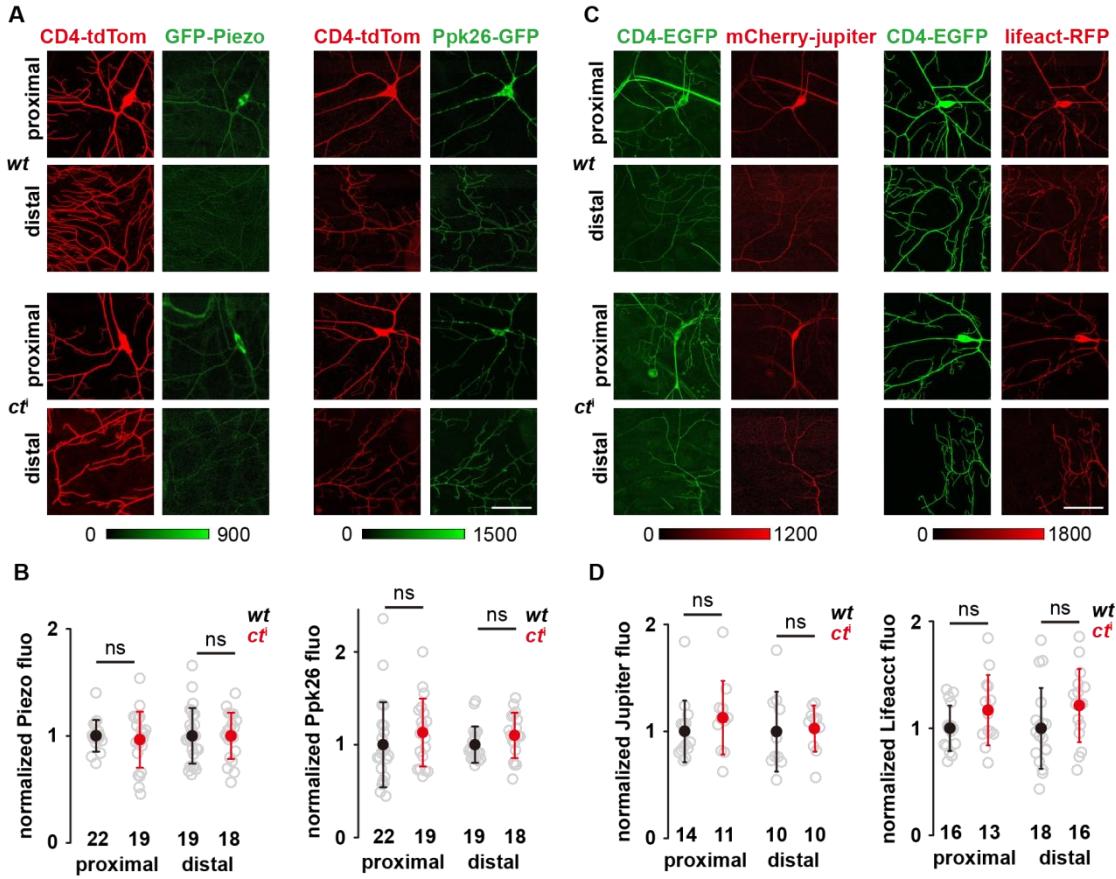
857 (C) The force-response ($\Delta F/F_0$) plots of c3da ($n=12$ cells) using the probes of two dif-
858 ferent sizes (Green: 30 μm probe. Red: 60 μm probe). The dashed lines were Boltzmann
859 fitting.

860 (D) The schematic showing the stimuli (filled circles, green: 30 μm probe, red: 60 μm
861 probe, orange: 100 μm probe, blue: 200 μm probe) delivered at different positions using
862 the probes of different sizes on c3da. *p*: proximal dendrite. *d*: distal dendrite.


863 (E) Modified Sholl analysis on the morphology of c3da-wt and c4da-wt. The shadow
864 areas represented standard deviations. *n*=5 cells for each type of neurons.

865 (F) The responses of c3da to the proximal and distal stimuli using the 30 (1.5 mN) and
866 60 μm (4 mN) probes.

867 (G) The responses of c3da ($n=9$ cells) to the forces applied on distal dendrites using the
868 probes of different sizes.

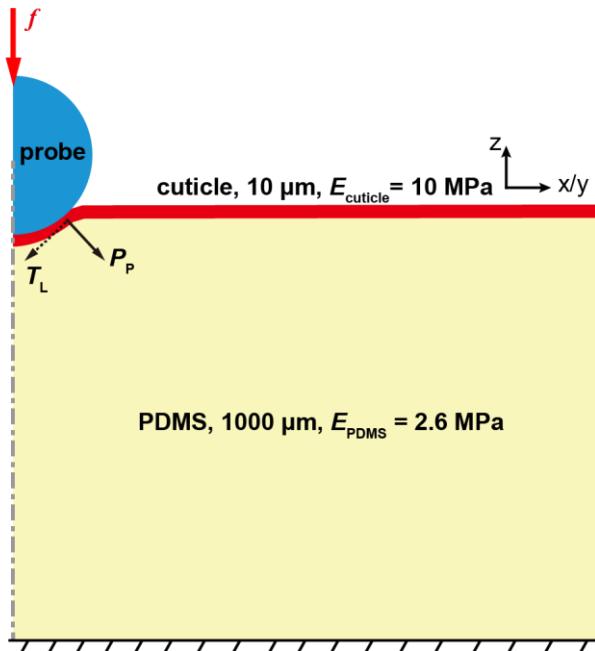

869 In panel A, scale bar: 30 μm. In panel A and F, data were presented as mean \pm std and
870 the numbers of cells were indicated below the scattered data points. In panel B, and D,

871 scale bar: 100 μ m. In panel **C** and **G**, data were presented as mean \pm sem. Asterisk: the
872 soma. ***: p<0.001. **: p<0.01.

873 **Figure s3 The responses of c4da-*wt* to distal stimuli have a linear scaling relationship**
874 **with the pressure ($P_{x \mu\text{m}}$)**

875 Left panel: The responses of c4da to distal stimuli versus the pressures measured at 5
876 μm , 10 μm and 15 μm away from the center of the force ($P_{5 \mu\text{m}}$, $P_{10 \mu\text{m}}$, $P_{15 \mu\text{m}}$). Data
877 were presented as mean \pm sem ($n=10$ cells).

878 **Figure s4 The expression and localization of the mechanosensory molecules and**
 879 **cytoskeletal elements in c4da-*ctⁱ***


880 **(A)** The representative images of the mechanosensory molecules in c4da-*wt* and c4da-
 881 *ctⁱ*. *Gfp-piezo*: *gfp-piezo*/+; *ppk-cd4-tdtom*/+. *Ppk26-gfp*: *ppk-gal4*/+; *ppk-cd4-*
 882 *tdtom/uas-ppk26-gfp*.

883 **(B)** Statistical quantification of Piezo-GFP (left panel) and Ppk26-GFP (right panel)
 884 signals in c4da-*wt* and c4da-*ctⁱ*.

885 **(C)** The representative images of f-actin (lifeact) and microtubules (jupiter) in c4da-*wt*
 886 and c4da-*ctⁱ*. *Mcherry-jupiter*: *ppk-gal4*/+; *ppk-cd4-tdgfp/uas-mcherry-jupiter*. *Lifeact-*
 887 *rfp*: *ppk-gal4*/+; *ppk-cd4-tdgfp/uas-lifeact-rfp*.

888 **(D)** Statistical quantification of mCherry-Jupiter (left panel) and Lifeact-RFP (right
 889 panel) signals in c4da-*wt* and c4da-*ctⁱ*.

890 In panel **A** and **C**, scale bar: 50 μ m. In panel **B** and **D**, data were presented as mean \pm std
 891 and the numbers of cells were indicated below the scattered data points. ns: no signifi-
 892 cance.

893 **Figure s5 Cartoon schematics for the mechanical model used in the finite element**
894 **analysis.**

895 P_p , pressure perpendicular to the cuticle surface. T_L , tension parallel with the cuticle
896 surface.

897 **Movie s1**

898 The representative response of a c4da cell to a 4 mN force stimulus. The asterisk indicated the force application point and the white arrowhead indicated the soma.