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Abstract: Nm (2´-O-methylation) is one of the most abundant modifications of mRNAs and non-

coding RNAs. It has a great contribution in many biological processes such as the normal 

functioning of tRNA, the protection of mRNA against degradation by DXO protein, and the 

biogenesis and specificity of rRNA. Recently, the single-molecule sequencing techniques for long 

reads of RNA sequences data offered by Oxford Nanopore technologies have enabled the direct 

detection of RNA modifications on the molecule that is being sequenced. In this paper, we 

propose a bio-computational framework, Nm-Nano for predicting the existence of Nm sites in 

Nanopore direct RNA sequencing reads of human cell lines. This addresses the limitations of 

Nm predictors presented in the literature that were only able to detect those sites on short reads 

of RNA sequences data of cell lines of different species or long read sequencing data of non-

human cell lines (yeast).  Nm-Nano framework integrates two supervised machine learning (ML) 

models for predicting Nm sites in Nanopore direct RNA sequencing data, namely the Extreme 

Gradient Boosting (XGBoost) and Random Forest (RF) with K-mers embedding models. XGBoost 

is trained with the features extracted from the modified and unmodified Nanopore signals and 

their corresponding K-mers resulting from the reported underlying RNA sequence obtained by 

base-calling, while RF model is trained with the same set of features used to train XGBoost, in 

addition to a dense vector representation of RNA K-mers generated by word2vec technique. 

Results on benchmark data sets from Hela and Hek293 cell lines demonstrate high accuracy (99% 

with XGBoost and 92% with RF) in identifying Nm sites. Deploying Nm-Nano on Hela and 

Hek293 cell lines reveals the frequently Nm-modified genes. In Hela cell lines, 125 genes are 

identified as frequently Nm-modified, showing enrichment in ontologies related to immune 

response and cellular processes. In Hek293 cell lines, 61 genes are identified as frequently Nm-

modified, with enrichment in processes like glycolysis and protein localization. These findings 

underscore the diverse regulatory roles of Nm modifications in metabolic pathways, protein 

degradation, and cellular processes. The source code of Nm-Nano can be freely accessed at 

https://github.com/Janga-Lab/Nm-Nano. 
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1. Introduction 

The 2´-O-methylation (or Nm, where N denotes any nucleotide) is a co- or post-

transcriptional modification of RNA, occurring when a methyl group (–CH3) is added to the 2´ 

hydroxyl (–OH) of the ribose moiety. This modification can appear on any nucleotide regardless 

of the type of nitrogenous base. Nm is an abundant modification that occurs frequently in 

mRNAs and at multiple locations in non-coding RNAs such as transfer RNA (tRNA), ribosomal 

RNA (rRNA), small nuclear RNA (snRNA) and piRNA [1-4]. This is due to the role that internal 

2′- O-methylation of mRNA plays as a new mechanism of genetic regulatory control, with the 

ability to influence mRNA abundance and protein levels both in vitro and in vivo [5].  

Nm modification has a great contribution in many biological processes such as the normal 

functioning of tRNA [6], protecting mRNA from degradation by DXO protein [7], and the 

biogenesis and specificity of rRNA [8, 9]. It has been also found that Nm modification has been 

associated with many human diseases (e.g., cancer and autoimmune diseases) and has potential 

indirect links to some other biological defects [10].   

Detecting Nm modifications in RNAs has been a great challenge for many years and various 

experimental methods for identifying such modification have been presented in the literature 

[10]. However, each of these methods has exhibited significant limitations. For example, 

RiboMethseq [11, 12] was introduced as a sequencing-based method for mapping and 

quantitation of Nm modification based on simple chemical principle, namely the several orders 

of magnitude difference in nucleophilicity of a 2′-OH and a 2′-O-Me. It uses the proprietary 

ligation protocol for direct ligation to 5′-OH and 3′-P ends with alkaline fragmentation to prepare 

RNA for sequencing. The read-ends of library fragments are used for mapping with nucleotide 

resolution and calculation of the fraction of molecules methylated at the Nm sites. However, the 

relative inefficiency of the ligation protocol imposes substantial amounts of input RNA (>1 µg) 

which requires increasing the sequencing depth. Thus, to address this limitation, another 

chemical method called RibOxi-seq was presented for detecting Nm modifications in RNAs [13].  

Using this method, Nm sites could be mapped after ligation of linkers to the Nm-modified 

nucleotide at the 3′-end. However this method was only able to identify significantly fewer Nm 

modification sites relative to those reported by LC-MS/MS methods, a biochemical method to 

detect and quantify the relative abundance of RNA modification [14, 15]. Despite LC-MS/MS 

providing industry standard results, it is time and labor consuming, as well as requiring large 

amounts of input RNA and is limited for low-abundance nucleotides [16].  Recently, Dai et al. 

introduced a sensitive high-throughput experimental method called Nm-seq which was able to 

detect Nm sites at low stoichiometry especially in mRNAs with single-base resolution, achieving 

an outstanding detection of Nm modification [17]. 

However, in general the experimental methods are naturally costly due to the high labor 

effort. Therefore, there have been relatively few computational biology methods proposed in the 

literature to overcome the limitations of experimental methods for detecting RNA Nm 

modifications [18-20].  Those computational methods mainly relied on developing machine/deep 

learning classification algorithms to identify Nm sites in RNA sequences based only on short 

read data and were not applied to long reads with a capacity to sequence on average over 10 kb 

in one single read, and thereby requiring less reads to cover the same gene. For instance, a 

support vector machine (SVM)-based method was presented in [18] to identify Nm sites in RNA 

short reads sequences of the human genome by encoding RNA sequences using nucleotide 

chemical properties and nucleotide compositions. This model was validated by identifying Nm 

sites in Mus musculus and Saccharomyces cerevisiae genomes. Another research work presented 

in [19] proposed a deep learning-based method for identifying Nm sites in short reads RNA 

sequences. In this approach, dna2vec- a biological sequence embedding method originally 

inspired by the word2vec model of text analysis was adopted to yield embedded representations 

of RNA sequences that may or may not contain Nm sites. Those embedded representations were 
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fed as features to a Convolutional Neural Network (CNN) for classification of RNA sequences 

into modified with Nm sites or not modified. The method was trained using the data collected 

from Nm-seq experimental method.  Another prediction model based on Random Forest for 

identifying Nm sites in short read RNA sequences was presented in [20].  This model was trained 

with features extracted by multi-encoding scheme combination that combines the one-hot 

encoding, together with position-specific dinucleotide sequence profile and K-nucleotide 

frequency encoding.   

Recently, the third-generation sequencing technologies such as the platforms provided by 

Oxford Nanopore Technologies (ONT) has been proposed as a new means to detect RNA 

modifications on long RNA sequence data [21].  However, to our knowledge, this technology has 

been only applied in two studies [22, 23] for detecting Nm modifications. In [22], the main goal 

was to predict the stoichiometry of Nm-modified sites in yeast mitochondrial rRNA using 2-class 

(Nm-modified or unmodified) classification algorithms deployed in a tool called nanoRMS [22]. 

This tool used the characteristic base-calling “error” signatures in the Nanopore data as features 

for training a supervised or unsupervised learning models to identify the stoichiometry of Nm 

sites using a threshold for base mismatch frequency in different types of RNAs in yeast. 

However, nanoRMS was not applied to predict Nm sites in the RNA sequence of human cell 

lines which are larger and more complex than yeast. Also, the single read features used to train 

the predictors of nanoRMS were averaged before Nm prediction making it not feasible to obtain 

the contribution of each feature in predicting Nm sites. Moreover, relying on base-calling errors 

for detecting RNA modification as in nanoRMS implementation might decrease with the 

advances of developing high accurate Nanopore base-calling algorithms. In [23], a dual-path 

framework called HybridNm was proposed to predict Nm subtypes in one human cell line 

(Hek293) based on features extracted from RNA short reads sequenced with Illumina and RNA 

long read sequenced with ONT to improve the prediction of Nm sites. Therefore, this framework 

was not purely relying on ONT technology for predicting Nm sites in RNA sequences.  

Moreover, the base-calling errors were used as features to distinguish Nm from unmodified sites 

which again might cause decreasing in the performance of accurately predicting Nm sites with 

the advances of developing high accurate Nanopore base-calling algorithms. To this end, our 

work aims to extend this research direction and address nanoRMS and HybridNm limitations 

by combining ML and ONT Technology to identify Nm sites in long RNA sequence reads of 

human cell lines based on features extracted from raw Nanopore signals. We have developed a 

framework called Nm-Nano that integrates two different supervised ML models (predictors) to 

identify Nm sites in Nanopore direct RNA sequencing reads of Hela and Hek293 cell lines, 

namely the XGBoost and RF with K-mer embedding models (Figure 1.A and B). The developed 

predictors integrated in Nm-Nano framework for identifying Nm sites have been trained and 

tested upon a set of Nm-modified and unmodified Nanopore signals. Those signals were 

generated by passing a set of ‘modified’ RNA sequences containing Nm sites at known positions 

(identified using the standard Nm-seq experimental method [17]) and ‘unmodified’ ones 

through the ONT MinION device.  

By deploying Nm-Nano to predict Nm sites in Nanopore direct RNA sequencing reads of 

Hela and Hek293 cell lines, we were able to perform various types of biological analysis (Figure 

1.C) including: identifying unique Nm genomic locations/genes, identifying top modified RNA 

bases with Nm sites, functional and gene set enrichment analysis of identified Nm-genes in both 

cell lines.   

2. Results 

We have used two validation methods when evaluating the performance of Nm-Nano 

predictors: namely the random-test splitting and integrated validation testing. In the former, the 

benchmark dataset of Hela cell line introduced in subsection 4.2 in Methods section is randomly 
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divided into two folds: one for training and another for testing. The test size parameter for this 

method was set to 0.2 which means 80% of the benchmark dataset is used for training the Nm-

Nano ML model and 20% of the dataset is kept for testing it. In the latter, a combination of two 

benchmark datasets for two different cell lines (Hela and Hel293) was used, where 50% of this 

combination is used for training the Nm-Nano ML model and 50% is kept for testing it.  

 2.1 Performance evaluation with random-test splitting 

Table 1 shows the performance of XGBoost and RF with K-mer embedding ML models 

implemented in Nm-Nano framework that are available on its GitHub page when applied to the 

Hela benchmark dataset.  As the table shows, both models perform very well in detecting Nm 

sites. However, the XGBoost model outperforms the RF with K-mer embedding in terms of 

accuracy, precision, recall and Area Under the Curve (AUC). 

Table 1. The performance of Nm-nano predictors on Hela benchmark dataset with random-test 

splitting. 

 

 

 

 

The learning (Figure 2. panels A, and D), and loss (Figure 2. panels B, and E) curves of 

XGBoost, and RF with K-mer embedding respectively show that the performance of XGBoost in 

terms of accuracy score and misclassification error outperforms the performance of RF with K-

mer embedding. Also, the receiver operating characteristic (ROC) curves of XGBoost and RF with 

K-mer embedding (Figure 2. panels C, and F respectively) show that the percentage of true 

positive rate to the false positive rate in case of XGBoost model is more than the one for RF with 

K-mer embedding model.  Supplementary file 1_test_split_Hek293_results.docx and Figure 

1_test_split_hek show the performance of XGBoost and RF with K-mer embedding ML models, 

with random test split on Hek293 benchmark dataset. 

Table 2 shows the performance of Nm-Nano ML models with random test-splitting on Hela 

benchmark dataset in terms of accuracy with each of the extracted features as well as the 

embedding features generated using word2vec embedding technique introduced early in Section 

1 and later in Subsection 4.4. Clearly the position feature contributes more to the classifiers’ 

accuracy than other extracted features used for training either the XGBoost or RF with embedding 

ML models. It is followed by the model mean, then K-mer match features in case of XGboost and 

K-mer match then model mean feature in case of RF with K-mer embedding. It was also observed 

that the event/signal standard deviation (Event_stdv) feature achieves the lowest contribution to 

the performances of XGBoost and RF with embedding models. Table 2 also shows that the 

embedding features generated by word2vec technique strongly contribute to the performance of 

RF as those features follow the most contributing feature (i.e., position). Despite the success of 

these features in improving the performance of RF, they were not used to train the XGBoost 

model. This is because this model achieved high performance by tuning its parameters with grid 

search algorithm [24] which takes considerable time to obtain the best values for the parameters.  

Table 2. The performance of Nm-Nano predictors on Hela benchmark dataset in terms of accuracy (%) 

with random test-splitting using single type of feature. 

Classifier Posi-

tion 

Event_

mean 

Event_

stdv 

Model_

mean 

Model

_stdv 

K-mer_ 

match 

Mean_

diff 

K-mer 

embed-

ding 

XGBoost 93.88 54.26 50.65 83.36 64.14 75..27 51.58 - 

RF 89.83 54.7 51.44 72.65 64.14 75.27       51.58 84.87 

Classifier Accuracy% Precision Recall AUC 

XGBoost 99 0.99 0.99 0.99 

RF 92.39 0.9 0.96 0.92 
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Table 3. The performance of XGBoost versus the performance of the XGBoost with K-mer embedding 

model applied to Hela benchmark dataset with random test-splitting. 

 

Classifier Accuracy Precision Recall  AUC Execution 

time (Secs) 

 

XGBoost 99 0.99 0.99 0.99  43.81  
XGBoost with 

K-mer 

embedding 

99 0.99 1 0.994  608.2  

 

 

Therefore, generating more features with word2vec embedding techniques for training the grid-

search XGBoost model will add extra processing overhead. This is due to adding the time taken by 

word2vec technique for generating embedding features to the time taken by the grid search 

algorithm for hyper parameter tuning of XGBoost model. This will make XGBoost very slow when 

applying it to the benchmark dataset of a given cell line with a slight improvement in its 

performance that would not be proportional to the huge increase in the processing time of 

XGBoost. Table 3 shows the performance of XGBoost (when the model is trained with the extracted 

features only) versus the performance of XGBoost with K-mer embedding (i.e., when the model is 

trained with the combination of the extracted features and the embedding reference K-mers 

features) as well as the execution time in seconds in each case. 

 2.2 Performance evaluation with integrated validation testing 

Table 4 shows the performance of ML models with integrated validation testing, where Nm-

Nano’s predictors are applied on 50% of combination of Hela and Hek293 benchmark datasets in 

training phase and tested on the remaining 50% of this combination in the testing phase. As the 

results show, both models perform very well in predicting Nm sites, though XGBoost model 

outperforms RF with K-mer embedding model. The learning (Figure 3. panels A, and D), and loss 

(Figure 3. panels B, and E) curves of XGBoost, and RF with K-mer embedding respectively show 

that the performance of XGBoost in terms of accuracy score and misclassification error outperforms 

the performance of RF with K-mer embedding. The receiver operating characteristic (ROC) curves 

of XGBoost and RF with embedding (Figure 3. panels C, and E respectively) show that the 

percentage of true positive rate to the false positive rate in case of XGBoost model is more than the 

one for RF with embedding model.  

Table 4. The performance of Nm-nano predictors on a combination of Hela & Hek293 benchmark datasets 

with 0.5 random-test splitting. 

Classifier Accuracy% Precision Recall  AUC 

XGBoost 98.58 0.99      0.99 0.99  

RF 91.63 0.89 0.96 0.92 

 

Table 5 shows the performance of ML models with integrated validation testing in terms of 

accuracy with single type of feature. This was achieved by testing the performance of Nm-nano 

predictors with each of the extracted features as well as the embedding features generated using 

word2vec embedding technique. Clearly the features generated with word2vec embedding 

technique strongly contribute to the RF classifier accuracy as those features follow the most 

contributing feature (i.e., position), but they were not considered for training the grid search 

XGBoost model. Again, this is due to the extra processing overhead resulting from combining the 

time taken for generating embedding features by wor2vec technique and the time taken by grid 
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search algorithm for obtaining the best parameters values of XGBoost as we early mentioned in 

subsection 2.1. As for the contribution of each of the seven extracted features, it was observed that 

the position feature achieves the best among all extracted features followed by model mean 

feature, then the K-mer match feature for XGBoosat and K-mer match then model mean feature 

for RF with K-mer embedding. Also, it was observed that event/signal standard deviation (event 

_stdv) has the lowest contribution to the performance of either XGBoost or RF with K-mer 

embedding models. 

Table 5. The performance of Nm-nano predictors with integrated validation testing in terms of accuracy 

(%) using single type of feature. 

Classifie

r 

Posit

ion 

Event_

mean 

Event

_stdv 

Model

_mean 

Mode

l_stdv 

K-mer_ 

match 

Mean

_diff 

K-mer 

embedd

ing 

XGBoost 94.62 53.41 51.31 81.22 62.24 75.14 51.69 - 

RF 85.45     54.19 51.71 72.54 62.24 75.14 51.7 82.92 

2.3. Abundance of Nm sites 

In order to identify the abundance of Nm sites in the RNA sequence of either Hela or Hek293 

cell lines, first we run XGBoost model (since it outperforms RF with K-mer embedding model) on 

the complete RNA sequence reads of Hela and Hek293 cell lines. Next, we identify all samples with 

predicted Nm sites in those reads, then we identify the number of Nm unique genomic locations 

corresponding to those Nm predictions as well as their frequencies in both cell lines. We found that 

there are 11,651,518 Nanopore signal samples predicted as samples with Nm sites from a total of 

920,643,073 Nanopore signal samples that represent the complete Hela cell line with 1,674,369 

unique genomic locations of Nm (Supplementary Table 1_Nm_unique_genomic_locations 

_hela.xlsx). Similarly, we found that there are 1712344 Nanopore signal samples predicted as 

samples with Nm sites from a total of 275,056,668 samples that present the complete RNA sequence 

of Hek293 cell line with 291,382 unique genomic locations of Nm modification (Supplementary 

Table 2_Nm_unique_genomic_locations _hek.xlsx). The reference K-mers corresponding to 

modified Nanopore signals with Nm predictions in Hela and Hek293 cell lines can be identified as 

strong K-mers in comparison with the reference K-mers corresponding to the unmodified/control 

Nanopore signals, which can be considered as weak contributors to the Nm prediction. The 

frequency of those strong reference K-mers that provide an overview of their abundance and show 

their contribution to Nm predictions in Hela and Hek293 cells lines are available in Supplementary 

Tables 3_Nm_unique_reference_kmer_freq_hela.xlsx and 

4_Nm_unique_reference_kmer_freq_hek.xls respectively. Also, Supplementary Figures 2_top_10-

modified_bases_hela and 3_top_10-modified_bases_hek provide the sequence logo for the top ten 

modified bases corresponding to Nm prediction in Hela and Hek293 cell lines respectively.  

We found that there are 105678 modified genomic locations common between Hela and 

Hek293 cell lines (Figure 4.A). Also, we observed that there were 10 genes shared across the top 

1% of Nm Modified genes in Hela and Hek293 cell lines (Figures 4.B).  Clearly, we notice that the 

extent of Nm modification (the number of Nanopore signal samples predicted as samples with Nm 

sites to the total number of Nanopore signal samples either modified with Nm or not modified) in 

RNA sequences of Hela cell line is higher than its counterpart in Hek293 cell line (1.27 % for Hela 

versus 0.62% for Hek293).  Therefore, the distribution of Nm across normalized gene length for 

Hela cell line is higher than its equivalent in Hek293 cell line (Figures 4.C). Additionally, and as a 

primary observation of Figure 4C, we found that Nm modifications are likely to be more prevalent 

in the 3’ region compared to the 5’ when observed at a transcriptomic level. This distribution 
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reinforces our previous observation about (psuedouridine) RNA modifications having a preference 

for 3’ over 5’ [25].  

Since Nm modifications can occur at any RNA base, we have also reported about the 

percentage of unique Nm locations occurring per each of the four RNA bases in the two complete 

cell lines of Hela and Hek293 (Table 6.) 

Table 6. The percentage of unique Nm locations occurring per each of the four RNA bases in Hela and 

Hek293 cell lines. 

 

 

2.4Functional enrichment analysis 

A total of 61 genes from Hek293 and 125 genes from Hela cell lines were identified as the top 

1% frequently modified Nm genes with the highest abundance of Nm modification.  The short-

listed genes from both cell lines were then plugged into Cytsoscape ClueGo [26] application to 

obtain the enriched ontologies and pathways at high confidence (p<0.05). Enrichment observations 

from this analysis are visualized in Figure 5 A, and B for Hek293 and Hela cell lines respectively.  

From the functional enrichment analysis of the top 1% gene set form Hek293 cell line (Figure 

5A, and supplementary Figure 4), we observed a wide range of functional processes like: 

“Glycolysis/Gluconeogenesis”, “Regulation of protein localization to cell surface”, and 

“Aggrephagy” being significantly enriched. Essentially highlighting the diverse regulatory role of 

Nm modifications, from their involvement in metabolic pathways, protein degradation and 

localization.  

In Hela cell line, we observed several high confidences (adjusted p-val < 0.05) enriched 

ontologies that were more representative of Nm modification role in immune response and cellular 

processes (Figure 5B and supplementary Figure 5) like: “C3HC4-type RING finger domain 

binding”, “Antigen processing and presentation (class I MHC)”, and “cytoplasmic translational 

initiation”. 

To observe which cellular pathways were associated with the Nm modifications, we ranked 

the complete human gene lists from both Hela and Hek293 cell lines based on occurrence of Nm 

modification locations and performed gene set enrichment analysis (GSEA) [27] using WebGestalt 

[28]. Across both cell lines we observed that genes associated with metabolic processes, protein 

binding, and biological regulation were enriched in these ranked lists, reinforcing the association 

between Nm modification and RNA-protein interaction which was previously observed in 

literature [29] [30]. The Nm modified gene sets from both cell lines had autoimmune pathways, 

signaling pathways, and Diabetes pathways in common with a relatively higher enrichment scores 

(NES>1.2) as seen in supplementary Figure 6. Additionally, we also observed some tissue specific 

pathways were enriched in case of Hela, like prion disease and Inflammatory bowel disease in 

Hek293. Those pathways were enriched with high normalized enrichment scores (NES>1.2).    

3. Discussion 

We have noticed that Nm-nano outperforms the existing non-Nanopore tools for Nm sites 

prediction in the literature [18-20] in terms of accuracy with 1:1 ratio of positive and negative test 

samples (50.1% for [17], 81.91% for [18], 84.8% for [19], and 99% for Xgboost, the best Nm-nano ML 

model). However, we found the comparison between Nm-Nano and those tools does not make 

sense in terms of implementation, but it makes sense in terms of accuracy. This is because those 

tools were only applied to predict Nm sites in short reads of RNA sequences, while Nm-Nano can 

predict Nm sites on long reads of RNA sequences. Moreover, those tools were trained and tested 

Cell line A base C base G base U base 

Hela   29.75   21.54 22.91 25.81 

Hek293   26.18%   25.14% 26.12% 22.56% 
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on the same dataset, and they were not tested for predicting Nm sites on a combination of two 

benchmark datasets of RNA sequence data for two different cell lines.  As for comparison of the 

performance of Nm-nano with nanoRMS [22], the existing Nanopore based tool for predicting Nm 

modifications on direct RNA sequencing data, we found that nanoRMS was only tested on 

predicting Nm in direct RNA sequences of yeast and it was not tested on predicting the Nm sites 

in direct RNA sequencing data of human cell lines which are more complex than lower eukaryotes 

like yeast. Hence, it is not possible to directly compare the accuracy of nanoRMS tool on human 

cell line data. In addition, nanoRMS predicts Nm sites on individual single reads of direct RNA 

sequence data, where the single read features are used to train the predictors of nanoRMS. Those 

features were averaged before Nm prediction, making it not feasible to obtain the contribution of 

each feature in predicting Nm sites. Moreover, only the accuracy values of predicting the 

stoichiometry of Nm for each read and no other performance statistics such as precision and recall 

are reported to evaluate the performance of nanoRMS. Therefore, we can only compare the average 

of the accuracy values of KNN (the best supervised classifier employed in nanoRMS) to the 

accuracy of predictors integrated in Nm-nano. Based on this comparison, we conclude that the 

accuracy of each of the two ML models employed in Nm-nano significantly outperforms the 

average accuracy of KNN predictor (66.17%), employed in nanoRMS. As for comparison between 

the implementation of Nm-nano and nano-RMS, we found that nano-RMS relies mainly in its 

implementation on the base-calling “error” signatures in the Nanopore data as features for 

detecting the Nm-modification. However, those base-calling errors might not be the same for each 

type of modified K-mer context resulting from base-calling as not all modified bases can be 

detected as base-calling errors. So, the generated benchmark dataset used in nanoRMS might be 

biased. Moreover, with the advances in Nanopore technology, the Nanopore base-callers would 

become more accurate, and thus the base-calling errors would become lower resulting in 

decreasing the size of the training dataset that is used in a tool such as nanoRMS, which might lead 

to deceasing the performance of the ML models deployed in this tool for predicting Nm sites. In 

other words, relying on the erroneous base-calling of Nanopore RNA sequencing for generating a 

training data on which ML models applied for detecting Nm modification is a challenge either 

because not all the modified bases in K-mers contexts resulting from base-calling process would 

generate base-calling errors which might result in biased training or validation dataset, or because 

of the high accuracy of base-calling might lead to generating limited-size of training data. So, we 

believe that detecting RNA modifications based on the base-calling error would be an obsolete 

approach in the future when the base-callers performance becomes or close to 100% accuracy. 

Finally, we compared the performance of Nm-nano predictors with the performance of HybirdNm 

proposed in [23] and we found that the accuracies of HybirdNm for predicting Nm sites were not 

explicitly mentioned. However, we found that AUC was a common metric used to evaluate the 

performance of Nm-nano and HybirdNm and so we used this metric for comparing the 

performance of Nm-nano predictor models to HybirdNm performance. In view of this, we found 

that the best AUC achieved by HybirdNm was 0.962 for predicting Um subtype and the average 

AUC for predicting the four subtypes was 0.917 which is less than the AUC achieved by either 

Xgboost (AUC of 0.991) or RF with kmer embedding (AUC of 0.957) employed in Nm-nano 

framework when any of both models applied to Hek293 benchmark dataset with random test 

splitting (supplementary file 1_test_split_Hek293_results. docx). Additionally, HybirdNm 

framework uses the basecalling errors in Nanopore data as a feature for predicting Nm subtypes 

which can’t be considered a good choice of feature for training the model once the performance of 

the current Nanopore basecallers reach the optimum by achieving 100% accuracy or very closed to 

that. Moreover, HybirdNm was trained and tested on the same benchmark dataset of Hek29 cell 

line, and it was not tested for predicting Nm sites on a combination of two benchmark datasets of 

RNA sequence data for two different cell lines.  Supplementary file (Nm-nano_advantages. docx) 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 17, 2024. ; https://doi.org/10.1101/2022.01.03.473214doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.03.473214
http://creativecommons.org/licenses/by-nc-nd/4.0/


tabulates the advantages of Nm-nano over the already available ONT methods for predicting Nm 

modifications. 

It has been also shown that Nm-nano predictors exhibited a high accuracy in the random test-

split applied to either Hela or Hek293 benchmark datasets, and the integrated validation test 

applied to a combination of both Hela and Hek293 bechmark datasets. However, we found that 

the performance of Nm-nano predictors became significantly lower in the validation with an 

independent cell line, when once cell line is used for training the Nm-Nano predictor and another 

cell line is used for testing it. For instance, RF and XGboost achieved an accuracy of 66% and 59% 

respectively in detecting Nm-sites on Hek293 benchmark dataset in the testing phase after using 

Hela benchmark dataset for training the models. In the inverse cross validation, RF and XGboost 

achieved an accuracy of 57.26% and 56% respectively in detecting Nm-sites on Hela benchmark 

dataset in the testing phase after using Hek293 benchmark dataset for training the models. We 

believe that this clear decrease in cross validation and inverse cross validation accuracies of 

detecting Nm sites is due to the small dataset size of Nm-seq data [17] used for generating the 

benchmark training dataset of Hela and Hek293. This small dataset size causes an increase in the 

specific differences between both cell lines which causes the decrease in Nm prediction accuracy 

when tested on independent cell line. In addition, it is also possible that there are cell line specific 

features which are not captured when trained on individual cell line datasets, resulting in lower 

cross validation accuracies.  Clearly this was not the case in the integrated validation testing of 

Nm-nano predictors that achieved a high accuracy of detecting Nm sites when training these 

predictors on 50% of the integrated dataset that combines both benchmark datasets of Hela and 

Hek293 and test the predictors on the remaining 50%.  

It was also observed that deploying Nm-Nano on direct RNA sequencing data of Hela and 

Hek293 cell lines leads to identifying top frequently modified Nm genes that are associated with a 

wide range of biological processes in both cell lines. However, it might be unclear how the 

enrichment of specific functional families for only two considered human cell lines (Hela and 

Hek293) would strengthen the confidence in the Nm-nano’s predictions. To address this point, we 

have now looked at publicly available direct RNA sequencing data for human cell lines on SRA 

and currently we found that there is data for multiple cell lines. However, the data is only available 

in the form of fastq files and not in the form of fast5 files and given that our algorithm needs signal 

level fast5 data, it is not possible at this point to run our algorithm at those datasets. Hence, we 

can’t test on additional cell lines available in the public domain due to the limitations in the access 

to the fast5 files.  However, studying the differential extense of Nm sites across multiple cell lines 

for understanding common and unique sites is an exciting question which we believe can be 

addressed as more cell line based direct RNA sequencing datasets in the form of fast5 files with 

signal data are publicly available in the future. Finally, it is worth noting that the current study has 

a limitation of only detecting Nm modification in mRNA. This is due to that the current protocol 

of Nanopore direct RNA sequencing is limited to sequencing mRNA with polyA [31] . However, 

for other small RNAs to be captured by Nanopore sequencing, it is possible to attach polyA with a 

modified protocol of Nanopore RNA sequencing. Hence mapping modifications on such small 

RNAs is beyond the scope of the current study which focuses on mapping Nm modifications on 

only mRNA. However, we think that it would be possible to apply Nm-Nano predictors for 

detecting Nm sites in other small RNAs when a modified and rigorously validated version of 

Nanopore RNA sequencing protocol would be available, that can attach other types of small RNAs 

to polyA. 

 

4. Materials and Methods 

4.1. Basic approach pipeline  

The complete pipeline of Nm-Nano framework for identifying Nm modifications in RNA 

sequence consists of several stages. The first stage of the pipeline starts by culturing the cell line 
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by extracting it from an animal and letting it grow in an artificial environment. Next, the RNA is 

extracted from this cell during library preparation and put through the ONT device and starts 

generating Nanopore signal data.  The MinION Mk1B device was used for direct RNA 

sequencing of Hela and Hek293 cell lines with FLO-MIN106 flow cell. The fast5 files that store 

the raw electrical signals output by the ONT device for each cell line are then base-called via 

Guppy [32] to produce fastq files that store the base-called RNA sequence reads. Those reads are 

aligned to a reference genome to produce the SAM file using minimap2 tool [33]. From the SAM 

file, a BAM and sorted BAM file are generated using samtools [34], where the BAM file is a 

compressed version of the SAM file. Next, a coordinate file is created using the produced SAM 

file and a provided BED file [35] that includes the Nm-modified locations on the whole genome 

that have been experimentally verified in literature based on the research work presented in [17] 

. This coordinate file is needed for labeling the Nanopore signal samples produced by eventalign 

module as modified or unmodified when training any of the two Nm-Nano predictors (the 

Supplementary Files 2_Hela.txt and 3_Hek293.txt show the coordinate files generated for Hela 

and Hek293 respectively). Next, the eventalign module of the Nanopolish (a free software for 

Nanopore signal extraction and analysis [36-38]) is launched for extracting Nanopore signals, 

which produces a dataset of Nanopore signal samples. The structure of Nm-Nano’s pipeline is 

similar to the pipelines used by other RNA modification prediction tools [25]. However, Nm-

Nano’s pipeline is different in three phases (Figure 1.A and B): the benchmark dataset generation, 

the feature extraction, and ML models construction phases. The benchmark dataset generation 

phase in Nm-Nano’s pipeline is different because Nm modifications can occur at any RNA base, 

and thus all the samples that are generated from signal extraction process are used to identify 

the Nm sites using the information in the coordinate file, where some of those samples will be 

labeled as modified with Nm sites, while the remaining are control samples that will be labeled 

as unmodified.  Similarly, the feature extraction phase in Nm-Nano’s pipeline is different 

because it uses different features (e.g., position, signal/event_mean, signal/event_stdv, 

model_mean, model_stdv, kmer_match, mean_diff, and word2vec embedding features of K-

mers) extracted from the modified and unmodified signal samples to train the constructed ML 

models for predicting Nm sites. Finally, the ML models construction phase in Nm-Nano’s 

pipeline is different because it deploys two different ML models (the XGBoost with tuned 

parameters and Random Forest with K-mer embedding) for predicting Nm sites in long RNA 

sequence reads. In the next subsection we will highlight those differences by introducing more 

details about the benchmark dataset generation, feature extraction and ML model constructions. 

4.2. Benchmark datasets generation  

Two different benchmark datasets were generated for Hela and Hek293 cell lines 

(Supplementary Tables 5_training_hela.xlsx and 6_training_hek.xlsx). Both datasets were 

generated by considering all nanopore signals samples generated by passing the long RNA 

sequence of either Hela or Hek293 through the Oxford Nanopore Technologies (ONT) device. 

Those signals are extracted using the Nanopolish eventalign module. Each dataset is initially 

labeled with Nm-sites using the bed file that includes the Nm-modified locations on the whole 

genome that have been experimentally verified in literature based on Nm-seq protocol [35]. Nm-

seq reported about Nm sites from two different cell lines with a total number of 699 Nm sites in 

Hela and 2102 Nm sites in Hek293. Thus, to label each sample as Nm modified or not, all the 

samples generated from signal extraction were used as the target samples for identifying Nm 

modification since Nm modifications can occur at any RNA base. Next, the intersection between 

their position column on the reference genome and the position in the coordinate file (generated 

from Nm BED file and SAM file for each cell line) is determined. This intersection will represent 

the positive samples, while the remaining samples will be the negative samples. In the end we have 

52,582 samples: 26,291 are positive and 26,291 are negative ones (after sampling the negative 
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samples which are very huge in comparison with positive ones) for Hek293. Similarly, we got 

167,374 samples: 83687 are positive samples and 83,687 are negative samples for Hela cell line. We 

observed that there is a total of 507 and 1024 different reference kmer combinations captured in the 

modified and unmodified signals datasets respectively in Hela training data (Supplementary 

Tables 7_training_modified_kmer_freq_hela.xlsx and 8_ 

training_unmodified_kmer_freq_hela.xlsx) and a total of 238 and 1022 different reference K-mer 

combinations captured in the modified and unmodified signal datasets respectively in HeK293 

training data (Supplementary Tables 9_training_modified_kmer_freq_hek.xlsx and 

10_training_unmodified_kmer_freq_hek.xlsx).   Supplementary Figures 7_top_10-

modified_bases_training_hela and 8_top_10-modified_bases_training_hek provide the sequence 

logo for the top ten modified bases corresponding to Nm prediction in the benchmark training 

datasets of Hela and Hek293 cell lines respectively. 

4.3. Feature extraction 

Each generated benchmark dataset has seven columns that represent the seven features that 

were used for training the ML models that we developed and integrated in Nm-Nano 

framework. Those features are position, event_level_mean, event_stdv, model_mean, 

model_stdv, mean_diff, and K-mer_match. The first five features were directly extracted by 

picking their columns from the eventalign’s output (Supplementary File 4.txt) (namely: position, 

event_level_mean, event_stdv, model_mean, and model_stdv columns).  The sixth feature is 

generated by calculating the difference between the mean of the signal (event_level_mean) and 

the mean of the simulated signal by eventalign module (model_mean). The seventh feature is 

generated by checking if the reference_K-mer and model_K-mer columns in the eventalign’s 

output match each other, where the former refers to the base-called K-mers resulting from 

inferring the RNA sequence reads from the extracted Nanopore signals in the base-calling 

process, while the latter refers to base-called K-mers resulting from inferring RNA sequence 

reads from the simulated signals by eventalign. The value of reference & model K-mer match is 

1 if reference and model K-mers match each other and 0 otherwise. We should also mention that 

the position feature simply refers to genomic location of Nm modification and it does not include 

any information about the nature of nucleotide or neighboring sequence, so, training of Nm-nano 

predictors with such a feature will not cause the predictions to be highly biased towards the same 

conserved sequence in other RNA.                

4.4. Features generation with word embedding 

In addition to the extracted features, embedding features have been generated by applying 

the word2vec technique [39] to the corpus of reference K-mers resulting from aligning Nanopore 

signals to a reference genome using eventalign module of Nanopolish software. Applying the 

word2vec technique to the corpus of reference K-mers generates/outputs a set of 1-dimensional 

vectors of fixed size that represent the embedding features of those reference K-mers (the vector 

size is set optionally as a parameter when building word2vec embedding model).  

The idea of applying Word2vec to reference K-mer has been inspired by the research work in 

[40], in which word2vec has been applied to DNA K-mers to generate embedding features 

represented by vectors of real numbers as representations of those K-mers. This approach was 

introduced as an alternative approach to vector encoding of K-mer using one-hot technique that is 

subject to the curse of dimensionality problem, as when increasing the length of RNA sequence, 

the binary feature representation by one-hot encoding grows exponentially resulting in adding too 

many features to the dataset [41]. 

The embedding features generated by word2vec are combined with the other extracted 

features introduced in section previous section for training the RF classifier model that has been 

developed for predicting Nm sites in long RNA sequence reads. In other words, the combination 
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of all extracted features and embedding features are used to train the RF model, which in turn will 

be able to predict whether the signal is modified by the presence of Nm sites in the testing phase. 

                              

4.5 ML Models construction 

We have developed two machine learning models for predicting Nm sites in RNA sequence 

reads including the XGBoost [42] with tuned parameters and RF [43] with K-mer embedding. The 

XGBoost model parameters were tuned using the Grid-search hyperparameter tuning algorithm 

[24]. For the RF, the seed number parameter was set to 1234 and the number of trees parameter 

was set to 30 for obtaining the best performance of RF. The optimized distributed gradient boosting 

python library has been used for implementing the XGBoost model [44] and the scikit-learn toolkit 

[45] , the free machine learning python library has been used for implementing the RF model. 

4.5.1. XGBoost with grid search for hyper parameter tuning  

The Extreme Gradient Boosted trees (XGBoost) is a special implementation of Gradient 

Boosting [46]. Gradient boosting is a machine learning technique that produces a prediction model 

based on an ensemble of weak prediction models, which are decision trees in the case of XGBoost.  

This model is highly flexible and versatile and can be applied for classification-based problems, 

which is the main goal of this study. The advantage that XGBoost has over other tree-based models 

is that it has a faster training time along with its regularized boosting, which helps to prevent 

overfitting: this is when the machine learning model learns and becomes too accustomed to the 

training data and is not able to generalize and accurately predict the testing data. XGBoost does 

not also require feature scaling due to being a tree-based model and so feature scaling did not affect 

the value of the split point and the structure of the tree model. XGBoost can also cross-validate 

each iteration (round) of its training process, which can lead to higher results than models that 

cannot do the latter process. The use of decision trees and gradient boosting also provide the 

advantages over both random forest and other gradient boosting models, causing XGBoost to 

typically have a prediction error many times lower than regular gradient boosting or random 

forest. 

The XGBoost machine learning model was created after the data was preprocessed by 

removing all null values and performing feature extraction, The model has several parameters that 

can be adjusted and tuned to get the best performance of XGBoost. Hyper-parameter tuning using 

the grid search algorithm has been used since it allows for the best and most accurate combination 

of parameters to be obtained. The parameters that were optimized for the XGBoost model were 

eta, gamma, max_depths, min_child_weights, and scale_pos_weight. The optimized values for 

these parameters obtained using grid search algorithm were 0.01, 0.1, 15, 3, and 1 respectively. The 

parameter eta, representing the learning rate of the XGBoost model. Gamma parameter represents 

how conservative the model is. The parameter max_depth represents how deep a decision tree can 

be built and min_child_weight represents the minimum value needed to activate the respective 

node in the decision tree. The scale_pos_weight parameter controls the balance of positive and 

negative weights; this parameter is associated with the min_child weight. After the values for these 

best parameters were obtained by fitting the grid search XGBoost model to the training data, they 

were applied to the model to obtain its prediction results in the testing phase. 

XGBoost is trained with the set of features mentioned in section 4.3. Those features are 

extracted from the raw signal provided by direct RNA nanopore sequencing and the 

corresponding base-called K-mers resulting from inferring the underlying RNA sequence by base-

calling.  

4.5.2. RF with K-mer embedding 

We have developed a Random Forest (RF) ML model that has been trained with the same set 

of features used to train the XGBoost model, in addition to the embedding features generated by 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 17, 2024. ; https://doi.org/10.1101/2022.01.03.473214doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.03.473214
http://creativecommons.org/licenses/by-nc-nd/4.0/


applying Word2vec embedding technique to the reference K-mers of in the extracted Nanopore 

signals., one feature column in the benchmark Nm modification datasets of Hela and Hek293 cell 

lines. RF algorithm has been extensively used in the literature to address several problems in 

bioinformatics research [47]. It has been observed that the features generated by applying 

Word2vec embedding technique to the reference K-mers have a great positive impact on the 

performance of RF model as it was mentioned in results subsections 2.1 and 2.2.   

The RF ML model was created after the data was preprocessed by removing all null values 

then performing feature extraction and combining them with generated K-mer embedding 

features. The K-mer embedding features were generated using genism [48], a free python library 

that implements word2vec algorithm using highly optimized C routines, data streaming, and 

pythonic interfaces. The word2vec algorithm has various parameters including: the vector size, the 

window size, and the word count. The vector size is the dimensionality of the vector that represents 

each K-mer. The window size refers to the maximum distance between a target word/K-mer and 

words/K-mers around the target word/K-mer. The word count refers to the minimum count of 

words to consider when training the model, where words with occurrence less than this count will 

be ignored. The K-mer embedding features that lead to best performance of RF have been 

generated by setting the vector size to 20, the minimum word count to 1, and the window size to 

3.                               

4.6. Performance evaluation metrics 

The accuracy (Acc), precision (P), recall (R), and the area under ROC curve (AUC) [49] have 

been used as metrics for evaluating performance of Nm-Nano predictors. The mathematical 

notions for the first three metrics are identified as follows: 

 𝐴𝑐𝑐 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
 (1) 

 𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (2) 

 𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3) 

 Where: 

• TP denotes true positive and refers to the number of correctly classified Nm sites. 

• FP denotes false positive and refers to the number of non-Nm sites misclassified as Nm 

sites.  

• FN denotes false negative and refers to the number of Nm sites misclassified as non-Nm 

sites.  

• TN denotes true negative and refers to the number of correctly classified non-Nm sites. 

As for AUC metric, it measures the entire two-dimensional area under the ROC curve [50] which 

measures how accurately the model can distinguish between two things (e.g. determine if a base 

of RNA sequence is Nm site or not).       

                         

4.7. Environmental settings  

Nm-Nano has been developed as tool for detecting Nm modification in Nanopore RNA 

sequence data by integrating two ML models: the XGBoost with tuned parameters and RF with K-

mer embedding to predict this type of RNA modification. XGBoost parameters were tuned to get 

the best performance using the Grid search algorithm which takes around 6 hours and 52 minutes 

to fit on the training dataset of Hek293 and 9 hours and 12 minutes to fit on the training dataset of 

Hela cell line for obtaining the best parameters that were applied to XGBoost model in the testing 

phase. The experiment was executed on Windows 10 machine with (8 cores) processor of Ryzen 

5900HS CPU, and 16 GB RAM. It should be mentioned that though grid search algorithm took a 

huge processing time for tuning the parameters of XGboost, using this algorithm for optimizing 

XGBoost parameter causes a significant improvement in XGBoost performance. The performance 
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results of XGBoost versus XGBoost tuned with grid search algorithm are shown in Supplementary 

file 5_xgboost_versus_grid_search_xgboost_results.docx.  Similarly, though using word2vec for 

generating embedding features when developing RF with K-mer embedding model added extra 

processing time to the execution time of RF algorithm, it also led a great improvement in RF 

performance. This is because combining the embedding features generated by word2vec with the 

extracted features from Nanopore signals positively affects the performance of RF since the 

embedding features are strongly contributes to the model performance as it has been presented in 

result subsections 2.1 and 2.2. The performance results of RF versus RF with kmer embedding are 

shown in Supplementary file 6_RF_versus_RF_with_kmer_embedding_results.docx. Meanwhile, 

we thought about improving the performance of XGBoost by applying grid search algorithm for 

hyper parameter tuning in addition to applying K-mer embedding with word2vec for generating 

embedding features that would be combined with the extracted features used for training XGBoost. 

However, we found that this will make XGBoost very slow when applying it to the benchmark 

dataset of a given cell line with a slight improvement in its performance that would not be 

proportional to the huge increase in the processing time of XGBoost as it has been presented in 

result subsection 2.1.                              

4.8. Implementation and usage of Nm-Nano 

The ML models of Nm-Nano framework are implemented in python 3.x. To run the XBboost 

model, the user has to type the following command from Nm-Nano main directory on the user’s 

local machine after cloning the code from Nm-Nano GitHub repository: 

 

python test_xgboost.py 

 

Similarly, to run Rf with K-mer embedding model, the user has to type the following command 

from Nm-Nano main directory: 

                                     

        python RF_embedding.py 

 

To allow user to practice with Nm-nano predictors, we include a small benchmark dataset 

sample for Hela cell line in Nm-nano GitHub repository (Nm_benchmark_hela_sample.csv). 

However, the user is free to generate a benchmark dataset for any other cell lines based on the 

instructions mentioned in README file in generate_benchmark folder in Nm-nano GitHub 

repository.  

To generate a benchmark dataset for a specific cell line, the following command should be run 

on the command line of Linux environment from generate_benchmark folder in Nm-Nano main 

directory:  

 

python main.py -r ref.fa -f reads.fastq  

 

Where main.py is a python script file included in generate_benchmark folder implemented in 

python 3.x, (ref.fa ) is the reference Genome file and (reads.fastq) is the fastq reads file. Both ref.fa 

and reads.fastq files should be placed in the same path with the main.py file.  

Before running the main script, the user should include the folder that includes the fast5 files 

(fast5_files) from which reads.fastq file was generated in the same directory of main.py file . Once 

the user runs main.py script, it will lunch executing several command lines for generating 

eventalign output. These command lines are included in generate_eventalign_output.txt in in 

generate_benchmark folder on Nm-nano GitHub repository. Meanwhile the main.py will call other 

two python files. The first is gen_coors_Nm.py that generates the coordinate file by asking the user 

to enter the name of the bed file that has the Nm-modified genomic locations with the absolute 
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path and extension. The second is extract_nm.py that takes as input the coordinate file and the 

eventalign output to extract features and generate the benchmark dataset. To allow the user to 

practice with Nm-nano pipeline for benchmark dataset generation, we include the following in 

generate_benchmark folder on Nm-nano GitHub repository 

 

1- A link to download a fast5 file sample for the Hek293 cell line that should be included in 

fast5_files folder that should be placed in the same path of main.py file. 

2- A sample of fastq files (reads.fastq) for Hek293 corresponding to the fast5 files in step1 

3- A link to download a reference genome sample (ref.fa) that should be placed in the same 

path of main.py file. 

4- A sample of bed file for Hek293 cell line (hek.bed.txt)  

 

It should also be mentioned that Nm-nano framework can also be extended by integrating other 

ML/ deep learning models for predicting Nm sites. Moreover, the framework’s pipeline is generic 

and can be used with any direct RNA sequencing output from any ONT device such as MinION, 

GridION, and PromethION. 

 

5. Conclusions 

In this paper, we have proposed a new framework called Nm-Nano that integrates two 

machine learning models: the XGBoost with tuned parameters using grid search algorithm and RF 

with K-mer embedding. It has been shown that the proposed framework was efficient in detecting 

Nm sites in RNA long reads of human cell lines which addresses the limitations of existing Nm 

predictors presented in the literature that were only able to detect Nm sites in short reads of RNA 

sequences of cell lines of various species or long reads of RNA sequences of non-human cell lines 

(yeast) and one human cell line (Hek293).  

By deploying Nm-Nano on direct RNA sequencing data of Hela and Hek293 cell lines, the top 

frequently modified Nm genes that are associated with a wide range of biological processes in both 

cell lines were identified. In Hela, , we observed several high confidences (adjusted p-val < 0.05) 

enriched ontologies that were more representative of Nm modification role in immune response 

and cellular processes like: “C3HC4-type  RING finger domain binding”, “Antigen processing and 

presentation (class I MHC)”, and  “cytoplasmic translational initiation”, while in Hek293 we 

observed a wide range of functional processes like: “Glycolysis/Gluconeogenesis”, “Regulation of 

protein localization to cell surface”, and “Aggrephagy” being significantly enriched that highlights 

the diverse regulatory role of Nm modifications, from their involvement in metabolic pathways, 

protein degradation and localization. Thus, Nm-Nano would be a useful computational 

framework for accurate and interpretable predictions of Nm sites in RNA sequence read of human 

and other species cell lines as well that could reveal various biological findings.   
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FIGURES LEGENDS 

Figure1. The Nm-Nano framework for predicting Nm sites on (a) Hela cell line using random 80/20 

train/test split (b) 50% of the combination of Hela and Hek293 benchmark dataset using integrated 

validation testing with random 50/50 train/test split on this combination (c) Analysis performed 

based on Nm-Nano predictions.  

Figure 2. The learning, loss and ROC curves of Nm-nano predictors validated on Hela benchmark 

dataset with random split testing, where 80% of data is used for training and the remaining 20% is 

kept for testing. (a, b, and c) XGBoost model and (d, e, and f) RF with K-mer embedding model.  

Figure 3. The learning, loss and ROC curves of Nm-nano predictors in integrated validation testing, 

where 50% of combination of Hela and Hek293 benchmark datasets is used for training and the 

remaining 50% is used for testing. (a,b, and c) XGBoost model and (d, e, and f) RF with K-mer 

embedding model. 

Figure 4. (a) The overlap between Nm unique locations in complete Hek293 and Hela cell lines (b) 

the overlapping between top frequent 1 % modified Nm genes in complete Hek293 and Hela cell 

lines (c) The density plots that represents Nm modifications across normalized gene length for 

Hek293 and Hela cell lines. 

Figure 5. Functional enrichment analysis of most frequently Nm modified genes across a cell line 

in terms of functional grouping of the GO-terms based on GO hierarchy using Cytoscape ClueGO 

application. (a) Hek293 cell line and (b) Hela cell line (visualizing high confidence (p-val<0.05) 

ontologies and pathways potentially associated with Nm RNA modification. The size of the nodes 

are representative of the significance of association with respect to genes per GO-term. 
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