

Local assembly of long reads enables phylogenomics of transposable elements in a polyploid cell line

Shunhua Han^{*,1}, Guilherme B. Dias^{*,†,1}, Preston J. Basting^{*}, Raghuvir Viswanatha[‡], Norbert Perrimon^{‡,§} and Casey M. Bergman^{*,†}

^{*}Institute of Bioinformatics, University of Georgia, 120 E. Green St., Athens, GA, USA, [†]Department of Genetics, University of Georgia, 120 E. Green St., Athens, GA, USA, [‡]Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, USA, [§]Howard Hughes Medical Institute, Boston, MA, USA, ¹These authors contributed equally to this work.

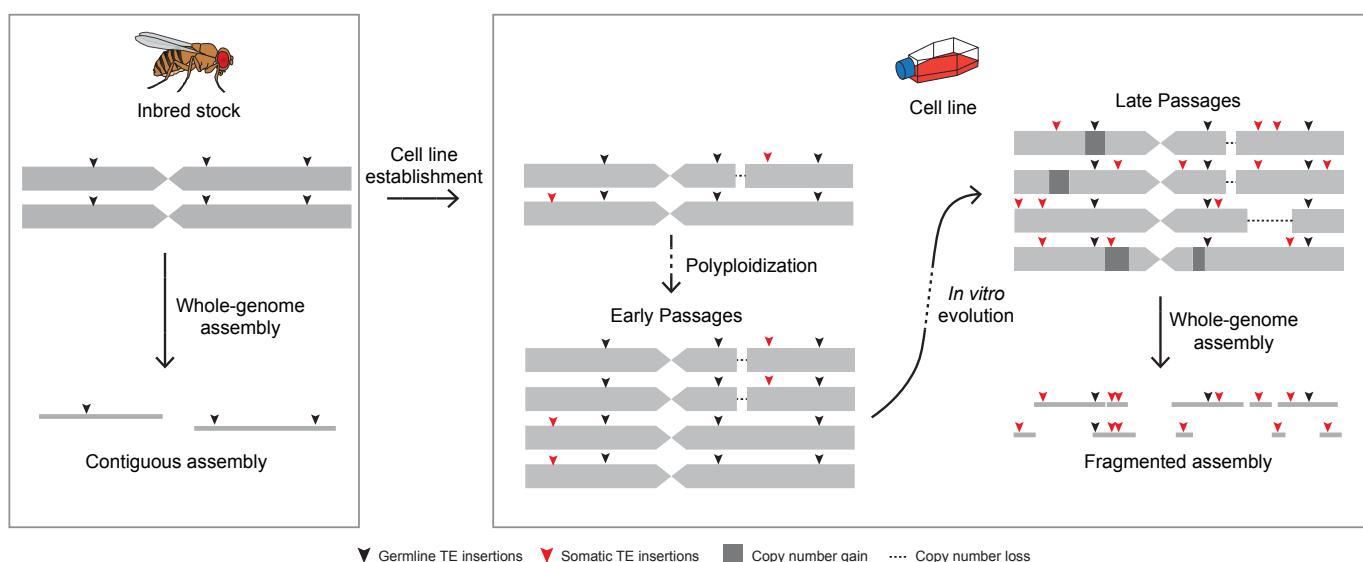
ABSTRACT Animal cell lines cultured for extended periods often undergo extreme genome restructuring events, including polyploidy and segmental aneuploidy that can impede *de novo* whole-genome assembly (WGA). In *Drosophila*, many established cell lines also exhibit massive proliferation of transposable elements (TEs) relative to wild-type flies. To better understand the role of transposition during long-term animal somatic cell culture, we sequenced the genome of the tetraploid *Drosophila* S2R+ cell line using long-read and linked-read technologies. Relative to comparable data from inbred whole flies, WGAs for S2R+ were highly fragmented and generated variable estimates of TE content across sequencing and assembly technologies. We therefore developed a novel WGA-independent bioinformatics method called “TELR” that identifies, locally assembles, and estimates allele frequency of TEs from long-read sequence data (<https://github.com/bergmanlab/telr>). Application of TELR to a ~130x PacBio dataset for S2R+ revealed many haplotype-specific TE insertions that arose by somatic transposition in cell culture after initial cell line establishment and subsequent tetraploidization. Local assemblies from TELR also allowed phylogenetic analysis of paralogous TE copies within the S2R+ genome, which revealed that proliferation of different TE families during cell line evolution *in vitro* can be driven by single or multiple source lineages. Our work provides a model for the analysis of TEs in complex heterozygous or polyploid genomes that are not amenable to WGA and yields new insights into the mechanisms of genome evolution in animal cell culture.

KEYWORDS *Drosophila*, transposable elements, genome assembly, cell line, polyploidy

1

2 Introduction

3 Cell lines are commonly used in biological and biomedical re-
4 search, however little is known about how cell line genomes
5 evolve *in vitro*. For decades, it has been well-established that im-
6 mortalized cell lines derived from plant or animal tissues often
7 develop polyploidy or aneuploidy during routine cell culture
8 (Ford and Yerganian 1958; Hink 1976; Ogura 1990; Bairu *et al.*
9 2011). More recently, the use of DNA sequencing has further
10 revealed that segmental aneuploidy and other types of submi-
11 croscopic structural variation are widespread in cell lines (Zhang

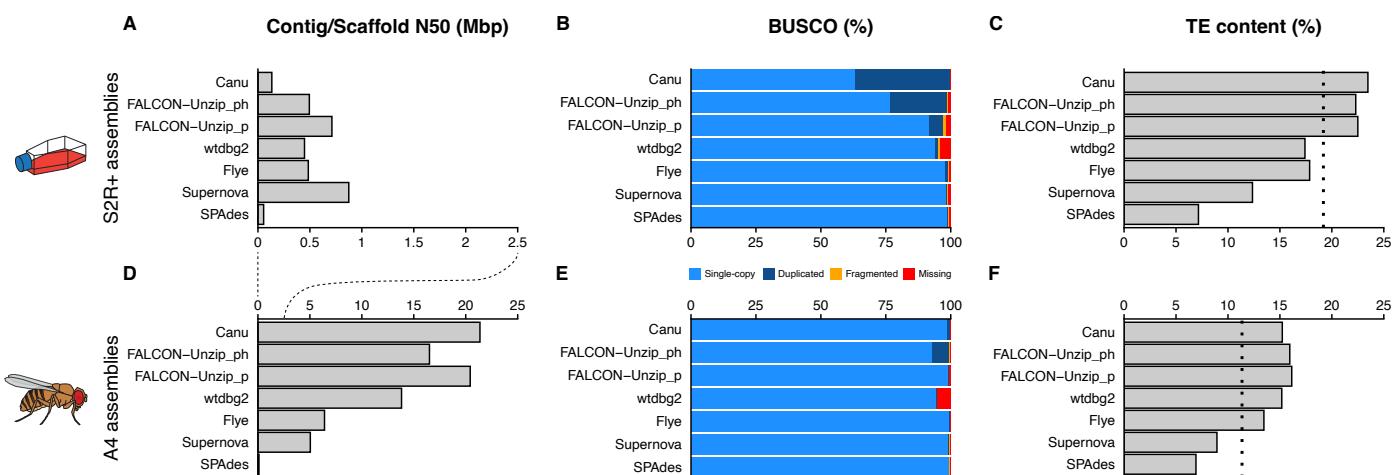

12 *et al.* 2010; Miya *et al.* 2012; Adey *et al.* 2013; Lee *et al.* 2014; Nattestad *et al.* 2018; Ben-David *et al.* 2018; Zhou *et al.* 2019b,a; Liu *et al.* 2019; Han *et al.* 2021b). Together, these observations indicate
13 that cells in culture often evolve complex genome architectures
14 that deviate substantially from their original source material.
15 Resolving the evolutionary processes that govern the transition
16 from wild-type to complex cell line genome architectures is im-
17 portant for understanding the stability of cell line genotypes
18 and the reproducibility of cell-line-based research. However, the
19 complexity of cell line genomes can impose limitations on ef-
20 forts to perform *de novo* whole-genome assembly (WGA) (Miller
21 *et al.* 2018a,b; Nattestad *et al.* 2018) and thus limit the ability to
22 study cell line genome structure and evolution using traditional
23 WGA-based bioinformatics approaches.

24 Like many animal cell lines, Schneider-2 (S2) cells from
25 the model insect *Drosophila* have undergone polyploidization

Corresponding author: Casey M. Bergman, University of Georgia. Email: cbergman@uga.edu.

12
13
14
15
16
17
18
19
20
21
22
23
24
25

26
27


Figure 1 Genome architecture complexity hinders whole-genome assembly in long-term cultured cell lines. The inbred fly stock has diploid genome that includes homozygous variations, which allows contiguous whole-genome assembly (WGA). In comparison, cell lines established from inbred fly stock undergo polypliodization and accumulates heterozygous variations including segmental aneuploidy and haplotype-specific TE insertions during long-term culture. The complexity of polypliod genome with heterozygous variants may lead to highly fragmented WGA and as a result limit the utility of using WGA to study TE sequence evolution.

(Schneider 1972; Lee *et al.* 2014), and display substantial small-
2 and large-scale segmental aneuploidy (Zhang *et al.* 2010; Lee
3 *et al.* 2014; Han *et al.* 2021b). In addition, S2 and other *Drosophila*
4 cell lines exhibit a higher abundance of transposable element
5 (TE) sequences compared to whole flies (Potter *et al.* 1979; Ilyin
6 *et al.* 1980; Rahman *et al.* 2015), with TE families that are abun-
7 dant in S2 cells differing from those amplified in other *Drosophila*
8 cell lines (Echalier 1997; Rahman *et al.* 2015; Han *et al.* 2021a;
9 Mariyappa *et al.* 2021). However, little is known about TE se-
10 quence variation in S2 cells or other *Drosophila* cell lines. For
11 example, it is generally unknown whether the proliferation of
12 particular TE families in *Drosophila* cell lines is caused by one or
13 more source lineages (Maisonneuve *et al.* 2007). The lack of un-
14 derstanding about TE sequences in *Drosophila* cell lines is mainly
15 due to previous studies using short-read sequencing data (Rah-
16 man *et al.* 2015; Han *et al.* 2021a,b), which typically does not
17 allow complete assembly of TE insertions or other structural
18 variants (Alkan *et al.* 2011; Tattini *et al.* 2015; Kosugi *et al.* 2019;
19 Zhao *et al.* 2021).

Recent advances in long-read DNA sequencing technologies
20 have substantially improved the quality of WGA, including a
21 better representation of repetitive sequences such as TEs (Berlin
22 *et al.* 2015). In *Drosophila*, long-read WGA of homozygous
23 diploid genomes such as those from inbred fly stocks can achieve
24 high contiguity and permit detailed analysis of structural varia-
25 tion including TE insertions (Berlin *et al.* 2015; Chakraborty *et al.*
26 2018; Bracewell *et al.* 2019; Chang *et al.* 2019; Mohamed *et al.* 2020;
27 Ellison and Cao 2020; Hemmer *et al.* 2020; Wierzbicki *et al.* 2021).
28 However, successful WGA using long reads remains limited by
29 complex genome features including polypliody, heterozygosity,
30 and high repeat content, all of which are present in cell lines
31 such as *Drosophila* S2 cells (Schneider 1972; Potter *et al.* 1979; Ilyin
32 *et al.* 1980; Zhang *et al.* 2010; Lee *et al.* 2014; Rahman *et al.* 2015;
33 Han *et al.* 2021a). In fact, the state-of-the-art long-read assem-

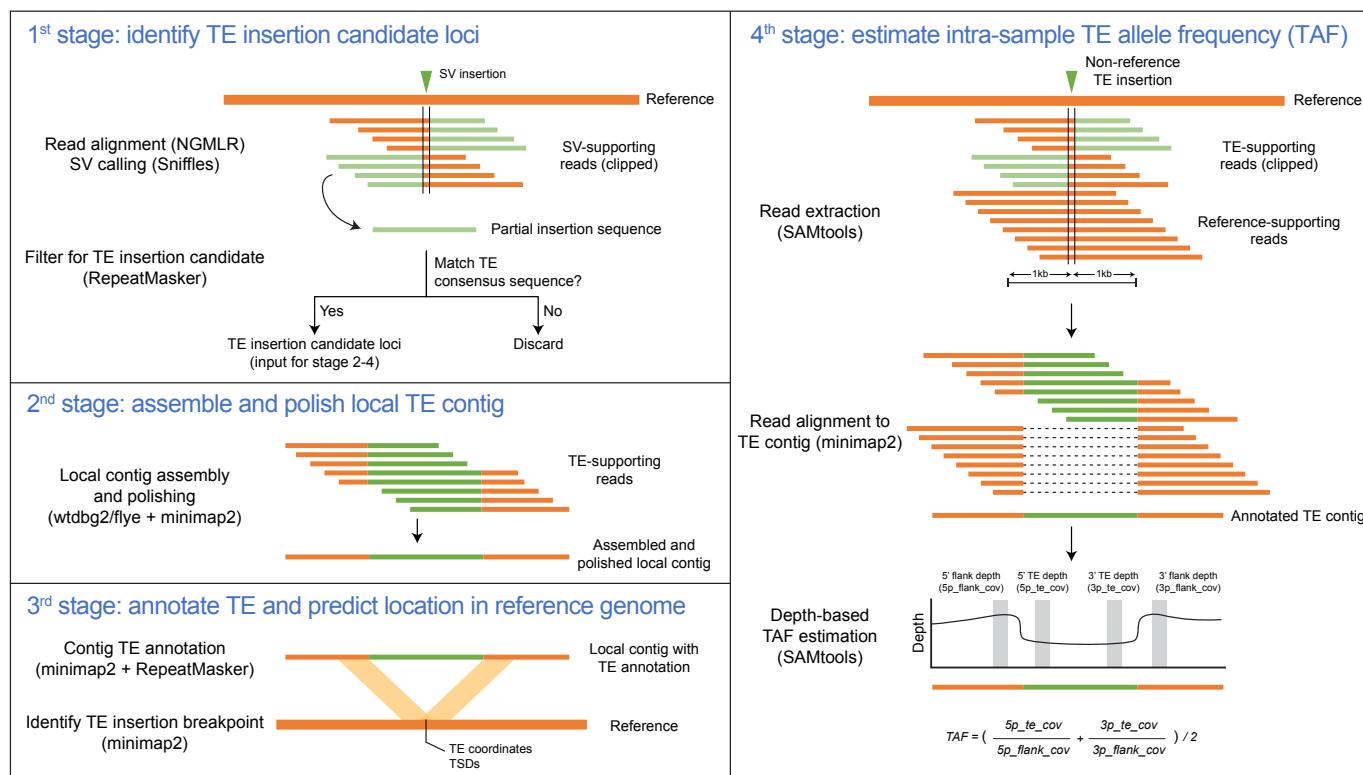
blies of wild-type diploid genomes still suffer from the presence
35 of repeats and heterozygosity, which may result in assembly
36 gaps and haplotype duplication artifacts (Rhee *et al.* 2021; Peona
37 *et al.* 2021). Therefore, assembly of a complex *Drosophila* cell
38 line genome is likely to result in substantially more fragmented
39 WGA than those generated from homozygous diploid fly stocks
40 (Fig. 1), and this degradation of assembly quality could impact
41 the subsequent analysis of TE sequences.

To gain better insight into the role of transposition during
43 genome evolution in animal cell culture, here we sequenced the
44 genome of a commonly-used variant of S2 cells, the S2R+ cell
45 line (Yanagawa *et al.* 1998), using PacBio long-read and 10x Ge-
46 nomics linked-read technologies. As predicted, WGA of S2R+
47 from long-read sequencing data were highly fragmented and
48 yielded highly variable estimates of TE content using different
49 assembly methods. To circumvent the limitations of WGA and
50 characterize TE content in *Drosophila* cell lines, we developed
51 a novel TE detection tool called TELR (Transposable Elements
52 from Long Reads, pronounced “Teller”) that can predict non-
53 reference TE insertions based on a long-read sequence dataset,
54 reference genome, and TE library. Importantly, TELR can detect
55 haplotype-specific TE insertions, reconstruct TE sequences, and
56 estimate intra-sample TE allele frequencies (TAFs) from com-
57 plex genomes that are not amenable to WGA. We applied TELR
58 to our PacBio long-read dataset for S2R+ and similar datasets
59 for a geographically-diverse panel of *D. melanogaster* inbred
60 fly strains from the *Drosophila* Synthetic Population Resource
61 (DSPR) (Chakraborty *et al.* 2019). We discovered a large num-
62 ber of haplotype-specific TE insertions from a subset of LTR
63 retrotransposon families in the tetraploid S2R+ cell line. We
64 inferred that these haplotype-specific insertions came from so-
65 matic transposition events that occurred *in vitro* after initial cell
66 line establishment and subsequent tetraploidization (Schneider
67 1972; Lee *et al.* 2014). We also performed phylogenomic analysis

Figure 2 Lower contiguity, and higher BUSCO duplication and TE content in whole-genome assemblies of S2R+ compared to those from an inbred fly strain. (A) and (D) include contig (Canu, FALCON-Unzip, and wtdbg2) and scaffold (Flye, Supernova, and SPAdes) N50 values for S2R+ and A4 whole-genome assemblies, respectively. (B) and (E) include BUSCO (Benchmarking Universal Single-Copy Orthologs) analysis with the Diptera gene set from OrthoDBv10 on S2R+ and A4 assemblies, respectively. (C) and (F) include RepeatMasker estimates of TE content in WGA of S2R+ and A4, respectively. Dotted lines in (C) and (F) represent RepeatMasker estimates of TE content from raw Illumina reads. “FALCON-Unzip_p” represents primary contigs, “FALCON-Unzip_ph” represents primary contigs + haplotigs. Note that the scale bar is different in (A) and (D).

1 on the full-length TE sequences that were assembled by TELR,
 2 which revealed that amplification of TE families in *Drosophila*
 3 cell lines can be caused by activity of one or multiple source
 4 lineages. Together, our work provides a novel computational
 5 framework to study polymorphic TEs in complex heterozygous
 6 or polyploid genomes and improves our understanding of the
 7 mechanisms of genome evolution during long-term animal cell
 8 culture.

9 Results

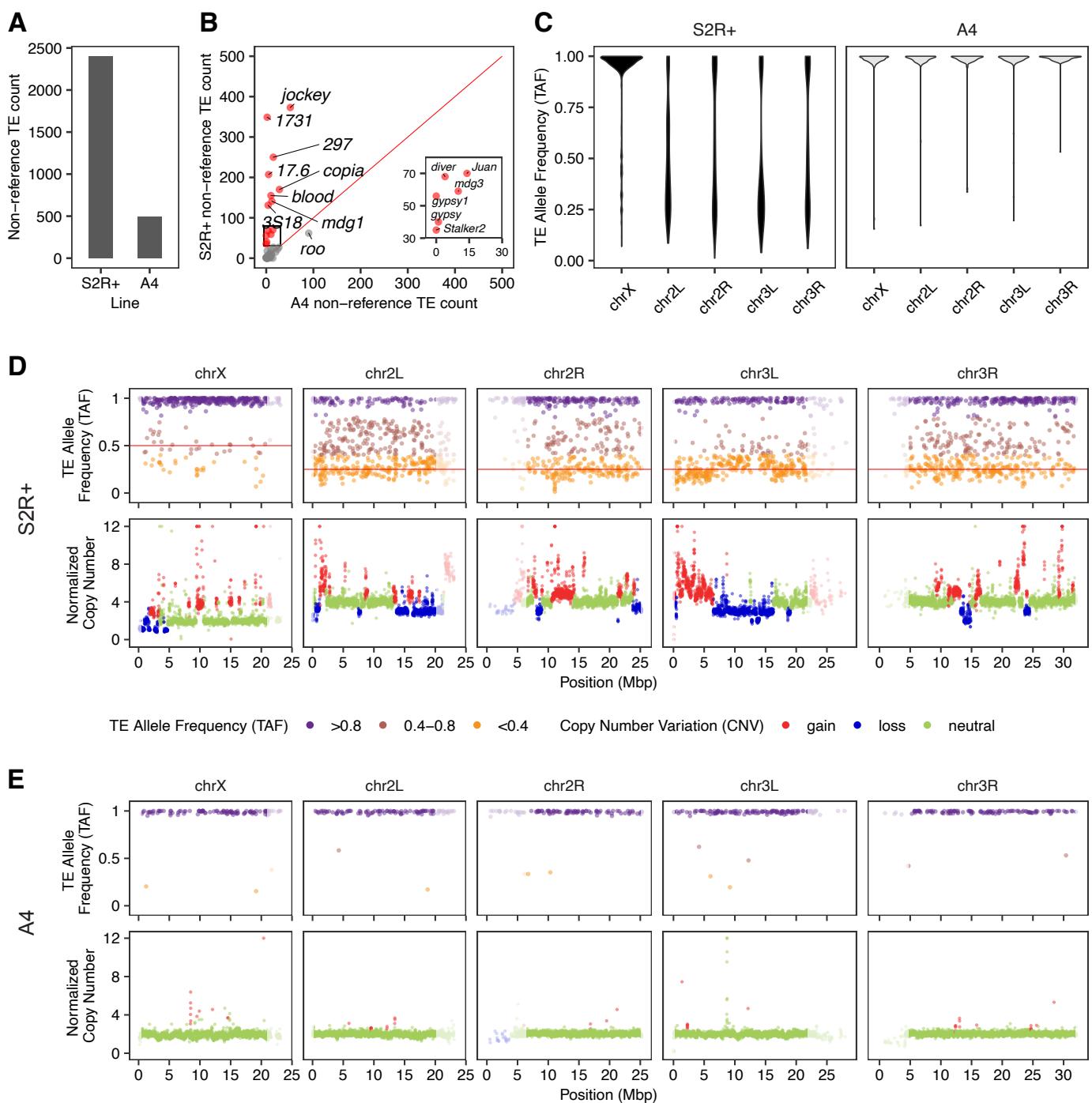

10 Fragmented assemblies yield variable estimates of TE content 11 in the S2R+ genome

12 To better understand the process of TE amplification in the S2R+
 13 cell line genome, we initially sought to use a *de novo* assembly-
 14 based approach by generating PacBio long-read (132X average
 15 depth) and 10x Genomics linked-read (89X average depth) se-
 16 quencing data and assembled these data using a variety of
 17 state-of-the-art WGA software (Bankevich *et al.* 2012; Chin *et al.*
 18 2016; Koren *et al.* 2017; Weisenfeld *et al.* 2017; Ruan and Li 2020;
 19 Kolmogorov *et al.* 2019). All S2R+ whole-genome assemblies
 20 (WGAs) using long reads (Canu, FALCON-Unzip, wtdbg2, and
 21 Flye) or linked reads (Supernova) had better contiguities com-
 22 pared to a SPAdes assembly of standard Illumina paired-end
 23 short read data (Fig. 2A; Table S1). However, S2R+ WGAs from
 24 different sequencing technologies and assemblers varied sub-
 25 stantially in their contiguities and levels of duplicated BUSCOs
 26 (Fig. 2A,B; Table S1). Canu assembly of the S2R+ PacBio data dis-
 27 played the highest level of BUSCO duplication and the longest
 28 total assembly length (Fig. 2B; Table S1). We speculated that the
 29 high degree of BUSCO duplication in the Canu S2R+ assembly
 30 could be caused by haplotype-induced duplication artifacts in
 31 a partially-phased assembly that contained contigs from mul-
 32 tiple haplotypes of the same locus (Kelley and Salzberg 2010;
 33 Dias *et al.* 2021). To test this, we took advantage of the fact that
 34 FALCON-Unzip leverages structural variants to phase heterozy-
 35 gous regions into a primary assembly (“FALCON-Unzip_p”)

36 and alternative haplotigs (Chin *et al.* 2016). Similar to the Canu
 37 assembly, combining the primary FALCON-Unzip assembly
 38 with alternative haplotigs (“FALCON-Unzip_ph”) resulted a
 39 higher level of BUSCO duplication (Fig. 2B). This result sug-
 40 gested that many regions of the S2R+ genome contain haplotype-
 41 specific structural variants that can lead to secondary haplotigs
 42 (and haplotype-induced BUSCO duplication) in the Canu and
 43 Falcon-Unzip assemblies.

44 N50s for all S2R+ WGAs were less than 1 Mbp, which is more
 45 than ten-fold smaller than the size of assembled chromosome
 46 arms in the *Drosophila* reference genome (Hoskins *et al.* 2015). To
 47 assess how S2R+ cell line WGAs compared to those from whole
 48 flies of inbred stocks, we also generated WGAs for a highly
 49 inbred *D. melanogaster* strain called A4 using available PacBio
 50 long-read data (110x average depth) from Chakraborty *et al.*
 51 (2019) and a 10x Genomics linked-read dataset for A4 generated
 52 in this study (118X average depth) using identical assembly
 53 software and parameters as for S2R+. We found that WGAs for
 54 A4 have reference-grade contiguities and exhibit lower variation
 55 in levels of BUSCO duplication than WGAs for the S2R+ cell
 56 line (Fig. 2D,E; Table S2). Given that the A4 strain is diploid
 57 homozygous (Chakraborty *et al.* 2019), these results suggest
 58 that the highly fragmented WGAs for S2R+ are likely caused
 59 by polyploidy, aneuploidy, or heterozygosity in the S2R+ cell
 60 line genome rather than limitations of current sequencing or
 61 assembly methods.

62 In addition to assembly quality, estimates of TE content in
 63 WGAs varied substantially for both S2R+ and A4 (Fig. 2C,F;
 64 Table S1 and S2). Compared to unbiased estimates of TE content
 65 based on RepeatMasker analysis of unassembled short reads
 66 (dotted lines in Fig. 2C,F) (Sackton *et al.* 2009), long-read WGAs
 67 for both the S2R+ and A4 genomes typically gave similar or
 68 higher estimates of TE content, while short read WGAs always
 69 gave lower estimates. In particular, the Canu and Falcon-Unzip
 70 assemblies that we infer include alternative haplotigs gave the
 71 highest estimates of TE content relative to unassembled short


Figure 3 TELR workflow to predict non-reference TE and estimate intra-sample allele frequency. TELR is a non-reference transposable element (TE) detector from long read sequencing data. The TELR pipeline consists of four main stages. In the first stage, TELR aligns long reads to a reference and identify insertions using Sniffles (Sedlazeck *et al.* 2018). TELR then screens for non-reference TE insertion candidate locus by computing nucleotide similarity between partial insertion sequence provided by Sniffles and TE consensus sequences. In the second stage, TELR use SV-supporting reads from Sniffles to assemble and polish local contig using wtdbg2 (Ruan and Li 2020), flye (Kolmogorov *et al.* 2019), and minimap2 (Li 2018). In the third stage, The TE boundaries and family are annotated in the local contig using minimap2 and RepeatMasker, and the TE flanking sequences are used to determine the TE coordinates and target-site duplications by mapping to the reference genome with minimap2. In the fourth stage, TELR determines the intra-sample allele frequency of each TE insertion by extracting all reads in a 2kb span around the insertion locus and aligning them to the TE contig. The mapped read depth over TE and flanking sequences are then used to calculate the intra-sample TE allele frequency (TAF).

1 read data, suggesting the possibility of haplotype-specific TE
 2 insertions in these assemblies. In addition to differences in over-
 3 all TE content, we observed higher variation in the abundance
 4 of different TE families across sequencing and assembly tech-
 5 nologies in WGA for S2R+ (Fig. S1A) compared to A4 (Fig.
 6 S1B), indicating that WGA-based inferences about TE family
 7 abundance in S2R+ are highly dependent on sequencing and
 8 assembly technology. Despite this variation, higher estimates
 9 of overall TE content were observed in S2R+ WGA relative to
 10 A4 WGA for all sequencing or assembly technologies used (Fig.
 11 S2C,F; Table S1 and S2). However, because of the relatively poor
 12 quality and high variation in estimates of TE content among
 13 WGA generated from S2R+ long-read and linked-read data,
 14 we concluded that an alternative WGA-independent approach
 15 that is better suited to the complexities of cell line genome ar-
 16 chitecture was necessary to reliably study TE content in S2R+
 17 cells.

A novel long-read bioinformatics method reveals TE families enriched in S2R+ relative to wild type *Drosophila* strains

To circumvent the impact of fragmented WGA on the analysis of TE content in complex cell line genomes, we developed a new TE detection method called “TELR” (Transposable Elements from Long Reads; <https://github.com/bergmanlab/telr>) that allows the identification, assembly, and allele frequency estimation of non-reference TE insertions using long-read data (Fig. 3). Briefly, TELR first aligns long reads to a reference genome to identify insertion variants using Sniffles (Sedlazeck *et al.* 2018). The general pool of insertion variants identified by Sniffles is then filtered by aligning putative insertion sequences to library of curated TE sequences to identify candidate TE insertion loci. For each candidate TE insertion locus, TELR then performs a local assembly using all reads that support the putative TE insertion event. Finally, TELR annotates TE sequence in each assembled contig, predicts the precise location of the TE insertion on reference coordinates, then remaps all reads in the vicinity of each insertion to the assembled TE contig to estimate TAF (see **Materials and Methods** for details).

Using TELR we identified 2,402 non-reference TE insertions

Figure 4 Long-read non-reference TE prediction with TELR reveals multiple families amplified during cell culture. A Total number of non-reference TE predictions made by TELR for S2R+ and A4. B Number of non-reference TE predictions made by TELR for S2R+ and A4 separated by families with the 14 most abundant families in S2R+ highlighted in red. The insert box is a zoomed plot that includes 6 abundant families in S2R+. C TAF distribution by chromosome arm for S2R+ and A4. D-E Genome-wide TAF and copy number profiles for S2R+ (D) and A4 (E). Low recombination regions are shaded in grey.

1 in euchromatic regions of the S2R+ genome, which is a ~5-fold
 2 increase relative to the number identified in A4 (n=490; Fig.
 3 4A). These overall differences in non-reference TE abundance
 4 between S2R+ and A4 are unlikely to be caused by variation in
 5 coverage and read length between the S2R+ and A4 datasets,
 6 as shown by analysis of read length and coverage normalized

7 datasets for S2R+ and A4 (Fig. S2). Despite a drop in the number
 8 of predictions in the normalized data relative to the full dataset,
 9 TELR still predicted substantially more TEs in S2R+ compared
 10 to A4 at all coverage levels (Fig. S2). This analysis also revealed
 11 that, unlike A4 which plateaued in the number of non-reference
 12 TE insertions at a normalized read depth of 50X, detection of

1 non-reference TEs in S2R+ is likely not saturated even at 75X.
2 Therefore, in order to maximize TE prediction sensitivity, we
3 used the complete non-normalized Pacbio data for S2R+ and all
4 whole-fly strains in subsequent analyses.

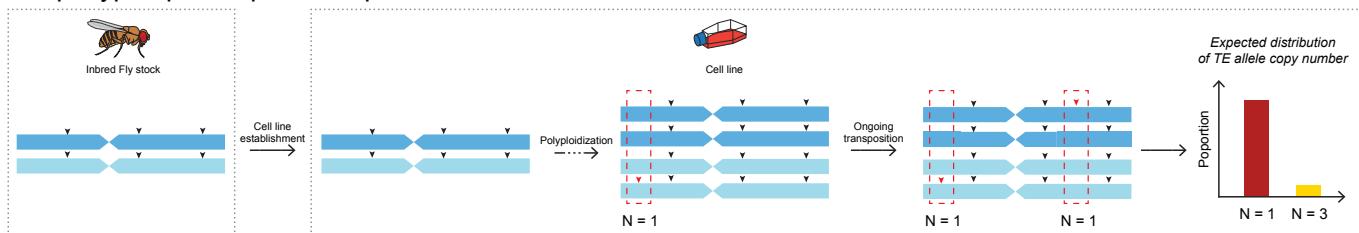
5 Partitioning the number of non-reference TE insertions pre-
6 dicted by TELR in the complete S2R+ and A4 PacBio datasets by
7 TE family revealed a subset of 14 TE families that are enriched
8 in S2R+ relative to A4 (Fig. 4B; Fig. S5). These S2R+-specific TE
9 families consist mostly of long terminal repeat (LTR) retrotrans-
10 posons with the exception of *jockey* and *Juan*, which are non-LTR
11 retrotransposons (Fig. 4B; Fig. S5). The TE families revealed by
12 TELR to be enriched in S2R+ relative to A4 were independently
13 cross-validated using short-read sequences and two indepen-
14 dent short-read TE detection methods (Fig. S3) (Han *et al.* 2021a;
15 Zhuang *et al.* 2014).

16 We next used TELR to predict non-reference TEs in PacBio
17 datasets for 13 geographically-diverse *D. melanogaster* inbred
18 strains (including A4) from the DSPR project (Chakraborty *et al.*
19 2019). This analysis revealed that S2R+ has more non-reference
20 TE insertions than any of the DSPR strains surveyed (range: 445-
21 658; Fig. S4). Partitioning TELR predictions by TE family reveals
22 that only eight TE families account for ~75% of non-reference
23 insertions in S2R+, most of which are LTR retrotransposons (Fig.
24 S4; Fig. S5). In comparison, 10-16 TE families contribute ~75%
25 of all non-reference TE insertions in each of the DSPR strain,
26 and they represent a more balanced distribution of LTR retro-
27 transposons, non-LTR retrotransposons, and DNA transposons
28 (Fig. S4; Fig. S5). We also observed strain-specific TE ex-
29 pansions, which we define as a greater than 3-fold increase in the
30 number of non-reference TE insertions for a specific family rela-
31 tive to the mean values across all strains. For example, we see
32 strain-specific expansions of 1360 (n=23, mean=7.13) in A2 (from
33 Colombia), *hopper* (n=114, mean=18.4) in A6 (from USA), as well
34 as *Doc* (n=113, mean=26.5) and *Quasimodo* (n=28, mean=7) in B2
35 (from South Africa) (Fig. S5).

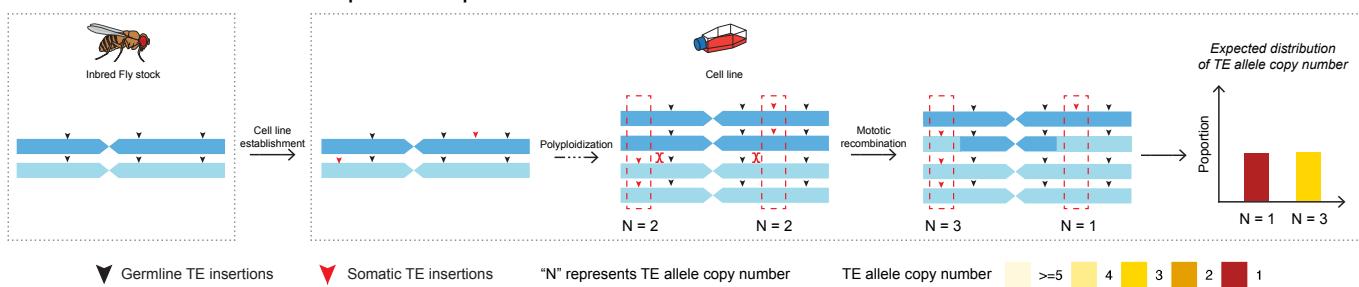
36 **Accurate estimation of intra-sample allele frequencies sup- 37 ports haplotype-specific TE insertion after tetraploidy in the 38 S2R+ genome**

39 An important feature of the TELR system is the ability to estimate
40 the intra-sample allele frequency of non-reference TE insertions
41 (Fig. 3), which allowed us to observe drastic differences between
42 S2R+ and A4 in genome-wide TAF patterns. TE insertions in
43 S2R+ display a wide range of allele frequencies, with a striking
44 difference in TAF distributions on the X chromosome relative to
45 the autosomal arms (Fig. 4C; Fig. 4D). In contrast, non-reference
46 TEs in the highly-inbred strain A4 (King *et al.* 2012) are mostly
47 enriched at TAF values ~1 on all chromosome arms (Fig. 4C; Fig.
48 4E). Broad-scale patterns of TAF distributions across the S2R+
49 and A4 genomes detected by TELR using long-read sequences
50 were independently cross-validated using short-read sequences
51 and two independent short-read TE detection methods (Fig. S6)
52 (Han *et al.* 2021a; Zhuang *et al.* 2014).

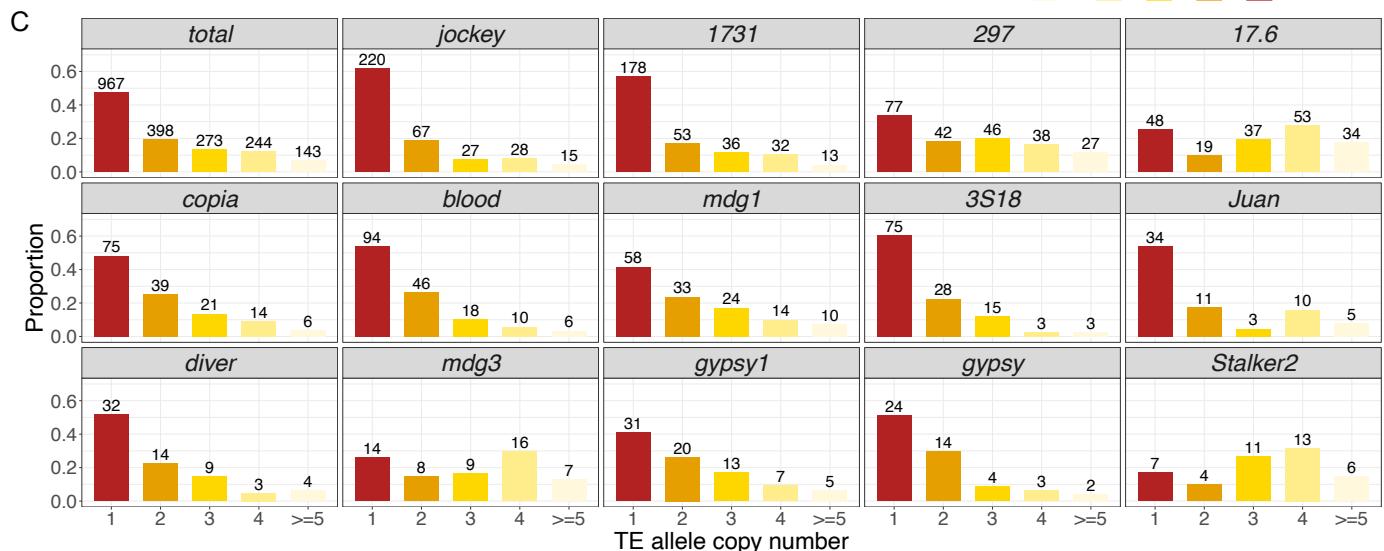
53 Like A4, non-reference TEs in other DSPR strains are mostly
54 homozygous with TAF values enriched at the expected value
55 of ~1 for highly inbred diploid fly stocks (Fig. S7). However,
56 our TELR analysis of DSPR datasets revealed two striking ex-
57 ceptions to this pattern. First, A2 displays mostly heterozygous
58 TE insertions across chromosome arm 3R, which coincides with
59 the presence of a known heterozygous chromosomal inversion
60 in this strain (*In(3R)P*) that prevents full inbreeding (King *et al.*
61 2012). Second, TAF values in A7 are enriched at ~0.25 and ~0.75


62 across the whole genome (Fig. S7). This TAF pattern is unusual
63 since A7 is thought to be fully inbred and devoid of large chro-
64 mosomal inversions (King *et al.* 2012). We hypothesized that the
65 bimodal TAF profile in A7 could be indicative of contamination
66 in the A7 data with PacBio reads from a different fly strain in the
67 DSPR project. Indeed, intersecting TELR predictions between A7
68 and other DSPR strains revealed an unusually large number of
69 non-reference TE insertion overlaps between strains A7 and B3
70 (Table S3). Moreover, shared TE insertions between A7 and B3
71 have TAF enriched at ~0.25, which could be explained by ~25%
72 of the A7 dataset being contaminated with reads from B3 (Fig.
73 S8). Our inference of contamination in the A7 dataset with reads
74 from another DSPR strain can also explain the observations that
75 A7 has the highest number of non-reference TEs in our TELR
76 analysis (Fig S4), and that the A7 WGA reported in Chakraborty
77 *et al.* (2019) has the highest level of BUSCO duplication, longest
78 assembly length, and most scaffolds of all DSPR strains in that
79 study.

80 In S2R+, we observed a clear enrichment for TE insertions on
81 the autosomes to have TAFs ~0.25 (Fig. 4C; Fig. 4D), which can
82 be explained by haplotype-specific TE insertions that occurred
83 after initial cell line establishment and subsequent tetraploidiza-
84 tion (Fig. 5A) (Schneider 1972; Lee *et al.* 2014). In contrast to
85 the autosomes, TE insertions on the X chromosome in S2R+ are
86 enriched at TAFs ~1 (Fig. 4C; Fig. 4D). The X chromosome in
87 the tetraploid S2R+ genome has a baseline ploidy of two since
88 the S2 lineage is thought to have been derived from a hemi-
89 zygous male genotype (Lee *et al.* 2014). Thus, the enrichment of
90 X-chromosome TE insertions with TAF ~1 could be explained
91 by a recent loss of heterozygosity (LOH) event in the X chromo-
92 some of S2R+ through mitotic recombination. This explanation
93 is plausible since a previous study has shown that copy-neutral
94 LOH events in cell culture can shape TAF profiles over large
95 genomic regions in *Drosophila* cell lines (Han *et al.* 2021a).


96 Assuming uniform copy number throughout the genome,
97 haplotype-specific autosomal TE insertions that occurred in the
98 S2R+ after tetraploidy are expected to have TAFs at ~0.25. How-
99 ever, the extensive copy number variation observed in the S2R+
100 genome increases or decreases TAF estimates in affected seg-
101 ments relative to this expected value (Fig. 4D). Additionally,
102 we observed many TE insertions on the S2R+ autosomes that
103 have intermediate TAFs between 0.25 and 1.0, suggesting the
104 possibility of other mechanisms besides haplotype-specific post-
105 tetraploid TE insertion to explain the observed TAF distribution.
106 For example, ancestrally-heterozygous diploid TE insertions (ei-
107 ther germline insertions in the Oregon-R lab strain that S2R+
108 was established from, or somatic insertions in the pre-tetraploid
109 stage of S2) could have undergone mitotic recombination events
110 in the post-tetraploid state changing one haplotype from TE-
111 present to TE-absent (Fig. 5B) (Han *et al.* 2021a). Assuming that
112 ancestral heterozygous diploid TE insertions would be randomly
113 distributed on the two different haplotypes of the Oregon-R/pre-
114 tetraploid state of S2R+, these alternative models can be differ-
115 entiated since mitotic recombination in the post-tetraploid state
116 would have the same probability of increasing or decreasing
117 TE allele copy number (Fig. 5B), whereas haplotype-specific TE
118 insertion would lead to an excess of alleles with a copy number
119 of one (Fig. 5A).

120 To facilitate the interpretation of TAF values under varying
121 copy number status and more rigorously test the “haplotype-
122 specific post-tetraploid TE insertion” (Fig. 5A) vs “ancestral TE
123 insertion and post-tetraploid mitotic recombination” (Fig. 5B)

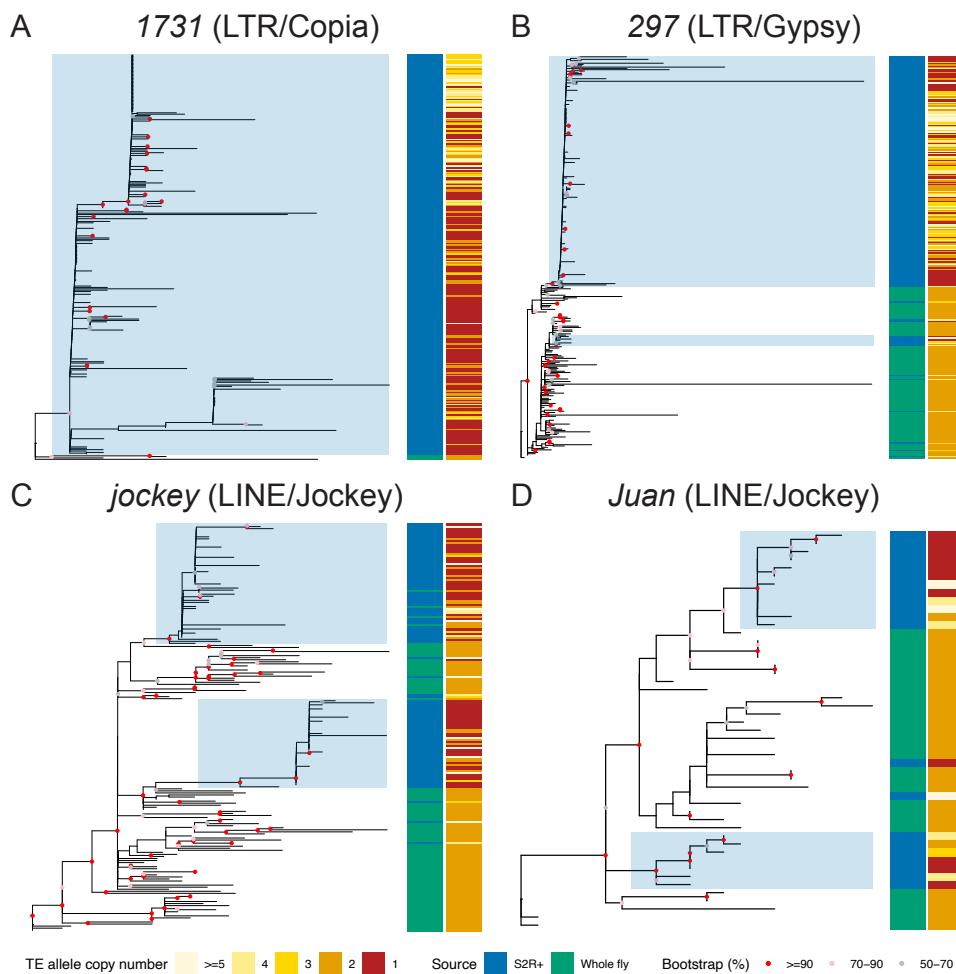

A Haplotype-specific post-tetraploid TE insertion

B Ancestral TE insertion and post-tetraploid mitotic recombination

▼ Germline TE insertions ▼ Somatic TE insertions "N" represents TE allele copy number TE allele copy number >=5 4 3 2 1

Figure 5 TE allele copy number distribution supports haplotype-specific TE insertion after tetraploidy in the S2R+ genome. A-B Two hypotheses that could explain the observation of haplotype-specific TE insertions in the tetraploid S2R+ genome. **C** Distribution on proportion of TE allele copy number for all TEs combined and for 14 TE families that are amplified in S2R+. The TE allele copy number is estimated based on TAF predicted by TELR and local copy number predicted by Control-FREEC (Boeva *et al.* 2012). The histogram is colorized based on TE allele copy number. The number above each bar represents number of TEs under each TE allele copy number category.

models, we developed a strategy to predict absolute TE allele copy number for non-reference TE on the autosomes. For each non-reference TE insertion, we multiplied TAF estimates generated by TELR by the local copy number estimated by Control-FREEC (Boeva *et al.* 2012) in regions flanking the TE insertion, then rounded to the nearest integer value. This procedure generated accurate predictions of TE allele copy number on synthetic tetraploid genomes (see Supplemental Text; Fig S9). Our analysis revealed that a significant proportion of non-reference TE insertions from the 14 TE families that are amplified in S2R+ have a predicted TE allele copy number of one (Fig. 5C). Furthermore, we found that number of TEs with predicted TE allele copy number of one is significantly higher than the number of TEs with predicted TE allele copy number of three in autoso-


mal regions of S2R+ overall (Fig. 5C; chi-squared = 388.42, df = 1, p-value < 2.2e-16) and for all but three S2R+-amplified TE families (*mdg3*, *Stalker2*, *17.6*). Thus, we conclude that the majority of insertions in TE families that are amplified in S2R+ are caused by haplotype-specific TE insertions that occurred after tetraploidization, rather than ancestral heterozygous insertions that were reduced in copy number after tetraploidization by mitotic recombination.

TE expansions in *Drosophila* cell culture can be caused by one or more source lineages

Haplotype-specific TE insertions that occurred after tetraploidization must have occurred somatically during cell culture, and thus provide a rich set of TE sequences to

15
16
17
18
19
20
21
22

23
24
25
26
27

Figure 6 Single and multiple TE source lineage activation in S2R+ cell line. A-D Non-reference TE insertion sequences from S2R+ and 11 inbred *Drosophila* fly strains were predicted and assembled by TELR. Only high-quality full-length TE sequences in normal recombination autosomal regions were retained for this analysis (see Materials and Methods for details). TE sequences for each family were aligned using MAFFT (v7.487) (Katoh and Standley 2013). The multiple sequence alignments were used as input in IQ-TREE (v2.1.4-beta) (Minh et al. 2020) to build unrooted trees for 1731 (A), 297 (B), *jockey* (C) and *Juan* (D) elements using maximum likelihood approach. The sample source and TE allele copy number were annotated in the sidebars. Blue shading indicates TE expansion event in S2R+ from a single source lineage based on the following criteria: 1) All sequences should form a monophyletic clade, 2) The monophyletic clade should include at least three post-tetraploid cell-line-specific TE insertions, 3) The bootstrap support for the clade should be equal to or higher than 50%, and 4) The proportion of post-tetraploid cell-line-specific TE insertions (i.e. TE allele copy number equal to one) within the clade should be equal to or higher than 20%.

1 study how TE expansion events occur during *in vitro* genome
 2 evolution. For example, it is generally unknown how many
 3 source copies or lineages contribute to proliferation of a TE
 4 family during cell culture. Using a PCR-based strategy, Maisond'
 5 haute et al. (2007) previously concluded that all non-reference
 6 insertions for the 1731 family in the S2 cell line were derived
 7 from a single, strongly-activated source copy. However, only
 8 a single TE family was surveyed and the number of 1731 new
 9 insertions identified was likely underestimated due to the
 10 limitations of the PCR-based strategy in this study. Moreover, it
 11 is difficult to conclude whether amplification is due to a single
 12 source copy or multiple closely-related copies from a single
 13 source lineage. To comprehensively test whether one or more
 14 source lineage is responsible for the amplification all 14 TE
 15 families that expanded in S2R+ (Fig. 4B), we took advantage
 16 of TELR's ability to assemble non-reference TE sequences and

17 constructed phylogenies using data from S2R+ and 13 whole-fly
 18 strains from the DSPR panel (Fig. 6; Fig. S10). Evaluation of
 19 TE sequences reconstructed by TELR using simulated datasets
 20 suggested that TELR produced high-quality local assemblies
 21 (see Supplemental Text; Fig. S11; Fig. S12), and thus can be
 22 reliably used to infer the sequence evolution of TEs amplified in
 23 the polyploid cell line genomes like S2R+.

24 Using the sequences of full-length TE insertions identified
 25 by TELR, we designed a set of criteria to identify TE expansion
 26 events in S2R+ that start from a single source lineage. First,
 27 the TE expansion event should be marked by a monophyletic
 28 clade in which $\geq 30\%$ of TEs are enriched with post-tetraploid
 29 insertions in S2R+. Second, the candidate TE expansion clade
 30 should have at least 70% bootstrap support. Using these criteria,
 31 we annotated TE expansion events in the sequence phylogeny
 32 for each of the 14 TE families that are enriched in S2R+ relative

1 to A4 (Fig. 4B, TE families marked in red dots). We only used
2 TE sequences in autosomes for this analysis, given that TE allele
3 copy number distribution in Chromosome X is different from the
4 autosomes presumably due to an LOH event after tetraploidy
5 (see above). We identified a single TE expansion clade for TE
6 families such as *1731*, *gypsy1*, *diver*, *gypsy*, *mdg3*, and *Stalker2*
7 (Fig. 6; Fig. S10), suggesting that the TE expansion events in
8 the S2R+ cell line for these families came from a single source
9 lineage. We also identified multiple TE expansion clades for
10 TE families such as *jockey*, *Juan*, *copia*, *3S18*, and *mdg1* (Fig. 6;
11 Fig. S10), suggesting multiple source lineages contribute to the
12 amplification of these families in S2R+. Together, our results
13 revealed that TE expansions in S2R+ can be caused by single or
14 multiple source lineages, and that the pattern of source lineage
15 activation in somatic cell culture is TE family-dependent (Fig. 6;
16 Fig. S10).

17 Discussion

18 Here we report new long-read and linked-read sequence data
19 and develop a novel bioinformatics tool to study the role of
20 transposition during long-term *in vitro* evolution of an animal
21 cell line. Our finding that the complexities of *Drosophila* S2R+
22 genome architecture preclude the ability to accurately study TE
23 content using long-read or linked-read WGAAs motivated the
24 development of a WGA-independent TE detection system called
25 TELR, which can identify, locally assemble, and estimate allele
26 frequency of TEs from long-read sequence data. Our work pro-
27 vides new tools and approaches to study TE biology in complex
28 heterozygous or polyploid genomes found in many other animal
29 cell lines (Lee *et al.* 2014; Nattestad *et al.* 2018; Talsania *et al.* 2019)
30 as well as natural fungal and plant genomes (Todd *et al.* 2017;
31 Meyers and Levin 2006).

32 Several related WGA-independent bioinformatic methods
33 have recently been developed to detect non-reference TEs us-
34 ing long reads (Disdero and Filee 2017; Jiang *et al.* 2019; Zhou
35 *et al.* 2020; Ewing *et al.* 2020; Chu *et al.* 2021; Kirov *et al.* 2021).
36 These methods use a variety of strategies for TE detection and
37 generate different information for predicted non-reference TEs.
38 Importantly, none of these previously-reported methods for TE
39 detection using long reads can estimate intra-sample TAF, a
40 feature that we implemented in TELR specifically to identify
41 haplotype-specific TE insertions and which enabled our analysis
42 of post-tetraploidy somatic transposition in S2R+. Furthermore,
43 TELR is the only WGA-independent long-read detection tool
44 that outputs a polished assembly of the TE locus, providing a
45 high-quality sequence of both the TE its flanking regions. The
46 polishing step in TELR is especially important to improve se-
47 quence quality when using long-read assemblers such as wtdbg2
48 (Ruan and Li 2020) that do not error correct reads prior to the
49 assembly step. High-quality sequences of predicted TE insertions
50 generated by TELR allowed us to gain the first general insight
51 into the sequence variation underlying TEs proliferation in an
52 animal cell line.

53 Using the TELR system, we found a significantly higher num-
54 ber of non-reference TEs in S2R+, a sub-line of *Drosophila* S2
55 cell line, compared to whole fly of highly inbred strain from
56 the DSPR project. The increased TE allele copy number in S2R+
57 relative to wild type flies is mainly contributed by a subset of
58 mainly LTR and a few non-LTR retrotransposon families. Not-
59 ably, TE families identified as enriched in S2R+ by TELR using
60 long-read sequences were also detected as having high activity
61 at some point during the history of S2 cell line evolution in an

62 independent analysis of short-read sequences for multiple sub-
63 lines of S2 cells by Han *et al.* (2021b), providing cross-validation
64 for both approaches. In addition, TELR predicted that a signifi-
65 cant proportion of the non-reference TE insertions identified in
66 S2R+ have TE allele copy number of one, which we interpreted
67 as haplotype-specific somatic insertions that occurred after S2R+
68 cells became tetraploid, subsequent to the initial establishment
69 of the original S2 cell line (Schneider 1972). This interpretation
70 is consistent the main conclusion from Han *et al.* (2021b) that
71 TE amplification in *Drosophila* S2 cells is an ongoing, episodic
72 process rather than being driven solely by an initial burst of
73 transposition during cell line establishment. Finally, the phy-
74 logenomic analysis using TELR-assembled sequences for TE
75 families enriched in S2R+ suggested that the TE expansion in
76 cell culture could come from a single or multiple source lineages,
77 providing the first general insight into the sequence evolution of
78 TE family expansions in animal cell culture.

79 Materials and Methods

80 Cell culture

81 An initial sample of S2R+ cells, which we define as passage
82 0, was obtained from a routine freeze of cells made by the
83 *Drosophila* RNAi Screening Center (DRSC). Cells from passage 0
84 were defrosted and recovered in Schneider's *Drosophila* medium
85 (Thermo) containing 10% FBS (Thermo) and 1X Penicillin-
86 Streptomycin (Thermo), then expanded continually for two ad-
87 ditional passages in T75 flasks. Aliquots of cells from passage
88 3 flasks were frozen, and the remaining cells were expanded to
89 10 T75 flasks (passage 4A). Passage 4A cells were pooled and
90 harvested to make DNA for PacBio libraries. A frozen stock was
91 defrosted and expanded for two additional passages (passages
92 4B-5B). Passage 5B cells were harvested to make DNA for 10x
93 Genomics libraries. The provenance of the cell line samples used
94 in this study is depicted in Fig. S13.

95 Fly stocks

96 A stock of *D. melanogaster* strain A4 from the *Drosophila* Syn-
97 synthetic Population Resource (DSPR) (King *et al.* 2012) was ob-
98 tained from Stuart Macdonald (University of Kansas) and reared
99 on Instant *Drosophila* Medium (Carolina Biological, Cary NC)
100 until DNA extraction.

101 PacBio library preparation and sequencing

102 Cells from ten confluent T75 flasks from passage 4A were
103 scraped into a 15mL Falcon tube and centrifuged at 300 x g
104 for 3 min. The pellet was washed in 10 mL of 1X PBS, then resus-
105 pended in 7 mL of 1X PBS containing 35 uL of 10 mg/mL RNase
106 A (Sigma). 200 uL of resuspended cells were aliquoted to 32 Eppendorf
107 tubes containing 200 uL of buffer AL from the Qiagen
108 Blood & Tissue kit, mixed gently by inversion, and incubated at
109 37 °C for 30 min. 20 uL of Proteinase K solution from the Qia-
110 gen Blood & Tissue kit was then added to each tube and mixed
111 gently by inversion. One volume of phenol:chloroform:isoamyl
112 alcohol (24:24:1) was then added and inverted gently to mix for
113 1 min. Tubes were then spun for 5 min at 21,000 x g. 180 uL of
114 the upper aqueous phase were then removed from each tube,
115 and pairs of tubes were combined. 400 uL of chloroform was
116 then added to each of the 16 tubes, shaken for 1 min to mix,
117 and spun at max speed for 5 min. The top 300 uL was removed
118 and pairs of tubes were combined. 600 uL of chloroform was
119 added to each of the eight tubes, gently inverted 10 times to mix,

1 and then spun at max speed for 5 min. 400 μ L of the aqueous
2 phase was removed and pairs of tubes were combined. 1/10
3 volume of 3M NaOAc was added to each of the four tubes, the
4 remained of the tube was filled with absolute ethanol and then
5 placed at -20 °C overnight. Tubes were then spun 21,000 $\times g$ at
6 4 °C for 15 min, and the supernatant was decanted over paper
7 towels. 70% ethanol was then added to tubes, the pellet was
8 gently resuspended with a P1000 tip, and then placed on ice
9 for 10 min. Tubes were then spun 21,000 $\times g$ at 4 °C for 15 min,
10 and the supernatant was decanted over paper towels. The pellet
11 was then resuspended in 50 μ L of Buffer EB from the Qiagen
12 Blood & Tissue kit, and gently pipetted with a P200 tip 5 times
13 to resuspend. Purified S2R+ DNA was then used to generate
14 PacBio SMRTbell libraries using the Procedure & Checklist 20 kb
15 Template Preparation using BluePippin Size Selection protocol.
16 The SMRTbell library was sequenced using 31 SMRT cells on a
17 PacBio RS II instrument with a movie time of 240 minutes per
18 SMRT cell, generating a total of 3,510,012 reads (~28.5 Gbp).

19 **10x Genomics library preparation and sequencing**

20 Genomic DNA extraction followed the 10x “Salting Out
21 Method for DNA Extraction from Cells” protocol (<https://support.10xgenomics.com/permalink/5H0Dz33gmQOea02iwQU0iK>)
22 adapted from [Miller et al. \(1988\)](#). Genomic DNA for *D. melanogaster* strain A4 linked-read library was obtained from
23 a single female fly following the 10x Genomics recommended
24 protocol for DNA purification from single insects (<https://support.10xgenomics.com/permalink/7HBJeZucc80CwkMAMa4oQ2>).
25 Purified DNA was precipitated by addition of 8 mL of ethanol
26 and resuspended in TE buffer and size was analyzed by
27 TapeStation (Agilent) prior to library preparation. Linked-read
28 libraries were then prepared for both S2R+ and A4 after DNA
29 size selection with BluePippin to remove fragments shorter than
30 15 kb. Libraries were prepared following the 10x Genomics
31 Chromium Genome Reagent Kit Protocol v2 (RevB) using a total
32 DNA input mass of 0.6 ng for each sample. The linked-read
33 libraries were sequenced on an Illumina NextSeq 500 instrument
34 mid-output flow cell with 150 bp paired-end layout, generating
35 95,280,430 reads for S2R+ (~13.3 Gbp) and 127,009,398 reads for
36 A4 (~17.7 Gbp).

40 **Whole-genome assembly and QC**

41 Raw PacBio reads from S2R+ (generated here; SRX7661404) and
42 A4 from [Chakraborty et al. \(2018\)](#) (SRX4713156) were independently used as input for whole-genome assembly with Canu
43 (v2.1.1; genomeSize=180m corOutCoverage=200 "batOptions=-
44 dg 3 -db 3 -dr 1 -ca 500 -cp 50" -pacbio-raw), FALCON-Unzip
45 (pb-falcon v0.2.6; seed coverage = 30, genome_size = 180000000),
46 wtdbg2 v2.5 (-x rs -g 180m), and Flye (v2.8.2) ([Chin et al. 2016](#);
47 [Koren et al. 2017](#); [Kolmogorov et al. 2019](#); [Ruan and Li 2020](#)).
48 The reads were re-aligned to the resulting assemblies with
49 pbmm2 (v1.3.0; --preset SUBREAD --sort) and the assemblies
50 were polished with the Arrow algorithm from GenomicConsensus
51 (v2.3.3) using default parameters. FALCON-Unzip performs
52 read re-alignment and Arrow polishing automatically as part of
53 its phasing pipeline.

54 10x Genomics linked-reads generated here were used as input
55 for whole-genome assembly with Supernova (v2.1.1) for
56 S2R+ (--maxreads=61508497) and A4 (--maxreads=77907944)
57 ([Weisenfeld et al. 2017](#)). The optimal --maxreads parameter was
58 calculated by Supernova in a previous run to avoid excessive
59 coverage. Supernova assemblies were exported in pseudohap2

60 format and pseudo-haplotype1 was analyzed.

61 10x Genomics reads from S2R+ and A4 were also barcode-
62 trimmed with LongRanger (v2.2.2; basic pipeline) ([Zheng et al. 2016](#))
63 to create standard paired-end reads as input to SPAdes
64 (v3.15.0) using default parameters ([Bankevich et al. 2012](#)).

65 All assemblies were filtered to remove redundancy using the
66 sequniq program from GenomeTools (v1.6.1) ([Gremme et al. 2013](#)). General assembly statistics were calculated with the
67 stats.sh utility from BBMap (v38.83) ([Bushnell 2014](#)). Assembly
68 completeness was assessed with BUSCO (v4.0.6) ([Simao et al. 2015](#);
69 [Waterhouse et al. 2018](#)) and the Diptera ortholog set from
70 OrthoDB (v10) ([Kriventseva et al. 2019](#)).

73 **Assessment of overall TE content**

74 Transposable elements were annotated in all WGAs with Re-
75 peatMasker (v4.0.7; -s -no_is -nolow -x -e ncbi) (<https://www.repeatmasker.org/RepeatMasker/>) using v10.2 of the curated library of *D. melanogaster* canonical TE sequences (<https://github.com/bergmanlab/transposons>). TE abundance was calculated
76 from RepeatMasker .out.gff files as the percentage of bases
77 masked in each assembly.

78 Barcode-trimmed linked-reads were also used as an assembly-
79 free estimate of TE content in S2R+ and A4. Reads were
80 filtered for adapters and low quality bases, and trimmed to
81 100 bp using fastp (v0.20.0; --max_len1 100 --max_len2 100 -
82 --length_required 100) ([Chen et al. 2018](#)). A random sample
83 of 5 million read pairs (10 million reads) was extracted for
84 each dataset using seqtk (v1.3; -s2) (<https://github.com/lh3/seqtk>)
85 and masked using RepeatMasker (v4.0.7; -s -no_is -nolow -x
86 -e ncbi) and the *D. melanogaster* canonical TE set (v10.2; <https://github.com/bergmanlab/transposons>). Abundance for each TE
87 family was calculated as the percentage of read bases that were
88 RepeatMasked.

93 **Detection of non-reference TE insertions using long reads**

94 The TELR pipeline consists of four main stages: (1) general
95 SV detection and filter for TE insertion candidate, (2) local re-
96 assembly and polishing of the TE insertion, (3) identification of
97 TE insertion coordinates, and (4) estimation of intra-sample TE
98 insertion allele frequency.

99 In stage 1, long reads are aligned to the reference genome
100 using NGMLR (v0.2.7) ([Sedlazeck et al. 2018](#)). The alignment
101 output in BAM format is provided as input for Sniffles (v1.0.12)
102 to detect structural variations (SVs) ([Sedlazeck et al. 2018](#)). TELR
103 then filters for TE insertion candidates from SVs reported by
104 Sniffles using following criteria: 1) The type of SV is an insertion,
105 2) The insertion sequence is available, and 3) The insertion
106 sequences include hits from user provided TE consensus library
107 using RepeatMasker (v4.0.7; <http://www.repeatmasker.org/>).

108 In stage 2, reads that support the TE insertion candidate
109 locus based on Sniffles output are used as input for wtdbg2
110 (v2.5) to assemble local contig that covers the TE insertion for
111 each TE insertion candidate locus ([Ruan and Li 2020](#)). The local
112 assemblies are then polished using minimap2 (v2.20) ([Li 2018](#))
113 and wtdbg2 (v2.5) ([Ruan and Li 2020](#)).

114 In stage 3, TE consensus library is aligned to the assembled
115 TE insertion configs using minimap2 and used to define TE-
116 flank boundaries. TE region in each contig is annotated with
117 family info using RepeatMasker (v4.0.7). Sequences flanking the
118 TE insertion are then re-aligned to the reference genome using
119 minimap2 to determine the precise TE insertion coordinates and
120 target site duplication (TSD).

1 In stage 4, raw reads aligned to the reference genome are ex-
2 tracted within a 1kb interval on either side of the insertion break-
3 points initially defined by Sniffles. The reads are then aligned
4 to the assembled polished contig to identify reads that support
5 the non-reference TE insertion and reference alleles, respectively,
6 in following steps: 1) Reads are aligned to the forward strand
7 of the contig, 5' flanking sequence depth (5p_flank_cov) and
8 5' TE depth (5p_te_cov) are calculated. 2) Reads are aligned
9 to the reverse complement strand of the contig, 5' flanking
10 sequence depth (3p_flank_cov) and 5' TE depth (3p_te_cov)
11 are calculated. 3) The TE allele frequency is estimated as
12 (5p_te_cov/5p_flank_cov + 3p_te_cov/3p_flank_cov)/2.

13 TELR (v0.2; revision bb90a5) was applied to the S2R+
14 PacBio dataset and to a panel of 13 *D. melanogaster* strains
15 from the *Drosophila* Synthetic Population Resource (DSPR)
16 (Bioproject ID PRJNA418342) (Chakraborty *et al.* 2019). The
17 mapping reference used was release 6 of the *D. melanogaster*
18 reference genome (chr2L, chr2R, chr3L, chr3R, chr4, chrX,
19 chrY, chrM) (Hoskins *et al.* 2015) and the TE library
20 was v10.2 of the *D. melanogaster* canonical TE sequence
21 library (https://github.com/bergmanlab/transposons/blob/master/releases/D_mel_transposon_sequence_set_v10.2.fa).

22 We used BEDTools (v2.29.0) (Quinlan and Hall 2010) to in-
23 vestigate the possibility of contamination of sample A7 with
24 another strain by intersecting TE predictions between A7 and
25 all other DSPR strains.

27 **Cross-validation of TELR results using short-read methods**

28 To cross-validate results obtained by TELR, we employed two
29 short-read TE detection methods implemented in McClintock
30 (v2.0; revision 93369ef) (Nelson *et al.* 2017) that output TAF values,
31 which include ngs_te_mapper2 (Han *et al.* 2021a) and TEMP
32 (Zhuang *et al.* 2014). Linked-read data obtained for S2R+ and A4
33 was barcode-trimmed with LongRanger (v2.2.2; basic pipeline)
34 (Zheng *et al.* 2016), de-interleaved, and trimmed to 100bp using
35 fastp (v0.20.0; --max_len1 100 --max_len2 100 --length_required
36 100) (Chen *et al.* 2018). This data was downsampled to ~50X
37 mean mapped read depth for S2R+ (74,648,362 reads) and A4
38 (76,045,544 reads) before being used as input in McClintock to
39 generate non-redundant non-reference TE insertion predictions.

40 **Construction of phylogenetic trees using TE sequences from** 41 **TELR**

42 TE sequences predicted, assembled, and polished by TELR on
43 S2R+ and DSPR dataset were filtered for high-quality full length
44 TE sequences using the following criteria: 1) Sequences from
45 A2 were excluded due to potential inversion-induced gain of
46 heterozygosity (see [Discussion](#) for details). 2) Sequences from
47 A7 were excluded due to potential sample contamination (see
48 [Discussion](#) for details). 3) Sequences from chromosome X were
49 excluded due to lower coverage compared to autosomes and
50 loss of heterozygosity (LOH) events. 4) Exclude sequences from
51 low recombination regions using boundaries defined by Crid-
52 land *et al.* (2013) lifted over to dm6 coordinates. Normal re-
53 combination regions included in our analyses were defined as
54 chrX:405967–20928973, chr2L:200000–20100000, chr2R:6412495–
55 25112477, chr3L:100000–21906900, chr3R:4774278–31974278. We
56 restricted our analysis to normal recombination regions since
57 low recombination regions have high reference TE content
58 which reduces the ability to predict non-reference TE insertions
59 (Bergman *et al.* 2006; Manee *et al.* 2018). 5) Only full-length TE
60 elements based on canonical sequences were included. We first

calculated the ratio between each TELR sequence length and
61 the corresponding canonical sequence length. Next, we filtered
62 TELR sequences for full-length copies using a 0.75-1.05 ratio
63 cutoff for 297 and 0.95-1.05 ratio cutoff for other TE families. 6) Only sequences with both 5' and 3' flanks mapped to reference
64 genome were included. 7) Only sequences from TE insertions
65 with TAF estimated by TELR were included.

66 TELR sequences from each family were aligned with MAFFT
67 (v7.487) (Katoh and Standley 2013). The multiple sequence align-
68 ments (MSAs) were filtered by trimAI (v1.4.rev15; parameters:
69 -resoverlap 0.75 -seqoverlap 80) to remove spurious sequences.
70 The filtered MSAs were used as input to IQ-TREE (v2.1.4-beta;
71 parameters: -m GTR+G -B 1000) (Minh *et al.* 2020) to generate
72 maximum likelihood trees.

75 **Data Availability**

76 PacBio and 10x Genomics whole genome sequences generated
77 in this project are available in the NCBI SRA database under
78 accession PRJNA604454. WGA of long-read and linked-read
79 sequence data for the S2R+ and A4 genomes are available in the
80 EBI BioStudies database under accession S-BSST752. Datasets
81 of TE insertions in the S2R+ and DSPR genomes predicted by
82 TELR are available as Supplemental File 1. Datasets of TE in-
83 insertions in the S2R+ and A4 genomes predicted by TEMP and
84 ngs_te_mapper2 are available as Supplemental File 2. Multiple
85 sequence alignments of TE insertion sequences identified by
86 TELR in the S2R+ and DSPR genomes are available as Sup-
87 plemental File 3. Tree files for phylogenies of TE insertion sequences
88 identified by TELR in the S2R+ and DSPR genomes are available
89 as Supplemental File 4.

90 **Acknowledgements**

91 We thank Stuart Macdonald (University of Kansas) for providing
92 fly stocks; Christina McHenry and Robert Lyons at the University
93 of Michigan Biomedical Research Core Facilities for assistance
94 with PacBio library preparation and sequencing; Noah
95 Workman, Julia Portocarrero and Magdy Alabady at the University
96 of Georgia Genomics and Bioinformatics Core for assistance
97 with 10x Genomics library preparation and Illumina sequencing;
98 the Georgia Advanced Computing Resource Center for comput-
99 ing time; members of the Bergman Lab for helpful comments
100 throughout the project; and XX for comments on the manuscript.
101 This work was supported by the Human Frontiers of Science
102 (C.M.B.) and Georgia Research Foundation (C.M.B.) and the
103 Howard Hughes Medical Institute (N.P.).

1 Literature Cited

2 Adey, A., J. N. Burton, J. O. Kitzman, J. B. Hiatt, A. P. Lewis, B. K. 63
3 Martin, R. Qiu, C. Lee, and J. Shendure, 2013 The haplotype- 64
4 resolved genome and epigenome of the aneuploid HeLa cancer 65
5 cell line. *Nature* **500**: 207–211.

6 Alkan, C., S. Sajadian, and E. E. Eichler, 2011 Limitations of 66
7 next-generation genome sequence assembly. *Nat Methods* **8**: 67
8 61–65.

9 Bairu, M. W., A. O. Aremu, and J. Van Staden, 2011 Somaclonal 68
10 variation in plants: causes and detection methods. *Plant 69
11 Growth Regul* **63**: 147–173.

12 Bankevich, A., S. Nurk, D. Antipov, A. A. Gurevich, M. Dvorkin, 70
13 A. S. Kulikov, V. M. Lesin, S. I. Nikolenko, S. Pham, A. D. 71
14 Prjibelski, A. V. Pyshkin, A. V. Sirotnik, N. Vyahhi, G. Tesler, 72
15 M. A. Alekseyev, and P. A. Pevzner, 2012 SPAdes: a new 73
16 genome assembly algorithm and its applications to single-cell 74
17 sequencing. *Journal of Computational Biology* **19**: 455–477.

18 Ben-David, U., B. Siranosian, G. Ha, H. Tang, Y. Oren, K. Hinohara, 75
19 C. A. Strathdee, J. Dempster, N. J. Lyons, R. Burns, 76
20 A. Nag, G. Kugener, B. Cimini, P. Tsvetkov, Y. E. Maruvka, 77
21 R. O'Rourke, A. Garrity, A. A. Tubelli, P. Bandopadhyay, 78
22 A. Tsherniak, F. Vazquez, B. Wong, C. Birger, M. Ghandi, A. R. 79
23 Thorner, J. A. Bittker, M. Meyerson, G. Getz, R. Beroukhim, 80
24 and T. R. Golub, 2018 Genetic and transcriptional evolution 81
25 alters cancer cell line drug response. *Nature* **560**: 325–330.

26 Bergman, C. M., H. Quesneville, D. Anxolabehere, and M. Ashburner, 2006 Recurrent insertion and duplication generate 82
27 networks of transposable element sequences in the *Drosophila* 83
28 melanogaster genome. *Genome Biol* **7**: R112.

29 Berlin, K., S. Koren, C.-S. Chin, J. P. Drake, J. M. Landolin, 84
30 and A. M. Phillippy, 2015 Assembling large genomes with 85
31 single-molecule sequencing and locality-sensitive hashing. 86
32 *Nat Biotech* **33**: 623–630.

33 Boeva, V., T. Popova, K. Bleakley, P. Chiche, J. Cappo, G. Schleiermacher, 87
34 I. Janoueix-Lerosey, O. Delattre, and E. Barillot, 2012 88
35 Control-FREEC: a tool for assessing copy number and allelic 89
36 content using next-generation sequencing data. *Bioinformatics* 90
37 **28**: 423–425.

38 Bracewell, R., K. Chatla, M. J. Nalley, and D. Bachtrog, 2019 91
39 Dynamic turnover of centromeres drives karyotype evolution 92
40 in *Drosophila*. *eLife* **8**: e49002.

41 Bushnell, B., 2014 BBMap: a fast, accurate, splice-aware aligner. 93
42 Technical Report LBNL-7065E, Lawrence Berkeley National 94
43 Lab. (LBNL), Berkeley, CA (United States).

44 Chakraborty, M., J. J. Emerson, S. J. Macdonald, and A. D. Long, 95
45 2019 Structural variants exhibit widespread allelic heterogeneity 96
46 and shape variation in complex traits. *Nat Commun* **10**: 97
47 4872.

48 Chakraborty, M., N. W. VanKuren, R. Zhao, X. Zhang, S. Kalsow, 98
49 and J. J. Emerson, 2018 Hidden genetic variation shapes the 99
50 structure of functional elements in *Drosophila*. *Nat Genet* **50**: 100
51 20–25.

52 Chang, C.-H., A. Chavan, J. Palladino, X. Wei, N. M. C. Martins, 101
53 B. Santinello, C.-C. Chen, J. Erceg, B. J. Beliveau, C.-T. Wu, 102
54 A. M. Larracuente, and B. G. Mellone, 2019 Islands of 103
55 retroelements are major components of *Drosophila* centromeres. 104
56 *PLOS Biology* **17**: e3000241.

57 Chen, S., Y. Zhou, Y. Chen, and J. Gu, 2018 fastp: an ultra-fast 105
58 all-in-one FASTQ preprocessor. *Bioinformatics* **34**: i884–i890.

59 Chin, C.-S., P. Peluso, F. J. Sedlazeck, M. Nattestad, G. T. Con- 106
60 cepcion, A. Clum, C. Dunn, R. O’Malley, R. Figueroa-Balderas, 107
61 A. Morales-Cruz, G. R. Cramer, M. Delledonne, C. Luo, J. R. 108
62 Ecker, D. Cantu, D. R. Rank, and M. C. Schatz, 2016 Phased 109
63 diploid genome assembly with single-molecule real-time 110
64 sequencing. *Nat Methods* **13**: 1050–1054.

65 Chu, C., R. Borges-Monroy, V. V. Viswanadham, S. Lee, H. Li, 111
66 E. A. Lee, and P. J. Park, 2021 Comprehensive identification 112
67 of transposable element insertions using multiple sequencing 113
68 technologies. *Nat Commun* **12**: 3836.

69 Cridland, J. M., S. J. Macdonald, A. D. Long, and K. R. Thornton, 114
70 2013 Abundance and distribution of transposable elements 115
71 in two *Drosophila* QTL mapping resources. *Mol Biol Evol* **30**: 116
72 2311–2327.

73 Dias, G. B., M. A. Altammami, H. A. F. El-Shafie, F. M. Alhoshani, 117
74 M. B. Al-Fageeh, C. M. Bergman, and M. M. Manee, 2021 118
75 Haplotype-resolved genome assembly enables gene discovery 119
76 in the red palm weevil *Rhynchophorus ferrugineus*. *Scientific 120
77 Reports* **11**: 9987.

78 Disdero, E. and J. Filee, 2017 LoRTE: Detecting transposon- 121
79 induced genomic variants using low coverage PacBio long 122
80 read sequences. *Mob DNA* **8**: 5.

81 Echalier, G., 1997 *Drosophila Cells in Culture*. Academic Press, San 123
82 Diego, Calif.

83 Ellison, C. E. and W. Cao, 2020 Nanopore sequencing and Hi-C 124
84 scaffolding provide insight into the evolutionary dynamics of 125
85 transposable elements and piRNA production in wild strains 126
86 of *Drosophila melanogaster*. *Nucleic Acids Res* **48**: 290–303.

87 Ewing, A. D., N. Smits, F. J. Sanchez-Luque, J. Faivre, P. M. Brennan, 127
88 S. R. Richardson, S. W. Cheetham, and G. J. Faulkner, 2020 128
89 Nanopore Sequencing Enables Comprehensive Transposable 129
90 Element Epigenomic Profiling. *Molecular Cell* .

91 Ford, D. K. and G. Yerganian, 1958 Observations on the chromo- 129
92 somes of Chinese hamster cells in tissue culture. *J Natl Cancer 130
93 Inst* **21**: 393–425.

94 Gremme, G., S. Steinbiss, and S. Kurtz, 2013 GenomeTools: a 131
95 comprehensive software library for efficient processing of 132
96 structured genome annotations. *IEEE/ACM Transactions on 133
97 Computational Biology and Bioinformatics* **10**: 645–656.

98 Han, S., P. J. Basting, G. B. Dias, A. Luhur, A. C. Zelhof, and C. M. 134
99 Bergman, 2021a Transposable element profiles reveal cell line 135
100 identity and loss of heterozygosity in *Drosophila* cell culture. 136
101 *Genetics* **219**: iyab113.

102 Han, S., G. B. Dias, P. J. Basting, M. G. Nelson, S. Patel, M. Marzo, 137
103 and C. M. Bergman, 2021b Ongoing transposition in cell culture 138
104 reveals the phylogeny of diverse *Drosophila* S2 sub-lines. 139
105 *bioRxiv* p. 2021.12.08.471819.

106 Hemmer, L. W., G. B. Dias, B. Smith, K. Van Vaerenbergh, 140
107 A. Howard, C. M. Bergman, and J. P. Blumenstiel, 2020 Hybrid 141
108 dysgenesis in *Drosophila virilis* results in clusters of mitotic 142
109 recombination and loss-of-heterozygosity but leaves meiotic 143
110 recombination unaltered. *Mob DNA* **11**: 10.

111 Hink, W., 1976 A compilation of invertebrate cell lines and 144
112 culture media. In *Invertebrate Tissue Culture*, edited by 145
113 K. Maramorosch, pp. 319–369. Academic Press.

114 Hoskins, R. A., J. W. Carlson, K. H. Wan, S. Park, I. Mendez, S. E. 146
115 Galle, B. W. Booth, B. D. Pfeiffer, R. A. George, R. Svirskas, 147
116 M. Krzywinski, J. Schein, M. C. Accardo, E. Damia, G. Messina, 148
117 M. Méndez-Lago, B. de Pablos, O. V. Demakova, E. N. Andreysa, 149
118 L. V. Boldyreva, M. Marra, A. B. Carvalho, P. Dimitri, 150
119 A. Villasante, I. F. Zhimulev, G. M. Rubin, G. H. Karpen, and 151
120 S. E. Celniker, 2015 The Release 6 reference sequence of the 152
121 *Drosophila melanogaster* genome. *Genome Res* **25**: 445–458.

122 Ilyin, Y. V., V. G. Chmeliauskaitė, E. V. Ananiev, and G. P. 153
123 Georgiev, 1980 Isolation and characterization of a new family 154
124

1 of mobile dispersed genetic elements, mdg3, in *Drosophila* 63
2 *melanogaster*. *Chromosoma* **81**: 27–53.

3 Jiang, T., B. Liu, J. Li, and Y. Wang, 2019 rMETL: sensitive 64
4 mobile element insertion detection with long read realignment. 65
5 *Bioinformatics* **35**: 3484–3486.

6 Katoh, K. and D. M. Standley, 2013 MAFFT multiple sequence 66
7 alignment software version 7: improvements in performance 67
8 and usability. *Mol Biol Evol* **30**: 772–780.

9 Kelley, D. R. and S. L. Salzberg, 2010 Detection and correction of 68
10 false segmental duplications caused by genome mis-assembly. 69
11 *Genome Biol* **11**: R28.

12 King, E. G., C. M. Merkes, C. L. McNeil, S. R. Hoofer, S. Sen, K. W. 70
13 Broman, A. D. Long, and S. J. Macdonald, 2012 Genetic dissection 71
14 of a model complex trait using the *Drosophila* Synthetic 72
15 Population Resource. *Genome Res* **22**: 1558–1566.

16 Kirov, I., P. Merkulov, M. Dudnikov, E. Polkhovskaya, R. A. 73
17 Komakhin, Z. Konstantinov, S. Gvaramiya, A. Ermolaev, 74
18 N. Kudryavtseva, M. Gilyok, M. G. Divashuk, G. I. Karlov, and 75
19 A. Soloviev, 2021 Transposons hidden in *Arabidopsis thaliana* 76
20 genome assembly gaps and mobilization of non-autonomous 77
21 LTR retrotransposons unravelled by nanotei pipeline. *Plants* 78
22 **10**: 2681.

23 Kolmogorov, M., J. Yuan, Y. Lin, and P. A. Pevzner, 2019 Assembly 79
24 of long, error-prone reads using repeat graphs. *Nature Biotechnology* 80
25 **37**: 540–546.

26 Koren, S., B. P. Walenz, K. Berlin, J. R. Miller, N. H. Bergman, and 81
27 A. M. Phillippy, 2017 Canu: scalable and accurate long-read 82
28 assembly via adaptive k-mer weighting and repeat separation. 83
29 *Genome Res* **27**: 722–736.

30 Kosugi, S., Y. Momozawa, X. Liu, C. Terao, M. Kubo, and 84
31 Y. Kamatani, 2019 Comprehensive evaluation of structural 85
32 variation detection algorithms for whole genome sequencing. 86
33 *Genome Biol* **20**: 117.

34 Kriventseva, E. V., D. Kuznetsov, F. Tegenfeldt, M. Manni, 87
35 R. Dias, F. A. Simão, and E. M. Zdobnov, 2019 OrthoDB v10: 88
36 sampling the diversity of animal, plant, fungal, protist, bacterial 89
37 and viral genomes for evolutionary and functional annotations 90
38 of orthologs. *Nucleic Acids Res* **47**: D807–D811.

39 Lee, H., C. J. McManus, D.-Y. Cho, M. Eaton, F. Renda, M. P. 91
40 Somma, L. Cherbas, G. May, S. Powell, D. Zhang, L. Zhan, 92
41 A. Resch, J. Andrews, S. E. Celniker, P. Cherbas, T. M. Przytycka, 93
42 M. Gatti, B. Oliver, B. Graveley, and D. MacAlpine, 2014 94
43 DNA copy number evolution in *Drosophila* cell lines. *Genome 95
44 Biol* **15**: R70.

45 Li, H., 2018 Minimap2: pairwise alignment for nucleotide 96
46 sequences. *Bioinformatics* **34**: 3094–3100.

47 Liu, Y., Y. Mi, T. Mueller, S. Kreibich, E. G. Williams, A. Van 97
48 Drogen, C. Borel, M. Frank, P.-L. Germain, I. Bludau, M. Mehnert, 98
49 M. Seifert, M. Emmenlauer, I. Sorg, F. Bezrukova, F. S. Bena, 99
50 H. Zhou, C. Dehio, G. Testa, J. Saez-Rodriguez, S. E. Antonarakis, 100
51 W.-D. Hardt, and R. Aebersold, 2019 Multi-omic 101
52 measurements of heterogeneity in HeLa cells across laboratories. 102
53 *Nat Biotechnol* **37**: 314–322.

54 Maisonneuve, C., D. Ogereau, A. Hua-Van, and P. Capy, 2007 103
55 Amplification of the 1731 LTR retrotransposon in *Drosophila* 104
56 *melanogaster* cultured cells: origin of neocopies and impact 105
57 on the genome. *Gene* **393**: 116–126.

58 Manee, M. M., J. Jackson, and C. M. Bergman, 2018 Conserved 106
59 noncoding elements influence the transposable element 107
60 landscape in *Drosophila*. *Genome Biol Evol* **10**: 1533–1545.

61 Mariyappa, D., D. B. Rusch, S. Han, A. Luhur, D. Overton, D. F. B. 108
62 Miller, C. M. Bergman, and A. C. Zelhof, 2021 A novel trans- 109
posable element based authentication protocol for *Drosophila* 110
cell lines. *G3 p. (in press)*.

63 Meyers, L. A. and D. A. Levin, 2006 On the abundance of poly- 111
ploids in flowering plants. *Evolution* **60**: 1198–1206.

64 Miller, J. R., S. Koren, K. A. Dilley, D. M. Harkins, T. B. Stock- 112
well, R. S. Shabman, and G. G. Sutton, 2018a A draft genome 113
sequence for the *Ixodes scapularis* cell line, ISE6. *F1000Res* **7**.

65 Miller, J. R., S. Koren, K. A. Dilley, V. Puri, D. M. Brown, D. M. 114
Harkins, F. Thibaud-Nissen, B. Rosen, X.-G. Chen, Z. Tu, I. V. 115
Sharakhov, M. V. Sharakhova, R. Sebra, T. B. Stockwell, N. H. 116
Bergman, G. G. Sutton, A. M. Phillippy, P. M. Piermarini, 117
and R. S. Shabman, 2018b Analysis of the *Aedes albopictus* 118
C6/36 genome provides insight into cell line utility for viral 119
propagation. *Gigascience* **7**: 1–13.

66 Miller, S. A., D. D. Dykes, and H. F. Polesky, 1988 A simple 120
salting out procedure for extracting DNA from human nucleated 121
cells. *Nucleic Acids Res* **16**: 1215–1215.

67 Minh, B. Q., H. A. Schmidt, O. Chernomor, D. Schrempf, M. D. 122
Woodhams, A. von Haeseler, and R. Lanfear, 2020 IQ-TREE 2: 123
New models and efficient methods for phylogenetic Inference 124
in the genomic era. *Molecular Biology and Evolution* **37**: 1530– 125
1534.

68 Miyao, A., M. Nakagome, T. Ohnuma, H. Yamagata, 126
H. Kanamori, Y. Katayose, A. Takahashi, T. Matsumoto, and 127
H. Hirochika, 2012 Molecular spectrum of somaclonal variation 128
in regenerated rice revealed by whole-genome sequencing. 129
Plant Cell Physiol **53**: 256–264.

70 Mohamed, M., N. T.-M. Dang, Y. Ogyama, N. Burlet, B. Mugat, 130
M. Boulesteix, V. Merel, P. Veber, J. Salces-Ortiz, D. Severac, 131
A. Pelisson, C. Vieira, F. Sabot, M. Fablet, and S. Chambeyron, 132
2020 A transposon story: from te content to te dynamic 133
invasion of *drosophila* genomes using the single-molecule 134
sequencing technology from oxford nanopore. *Cells* **9**: 1776.

71 Nattestad, M., S. Goodwin, K. Ng, T. Baslan, F. J. Sedlazeck, 135
P. Rescheneder, T. Garvin, H. Fang, J. Gurtowski, E. Hutton, 136
E. Tseng, C.-S. Chin, T. Beck, Y. Sundaravadanam, M. Kramer, 137
E. Antoniou, J. D. McPherson, J. Hicks, W. R. McCombie, and 138
M. C. Schatz, 2018 Complex rearrangements and oncogene 139
amplifications revealed by long-read DNA and RNA sequencing 140
of a breast cancer cell line. *Genome Res* **28**: 1126–1135.

72 Nelson, M. G., R. S. Linheiro, and C. M. Bergman, 2017 Mc- 141
Clintock: an integrated pipeline for detecting transposable 142
element insertions in whole-genome shotgun sequencing data. 143
G3 **7**: 2749–2762.

73 Ogura, H., 1990 Chromosome variation in plant tissue culture. 144
In *Somaclonal Variation in Crop Improvement I*, edited by Y. P. S. 145
Bajaj, *Biotechnology in Agriculture and Forestry*, pp. 49–84, 146
Springer, Berlin, Heidelberg.

74 Peona, V., M. P. K. Blom, L. Xu, R. Burri, S. Sullivan, I. Bunkis, 147
I. Liachko, T. Haryoko, K. A. Jönsson, Q. Zhou, M. Irestedt, 148
and A. Suh, 2021 Identifying the causes and consequences of 149
assembly gaps using a multiplatform genome assembly of a 150
bird-of-paradise. *Mol Ecol Resour* **21**: 263–286.

75 Potter, S. S., W. J. Brorein, P. Dunsmuir, and G. M. Rubin, 1979 151
Transposition of elements of the 412, copia and 297 dispersed 152
repeated gene families in *Drosophila*. *Cell* **17**: 415–427.

76 Quinlan, A. R. and I. M. Hall, 2010 BEDTools: a flexible suite of 153
utilities for comparing genomic features. *Bioinformatics* **26**: 154
841–842.

77 Rahman, R., G.-w. Chirn, A. Kanodia, Y. A. Sytnikova, B. Brembs, 155
C. M. Bergman, and N. C. Lau, 2015 Unique transposon 156
landscapes are pervasive across *Drosophila melanogaster* genomes. 157

1 Nucleic Acids Res **43**: 10655–10672.

2 Rhie, A., S. A. McCarthy, O. Fedrigo, J. Damas, G. Formenti,
3 S. Koren, M. Uliano-Silva, W. Chow, A. Fungtammasan, J. Kim,
4 C. Lee, B. J. Ko, M. Chaisson, G. L. Gedman, L. J. Cantin,
5 F. Thibaud-Nissen, L. Haggerty, I. Bista, M. Smith, B. Haase,
6 J. Mountcastle, S. Winkler, S. Paez, J. Howard, S. C. Vernes,
7 T. M. Lama, F. Grutzner, W. C. Warren, C. N. Balakrishnan,
8 D. Burt, J. M. George, M. T. Biegler, D. Iorns, A. Digby,
9 D. Eason, B. Robertson, T. Edwards, M. Wilkinson, G. Turner,
10 A. Meyer, A. F. Kautt, P. Franchini, H. W. Detrich, H. Svardal,
11 M. Wagner, G. J. P. Naylor, M. Pippel, M. Malinsky, M. Mooney,
12 M. Simbirskey, B. T. Hannigan, T. Pesout, M. Houck, A. Mis-
13 uraca, S. B. Kingan, R. Hall, Z. Kronenberg, I. Sović, C. Dunn,
14 Z. Ning, A. Hastie, J. Lee, S. Selvaraj, R. E. Green, N. H. Put-
15 nam, I. Gut, J. Ghurye, E. Garrison, Y. Sims, J. Collins, S. Pelan,
16 J. Torrance, A. Tracey, J. Wood, R. E. Dagnell, D. Guan, S. E.
17 London, D. F. Clayton, C. V. Mello, S. R. Friedrich, P. V. Lovell,
18 E. Osipova, F. O. Al-Ajli, S. Secomandi, H. Kim, C. Theo-
19 fanopoulou, M. Hiller, Y. Zhou, R. S. Harris, K. D. Makova,
20 P. Medvedev, J. Hoffman, P. Masterson, K. Clark, F. Martin,
21 K. Howe, P. Flieck, B. P. Walenz, W. Kwak, H. Clawson,
22 M. Diekhans, L. Nassar, B. Paten, R. H. S. Kraus, A. J. Craw-
23 ford, M. T. P. Gilbert, G. Zhang, B. Venkatesh, R. W. Mur-
24 phy, K.-P. Koepfli, B. Shapiro, W. E. Johnson, F. Di Palma,
25 T. Marques-Bonet, E. C. Teeling, T. Warnow, J. M. Graves,
26 O. A. Ryder, D. Haussler, S. J. O'Brien, J. Korlach, H. A. Lewin,
27 K. Howe, E. W. Myers, R. Durbin, A. M. Phillippe, and E. D.
28 Jarvis, 2021 Towards complete and error-free genome assem-
29 blies of all vertebrate species. *Nature* **592**: 737–746.

30 Ruan, J. and H. Li, 2020 Fast and accurate long-read assembly
31 with wtdbg2. *Nat Methods* **17**: 155–158.

32 Sackton, T. B., R. J. Kulathinal, C. M. Bergman, A. R. Quinlan,
33 E. B. Dopman, M. Carneiro, G. T. Marth, D. L. Hartl, and
34 A. G. Clark, 2009 Population genomic inferences from sparse
35 high-throughput sequencing of two populations of *Drosophila*
36 *melanogaster*. *Genome Biol Evol* **1**: 449–465.

37 Schneider, I., 1972 Cell lines derived from late embryonic stages
38 of *Drosophila melanogaster*. *J Embryol Exp Morphol* **27**: 353–
39 365.

40 Sedlazeck, F. J., P. Rescheneder, M. Smolka, H. Fang, M. Nattes-
41 tad, A. von Haeseler, and M. C. Schatz, 2018 Accurate detec-
42 tion of complex structural variations using single-molecule
43 sequencing. *Nat Methods* **15**: 461–468.

44 Simao, F. A., R. M. Waterhouse, P. Ioannidis, E. V. Kriventseva,
45 and E. M. Zdobnov, 2015 BUSCO: assessing genome assem-
46 bly and annotation completeness with single-copy orthologs.
47 *Bioinformatics* **31**: 3210–3212.

48 Talsania, K., M. Mehta, C. Raley, Y. Kriga, S. Gowda, C. Grose,
49 M. Drew, V. Roberts, K. T. Cheng, S. Burkett, S. Oeser,
50 R. Stephens, D. Soppet, X. Chen, P. Kumar, O. German,
51 T. Smirnova, C. Hautman, J. Shetty, B. Tran, Y. Zhao, and
52 D. Esposito, 2019 Genome assembly and annotation of the
53 *Trichoplusia ni* Tni-FNL insect cell line enabled by long-read
54 technologies. *Genes (Basel)* **10**.

55 Tattini, L., R. D'Aurizio, and A. Magi, 2015 Detection of ge-
56 nomic structural variants from next-generation sequencing
57 data. *Front Bioeng Biotechnol* **3**: 92.

58 Todd, R. T., A. Forche, and A. Selmecki, 2017 Ploidy variation in
59 fungi: polyploidy, aneuploidy, and genome evolution. *Micro-
60 biology Spectrum* **5**: 5.4.09.

61 Waterhouse, R. M., M. Seppey, F. A. Simão, M. Manni, P. Ioanni-
62 dis, G. Klioutchnikov, E. V. Kriventseva, and E. M. Zdobnov,
63 2018 BUSCO applications from quality assessments to gene
64 prediction and phylogenomics. *Mol Biol Evol* **35**: 543–548.

65 Weisenfeld, N. I., V. Kumar, P. Shah, D. M. Church, and D. B.
66 Jaffe, 2017 Direct determination of diploid genome sequences.
67 *Genome Res* **27**: 757–767.

68 Wierzbicki, F., F. Schwarz, O. Cannalonga, and R. Kofler, 2021
69 Novel quality metrics allow identifying and generating high-
70 quality assemblies of piRNA clusters. *Mol Ecol Resour* p. (in
71 press).

72 Yanagawa, S., J. S. Lee, and A. Ishimoto, 1998 Identification
73 and characterization of a novel line of *Drosophila* Schneider
74 S2 cells that respond to wingless signaling. *J Biol Chem* **273**:
75 32353–32359.

76 Zhang, Y., J. H. Malone, S. K. Powell, V. Periwal, E. Spana,
77 D. M. Macalpine, and B. Oliver, 2010 Expression in aneuploid
78 *Drosophila* S2 cells. *PLOS biology* **8**: e1000320+.

79 Zhao, X., R. L. Collins, W.-P. Lee, A. M. Weber, Y. Jun, Q. Zhu,
80 B. Weisburd, Y. Huang, P. A. Audano, H. Wang, M. Walker,
81 C. Lowther, J. Fu, M. B. Gerstein, S. E. Devine, T. Marschall,
82 J. O. Korbel, E. E. Eichler, M. J. P. Chaisson, C. Lee, R. E.
83 Mills, H. Brand, and M. E. Talkowski, 2021 Expectations and
84 blind spots for structural variation detection from long-read
85 assemblies and short-read genome sequencing technologies.
86 *The American Journal of Human Genetics* **108**: 919–928.

87 Zheng, G. X. Y., B. T. Lau, M. Schnall-Levin, M. Jarosz, J. M. Bell,
88 C. M. Hindson, S. Kyriazopoulou-Panagiotopoulou, D. A.
89 Masquelier, L. Merrill, J. M. Terry, P. A. Mudivarti, P. W. Wyatt,
90 R. Bharadwaj, A. J. Makarewicz, Y. Li, P. Belgrader, A. D. Price,
91 A. J. Lowe, P. Marks, G. M. Vurens, P. Hardenbol, L. Montesclaros,
92 M. Luo, L. Greenfield, A. Wong, D. E. Birch, S. W. Short,
93 K. P. Bjornson, P. Patel, E. S. Hopmans, C. Wood, S. Kaur,
94 G. K. Lockwood, D. Stafford, J. P. Delaney, I. Wu, H. S. Or-
95 donez, S. M. Grimes, S. Greer, J. Y. Lee, K. Belhocine, K. M.
96 Giorda, W. H. Heaton, G. P. McDermott, Z. W. Bent, F. Meschi,
97 N. O. Kondov, R. Wilson, J. A. Bernate, S. Gauby, A. Kindwall,
98 C. Bermejo, A. N. Fehr, A. Chan, S. Saxonov, K. D. Ness, B. J.
99 Hindson, and H. P. Ji, 2016 Haplotyping germline and can-
100 cer genomes with high-throughput linked-read sequencing.
101 *Nature Biotechnology* **34**: 303–311.

102 Zhou, B., S. S. Ho, S. U. Greer, N. Spies, J. M. Bell, X. Zhang,
103 X. Zhu, J. G. Arthur, S. Byeon, R. Pattni, I. Saha, Y. Huang,
104 G. Song, D. Perrin, W. H. Wong, H. P. Ji, A. Abyzov, and A. E.
105 Urban, 2019a Haplotype-resolved and integrated genome
106 analysis of the cancer cell line HepG2. *Nucleic Acids Res* **47**:
107 3846–3861.

108 Zhou, B., S. S. Ho, S. U. Greer, X. Zhu, J. M. Bell, J. G. Arthur,
109 N. Spies, X. Zhang, S. Byeon, R. Pattni, N. Ben-Efraim, M. S.
110 Haney, R. R. Haraksingh, G. Song, H. P. Ji, D. Perrin, W. H.
111 Wong, A. Abyzov, and A. E. Urban, 2019b Comprehensive,
112 integrated, and phased whole-genome analysis of the primary
113 ENCODE cell line K562. *Genome Res* **29**: 472–484.

114 Zhou, W., S. B. Emery, D. A. Flasch, Y. Wang, K. Y. Kwan, J. M.
115 Kidd, J. V. Moran, and R. E. Mills, 2020 Identification and
116 characterization of occult human-specific LINE-1 insertions
117 using long-read sequencing technology. *Nucleic Acids Res* **48**:
118 1146–1163.

119 Zhuang, J., J. Wang, W. Theurkauf, and Z. Weng, 2014 TEMP:
120 a computational method for analyzing transposable element
121 polymorphism in populations. *Nucleic Acids Res* **42**: 6826–
122 6838.