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Abstract: Nm (2'-O-methylation) is one of the most abundant modifications of mRNAs and non-
coding RNAs. It has a great contribution in many biological processes such as the normal
functioning of tRNA, the protection of mRNA against degradation by DXO protein, and the
biogenesis and specificity of rRNA. Recently, the single-molecule sequencing techniques for long
reads of RNA sequences data offered by Oxford Nanopore technologies have enabled the direct
detection of RNA modifications on the molecule that is being sequenced. In this paper, we
propose a bio-computational framework, Nm-Nano for predicting the existence of Nm sites in
Nanopore direct RNA sequencing reads of human cell lines. This addresses the limitations of
Nm predictors presented in the literature that were only able to detect those sites on short reads
of RNA sequences data of cell lines of different species or long read sequencing data of non-
human cell lines (yeast). Nm-Nano framework integrates two supervised machine learning (ML)
models for predicting Nm sites in Nanopore direct RNA sequencing data, namely the Extreme
Gradient Boosting (XGBoost) and Random Forest (RF) with K-mers embedding models. XGBoost
is trained with the features extracted from the modified and unmodified Nanopore signals and
their corresponding K-mers resulting from the reported underlying RNA sequence obtained by
base-calling, while RF model is trained with the same set of features used to train XGBoost, in
addition to a dense vector representation of RNA K-mers generated by word2vec technique.
Results on benchmark data sets from Hela and Hek293 cell lines demonstrate high accuracy (99%
with XGBoost and 92% with RF) in identifying Nm sites. Deploying Nm-Nano on Hela and
Hek293 cell lines reveals the frequently Nm-modified genes. In Hela cell lines, 125 genes are
identified as frequently Nm-modified, showing enrichment in ontologies related to immune
response and cellular processes. In Hek293 cell lines, 61 genes are identified as frequently Nm-
modified, with enrichment in processes like glycolysis and protein localization. These findings
underscore the diverse regulatory roles of Nm modifications in metabolic pathways, protein
degradation, and cellular processes. The source code of Nm-Nano can be freely accessed at
https://github.com/[anga-Lab/Nm-Nano.
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1. Introduction

The 2’-O-methylation (or Nm, where N denotes any nucleotide) is a co- or post-
transcriptional modification of RNA, occurring when a methyl group (-CH3) is added to the 2’
hydroxyl (-OH) of the ribose moiety. This modification can appear on any nucleotide regardless
of the type of nitrogenous base. Nm is an abundant modification that occurs frequently in
mRNAs and at multiple locations in non-coding RNAs such as transfer RNA (tRNA), ribosomal
RNA (rRNA), small nuclear RNA (snRNA) and piRNA [1-4]. This is due to the role that internal
2'- O-methylation of mRNA plays as a new mechanism of genetic regulatory control, with the
ability to influence mRNA abundance and protein levels both in vitro and in vivo [5].

Nm modification has a great contribution in many biological processes such as the normal
functioning of tRNA [6], protecting mRNA from degradation by DXO protein [7], and the
biogenesis and specificity of rRNA [8, 9]. It has been also found that Nm modification has been
associated with many human diseases (e.g., cancer and autoimmune diseases) and has potential
indirect links to some other biological defects [10].

Detecting Nm modifications in RNAs has been a great challenge for many years and various
experimental methods for identifying such modification have been presented in the literature
[10]. However, each of these methods has exhibited significant limitations. For example,
RiboMethseq [11, 12] was introduced as a sequencing-based method for mapping and
quantitation of Nm modification based on simple chemical principle, namely the several orders
of magnitude difference in nucleophilicity of a 2'-OH and a 2-O-Me. It uses the proprietary
ligation protocol for direct ligation to 5'-OH and 3'-P ends with alkaline fragmentation to prepare
RNA for sequencing. The read-ends of library fragments are used for mapping with nucleotide
resolution and calculation of the fraction of molecules methylated at the Nm sites. However, the
relative inefficiency of the ligation protocol imposes substantial amounts of input RNA (>1 pg)
which requires increasing the sequencing depth. Thus, to address this limitation, another
chemical method called RibOxi-seq was presented for detecting Nm modifications in RNAs [13].
Using this method, Nm sites could be mapped after ligation of linkers to the Nm-modified
nucleotide at the 3'-end. However this method was only able to identify significantly fewer Nm
modification sites relative to those reported by LC-MS/MS methods, a biochemical method to
detect and quantify the relative abundance of RNA modification [14, 15]. Despite LC-MS/MS
providing industry standard results, it is time and labor consuming, as well as requiring large
amounts of input RNA and is limited for low-abundance nucleotides [16]. Recently, Dai et al.
introduced a sensitive high-throughput experimental method called Nm-seq which was able to
detect Nm sites at low stoichiometry especially in mRNAs with single-base resolution, achieving
an outstanding detection of Nm modification [17].

However, in general the experimental methods are naturally costly due to the high labor
effort. Therefore, there have been relatively few computational biology methods proposed in the
literature to overcome the limitations of experimental methods for detecting RNA Nm
modifications [18-20]. Those computational methods mainly relied on developing machine/deep
learning classification algorithms to identify Nm sites in RNA sequences based only on short
read data and were not applied to long reads with a capacity to sequence on average over 10 kb
in one single read, and thereby requiring less reads to cover the same gene. For instance, a
support vector machine (SVM)-based method was presented in [18] to identify Nm sites in RNA
short reads sequences of the human genome by encoding RNA sequences using nucleotide
chemical properties and nucleotide compositions. This model was validated by identifying Nm
sites in Mus musculus and Saccharomyces cerevisiae genomes. Another research work presented
in [19] proposed a deep learning-based method for identifying Nm sites in short reads RNA
sequences. In this approach, dna2vec- a biological sequence embedding method originally
inspired by the word2vec model of text analysis was adopted to yield embedded representations
of RNA sequences that may or may not contain Nm sites. Those embedded representations were
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fed as features to a Convolutional Neural Network (CNN) for classification of RNA sequences
into modified with Nm sites or not modified. The method was trained using the data collected
from Nm-seq experimental method. Another prediction model based on Random Forest for
identifying Nm sites in short read RNA sequences was presented in [20]. This model was trained
with features extracted by multi-encoding scheme combination that combines the one-hot
encoding, together with position-specific dinucleotide sequence profile and K-nucleotide
frequency encoding.

Recently, the third-generation sequencing technologies such as the platforms provided by
Oxford Nanopore Technologies (ONT) has been proposed as a new means to detect RNA
modifications on long RNA sequence data [21]. However, to our knowledge, this technology has
been only applied in two studies [22, 23] for detecting Nm modifications. In [22], the main goal
was to predict the stoichiometry of Nm-modified sites in yeast mitochondrial rRNA using 2-class
(Nm-modified or unmodified) classification algorithms deployed in a tool called nanoRMS [22].
This tool used the characteristic base-calling “error” signatures in the Nanopore data as features
for training a supervised or unsupervised learning models to identify the stoichiometry of Nm
sites using a threshold for base mismatch frequency in different types of RNAs in yeast.
However, nanoRMS was not applied to predict Nm sites in the RNA sequence of human cell
lines which are larger and more complex than yeast. Also, the single read features used to train
the predictors of nanoRMS were averaged before Nm prediction making it not feasible to obtain
the contribution of each feature in predicting Nm sites. Moreover, relying on base-calling errors
for detecting RNA modification as in nanoRMS implementation might decrease with the
advances of developing high accurate Nanopore base-calling algorithms. In [23], a dual-path
framework called HybridNm was proposed to predict Nm subtypes in one human cell line
(Hek293) based on features extracted from RNA short reads sequenced with Illumina and RNA
long read sequenced with ONT to improve the prediction of Nm sites. Therefore, this framework
was not purely relying on ONT technology for predicting Nm sites in RNA sequences.
Moreover, the base-calling errors were used as features to distinguish Nm from unmodified sites
which again might cause decreasing in the performance of accurately predicting Nm sites with
the advances of developing high accurate Nanopore base-calling algorithms. To this end, our
work aims to extend this research direction and address nanoRMS and HybridNm limitations
by combining ML and ONT Technology to identify Nm sites in long RNA sequence reads of
human cell lines based on features extracted from raw Nanopore signals. We have developed a
framework called Nm-Nano that integrates two different supervised ML models (predictors) to
identify Nm sites in Nanopore direct RNA sequencing reads of Hela and Hek293 cell lines,
namely the XGBoost and RF with K-mer embedding models (Figure 1.A and B). The developed
predictors integrated in Nm-Nano framework for identifying Nm sites have been trained and
tested upon a set of Nm-modified and unmodified Nanopore signals. Those signals were
generated by passing a set of ‘modified” RNA sequences containing Nm sites at known positions
(identified using the standard Nm-seq experimental method [17]) and ‘unmodified” ones
through the ONT MinION device.

By deploying Nm-Nano to predict Nm sites in Nanopore direct RNA sequencing reads of
Hela and Hek293 cell lines, we were able to perform various types of biological analysis (Figure
1.C) including: identifying unique Nm genomic locations/genes, identifying top modified RNA
bases with Nm sites, functional and gene set enrichment analysis of identified Nm-genes in both
cell lines.

2. Results

We have used two validation methods when evaluating the performance of Nm-Nano
predictors: namely the random-test splitting and integrated validation testing. In the former, the
benchmark dataset of Hela cell line introduced in subsection 4.2 in Methods section is randomly
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divided into two folds: one for training and another for testing. The test size parameter for this
method was set to 0.2 which means 80% of the benchmark dataset is used for training the Nm-
Nano ML model and 20% of the dataset is kept for testing it. In the latter, a combination of two
benchmark datasets for two different cell lines (Hela and Hel293) was used, where 50% of this
combination is used for training the Nm-Nano ML model and 50% is kept for testing it.

2.1 Performance evaluation with random-test splitting

Table 1 shows the performance of XGBoost and RF with K-mer embedding ML models
implemented in Nm-Nano framework that are available on its GitHub page when applied to the
Hela benchmark dataset. As the table shows, both models perform very well in detecting Nm
sites. However, the XGBoost model outperforms the RF with K-mer embedding in terms of
accuracy, precision, recall and Area Under the Curve (AUC).

Table 1. The performance of Nm-nano predictors on Hela benchmark dataset with random-test

splitting.
Classifier Accuracy% Precision Recall AUC
XGBoost 99 0.99 0.99 0.99
RF 92.39 0.9 0.96 0.92

The learning (Figure 2. panels A, and D), and loss (Figure 2. panels B, and E) curves of
XGBoost, and RF with K-mer embedding respectively show that the performance of XGBoost in
terms of accuracy score and misclassification error outperforms the performance of RF with K-
mer embedding. Also, the receiver operating characteristic (ROC) curves of XGBoost and RF with
K-mer embedding (Figure 2. panels C, and F respectively) show that the percentage of true
positive rate to the false positive rate in case of XGBoost model is more than the one for RF with
K-mer embedding model. Supplementary file 1_test_split Hek293_results.docx and Figure
1_test_split_hek show the performance of XGBoost and RF with K-mer embedding ML models,
with random test split on Hek293 benchmark dataset.

Table 2 shows the performance of Nm-Nano ML models with random test-splitting on Hela
benchmark dataset in terms of accuracy with each of the extracted features as well as the
embedding features generated using word2vec embedding technique introduced early in Section
1 and later in Subsection 4.4. Clearly the position feature contributes more to the classifiers’
accuracy than other extracted features used for training either the XGBoost or RF with embedding
ML models. It is followed by the model mean, then K-mer match features in case of XGboost and
K-mer match then model mean feature in case of RF with K-mer embedding. It was also observed
that the event/signal standard deviation (Event_stdv) feature achieves the lowest contribution to
the performances of XGBoost and RF with embedding models. Table 2 also shows that the
embedding features generated by word2vec technique strongly contribute to the performance of
RF as those features follow the most contributing feature (i.e., position). Despite the success of
these features in improving the performance of RF, they were not used to train the XGBoost
model. This is because this model achieved high performance by tuning its parameters with grid
search algorithm [24] which takes considerable time to obtain the best values for the parameters.

Table 2. The performance of Nm-Nano predictors on Hela benchmark dataset in terms of accuracy (%)
with random test-splitting using single type of feature.

Classifier Posi- Event_ Event_. Model. Model K-mer_. Mean_ K-mer
tion mean stdv mean _stdv match diff embed-
ding
XGBoost  93.88 54.26 50.65 83.36 64.14 75..27 51.58 -
RF 89.83 54.7 51.44 72.65 64.14 75.27 51.58 84.87
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Table 3. The performance of XGBoost versus the performance of the XGBoost with K-mer embedding
model applied to Hela benchmark dataset with random test-splitting.

Classifier Accuracy Precision Recall AUC Execution
time (Secs)

XGBoost 99 0.99 0.99 0.99 43.81

XGBoost with 99 0.99 1 0.994 608.2

K-mer

embedding

Therefore, generating more features with word2vec embedding techniques for training the grid-
search XGBoost model will add extra processing overhead. This is due to adding the time taken by
word2vec technique for generating embedding features to the time taken by the grid search
algorithm for hyper parameter tuning of XGBoost model. This will make XGBoost very slow when
applying it to the benchmark dataset of a given cell line with a slight improvement in its
performance that would not be proportional to the huge increase in the processing time of
XGBoost. Table 3 shows the performance of XGBoost (when the model is trained with the extracted
features only) versus the performance of XGBoost with K-mer embedding (i.e., when the model is
trained with the combination of the extracted features and the embedding reference K-mers
features) as well as the execution time in seconds in each case.

2.2 Performance evaluation with integrated validation testing

Table 4 shows the performance of ML models with integrated validation testing, where Nm-
Nano’s predictors are applied on 50% of combination of Hela and Hek293 benchmark datasets in
training phase and tested on the remaining 50% of this combination in the testing phase. As the
results show, both models perform very well in predicting Nm sites, though XGBoost model
outperforms RF with K-mer embedding model. The learning (Figure 3. panels A, and D), and loss
(Figure 3. panels B, and E) curves of XGBoost, and RF with K-mer embedding respectively show
that the performance of XGBoost in terms of accuracy score and misclassification error outperforms
the performance of RF with K-mer embedding. The receiver operating characteristic (ROC) curves
of XGBoost and RF with embedding (Figure 3. panels C, and E respectively) show that the
percentage of true positive rate to the false positive rate in case of XGBoost model is more than the
one for RF with embedding model.

Table 4. The performance of Nm-nano predictors on a combination of Hela & Hek293 benchmark datasets
with 0.5 random-test splitting,.

Classifier Accuracy% Precision Recall AUC
XGBoost 98.58 0.99 0.99 0.99
RF 91.63 0.89 0.96 0.92

Table 5 shows the performance of ML models with integrated validation testing in terms of
accuracy with single type of feature. This was achieved by testing the performance of Nm-nano
predictors with each of the extracted features as well as the embedding features generated using
word2vec embedding technique. Clearly the features generated with word2vec embedding
technique strongly contribute to the RF classifier accuracy as those features follow the most
contributing feature (i.e., position), but they were not considered for training the grid search
XGBoost model. Again, this is due to the extra processing overhead resulting from combining the
time taken for generating embedding features by wor2vec technique and the time taken by grid
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search algorithm for obtaining the best parameters values of XGBoost as we early mentioned in
subsection 2.1. As for the contribution of each of the seven extracted features, it was observed that
the position feature achieves the best among all extracted features followed by model mean
feature, then the K-mer match feature for XGBoosat and K-mer match then model mean feature
for RF with K-mer embedding. Also, it was observed that event/signal standard deviation (event
_stdv) has the lowest contribution to the performance of either XGBoost or RF with K-mer
embedding models.

Table 5. The performance of Nm-nano predictors with integrated validation testing in terms of accuracy
(%) using single type of feature.

Classifie Posit Event_ Event Model Mode K-mer  Mean K-mer

r ion mean _stdv _mean 1 stdv match _diff embedd
ing

XGBoost  94.62 53.41 51.31 81.22 62.24 75.14 51.69 -

RF 85.45 54.19 51.71 72.54 62.24 75.14 51.7 82.92

2.3. Abundance of Nm sites

In order to identify the abundance of Nm sites in the RNA sequence of either Hela or Hek293
cell lines, first we run XGBoost model (since it outperforms RF with K-mer embedding model) on
the complete RNA sequence reads of Hela and Hek293 cell lines. Next, we identify all samples with
predicted Nm sites in those reads, then we identify the number of Nm unique genomic locations
corresponding to those Nm predictions as well as their frequencies in both cell lines. We found that
there are 11,651,518 Nanopore signal samples predicted as samples with Nm sites from a total of
920,643,073 Nanopore signal samples that represent the complete Hela cell line with 1,674,369
unique genomic locations of Nm (Supplementary Table 1_Nm_unique_genomic_locations
_hela.xIsx). Similarly, we found that there are 1712344 Nanopore signal samples predicted as
samples with Nm sites from a total of 275,056,668 samples that present the complete RNA sequence
of Hek293 cell line with 291,382 unique genomic locations of Nm modification (Supplementary
Table 2_Nm_unique_genomic_locations _hek.xlsx). The reference K-mers corresponding to
modified Nanopore signals with Nm predictions in Hela and Hek293 cell lines can be identified as
strong K-mers in comparison with the reference K-mers corresponding to the unmodified/control
Nanopore signals, which can be considered as weak contributors to the Nm prediction. The
frequency of those strong reference K-mers that provide an overview of their abundance and show
their contribution to Nm predictions in Hela and Hek293 cells lines are available in Supplementary
Tables 3_Nm_unique_reference_kmer_freq_hela.xlsx and
4_Nm_unique_reference_kmer_freq_hek.xls respectively. Also, Supplementary Figures 2_top_10-
modified_bases_hela and 3_top_10-modified_bases_hek provide the sequence logo for the top ten
modified bases corresponding to Nm prediction in Hela and Hek293 cell lines respectively.

We found that there are 105678 modified genomic locations common between Hela and
Hek293 cell lines (Figure 4.A). Also, we observed that there were 10 genes shared across the top
1% of Nm Modified genes in Hela and Hek293 cell lines (Figures 4.B). Clearly, we notice that the
extent of Nm modification (the number of Nanopore signal samples predicted as samples with Nm
sites to the total number of Nanopore signal samples either modified with Nm or not modified) in
RNA sequences of Hela cell line is higher than its counterpart in Hek293 cell line (1.27 % for Hela
versus 0.62% for Hek293). Therefore, the distribution of Nm across normalized gene length for
Hela cell line is higher than its equivalent in Hek293 cell line (Figures 4.C). Additionally, and as a
primary observation of Figure 4C, we found that Nm modifications are likely to be more prevalent
in the 3’ region compared to the 5 when observed at a transcriptomic level. This distribution
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reinforces our previous observation about (psuedouridine) RN A modifications having a preference
for 3" over 5" [25].

Since Nm modifications can occur at any RNA base, we have also reported about the
percentage of unique Nm locations occurring per each of the four RNA bases in the two complete
cell lines of Hela and Hek293 (Table 6.)

Table 6. The percentage of unique Nm locations occurring per each of the four RNA bases in Hela and

Hek293 cell lines.
Cell line A base C base G base U base
Hela 29.75 21.54 2291 25.81
Hek293 26.18% 25.14% 26.12% 22.56%

2.4Functional envichment analysis

A total of 61 genes from Hek293 and 125 genes from Hela cell lines were identified as the top
1% frequently modified Nm genes with the highest abundance of Nm modification. The short-
listed genes from both cell lines were then plugged into Cytsoscape ClueGo [26] application to
obtain the enriched ontologies and pathways at high confidence (p<0.05). Enrichment observations
from this analysis are visualized in Figure 5 A, and B for Hek293 and Hela cell lines respectively.

From the functional enrichment analysis of the top 1% gene set form Hek293 cell line (Figure
5A, and supplementary Figure 4), we observed a wide range of functional processes like:
“Glycolysis/Gluconeogenesis”, “Regulation of protein localization to cell surface”, and
“Aggrephagy” being significantly enriched. Essentially highlighting the diverse regulatory role of
Nm modifications, from their involvement in metabolic pathways, protein degradation and
localization.

In Hela cell line, we observed several high confidences (adjusted p-val < 0.05) enriched
ontologies that were more representative of Nm modification role in immune response and cellular
processes (Figure 5B and supplementary Figure 5) like: “C3HC4-type RING finger domain
binding”, “Antigen processing and presentation (class I MHC)”, and “cytoplasmic translational
initiation”.

To observe which cellular pathways were associated with the Nm modifications, we ranked
the complete human gene lists from both Hela and Hek293 cell lines based on occurrence of Nm
modification locations and performed gene set enrichment analysis (GSEA) [27] using WebGestalt
[28]. Across both cell lines we observed that genes associated with metabolic processes, protein
binding, and biological regulation were enriched in these ranked lists, reinforcing the association
between Nm modification and RNA-protein interaction which was previously observed in
literature [29] [30]. The Nm modified gene sets from both cell lines had autoimmune pathways,
signaling pathways, and Diabetes pathways in common with a relatively higher enrichment scores
(NES>1.2) as seen in supplementary Figure 6. Additionally, we also observed some tissue specific
pathways were enriched in case of Hela, like prion disease and Inflammatory bowel disease in
Hek293. Those pathways were enriched with high normalized enrichment scores (NES>1.2).

3. Discussion

We have noticed that Nm-nano outperforms the existing non-Nanopore tools for Nm sites
prediction in the literature [18-20] in terms of accuracy with 1:1 ratio of positive and negative test
samples (50.1% for [17], 81.91% for [18], 84.8% for [19], and 99% for Xgboost, the best Nm-nano ML
model). However, we found the comparison between Nm-Nano and those tools does not make
sense in terms of implementation, but it makes sense in terms of accuracy. This is because those
tools were only applied to predict Nm sites in short reads of RNA sequences, while Nm-Nano can
predict Nm sites on long reads of RNA sequences. Moreover, those tools were trained and tested
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on the same dataset, and they were not tested for predicting Nm sites on a combination of two
benchmark datasets of RNA sequence data for two different cell lines. As for comparison of the
performance of Nm-nano with nanoRMS [22], the existing Nanopore based tool for predicting Nm
modifications on direct RNA sequencing data, we found that nanoRMS was only tested on
predicting Nm in direct RNA sequences of yeast and it was not tested on predicting the Nm sites
in direct RNA sequencing data of human cell lines which are more complex than lower eukaryotes
like yeast. Hence, it is not possible to directly compare the accuracy of nanoRMS tool on human
cell line data. In addition, nanoRMS predicts Nm sites on individual single reads of direct RNA
sequence data, where the single read features are used to train the predictors of nanoRMS. Those
features were averaged before Nm prediction, making it not feasible to obtain the contribution of
each feature in predicting Nm sites. Moreover, only the accuracy values of predicting the
stoichiometry of Nm for each read and no other performance statistics such as precision and recall
are reported to evaluate the performance of nanoRMS. Therefore, we can only compare the average
of the accuracy values of KNN (the best supervised classifier employed in nanoRMS) to the
accuracy of predictors integrated in Nm-nano. Based on this comparison, we conclude that the
accuracy of each of the two ML models employed in Nm-nano significantly outperforms the
average accuracy of KNN predictor (66.17%), employed in nanoRMS. As for comparison between
the implementation of Nm-nano and nano-RMS, we found that nano-RMS relies mainly in its
implementation on the base-calling “error” signatures in the Nanopore data as features for
detecting the Nm-modification. However, those base-calling errors might not be the same for each
type of modified K-mer context resulting from base-calling as not all modified bases can be
detected as base-calling errors. So, the generated benchmark dataset used in nanoRMS might be
biased. Moreover, with the advances in Nanopore technology, the Nanopore base-callers would
become more accurate, and thus the base-calling errors would become lower resulting in
decreasing the size of the training dataset that is used in a tool such as nanoRMS, which might lead
to deceasing the performance of the ML models deployed in this tool for predicting Nm sites. In
other words, relying on the erroneous base-calling of Nanopore RNA sequencing for generating a
training data on which ML models applied for detecting Nm modification is a challenge either
because not all the modified bases in K-mers contexts resulting from base-calling process would
generate base-calling errors which might result in biased training or validation dataset, or because
of the high accuracy of base-calling might lead to generating limited-size of training data. So, we
believe that detecting RNA modifications based on the base-calling error would be an obsolete
approach in the future when the base-callers performance becomes or close to 100% accuracy.
Finally, we compared the performance of Nm-nano predictors with the performance of HybirdNm
proposed in [23] and we found that the accuracies of HybirdNm for predicting Nm sites were not
explicitly mentioned. However, we found that AUC was a common metric used to evaluate the
performance of Nm-nano and HybirdNm and so we used this metric for comparing the
performance of Nm-nano predictor models to HybirdNm performance. In view of this, we found
that the best AUC achieved by HybirdNm was 0.962 for predicting Um subtype and the average
AUC for predicting the four subtypes was 0.917 which is less than the AUC achieved by either
Xgboost (AUC of 0.991) or RF with kmer embedding (AUC of 0.957) employed in Nm-nano
framework when any of both models applied to Hek293 benchmark dataset with random test
splitting (supplementary file 1_test_split Hek293_results. docx). Additionally, HybirdNm
framework uses the basecalling errors in Nanopore data as a feature for predicting Nm subtypes
which can’t be considered a good choice of feature for training the model once the performance of
the current Nanopore basecallers reach the optimum by achieving 100% accuracy or very closed to
that. Moreover, HybirdNm was trained and tested on the same benchmark dataset of Hek29 cell
line, and it was not tested for predicting Nm sites on a combination of two benchmark datasets of
RNA sequence data for two different cell lines. Supplementary file (Nm-nano_advantages. docx)
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tabulates the advantages of Nm-nano over the already available ONT methods for predicting Nm
modifications.

It has been also shown that Nm-nano predictors exhibited a high accuracy in the random test-
split applied to either Hela or Hek293 benchmark datasets, and the integrated validation test
applied to a combination of both Hela and Hek293 bechmark datasets. However, we found that
the performance of Nm-nano predictors became significantly lower in the validation with an
independent cell line, when once cell line is used for training the Nm-Nano predictor and another
cell line is used for testing it. For instance, RF and XGboost achieved an accuracy of 66% and 59%
respectively in detecting Nm-sites on Hek293 benchmark dataset in the testing phase after using
Hela benchmark dataset for training the models. In the inverse cross validation, RF and XGboost
achieved an accuracy of 57.26% and 56% respectively in detecting Nm-sites on Hela benchmark
dataset in the testing phase after using Hek293 benchmark dataset for training the models. We
believe that this clear decrease in cross validation and inverse cross validation accuracies of
detecting Nm sites is due to the small dataset size of Nm-seq data [17] used for generating the
benchmark training dataset of Hela and Hek293. This small dataset size causes an increase in the
specific differences between both cell lines which causes the decrease in Nm prediction accuracy
when tested on independent cell line. In addition, it is also possible that there are cell line specific
features which are not captured when trained on individual cell line datasets, resulting in lower
cross validation accuracies. Clearly this was not the case in the integrated validation testing of
Nm-nano predictors that achieved a high accuracy of detecting Nm sites when training these
predictors on 50% of the integrated dataset that combines both benchmark datasets of Hela and
Hek293 and test the predictors on the remaining 50%.

It was also observed that deploying Nm-Nano on direct RNA sequencing data of Hela and
Hek293 cell lines leads to identifying top frequently modified Nm genes that are associated with a
wide range of biological processes in both cell lines. However, it might be unclear how the
enrichment of specific functional families for only two considered human cell lines (Hela and
Hek293) would strengthen the confidence in the Nm-nano’s predictions. To address this point, we
have now looked at publicly available direct RNA sequencing data for human cell lines on SRA
and currently we found that there is data for multiple cell lines. However, the data is only available
in the form of fastq files and not in the form of fast5 files and given that our algorithm needs signal
level fast5 data, it is not possible at this point to run our algorithm at those datasets. Hence, we
can’t test on additional cell lines available in the public domain due to the limitations in the access
to the fast5 files. However, studying the differential extense of Nm sites across multiple cell lines
for understanding common and unique sites is an exciting question which we believe can be
addressed as more cell line based direct RNA sequencing datasets in the form of fast5 files with
signal data are publicly available in the future. Finally, it is worth noting that the current study has
a limitation of only detecting Nm modification in mRNA. This is due to that the current protocol
of Nanopore direct RNA sequencing is limited to sequencing mRNA with polyA [31] . However,
for other small RNAs to be captured by Nanopore sequencing, it is possible to attach polyA with a
modified protocol of Nanopore RNA sequencing. Hence mapping modifications on such small
RNAs is beyond the scope of the current study which focuses on mapping Nm modifications on
only mRNA. However, we think that it would be possible to apply Nm-Nano predictors for
detecting Nm sites in other small RNAs when a modified and rigorously validated version of
Nanopore RNA sequencing protocol would be available, that can attach other types of small RNAs
to polyA.

4. Materials and Methods
4.1. Basic approach pipeline

The complete pipeline of Nm-Nano framework for identifying Nm modifications in RNA
sequence consists of several stages. The first stage of the pipeline starts by culturing the cell line
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by extracting it from an animal and letting it grow in an artificial environment. Next, the RNA is
extracted from this cell during library preparation and put through the ONT device and starts
generating Nanopore signal data. The MinlON MkIB device was used for direct RNA
sequencing of Hela and Hek293 cell lines with FLO-MIN106 flow cell. The fast5 files that store
the raw electrical signals output by the ONT device for each cell line are then base-called via
Guppy [32] to produce fastq files that store the base-called RNA sequence reads. Those reads are
aligned to a reference genome to produce the SAM file using minimap?2 tool [33]. From the SAM
file, a BAM and sorted BAM file are generated using samtools [34], where the BAM file is a
compressed version of the SAM file. Next, a coordinate file is created using the produced SAM
file and a provided BED file [35] that includes the Nm-modified locations on the whole genome
that have been experimentally verified in literature based on the research work presented in [17]
. This coordinate file is needed for labeling the Nanopore signal samples produced by eventalign
module as modified or unmodified when training any of the two Nm-Nano predictors (the
Supplementary Files 2_Hela.txt and 3_Hek293.txt show the coordinate files generated for Hela
and Hek293 respectively). Next, the eventalign module of the Nanopolish (a free software for
Nanopore signal extraction and analysis [36-38]) is launched for extracting Nanopore signals,
which produces a dataset of Nanopore signal samples. The structure of Nm-Nano's pipeline is
similar to the pipelines used by other RNA modification prediction tools [25]. However, Nm-
Nano’s pipeline is different in three phases (Figure 1.A and B): the benchmark dataset generation,
the feature extraction, and ML models construction phases. The benchmark dataset generation
phase in Nm-Nano’s pipeline is different because Nm modifications can occur at any RNA base,
and thus all the samples that are generated from signal extraction process are used to identify
the Nm sites using the information in the coordinate file, where some of those samples will be
labeled as modified with Nm sites, while the remaining are control samples that will be labeled
as unmodified. Similarly, the feature extraction phase in Nm-Nano’s pipeline is different
because it uses different features (e.g., position, signal/event_mean, signal/event_stdv,
model_mean, model_stdv, kmer_match, mean_diff, and word2vec embedding features of K-
mers) extracted from the modified and unmodified signal samples to train the constructed ML
models for predicting Nm sites. Finally, the ML models construction phase in Nm-Nano’s
pipeline is different because it deploys two different ML models (the XGBoost with tuned
parameters and Random Forest with K-mer embedding) for predicting Nm sites in long RNA
sequence reads. In the next subsection we will highlight those differences by introducing more
details about the benchmark dataset generation, feature extraction and ML model constructions.

4.2. Benchmark datasets generation

Two different benchmark datasets were generated for Hela and Hek293 cell lines
(Supplementary Tables 5_training hela.xIsx and 6_training_hek.xlsx). Both datasets were
generated by considering all nanopore signals samples generated by passing the long RNA
sequence of either Hela or Hek293 through the Oxford Nanopore Technologies (ONT) device.
Those signals are extracted using the Nanopolish eventalign module. Each dataset is initially
labeled with Nm-sites using the bed file that includes the Nm-modified locations on the whole
genome that have been experimentally verified in literature based on Nm-seq protocol [35]. Nm-
seq reported about Nm sites from two different cell lines with a total number of 699 Nm sites in
Hela and 2102 Nm sites in Hek293. Thus, to label each sample as Nm modified or not, all the
samples generated from signal extraction were used as the target samples for identifying Nm
modification since Nm modifications can occur at any RNA base. Next, the intersection between
their position column on the reference genome and the position in the coordinate file (generated
from Nm BED file and SAM file for each cell line) is determined. This intersection will represent
the positive samples, while the remaining samples will be the negative samples. In the end we have
52,582 samples: 26,291 are positive and 26,291 are negative ones (after sampling the negative
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samples which are very huge in comparison with positive ones) for Hek293. Similarly, we got
167,374 samples: 83687 are positive samples and 83,687 are negative samples for Hela cell line. We
observed that there is a total of 507 and 1024 different reference kmer combinations captured in the
modified and unmodified signals datasets respectively in Hela training data (Supplementary
Tables 7_training_modified_kmer_freq_hela.xIsx and 8_
training_unmodified_kmer_freq_hela.xIsx) and a total of 238 and 1022 different reference K-mer
combinations captured in the modified and unmodified signal datasets respectively in HeK293
training data  (Supplementary Tables 9_training modified_kmer_freq_hek.xIsx  and
10_training_unmodified_kmer_freq_hek.xIsx). Supplementary  Figures 7_top_10-
modified_bases_training_hela and 8_top_10-modified_bases_training_hek provide the sequence
logo for the top ten modified bases corresponding to Nm prediction in the benchmark training
datasets of Hela and Hek293 cell lines respectively.

4.3. Feature extraction

Each generated benchmark dataset has seven columns that represent the seven features that
were used for training the ML models that we developed and integrated in Nm-Nano
framework. Those features are position, event_level mean, event_stdv, model_mean,
model_stdv, mean_diff, and K-mer_match. The first five features were directly extracted by
picking their columns from the eventalign’s output (Supplementary File 4.txt) (namely: position,
event_level_mean, event_stdv, model_mean, and model_stdv columns). The sixth feature is
generated by calculating the difference between the mean of the signal (event_level_mean) and
the mean of the simulated signal by eventalign module (model_mean). The seventh feature is
generated by checking if the reference_K-mer and model_K-mer columns in the eventalign’s
output match each other, where the former refers to the base-called K-mers resulting from
inferring the RNA sequence reads from the extracted Nanopore signals in the base-calling
process, while the latter refers to base-called K-mers resulting from inferring RNA sequence
reads from the simulated signals by eventalign. The value of reference & model K-mer match is
1 if reference and model K-mers match each other and 0 otherwise. We should also mention that
the position feature simply refers to genomic location of Nm modification and it does not include
any information about the nature of nucleotide or neighboring sequence, so, training of Nm-nano
predictors with such a feature will not cause the predictions to be highly biased towards the same
conserved sequence in other RNA.

4.4. Features generation with word embedding

In addition to the extracted features, embedding features have been generated by applying
the word2vec technique [39] to the corpus of reference K-mers resulting from aligning Nanopore
signals to a reference genome using eventalign module of Nanopolish software. Applying the
word2vec technique to the corpus of reference K-mers generates/outputs a set of 1-dimensional
vectors of fixed size that represent the embedding features of those reference K-mers (the vector
size is set optionally as a parameter when building word2vec embedding model).

The idea of applying Word2vec to reference K-mer has been inspired by the research work in
[40], in which word2vec has been applied to DNA K-mers to generate embedding features
represented by vectors of real numbers as representations of those K-mers. This approach was
introduced as an alternative approach to vector encoding of K-mer using one-hot technique that is
subject to the curse of dimensionality problem, as when increasing the length of RNA sequence,
the binary feature representation by one-hot encoding grows exponentially resulting in adding too
many features to the dataset [41].

The embedding features generated by word2vec are combined with the other extracted
features introduced in section previous section for training the RF classifier model that has been
developed for predicting Nm sites in long RNA sequence reads. In other words, the combination
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of all extracted features and embedding features are used to train the RF model, which in turn will
be able to predict whether the signal is modified by the presence of Nm sites in the testing phase.

4.5 ML Models construction

We have developed two machine learning models for predicting Nm sites in RNA sequence
reads including the XGBoost [42] with tuned parameters and RF [43] with K-mer embedding. The
XGBoost model parameters were tuned using the Grid-search hyperparameter tuning algorithm
[24]. For the RF, the seed number parameter was set to 1234 and the number of trees parameter
was set to 30 for obtaining the best performance of RF. The optimized distributed gradient boosting
python library has been used for implementing the XGBoost model [44] and the scikit-learn toolkit
[45], the free machine learning python library has been used for implementing the RF model.

4.5.1. XGBoost with grid search for hyper parameter tuning

The Extreme Gradient Boosted trees (XGBoost) is a special implementation of Gradient
Boosting [46]. Gradient boosting is a machine learning technique that produces a prediction model
based on an ensemble of weak prediction models, which are decision trees in the case of XGBoost.
This model is highly flexible and versatile and can be applied for classification-based problems,
which is the main goal of this study. The advantage that XGBoost has over other tree-based models
is that it has a faster training time along with its regularized boosting, which helps to prevent
overfitting: this is when the machine learning model learns and becomes too accustomed to the
training data and is not able to generalize and accurately predict the testing data. XGBoost does
not also require feature scaling due to being a tree-based model and so feature scaling did not affect
the value of the split point and the structure of the tree model. XGBoost can also cross-validate
each iteration (round) of its training process, which can lead to higher results than models that
cannot do the latter process. The use of decision trees and gradient boosting also provide the
advantages over both random forest and other gradient boosting models, causing XGBoost to
typically have a prediction error many times lower than regular gradient boosting or random
forest.

The XGBoost machine learning model was created after the data was preprocessed by
removing all null values and performing feature extraction, The model has several parameters that
can be adjusted and tuned to get the best performance of XGBoost. Hyper-parameter tuning using
the grid search algorithm has been used since it allows for the best and most accurate combination
of parameters to be obtained. The parameters that were optimized for the XGBoost model were
eta, gamma, max_depths, min_child_weights, and scale_pos_weight. The optimized values for
these parameters obtained using grid search algorithm were 0.01, 0.1, 15, 3, and 1 respectively. The
parameter eta, representing the learning rate of the XGBoost model. Gamma parameter represents
how conservative the model is. The parameter max_depth represents how deep a decision tree can
be built and min_child_weight represents the minimum value needed to activate the respective
node in the decision tree. The scale_pos_weight parameter controls the balance of positive and
negative weights; this parameter is associated with the min_child weight. After the values for these
best parameters were obtained by fitting the grid search XGBoost model to the training data, they
were applied to the model to obtain its prediction results in the testing phase.

XGBoost is trained with the set of features mentioned in section 4.3. Those features are
extracted from the raw signal provided by direct RNA nanopore sequencing and the
corresponding base-called K-mers resulting from inferring the underlying RNA sequence by base-
calling.

4.5.2. RF with K-mer embedding

We have developed a Random Forest (RF) ML model that has been trained with the same set
of features used to train the XGBoost model, in addition to the embedding features generated by
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applying Word2vec embedding technique to the reference K-mers of in the extracted Nanopore
signals., one feature column in the benchmark Nm modification datasets of Hela and Hek293 cell
lines. RF algorithm has been extensively used in the literature to address several problems in
bioinformatics research [47]. It has been observed that the features generated by applying
Word2vec embedding technique to the reference K-mers have a great positive impact on the
performance of RF model as it was mentioned in results subsections 2.1 and 2.2.

The RF ML model was created after the data was preprocessed by removing all null values
then performing feature extraction and combining them with generated K-mer embedding
features. The K-mer embedding features were generated using genism [48], a free python library
that implements word2vec algorithm using highly optimized C routines, data streaming, and
pythonic interfaces. The word2vec algorithm has various parameters including: the vector size, the
window size, and the word count. The vector size is the dimensionality of the vector that represents
each K-mer. The window size refers to the maximum distance between a target word/K-mer and
words/K-mers around the target word/K-mer. The word count refers to the minimum count of
words to consider when training the model, where words with occurrence less than this count will
be ignored. The K-mer embedding features that lead to best performance of RF have been
generated by setting the vector size to 20, the minimum word count to 1, and the window size to
3.

4.6. Performance evaluation metrics

The accuracy (Acc), precision (P), recall (R), and the area under ROC curve (AUC) [49] have
been used as metrics for evaluating performance of Nm-Nano predictors. The mathematical
notions for the first three metrics are identified as follows:

Acc = — PN 1)
TP+EP+FN+TN
p= )
TPEFP
R = oemm 3)
Where:
U TP denotes true positive and refers to the number of correctly classified Nm sites.
. FP denotes false positive and refers to the number of non-Nm sites misclassified as Nm
sites.
. FN denotes false negative and refers to the number of Nm sites misclassified as non-Nm
sites.
U TN denotes true negative and refers to the number of correctly classified non-Nm sites.

As for AUC metric, it measures the entire two-dimensional area under the ROC curve [50] which
measures how accurately the model can distinguish between two things (e.g. determine if a base
of RNA sequence is Nm site or not).

4.7. Environmental settings

Nm-Nano has been developed as tool for detecting Nm modification in Nanopore RNA
sequence data by integrating two ML models: the XGBoost with tuned parameters and RF with K-
mer embedding to predict this type of RNA modification. XGBoost parameters were tuned to get
the best performance using the Grid search algorithm which takes around 6 hours and 52 minutes
to fit on the training dataset of Hek293 and 9 hours and 12 minutes to fit on the training dataset of
Hela cell line for obtaining the best parameters that were applied to XGBoost model in the testing
phase. The experiment was executed on Windows 10 machine with (8 cores) processor of Ryzen
5900HS CPU, and 16 GB RAM. It should be mentioned that though grid search algorithm took a
huge processing time for tuning the parameters of XGboost, using this algorithm for optimizing
XGBoost parameter causes a significant improvement in XGBoost performance. The performance
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results of XGBoost versus XGBoost tuned with grid search algorithm are shown in Supplementary
file 5_xgboost_versus_grid_search_xgboost_results.docx. Similarly, though using word2vec for
generating embedding features when developing RF with K-mer embedding model added extra
processing time to the execution time of RF algorithm, it also led a great improvement in RF
performance. This is because combining the embedding features generated by word2vec with the
extracted features from Nanopore signals positively affects the performance of RF since the
embedding features are strongly contributes to the model performance as it has been presented in
result subsections 2.1 and 2.2. The performance results of RF versus RF with kmer embedding are
shown in Supplementary file 6_RF_versus_RF_with_kmer_embedding_results.docx. Meanwhile,
we thought about improving the performance of XGBoost by applying grid search algorithm for
hyper parameter tuning in addition to applying K-mer embedding with word2vec for generating
embedding features that would be combined with the extracted features used for training XGBoost.
However, we found that this will make XGBoost very slow when applying it to the benchmark
dataset of a given cell line with a slight improvement in its performance that would not be
proportional to the huge increase in the processing time of XGBoost as it has been presented in
result subsection 2.1.

4.8. Implementation and usage of Nm-Nano

The ML models of Nm-Nano framework are implemented in python 3.x. To run the XBboost
model, the user has to type the following command from Nm-Nano main directory on the user’s
local machine after cloning the code from Nm-Nano GitHub repository:

python test_xgboost.py

Similarly, to run Rf with K-mer embedding model, the user has to type the following command
from Nm-Nano main directory:

python RF_embedding.py

To allow user to practice with Nm-nano predictors, we include a small benchmark dataset
sample for Hela cell line in Nm-nano GitHub repository (Nm_benchmark_hela_sample.csv).
However, the user is free to generate a benchmark dataset for any other cell lines based on the
instructions mentioned in README file in generate_benchmark folder in Nm-nano GitHub
repository.

To generate a benchmark dataset for a specific cell line, the following command should be run
on the command line of Linux environment from generate_benchmark folder in Nm-Nano main
directory:

python main.py -r ref.fa -f reads.fastq

Where main.py is a python script file included in generate_benchmark folder implemented in
python 3.x, (ref.fa ) is the reference Genome file and (reads.fastq) is the fastq reads file. Both ref.fa
and reads.fastq files should be placed in the same path with the main.py file.

Before running the main script, the user should include the folder that includes the fast5 files
(fast5_files) from which reads.fastq file was generated in the same directory of main.py file . Once
the user runs main.py script, it will lunch executing several command lines for generating
eventalign output. These command lines are included in generate_eventalign_output.txt in in
generate_benchmark folder on Nm-nano GitHub repository. Meanwhile the main.py will call other
two python files. The first is gen_coors_Nm.py that generates the coordinate file by asking the user
to enter the name of the bed file that has the Nm-modified genomic locations with the absolute
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path and extension. The second is extract nm.py that takes as input the coordinate file and the
eventalign output to extract features and generate the benchmark dataset. To allow the user to
practice with Nm-nano pipeline for benchmark dataset generation, we include the following in
generate_benchmark folder on Nm-nano GitHub repository

1- A link to download a fast5 file sample for the Hek293 cell line that should be included in
fast5_files folder that should be placed in the same path of main.py file.

2- A sample of fastq files (reads.fastq) for Hek293 corresponding to the fast5 files in stepl

3- A link to download a reference genome sample (ref.fa) that should be placed in the same
path of main.py file.

4- A sample of bed file for Hek293 cell line (hek.bed.txt)

It should also be mentioned that Nm-nano framework can also be extended by integrating other
ML/ deep learning models for predicting Nm sites. Moreover, the framework’s pipeline is generic
and can be used with any direct RNA sequencing output from any ONT device such as MinlON,
GridION, and PromethION.

5. Conclusions

In this paper, we have proposed a new framework called Nm-Nano that integrates two
machine learning models: the XGBoost with tuned parameters using grid search algorithm and RF
with K-mer embedding. It has been shown that the proposed framework was efficient in detecting
Nm sites in RNA long reads of human cell lines which addresses the limitations of existing Nm
predictors presented in the literature that were only able to detect Nm sites in short reads of RNA
sequences of cell lines of various species or long reads of RNA sequences of non-human cell lines
(yeast) and one human cell line (Hek293).

By deploying Nm-Nano on direct RNA sequencing data of Hela and Hek293 cell lines, the top
frequently modified Nm genes that are associated with a wide range of biological processes in both
cell lines were identified. In Hela, , we observed several high confidences (adjusted p-val < 0.05)
enriched ontologies that were more representative of Nm modification role in immune response
and cellular processes like: “C3HC4-type RING finger domain binding”, “Antigen processing and
presentation (class I MHC)”, and “cytoplasmic translational initiation”, while in Hek293 we
observed a wide range of functional processes like: “Glycolysis/Gluconeogenesis”, “Regulation of
protein localization to cell surface”, and “Aggrephagy” being significantly enriched that highlights
the diverse regulatory role of Nm modifications, from their involvement in metabolic pathways,
protein degradation and localization. Thus, Nm-Nano would be a useful computational
framework for accurate and interpretable predictions of Nm sites in RNA sequence read of human
and other species cell lines as well that could reveal various biological findings.
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FIGURES LEGENDS

Figurel. The Nm-Nano framework for predicting Nm sites on (a) Hela cell line using random 80/20
train/test split (b) 50% of the combination of Hela and Hek293 benchmark dataset using integrated
validation testing with random 50/50 train/test split on this combination (c) Analysis performed
based on Nm-Nano predictions.

Figure 2. The learning, loss and ROC curves of Nm-nano predictors validated on Hela benchmark
dataset with random split testing, where 80% of data is used for training and the remaining 20% is
kept for testing. (a, b, and c¢) XGBoost model and (d, e, and f) RF with K-mer embedding model.

Figure 3. The learning, loss and ROC curves of Nm-nano predictors in integrated validation testing,
where 50% of combination of Hela and Hek293 benchmark datasets is used for training and the
remaining 50% is used for testing. (a,b, and c) XGBoost model and (d, e, and f) RF with K-mer
embedding model.

Figure 4. (a) The overlap between Nm unique locations in complete Hek293 and Hela cell lines (b)
the overlapping between top frequent 1 % modified Nm genes in complete Hek293 and Hela cell
lines (c) The density plots that represents Nm modifications across normalized gene length for
Hek293 and Hela cell lines.

Figure 5. Functional enrichment analysis of most frequently Nm modified genes across a cell line
in terms of functional grouping of the GO-terms based on GO hierarchy using Cytoscape ClueGO
application. (a) Hek293 cell line and (b) Hela cell line (visualizing high confidence (p-val<0.05)
ontologies and pathways potentially associated with Nm RNA modification. The size of the nodes
are representative of the significance of association with respect to genes per GO-term.
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