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Abstract

Glioblastoma is an aggressive diffusely infiltrating neoplasm that spreads beyond surgical
resection margins, where it intermingles with non-neoplastic brain cells. This complex
microenvironment harbouring infiltrating glioma and non-neoplastic brain cells is the origin of
tumor recurrence. Thus, understanding the cellular and molecular features of the glioma
microenvironment is therapeutically and prognostically important. Here, we used single-nucleus
RNA sequencing (snRNAseq) of primary and recurrent glioma to define three compositional
‘tissue-states’ rooted in cohabitation of cell-types and transcriptional states. These comprise a
state featuring A) abundant normal brain microenvironment cells, B) reactive/inflamed brain
microenvironment, and C) cellular/proliferative tumor. All these states exhibited variable degrees
of infiltration by glioma cells. Spatial transcriptomics confirmed that the cell-types and
transcriptomics states which compositionally cohabitate tissue states also colocalize in space.
Tissue states are clinically significant because they correlate with radiographic, histopathologic,
and prognostic features. We found that enrichment of tissue state B signature correlated with
shorter survival. Importantly, we found that our compositionally defined tissue states are enriched
in distinct metabolic pathways. One such pathway is fatty acid biosynthesis, which was enriched
in tissue state B — a state enriched in recurrent glioblastoma and composed of astrocyte-
like/mesenchymal glioma cells, reactive astrocytes resembling those seen in neurodegeneration,
and monocyte-like myeloid cells. We showed that treating acute slices of GBM with a fatty acid
synthesis inhibitor is sufficient to deplete the transcriptional signature of tissue state B. Our
findings define a novel compositional approach to the glioma-infiltrated tissue which allows us to
discover prognostic and targetable features, paving the way to new mechanistic and therapeutic
discoveries.

Introduction

Glioblastoma (GBM) is the most malignant glial tumor of the brain and is refractory to current
treatment. Although gross surgical resection of the visible tumor is sometimes feasible, glioma
cells infiltrate the brain beyond the resection margins. While many studies have characterized the
transcriptional and genomic features of GBM cells and glioma associated microglia/myeloid cells,
a comprehensive analysis of other cells in the GBM microenvironment, and the patterns of
cohabitation of different cell types is lacking. Previous studies have shown that the composition
of glioma infiltrated samples varies from cellular tumor comprised of GBM and myeloid cells, to
minimally infiltrated GBM margin tissue composed largely of non-neoplastic brain
microenvironment cells, including neurons and glia [1, 2]. This is the microenvironment into which
tumor cells migrate and proliferate, leading to recurrence, and is also the target of adjuvant
therapy. Thus, understanding the cellular milieu of the tumor microenvironment at presentation
and recurrence, including both neoplastic and non-neoplastic cells, is vital for advancing the
management of GBM. Our goal is to determine patterns of cellular composition and transcriptional
states in primary and recurrent GBM, including both neoplastic glioma cells and non-neoplastic
brain cells.

Early studies used bulk RNA sequencing approaches to understand GBM states in MRI-
localized samples from contrast-enhancing (CE) and non-contrast enhancing (NCE) margins [3-
6]. More resolution is attained using single cell RNAseq (scRNAseq) approaches, which are being
increasingly used to understand heterogeneity in gliomas. Several studies have employed
scRNAseq from freshly resected surgical samples to explore the heterogeneity of GBM [2, 7-12].
These studies have significantly advanced our understanding of the heterogeneity and pathology
of glioma. However, application of whole cell scRNAseq is faced with practical challenges related
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to the limitations of acquiring and processing freshly resected glioma tissue and the technical
incompatibility with banked frozen glioma tissue. Moreover, scRNAseq is limited in sampling non-
neoplastic cells of the microenvironment like neurons and astrocytes, which are major
constituents of the tumor-margins [2, 8-11], in part because of cell-type survivability/selection bias
during tissue dissociation. Thus, while advances have been made in defining the genetic
alterations in recurrent glioma [13, 14] and features of myeloid cells [15], comprehensive analyses
of cellular composition and diversity of cellular phenotypes in primary and recurrent gliomas
remain a challenge.

Here, we circumvented these limitations of sScCRNAseq by using single nucleus RNAseq
(snRNAseq), which allowed us to analyze frozen tissue, and inclusively sample cells of the
microenvironment from primary and recurrent glioma. We sampled glioma-infiltrated tissue, from
cellular tumor to minimally infiltrated surrounding brain tissue at the single cell level.
Transcriptional analysis of copy number variations (CNVs) provided a metric to distinguish
neoplastic (CNVpos) and non-neoplastic (CNVneg) nuclei, and unbiased clustering revealed that
primary and recurrent tumors harbor CNVpos glioma cells with similar transcriptional states.
Conversely, the microenvironment of primary and recurrent glioma displayed distinct cell-type
specific states and different compositional landscapes. Leveraging information from the
snRNAseg-derived compositional make-up of glioma-infiltrated samples defines three
generalizable “tissue states” defined by cellular cohabitation in the glioma-infiltrated tissue, with
each tissue state showing enrichment for specific gene signatures that can be identified in more
accessible bulk RNAseq samples. This cohabitation of cell-types/transcriptional states was
confirmed using spatial transcriptomics. We demonstrate that tissue states are prognostically
relevant and display metabolic dependencies that can be pharmacologically targeted.

RESULTS

Transcriptional analysis of the glioma microenvironment reveals prognostically significant
subpopulations of non-neoplastic astrocytes

Given the importance of glioma microenvironment in tumor progression, we decided to investigate
the implications of microenvironmental states on the prognosis of GBM. To achieve that, we first
identified neoplastic and non-neoplastic nuclei based on chromosomal copy number variation
(CNV) inference (Supplementary results). Given the repertoire of transcriptional states glioma
cells that have been previously described ([2, 7-10, 12]), we confirmed that our CNV positive
(CNVpos) neoplastic nuclei from primary and post-treatment recurrence GBM recapitulate known
transcriptional states. We provide this data in the supplementary results including discussion of
glioma states in primary and recurrent glioma (Figures S1, S3), CNV analysis of primary and
recurrent glioma samples (Figures S2, S4), localization studies of glioma states in the tissue
(Figure S5), survival analysis of glioma signatures (Figure S6), and details on other low grade
glioma and epilepsy samples included in this study (Figures S7-8). We focused on the non-
neoplastic CNV negative (CNVneg) nuclei of the glioma microenvironment and combined in our
analysis nuclei from primary and recurrent glioma, as well as nuclei from low-grade glioma (LGG)
and epilepsy, to include a spectrum of neurological diseases with alterations to non-neoplastic
cells in the brain microenvironment. The clinical data on the samples, QC metrics, and number of
nuclei per lineage/cluster is provided in supplementary table-1. Our CNVneg nuclei datasets
included 16831 nuclei: 6929 from primary glioma, 6008 from post-treatment recurrent glioma,
2875 from epilepsy, and 1019 from LGG. We projected these nuclei in UMAP space and assigned
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cell lineages as shown in Figure-1A. The expression of a select number of marker genes per
lineage is shown in Figure-1B. We present the results on myeloid lineage nuclei in the
supplementary results (Figure-S10), which demonstrates that monocyte-derived tumor-
associated macrophages (TAMs) were enriched in recurrent glioma, while microglia-derived
TAMs were enriched in primary glioma, consistent with a previous report[15].

We focused on astrocytes, which are key elements of the glioma microenvironment and
are not well represented in glioma single-cell RNAseq datasets [2, 7-12, 16]. A recent paper
implicated GBM-associated astrocytes in promoting an immunosuppressive microenvironment
[17]. Moreover, the distinction between tumor-astrocytes and reactive-astrocytes is of major
diagnostic importance in neuropathology. Thus, we analyzed astrocytes (707 nuclei — 284 from
primary glioma, 254 from recurrent glioma, 45 from LGG, and 121 from epilepsy) in isolation from
other cell types, reduced their dimensions, and clustered them into three states; Astl —
protoplasmic astrocytes, Ast2 — reactive astrocytes with expression of oligodendroglial and
neuronal genes, and Ast3 — reactive astrocytes with inflammatory gene expression (Figure-1C
and supplementary table 4). The astrocytes are projected by disease condition in Figure 1D.
Expression of select markers of these astrocytes states is shown in Figure 1E. A more in depth
analysis of glioma-microenvironment astrocytes, including discussion of the sub-clusters, sub-
cluster markers, differential distribution between conditions, and prognostic relevance are
provided in the supplementary results (Figure-S9A-F and supplementary table-5). Notably, a
random forest classifier trained to identify astrocytes from Huntington disease versus controls[18],
when applied to our glioma data classified the majority of Ast3 cells as Huntington disease like,
and the majority of Astl as control like (Figure-1F). Since astrocytes and glioma shared gene
signatures (for example, CLU and LGALS3 expression), we performed differential gene
expression analysis between primary and recurrent glioma non-neoplastic astrocytes and all
CNVpos glioma nuclei and identified 1620 genes were higher in astrocytes compared to glioma
and 3380 were higher glioma compared to astrocytes. Examples of genes higher in non-
neoplastic astrocyte include genes associated with Alzheimer’s disease (CLU, APOE)[19, 20],
metallothionein genes (MT1H, MT1G, MT1M, MT1F, MT1E, MT1X, MT2A, and MT3 - increased
in reactive astrocytes [18]), Synuclein genes (SNCA, SNCB, and SNCG), WIF1l, CHI3L2
(associated with poor prognosis in glioma[21]), ALDOC, ALDOA, AQP4, carbonic anhydrases
CA2 and CA11, and CXCL14, a cytokine implicated in promoting glioma invasion [22]
(Supplementary Table-4). Conversely, genes higher in CNVpos glioma include EGFR, PTPRZ1,
NOVAL, CD24, Nestin (NES), SOX5, and SOX4. We used KEGG pathway enrichment analysis
to query the function of these genes (Figure-1G-H). Further analysis of the differentially
expressed genes showed that several KEGG pathways were enriched in genes higher in non-
neoplastic astrocytes (Figure-1G), with some relating to neurodegeneration such as Parkinson
disease, and prion disease. Notably, these signatures are highly enriched in oxidative
phosphorylation genes (supplementary Table-4), which is dysregulated in neurodegenerative
diseases [23]. Moreover, other metabolic pathways enriched in astrocyte DGE included
metabolism of fatty acids, glycolysis, TCA cycle, and ferroptosis. Conversely, KEGG pathways
increased in CNVpos tumor-astrocytes were largely related to DNA replication, cancer-related
pathways including ErbB and MAPK signaling, DNA replication and mismatch repair (Figure-1H
and Supplementary Table-4).

Re-convolution of sShRNAseq identifies three tissue states based on cellular composition of glioma
and its microenvironment
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Given the heterogeneity of cellular states of glioma and non-neoplastic cells in the glioma
microenvironment, we hypothesized that the transcriptional landscape of GBM is determined by
patterns of cohabitation of specific types and transcriptional states of neoplastic and non-
neoplastic cells. To test this hypothesis, we first asked if specific glioma, or brain
microenvironment lineages were differentially abundant or deplete across primary and recurrent
glioma using a regression model [24] to test for differential abundance (Figure-2A). The results
showed that for CNVpos cells, gl_Mes2 were significantly more abundant in recurrent glioma,
while gl_PN1 were more abundant in primary glioma, (Benjamini-Hochberg adjusted p values (g-
value) 3.99e-2 and 1.318e-5 respectively). For the CNVneg cells in the glioma microenvironment,
OPCs were significantly more abundant in primary glioma (g-value 1.085e-03). These results
show that patterns of cellular composition vary in primary and recurrent glioma, and likely
contribute to determining the transcriptional landscape of glioma.

To uncover patterns of ‘tissue states” with correlated cell states/lineages, we took
advantage of the relatively unbiased sampling of cellular composition in the brain tumor
microenvironment provided by snRNAseq. We approximated the cellular composition of each
surgical sample by recombining the cells from all the distinct cell populations, as identified by
snRNA-seq, to create a compositional matrix containing the abundance of all cell types across all
samples (Supplementary Table-1). The cellular composition matrix includes three astrocytic
clusters (Astl-3 — see methods), five immune-cell states (Myell, moTAM, mgTAM, prTAM, and
T cells - see supplementary results and methods), neurons, oligodendrocytes, endothelial cells,
OPCs, and glioma cells. We then used principal component analysis of the resulting cellular
composition matrix and identified the compositional features that account for the variance across
the samples (Figure-2B). We used the glioma states as supplementary quantitative variables [25]
— the coordinates of which can be predicted from the other variables inputted into the PCA
analysis. The results showed that the relative abundance of CNVpos glioma cells versus CNVneg
non-neoplastic cells (neurons, oligodendrocytes, OPCs) is the major feature of the first principal
component, and the abundance of reactive astrocytes (Ast3), macrophage-like myeloid cells
(moTAM), and T cells is the major feature of the second principal component. Notably, the
abundance of a specific subpopulation of mesenchymal glioma cells (gl_Mes2) was also highly
correlated with the second principal component (PC2). These finding indicate that specific
subpopulations of neoplastic and non-neoplastic cells tend to co-inhabit glioma samples.
Additionally, PC2 was positively correlated with the recurrent glioma condition (p.value= 0.027).
To assess if the cohabitation of cell types and transcriptional states is prognostically relevant, we
used the IDH-WT GBM TCGA and CGGA survival datasets and performed a log-rank test on
samples with positive versus negative PC2 sighature enrichment and found that positive
enrichment is significantly associated with poor survival (Figure-2C). This data show that glioma
infiltrated tissue shows patterns of cellular composition driven by co-habitation of specific cell-
types and transcriptional states and reveal prognostically-relevant gene signatures that span
across both neoplastic and non-neoplastic cell states that co-inhibit tissue samples.

As a second approach to characterize the patterns of co-habitation of cell types and
transcriptional states in GBM, we analyzed nine samples of IDH-WT GBM infiltrated brain tissue
using spatial transcriptomics (ST - Supplementary table-1, Figure 2D-E and Figure S11). This
analysis highlighted the spatial patterns of colocalization of high enrichment scores for specific
glioma states and non-neoplastic cell types, such as astrocyte-like/mesenchymal glioma
(gl_Mes?2) and reactive astrocytes Ast3 (Figure 2D). Extending this analysis, we determined the
enrichment scores of all cell-type/transcriptional state gene signatures measured across all nine
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GBM-infiltrated ST samples, correlated them using Pearson correlation, and then clustered the
cell-types/transcriptional states on the Euclidian distance matrix derived from the correlation
scores using hierarchical clustering (Figure 2E — see methods). Three main clusters were
apparent: 1- which showed high correlation between astrocyte-like/mesenchymal glioma gl_Mes1
and gl_Mes2, reactive astrocytes Ast3, endothelial cells, T-cells, and monocyte-like myeloid cells
moTAM; 2- with high correlation between OPCs and proliferative glioma gl_Prol and gl_Pro2;
and 3- with high correlation between neurons, proneural glioma gl_PN1 and gl_PN2, mgTAM,
protoplasmic astrocytes Astl. These findings are consistent with the results from snRNAseq, and
provide additional evidence to support cohabitation of cell-types/transcriptional states.

Driven by the above findings, we clustered the snRNAseq samples into 3 distinct “tissue-
states” based on the approximated cellular compositions described above; tissue-state A
samples are predominantly composed of non-neoplastic brain cells, including neurons
oligodendrocytes, and OPCs, tissue-state B samples are enriched in reactive astrocytes,
myeloid/macrophages, and T-cells, and tissue-state C samples are predominantly composed of
CNVpos glioma cells (Figure 3A-B). To generate a gene signature for each tissue state, we
combined the snRNAseq for all nuclei in each sample and performed differential gene expression
analysis between tissue-state clusters, using the re-convolved expression profile of each sample
as a biological replicate. This analysis identified the top-differentially expressed genes unique to
each tissue state (Supplementary Table-7). To assess the generalizability of the three tissue-
states, we performed single sample GSEA analysis for the tissue state gene signatures using a
dataset of bulk RNAseq analysis performed on 91 primary and recurrent MRI-localized samples
from 39 patients. We found that these samples separated into 3 compositional clusters based on
their enrichment score for snRNAseq-defined “tissue-states” (Figure 3C). We refer to the
compositional clusters and tissue-states interchangeably henceforth. These three tissue-states
are further demonstrated by projecting the RNA-expression levels for canonical markers of the
predominant cell types for each tissue-state in Figure 3E showing RBFOX3 (neuronal marker) in
tissue-state A, CD68 (myeloid marker) in tissue-state B, and MKI67 (proliferation marker) in
tissue-state C. Sox2 (pan-glioma marker) was widely distributed across the samples, indicating
variable degrees of tumor infiltration across samples in all three tissue-states (Figure 3E). Further
analysis revealed that these tissue-state gene signatures are enriched for specific biologically
relevant functional ontologies. For example, Tissue-state A is enriched of genes involved in
synaptic transmission, tissue-state B is enriched for genes associated with oxidative stress and
inflammation, and tissue state C is associated with cell proliferation (Figure 3D). To further
validate these findings, we quantified total cellularity and the IHC labeling indices SOX2, NeuN,
CD68, and Ki67 in 45 recurrent and primary glioma samples (Figure 3F) and found that total
cellularity was highest in cluster C, which also had the highest abundance of SOX2+ and Ki67+
cells, while cluster A had the highest abundance of NeuN+ cells, and Cluster B had the highest
abundance of CD68+ cells. While Clusters A and B resemble normal and reactive brain tissue,
the SOX2 and Ki67 labeling indices indicate that these clusters comprise samples with variable
levels of glioma infiltration.

To substantiate the clinical relevance of investigating glioma tissue in terms of tissue
states, we investigated whether the enrichment of tissue state signatures correlated with survival
in the TCGA-CGGA IDH-WT glioblastoma dataset. Given that tissue state B was enriched for the
gene signatures of Ast3, moTAM, T-cells, and gl_Mes2 (Figure-3G), and considering our findings
in Figure-2C, we expected it to be associated with increased risk of death in survival cohorts. As
expected, enrichment of Cluster B gene signature in the IDH-WT TCGA and CGGA datasets was
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associated with a significant increase in the hazard of death in cox proportional hazard regression
model, with covariates controlled for including age, gender, and MGMT methylation status (Figure
3H). To further establish the clinical relevance of taking a tissue state approach in investigating
glioblastoma transcriptomics, we asked if the tissue state B differentially enriched in primary
versus recurrent glioblastoma status. This question was especially relevant given that
compositional cluster B was largely composed of recurrent glioma samples (Figure-3A). We thus
asked if that signature is positively enriched in RNAseq profiles from previously published paired
primary and recurrent glioblastoma samples [26] (Figure-3l). The results showed significant
enrichment is tissue state B signatures at recurrence. Together, the results show that tissue state
B signature is prognostic and enriched during GBM recurrence. As a third way to establish the
clinical relevance of tissue states, we determined if these signatures are localized to specific
radiographic regions of glioblastoma. Our results showed that while control samples were most
enriched in tissue state A signature, GBM-infiltrated samples displayed spatially defined patterns
that varied according to the disease condition (primary vs post-treatment recurrence - Figure
S12C). For example, contrast-enhancing primary GBM samples were most enriched in tissue
state C signature, while contrast-enhancing recurrent samples were most enriched in tissue state
B signature. Glioma-margin samples (FLAIR abnormal) from primary GBM showed a range of
enrichment scores for each of the three tissue state signatures. In contrast, most FLAIR-abnormal
samples from recurrent GBM showed enrichment of tissue state A or B signatures, but very few
showed enrichment for the tissue state C signature (see supplementary results - Figure S12).

Glioma-associated tissue states are targetable and associated with distinct metabolic states

Given the distinct cohabitation patterns that drive tissue states, we hypothesized that these
patterns of cellular cohabitation are associated with metabolic dependencies. To test this
hypothesis, we investigated whether metabolic pathways are differentially enriched in genes
differentially expressed between bulk RNAseq samples of the three tissue states. Unbiased
analysis of enrichment of KEGG pathways in genes differentially expressed between
compositional clusters/tissue-states revealed that they exhibit enrichment of multiple unique and
specific pathways (Figure 4A). Interestingly, several of the tissue state-enriched pathways were
metabolic pathways. Tissue-state A showed highest enrichment for oxidative phosphorylation and
beta-glutamate metabolism, tissue-state C was most enriched for pyrimidine, folate, and branched
chain amino acid metabolism, and tissue-state B showed highest enrichment of fatty acid and
lipid metabolism (Figure 4B). We focused on fatty acid biosynthesis genes, a tissue state B
enriched pathway, and projected the average normalized expression per lineage as a heatmap in
Figure 4C. We found that genes in this pathway were distributed across multiple cell types,
suggesting that the metabolic status of a tissue can have distinct, but functionally related effects
on different cell types in that tissue. Notably, fatty acid synthase (FASN), a rate-limiting enzyme
in fatty acid synthesis{Garcia Corrales, 2021 #2471}, was most highly expressed in astrocytes
and glioma cells (Figure 4C). FASN inhibition has been shown to kill glioma cells [27], however,
the impact of FASN blockade on the glioma microenvironment is yet to be fully explored. Defining
the effects of FASN blockade on the glioma microenvironment is important because fatty acid
metabolism is a physiologic pathway that involves interactions between multiple cell types that
reside in the same habitat. In non-neoplastic brain tissue, fatty acids are synthesized by
astrocytes and are distributed to other cells including neurons and oligodendrocytes [28], where
they drive physiologic and cellular functions like neuronal maturation, membrane synthesis [29],
and neuroprotection [30]. We thus hypothesized blocking fatty acid synthesis pathway would
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interfere with the cells that make up tissue state B and/or their interactions, and therefore would
lead to depletion of tissue state B signature in glioblastoma infiltrated brain. To test this
hypothesis, we treated astrocytes and explants of human IDH-WT glioblastoma with the FASN
inhibitor Cerulenin (5mg/ml) and measured gene expression using the plate-seq RNAseq (Figure
4D). Astrocytes treated with Cerulenin exhibited numerous differentially expressed genes
compared with DMSO controls (Supplementary table-8, Figure 4E). Genes increased in treated
astrocytes were enriched in KEGG and Reactome pathways involved in mTOR signaling,
ferroptosis, and unfolded protein response, while those decreased in treated astrocytes were
enriched in pathways involved in cell cycle. Cerulenin treatment did not alter astrocyte viability
(data not shown). We then treated IDH-WT glioblastoma explants with DMSO or Cerulenin
(Supplementary table-8) and measured gene expression (Figure 4F). We found that genes
increased in Cerulenin treated astrocytes were significantly enriched in Cerulenin treated IDH-
WT glioblastoma explants, and that the tissue state B signature was depleted (negatively
enriched). Overall, these results demonstrate that tissue-states exhibit enrichment of metabolic
pathways, which can be targeted leveraging compositional information and metabolic
dependencies.

DISCUSSION

In this work, we investigated the landscape cellular composition and transcriptional states
of glioma and its microenvironment in primary and post-treatment recurrent IDH-WT GBM using
snRNAseq and spatial transcriptomics. Understanding heterogeneity of GBM is important for
guiding treatment and meeting the challenge of recurrence. Recent studies revealed a diversity
of glioma states that resemble cell lineages found during development and adulthood [2, 9-12,
16]. Our study provides a comprehensive analysis of the GBM microenvironment, including non-
neoplastic cell types. Using a compositional approach rooted in relatively unbiased sampling of
different GBM microenvironment cell types, we discovered that specific cell types/transcriptional
states colocalize in “tissue states”. Leveraging insight into correlated cellular states and lineages
that co-inhabit tissue samples, we identified gene signatures that classify primary and recurrent
GBM tissue into three tissue states: (A) normal brain, (B) reactive/inflammatory tissue, and (C)
cellular/proliferative tumor. The tissue states exhibited variable levels of infiltrated by glioma cells.
The patterns of co-habitation in the tissue state model are further supported by spatial
transcriptomics data, which highlights the differential distribution of specific astrocyte states.
Importantly, we discovered that enrichment tissue state B, a reactive state that harbors a reactive
astrocyte state (Ast3) resembling neurodegenerative astrocytes, was associated with increased
risk of death. We show that gene signatures for these tissue states can also be identified in more
accessible bulk RNAseq samples and correlate with immunohistochemical profiles. Significantly,
we found that tissues states were transcriptionally enriched in distinct metabolic pathways, and
that targeting fatty acid synthesis, a pathway enriched tissue state B, resulted in depletion of that
signature in ex vivo GBM slice cultures. The therapeutic implications of our findings help expand
the target of therapy from targeting one gene or one cell type, to targeting to tissue states
comprising cell populations that co-inhabit the tissue under defined metabolic constraints.

Our analysis of the cellular phenotypes in the glioma microenvironment revealed that
subpopulations of non-neoplastic astrocytes show enrichment for abnormal transcriptional
signatures that are also seen in the context of neurodegenerative diseases. In contrast to CNVpos
neoplastic astrocytes, which express high levels of proliferation and glioma genes, a
subpopulation of non-neoplastic astrocytes (Ast3) displayed a reactive signature reminiscent of
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astrocytes described in neurodegenerative diseases like Huntington disease, Parkinson disease
and Alzheimer’s disease cortex [18, 31]. An unbiased random forest classifier also demonstrated
that most Ast3 cells were classified as similar to Huntington disease astrocytes. It is notable that
the non-neoplastic glia in the microenvironment of glioma exhibited neurodegenerative signatures
even though most of the cases we profiled were less than 65 years old - the age after which
neurodegenerative diseases become more prevalent. Our findings thus uncover commonalities
in the astrocytic response to glioma and neurodegeneration. Given that GBM is a disease of the
elderly population, one can envisage that future astrocyte modifying therapies developed for
neurodegenerative disease may have a role in therapeutically modifying the microenvironment of
GBM.

Our analysis of glioma states (supplementary results) revealed they can be grouped into
three main categories based on commonalities with previously described glioma-state signatures:
astrocyte-like/mesenchymal (gl_Mesl and gl _Mes2), progenitor-like/proneural (gl_PN1 and
gl_PN2), and proliferative (gl_Prol and gl_Pro2). We found that the astrocyte-like/mesenchymal
signatures (gl_Mes1 in primary GBM and gl_Mes2 in recurrent GBM) portended poor survival in
the IDH-WT GBM survival series (TCGA and CGGA), consistent with previous studies [6].
Moreover, GBM recurrence was correlated with increased gl _Mes2 and reduced gl_PN1
abundance in our dataset. This is consistent with results from bulk RNAseq on paired primary-
recurrent glioma pairs, where the authors found enrichment of the mesenchymal subtype, and
depletion of the classical subtype [6]. Analysis of paired primary and recurrent GBM samples from
Wang et al. 2021 [26] revealed that tissue state B was enriched at recurrence. That being stated,
our dataset is based on largely unpaired snRNAseq from primary and recurrent GBM and is of
relatively smaller size, which may preclude us from further interpretation.

One of the main findings highlighted by our analysis of cellular composition is that specific
cell types are correlated with each other both compositionally and spatially, indicating that they
co-inhabit the same tissue-states. Cohabitation between cell types and transcriptional states was
reflected in enrichment of distinct metabolic pathways. For example, tissue state B was enriched
in the glutathione pathway, which determines a cell’s sensitivity to ferroptosis-inducing drugs [32],
and in fatty acid metabolism, which has been implicated in glioma survival, stemness and
progression [27, 33, 34]. We found that fatty acid metabolism genes were distributed among
different cell types in the brain, however, FASN, the rate-limiting enzyme in fatty acid synthesis
{Garcia Corrales, 2021 #2471} was most highly expressed in astrocytes and glioma cells.
Astrocytes play key roles in lipid metabolism; for example, in synthesizing fatty acids necessary
for neuronal membranes {Tabernero, 2001 #2491} and catabolizing fatty acids released by
neurons during excitotoxicity {loannou, 2019 #2493}. We showed that blocking FASN effectively
depleted tissue state B signature from treated GBM slices. This may be explained by either a
change in the composition of the GBM slices, given that FASN inhibition may lead to glioma cell
death [34]{Grube, 2014 #2418}, a change of gene expression of the cells that reside in the slices,
or both. The latter is likely the case, given that GBM slices treated with FASN inhibitor showed a
positive enrichment for the gene signature of astrocytes treated with FASN inhibitor, and negative
enrichment for tissue state B. These finding are clinically relevant, given FASN is a promising
target against glioblastoma [36], and highlight how the tissue-state approach can provide new
insights into the effects of targeted therapies on the GBM microenvironment.
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Methods

Human subjects and glioma tissue

Frozen primary untreated GBM tissue was acquired from the Bartoli brain tumor bank at Columbia
University Medical Center. All diagnoses were rendered by specialized neuropathologists. Study
protocols were approved by Columbia University Medical Center Institutional Review Board. All
clinical samples were de-identified prior to analysis. Analyses were carried out in alignment with
the principles outlined in the WMA Declaration of Helsinki and the Department of Health and
Human services Belmont Report. Informed written consent was provided by all patients. The
demographics of the cases used are provided in Supplementary Table 1.

Extraction of nuclei and shRNAseq procedure

Nuclei were isolated from frozen surgical resection specimen as described in Al-Dalahmah O et
al. 2020. Briefly, the frozen tissue samples were dissected from fresh frozen tissue or frozen OCT-
embedded tissue blocks to yield tissue measuring in general from5x 2 x 1 mmto 10 x 6 x 3 mm.
The tissue was homogenized using a dounce homogenizer in ice-cold 30% sucrose 0.1% Triton-
X 100 based homogenization buffer. 10-15 strokes of the loose dounce pestle were followed by
10-15 strokes of the tight dounce pestle on ice. Mixing using a P1000 pipette followed before
filtration through a BD Falcon 40um filters. Filtration was repeated after a 10-minute spin at 1000g
at 4c. A cleanup step followed using a density gradient step as described in [37]. The nuclear
pellet was suspended in 1% BSA in PBS resuspension buffer containing RNAse inhibitors. A final
filtration step using 20um Flowmi ™ filters followed before dilution to 700-1200 nuclei per ul in
resuspension buffer. The nuclear suspensions were processed by the Chromium Controller (10x
Genomics) using single Cell 3’ Reagent Kit v2 or v3 (Chromium Single Cell 3’ Library & Gel Bead
Kit v2, catalog number: 120237; Chromium Single Cell A Chip Kit, 48 runs, catalog number:
120236; 10x Genomics).

Sequencing and raw data analysis

Sequencing of the resultant libraries was done on lllumina NOVAseq 6000 platformV4 150bp
paired end reads. Alignment was done using the CellRanger pipeline (10X Genomics) to
GRCh38.p12 (refdata-cellranger-GRCh38-1.2.0 file provided by 10x genomics). Count matrices
were generated from BAM files using default parameters of the DropEst pipeline (Petukhov V et
al. 2018). Filtering and QC was done using the scater package (3). Nuclei with percent exonic
reads from all reads in the range of 25-75% were included. Nuclei with percent mitochondrial
reads aligning to mitochondria genes of more than 19% were excluded. Genes were filtered by
keeping features with >10 counts per row in at least in 31 cells. Further filtering of low quality cells
was done to include cells with at least 400 detected genes and 10,000 reads.

Single Nuclei RNAseq analysis

Sequencing and analysis of raw data

Sequencing of the resultant libraries was done on lllumina NOVAseq 6000 platformV4 150bp
paired end reads. We used 10X chromium v2 chemistry for samples PO1 and PO2, and v3
chemistry for samples PA1, PA2, and P3. Read alignment was done using the CellRanger
pipeline (v3.1 - 10X genomics) to reference GRCh38.p12 (refdata-cellranger-GRCh38-1.2.0 file
provided by 10x genomics). Count matrices were generated from BAM files using default
parameters of the DropEst pipeline [38].

Data-cleanup

Filtering and QC was done using the scater package [39, 40]. Nuclei with percent exonic reads
from all reads in the range of 25-73% were included. Nuclei with percent mitochondrial reads
aligning to mitochondria genes of more than 15% were excluded. Genes were filtered by keeping
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features with >10 counts per row in at least in 31 cells. The count matrix of each sample was
normalized by first running the quickcluster function, then estimating size-factors by calling
scran;:computeSumFactors() function with default options and clusters set to clusters identified
by calling quickcluster function. scater::normalize() function was then used to generated
normalized counts. Doublet identification was done using scran::doubletCells function with default
options, and cells with doublet score of NMADs > 3 were excluded as we described previously
[18].

Combining multiple datasets from different sequencing batches

To control sequencing and technical batches, we utilized canonical correlation analysis in Seurat
[41] accounting for batch and mitochondrial read percentage for CNVneg nuclei. For CNVpos
nuclei, we accounted for case and mitochondrial read percentage.

Pre-Clustering and clustering of nuclei

Pre-clustering of nuclei was done in Seurat using the shared nearest neighbor smart local moving
algorithm. PCA reduction was used as the reduction in the FindNeighbors() step. Pre-cluster
identity determination was done using geneset enrichment analysis of lineage markers [18] and
by inspecting cluster markers generated by scran::findmarkers(direction="up”) function. Microglia
+/- oligodendrocytes were used as negative control cell for InferCNV pipeline (below). Once
CNVneg cells were verified, cells from all cases were aligned using Seurat and clustered. Clusters
with mixed identities based on enrichment of multiple lineage genes were sub-clustered iteratively
until all “pre-clusters” showed pure identities. Only then do we combine the pre-clusters of the
same lineage into lineages (Astrocytes, neurons, oligodendrocytes, myeloid, endothelial). For
subclustering of astrocytes and myeloid cells, we analyzed the nuclei in isolation of other lineages,
and re-aligned them in Seurat, and reduced the dimensions before subclustering. For CNVpos
nuclei, unbiased clusters were combined into glioma states/lineages based on similarity in marker
expression and enrichment for known gene sets described in Figures 1D and 2C.

Count normalization
Raw counts were normalized in Seurat using the sctransform function SCT() function with default
settings and controlling for percent mitochondrial gene expression [42].

Copy number variation analysis of snRNAseq

To detect putative neoplastic tumor cells, we used combination of marker expression and large
scale copy number variation inference as per the InferCNV R package [43]. We used the default
parameter as described in the package documentation. As a control population, we used
microglia and oligodendrocytes from case POZ2_1. lteratively, CNVneg clusters including
Oligodendrocytes and Neurons were identified and added as control cells. Different gene window
sizes were tested (50, 100, 200) and yield similar results. We then applied an orthogonal approach
to label putative neoplastic cells based on previous approaches described in [2, 44]. Briefly,
Log2+1 counts were averaged across chromosomes for each nucleus. A principal component
analysis (PCA) was performed on autosomal chromosomes in factominer R package [25].
Chromosomes with high correlation with PC2 were the same as the ones shown in the detected
by inferCNV() with the exception is PO1, where no neoplastic cells were detected by InferCNV or
CONICS. A malignancy score was calculated by dividing the log2 gained chromosome counts
over the sum of those that are lost (selection was limited to three chromosomes or less). The
scores were then z-neoplastic per sample. To identify putative neoplastic nuclei in this method,
we next performed K means clustering of the scaled malignancy scores in R using the kmeans
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function and centers argument set to 2. PO1 does not show bimodal malignancy score distribution
and the results of kmeans clustering were not considered. For case PA3, only a minority of nuclei
had malignancy scores > 2 standard deviations above the mean. Therefore, these cells were
identified using outlier detection in a normal distribution as done in the getOutliers(, method = "I",
rho=c(0.1,3))$iRight) in R. getOutliers is part of extremevalues R package
https://github.com/markvanderloo/extremevalues. Only the consensus nuclei that were identified as
CNV positive in both approaches were considered for analysis. Less than 7.0% of the nuclei were
called alternately by the two methods and were excluded from the analysis. Identification of
CNVpos nuclei in recurrent glioma samples was conducted through a combination of InferCNV
and identification of clusters with high expression of tumor markers SOX2 and PTPRZ1.

Survival Analysis

Survival analysis was performed using the survfit() function in the survival package in R [45, 46],
using the binarized enrichment of each of the gene sets as the covariate in the formula. For cox
proportional hazards, the function coxph() was used in R, and the covariates are indicated in the
main figures.

Correlation Analysis

Correlation between deconvolution of values of microglial as well as astrocytic clusters, and
glioma proportions was done using Pearson correlation (function cor() in R). The heatmap was
generated using the corrplot package in R.

Identification of glioma state and lineage top gene markers

The lineage specific genes were determined using scater::findmarkers(..., direction ="up”)
function on the top-level lineages (Neurons, astrocytes, microglia, undetermined,
oligodendrocytes, OPC, and endothelial cells). The glioma-state specific genes were determined
using scater::findmarkers(..., direction ="up”) function on the neoplastic glioma states only. To
select specific lineage/glioma state markers, we further filtered the top markers generated above
by selecting the genes with positive log-fold change values in 90% or more of the cluster-to-cluster
comparisons. The top 150 genes were selected and are provided in Supplementary Tables 2-4
for primary glioma, recurrent glioma, and non-neoplastic lineages, respectively.

Principal component analysis

PCA analysis was done in factorminer R package[25]. A matrix of ShRNAseq sample x cell
type/cluster was used as input. The composition of each snRNAseq sample astrocyte and myeloid
subclusters was consolidated as follows: Astrocytes subclusters 0, 1, and 8 were combined as
Astl (baseline/protoplasmic); subclusters 2, 3, 4, and 5 as Ast2, and subclusters 6 and 7 as Ast3.
Myeloid subclusters 0 and 9 were combined as Myell (baseline), subclusters 1 and 3 — moTAM
(monocyte derived TAMS); subclusters 2, 4, 6, and 8 as mgTAM (microglia-derived TAMS);
subcluster 5 was kept as prTAM (proliferative TAMs); and subcluster 7 was kept as T-cells. The
all CNV positive cells were consolidated as CNVpos, and the glioma states were included as
supplementary quantitative variables. Condition (primary versus recurrent) was used as a
supplementary qualitative variable.

Random forest classifier

Classification of astrocytes as control versus Huntington disease like was done by training a
random forest classifier based on the HD vs control astrocytes dataset previously published [18].
The classifier was trained on normalized log2+1 gene expression values (15516 genes) from
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1064 astrocytic nuclei using the package caret[47] in R. The training dataset was centered and
scaled. Three-fold cross-validation followed. The classifier achieved a 97.5% accuracy. The
classification.

Acquisition of Tissue and Preparation of Acute Slice Cultures

Primary GBM tissue from two separate surgeries, TB 6571 (3 blocks of tissue) and TB 6579 (2
blocks of tissue) (see supplemental table for related clinical information), performed at Columbia
University Medical Center/New York Presbyterian Hospital were retrieved fresh from the operating
room in a sterile specimen cup and transported back to the laboratory on ice. Primary GBM acute
slice cultures were prepared exactly as described previously [48]. Slices were treated as
described previously with either DMSO or 5ug/mL Cerulenin for 18 hours prior to preservation
and RNA extraction.

Bulk RNAseq using Plate-Seq

RNA extraction was done using the RNeasy Mini Kit (Qiagen cat# 74106). RNAseq was on
spatially localized biopsies was performed using Plate-seq as described [49]. 75bp paired end
sequencing was performed on Illumina NextSeq platform and read alignment was done using
STAR [50] to the human genome (hg19, annotation: UCSC known genes), and analysis was
done as previously described [3]. FPKM values were used in GSEA analysis. The count matrix
for the TCGA GBM dataset was downloaded using the GDCquery tool in R. The Chinese
Glioma Genome Atlas (CGGA) RNAseq datasets [51, 52] was downloaded from
(http://www.cgga.org.cn/download.jsp). The counts were normalized using the vst() function in
deseq2 R package [53]. IDH-WT only samples were kept from both datasets (TCGA: 139
samples, CGGA: 179 samples) and used for downstream analysis.

For acute slice-culture PLATE-seq analysis, slices were then transferred to OCT and
frozen into blocks. Tissue from each slice was isolated for RNA extraction by the Columbia
Molecular Pathology Core using QiaSymphony extraction method. Total RNA was quantified
using Nanodrop measurements, and 150ng of RNA from each slice/condition was loaded into a
well of a 96 well plate. Pooled library amplification for transcriptome expression (PLATE-Seq) was
then performed on the 96 well plate as previously described [49]. FASTQ files were demultiplexed
and aligned to reference genome and transcript counts were normalized via DESeq2.

Geneset enrichment analysis and Gene Ontology Analysis

The average normalized counts per gene per cluster was calculated. The resultant cluster-wise
count matrix was used as input to the GSVA pipeline [54]. Gene sets used for various tests are
provided in the supplementary material (Supplementary Table-1). The options used for
performing the GSVA pipeline are as follows: method= ssgsea, kcdf="Gaussian", mx.diff=TRUE.
Heat maps were generated using the heatmap.2 in R function from the package gplots (R
Package) and scores z-scaled were indicated. Ontology enrichment analysis in gProfiler with
default settings [55]. For GSEA of the combined TCGA and CGGA dataset, the enrichment was
performed using method = “ssgsea” option on normalized counts, which normalizes the
enrichment scores for each gene set per sample. GSEA in Figure-3 was conducted using pre-
ranked GSEA and was performed as described in Subramanian et al 2005 with 1000 permutations
[56]. Log-2-fold-change between cluster B and the remaining clusters was used to rank the genes
for the analysis, and marker genes from each sub-lineage was used for the gene sets. For GSEA
in Figure-4, preranked GSEA (based on log2foldchange) was performed using tissue cluster gene
sets and the genes significantly upregulated after astrocyte treatment with cerulenin.
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Spatial transcriptomics

Spatial transcriptomics was conducted using 10X™ Visium Spatial Gene Expression Slide &
Reagent Kit, 16 rxns (PN-1000184), according to the protocol detailed in document
CG000239_RevD available in 10X demonstrated protocols. 10 micron-thick tissue sections were
mounted on the ST slides and stained for nuclei — DAPI among other antigens using a rapid
immunofluorescence protocol described in document CGO000312_RevB available in 10X
demonstrated protocols. Imaging of whole slides was done at 20X magnification on a Leica Aperio
Versa scanner or a Leica DMI6 thunder tissue imager. After imaging, the slides were de-cover-
slipped and the tissue permeabilized for 11 minutes (which was empirically determined to yield
best results based on the Visium Spatial Tissue Optimization Slide & Reagent Kit PN-1000193
as detailed in the protocol provided in document CG000238 RevD available in 10X demonstrated
protocols). The remaining steps were conducted according to the manufacturer’s protocol. The
libraries were sequenced on multiple lllumina Nextseq 550 (paired end dual-indexed sequencing)
flowcells to achieve the recommended number reads per ST spot. The spatial transcriptomic (ST)
samples were prepared using 10X genomics Cell Ranger (version 6.1.2) and Space Ranger
(version 1.2.1) software. Raw tiff images of the tissue were labeled with Cell Ranger which
generated a json file for Space Ranger to use during alignment. Labeled spots from Cell Ranger
were inputted into the loupe-alignment argument in Space Ranger along with its respective tiff
image file, FASTQ reads, and slide numbers. The reference genome used for alignment was built
using the Space Ranger function spaceranger mkgtf with GRCh38 as the assembly and
Ensemble 91 for the transcript annotations. All other parameters to generating the counts data for
ST were set to its default setting. After the alignment was complete, counts data were pre-
processed using Seurat's SCTransform (version 4.06) function to account for technical variates
while retaining biological variance in the tissues. To increase robustness of downstream analysis,
counts from ~20 neighboring ST spots were summed into 10 ST regions that are approximately
1 mm in diameter before use for gsea of lineage/cell type signatures. The ST regions were
determined using an unbiased k-means clustering method on the actual distance matrix between
the ST points, with k set to 10. ssGSEA (GSVA package) analysis was performed on the summed
counts. The process of tissue shattering was repeated 100 times and the average GSEA scores
per 1 mm ST region was used for correlation (Pearson) analysis as indicated above.

Differential gene expression analysis

EdgeR gImQLFTest was used and the top 3000 differentially expressed genes with an FDR cutoff
of 25% [57] were extracted. Only datapoints with adjusted p-values less than 0.05 were used in
downstream analysis. For plate-seq data differential gene expression analysis between treatment
and control was performed adjusting for tissue block and patient using the Deseq2 pipeline [53].
For astrocyte cultures, differential gene expression analysis between treatment and control was
performed adjusting for astrocyte passage and cell culture batch using the Deseq2 pipeline.

Immunohistochemistry, histology, and in situ hybridization

Standard chromogenic Immunohistochemistry was done as described previously [18]. Paraffin-
embedded formalin-fixed tissue sections or fresh frozen sections briefly fixed in 4% PFA, for 10
min (40 C) in 4% PFA in PBS. Paraffin sections after deparaffinization were treated with antigen
unmasking solution according manufacture recommendations (Vector Laboratories, Burlingame,
CA). The following antibodies and dilutions were used SOX2 (1:200, Mouse monoclonal, Abcam,
Ab218520), KI67 (1:500, rat monoclonal polyclonal, Thermo Scientific, 14-5698-80), CD68
(1:200, mouse monoclonal, Abcam cat# ab955), NeuN (1:1000, mouse monoclonal, Millipore,
MAB377). For fluorescent IHC, secondary antibody conjugated to fluorophores: anti-mouse Alexa
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Fluor 488 and 594 and anti-rabbit Alexa Fluor 488 and 594; goat or donkey (1:300, ThermoFisher
Scientific, Eugene, OR) were applied for 1 hr at room temperature. In situ hybridization was done
using RNAscope™ multiplex fluorescent v2 (ACDbio cat no 323100) per the manufacturer’s
protocol in 5-micron paraffin-embedded, formalin-fixed tissue sections. We used predesigned
probes for PTPRZ1, CLU, TOP2A, NOVA1l, MEG3, and SOX2 from ACDbio; cat# 584781,
584771, 470321, 400871, 584801, and 400871, respectively. Fluorescent images were taken on
a Zeiss 810 Axio confocal microscope at 40X. Brightfield fluorescent images were taken on an
Aperio LSM™ slide scanner at 20X and 40X.

Quantification of ISH

For quantification of in situ hybridization images we used the positive cell detection function in
Qupath v0.2.3 [58]. We only quantified signal contained in DAPI-positive nuclei. First, DAPI
positive nuclei were detected using the cell detection tool. Next, subcellular detection function
was employed to segment puncta per each of the three probe channels. A random forest classifier
was used to classify nuclei to be positive or negative, with a minimum of two puncta per channel
to classify a nucleus as positive for the probe. Infiltrated cortex and cellular tumor core were
annotated by a neuropathologist.

Cell Culture

Human Astrocytes (ScienCell cat #1800) were cultured in Astrocyte culture medium (ScienCell cat#
1801), 2% fetal bovine serum (ScienCell cat #0010), 1% astrocyte growth supplement (ScienCell cat#
1852) and 1% penicillin/streptomycin (ScienCell cat # 0503). The cells were maintained as adherent
cultures on poly-L-Lysine coated tissue culture plates. The cells were passaged at 70-90% confluence and
treated at passage numbers 5-7. DMSO or Cerulunin Sigma cat#C2389 at 5ug/ml was used to treat the
cells for 18hours as indicated.

Statistical testing

Statistical comparisons were done using one-way ANOVA (or Kruskal Wallis test) and Tuckey
post-hoc comparison in R. Statistical testing for RNAseq application is reported in the main text
or respective methods section. Differential abundance analysis was done employing a moderated
regression model in ANCOMBC with default parameters, assigned Condition (primary vs post-
treatment recurrence) and CNVpos proportions in the design formula, and as described by the
authors ([24]). One tailed paired t-tests were done to compare the core and margin percentages
of the same case (Figure 3). A one sample t-test was conducted to determine if the percentage
of TOP2A+ that were CLU+ was less than 50%.

Data availability

Data for spatial transcriptomic can be queried using an interactive web app:
https://vmenon.shinyapps.io/gbm_expression/. All other data will be deposited as in GEO
repositories prior to publication.
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Supplementary Results

Single nucleus RNAseq reveals proliferative, astrocyte-like/mesenchymal, and progenitor-
like/proneural states in both primary and recurrent GBM

Radiographically, GBM typically has a CE core surrounded by a non-enhancing infiltrated brain
that is highlighted by FLAIR-signal abnormality by MRI (Figure-S1A). The histopathological
features of the resected tumor can vary from highly cellular tumor with vascular proliferation to
less cellular infiltrated brain. These features are shown in Figure-S1H, demonstrating samples
with a cellular GBM core (red star in Figure-1A, Figure-S2H PA1, PA2, PA3, and PO2_1) and
others with overlying cortex (green star in Figure-S1A, Figure-S2H PO2_2 and PO1), which we
use below.

To explore the heterogeneity of primary GBM, we analyzed several banked surgical
samples using snRNAseq as shown in (Figure-S1A). A total of 8 samples from 7 patients were
selected for analysis (Supplementary Table-1). Neuropathological assessment of tumor
cellularity ranged from cellular tumor with hallmarks of GBM, to reactive brain parenchyma with
few atypical cells. This assessment was made on Hematoxylin and Eosin (H&E) stained formalin
fixed paraffin embedded sections adjacent to or frozen cryosections of the frozen tissue analyzed
by snRNAseq (Figure-S2H). We isolated nuclei from the frozen tissue and subjected them to
snRNAseq followed by downstream analyses including clustering, differential gene expression
analysis, cluster marker detection, and gene set enrichment analysis (GSEA) as outlined (Figure-
S1A). 15189 nuclei passed our QC (Supplementary Table-1). To distinguish putative glioma
cells from non-neoplastic cells, we employed an established approach that infers large scale copy
number alterations/variations (CNV) from RNA expression profiles [43]. Chromosomal heat maps
showing putative neoplastic nuclei are shown in Supplementary Figure-S2A-G. Next, we also
applied a second method to label nuclei based on a “malignancy score”, which we have previously
shown to be a robust metric to distinguish glioma cells from non-neoplastic cells [2, 10], and the
consensus nuclei designated by both methods was used for downstream analysis. Nuclei with no
consensus CNV status were excluded (4.7%). Uniform manifold approximation and projection
(UMAP) plots from individual cases labeled by transformation status are shown in Figure-S1B.
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We identified 7954 putative neoplastic nuclei with inferred large scale chromosomal CNV
(CNVpos/glioma nuclei). Glioma nuclei showed multiple chromosomal alterations including gains
of chromosome 7 and losses of chromosome 10 (Figure-S1). Having identified neoplastic and
non-neoplastic nuclei, we aligned the datasets from multiple samples and performed clustering
analyses separately on CNVpos (glioma) nuclei from all cases using shared nearest neighbor and
the smart local moving algorithm [59]. A UMAP plot is shown for all primary glioma nuclei non-
neoplastic nuclei color-coded by glioma state/lineage Figure-S1C. This approach identified 6
distinct clusters: these resembled progenitors (oligodendrocyte-progenitors (gl_PN1 - proneural)
and neural-progenitors (gl_PN2 - proneural), astrocytes (gl_Mes1 and gl_Mes2 - mesenchymal),
and proliferative cells (gl_Prol and gl_Pro2).

The identity of the glioma states is akin to previously described glioma states, as
demonstrated by the enrichment of several gene lists from [3, 9, 60, 61] — (Figure-S1D,
supplementary Table-2). For example, gl_Prol and gl_Pro2 showed enrichment in gene sets
specific for cell-cycle phases [61], with gl_Prol showing highest enrichment of G2/M genes
(Gobin_G1) and gl_Pro2 showing highest enrichment of G1/S phase genes and DNA repair
related genes (Gobin_G3). Clusters gl_PN1 showed enrichment of the Verhaak’s proneural, and
OPC signature genes, while gl_PN2 showed enrichment of NPC signature genes. Finally,
gl_Mesl showed enrichment of astrocyte-like signatures and Verhaak’s classical signature while
cluster gl_Mes2 showed enrichment of several gene sets related to reactive astrocytes, and
Verhaak’s mesenchymal signature [3, 7, 60]. Our clustering is consistent with that described in
Neftel et al. 2019 [9] and Wang et al. 2019 [7], and the states we describe are compatible with
those in Yuan et al 2018 [2]. To further clarify the cellular phenotypes represented in our glioma
clusters, we measured the enrichment of the major biologic process and molecular function gene
ontologies (GO) in the glioma state top gene markers (see methods). GO enrichment analysis
demonstrated enrichment of GO’s relating to locomotion, neurogenesis, neuronal migration, and
cell projection in gl PN1 markers genes; Notch signaling, neuron development, and GABA
reuptake differentiation, and synaptic signaling in gl_PN2 genes; response to organic substances,
ion homeostasis, and Signaling by tyrosine kinases in gl_Mesl genes; response to cytokines,
interferon gamma, and leukocyte activation and immune response in gl_Mes2 genes; mitosis and
nuclear division in gl_Prol, and S-phase, DNA replication, and DNA repair in gl_Pro2(Figure-
S1F and Supplementary Table-2). The identities of the clusters can also be appreciated by
examining select gene markers Figure-S1E and Supplementary Table-2. gl _Prol expressed
cell-cycle genes TOP2A, CENPF, and AURKB. gl_Pro2 showed highest expression of DNA
damage/repair including FANCI, HELLS, and XRCC2. gl_PN2 showed high levels of CD24,
MEG3, and SOX4. gl_Mesl1 showed high levels of protoplasmic astrocyte genes including
SLC1A3, LIFR, ATP1A2, Clorf61, and NTM, while gl_Mes2 showed highest expression levels for
reactive astrocyte and immune genes including CLU, VIM, and SAT1. While our glioma states
resemble those described in the literature, less is known about whether glioma cells assume
similar states in the recurrent setting. Therefore, we bridged this gap by directly analyzing
recurrent IDH-WT glioma samples using the same approach we used for primary GBM samples.

To define the states of IDH-WT glioma in the post-treatment recurrence setting, we
analyzed 8 cases of post-recurrent IDH-WT glioma using shRNAseq (Figure-S3A). We identified
8908 neoplastic nuclei harboring large-scale CNV (Supplementary Figure-S4). Of the eight
cases, two were paired recurrences from the primary samples (TB5124 — recurrent of TB4916,
and TB5053 — recurrent of TB4718, see respective section on comparing paired samples below).
We treated recurrent gliomas similarly to the treatment naive primary tumors and clustered all


https://doi.org/10.1101/2021.07.06.451295
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.06.451295; this version posted April 14, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

neoplastic nuclei together. Like primary gliomas, we found that recurrent glioma clusters can be
assigned two proneural, two mesenchymal, and two proliferative states (Figure-S3B). The gene
markers of the recurrent glioma states are enriched for similar ontologies to those seen for primary
glioma states (Figure-S3C and Supplementary Table-3), showed similar patterns of enrichment
for the previously presented gene sets in Figure-S1D (Figure-S3D), and displayed comparable
gene marker expression (Figure-S3F). These results demonstrate that post-treatment recurrent
glioma states closely resemble states observed in the primary pre-treatment setting. Indeed,
Pearson correlation analysis demonstrates that corresponding states were positively correlated
(Figure-S3E). The correlation patterns reveal that gl_Mes1 and gl_Mes2 are positively correlated
with each in the primary and recurrent settings. This is also seen with gl PN1 and gl_PN2, as
well as gl_Prol and gl_Pro2. We therefore contend that a view of primary and recurrent glioma
states may benefit from simplification and embrace a viewpoint that primary and recurrent glioma
states can be classified as progenitor-like/proneural (gl PN1 and gl _PN2), astrocyte-
like/mesenchymal (gl_Mesl and gl_Mes2), and proliferative (gl_Pro2 and gl_Prol) states. A
select set of markers of both primary and recurrent GBM states is provided in Figure S4l.
Assigning cell cycle scores using Seurat cell-cycle score assignment reveals that gl_Prol has the
majority of cells in G2M phase, whilst gl_Pro2 has the majority of cells in S phase Figure S4l.
Integration of both primary and recurrent glioma nuclei shows cells from primary and recurrent
samples overlap in the UMAP space, and that this overlap is seen for all 6 GBM states (Figure
S5G).

While the transcriptional signatures of glioma are relatively well defined, the spatial
distribution of these glioma states is less well understood. Given the marked difference in cellular
composition between the cortex and the deeper (typically more heavily infiltrated) white matter,
and the highly cellular tumor core, we asked if these different anatomic regions harbor distinct
glioma states. In other words, we posited that the cellular microenvironment of glioma influences
glioma states. Specifically, we hypothesized that we would find more glioma cells that resemble
astrocytes (astrocyte-like/mesenchymal glioma) or neurons (progenitor-like - specifically gl PN2)
in the cortical margins. To address this question, we examined the expression of select
combinations of glioma state transcripts using in situ hybridization (ISH) across the cellular tumor
and the infiltrated cortical margin. We used probes to detect PTPRZ1 (high in glioma), CLU (high
in astrocytes and astrocyte-like/mesenchymal glioma), SOX2 (high glioma), NOVAL (high in
progenitor-like/proneural glioma), and MEG3 (high in neurons and progenitor-like/proneural
glioma - gl_PNZ2) in the cellular core and overlying infiltrated cortical margin in 5 cases of primary
GBM (Figure-S5A, C). We found that significantly higher proportion of PTPRZ1+ glioma cells co-
expressed CLU in the cortex versus the core (Figure-S5B). Similarly, we found that significantly
higher proportion of SOX2+NOVA1+MEG3+ glioma cells in the cortex versus the core (Figure-
3D). These findings indicate that the different glioma states have distinct distributions throughout
the landscape of glioma and suggest that local tissue cellular composition and perhaps other
microenvironmental influences can affect glioma states. We note that astrocyte-like/mesenchymal
glioma states were negatively correlated with proliferative states. Consistent with this result, our
ISH findings demonstrated a significantly smaller proportion of CLU+ cells that co-expressed
TOP2A (mean=31.71388837%, Standard deviation = 15.73850618, one-tailed t-test p=
0.000249641, n=5, Figure S5E-F).

Comparison between primary and recurrent glioma pairs
Not surprisingly, the recurrent tumors did not show identical chromosomal CNVs with their primary
counterparts. While TB5014 retained the CNV of the TB4916 (gain of 7, loss of 10 and 14) and
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acquired additional alterations including gains in chromosomes 19 and 20 (Figures S2F and
S4A), TB5053 showed a complex gains and losses across multiple chromosomes (Figures S2G
and S4B).

In the main text, we note that gl_PN1 is depleted from our recurrent GBM samples (Figure 2A).
This is consistent with the literature [6], since the Verhaak classical subtype resembles our
gl_PN1, which showed positive enrichment scores of the Verhaak’s classical gene set. Of the
non-neoplastic cell types, OPCs were depleted in recurrence. This may be explained by the fact
the OPCs are the proliferative cell type in the brain and glioma treatment with chemotherapy and
radiotherapy depletes proliferative cells, as have been previously demonstrated [62].

Survival analysis of glioblastoma state signatures

To determine if enrichment of our glioma states has prognostic relevance we performed GSEA of
the top gene markers for each glioma state, both primary and recurrent gene sets
(Supplementary Table 2 and 3), using the TCGA-GBM [63] and the Chinese Glioma Genome
Atlas (CGGA) databases [51, 52]. 318 IDH-WT samples (TCGA - 139, CGGA - 179) were used
for survival analysis. Kaplan-Meyer survival curves are shown on Figure-S6A-B for primary and
recurrent glioma gene sets, respectively. The astrocyte-like/mesenchymal signatures Mes1 in
primary and Mes2 in recurrent glioma significantly predicted poor survival. These two gene sets
share 46 genes including CD44, and CHI3L1, which may explain the effect of primary gl_Mes1
and recurrent gl_Mes2 with survival.

Analysis of low-grade glioma and epilepsy cases

To sample states of myeloid cells and astrocytes across different disease states, we chose to
analyze the microenvironment of low-grade glioma (LGG) and temporal lobe epilepsy. We
conducted snRNAseq on 6 cases: two IDH-mutant oligodendroglioma (TB3652 & TB3926), one
IDH-mutant astrocytoma (TB4100), and three temporal lobe epilepsies (TB4189, TB4437, &
TB4957). We identified 970, 1154, 1036 nuclei for LGG cases TB3652, TB3926, and TB4100,
respectively. We identified CNVpos nuclei using a combination of chromosomal CNV, clustering,
and tumor marker expression as shown in Figure S7. Cases TB3652 and TB3926 had typical
chromosome 1p and 19q codeletions (Figure S7A, D), and harbored 817 and 942 CNVpos nuclei,
respectively (Figure S7B, E). The tumor nuclei expressed tumor markers SOX2, EGFR, and
PTPRZ1, and/or OPC markers DSCAM and TNR; myeloid cells expressed a CD74, C3, ITGAX
(CD11c), ITM2B, and/or HLA-B; while oligodendrocytes expressed MBP and MOG (Figure S7C,
F). 382 CNVpos nuclei were found in case TB4100, which did not harbor CNVs across most cells,
and CNVpos nuclei were identified by clustering and marker expression as noted above. Of the
epilepsy cases, we identified 2558, 179, and 138 nuclei in cases TB4189, TB4437, and TB4957,
respectively. Figure S8A-C show marker expression in cases TB4437, TB4189, and TB4957,
where markers of astrocytes (GFAP, AQP4, SLC1A2, SLC1A3), neurons (RBFOX3, MEGS3,
GAD1, and SLC17A6), myeloid cells (CD74, ITGAX, C3, ITM2B), oligodendrocytes (MBP, MOG,
OPALIN, and CNP), and OPCs (DSCAM, TNR, SOX2, and PDGFRA). The CNVneg nuclei from
all LGG and epilepsy cases were combined with those from primary and recurrent IDH-WT GBM
and were analyzed as presented in the section below (myeloid cells) and main text (astrocytes).

Astrocyte subclusters and prognostic relevance
Based on unbiased shared nearest neighbor clustering of all astrocytes, we identified multiple
sub-clusters that share in gene expression. These are projected in the tSNE space in figure S9A.
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Select markers are shown in violin plots and gene expression heatmap in figure S9B-C,
respectively. The markers of the subclusters based on gene-wise Wilcox test are provided in
supplementary table 5. Generally, all sub-clusters showed expression of canonical astrocyte
gene GFAP, as well as variable levels of expression of other astrocyte genes including AQP4,
S100B, GPC5, SLC1A2, SLC4A4, and ATP1B2. Examples of gene expression are show in violin
plots in (Figure-S9B). Compared to other sub-clusters, sub-clusters 1 and 8 showed significantly
higher expression of many of the protoplasmic genes such as SLC1A2 and GLUL, whereas sub-
clusters 6 and 7 showed significantly higher expression of reactive genes including CLU, LGALS3,
and VIM. One sub-cluster was characterized by expression of ribosomal genes (sub-cluster 3).
While an over-representation of ribosomal genes may be a sign of low-coverage, we filtered cells
with less than 10,000 reads and 400 detected genes and thus interpret this ribosomal gene
signature as of potential biologic relevance - future studies will investigate that further. Another
sub-cluster had a hypoxic signature characterized by expression of VEGFA and HILPDA (sub-
cluster 5). Sub-clusters 2, 4, and 5 were each characterized by expression of genes associated
with other lineages including MEG3 and PDFGRA (Sub-cluster 5), GRIAL, TNR (Sub-cluster 4),
and PLP1 as well as SNAP25 (Sub-cluster 2). We previously showed that reactive astrocytes can
mis-express non-astrocyte lineage genes in neurodegenerative setting [18]. Sub-cluster 0 did not
show many differentially increased genes and is thus considered a baseline sub-cluster (Figure-
S9B-C).

Astrocyte sub-clusters were differentially distributed between primary glioma, recurrent
glioma, LGG, and epilepsy (Figure-S9D). Specifically, sub-clusters 2 and 3 were mostly
represented in primary glioma, sub-clusters 6 and 7 in recurrent glioma, sub-cluster 1 in epilepsy,
and sub-cluster 4 in LGG. Moreover, sub-cluster O was represented in all glioma conditions,
mostly in primary and recurrent gliomas and least in epilepsy, while sub-cluster 8 was represented
in recurrent glioma and epilepsy (Figure-S9D).

Because sub-cluster 6 shows significantly higher expression of several genes previously
associated with poor glioma outcomes, including CD44, CHI3L1, LGALS3, CLU and APOE [64-
66], we asked if the gene signature for sub-cluster 6 (Supplementary Table-5) has prognostic
relevance in survival data associated with publicly available datasets. We performed GSEA of the
top gene markers for astrocyte sub-clusters, using the TCGA-GBM [63] and the Chinese Glioma
Genome Atlas (CGGA) databases [51, 52]. 318 IDH-WT samples (TCGA - 139, CGGA - 179)
were used for survival analysis. Enrichment of the gene signature for astrocyte sub-cluster 6 is
significantly associated with poor survival (p=0.007 negative log rank test - Figure-S9E) on
univariate analysis by the Kaplan-Meier method. To investigate the relationship between survival
and enrichment of each astrocyte sub-cluster top gene markers, we determined the hazard ratio
of death given enrichment of each gene set using the cox proportional hazard regression model,
accounting for age as a covariate (Figure-S9F). Only positive enrichment of sub-cluster 6 genes
was significantly associated with increased hazard ratio of death by more than 1.5 folds
(confidence interval 1.08-2.20, p.value 0.015 Figure-S9F), an effect independent of age.

Based on the overlap of gene expression between astrocyte clusters, and the
resemblance to known astrocyte phenotypes we derived three gene sets (Supplementary Table-
5), which represent three major astrocyte states (protoplasmic, reactive-1, and reactive-2), and
then re-clustered astrocyte nuclei using Ward D2 hierarchical clustering on the Manhattan
distance of the enrichment scores (overlaid on the 3D tSNE plots in Figure-S9G-I), into a
protoplasmic cluster (Astl), and two reactive clusters (Ast2 and Ast3 — as described in the main


https://doi.org/10.1101/2021.07.06.451295
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.06.451295; this version posted April 14, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

text Figure 1C). These astrocyte states correspond very closely to those used in the
compositional PCA (Figure-S9J - see methods).

Analysis of myeloid cell states

Myeloid cells have been implicated in modulating glioma migration, infiltration, and progression
[67]. We identified 5925 nuclei we classified as myeloid cells. Unbiased clustering revealed 8
subclusters which we then used to assign the specific myeloid lineages. We merged clusters with
similar enrichment scores of gene sets representing microglia-derived tumor-associated
macrophages (mgTAM), monocyte-derived TAMs (moTAM), proliferative TAMs (prTAMs), and T-
cells as described in [15] Figure S10A - see methods (section on PCA analysis). The enrichment
of these gene sets in the final myeloid states is provided in Figure S10E. A subset of myeloid
cells showed mixed enrichment scores across mgTAM, moTAM, and dendritic cells, and were
considered baseline (referred to as Myell). Overall, we classified 2678, 1346, 1364, 360, and 177
nuclei as Myell, moTAM, mgTAM, prTAM, and T-cells, respectively, and these are shown in 3D
tSNE space in Figure S10A. Myell state showed higher expression of SAT1, CEBPD, and GLUL
(Figure S10C-top row). moTAM showed highest expression of CD163, MS4A4E, NHSL1, FMN1,
and MSR1 (Figure S10C-2nd row). mgTAM showed highest expression of SORL1, RIN3, ITGAX,
HS3ST4, and FRMD4A (Figure S10C-3rd row). prTAMs showed highest expression of CST3,
MEF2A, DBI, PLXDC2, and DOCK4 (Figure S10C-4th row). Finally, T-cells showed highest
expression of CD2, CD247, CD96, FYN, and SKAP1 (Figure S10C-5th row). Different myeloid
states were accounted for different conditions (Figure S10B). While Myell was present in
Epilepsy, primary and recurrent GBM, mgTAM was the main state found in LGG, but was also in
primary and recurrent GBM. moTAM, T-cells, and prTAM were found in primarily in recurrent GBM
(Figure S10D). The gene-wise DGE between myeloid states and the myeloid state markers are
provided in Supplementary Table-6.

The spatial landscape of glioma associated tissue-states in primary and recurrent GBM

To understand the spatial landscape of primary and recurrent glioma, we mapped the distribution
of our “tissue-state” signatures in space in primary and recurrent GBM. First, we tested one of our
cases that we utilized for snRNAseq (PO2) and took 48 localized biopsies that we analyzed using
plate-seq [49]. Immunofluorescence of frozen sections taken prior to analysis revealed a cellular
DAPI-dense glioma core and a NeuN rich cortical margin (Figure S12A). We conducted GSEA
analysis of our tissue-state signatures in the RNAseq data from the localized biopsies and
mapped that against the location of the biopsies (Figure S12B). Tissue-state C signature was
highest in the core, compared to tissue-state A signature, which was highest in the cortical margin.
Tissue-state B signature showed a more patchy distribution with foci of enrichment in both the
core and margin. Interestingly, the intermediate region between the core and cortex, showed
mixed enrichment across all three tissue-states. This data highlights the anatomic localization of
tissue-state signatures and underscores the heterogeneous patterns in the intermediate non-
cortical “margin” region. Next, to assess the generalizability of these results, we conducted the
same enrichment analysis on a dataset of MRI-localized primary and recurrent GBM samples [3]
(Figure S12C). As expected, control brain samples showed high enrichment of tissue-state A
signature while the contrast-enhancing samples in primary GBM showed high enrichment of
tissue-state C signature. Notably, the contrast enhancing samples from post-treatment recurrent
GBM showed highest enrichment of tissue states B and C, indicating a mixture of recurrent tumor
and treatment effect. The FLAIR+ primary GBM samples showed a wide distribution of enrichment
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of all three tissue types while the FLAIR+ recurrent GBM samples showed enrichment of tissue-
states A and B, with only a few samples showing enrichment of tissue state C. This data indicates
that the non-enhancing margins of recurrent GBM samples predominantly represent
reactive/gliotic brain tissue with relatively low levels of tumor infiltration, whereas the non-
enhancing margins of primary GBM can contain a wider range of pathological features, including
regions of abundant glioma infiltration.
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Figure legends

Figure 1: Astrocytes in the glioma microenvironment are heterogeneous and prognostically
relevant

A) Uniform-manifold approximation and projection (UMAP) graphs showing putative non-
neoplastic (CNVneg) from primary glioma, recurrent glioma, low grade glioma (LGG) - and
epilepsy (see supplementary data for the analysis of LGG and epilepsy cases). The nuclei are
color-coded by lineage (Oligodendrocytes, oligodendrocyte-precursor cells (OPC), neurons,
astrocytes, myeloid cells, and endothelial cells). B) Dot plots showing normalized expression of
select lineage genes (row) in the lineage from A (columns). The size of each circle corresponds
to the proportion of the lineage that expresses a given gene. C) Three-dimensional tSNE plots
showing all astrocyte nuclei color-coded by astrocyte state (Astl — protoplasmic astrocytes,
Ast2 — reactive astrocytes with misexpression of non-astrocyte lineage genes, and Ast3 —
reactive astrocytes with expression of inflammatory genes. D) Three-dimensional tSNE plots
showing all astrocyte nuclei color-coded by disease condition. E) Gene expression dot plots
showing select gene marker expression for the astrocyte states. (F) Classification of astrocytes
states into Huntington disease (HD) like or control (Con) like based on Al-Dalahmah et al. 2020
human astrocyte dataset, using a random forest classifier. The heatmap indicates the
proportions of astrocytes classified into each class scaled by astrocytes state (column). G-H)
Active subnetwork enrichment analysis of KEGG pathways in genes differentially expressed in
CNVneg glioma-associated astrocytes compared to CNVpos glioma cells in primary and
recurrent IDH-WT glioma. Fold enrichment is represented on the x-axis and the pathways in the
y-axis. The pathways are clustered to denote shared genes driving enrichment. The size of the
circle per pathway denotes the number of enriched genes, and the negative log10 of the
adjusted p.value is represented by color. Pathways enriched in genes significantly higher in
astrocytes compared to glioma cells are shown in G and include neurodegenerative diseases
and oxidative phosphorylation, metabolism including fatty acid metabolism. Pathways enriched
in genes significantly higher in glioma cells compared to astrocytes are shown on the H and
include DNA replication, splicing, and ErbB signaling.

Figure 2: snRNAseq and spatial transcriptomics identify patterns of co-habitation that correlate
with survival

A) Bar plots demonstrating the fractional composition of each one of 16 samples analyzed by
snRNAseq (8 primary IDH-WT glioma from 7 patients, one case was divided to core and overlying
cortex, and 8 recurrent IDH-WT glioblastoma) The first row of bar plots represent the fraction of
neoplastic (CNVpos) and non-neoplastic (CNVneg) nuclei. The middle row represents the fraction
of the non-neoplastic nuclei contributed by neurons, oligodendrocytes, OPCs, astrocytes, myeloid
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cells, endothelial cells, and astrocytes. The red arrowhead in the OPC legend box indicate that
OPCs were significantly reduced in recurrent GBM as determined by differential abundance
analysis. The bottom row represents the fraction of the neoplastic nuclei contributed by
proneural/progenitor-like glioma (gl_PN1, gl_PN2), astrocyte-like/mesenchymal glioma (gl_Mes1,
gl_Mes2), and proliferative glioma (gl_Prol, and gl_Pro2). The description of glioma states is
provided in the supplementary results. The red arrowhead in the gl_Mes2 legend box and the
black star in gl_PN1 indicate that gl_Mes2 and gl_PN21 were significantly increased and reduced
in recurrent GBM, respectively, as determined by differential abundance analysis. B) Principal
component analysis of the fractional composition matrix of 19 samples encompassing eight
primary and eight recurrent gliomas plus three epilepsy samples. The tissue composition matrix
consists of the percentage of nuclei per each tissue state. Immune cell states are: mgTAMs
(microglia-derived Tumor-associated macrophages), moTAM (monocyte-derived TAMS), prTAM
(proliferative TAM), Myell (baseline myeloid cells), and T cells. Astrocyte states include baseline
(protoplasmic) astrocytes (Astl), reactive CD44+ astrocytes (Ast3), and reactive astrocytes with
expression of non-astrocyte genes (Ast2) — see text and supplementary results for additional
description of these cell states. CNVpos represents the total percentage of all tumor states per
sample. Individual tumor states were not used in PCA calculation, rather they were used as used
supplementary quantitative variables and their coordinates were predicted from the PCA analysis
— see methods. C) Kaplan-Meier survival plot graphing survival in the combined TCGA and CGGA
RNAseq datasets. The samples were classified based on enrichment of gene signatures of
microenvironment states correlated with PC2 into positive or negative enrichment. Statistical
significance was computed using the log rank test. D) Representative plots showing enrichment
scores of gene signatures of astrocyte state and select glioma states projected in space in a GMB-
infiltrated sample analyzed by spatial transcriptomics. E) Heatmap showing the Pearson
Correlation of cell-type and cell-state transcriptional signatures in nine GBM-infiltrated samples
analyzed by spatial transcriptomics. Hierarchical clustering of the distance matrix derived from
the correlations showed three clusters.

Figure 3: Tissue composition analysis defines “tissue states” recapitulated in validation bulk
RNAseq dataset glioma and microenvironmental states better predict prognosis

A) Dendrogram of hierarchically clustered glioma and epilepsy samples based on Minkowski
sample distance analysis drawn from the fractional composition matrix (see Figure 4A). Three
clusters were identified and are color-coded on the dendrogram in black (Tissue-state C), red
(Tissue-state B), and green (Tissue-state A). The condition (primary, recurrent and epilepsy) is
indicated in the top bar below. The proportion of neoplastic nuclei (CNVprop) is indicated in the
bottom bar. B) Three-dimensional scatter plot showing the samples in A projected in the first
three principal component loadings — see figure 4B for PCA analysis. The samples are color-
coded by cluster designation as in A. C) Bulk RNAseq samples from 92 primary and recurrent
IDH-WT glioblastoma samples projected in the space represented by the enrichment of the
three gene signatures characteristic of the tissue states in B. The samples were clustered on
the Minkowski distance of the enrichment scores into three clusters A-C and are color-coded as
such. D) Gene ontology term analysis of the genes uniquely and differentially expressed in each
of the clusters in C. The bar plots are color coded as per the clusters in C. KEGG, REACTOME,
or Biological Process GO pathways are shown in the y-axis. Negative log10 of the adjusted p-
value is shown on the x-axis. E) Normalized expression of select genes characteristic of each of
the clusters projected onto the compositional-signature enrichment score space shown in C.
Red denotes high expression, and grey denotes low expression. NeuN (RBFOX3) is highest in
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the samples of Cluster A. CD68 is highest in the samples of cluster B. SOX2 is highest in the
samples of clusters B and C. MKI67 is highest in the samples of cluster C. F) Quantification of
histological cellularity analysis (far left) as well as immunohistochemistry labeling indices of
(from left to right) SOX2, KI67, CD68, and NeuN. The labeling index is shown on the y-axis.
Note that the y-axis for the cellularity graph is total cellularity normalized to the most cellular
sample. The sample clusters are labeled (A-C) as in C. p values were calculated using Kruskal-
Wallis test and are indicated on the graphs. N=8 for cluster A, 25 for cluster B, and 12 for cluster
C. G) Pre-ranked Gene Set Enrichment Analysis (GSEA) comparing tissue state B bulk
RNAseq samples with tissue states A & C samples for 4 sub-lineages: Ast3, moTAM, gl_Mes2,
and T-cells. Marker genes for each sub-lineage were used as the gene set for each analysis.
Normalized Enrichment Score (NES) is displayed, along with p-values and FDR-adjusted g-
values. H) Cox proportional hazard ratio of survival in the combined TCGA and CGGA IDH-WT
GBM dataset given enrichment of each of the tissue state signatures. Age, gender, and MGMT
status are included as co-variates in the model. The p values are shown on the left, bars
indicate confidence intervals (also noted on the right). Enrichment of each geneset was
categorized as negative or positive. ) Boxplots of the tissue state B normalized enrichment
scores in the Wang, L. et al. 2021 paired primary and recurrent GBM dataset. Paired samples
are denoted by connected points. Paired t-test — one-tailed. The p value is indicated.

Figure 4: Metabolic pathways drive targetable tissue state signatures

A) Heatmap displaying scaled enrichment scores for all KEGG pathways across all PLATE-seq
samples. The heatmap is grouped by tissue state (cluster A, B, C), annotated by the horizontal
bar at the top. Hierarchical clustering was performed on the rows (pathways), demonstrating
cluster-specific metabolic programs. B) Bar plot displaying scaled ssGSEA scores for select
KEGG metabolic programs from A. Bar plots represent mean scaled ssGSEA score + standard
error for each of the three clusters for a given pathway. C) Representative example showing a
heatmap displaying mean lineage-specific scaled normalized expression of genes in the GO:
Biological Process - Fatty Acid Biosynthesis gene set — which was most enriched in tissue state
B. Note the expression of the rate-limiting enzyme FASN is highest in astrocytes and glioma cells.
D) Scheme of in vitro and ex vivo FASN perturbation studies. E) Volcano plot showing the log2
fold change (x-axis) and log10 p value (y-axis) of differentially expressed genes in astrocytes
treated with Cerulenin (5mg/ml) versus control — Upper panel. Lower panel shows KEGG and
Reactome pathway enrichment analysis with the terms indicated on the y-axis, and the log10 p
value on the x-axis. The sign of the log10 p value indicates the direction of change (i.e. negative
= reduced in Cerulenin treatment). F) Volcano plot showing the log2 fold change (x-axis) and
logl0 p value (y-axis) of differentially expressed genes in GBM slice cultures treated with
Cerulenin (5mg/ml) versus control — Upper panel. Lower panel indicate GSEA plots of pre-ranked
enrichment of the genes increased in astrocytes treated with Cerulenin (left) and tissue state B
signature (right). The normalized enrichment scores (NES), p value (p), and adjusted p value (q)
are indicated.

Figure S1: snRNAseg-derived transcriptional states and lineage of putative neoplastic nuclei from
primary IDH-wildtype GBM samples

A) Outline of Analytic Design: T 2/FLAIR and post-contrast T1 MRI sequences of a glioblastoma
showing the classic radiological appearance of a glioblastoma (Case PO2); with a ring enhancing
mass (red star) with surrounding increased FLAIR signal ( ). The tumor was resected
and banked (frozen). Nuclei are extracted from frozen tissue and are subjected to droplet based
single nuclei RNA sequencing using the 10X chromium platform. The resultant barcoded cDNA
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is then sequenced and analyzed. Analyses performed include identification of putative neoplastic
cells by identifying cells with inferred copy number variations (CNV), clustering, differential gene
expression (DGE), and gene set enrichment analysis (GSEA). Scale bars = 50 um. B) Uniform-
manifold approximation and projection (UMAP) graphs showing putative neoplastic (CNVpos) and
non-neoplastic (CNVneg) nuclei from the seven primary IDH-wildtype glioma cases selected for
analysis indicated by subpanels b1-b7. C) UMAP plot showing all putative CNVpos (C) nuclei
from the seven primary glioma cases aligned and projected in shared UMAP spaces. The nuclei
are color-coded by glioma state: Oligodendrocyte-progenitor-like (proneural - gl_PN1), Neural-
progenitor-like (proneural - gl PN2), Mesenchymal/astrocyte like (gl_Mesl and gl_Mes2), and
proliferative (gl_Prol & gl_Pro2). D) Geneset enrichment analysis (GSEA) of selected genesets
from Verhaak et al. 2009 (v), Gobin M et al 2019, Gill et al 2014, Wang et al. 2019 (W), and Neftel
et al. 2019 (N) showing enrichment of genes specific for states described in the literature in our
described glioma states. E) Gene ontology (GO) term enrichment analysis (KEGG and
REACTOME pathways and biological process GO) of the major terms enriched in glioma state
top gene markers. The bars represent the negative logl0 of the false discovery rate adjusted
p.value, and are color-coded as in C.

Figure S2: Histopathologic characterization of glioma cases, ldentifying neoplastic nuclei

Large scale chromosomal copy number alterations were inferred from RNA expression using
InferCNV R package (see methods for details). The heat maps show gains (red) and losses (blue)
in case PAL (A), PA2 (B), PA3 (C), PO1 (D), PO2 (two samples — core and margin) (E), TB4916
(F), and TB4718 (G). Representative Hematoxylin and Eosin-stained section of the brain tissue
used for single nuclei RNAseq of the first five cases (H). Some cases showed clear infiltration
with glioma cells PAL, PA2, PA3, and PO2_c, PO2_2. Cases PO1 and PO2_m showed no clear
evidence of cellular tumor.

Figure S3 snRNAseq-derived transcriptional states and lineage of putative neoplastic nuclei from
post-treatment recurrent IDH-wildtype GBM samples

A) Uniform-manifold approximation and projection (UMAP) graphs showing putative neoplastic
(CNVpos) and non-neoplastic (CNVneg) nuclei from the eight post-treatment recurrent IDH-
wildtype glioblastoma cases. B) UMAP plot showing all putative CNVpos nuclei from the eight
recurrent glioma cases aligned and projected in shared UMAP spaces. The nuclei are color-coded
by glioma state: Oligodendrocyte-progenitor-like (proneural - gl_PN1), Neural-progenitor-like
(proneural - gl_PN2), Mesenchymal/astrocyte like (gl_Mesl and gl_Mes2), and proliferative
(gl_Prol & gl_Pro2). C) Gene ontology (GO) term enrichment analysis (KEGG and REACTOME
pathways and biological process GO) of the major terms enriched in glioma state top gene
markers. The bars represent the negative log10 of the false discovery rate adjusted p.value and
are color-coded as in B. D) Geneset enrichment analysis (GSEA) of selected genesets from
Verhaak et al. 2009, Gobin M et al 2019, Gill et al 2014, and Neftel et al. 2019 showing enrichment
of genes specific for states described in the literature in our described glioma states. E)
Correlation heatmap between glioma states in primary and post-treatment recurrent GBM based
on expression on glioma state marker genes. The size and color of the circles denote the strength
of correlation. F) Gene expression dot plots showing select gene marker expression in glioma
states.

Figure S4: CNV analysis of recurrent glioma samples
Large scale chromosomal copy number alterations were inferred from RNA expression using
InferCNV R package. The heat maps show gains (red) and losses (blue) in case TB5014 (A),
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TB5053 (B), TB3864 (C), TB4898 (D), TB8762 (E), TB4416 (F), and TB4027 (G), and TB3966
(H). ) Dotplot showing expression of select set of markers of both primary and recurrent glioma
states. The proportion of each glioma state in cell cycle phases as determined by Seurat cell-
cycle scoring is shown on the bottom.

Figure S5: The spatial landscape of glioma states across the cellular tumor and cortical

A) Confocal images showing optical sections of in situ hybridization for PTPRZ1 and CLU in the
core (upper row) and cortex (lower row). The pial surface is outlined (lower row). High-power
images of the insets show that PTPRZ1+ CLU+ cells (arrows) are more abundant in the cortex,
while PTPRZ1+CLU- (arrowheads) are more numerous in the core. scale bars = 20 ym. M.V:
Microvascular proliferation B) Quantification of PTPRZ1 and CLU expression across the core
(orange boxplot) and cortex (green boxplot). The data is shown as boxplots, with the bar indicating
the median. Paired t-test, N=5. The p value is indicated. C) Confocal images showing optical
sections of in situ hybridization for NOVA, SOX2, and MEG3 in the core (upper row) and cortex
(lower row). The pial surface is outlined (lower row). High-power images of the insets show that
NOVA1+SOX2+MEG3+ cells (arrows) are more abundant in the cortex, while MEG3- cells
(arrowheads) are more numerous in the core. scale bars = 20 ym. C) Quantification of
MEG3+NOVA1+SOX2+ cells as a proportion of all tumor cells (SOX2+ and/or NOVA1+) across
the core (orange boxplot) and cortex (green boxplot). The data is shown as boxplots, with the bar
indicating the median. Paired t-test, N=5. The p value is indicated. E) Confocal images showing
optical sections of in situ hybridization for TOP2A and CLU in the GBM infiltrated tissue. Arrows
indicate CLU+TOP2A+ cells, and arrowheads indicate CLU+TOP2A- cells. scale bar = 20 ym. F)
Quantification of TOP2A and CLU expression. The percentage of TOP2A+CLU+/CLU+ cells is
shown as a boxplot. One-sample t-test, N=5. *=p value < 0.001. G) Integration of primary and
recurrent GBM CNVpos nuclei color-coded by glioma state and condition

Figure S6: Prognostic relevance of glioma-state signatures

Kaplan-Meyer plots showing the survival curves of IDH-WT glioblastoma cases from the
combined TCGA and CGGA dataset stratified by enrichment of each of the glioma-state genesets
of primary (A) and recurrent (B) glioma datasets. The p values are shown.

Figure S7: Analysis of Low-grade glioma samples using single nucleus RNAseq

Large scale chromosomal copy number alterations were inferred from RNA expression of cases
TB3652 (A), TB3926 (D) — both IDH1-mutant oligodendrogliomas, and TB4100 (G) — IDH-mutant
astrocytoma. Uniform manifold approximation and projection (UMAP) plots of the three cases are
shown in panels B, E, and H, color-coded by copy number alteration status. Gene expression
UMAPs showing markers of tumor cells (PTPRZ1, EGFR, SOX2, TNR, and DSCAM), immune
cells (CD74, C3, HLA-B, ITGAX, ITM2B), and oligodendrocytes (MBP, MOG) of cases TB3652,
TB3926, and TB4100 in panels C, F, and I, respectively.

Figure S8: Analysis of Epilepsy samples using single nucleus RNAseq

A-C) Uniform-manifold approximation and projection (UMAP) graphs plots showing normalized
gene expression of select lineage markers for cases TB4437 (A), TB4189 (B), TB4957 (C). The
markers include astrocyte markers (GFAP, AQP4, SLC1A2, and SLC1A3), neuron makers
(RBFOX3, MEG3, GAD1, SLC17A6), myeloid markers (CD74, C3, ITGAX, ITM2B),
oligodendrocyte markers (MBP, MOG, OPALIN, CNP), and OPC markers (PDGFRA, DSCAM,
TNR, and SOX2).
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Figure S9: Related to Figure 1. Astrocytes sub-clusters

A) tSNE plot (three-dimensional) showing astrocytes color-coded by sub-cluster. B) Violin plots
showing expression of select astrocyte markers in the unbiased sub-clusters. Note all sub-
clusters show expression of GFAP. C) Scaled gene expression heatmap showing select gene
marker expression for the unbiased astrocyte sub-clusters. Sub-clusters 1 and 8 show high
expression of protoplasmic astrocyte genes, while sub-clusters 6 and 7 show high expression of
reactive genes. Sub-cluster 0 has very few differentially increased genes and is considered
baseline. D) Heatmap showing the proportion of nuclei in each astrocyte sub-cluster (columns)
contributed by disease condition (row). The proportions are scaled by columns. E) Kaplan-Meier
survival plot graphing survival in the combined TCGA and CGGA RNAseq datasets. The samples
were classified based on enrichment of Astrocyte sub-cluster 6 signature genes into positive or
negative enrichment. Statistical significance was computed using the log rank test. F) Cox
proportional hazard ratio of survival in the combined TCGA and CGGA dataset given enrichment
of each of the astrocyte cluster specific signature. Age is also included in the model. The p values
are shown on the left, bars indicate confidence intervals (also noted on the right). Enrichment of
each geneset was categorized as negative or positive. G-1) Geneset enrichment scores used for
astrocyte state detection (clustering). J) The scaled proportion of the astrocytes nuclei used for
compositional analysis (c-astl, c-ast2, c-ast3 - columns) that were clustered into the three
astrocyte states (Astl, Ast2, and Ast3 — as per clustering on gene-set enrichment scores). Scaling
was done by column.

Figure S10: The transcriptional landscape of microglia in glioma

A) Uniform-manifold approximation and projection (UMAP) graphs plots showing all myeloid
nuclei from color-coded by cluster (B) and condition (primary glioma, recurrent glioma, low grade
glioma (LGG), and epilepsy (C). Gene expression violin plots showing select gene marker
expression for the immune cell clusters from top to bottom; Myell, mgTAM, moTAM, prTAM, and
T cells. D) Heatmap showing the proportion of nuclei in each cluster (columns) contributed by
condition (rows). E) Heatmap showing the scaled enrichment scores of gene sets derived from
Movahedi et al 2021 in the nuclei pooled from each myeloid cluster.

Figure S11: Spatial transcriptomics samples

A) DAPI images of each of the 9 spatial transcriptomics (ST) capture regions, with 1mm scale
bar. B) Transcript counts per spot projected on ST object. C) Representative iteration of k=10
segmentation of each ST object, used for the correlation analysis in Figure 2E. The scale bars
are indicated.

Figure S12: The spatial landscape of glioma margins

A) Outline of spatial transcriptomic analysis of infiltrating GBM. DAPI (left) and NeuN (right)
immunostains of frozen sections from case PO2, for which snRNAseq was done. Each circle
represents a biopsy on which bulk RNAseq was done. After the biopsies were taken, the specimen
was bisected along the dashed white line (y-axis) and subjected to snRNASeq. B) Enrichment
analysis of each of the spatially mapped biopsies using the genesets of the three compositional
clusters (see text for details) displaying normalized single sample GSEA enrichment scores for
the tumor cluster (C - upper panel), the tumor-reactive cluster (B— middle panel), and the normal
brain cluster (A — lower panel). The enrichment scores are coded by color and size. The
normalized RNA data for the spatial biopsy map is available in an interactive web interface at
https://vmenon.shinyapps.io/gbm_expression/. C) Enrichment of the tissue state genesets as in
B, applied to the Gill et al. 2014 MRI localized biopsy dataset. The normalized enrichment scores
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for each tissue state are shown in histograms for the control brain, contrast enhancing
(Contrast_E) samples, and FLAIR-abnormal margin samples from primary and recurrent samples.
The lighter segments of the histograms indicate samples with negative enrichment.
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