

1 **Mesenchymal tumor organoid models recapitulate**
2 **rhabdomyosarcoma subtypes**

3
4 Michael T. Meister¹, Marian J. A. Groot Koerkamp¹, Terezinha de Souza¹, Willemijn
5 B. Breunis^{1,2}, Ewa Frazer-Mendelewska¹, Mariël Brok¹, Jeff DeMartino¹, Freek
6 Manders^{1,3}, Camilla Calandrini^{1,3}, Hinri H. D. Kerstens¹, Alex Janse¹, M. Emmy M.
7 Dolman^{1,4,5}, Selma Eising¹, Karin P. S. Langenberg¹, Marc van Tuil¹, Rutger R. G.
8 Knops¹, Sheila Terwisscha van Scheltinga¹, Laura S. Hiemcke-Jiwa¹, Uta Flucke¹,
9 Johannes H. M. Merks¹, Max M. van Noesel¹, Bastiaan B. J. Tops¹, Jayne Y. Hehir-
10 Kwa¹, Patrick Kemmeren^{1,6}, Jan J. Molenaar¹, Marc van de Wetering^{1,3}, Ruben van
11 Boxtel^{1,3}, Jarno Drost^{1,3}, Frank C. P. Holstege^{1,6,*}

12
13 ¹ Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584CS Utrecht,
14 The Netherlands.

15 ² Department of Oncology and Children's Research Center, University Children's
16 Hospital Zürich, 8032 Zürich, Switzerland.

17 ³ Oncode Institute, Heidelberglaan 25, 3584CS Utrecht, The Netherlands.

18 ⁴ Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW,
19 Australia.

20 ⁵ School of Women's and Children's Health, Faculty of Medicine, UNSW Sydney,
21 Kensington, NSW, Australia.

22 ⁶ Center for Molecular Medicine, UMC Utrecht and Utrecht University, Utrecht, The
23 Netherlands.

24 *Correspondence: f.c.p.holstege@prinsesmaximacentrum.nl

25

26 **Summary**

27 Rhabdomyosarcomas (RMS) are mesenchyme-derived tumors and the most common
28 childhood soft tissue sarcomas. Treatment is intense, with a nevertheless poor
29 prognosis for high-risk patients. Discovery of new therapies would benefit from
30 additional preclinical models. Here we describe the generation of a collection of
31 pediatric RMS tumor organoid (tumoroid) models comprising all major subtypes. For
32 aggressive tumors, tumoroid models can often be established within four to eight
33 weeks, indicating the feasibility of personalized drug screening. Molecular, genetic and
34 histological characterization show that the models closely resemble the original
35 tumors, with genetic stability over extended culture periods of up to six months.
36 Importantly, drug screening reflects established sensitivities and the models can be
37 modified by CRISPR/Cas9 with *TP53* knockout in an embryonal RMS model resulting
38 in replicative stress drug sensitivity. Tumors of mesenchymal origin can therefore be
39 used to generate organoid models, relevant for a variety of preclinical and clinical
40 research questions.

41

42 **Keywords:** rhabdomyosarcoma, mesenchymal, tumor organoid, pediatric cancer,
43 drug screening, CRISPR/Cas9

44

45 **Running title:** A mesenchymal tumor organoid collection

46

47 **Tables:** 2 supplementary

48 **Figures:** 6 main and 5 supplementary

49

50 **Introduction**

51 Rhabdomyosarcoma (RMS) is a type of malignant tumor of mesenchymal origin (Yang
52 et al., 2014) and forms the most common soft tissue sarcoma in children and
53 adolescents (Li et al., 2008). Historically, RMS has been divided into two main
54 subtypes based on histology. Whereas embryonal RMS (eRMS) displays cellular
55 heterogeneity and hallmarks of immature skeletal myoblasts (Patton and Horn, 1962),
56 alveolar RMS (aRMS) cells are distributed around an open central space, thereby
57 resembling pulmonary alveoli (Enterline and Horn, 1958). eRMS is more frequently
58 observed in children under ten, accounting for two-thirds of all RMS cases, and
59 generally has a better prognosis than aRMS, which is more common in adolescents
60 and young adults (Perez et al., 2011). In aRMS, a sole genetic driver alteration is
61 usually observed, caused by a chromosomal translocation resulting in a fusion gene
62 between either *PAX3* or *PAX7* and *FOXO1*. In contrast, eRMS is genetically more
63 heterogeneous, harboring mutations in several common oncogenes or tumor
64 suppressor genes (Shern et al., 2014). Other subtypes of RMS have recently been
65 recognized (WHO, 2020). RMS treatment is guided by protocols developed by multi-
66 national collaborative groups and includes systemic chemotherapy in addition to local
67 therapy (radiotherapy and/or surgery) (Skapek et al., 2019). The prognosis of RMS
68 has improved over the last decades (Bisogno et al., 2019). For patients with high-risk,
69 refractory or relapsed disease, prognosis remains poor however, despite an immense
70 treatment burden (Mascarenhas et al., 2019; Pappo et al., 1999). Thus, development
71 of new therapeutic options is of critical importance for these patients.

72

73 Development of such treatment options requires *in vitro* models and may therefore
74 benefit from application of organoid technology. The basis of this technology is that

75 given a suitable growth environment, tissue stem cells self-renew as well as give rise
76 to natural progeny which organize according to their preferred growth modality without
77 the need for artificial cell immortalization. The technology was first established in
78 healthy epithelial tissue from mouse small intestine (Sato et al., 2009) and soon
79 adapted to various other healthy and diseased epithelial tissues, including cancer
80 (Clevers, 2016). Tumor organoid (tumoroid) systems are proving useful in cancer
81 research as they display genetic stability over extended culture periods, retaining the
82 molecular characteristics of the tumor they are derived from. Tumoroid models can be
83 expanded, facilitating high-throughput screening approaches such as small molecule
84 or CRISPR/Cas9-knockout screening (Bleijs et al., 2019).

85
86 To date, tumoroid approaches have been primarily applied to cancers derived from
87 epithelial cells (i.e., carcinomas). Recent studies demonstrate that deriving tumoroid
88 models from non-epithelial cancer is feasible but this has as yet not been achieved for
89 pure mesenchymal cancers (Abdullah et al., 2021; Fusco et al., 2019; Jacob et al.,
90 2020; Saltsman et al., 2020; Yamazaki et al., 2021). Application to tumors of
91 mesenchymal origin such as RMS would be of obvious benefit. Tumoroid models of
92 pediatric nephroblastoma (Wilms tumors) have been described, which, depending on
93 the subtype, can contain stromal cells (Calandriini et al., 2020). In addition, cells
94 derived from synovial sarcoma and other adult soft tissue sarcomas can grow to a
95 limited extent on fetal calf serum, which, although undefined in terms of the required
96 essential growth factors, also indicates feasibility (Boulay et al., 2021; Brodin et al.,
97 2019). Furthermore, *in vitro* propagation of RMS tumor cells derived from patient-
98 derived xenograft (PDX) mouse models has recently been shown (Manzella et al.,
99 2020). Although these results are encouraging, no directly patient-derived collection

100 of tumoroid models of malignant tumors of pure mesenchymal origin (i.e., sarcomas)
101 has been generated and studied after growth for extensive periods in well-defined
102 media components. In this study, we therefore set out to develop and apply
103 approaches for generating a collection of tumoroid models that covers the major RMS
104 subtypes, a pediatric cancer of mesenchymal origin with poor outcome for high-risk
105 patients. Besides generating and extensively characterizing the tumoroid collection,
106 we also investigated applicability for drug screening and genetic modification (Fig. 1A).

107

108 **Results**

109 *A protocol to collect and process RMS tumor samples for tumoroid model*
110 *establishment and propagation*

111 Before starting to generate a collection of RMS tumoroid models, we first optimized
112 sample acquisition and logistics between surgery, pathology and organoid culture labs
113 (Materials & Methods). In parallel to optimizing sample acquisition, we also optimized
114 sample processing, including testing different formulations of growth media by a
115 combination of systematic and trial and error approaches (Discussion). RMS tumor
116 samples are diverse. Most samples are small needle biopsies (i.e, 16-gauge tru-cut),
117 as large resection specimens are mostly restricted to pre-treated RMS or to treatment-
118 naïve paratesticular fusion-negative eRMS (FN-eRMS). In addition, a subset of
119 samples (4% here) are not solid, being acquired as bone marrow aspirates of
120 infiltrating tumor cells (Fig. 1B). Samples are plated as minced pieces embedded in a
121 droplet of extracellular matrix (ECM) substitute (Basement-Membrane Extract, BME)
122 and as single-cell suspensions in BME-supplemented medium. Outgrowth of tumor
123 cells to tumoroid models can occur from both modalities. In the case of successful
124 outgrowth of initially plated cells, cells organize as two-dimensional monolayers (Fig.
125 1C). This appears to be the cells' preferred growth modality, as plating them as single-
126 cell suspensions in BME droplets results in cells escaping the surrounding matrix and
127 sinking to the bottom of the culture plate from which they continue to grow in a
128 monolayer. Therefore, cells are further propagated and expanded in this way. We
129 considered an RMS tumoroid model to be successfully established if, over the course
130 of culturing, the expression of specific tumor markers is retained and the culture
131 expansion is at least sufficient for drug screening, all as described below.

132

133 *Early detection of tumor cells during culturing*

134 Tumors consist of a variety of different cell types. These include normal cell types that
135 can grow as well or even better in the provided culture conditions, possibly
136 outcompeting tumor cells (Dijkstra et al., 2020). It would therefore be useful to test for
137 the presence of tumor cells early during culturing to omit the unnecessary propagation
138 of cultures lacking any. At early time points, material is limited, impacting the range of
139 applicable assays. The establishment protocol therefore utilizes an RT-qPCR assay
140 after the first or second passage of cells with probes for standard RMS histopathology
141 markers, i.e., *DES*, *MYOG*, *MYOD1* (WHO, 2020), and the fusion transcript in fusion-
142 positive RMS (FP-RMS) (Ponce-Castañeda et al., 2014). We considered a sample
143 positive for tumor cells if at least one of the three genes, plus for FP-RMS the fusion
144 transcript, test positive. All samples that successfully yield tumoroid models, show
145 positivity for at least one marker gene at this stage, while most models (17 out of 19)
146 are positive for all three marker genes and the fusion transcript if applicable (Fig. 2A
147 and B). The RT-qPCR-based approach is therefore a useful tool to determine
148 feasibility at an early stage.

149

150 *RMS tumoroid models retain marker protein expression*

151 A hallmark of RMS tumors is the expression of proteins associated with non-terminally
152 differentiated muscle (i.e., Desmin, Myogenin and MYOD1). Expression of these
153 proteins differs between RMS subtypes (Dias et al., 2000) and can be associated with
154 prognosis (Heerema-Mckenney et al., 2008). To properly reflect the original tumors,
155 RMS tumoroid models should therefore retain the expression patterns of these
156 proteins. The RMS tumoroid establishment protocol therefore includes a
157 morphological (H&E) and immunohistochemical (IHC) assessment at the time of

158 successful establishment (i.e., drug screening). To enable comparison between
159 tumoroid models and the tumors they were derived from, models are grown as three-
160 dimensional spheres to mimic the three-dimensional architecture of tumors (Fig. 2C).
161 When evaluated in this manner, RMS tumoroid models show retained expression
162 levels and patterns of Desmin, Myogenin and MYOD1 at the time of successful
163 establishment. Cellular morphology is also retained, with aRMS models displaying
164 homogenous, primitive cells, with large nuclei and minimal cytoplasm, and eRMS
165 models displaying more heterogenous tumor cells with variable maturation (Fig. 2C
166 and Suppl. Fig. 1), as in the tumors (WHO, 2020). In summary, RMS tumoroid models
167 retain histopathological hallmarks of RMS tumors, giving a first indication that they
168 reflect the tumors they were derived from to a high extent.

169

170 *A collection of RMS tumoroid models that represent the diverse clinical presentation*
171 *of RMS*

172 Having established protocols for the acquisition, processing, initial growth, and
173 characterization of RMS tumoroid models, we applied this to 46 consecutive samples
174 from pediatric RMS patients treated in the Netherlands, resulting in a collection of 19
175 RMS tumoroid models (41% efficiency). These models are derived from tumors
176 comprising both main histological subtypes (embryonal and alveolar), different fusion
177 types (fusion positive *PAX3-FOXO1*, *PAX7-FOXO1*, a novel fusion *PAX3-WWTR1*, as
178 well as fusion negative), various risk groups, locations, and are derived from primary
179 as well as relapsed disease (Fig. 1B and Suppl. Table 1). Outgrowth of cells from
180 highly aggressive RMS subtypes shows a higher success rate, as indicated by 83%
181 successful establishment for FP-RMS versus 16% for FN-RMS, and 61% success in
182 relapsed, versus 30% in primary RMS tumors, respectively. There was no statistically

183 significant difference in the success rate between recently treated and untreated
184 tumors (33% versus 43%, respectively, $p = 0.59$, chi-square test). Similar differences
185 between relapsed and primary tumors in establishment rates have been observed for
186 orthotopic PDX models (O-PDX) of RMS (Stewart et al., 2017). Compared to O-PDX
187 models of RMS, the overall success rate is lower for establishing RMS tumoroid
188 models (41% versus 65%, respectively). While the success rate is lower, RMS
189 tumoroid models can be more rapidly established. Engraftment of O-PDX RMS models
190 takes 1 to 5.5 months before tumor growth is first observed in mice, while RMS
191 tumoroid models can be fully established, i.e., characterized and subjected to drug
192 screening, in as little as 27 days for highly aggressive tumors. Overall, the median time
193 from acquisition of the tumor sample to successful drug screening was 81 days (with
194 7 models being screened in less than 2 months). This indicates that our approach
195 could potentially be applied in a personalized medicine setting where it is crucial to
196 obtain results as fast as possible to provide information on treatment options.

197
198 A subset of the tumoroid models were derived from the same patient, but at different
199 points during treatment and/or from different body sites (marked with one or more
200 asterisks in Fig. 1B). This potentially facilitates studies of tumor evolution or acquired
201 treatment resistance. Furthermore, the collection contains a model of an eRMS with a
202 novel fusion between *PAX3* and *WWTR1*. Such fusions have been reported as rare
203 events in biphenotypic sinonasal sarcomas, which usually harbor *PAX3-MAML3*
204 fusions (Loarer et al., 2019). Taken together, the protocol efficiently yields tumoroid
205 models from highly aggressive as well as from extremely rare RMS subtypes, resulting
206 in an initial collection covering a broad spectrum of subtypes.

207

208 *RMS tumoroid models molecularly resemble the tumor they are derived from*
209 Given that the present tumoroid collection is the first to be established from tumors of
210 purely mesenchymal origin, we asked to what extent the models further resemble the
211 tumors they were derived from besides the retained hallmark protein expression levels
212 and patterns described above. To this end, whole-genome sequencing (WGS) and
213 bulk mRNA sequencing (RNA-seq) of the tumor and tumoroid model at the time of
214 drug screening (i.e., successful establishment), were performed.

215

216 Copy number profiles were first compared between tumors and tumoroid models
217 showing that profiles are indeed highly concordant (Fig. 3A). The detected copy
218 number alterations included those commonly observed in RMS, with genomic gains in
219 chromosome 8 in FN-RMS and gains in chromosome 1 and 12 in FP-RMS (Shern et
220 al., 2014; Weber-Hall et al., 1996). In addition, copy number profiles of individual RMS
221 tumors and derived tumoroid models show a high concordance (Suppl. Fig. 2A and
222 B). This indicates that the established models resemble the tumors they were derived
223 from on a more global genomic level.

224

225 Various mutational processes are active in cells, which cause distinct somatic
226 mutational signatures. These signatures are characterized by specific patterns of
227 single base substitutions (SBS) in the context of their two flanking bases (Alexandrov
228 et al., 2020). The presence of certain somatic mutational signatures in a cell can be
229 associated with the underlying mutational processes. These processes are not
230 restricted to *in vivo* systems, but can also occur during culture (Petljak et al., 2019),
231 forming a potential source of genomic destabilization. To test whether the somatic
232 mutational signatures and thus the underlying mutational processes present in the

233 tumors (“T”) are concordant with those in the derived tumoroid models (“O”), we first
234 measured the relative contributions of different signatures per sample. The main
235 signatures observed are signatures associated with aging (SBS1 and SBS5), as well
236 as a signature associated with increased oxidative stress (SBS18) (Alexandrov et al.,
237 2020), and a signature associated with exposure to the chemotherapeutic
238 Temozolomide (TMZ) (Kucab et al., 2019) used in the treatment of RMS (Defachelles
239 et al., 2021) (Fig. 3B). Importantly, the signatures detected in the tumoroid models are
240 highly concordant with those detected in the original tumors (Fig. 3B). In line with this,
241 no global differences in SBS profiles between RMS tumors and derived tumoroid
242 models are detected when analyzed collectively (Suppl. Fig. 2C). Lastly, we calculated
243 the similarities of the individual SBS profiles of all tested tumor and tumoroid model
244 samples. Tumoroid models cluster with the tumors they are derived from, indicating
245 that the mutational landscape is retained in the models (Suppl. Fig. 2D). Only the tumor
246 and tumoroid model of RMS127 do not cluster closely, likely due to derivation from a
247 bone marrow aspirate with low tumor cell infiltration (5-10% as estimated by
248 pathology). Overall, there is a high concordance between the somatic mutational
249 signatures of RMS tumors and the derived tumoroid models, again illustrating that the
250 established models resemble the patient tumors.

251
252 While FP-RMS are driven by the prototypical fusion genes, FN-RMS are characterized
253 by SNVs in known oncogenes such as *TP53* or *RAS* family members (Shern et al.,
254 2014). Currently available preclinical models of RMS do not cover the full spectrum of
255 these SNVs, thus limiting the applicability to test novel targeted drugs in RMS. To
256 investigate whether the established RMS tumoroid models harbor any of these SNVs
257 and whether these were already present in the tumor, all SNVs predicted to be

258 pathogenic for protein function and with a variant allele fraction (VAF) of above 0.3 in
259 either tumor and/or tumoroid were evaluated. As already indicated by the mutational
260 signature analyses, RMS tumoroid models retain SNVs present in the tumor to a high
261 degree (Fig. 3C). Similarly, samples from the same patient but from different sites or
262 acquired from different relapses also show a high overlap in SNVs (Fig. 3C).

263

264 Two of the FN-eRMS tumoroid models harbor previously described oncogenic
265 mutations in FN-eRMS, i.e., *CTNNB1* (p.T41A) in RMS012 and *FGFR4* (p.V550L) in
266 RMS444 (Shern et al., 2014). To our knowledge, these are the first preclinical RMS
267 models harboring these specific mutations. Moreover, one *PAX3-FOXO1* FP-aRMS
268 (RMS410) displays an oncogenic mutation in *KRAS* (p.G12A), which is uncommon in
269 FP-RMS (Shern et al., 2014). Lastly, two FN-RMS tumoroid models (RMS007 and
270 RMS012) display non-annotated frameshift mutations in the *BCOR* gene with a high
271 VAF of above 0.9. Mutations in *BCOR* have been reported in RMS with a higher
272 prevalence in FN-RMS compared to FP-RMS (Shern et al., 2014). The mutation
273 analysis shows that RMS tumoroid models not only retain specific SNVs already
274 present in the tumor but that these models also contain mutations for which no
275 preclinical model was previously available.

276

277 mRNA expression profiles of FN- and FP-RMS are fundamentally different, mainly due
278 to the transcriptome-wide impact of the fusion transcript in FP-RMS (Wachtel et al.,
279 2004). Additionally, the transcriptional program of *in vitro* cultured organoids is
280 influenced by the culture conditions and can deviate from the transcriptional program
281 of the parent tissue (Lu et al., 2021). Given that FN-RMS and FP-RMS tumoroid
282 models are cultured in the same medium, we asked whether the transcriptional

283 differences observed between the original tumors are retained in the models. Analysis
284 of RNA-seq shows a high correlation between the expression profiles of RMS tumoroid
285 models with the same fusion status (i.e., FP-RMS vs. FN-RMS, Fig. 3D), as has
286 previously been shown for primary RMS tumor samples (Wachtel et al., 2004).
287 Furthermore, correlation between the expression profiles of RMS tumor and tumoroid
288 models of the same fusion-type is high, while correlation with control kidney tumors is
289 low, showing that the fundamental differences in the expression profiles of FN- and
290 FP-RMS are retained in culture (Fig. 3D). In summary, the early tumor cell detection
291 by RT-qPCR, the morphological and marker protein analyses, WGS for copy number
292 profiles, for somatic mutational signatures and for individual SNVs, as well as the
293 comparative transcriptomic analyses, indicate that the RMS tumoroid models
294 resemble the original RMS tumor they are derived from.

295

296 *Genetic and transcriptional stability of tumoroid models over time*

297 We next asked whether the models remain genetically and transcriptionally stable after
298 culture over extended periods. Although convenient for certain experimental
299 approaches, conventional RMS cell lines can acquire new mutations through culturing.
300 An example is the widely used *PAX3-FOXO1* FP-aRMS cell line RH30, that harbors a
301 *TP53* mutation, uncommon in primary FP-RMS (Felix et al., 1992; Shern et al., 2014).
302 To investigate stability, a subset of RMS tumoroid models were kept in culture over
303 three to six months until they reached passage 40 (“OL” for late passage, as compared
304 to “O”, the standard passage analyzed here and sufficient for drug screening) and
305 characterized again by WGS and RNA-seq. Furthermore, two independently derived
306 tumoroid models (i.e., established from the same tumor piece of which a part was cryo-

307 preserved after the first tumoroid establishment) were included in this comparison
308 (“O2”) to assess the robustness of the establishment protocol.

309
310 RMS tumoroid models show long-term propagation potential with five out of seven
311 lines tested reaching passage 40 and two lines dropping out at passage 17 and 20,
312 respectively. As drug screening is usually performed between passage 6 to 12, this
313 shows that models can be readily used after such an initial screening. Comparison of
314 individual copy number profiles of standard and late passage (Suppl. Fig. 3A), as well
315 as independently derived paired tumoroid models (Suppl. Fig. 3B) shows no major
316 copy number differences between the respective models. Furthermore, analysis of
317 somatic mutational signatures shows that the contributions of identified somatic
318 mutational signatures (Fig. 4A) as well as the contributions of individual SBSs between
319 models (Suppl. Fig. 3C) are highly similar. Lastly, analysis based on SBS profiles
320 shows clustering of models derived from individual patients (Suppl. Fig. 3D). The
321 exception to this is RMS335 “OL” which may be due to a mutation in the DNA damage
322 response gene *ATR* in both the tumor and the tumoroid sample, potentially resulting
323 in the gain of new mutations during culturing. The similarity between SBS profiles of
324 RMS335 “O” and “OL” was nevertheless high. Taken together, these analyses show
325 that RMS tumoroid models generally remain stable, even over extended periods of
326 culturing and that the establishment protocol is robust, yielding highly similar models
327 when independently derived from a single tumor sample.

328
329 As before (see Fig. 3C), individual pathogenic SNVs were also evaluated. Importantly,
330 the majority of SNVs are retained after long-term culturing, with the models acquiring
331 only a few additional SNVs (Fig. 4B). In addition, the models independently derived

332 from the same tumor show a high overlap of pathogenic SNVs (Fig. 4B). Notably, the
333 afore-mentioned oncogenic mutations in *CTNNB1* and *FGFR4* are detected in all
334 related samples (Fig. 4B). This further indicates that the models do not lose key
335 mutations and that the establishment protocol results in the outgrowth of
336 representative tumor cells harboring these mutations. RNA-seq expression profiles
337 from the standard passage, late passage, as well as the independently derived
338 tumoroid models were compared to test whether the core transcriptional program of
339 RMS is retained. Principal component analysis shows that global expression profiles
340 of tumoroid models derived from the same patient cluster together (Fig. 4C). This
341 suggests that our models are not only genetically, but also transcriptionally stable over
342 time.

343

344 *RMS tumoroid drug screening reflects established drug sensitivities*

345 Having established that the RMS tumoroid models resemble the tumors they are
346 derived from with stability during prolonged culturing, their suitability for research was
347 further investigated in two specific ways, i.e., via drug screening and CRISPR/Cas9
348 genome editing. Development of novel RMS treatments has been hampered by a lack
349 of preclinical models that can efficiently be subjected to drug screening. To be of use
350 for such screening approaches, it is imperative that new models reflect drug
351 sensitivities already known for these tumors. This was investigated with a custom
352 pediatric cancer library of 165 compounds, comprising standard of care
353 chemotherapeutics as well as early-phase clinical trial targeted compounds. To mimic
354 the three-dimensional configuration of tumors, cell plating was optimized so that
355 tumoroid cells form homogenous 3D spheres in 384-well plates. The protocol also
356 included prior growth curve determination of the number of cells that must be plated

357 for each individual tumoroid model to prevent overgrowth during screening (Materials
358 & Methods).

359

360 Vincristine and actinomycin D are routinely used in RMS treatment and indeed show
361 broad efficacy in all models tested (Fig. 5A, bottom highlighted box). Furthermore, the
362 proteasome inhibitor bortezomib shows a similarly high efficacy in all tested models.
363 This is in line with previous studies showing that both major histological RMS subtypes
364 are susceptible to bortezomib treatment *in vitro* (Bersani et al., 2008) and *in vivo*
365 (Manzella et al., 2020), suggesting that RMS tumoroid models indeed reflect drug
366 sensitivities known for RMS tumors.

367

368 Clustering of RMS tumoroid models based on drug efficacy shows two main groups,
369 comprising 12 and 4 models, respectively, with one unclustered model (RMS000FLV).
370 This model nevertheless shows high sensitivity to the afore-mentioned drugs (bottom
371 of Fig. 5A). The outlier behavior is not caused by differences in growth during the
372 experiment (see Suppl. Table 2) and may be explained by the fact that this is the only
373 treatment-naïve FP-aRMS model in the collection (Fig. 1B). The group of 4 models,
374 that contains all successfully screened FN-RMS tumoroid models, is more sensitive to
375 all tested inhibitors of MEK/ERK (MAPK signaling pathway) as well as the two
376 inhibitors of γ-secretase (NOTCH signaling pathway) in the drug panel, when
377 compared to the other group containing only FP-RMS tumoroid models (Fig. 5A, top
378 highlighted box, and Fig. 5B and C). Importantly, sensitivity of FN-RMS against
379 inhibitors of MAPK and NOTCH signaling has previously been reported (Belyea et al.,
380 2011; Yohe et al., 2018). This group also contains the FP-aRMS tumoroid model
381 RMS000HQC which shows a very low expression of its fusion transcript (Fig. 2B),

382 which potentially resulted in it displaying sensitivities more commonly observed in FN-
383 RMS. Taken together, our results indicate that drug sensitivities observed in RMS
384 tumoroid models reflect those known in primary RMS tumors. This shows the potential
385 these models hold for testing novel drugs. As drug screening could be performed as
386 early as 27 days after sample acquisition, with a median time to drug screening of 81
387 days, this highlights their relevance for personalized approaches.

388

389 *RMS tumoroid models can be molecularly edited using CRISPR/Cas9*
390 The applicability of preclinical models would be further enhanced by the possibility of
391 genetic modification. To test this, we used CRISPR/Cas9 (Jinek et al., 2012) to knock
392 out the well-known tumor suppressor gene *TP53*. This choice is based on the recent
393 report that loss of functional P53 protein confers a worse prognosis in RMS (Shern et
394 al., 2021). RMS012 FN-eRMS tumoroid cells, with wildtype *TP53* as determined by
395 WGS, were transfected with a plasmid harboring a *TP53* targeting sgRNA as well as
396 Cas9. Successfully edited cells were selected with nutlin-3 (Drost et al., 2015) (Fig.
397 6A), resulting in cells with complete loss of P53 protein as confirmed by Western Blot
398 (Fig. 6B). Sanger sequencing shows a spectrum of Indels consistent with a polyclonal
399 population of P53 deficient cells (Suppl. Fig. 4A).

400

401 *P53 deficient eRMS tumoroid cells are more sensitive to the checkpoint kinase*
402 *inhibitor prexasertib*

403 In light of the recently reported prognostic significance of P53 loss in RMS (Shern et
404 al., 2021), we investigated what implications loss of P53 might have. P53 governs
405 various cellular functions, including response to DNA damage through control of the
406 G1/S checkpoint during cell cycle progression by halting the proliferative machinery to

407 give cells time to repair DNA damage (Yonish-Rouach et al., 1991). The rate of DNA
408 double-strand breaks (DSBs) was therefore first examined in the P53 deficient RMS
409 tumoroid cells by measuring phosphorylation of histone H2AX serine 139, a proxy for
410 DNA DSBs (Rogakou et al., 1998). No difference in the amount of DNA DSBs was
411 observed between *TP53* wildtype and knockout cells however (Suppl. Fig. 4B). To
412 avoid catastrophic failure of the proliferative machinery and avoid cell death, P53
413 deficient cells are dependent on the G2/M checkpoint to repair DNA DSBs
414 (Dobbelstein and Sørensen, 2015). Inhibitors of the checkpoint kinase 1 (Chk1), which
415 controls the G2/M checkpoint, have therefore been suggested as a treatment for P53
416 deficient tumors, such as in certain ovarian and breast cancer subtypes (Lee et al.,
417 2018; Ma et al., 2012). This hypothesis was tested, resulting in the observation that
418 *TP53* knockout RMS tumoroid cells are significantly ($p = 0.008$) more sensitive to the
419 Chk1 inhibitor prexasertib, compared to their wildtype counterpart (Fig. 6C). The
420 absolute difference between IC₅₀ values is not extreme (18.5 nM for *TP53* wildtype
421 versus 12.9 nM for *TP53* knockout cells), likely reflecting the fact that RMS012 *TP53*
422 wildtype cells are already sensitive to prexasertib. These results indicate that
423 exploiting replicative stress in P53 deficient RMS is indeed an interesting therapeutic
424 avenue to pursue. Moreover, the results demonstrate that it is possible to perform
425 gene editing in these novel RMS tumoroid models, thereby further increasing their
426 utility.

427

428 **Discussion**

429 *A tumoroid collection of purely mesenchymal origin*

430 To date, organoid technology has primarily been employed to generate models of
431 malignant tumors of epithelial origin (i.e., carcinomas) (Bleijs et al., 2019). Feasibility
432 to use this technology on non-epithelial cancer has only recently been shown
433 (Abdullah et al., 2021; Fusco et al., 2019; Jacob et al., 2020; Saltsman et al., 2020;
434 Yamazaki et al., 2021). Here we extend the tumor organoid approach, demonstrating
435 applicability to tumors of entirely mesenchymal origin (i.e., sarcomas), resulting in only
436 the second thoroughly characterized tumoroid collection specific for pediatric cancer.

437

438 Two factors likely contributed to the delayed adaptation of organoid technology to
439 sarcomas. First, the technology was developed for healthy epithelial tissue, followed
440 later by translation to the corresponding cancer entity, as in the case of colorectal
441 carcinoma (Sato et al., 2009, 2011; Van De Wetering et al., 2015). The cell of origin
442 of RMS is still not fully characterized (Hettmer and Wagers, 2010). Therefore,
443 extensive culture optimization of healthy tissue first, with translation to cancerous
444 tissue later, has not been feasible for RMS. Consequently, optimization had to be
445 conducted on tumor samples, which are not readily available. Secondly, and related
446 to the issue of tissue availability, sarcomas are far less common than carcinomas,
447 accounting for less than 1% of all solid adult malignancies (Burningham et al., 2012).
448 In pediatric cancer however, sarcomas are much more common, encompassing 21%
449 of all solid tumors in children (Burningham et al., 2012). This further highlights the
450 importance of the currently described approach and collection.

451

452 *Representation of a broad spectrum of RMS subtypes*

453 The tumoroid models include representatives of both major histological subtypes, all
454 major fusion types, different age groups, both sexes, treatment-naïve as well as pre-
455 treated, primary as well as metastatic tumors (Fig. 1B and Suppl. Table 1). Rarer
456 subtypes such as sclerosing/spindle-cell RMS (Rudzinski et al., 2015) will be exciting
457 to include, as also indicated by a recent case report (Acanda De La Rocha et al.,
458 2021). Compared to patient incidence rates (Glosli et al., 2021), the collection has an
459 underrepresentation of head and neck RMS. Although RMS tumor samples from this
460 region were acquired, models from such samples failed, regardless of subtype, clinical
461 stage, sample quantity or quality. Interestingly, this indicates that RMS arising in the
462 head and neck may depend on specific factors that have not yet been identified.
463 Studies in genetically engineered mice indicate that aberrant Hedgehog signaling can
464 give rise to FN-RMS from non-myogenic endothelial progenitors in the head and neck
465 (Drummond et al., 2018). Here, activation of Hedgehog signaling by Smoothened
466 agonists did not facilitate establishment of head and neck RMS tumoroid models,
467 indicating that additional factors may be necessary. Regardless of such future
468 developments, the protocol described here yields models that can be rapidly
469 established from a broad range of quite different RMS subtypes.

470

471 *New models for RMS research*

472 Currently available preclinical models of RMS include conventional cell lines, various
473 genetically engineered animal models (GEMs), as well as patient-derived xenograft
474 models (PDX or O-PDX when transplanted orthotopically) (Imle et al., 2021; Kashi et
475 al., 2015). Each of these systems possesses specific benefits and drawbacks,
476 resulting in suitabilities for different research questions or stages in drug development
477 (Kim et al., 2020). While conventional cell lines are easy to use, with low costs, large-

478 scale screening potential and ease of genetic modification, due to prolonged culturing
479 they often do not recapitulate many basic features of the genetic and molecular
480 background of the tumor they were derived from, thus possessing only limited
481 predictive value (Hinson et al., 2013). GEMs, on the other hand, are well-suited for cell
482 of origin studies and can provide valuable insights into cancer onset mechanisms.
483 GEMs are usually not suitable for high-throughput screening, mostly due to the low
484 tumor penetrance or the intricacies of animal studies (Kersten et al., 2017). In contrast
485 to GEMs, in O-PDX models, tumor samples are transplanted onto immune-deficient
486 mice to allow for engraftment, growth and later propagation of the tumor tissue from
487 mouse to mouse. Tumors propagated in this manner are thought to be genetically
488 stable over time and to reflect the patient tumor they were derived from, giving them
489 predictive value concerning preclinical drug testing (Gao et al., 2015). Disadvantages
490 include the necessary use of mice as hosts and the tumor-entity specific engraftment
491 time which can take up to several months (Pompili et al., 2016). Furthermore, there is
492 evidence that not all PDX models are genetically stable (Petljak et al., 2019).

493
494 The RMS tumoroid models combine several of the above-mentioned benefits. They
495 can be rapidly established and expanded like conventional cell lines, enabling drug
496 screening. As with cell lines, molecular editing to mimic certain disease backgrounds
497 is possible using CRISPR/Cas9. Unlike cell lines however, tumoroid models depend
498 on defined media including recombinant growth factors as well as an ECM substitute,
499 resulting in higher costs. RMS tumoroid models molecularly resemble the patient
500 tumor they are derived from, sharing this characteristic with O-PDX models, while
501 possessing the above-mentioned advantages of rapid establishment and expansion.
502 Compared to O-PDX models, establishment success is lower in RMS tumoroid

503 models, indicating that niche factors in the host mice are important for facilitating
504 establishment. This may be especially important in particular subtypes such as RMS
505 from the head and neck region. On the other hand, RMS tumoroid models are less
506 intricate in their propagation. Lastly, while GEMs are considered essential for cell of
507 origin studies, recent advances have shown that by genetic editing, such studies can
508 now also be performed in tumoroid models (Custers et al., 2021).

509

510 In conclusion, we established a well-characterized, well-annotated collection of RMS
511 tumoroid models, being the first such collection of tumoroid models derived from purely
512 mesenchymal malignant tumors (i.e., sarcomas) and only the second comprehensive
513 tumoroid model collection derived from pediatric cancer (Calandrini et al., 2020). This
514 collection contains all major subtypes of RMS and the models can be used for drug
515 screening as well as molecular editing. An interactive, browser-based companion
516 Shiny app (https://rmsdatabiobank.shinyapps.io/app1_3/) that makes all the described
517 data easily accessible, accompanies this paper. The RMS tumoroid models will be a
518 useful complementary system to study the biology of RMS and to improve treatment.

519

520 **Acknowledgements:** We thank the patients and their parents for contributing by
521 consenting to this study; the nurses, doctors and other health care professionals in our
522 institute with whom we work closely; our center's high-throughput screening facility, in
523 particular Bianca Koopmans, Kimberley Ober, and Sander van Hooff; Philip Lijnzaad,
524 Thanasis Margaritis and Tito Candelli, as well as past and present members of the
525 Holstege group.

526

527 **Financial support:** M.M. received financial support from the Deutsche
528 Forschungsgemeinschaft (#408083583). C.C. was supported by Foundation Children
529 Cancer Free (#292). J.D. received support from the European Research Council
530 (ERC) starting grant 850571 and the Dutch Cancer Society (KWF)/Alpe d'HuZes Bas
531 Mulder award (#10218). We are grateful for the financial support provided by the
532 Foundation Children Cancer Free (KiKa core funding).

533

534 **Author contributions:** Conceptualization, M.M. and F.H.; Methodology, M.M., M.G.K.
535 and W.B.; Investigation: M.M., M.G.K, T.d.S., W.B., E.F-M., M.B., J.D., C.C. and F.M.,
536 M.v.T.; Resources, M.D., S.E., K.L., R.K., S.T.v.S., L.H., U.F., J.M., M.v.N., B.T., J.H-
537 K., P.K., J.M., M.v.d.W., R.v.B. and J.D.; Data curation, M.G.K., T.d.S., A.J. and H.K.;
538 Writing – Original Draft, M.M. and F.H.; Visualization, M.M., T.d.S. and F.M.; Funding
539 Acquisition, F.H., Supervision, M.M. and F.H.

540

541 **Conflict of interest disclosure statement:** The authors declare no competing
542 interests.

543

544 **Figure legends**

545

546 **Fig. 1 - A collection of RMS tumoroid models that represent the diverse clinical**
547 **presentation of RMS:** (A) Tumor organoid (tumoroid) pipeline. WGS = whole-genome
548 sequencing, RNA-seq = mRNA sequencing, liq N2 = liquid nitrogen. (B) Overview of
549 available RMS tumoroid models in the collection separated by primary vs. metastatic
550 site and exact tumor location. The color of the inner circle indicates the histological
551 subtype while the color of the outer circle indicates the presence or absence of a fusion
552 transcript. Letters within the circle indicate disease instance. Asterisks mark tumoroid
553 models derived from the same patient but from distinct tumor samples. (C) Brightfield
554 microscopy images of two representative RMS tumoroid models from a fusion-
555 negative embryonal and a *PAX3-FOXO1* fusion-positive alveolar tumoroid model
556 grown in a two-dimensional monolayer in two magnifications as indicated by the scale
557 bars.

558

559 **Fig. 2 - Early detection of tumor cells during culturing and retained marker**
560 **protein expression:** (A) RT-qPCR of early passage RMS tumoroid models shows
561 positivity for at least one gene used in standard-of-care pathology analysis (*DES*,
562 *MYOG*, or *MYOD1*). Conventional RMS cell lines (RD and RH30) were used as
563 positive controls, while two Synovial Sarcoma (SS000DAZ and SS077) tumoroid
564 models were used as negative controls. Gene expression was normalized to the
565 expression of a house-keeping gene and human reference RNA (HREF) via the $\Delta\Delta C_q$
566 method. (B) RT-qPCR of early passage RMS tumoroid models reliably detects the
567 aberrant fusion transcripts. Fusion gene expression was normalized to the expression
568 of a house-keeping gene via the ΔC_q method. (C) Morphological (via H&E) and

569 immunohistochemical (IHC) comparison of RMS tumors and derived RMS tumoroid
570 models shows retained marker protein (Desmin, Myogenin and MYOD1) expression
571 and cellular morphology. Scale bars equal 200 μ m.

572

573 **Fig. 3 - RMS tumoroid models molecularly resemble the tumor they are derived**
574 **from:** (A) Copy number frequency plots of RMS tumors (upper row) and derived RMS
575 tumoroid models (lower row) divided by fusion-status (columns). Chromosomes are
576 annotated on the x-axis from left to right while the y-axis shows the percentage of
577 samples in this group carrying a gain (red) or loss (blue) in this genomic region. (B)
578 Contribution of somatic mutational signatures per tumor and tumoroid model. SBS =
579 single base substitution, TMZ = temozolomide, T = tumor, O = tumoroid. (C) Table
580 depicting pathogenic single-nucleotide variants (SNVs) in RMS tumors (T) and
581 tumoroid models (O). Circle color indicates SNV type while circle size indicates variant
582 allele fraction (VAF). Vertical dotted lines separate samples derived from individual
583 patients. Highlighted are genes previously reported for this RMS subtype. (D)
584 Correlogram of bulk mRNA sequencing expression profiles of pediatric kidney tumors
585 (controls) as well as RMS tumoroid models and RMS tumors. CCRCC = Clear Cell
586 Renal Cell Carcinoma, CMN = Congenital Mesoblastic Nephroma, WT = Wilms
587 Tumor, Cor = correlation.

588

589 **Fig. 4 - Genetic and transcriptional stability of tumoroid models over time:** (A)
590 Contribution of somatic mutational signatures per tumor and tumoroid model. SBS =
591 single base substitution, TMZ = temozolomide, T = tumor, O = standard passage
592 tumoroid model, OL = late passage tumoroid model, O2 = independently derived
593 tumoroid model. (B) Table depicting pathogenic single-nucleotide variants (SNVs) in

594 different RMS tumoroid models derived from the same tumor sample. Circle color
595 indicates SNV type while circle size indicates variant allele fraction (VAF). Highlighted
596 are genes previously reported for this RMS subtype. (C) Principal component analysis
597 on bulk mRNA sequencing derived global gene expression. Color indicates the RMS
598 tumoroid model while the symbol indicates the sample. O = standard passage
599 tumoroid model, OL = late passage tumoroid model, O2 = independently derived
600 tumoroid model.

601

602 **Fig. 5 - RMS tumoroid drug screening reflects established drug sensitivities:** (A)
603 Clustered heatmap of viability measurements per RMS tumoroid model (x axis) and
604 drug (y axis), showing the Area Under the Curve (AUC) after treatment of the cells for
605 120 h with a dose-range of 0.1 nM to 10 μ M. Low AUC (red) indicates high drug
606 efficacy while high AUC (blue) indicates low drug efficacy. Annotated clusters of (1)
607 MEK/ERK and γ -secretase inhibitors showing specific efficacy in RMS tumoroid
608 models without (RMS007, RMS012, RMS444) or low (RMS000HQC) fusion transcript
609 expression, and (2) drugs that show broad efficacy across RMS tumoroid models. (B)
610 Principal component analysis of drug screening AUC values of the RMS tumoroid
611 models (RMS000FLV omitted due to outlier behavior as discussed in the main text).
612 The ellipse indicates the cluster that shows specific sensitivity against MEK/ERK and
613 γ -secretase inhibitors. (C) Principal component analysis of the top 25 contributing
614 drugs that influence variance. The ellipse indicates the MEK/ERK and γ -secretase
615 inhibitors as well as AZD4547 (RMS000FLV omitted as described above).

616

617 **Fig. 6 - RMS tumoroid models can be molecularly edited using CRISPR/Cas9**
618 **with P53 deficient eRMS being more sensitive to the checkpoint kinase inhibitor**

619 **prexasertib:** (A) Transfection and selection strategy to achieve *TP53* knockout in a
620 *TP53* wildtype tumoroid model. (B) Western Blot analysis of *TP53* wildtype (WT) and
621 knockout (KO) RMS tumoroid line RMS012. Histone 3 (H3) served as loading control.
622 (C) Dose-response curve of *TP53* WT and KO cells treated with the Chk-1 inhibitor
623 prexasertib. Thin lines with numbers indicate individual technical replicates while thick
624 lines indicate fitted lines over all replicates.

625 **Materials & Methods**

626

627 **Tumor sample acquisition**

628 Tumor samples of RMS were obtained via an established tumor sample acquisition
629 route from patients treated at the Emma Children's Hospital Amsterdam (Amsterdam
630 UMC) (RMS006, RMS007, RMS013) or as part of the biobank initiative of the Princess
631 Máxima Center for Pediatric Oncology, Utrecht, Netherlands (PMC) (remaining tumor
632 samples). Ethics approval was granted for the biobanking initiative, and the PMC
633 biobank committee granted approval for the present project. All patients and/or their
634 legal representatives signed informed consent to have tumor samples taken for
635 biobank usage.

636 A subset of patients was furthermore enrolled in a local personalized medicine trial
637 (i.e., iTHER study) through which a subset of DNA and RNA specimens from RMS
638 tumors were obtained.

639

640 **Tumor sample preparation for establishment of RMS tumoroid models**

641 Solid tumor samples (i.e., needle biopsies or resection specimens) were transferred
642 to collection medium (see below) to retain viability of cells. After pathological
643 examination, suitable samples (i.e., containing tumor cells) were processed in a sterile
644 work environment as follows: the sample was transferred to a sterile dish and covered
645 with a droplet of BM1* culture medium (see below) before being minced to fine pieces
646 using scalpels. If the tumor sample was of sufficient size, a portion of this minced
647 mixture was stored viably (see below). The remainder of the mixture was put on a pre-
648 wet 70 μ M strainer, scrapped with a cell scraper to obtain a single-cell suspension and

649 collected in a tube (A, single-cell fraction, cultured in 2D). Tissue fragments left on the
650 strainer were collected in another tube (B, strainer fraction, cultured in 3D).

651 A: The single-cell fraction was now spun down (300 g, 5 min, 4 °C) and the supernatant
652 was removed from the resulting pellet. If the pellet was of grey color (i.e., not containing
653 a high percentage of red blood cells, RBCs), the pellet was resuspended in 1 ml of
654 BM1* medium. If the pellet contained a high percentage of RBCs (i.e., by displaying a
655 red stain), the cell pellet was resuspended in red blood cell lysis buffer (Roche) and
656 incubated at room temperature for 5 min. Thereafter, the reaction was stopped by
657 adding collection medium and the mixture was spun down again (as above). Again,
658 supernatant was removed and now the pellet was resuspended in 1 ml of BM1*
659 medium (without Basement Membrane Extract, BME, see below). In each case, cells
660 were now counted using a TC20 Automated Cell Counter (BioRad) to get a rough
661 estimate on viability and cell numbers. Cells were plated with a sufficient density (at
662 least 10.000 viable cells per 1 cm² of surface area), supplemented with 0.3 to 0.5 %
663 cold BME type 2 (see below).

664 B: The strainer fraction was dissolved in pure cold BME (roughly one-third volume
665 strainer fraction and two-third volume BME) and mixed thoroughly. Droplets of 5 to 10
666 µl of this mixture were formed on 24- or 48-well pre-warmed cell culture plates and
667 incubated for 5 min at room temperature to allow the BME to solidify. Thereafter, the
668 cell culture plates were incubated upside-down for another 25 min at 37 °C to allow
669 the material to “sink” to the top of the droplet. Upon completed solidification, BM1*
670 medium (at room temperature (RT) and without BME) was added to the wells so that
671 droplets were very fully submerged in medium.

672 In the case of bone marrow aspirates as tumor samples (RMS410 and RMS127),
673 sample tubes were spun down (300 g, 5 min, 4 °C, slow break) to separate RBCs and

674 nucleated cells (white clot at the bottom of the tube). In the case of RMS410, the
675 normal hematopoietic system was almost entirely superseded by infiltrating tumor cells
676 so that the clot consisted mainly of tumor cells which could directly be plated (in BM1*
677 with BME) which resulted in rapid outgrowth of the model. In the case of RMS127, the
678 percentage of infiltrating tumor cells was estimated by pathology to be low at circa 5
679 to 10%. Therefore, initial cultures (plated in BM1* and BME) from the white clot also
680 contained normal nucleated bone marrow cells which, however, were eventually
681 outcompeted by the rapidly growing tumor cells which overtook the culture.

682

683 **Tumoroid model culturing and propagation**

684 Growing RMS tumoroid models were inspected regularly and showed adequate
685 growth behavior under conventional cell culture conditions (i.e., 37 °C, 5 % CO₂). All
686 models were regularly tested negative for mycoplasma contamination. Estimated
687 division times ranged from 24 to 72 hours for most models. Models were passaged
688 once or twice per week at a confluence of 70 to 80%. For passaging, old culture
689 medium was aspirated and cells were briefly washed with sterile DPBS (Gibco, cat no.
690 14190144). Cell detachment was performed using TrypLE Express Enzyme (1X,
691 phenol red, Gibco, cat no. 12605010). Depending on the model and the BME
692 percentage, detachment took between 3 and 10 minutes (higher BME concentrations
693 resulting in longer detachment time). Cells were collected by flushing the well or flask
694 with collection medium and the resulting mixture was spun down (300 g, 5 min, 4 °C).
695 Thereafter, the supernatant was removed, and the pellet was resuspended in 1 ml of
696 BM1* and cells were counted using a TC20 Automated Cell Counter (BioRad). Single-
697 cell suspensions were mostly re-seeded at the same density as their parental/previous
698 generation/passage.

699

700 **Cell culture media**

701 *Base medium (BM)*

702 To prepare a 500 ml bottle of BM, Glutamax (5 ml, Gibco, cat no. 35050061),
703 Penicillin/Streptomycin (10,000 U/ml, 5 ml, Gibco, cat no. 15140122), and B27 (without
704 vitamin A, 10 ml, Gibco, cat no. 12587010) were added to a full bottle of advanced
705 DMEM/F12 (500 ml, Gibco, cat no. 12634010). BM was stored at 4 °C and was used
706 within two months.

707

708 *Complete culture medium (BM1*)*

709 To prepare the complete culture medium BM1*, 47.5 ml of the above-mentioned base
710 medium (BM) was taken and pipetted into 50 ml tube. Thereafter, the components
711 below were added (no specific order). BM1* was stored at 4 °C and was used within
712 7 to 10 days (thereafter, the stability of the growth factors may be compromised).

713

714 Components:

715	N2	500 µl	Gibco, cat no. 17502048
716	N-acetylcysteine (500 mM)	125 µl	Sigma, cat no. A9165
717	MEM non-essential amino acids	500 µl	Gibco, cat no. 11140035
718	Sodium pyruvate (100 mM)	500 µl	Gibco, cat no. 11360070
719	Heparin (5,000 U/ml)	5 µl	Sigma, cat no. H3149-10KU
720	hEGF (2 µg/ml)	500 µl	Peprotech, cat no. AF-100-15
721	hFGF-basic (40 µg/ml)	50 µl	Peprotech, cat no. 100-18B
722	hIGF1 (100 µg/ml)	10 µl	Peprotech, cat no. 100-11

723 RKI (Y-27632, 100 mM) 5 µl AbMole Bioscience, cat no. M1817

724 A83-01 (5 mM) 50 µl Tocris Bioscience, cat no. 2939

725

726 *Collection medium*

727 To prepare a 500 ml bottle of collection medium, Glutamax (5 ml, Gibco, cat no. 35050061), Penicillin/Streptomycin (10,000 U/ml, 5 ml, Gibco, cat no. 15140122), and HEPES (1 M, 5 ml, Gibco, cat no. 15630049) were added to a full bottle of advanced DMEM/F12 (500 ml, Gibco, cat no. 12634010). Collection medium was stored at 4 °C and was used within two months.

732

733 **Basement Membrane Extract type 2 (BME)**

734 To facilitate attachment of cells, culture medium was supplemented with 0.1 to 0.5 % BME (Cultrex Reduced Growth Factor Basement Membrane Extract, type 2, Pathclear, R&D Systems, 3533-005-02). We observed batch-to-batch variations of this product, resulting occasionally in suboptimal attachment of cells when the BME concentration was too low. On average, 0.2 to 0.3 % BME supplementation was sufficient for stably established RMS tumoroid models. However, upon encountering suboptimal cell attachment, BME concentrations were raised to 0.5 % in established cultures. During the initial establishment process, higher concentrations of BME (0.3 % to 0.5 %) showed increased attachment rates of cells.

743

744 **Freezing and storing procedure**

745 RMS tumor samples as well as established RMS tumoroid cultures were viably frozen as follows: a sufficient number of viable cells (at least 0.5x10E6, mostly 1x10E6) were diluted in 0.5 ml BM1* medium in a cryo tube. Then, an equal volume of freeze-mixture

748 consisting of 80 % fetal calf serum (FCS) and 20 % DMSO was added dropwise,
749 resulting in final concentrations of 50 % BM1* medium, 40 % FCS, and 10 % DMSO.
750 Samples were frozen slowly using a freezing container in a minus 80 °C freezer. For
751 long term storage, frozen vials were transferred to liquid nitrogen.

752

753 **Thawing procedure**

754 Cryo-preserved RMS tumoroid cell suspensions were quickly defrosted in a water bath
755 at 37 °C and then immediately dissolved in washing medium (to at least 5 ml of total
756 volume to dilute the DMSO). Samples were then spun down (300 g, 5 min, 4 °C),
757 supernatant was removed, and the cell pellet was resuspended in 1 ml of BM1*
758 medium. Thereafter, cells were counted using a TC20 Automated Cell Counter
759 (BioRad). Cell viability was on average 20 to 50% lower compared to viability at the
760 time of freezing. Cells were then plated at a proper density in BME-supplemented
761 BM1* medium and needed one to two weeks to recover before being stable enough
762 for further experiments. Restarting tumoroid cultures from cryo vials was possible for
763 all tumoroid models.

764

765 **Early tumor validation by RT-qPCR**

766 Early during tumoroid establishment (upon first or second passaging), a portion of cells
767 was set aside for evaluation of marker gene expression. For this, cells were spun down
768 (500 g, 5 min, 4 °C), the supernatant was removed from the pellet, the pellet was
769 dissolved in Trizol (10 minutes incubation at RT) and was immediately processed or
770 snap-frozen and stored at minus 80 °C until further processing. Upon processing, first
771 the organic and aqueous phases were separated by addition of 20 % chloroform,
772 followed by spinning down (maximum centrifugation speed, 15 min, 4 °C). The (upper)

773 aqueous phase was further processed using the Direct-zol RNA MiniPrep Kit (Zymo
774 Research) according to the manufacturer's protocol, including the recommended
775 DNase I treatment. Quality and quantity of isolated RNA were measured using a
776 NanoDrop OneC (Thermo Fisher Scientific). Synthesis of cDNA from isolated RNA as
777 well as a Universal Human Reference RNA that was used as negative control or for
778 normalization (HREF, Stratagene/Agilent # 740000) was performed using an oligo-dT
779 primed SuperScript III Reverse Transcriptase (Invitrogen) based reaction according to
780 the manufacturer's protocol. RT-qPCR was performed with the obtained cDNAs
781 testing for expression levels of *G6PD* (forward: 5'-ACGGCAACAGATAACAAGAAC-3',
782 reverse: 5'-CGAAGTGCATCTGGCTCC-3'; product size: 86 bp) (Amary et al., 2007),
783 *DES* (forward: 5'-CCGTGGTCTCTTACTTTCTTT-3', reverse: 5'-
784 CCCACTTTCTCTCCTCTCAATC-3'; product size: 119 bp), *MYOG* (forward: 5'-
785 TGCCCAACTGAGATTGTCTTC-3', reverse: 5'-CTGCTACAGAAGTAGTGGCATC-
786 3', product size: 81 bp), *MYOD1* (forward: 5'-GTAGCAGGTGTAACCGTAACC-3',
787 reverse: 5'-CACACCATGCCTCAGAGATAAA-3', product size: 148 bp), the *PAX-*
788 *FOXO1* fusion transcript (forward: 5'-CCGACAGCAGCTCTGCCTAC-3', reverse: 5'-
789 TGAACTTGCTGTGTAGGGACAG-3', product size: 171 bp for *PAX3-FOXO1* and 159
790 bp for *PAX7-FOXO1*) (Ponce-Castañeda et al., 2014) as well as the *PAX3-WWTR1*
791 fusion transcript (forward: 5'-AGCACCCAGGCATGGATT-3', reverse: 5'-
792 TTGAGGTCTGTGTCTAGGT-5', product size: 192 bp). Expression levels of *DES*,
793 *MYOG*, *MYOD1*, and *PAX-FOXO1* were normalized to *G6PD* (housekeeping gene)
794 and referenced to the corresponding expression levels in the HREF using the $\Delta\Delta C_q$
795 method (for the fusion transcript only normalization to *G6PD* as the lack of a fusion
796 expression in HREF did not permit a further reference step).

797

798 **Immunohistochemistry (IHC) and H&E stainings**

799 To perform IHC, tumoroid models were grown as floating 3D spheres. For this, 1-
800 3x10E6 viable cells were put into an ultra-low attachment culture flask (Corning Ultra-
801 Low Attachment 75 cm² U-Flask, Corning, cat no. 3814) in BM1* but without BME
802 supplementation. Establishment of spheres of sufficient size took between 7 and 12
803 days, depending on the growth characteristics of the respective tumoroid model.
804 Spheres were harvested by carefully transferring the sphere-containing medium from
805 the flask to a 15 ml tube and sedimenting on ice for 10 minutes. Thereafter, the
806 supernatant was removed, and the sphere-containing pellet was resuspended in cold
807 PBS to wash off any remaining medium. The mixture was again sedimented (see
808 above), and PBS was aspirated. Spheres were now fixed using formalin 10 % (v/v), (=
809 4 % (w/v) HISTO GRADE, neutralized (pH 7.0 ± 0.2), J.T. Baker, 3933.9020 VWR) for
810 96 hours at 4 °C after carefully transferring them to a glass vial. The fixed spheres
811 were then washed twice with PBS and dehydration was performed by adding ethanol
812 solutions with increasing percentages (25 % EtOH for 15 min, 50 % EtOH for 15 min,
813 70 % EtOH for 15 min - after this step, spheres were stored at 4 °C and further
814 processed in batches). Now, spheres were stained with 0.8 g/l Eosin Y dissolved in 96
815 % EtOH (Sigma, E4009) for 30 min and subsequently incubated three times with 100
816 % EtOH for 30 min each. Thereafter, spheres were incubated in n-Butanol (three times
817 30 min) and melted paraffin (three times) before they were Paraffin-embedded using
818 the HistoCore Arcadia H (Leica Biosystems) following the manufacturer's protocol in
819 a medium size mold. Hardened paraffin blocks were cut into 4 µm slices using a
820 microtome (HM 355S Automatic Microtome, Thermo Scientific). Slides were further
821 processed by deparaffinization (incubation with xylene three times for 3 min, then
822 100% EtOH two times for 3 min, 95% EtOH two times for 1 min, 70% EtOH once for

823 1 min, and 50% EtOH once for 1 min) and rehydration (tap water). Thereafter, antigen
824 retrieval was performed by boiling samples for 20 min in with citrate buffer (pH 6, for
825 Desmin staining) or Tris-EDTA-Tween buffer (pH 9, for Myogenin and MYOD1). After
826 washing (in TBS-0.025% Triton, twice 5 min) and blocking (1.5 h in TBS-1%BSA),
827 slides were incubated with primary antibody (α -Desmin 1:400, Abcam ab15200 rabbit
828 antibody; α -Myogenin 1:400, Santa Cruz 5FD mouse antibody; α -MYOD1 1:200, Cell
829 Marque EP212 rabbit antibody) overnight at 4 °C. The next day, slides were washed
830 twice with PBS and incubated with secondary antibodies (Desmin and MYOD1: anti-
831 rabbit-HRP, BioRad 170-6515; Myogenin: anti-mouse HRP, BioRad 170-6516) 1:500
832 in PBS-1% BSA. Stainings were visualized using Liquid DAB+ 2-component system
833 (3,3'-diaminobenzidine, DAKO, Agilent K3467) following the manufacturer's protocol
834 and washed three times with TBS. Counter-staining was performed by incubation with
835 thionine (0.05 % for 20 min). After subsequent incubation with 96 % EtOH, 100 %
836 EtOH and xylene, slides were mounted using Permount mounting medium (Fisher
837 Scientific SP15-100) and visualized using a Leica DMi6 microscope.
838 H&E stainings were performed manually (steps: xylene three times for 5 min, 100 %
839 EtOH twice for 1 min, 95 % EtOH twice for 30 sec, 70 % EtOH for 30 sec, washed in
840 demi-water, incubation with hematoxylin (Hematox 7211) for 2:45 min, washed with
841 demi-water, brief incubations with acidic EtOH, washed with demi-water, 95 % EtOH
842 for 30 sec, eosin incubation for 2:45 min, EtOH 70% for 30 sec, EtOH 95 % for 30 sec,
843 EtOH 100 % twice for 30 sec, xylene three times for 1 min) or were performed at the
844 in-house pathology department following standard protocols. Visualization was
845 performed as described above.
846 The quality of stainings was evaluated by an in-house pathologist. Representative
847 images of stained spheres are shown and were compared to H&E as well as IHC

848 stainings obtained in pathology for the RMS tumor sample the tumoroid was derived
849 from (representative images chosen by the pathologist).

850

851 **RNA and DNA isolation from tumor and derived tumoroid samples for whole-
852 genome sequencing (WGS) and bulk mRNA sequencing (RNA-seq)**

853 *Tumoroid models:*

854 To isolate RNA and DNA for WGS and RNA-seq, tumoroid cells were collected as a
855 pellet, snap frozen and stored at minus 80 °C. Isolation of RNA and DNA from the
856 same pellet was performed using the AllPrep DNA/RNA/miRNA Universal Kit (Qiagen
857 # 80224) according to the manufacturer's protocol. Lysis in RLT buffer was followed
858 by homogenization using a Qiashredder column as described. The flowthrough
859 fraction in RLT buffer was used for the Allprep DNA and RNA isolations. Quality and
860 quantity of isolated RNA and DNA were measured by using the NanoDrop OneC
861 (Thermo Fisher Scientific), Bioanalyzer 2100 (Agilent), Qubit Fluorometer (Thermo
862 Fisher Scientific), and marker-checks using RT-qPCR (as above).

863

864 *Tumor samples and germline control samples (EDTA blood):*

865 Resected tissue and/or biopsies were processed within 10 minutes after removal from
866 the patient. DNA and RNA were isolated from the same piece of fresh frozen tissue
867 using the AllPrep DNA/RNA/miRNA Universal Kit (Qiagen # 80224) using the QIAcube
868 Connect (Qiagen). Reference DNA was isolated from peripheral white blood cells
869 (EDTA blood) using the same method.

870

871 **Whole-genome sequencing (WGS) of tumor and tumoroid samples**

872 *Sequencing:*

873 150 ng of total DNA was used for library preparation using the KAPA HyperPlus kit
874 (Roche), according to manufacturer's instructions. Libraries from tumor and normal
875 tissue were pooled in a 3:1 ratio, with a total of 7 tumor/normal pairs per S4 sequencing
876 kit. Libraries were sequenced using 2x150 cycles on a NovaSeq 6000 (Illumina).

877

878 *Pre-processing, alignment, and annotation:*

879 The WGS sequencing data were processed as per the GATK 4.0 best practices
880 workflow for variant calling, using a wdl and cromwell based workflow. Reads were
881 aligned to GRCh38 using bwamem (v0.7.13), and quality control (QC) was performed
882 using FastQC (v0.11.5) and picardTools (v2.20.1). Somatic variants were identified
883 using Mutect2 from GATK v4.1 and annotated using Vep (v92). Likewise, copy-
884 number alterations (CNAs) were identified using GATK v4.1.

885

886 *Identification of non-synonymous single nucleotide variants (SNVs):*

887 Raw VCF files from germline, tumor and tumoroid samples were processed with
888 vcftools (v0.1.13) (Danecek et al., 2011). Only variants that met the criteria (passed
889 all quality filters in addition to PHRED quality score 100 (250 for indels) and minimum
890 read depth of 10) were kept for further analyses. Indels were also filtered out if the
891 minimum mapping quality (MQ) was below 60. Bcftools
892 (<https://github.com/samtools/bcftools>) was used to remove all common snps (VAF \geq 1
893 %) present in dbSNP (<https://www.ncbi.nlm.nih.gov/snp/>, v151 downloaded in August
894 2020). Filtered files were then loaded into R (v4.0.2) and processed with the package
895 VariantAnnotation (Obenchain et al., 2014) and packages from the tidyverse. Variants
896 in tumor and tumoroid models also present in the germline sample were removed from
897 further analyses; remaining variants were filtered for VAFs $>$ 0.3 and those tagged as

898 missense variant, stop gained, stop lost, start lost, inframe insertion, inframe deletion,
899 and frameshift variant were selected as non-synonymous somatic mutations. Figures
900 were generated with ggplot2 (v.3.3.2).

901

902 *Signature analysis:*

903 Somatic signature analysis was performed using the *R* programming language
904 (v3.6.3) and the *R* packages MutationalPatterns (v3.2.0) and VariantAnnotation
905 (v1.32.0) (Blokzijl et al., 2018; Manders et al., 2021; Obenchain et al., 2014). Somatic
906 variants were filtered on both the variant allele fraction (VAF) and depth (DP). For both
907 the control and the tumor/tumoroid samples we used DP \geq 20. For the tumor/tumoroid
908 samples we used VAF $>$ 0.3, while in control samples the VAF had to be 0. Samples
909 with 50 or less mutations would have been excluded, but this was not the case for any
910 samples in our cohort. A mutation matrix was generated that shows how often each of
911 the 96 types of base substitutions occurred in each sample. A variational Bayesian
912 non-negative matrix factorization (NMF) was performed on this matrix to extract four
913 *de novo* mutational signatures for base substitutions. The cosine similarities were then
914 calculated between these *de novo* signatures and a set of signatures consisting of
915 both the COSMIC signatures (v3.2, GRCh38) and the SIGNAL exposure signatures
916 (Alexandrov et al., 2020; Kucab et al., 2019). The four signatures most similar to the
917 *de novo* signatures (SBS1, SBS5, SBS18, and Temozolomide..200.uM..1 [TMZ]) were
918 then used for signature refitting. Signature refitting was performed using the
919 *fit_to_signatures_strict* function using the *best_subset* method with a *max_delta* of
920 0.004. Our approach of first performing *de novo* signature extraction followed by
921 refitting is similar to the approach suggested by Maura *et al.* (Maura et al., 2019).

922 To determine the similarity between the samples, the cosine similarities of their base
923 substitution profiles were calculated. This resulted in a cosine similarity matrix that was
924 used to calculate the distance between samples, which was then used for hierarchical
925 clustering.

926

927 **Bulk mRNA (RNA-seq) of tumor and tumoroid samples: transcriptional profile
928 and gene fusions**

929 *Sequencing:*

930 300 ng of total RNA was used for library preparation using the KAPA RNA HyperPrep
931 kit with RiboErase (Roche), according to manufacturer's instructions. The protocol was
932 optimized to achieve an insert size of ~300-400 nt.

933 RNA libraries were pooled with a total of 25 samples per S1 kit or 60 samples per S2
934 kit. Libraries were sequenced using 2x150 cycles on a NovaSeq 6000 (Illumina).

935

936 *Pre-processing: alignment, annotation, and detection of gene fusions*

937 The RNA sequencing data were processed as per the GATK 4.0 best practices
938 workflow for variant calling, using a wdl and cromwell based workflow
939 (<https://gatk.broadinstitute.org/hc/en-us/sections/360007226651-Best-Practices-Workflows>). This included performing quality control with Fastqc (v0.11.5) to calculate
941 the number of sequencing reads and the insert size (Andrews S., 2010. FastQC: a
942 quality control tool for high throughput sequence data, <http://www.bioinformatics.babraham.ac.uk/projects/fastqc>). Picard (v2.20.1) for RNA
944 metrics output and MarkDuplicates ("Picard Tools." Broad Institute. <http://broadinstitute.github.io/picard/>). The raw sequencing reads were aligned using
945 Star (v2.7.0f) to GRCh38 and gencode version 31. Gene fusion detection was
946

947 performed using Star fusion (v1.6.0) (Haas et al., 2019). Finally, expression counts
948 were determined at exon and gene level using Subread Counts (Liao et al., 2019).

949

950 *Processing of transcriptome data*

951 Raw count tables were loaded into *R* (v4.0.2) and processed with the packages from
952 the tidyverse. Count matrices were transformed into log2-scale transcripts per million
953 (log2 TPM) tables and genes annotated with the same gene symbol merged.
954 Comparison of transcriptional profiles across samples (kidney and
955 rhabdomyosarcomas) was performed via correlation performed in *R* using the base
956 package.

957

958 **Bulk sequencing data availability**

959 The process to make the bulk sequencing data (i.e., whole-genome sequencing and
960 bulk mRNA sequencing) openly available at the European Genome-Phenome Archive
961 (EGA) has been initiated with data upload completed and final curation pending.

962

963 **Growth curve experiments**

964 Growth behavior in 3D sphere cultures prior to drug screenings (see below) was tested
965 via performing growth curve experiments. Tumoroid cells were plated at different
966 densities (typically between 250 and 4.000 viable cells per well) in 384-well round
967 bottom ultra-low attachment spheroid microplates (Corning, cat no. 3830). To facilitate
968 3D sphere formation, cells were grown in BM1* medium without BME and after
969 dispensing them into the plates, plates were spun (1.500 rpm, 5 min, slow break) to
970 concentrate cells in the center of the wells. Plates were incubated at standard
971 conditions and cells were granted a recovery period of 48 hours. Thereafter, readouts

972 were performed using CellTiter-Glo 3D Cell Viability Assay (CTG3D, Promega, cat no.
973 G9683) according to the manufacturer's protocol at three time points: immediately
974 (T0), 48 h or 72 h (T48 or T72), and 120 h (T120). Measured luminescence (via
975 FLUOstar Omega, BMG Labtech) was averaged per readout per cell density and the
976 corresponding background signal from medium was subtracted. Obtained
977 measurements from T48/T72 and T120 were normalized to T0 to calculate the relative
978 growth over the period of 120 h. For the following drug screening experiments (see
979 below), a cell density was chosen that showed logarithmic growth behavior in growth
980 curve experiments. Defined starting number of cells facilitated the establishment of a
981 sphere and were optimized for intrinsic growth factor levels and space depletion in the
982 well over the course of the experiment. Growth curve experiments were performed
983 once per model but with at least ten technical replicates per number of cells plated.

984

985 **Drug screenings**

986 For drug screenings, tumoroid models were processed according to the same protocol
987 as for the growth curve experiments, with a number of cells seeded that was
988 determined in those experiments (see above). Drugs, dissolved in DMSA or water,
989 were added 48 hours after seeding of the tumoroid spheres fully automated via a
990 robotics system: Up until 2019, this was facilitated via a Caliper Sciclone-Robotic
991 Liquid Handler using a dilution of the drugs in medium and transferring this dilution to
992 the cells by pipetting. From 2020 onwards, screenings were performed at the high-
993 throughput screening (HTS) facility of the Princess Máxima Center with a Biomek i7
994 liquid handler, using the acoustic liquid handler Echo550 for direct drug transfers.
995 Before the screening, the 384-well working plates containing the dissolved drugs are
996 shaken (30 min, RT) and centrifuged (1 min, 1500 rpm). Tumoroid spheres were

997 treated with a ten-fold dilution series of the drugs on the library plate (0.1 nM to 10
998 μ M). Positive control samples were treated with DMSO, negative control samples with
999 staurosporine (final concentration of 10 μ M). Readouts were performed using
1000 CellTiter-Glo 3D Cell Viability Assay (CTG3D, Promega, cat no. G9683) according to
1001 the manufacturer's protocol at T0 (before addition of drugs – control) and at T120 (120
1002 h after addition of drugs – readout). Dose-response was estimated per drug and
1003 concentration in relation to the DMSO-treated cells (set to 100%) and empty controls
1004 (set to 0%). Quality of the screenings was approved after assessment of the cell
1005 growth (absorbance signal of T120 over T0), the negative, positive, and empty controls
1006 and, if applicable, the amount of variability between the duplicates.
1007 Depending on the available number of cells at drug screening, a subset of models
1008 (RMS007, RMS109, RMS110, RMS000EEC, RMS000ETY, RMS000FLV,
1009 RMS000HQC, RMS000HWO, RMS000HWQ) could be screened in technical
1010 duplicates while for the other models (RMS006, RMS012, RMS013, RMS102,
1011 RMS108, RMS127, RMS335, RMS410, RMS444, RMS000CPU) only screening
1012 without technical duplicates was feasible. To test reproducibility, we analyzed the
1013 correlation between the technical duplicates in the tumoroid models for which those
1014 were available (Suppl. Fig. 5). As we observed a very high correlation there ($R = 0.91$),
1015 indicating a high reproducibility, we deemed it appropriate to combine the analysis of
1016 samples tested in duplicate and those not tested in duplicate given the scope of the
1017 assay was to assess whether we could obtain biologically meaningful results (any “hit”
1018 should have been further validated). RMS tumoroid models RMS000ETY and
1019 RMS000HWO were excluded from the analysis as they did not show an increase of
1020 CTG3D signal between T0 and T120 (Suppl. Table 2), indicating that these two models

1021 did not grow sufficiently under the screening conditions (while they displayed a minor
1022 increase in signal during the growth curve experiments).

1023 Further data analysis was performed using *R* (v3.6.3). Area Under the Curve (AUC)
1024 values were calculated for every drug per tumoroid model and replicate (in the case
1025 of the tumoroid models with technical replicates) using the *auc* function of the MESS
1026 package (v0.5.6). In the case of RMS tumoroid models with technical duplicates, the
1027 two resulting AUC values per drug were correlated (using the *cor* function of base *R*)
1028 to calculate the correlation between replicates and plotted using the *plot* function of
1029 base *R* (see above). For the further downstream analysis, these replicate AUC values
1030 were averaged, resulting in a matrix with one AUC value per drug per RMS tumoroid
1031 model. On this matrix, unsupervised clustering was performed using the *get_dist*
1032 function from the factoextra package (v1.0.7) using the arguments “pearson” for RMS
1033 tumoroid models and “euclidean” for drugs to measure dissimilarity with further
1034 clustering using the *hclust* function from base *R* using the “average” argument for
1035 linkage. Data were visualized using the *heatmap.2* function from the gplots package
1036 (v3.0.3) using dendograms generated from the established clustering. Principal
1037 component analysis (PCA) was performed using the *prcomp* function from base *R* with
1038 exclusion of the RMS tumoroid model RMS000FLV due to its outlier behavior. PCAs
1039 were visualized using the *fviz_pca_ind* and *fviz_pca_var* functions from the above-
1040 mentioned factoextra package.

1041

1042 **CRISPR/Cas9 knockout of *TP53* and functional evaluation**

1043 RMS012 tumoroid cells were kept under standard conditions (BM1* supplemented
1044 with 0.1 % BME) prior to the experiment. Upon reaching 70 % confluency, tumoroid
1045 cells were passaged as usual and seeded with high density into wells of a 24-well

1046 plate. After 24 h of recovery, transfection was performed: Nucleic acid–Lipofectamine
1047 2000 complexes were prepared according to the standard Lipofectamine 2000
1048 protocol (Invitrogen). Four μ l of Lipofectamine 2000 reagent in 50 μ l Opti-MEM
1049 medium (Gibco) and 1.5 μ g of DNA (pSpCas9(BB)-2A-GFP control or sgRNA *TP53*
1050 plasmid in 50 μ l Opti-MEM medium) were mixed, incubated for 5 min, and added to
1051 the cells. Plasmids were kindly shared by Jarno Drost (PMC, NL). For the plasmid
1052 sequence refer to Drost *et al.* 2015 (Drost *et al.*, 2015). Twenty-four hours after
1053 transfection, transfection efficiency was evaluated using fluorescence microscopy,
1054 detecting GFP positive cells. Forty-eight hours after transfection, selection with nutlin-
1055 3 (10 μ M) was started. Four days after the start of selection, first nutlin-3 resistant
1056 colonies could be detected in *TP53* knockout plasmid transfected cells whereas cells
1057 transfected with control plasmids died due to nutlin-3 exposure. Putative knockout
1058 cells were further expanded.
1059 Knockout was confirmed using Western Blotting and Sanger sequencing of genomic
1060 DNA: For Western Blotting, snap frozen tumoroid cell pellets were lysed in
1061 Phosphatase-substituted RIPA buffer and run on a 10 % precast gel for P53 detection
1062 (BioRad). Protein levels of P53 (1:1.000, Santa Cruz DO-1 P53 antibody) were
1063 detected while Histone 3 (1:2.000, Abcam ab1791 Pan-H3) served as loading control.
1064 For visualization, secondary antibodies (goat anti-rabbit, BioRad 1706515 / goat anti-
1065 mouse BioRad 1706516) conjugated with horseradish peroxidase (HRP) were used
1066 together with ECL substrate (Perkin Elmer) on an imaginer (BioRad ChemiDoc).
1067 Western Blotting analysis was performed twice, and a representative blot is shown.
1068 For Sanger sequencing of genomic DNA, a snap frozen tumoroid cell pellet was lysed
1069 using DirectPCR Lysis Reagent for Cells (Viagen) according to the manufacturer's
1070 protocol. PCR amplification was performed using Phusion High-Fidelity DNA

1071 Polymerase (New England BioLabs) using the following primers: forward 5'-
1072 CCCATCTACAGTCCCCCTTG-3', reverse 5'-CAGGAAGCCAAAGGGTGAAGA-3'.
1073 PCR products were cleaned up and concentrated using a DNA Clean-up and
1074 Concentration Kit (Zymo Research) according to the manufacturer's protocol. Gel
1075 electrophoresis indicated the presence of a specific product which was sent for Sanger
1076 sequencing using the following primers: forward 5'-TGGTTCACTGAAGACCCAGG-3',
1077 reverse 5'-GAAGTCTCATGGAAGGCCAGCC-3'. Obtained sequences were aligned
1078 and inspected using the Benchling browser tool (<https://www.benchling.com/>).
1079 Furthermore, sequencing data was submitted for TIDE (Tracking of Indels by
1080 Decomposition, <http://tide.nki.nl>) analysis to infer the composition of Indels in the
1081 knockout population (Brinkman et al., 2014).
1082 For detection of DNA double strand breaks, induction of γ H2AX was measured using
1083 Western Blotting. Fusion-negative embryonal rhabdomyosarcoma cell line RD (kindly
1084 shared by Jan Molenaar, PMC, NL) served as a control (either untreated or treated
1085 with 1 μ M, 5 μ M, or 10 μ M of staurosporine (Sigma) for 24 h). RD cells were cultured
1086 under conventional conditions as detailed by the American Type Culture Collection
1087 (ATCC) with regular testing for mycoplasma contamination. For Western Blotting, snap
1088 frozen tumoroid (RMS012 TP53 KO) or tumor (RD) cell pellets were lysed in
1089 Phosphatase-substituted RIPA buffer and run on a 15% self-cast gel for γ H2AX
1090 (p.S139) detection. Protein levels of γ H2AX (p.S139, 1:2.000, Abcam ab26350
1091 antibody) were detected while GAPDH (1:1.000, Abcam ab9485 antibody) served as
1092 loading control. Visualization was performed as described above for the confirmation
1093 of the knockout. As above, Western Blotting analysis was performed twice, and a
1094 representative blot is shown.

1095 To assess differential response to prexasertib (MedchemExpress), RMS012 tumoroid
1096 models (*TP53* wildtype and *TP53* knockout) were processed according to the same
1097 protocol as for the growth curve experiments (see above), with 500 cells seeded per
1098 well. Prexasertib (dilution series from 200 nM to 0.78125 nM) was added 48 hours
1099 after seeding of the tumoroid spheres. Control samples were treated with DMSO.
1100 Readouts were performed using CellTiter-Glo 3D Cell Viability Assay (CTG3D,
1101 Promega, cat no. G9683) according to the manufacturer's protocol at T72 (72 h after
1102 addition of drugs). Dose-response was estimated per model and concentration in
1103 relation to the DMSO-treated cells (set to 100%). The experiment was performed three
1104 times. Further data analysis was performed using *R* (v3.6.3). A sigmoidal fit for the
1105 dose-response curve was calculated per replicate for both the knockout and wildtype
1106 sample with a three-parameter log-logistics function using the *drc* package (v3.0-1)
1107 (Ritz et al., 2015). The statistical significance of the differences in fitted IC₅₀ values
1108 between knockout and wildtype were obtained using a two-sided t-test. For
1109 visualization purposes a three-parameter sigmoidal fit per model (not per replicate)
1110 was used.

1111

1112 **Image post-processing and figure preparation**

1113 Microscopy images from RMS tumoroid IHC and H&E stainings as well as images
1114 from Western Blotting were post-processed according to good scientific practice with
1115 Adobe Photoshop 2021 and Fiji (v2.0.0-rc-69/1.52i) (Schindelin et al., 2012). Images
1116 from original RMS tumors (H&E and IHC) were not processed. Figures were prepared
1117 using Adobe Illustrator 2021.

1118

1119 **Code availability**

1120 Code is made openly available on <https://github.com/teresouza/rms2018-009>.

1121

1122 **Supplemental items legends**

1123

1124 **Figure legends**

1125 **Suppl. Fig. 1:** Morphological (via H&E) and immunohistochemical (IHC) comparison

1126 of RMS tumors and derived RMS tumoroid models shows retained marker protein

1127 (Desmin, Myogenin, and MYOD1) expression and cellular morphology. Scale bars

1128 equal 200 μ m.

1129

1130 **Suppl. Fig. 2:** (A) Examples of circular copy number plots of fusion-negative RMS

1131 with embryonal (RMS000ETY) or alveolar (RMS007) histology. Outer circle depicts

1132 the tumoroid model, inner circle depicts the tumor. (B) Examples of circular copy

1133 number plots of fusion-positive RMS with alveolar histology and *PAX3-FOXO1* fusion

1134 (RMS410) or *PAX7-FOXO1* fusion (RMS000HQC). Outer circle depicts the tumoroid

1135 model, inner circle depicts the tumor. (C) Contribution of averaged single base

1136 substitution (SBS) profiles for RMS tumors (upper row) and tumoroid models (lower

1137 row). (D) Clustered correlogram of SBS profiles detected in RMS tumors (T) and

1138 tumoroid models (O).

1139

1140 **Suppl. Fig. 3:** (A) Circular copy number plots of standard and late passage RMS

1141 tumoroid models of a fusion-negative alveolar (RMS007) and a *PAX7-FOXO1* positive

1142 alveolar (RMS335) RMS. Outer circle depicts the standard passage tumoroid, inner

1143 circle depicts the late passage tumoroid model. (B) Circular copy number plots of

1144 standard passage and independently derived RMS tumoroid models of two fusion-

1145 negative embryonal RMS (RMS012 and RMS444). Outer circle depicts the standard

1146 passage tumoroid, inner circle depicts the independently derived tumoroid model. (C)

1147 Contribution of averaged single base substitution (SBS) profiles for standard (O),
1148 independently derived (O2), and late passage (OL) RMS tumoroid models. (D)
1149 Clustered correlogram of SBS profiles detected in standard (O), independently derived
1150 (O2), and late passage (OL) RMS tumoroid models.

1151

1152 **Suppl. Fig. 4:** (A) Left panel: Inferred Indel Spectrum from Sanger sequencing using
1153 the TIDE tool (<https://tide.nki.nl>). Right panel: Sanger sequencing around Cas9 cut site
1154 (arrow at the bottom) in *TP53* gene. Protospacer Adjacent Motif (PAM) sequence
1155 indicated. (B) Western Blotting analysis of γ H2AX (Ser-139) as proxy for DNA double-
1156 strand breaks in untreated RMS012 tumoroid cells (*TP53* wildtype and *TP53*
1157 knockout). RMS cell line RD treated with staurosporine served as positive control while
1158 GAPDH served as loading control.

1159

1160 **Suppl. Fig. 5:** Correlation analysis of Area Under the Curve (AUC) values from
1161 technical replicates of drug screenings of RMS007, RMS109, RMS110, RMS000EEC,
1162 RMS000FLV, RMS000HQC, and RMS000HWQ. Overall, the correlation coefficient
1163 (R) is 0.91.

1164

1165 **Table legends**

1166 **Suppl. Table 1:** Clinical annotation RMS tumoroid model cohort.

1167

1168 **Suppl. Table 2:** Relative growth of vehicle treated control tumoroid cells during drug
1169 screenings.

1170

1171

1172 **References**

1173

1174 Abdullah, K.G., Bird, C.E., Buehler, J.D., Gattie, L.C., Savani, M.R., Sternisha, A.C.,

1175 Xiao, Y., Levitt, M.M., Hicks, W.H., Li, W., et al. (2021). Establishment of patient-

1176 derived organoid models of lower grade glioma. *Neuro. Oncol.*

1177 Acanda De La Rocha, A.M., Fader, M., Coats, E.R., Espinal, P.S., Berrios, V.,

1178 Saghira, C., Sotto, I., Shakya, R., Janvier, M., Khatib, Z., et al. (2021). Clinical Utility

1179 of Functional Precision Medicine in the Management of Recurrent/Relapsed

1180 Childhood Rhabdomyosarcoma. *JCO Precis. Oncol.* 1659–1665.

1181 Alexandrov, L.B., Kim, J., Haradhvala, N.J., Huang, M.N., Tian Ng, A.W., Wu, Y.,

1182 Boot, A., Covington, K.R., Gordenin, D.A., Bergstrom, E.N., et al. (2020). The

1183 repertoire of mutational signatures in human cancer. *Nature* 578, 94–101.

1184 Amary, M.F.C., Berisha, F., Bernardi, F.D.C., Herbert, A., James, M., Reis-Filho,

1185 J.S., Fisher, C., Nicholson, A.G., Tirabosco, R., Diss, T.C., et al. (2007). Detection of

1186 SS18-SSX fusion transcripts in formalin-fixed paraffin-embedded neoplasms:

1187 analysis of conventional RT-PCR, qRT-PCR and dual color FISH as diagnostic tools

1188 for synovial sarcoma. *Mod. Pathol.* 2007 20 482–496.

1189 Belyea, B.C., Naini, S., Bentley, R.C., and Linardic, C.M. (2011). Inhibition of the

1190 notch-hey1 axis blocks embryonal rhabdomyosarcoma tumorigenesis. *Clin. Cancer*

1191 *Res.* 17, 7324–7336.

1192 Bersani, F., Taulli, R., Accornero, P., Morotti, A., Miretti, S., Crepaldi, T., and

1193 Ponzetto, C. (2008). Bortezomib-mediated proteasome inhibition as a potential

1194 strategy for the treatment of rhabdomyosarcoma. *Eur. J. Cancer* 44, 876–884.

1195 Bisogno, G., De Salvo, G.L., Bergeron, C., Gallego Melcón, S., Merks, J.H., Kelsey,

1196 A., Martelli, H., Minard-Colin, V., Orbach, D., Glosli, H., et al. (2019). Vinorelbine and

1197 continuous low-dose cyclophosphamide as maintenance chemotherapy in patients
1198 with high-risk rhabdomyosarcoma (RMS 2005): a multicentre, open-label,
1199 randomised, phase 3 trial. *Lancet Oncol.*

1200 Bleijs, M., Wetering, M., Clevers, H., and Drost, J. (2019). Xenograft and organoid
1201 model systems in cancer research. *EMBO J.* 38, e101654.

1202 Blokzijl, F., Janssen, R., van Boxtel, R., and Cuppen, E. (2018). MutationalPatterns:
1203 Comprehensive genome-wide analysis of mutational processes. *Genome Med.* 10.

1204 Boulay, G., Cironi, L., Garcia, S.P., Rengarajan, S., Xing, Y.H., Lee, L., Awad, M.E.,
1205 Naigles, B., Iyer, S., Broye, L.C., et al. (2021). The chromatin landscape of primary
1206 synovial sarcoma organoids is linked to specific epigenetic mechanisms and
1207 dependencies. *Life Sci. Alliance* 4.

1208 Brinkman, E.K., Chen, T., Amendola, M., and Van Steensel, B. (2014). Easy
1209 quantitative assessment of genome editing by sequence trace decomposition.
1210 *Nucleic Acids Res.* 42, e168–e168.

1211 Brodin, B.A., Wennerberg, K., Lidbrink, E., Brosjö, O., Potdar, S., Wilson, J.N., Ma,
1212 L., Moens, L.N., Hesla, A., Porovic, E., et al. (2019). Drug sensitivity testing on
1213 patient-derived sarcoma cells predicts patient response to treatment and identifies c-
1214 Sarc inhibitors as active drugs for translocation sarcomas. *Br. J. Cancer* 120, 435–
1215 443.

1216 Burningham, Z., Hashibe, M., Spector, L., and Schiffman, J.D. (2012). The
1217 Epidemiology of Sarcoma. *Clin. Sarcoma Res.* 2, 14.

1218 Calandrini, C., Schutgens, F., Oka, R., Margaritis, T., Candelli, T., Mathijssen, L.,
1219 Ammerlaan, C., van Ineveld, R.L., Derakhshan, S., de Haan, S., et al. (2020). An
1220 organoid biobank for childhood kidney cancers that captures disease and tissue
1221 heterogeneity. *Nat. Commun.* 11.

1222 Clevers, H. (2016). Modeling Development and Disease with Organoids. *Cell* 165,
1223 1586–1597.

1224 Custers, L., Khabirova, E., Coorens, T.H.H., Oliver, T.R.W., Calandrini, C., Young,
1225 M.D., Vieira Braga, F.A., Ellis, P., Mamanova, L., Segers, H., et al. (2021). Somatic
1226 mutations and single-cell transcriptomes reveal the root of malignant rhabdoid
1227 tumours. *Nat. Commun.* 12, 1–11.

1228 Danecek, P., Auton, A., Abecasis, G., Albers, C.A., Banks, E., DePristo, M.A.,
1229 Handsaker, R.E., Lunter, G., Marth, G.T., Sherry, S.T., et al. (2011). The variant call
1230 format and VCFtools. *Bioinformatics* 27, 2156–2158.

1231 Defachelles, A.-S., Bogart, E., Casanova, M., Merks, J.H.M., Bisogno, G., Calareso,
1232 G., Gallego Melcon, S., Gatz, S.A., Le Deley, M.-C., McHugh, K., et al. (2021).
1233 Randomized Phase II Trial of Vincristine-Irinotecan With or Without Temozolomide,
1234 in Children and Adults With Relapsed or Refractory Rhabdomyosarcoma: A
1235 European Paediatric Soft Tissue Sarcoma Study Group and Innovative Therapies for
1236 Children With Cancer. *J. Clin. Oncol.* 39, 2979–2990.

1237 Dias, P., Chen, B., Dilday, B., Palmer, H., Hosoi, H., Singh, S., Wu, C., Li, X.,
1238 Thompson, J., Parham, D., et al. (2000). Strong immunostaining for myogenin in
1239 rhabdomyosarcoma is significantly associated with tumors of the alveolar subclass.
1240 *Am. J. Pathol.* 156, 399–408.

1241 Dijkstra, K.K., Monkhorst, K., Schipper, L.J., Hartemink, K.J., Smit, E.F., Kaing, S.,
1242 de Groot, R., Wolkers, M.C., Clevers, H., Cuppen, E., et al. (2020). Challenges in
1243 Establishing Pure Lung Cancer Organoids Limit Their Utility for Personalized
1244 Medicine. *Cell Rep.* 31.

1245 Dobbelstein, M., and Sørensen, C.S. (2015). Exploiting replicative stress to treat
1246 cancer. *Nat. Rev. Drug Discov.* 14, 405–423.

1247 Drost, J., Van Jaarsveld, R.H., Ponsioen, B., Zimberlin, C., Van Boxtel, R., Buijs, A.,

1248 Sachs, N., Overmeer, R.M., Offerhaus, G.J., Begthel, H., et al. (2015). Sequential

1249 cancer mutations in cultured human intestinal stem cells. *Nature* 521, 43–47.

1250 Drummond, C.J., Hanna, J.A., Garcia, M.R., Devine, D.J., Heyrana, A.J., Finkelstein,

1251 D., Rehg, J.E., and Hatley, M.E. (2018). Hedgehog Pathway Drives Fusion-Negative

1252 Rhabdomyosarcoma Initiated From Non-myogenic Endothelial Progenitors. *Cancer*

1253 *Cell* 33, 108-124.e5.

1254 Enterline, H.T., and Horn, R.C. (1958). Alveolar rhabdomyosarcoma; a distinctive

1255 tumor type. *Am. J. Clin. Pathol.* 29, 356–366.

1256 Felix, C.A., Winick, N.J., Crouch, G.D., and Helman, L.J. (1992). Frequency and

1257 Diversity of p53 Mutations in Childhood Rhabdomyosarcoma. *Cancer Res.* 52,

1258 2243–2247.

1259 Fusco, P., Parisatto, B., Rampazzo, E., Persano, L., Frasson, C., Di Meglio, A.,

1260 Leslz, A., Santoro, L., Cafferata, B., Zin, A., et al. (2019). Patient-derived organoids

1261 (PDOs) as a novel in vitro model for neuroblastoma tumours. *BMC Cancer* 19, 1–11.

1262 Gao, H., Korn, J.M., Ferretti, S., Monahan, J.E., Wang, Y., Singh, M., Zhang, C.,

1263 Schnell, C., Yang, G., Zhang, Y., et al. (2015). High-throughput screening using

1264 patient-derived tumor xenografts to predict clinical trial drug response. *Nat. Med.* 21,

1265 1318–1325.

1266 Glosli, H., Bisogno, G., Kelsey, A., Chisholm, J.C., Gaze, M., Kolb, F., McHugh, K.,

1267 Shipley, J., Gallego, S., Merks, J.H.M., et al. (2021). Non-parameningeal head and

1268 neck rhabdomyosarcoma in children, adolescents, and young adults: Experience of

1269 the European paediatric Soft tissue sarcoma Study Group (EpSSG) – RMS2005

1270 study. *Eur. J. Cancer* 151, 84–93.

1271 Haas, B.J., Dobin, A., Li, B., Stransky, N., Pochet, N., and Regev, A. (2019).

1272 Accuracy assessment of fusion transcript detection via read-mapping and de novo
1273 fusion transcript assembly-based methods. *Genome Biol.* 20.

1274 Heerema-Mckenney, A., Wijnendaal, L.C.D., Pulliam, J.F., Lopez-Terrada, D.,
1275 McKenney, J.K., Zhu, S., Montgomery, K., Mitchell, J., Marinelli, R.J., Hart, A.A.M.,
1276 et al. (2008). Diffuse myogenin expression by immunohistochemistry is an
1277 independent marker of poor survival in pediatric rhabdomyosarcoma: A tissue
1278 microarray study of 71 primary tumors including correlation with molecular
1279 phenotype. *Am. J. Surg. Pathol.* 32, 1513–1522.

1280 Hettmer, S., and Wagers, A.J. (2010). Muscling in: Uncovering the origins of
1281 rhabdomyosarcoma. *Nat. Med.* 16, 171–173.

1282 Hinson, A.R.P., Jones, R., Lisa, L.E., Belyea, B.C., Barr, F.G., and Linardic, C.M.
1283 (2013). Human rhabdomyosarcoma cell lines for rhabdomyosarcoma research:
1284 Utility and pitfalls. *Front. Oncol.* 3 JUL.

1285 Imle, R., Komossa, F.K.F., and Banito, A. (2021). Preclinical In Vivo Modeling of
1286 Pediatric Sarcoma—Promises and Limitations. *J. Clin. Med.* 10, 1578.

1287 Jacob, F., Salinas, R.D., Zhang, D.Y., Nguyen, P.T.T., Schnoll, J.G., Wong, S.Z.H.,
1288 Thokala, R., Sheikh, S., Saxena, D., Prokop, S., et al. (2020). A Patient-Derived
1289 Glioblastoma Organoid Model and Biobank Recapitulates Inter- and Intra-tumoral
1290 Heterogeneity. *Cell* 180, 188-204.e22.

1291 Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A., and Charpentier, E.
1292 (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial
1293 immunity. *Science* (80-.). 337, 816–821.

1294 Kashi, V.P., Hatley, M.E., and Galindo, R.L. (2015). Probing for a deeper
1295 understanding of rhabdomyosarcoma: insights from complementary model systems.
1296 *Nat Rev Cancer* 15, 426–439.

1297 Kersten, K., Visser, K.E., Miltenburg, M.H., and Jonkers, J. (2017). Genetically
1298 engineered mouse models in oncology research and cancer medicine. *EMBO Mol.*
1299 *Med.* 9, 137–153.

1300 Kim, J., Koo, B.K., and Knoblich, J.A. (2020). Human organoids: model systems for
1301 human biology and medicine. *Nat. Rev. Mol. Cell Biol.* 21, 571–584.

1302 Kucab, J.E., Zou, X., Morganella, S., Joel, M., Nanda, A.S., Nagy, E., Gomez, C.,
1303 Degasperi, A., Harris, R., Jackson, S.P., et al. (2019). A Compendium of Mutational
1304 Signatures of Environmental Agents. *Cell* 177, 821-836.e16.

1305 Lee, J.M., Nair, J., Zimmer, A., Lipkowitz, S., Annunziata, C.M., Merino, M.J.,
1306 Swisher, E.M., Harrell, M.I., Trepel, J.B., Lee, M.J., et al. (2018). Prexasertib, a cell
1307 cycle checkpoint kinase 1 and 2 inhibitor, in BRCA wild-type recurrent high-grade
1308 serous ovarian cancer: a first-in-class proof-of-concept phase 2 study. *Lancet Oncol.*
1309 19, 207–215.

1310 Li, J., Thompson, T.D., Miller, J.W., Pollack, L.A., and Stewart, S.L. (2008). Cancer
1311 incidence among children and adolescents in the United States, 2001-2003.
1312 *Pediatrics* 121.

1313 Liao, Y., Smyth, G.K., and Shi, W. (2019). The R package Rsubread is easier, faster,
1314 cheaper and better for alignment and quantification of RNA sequencing reads.
1315 *Nucleic Acids Res.* 47, e47–e47.

1316 Loarer, F. Le, Laffont, S., Lesluyes, T., Tirode, F., Antonescu, C., Baglin, A.C.,
1317 Delespaul, L., Soubeyran, I., Hostein, I., Pérot, G., et al. (2019). Clinicopathologic
1318 and Molecular Features of a Series of 41 Biphenotypic Sinonasal Sarcomas
1319 Expanding Their Molecular Spectrum. *Am. J. Surg. Pathol.* 43, 747–754.

1320 Lu, J., Krepelova, A., Rasa, S.M.M., Annunziata, F., Husak, O., Adam, L., Nunna, S.,
1321 and Neri, F. (2021). Characterization of an in vitro 3D intestinal organoid model by

1322 using massive RNAseq-based transcriptome profiling. *Sci. Rep.* *11*, 1–14.

1323 Ma, C.X., Cai, S., Li, S., Ryan, C.E., Guo, Z., Schaiff, W.T., Lin, L., Hoog, J., Goiffon,
1324 R.J., Prat, A., et al. (2012). Targeting Chk1 in p53-deficient triple-negative breast
1325 cancer is therapeutically beneficial in human-in-mouse tumor models. *J. Clin. Invest.*
1326 *122*, 1541–1552.

1327 Manders, F., Brandsma, A.M., Kanter, J. de, Verheul, M., Oka, R., Roosmalen, M.J.
1328 van, Roest, B. van der, Hoeck, A. van, Cuppen, E., and Boxtel, R. van (2021).
1329 MutationalPatterns: The one stop shop for the analysis of mutational processes.
1330 *BioRxiv* 2021.11.01.466730.

1331 Manzella, G., Schreck, L.D., Breunis, W.B., Molenaar, J., Merks, H., Barr, F.G., Sun,
1332 W., Römmele, M., Zhang, L., Tchinda, J., et al. (2020). Phenotypic profiling with a
1333 living biobank of primary rhabdomyosarcoma unravels disease heterogeneity and
1334 AKT sensitivity. *Nat. Commun.* *11*, 1–15.

1335 Mascarenhas, L., Lyden, E.R., Breitfeld, P.P., Walterhouse, D.O., Donaldson, S.S.,
1336 Rodeberg, D.A., Parham, D.M., Anderson, J.R., Meyer, W.H., and Hawkins, D.S.
1337 (2019). Risk-based treatment for patients with first relapse or progression of
1338 rhabdomyosarcoma: A report from the Children's Oncology Group. *Cancer* *125*,
1339 2602–2609.

1340 Maura, F., Degasperi, A., Nadeu, F., Leongamornlert, D., Davies, H., Moore, L.,
1341 Royo, R., Ziccheddu, B., Puente, X.S., Avet-Loiseau, H., et al. (2019). A practical
1342 guide for mutational signature analysis in hematological malignancies. *Nat.*
1343 *Commun.* *10*.

1344 Obenchain, V., Lawrence, M., Carey, V., Gogarten, S., Shannon, P., and Morgan, M.
1345 (2014). VariantAnnotation: A Bioconductor package for exploration and annotation of
1346 genetic variants. *Bioinformatics* *30*, 2076–2078.

1347 Pappo, A.S., Anderson, J.R., Crist, W.M., Wharam, M.D., Breitfeld, P.P., Hawkins,
1348 D., Raney, R.B., Womer, R.B., Parham, D.M., Qualman, S.J., et al. (1999). Survival
1349 after relapse in children and adolescents with rhabdomyosarcoma: A report from the
1350 intergroup rhabdomyosarcoma study group. *J. Clin. Oncol.* **17**, 3487–3493.

1351 Patton, R.B., and Horn, R.G. (1962). Rhabdomyosarcoma: Clinical and pathological
1352 features and comparison with human fetal and embryonal skeletal muscle. *Surgery*
1353 **52**, 572–584.

1354 Perez, E.A., Kassira, N., Cheung, M.C., Koniaris, L.G., Neville, H.L., and Sola, J.E.
1355 (2011). Rhabdomyosarcoma in children: A SEER population based study. *J. Surg.*
1356 *Res.* **170**, e243–e251.

1357 Petljak, M., Alexandrov, L.B., Brämmeld, J.S., Price, S., Wedge, D.C., Grossmann,
1358 S., Dawson, K.J., Ju, Y.S., Iorio, F., Tubio, J.M.C., et al. (2019). Characterizing
1359 Mutational Signatures in Human Cancer Cell Lines Reveals Episodic APOBEC
1360 Mutagenesis. *Cell* **176**, 1282-1294.e20.

1361 Pompili, L., Porru, M., Caruso, C., Biroccio, A., and Leonetti, C. (2016). Patient-
1362 derived xenografts: A relevant preclinical model for drug development. *J. Exp. Clin.*
1363 *Cancer Res.* **35**.

1364 Ponce-Castañeda, M.V., García-Chéquer, A.J., Eguía Aguilar, P., Abundes-Ramírez,
1365 M.A., Hernández-Angeles, A., Nieto-Martínez, K., Gómez-Laguna, L., Sadowinski-
1366 Pine, S., and Cabrera-Muñoz, M. de L. (2014). Detection of common chromosomal
1367 translocations in small round blue cell pediatric tumors. *Arch. Med. Res.* **45**, 143–
1368 151.

1369 Ritz, C., Baty, F., Streibig, J.C., and Gerhard, D. (2015). Dose-response analysis
1370 using R. *PLoS One* **10**.

1371 Rogakou, E.P., Pilch, D.R., Orr, A.H., Ivanova, V.S., and Bonner, W.M. (1998). DNA

1372 double-stranded breaks induce histone H2AX phosphorylation on serine 139. *J. Biol.*
1373 *Chem.* 273, 5858–5868.

1374 Rudzinski, E.R., Anderson, J.R., Hawkins, D.S., Skapek, S.X., Parham, D.M., and
1375 Teot, L.A. (2015). The world health organization classification of skeletal muscle
1376 tumors in pediatric rhabdomyosarcoma a report from the children's oncology group.
1377 *Arch. Pathol. Lab. Med.* 139, 1281–1287.

1378 Saltsman, J.A., Hammond, W.J., Narayan, N.J.C., Requena, D., Gehart, H., Lalazar,
1379 G., Laquaglia, M.P., Clevers, H., and Simon, S. (2020). A human organoid model of
1380 aggressive hepatoblastoma for disease modeling and drug testing. *Cancers (Basel)*.
1381 12, 1–18.

1382 Sato, T., Vries, R.G., Snippert, H.J., Van De Wetering, M., Barker, N., Stange, D.E.,
1383 Van Es, J.H., Abo, A., Kujala, P., Peters, P.J., et al. (2009). Single Lgr5 stem cells
1384 build crypt-villus structures in vitro without a mesenchymal niche. *Nature* 459, 262–
1385 265.

1386 Sato, T., Stange, D.E., Ferrante, M., Vries, R.G.J., Van Es, J.H., Van Den Brink, S.,
1387 Van Houdt, W.J., Pronk, A., Van Gorp, J., Siersema, P.D., et al. (2011). Long-term
1388 expansion of epithelial organoids from human colon, adenoma, adenocarcinoma,
1389 and Barrett's epithelium. *Gastroenterology* 141, 1762–1772.

1390 Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T.,
1391 Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., et al. (2012). Fiji: An open-
1392 source platform for biological-image analysis. *Nat. Methods* 9, 676–682.

1393 Shern, J.F., Chen, L., Chmielecki, J., Wei, J.S., Patidar, R., Rosenberg, M.,
1394 Ambrogio, L., Auclair, D., Wang, J., Song, Y.K., et al. (2014). Comprehensive
1395 genomic analysis of rhabdomyosarcoma reveals a landscape of alterations affecting
1396 a common genetic axis in fusion-positive and fusion-negative tumors. *Cancer Discov*

1397 4, 216–231.

1398 Shern, J.F., Selfe, J., Izquierdo, E., Patidar, R., Chou, H.-C., Song, Y.K., Yohe, M.E.,

1399 Sindiri, S., Wei, J., Wen, X., et al. (2021). Genomic Classification and Clinical

1400 Outcome in Rhabdomyosarcoma: A Report From an International Consortium. *J. Clin. Oncol.* 39, 2859–2871.

1401 Skapek, S.X., Ferrari, A., Gupta, A.A., Lupo, P.J., Butler, E., Shipley, J., Barr, F.G.,

1402 and Hawkins, D.S. (2019). Rhabdomyosarcoma. *Nat Rev Dis Prim.* 5, 1.

1403 Stewart, E., Federico, S.M., Chen, X., Shelat, A.A., Bradley, C., Gordon, B.,

1404 Karlstrom, A., Twarog, N.R., Clay, M.R., Bahrami, A., et al. (2017). Orthotopic

1405 patient-derived xenografts of paediatric solid tumours. *Nature* 549, 96–100.

1406 Wachtel, M., Dettling, M., Koscielniak, E., Stegmaier, S., Treuner, J., Simon-

1407 Klingenstein, K., Bühlmann, P., Niggli, F.K., and Schäfer, B.W. (2004). Gene

1408 expression signatures identify rhabdomyosarcoma subtypes and detect a novel

1409 t(2;2)(q35;p23) translocation fusing PAX3 to NCOA1. *Cancer Res.* 64, 5539–5545.

1410 Weber-Hall, S., Anderson, J., McManus, A., Abe, S., Nojima, T., Pinkerton, R.,

1411 Pritchard-Jones, K., and Shipley, J. (1996). Gains, losses, and amplification of

1412 genomic material in rhabdomyosarcoma analyzed by comparative genomic

1413 hybridization. *Cancer Res.* 56, 3220–3224.

1414 Van De Wetering, M., Francies, H.E., Francis, J.M., Bounova, G., Iorio, F., Pronk, A.,

1415 Van Houdt, W., Van Gorp, J., Taylor-Weiner, A., Kester, L., et al. (2015). Prospective

1416 derivation of a living organoid biobank of colorectal cancer patients. *Cell* 161, 933–

1417 945.

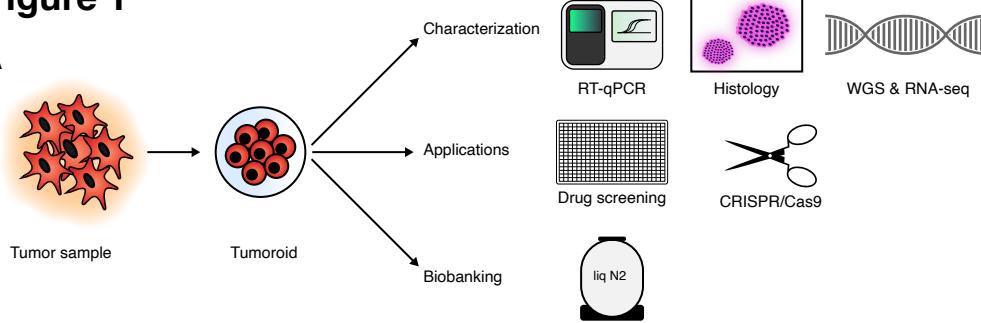
1418 WHO (2020). WHO Classification of Tumours: Soft Tissue and Bone Tumours. 5th

1419 Edition.

1420 Yamazaki, S., Ohka, F., Hirano, M., Shiraki, Y., Motomura, K., Tanahashi, K.,

1422 Tsujiuchi, T., Motomura, A., Aoki, K., Shinjo, K., et al. (2021). Newly established
1423 patient-derived organoid model of intracranial meningioma. *Neuro. Oncol.* 23, 1936–
1424 1948.

1425 Yang, J., Ren, Z., Du, X., Hao, M., and Zhou, W. (2014). The role of mesenchymal
1426 stem/progenitor cells in sarcoma: update and dispute. *Stem Cell Investig.* 1, 18–18.


1427 Yohe, M.E., Gryder, B.E., Shern, J.F., Song, Y.K., Chou, H.C., Sindiri, S., Mendoza,
1428 A., Patidar, R., Zhang, X., Guha, R., et al. (2018). MEK inhibition induces MYOG and
1429 remodels super-enhancers in RAS-driven rhabdomyosarcoma. *Sci Transl Med* 10.

1430 Yonish-Rouach, E., Resnftzky, D., Lotem, J., Sachs, L., Kimchi, A., and Oren, M.
1431 (1991). Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited
1432 by interleukin-6. *Nature* 352, 345–347.

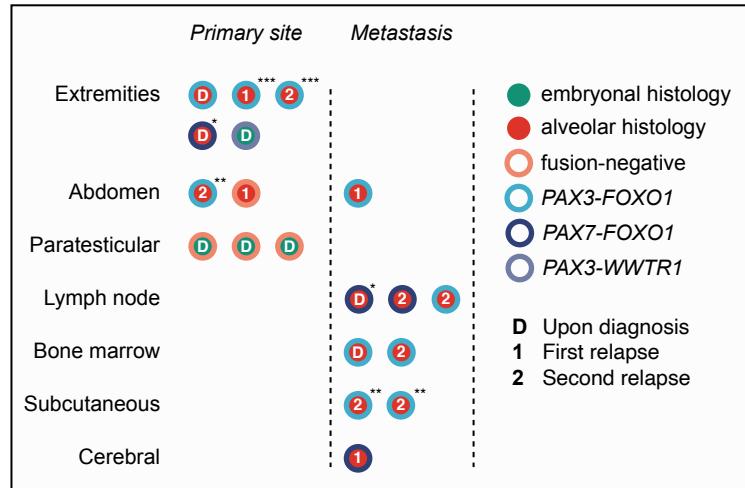
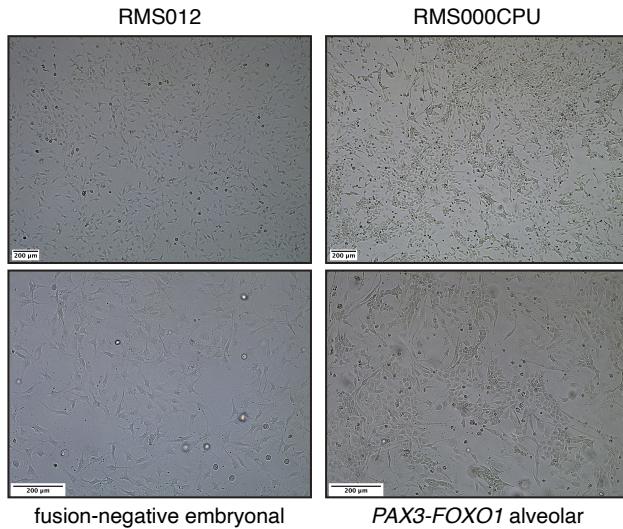
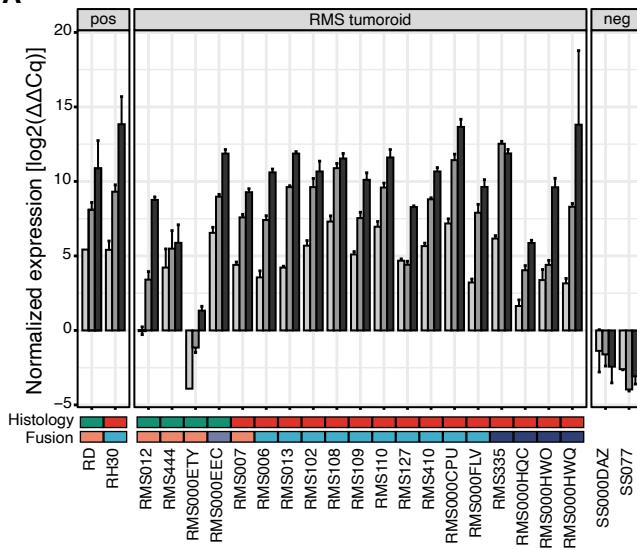

1433

Figure 1

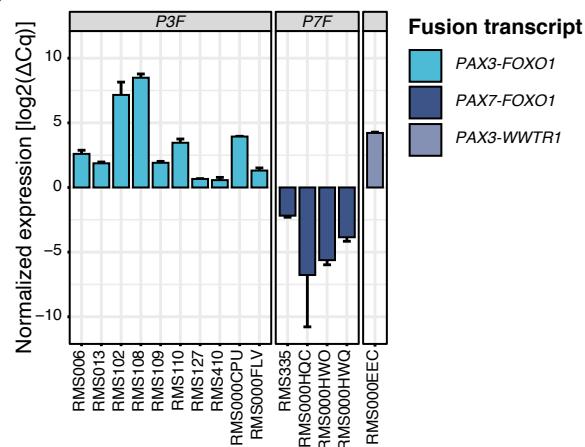

A

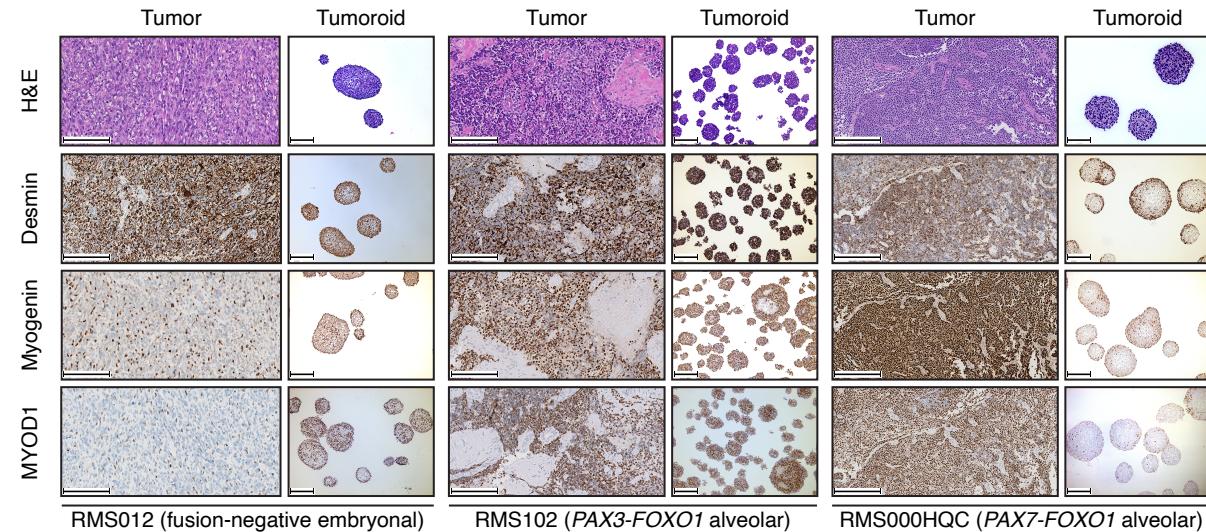
B



C

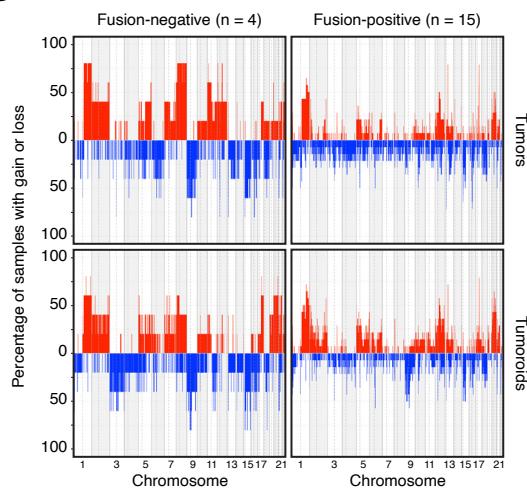
Figure 2


A


Gene	Histology	Fusion
DES	Embryonal	fusion-negative
MYOG	Alveolar	PAX3-FOXO1
MYOD1		PAX7-FOXO1

PAX3-WWTR1

B



C

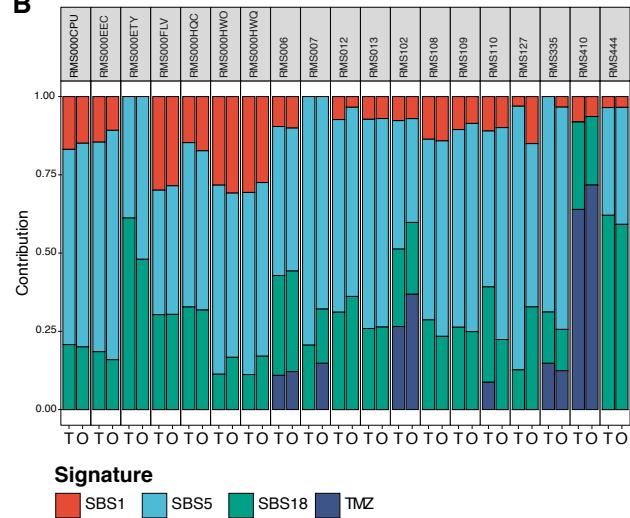
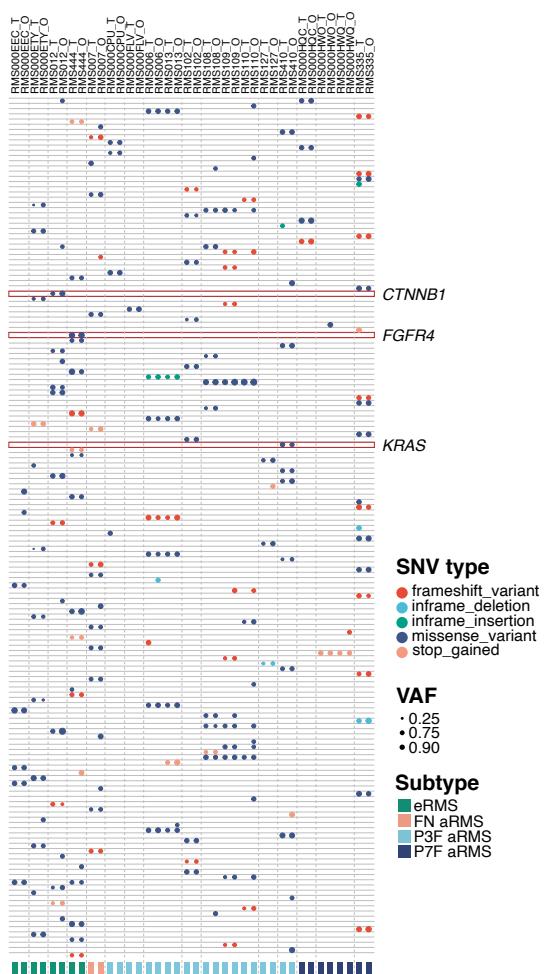
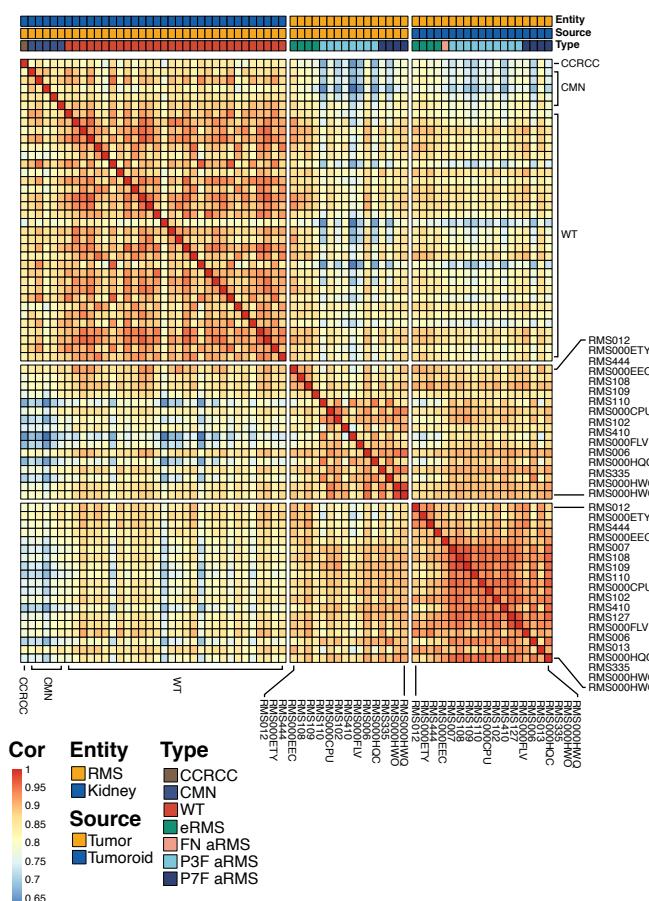
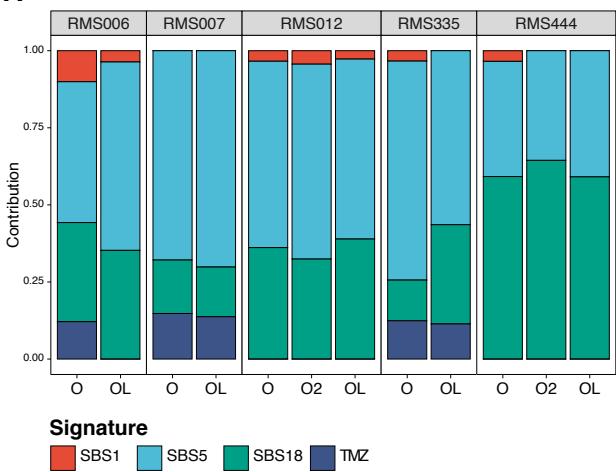


Figure 3


A


B

C



D

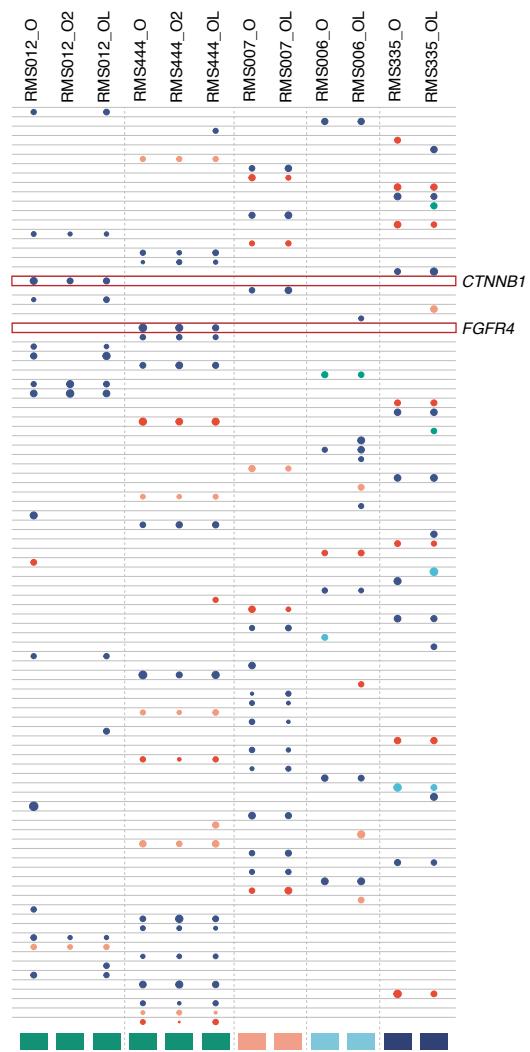
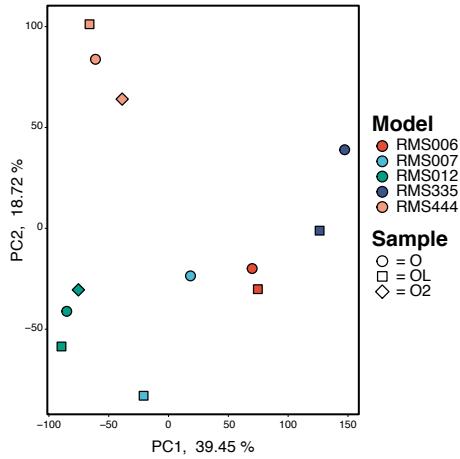


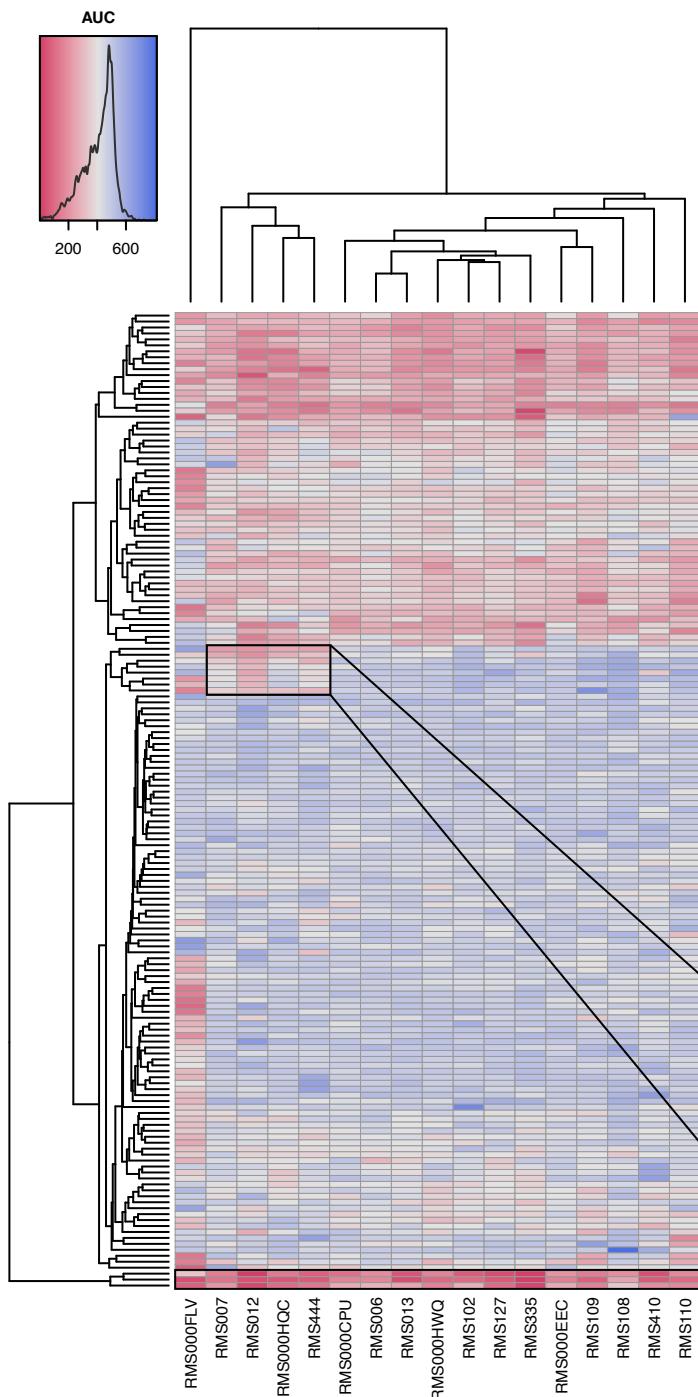
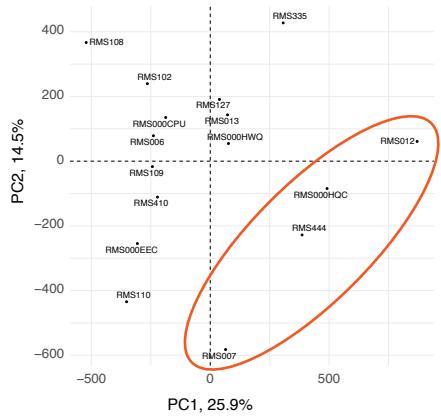
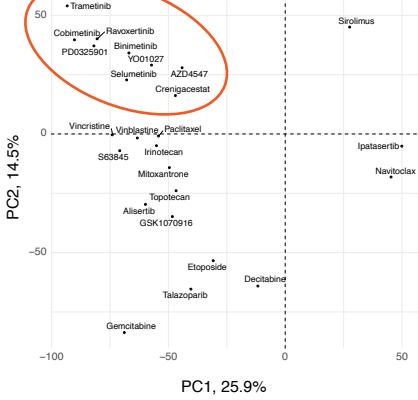
Figure 4


A

B

C

SNV type

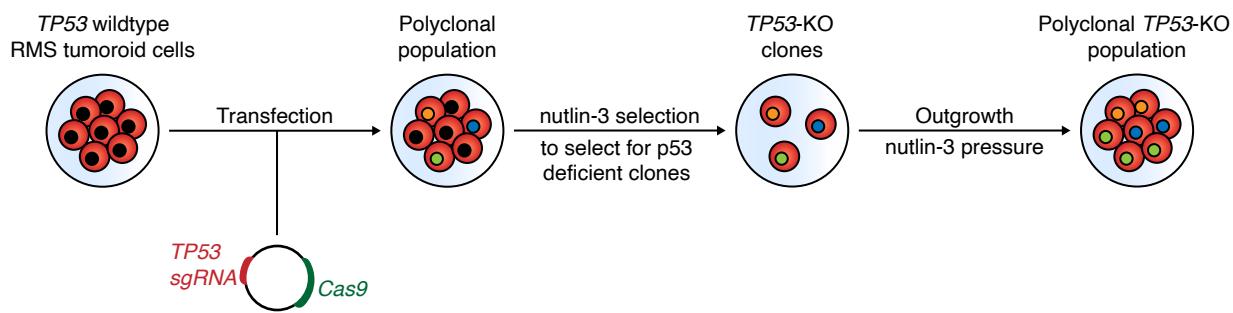



- frameshift_variant
- inframe_deletion
- inframe_insertion
- missense_variant
- stop_gained

VAF

- 0.25
- 0.75
- 0.90

Subtype

- eRMS
- FN aRMS
- P3F aRMS
- P7F aRMS


Figure 5**A****B****C**

Trametinib MEKi
Cobimetinib MEKi
PD0325901 MEKi
Binimetinib MEKi
YO1027 γ -secretase inhibitor
Selumetinib MEKi
Crenigacestat γ -secretase inhibitor
Ravaxertinib ERKi

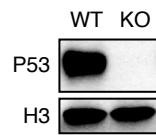
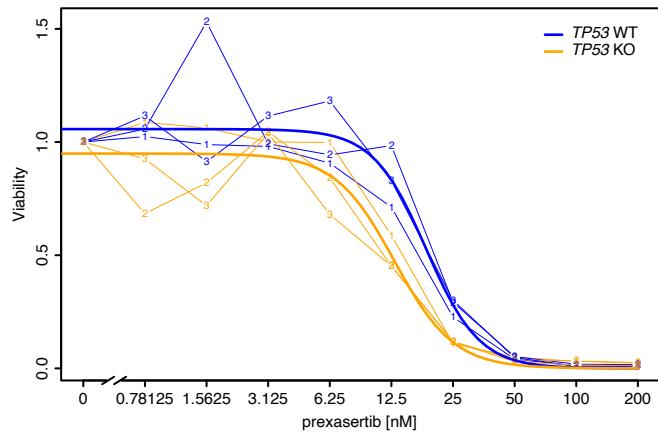
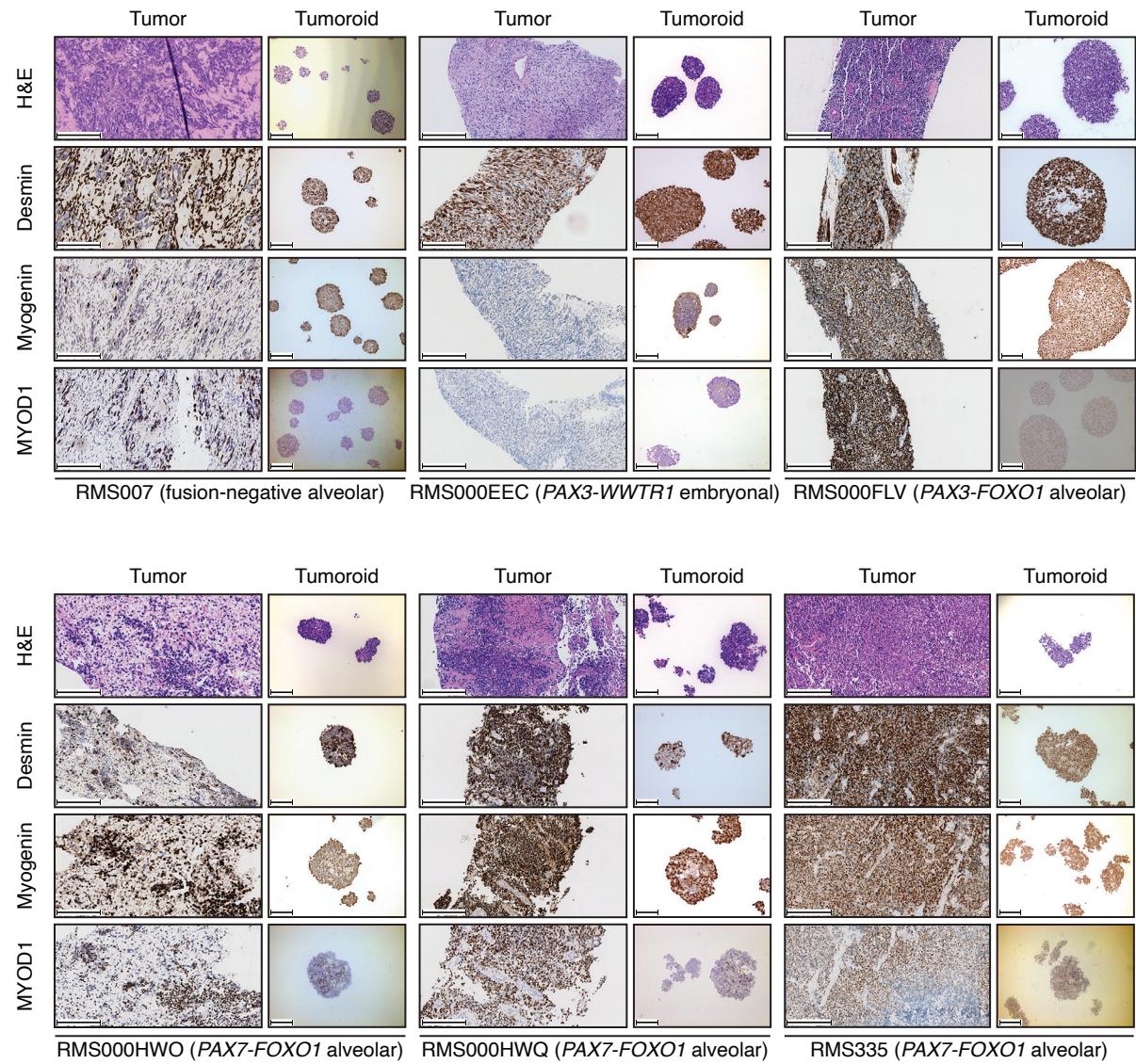
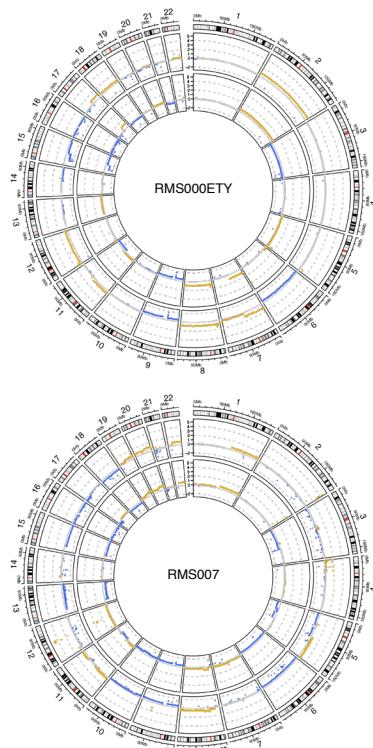

Bortezomib
Actinomycin D
Vincristine

Figure 6

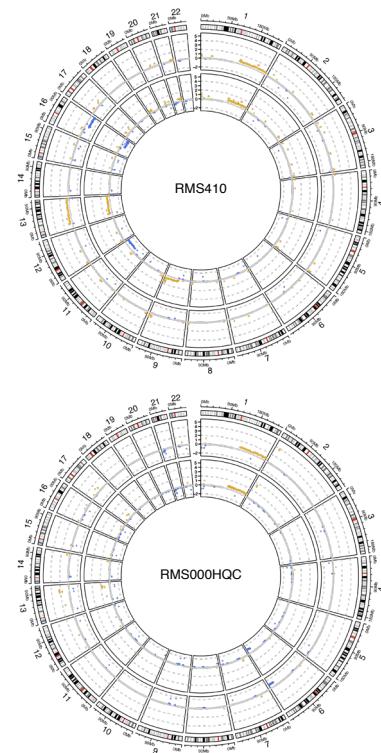

A


B

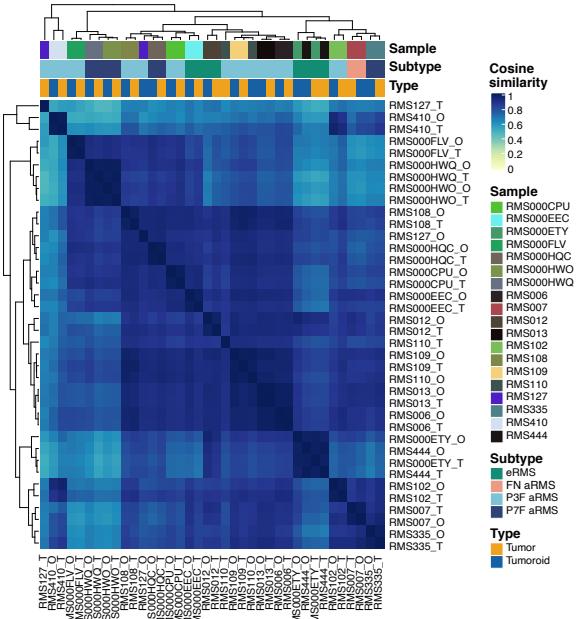
C

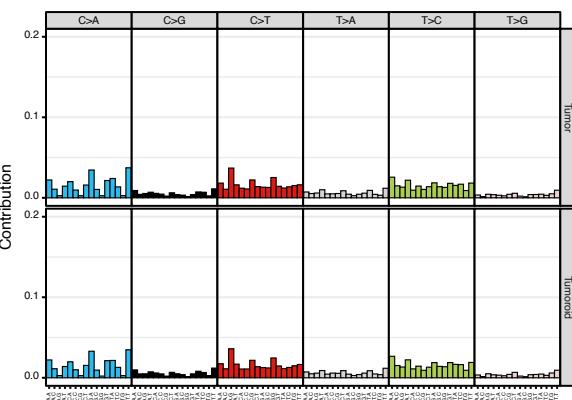


Supplementary Figure 1

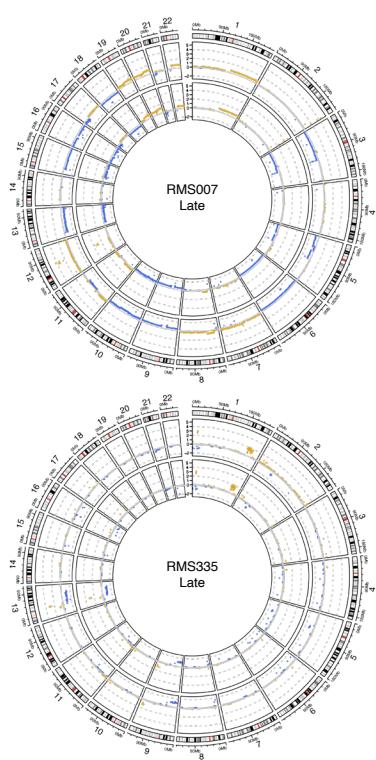


Supplementary Figure 2

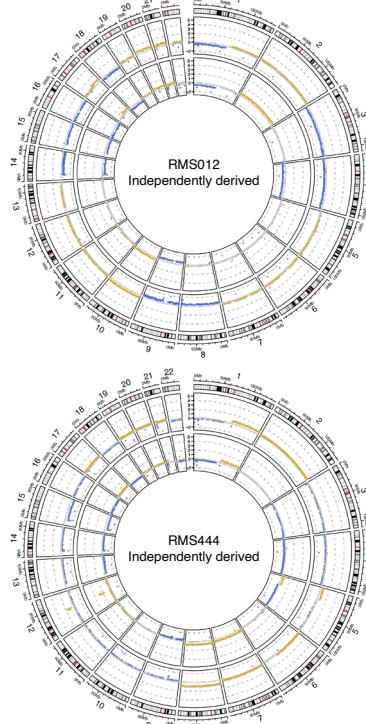

A


B

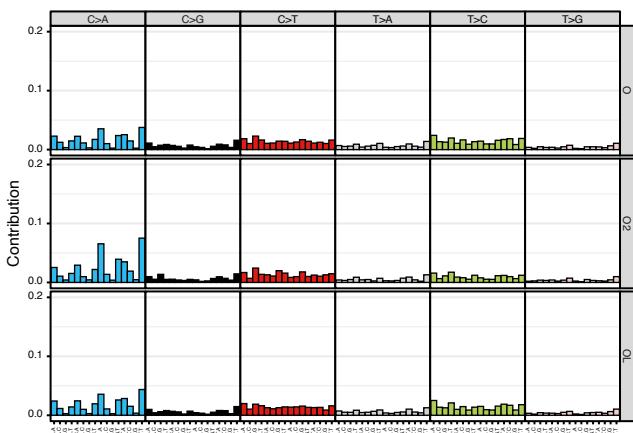
D

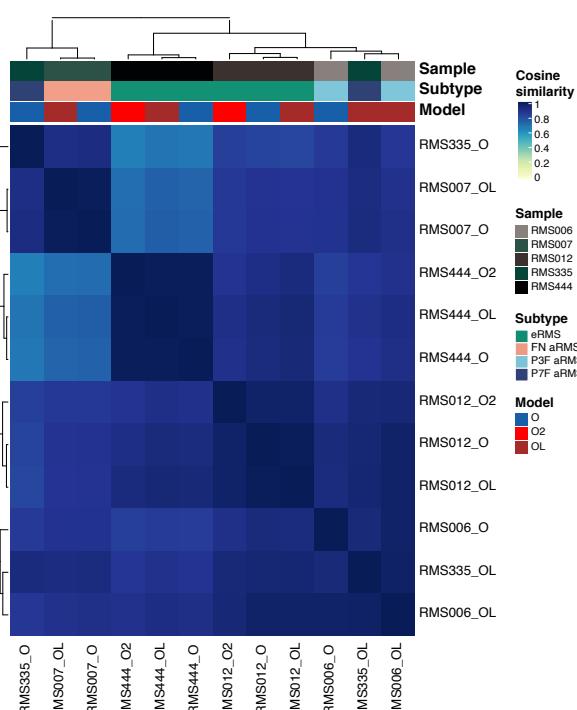


C

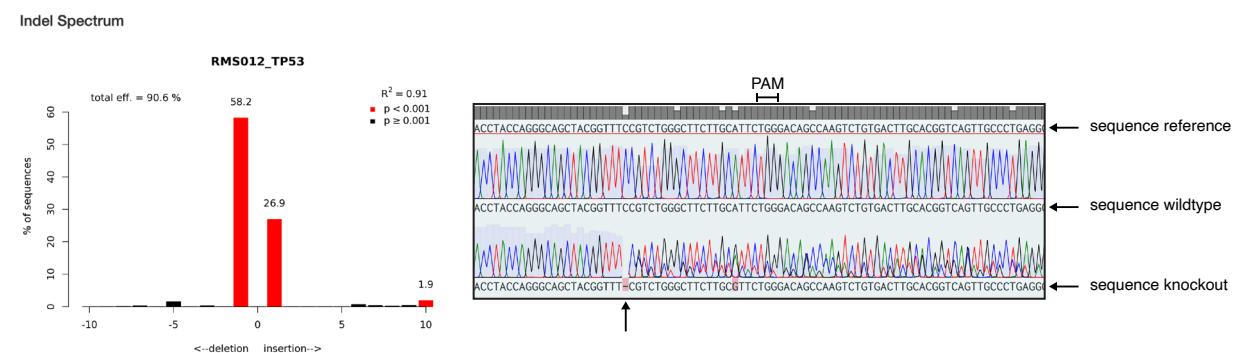


Supplementary Figure 3

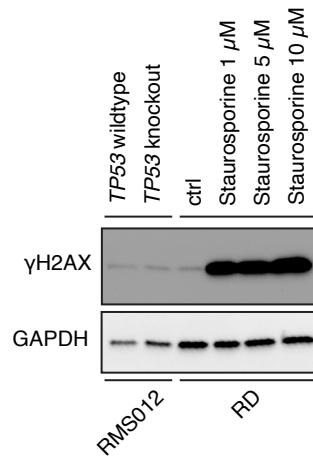

A


B

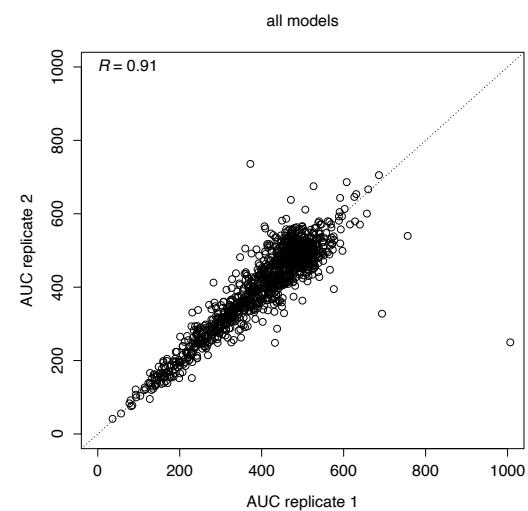
C



D



Supplementary Figure 4


A

B

Supplementary Figure 5

