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Abstract 

Glioblastoma is an aggressive diffusely infiltrating neoplasm that spreads beyond surgical 

resection margins, where it intermingles with non-neoplastic brain cells. This complex 

microenvironment harbouring infiltrating glioma and non-neoplastic brain cells is the origin of 

tumor recurrence. Thus, understanding the cellular and molecular features of the glioma 

microenvironment is therapeutically and prognostically important. Here, we used single-nucleus 

RNA sequencing (snRNAseq) of primary and recurrent glioma to define three compositional 

‘tissue-states’ rooted in cohabitation of cell-types and transcriptional states. These comprise a 

state featuring A) abundant normal brain microenvironment cells, B) reactive/inflamed brain 

microenvironment, and C) cellular/proliferative tumor. All these states exhibited variable degrees 

of infiltration by glioma cells. Spatial transcriptomics confirmed that the cell-types and 

transcriptomics states which compositionally cohabitate tissue states also colocalize in space. 

Tissue states are clinically significant because they correlate with radiographic, histopathologic, 

and prognostic features. We found that enrichment of tissue state B signature correlated with 

shorter survival. Importantly, we found that our compositionally defined tissue states are enriched 

in distinct metabolic pathways. One such pathway is fatty acid biosynthesis, which was enriched 

in tissue state B – a state enriched in recurrent glioblastoma and composed of astrocyte-

like/mesenchymal glioma cells, reactive astrocytes resembling those seen in neurodegeneration, 

and monocyte-like myeloid cells. We showed that treating acute slices of GBM with a fatty acid 

synthesis inhibitor is sufficient to deplete the transcriptional signature of tissue state B. Our 

findings define a novel compositional approach to the glioma-infiltrated tissue which allows us to 

discover prognostic and targetable features, paving the way to new mechanistic and therapeutic 

discoveries.  

Introduction  

Glioblastoma (GBM) is the most malignant glial tumor of the brain and is refractory to current 

treatment.  Although gross surgical resection of the visible tumor is sometimes feasible, glioma 

cells infiltrate the brain beyond the resection margins. While many studies have characterized the 

transcriptional and genomic features of GBM cells and glioma associated microglia/myeloid cells, 

a comprehensive analysis of other cells in the GBM microenvironment, and the patterns of 

cohabitation of different cell types is lacking. Previous studies have shown that the composition 

of glioma infiltrated samples varies from cellular tumor comprised of GBM and myeloid cells, to 

minimally infiltrated GBM margin tissue composed largely of non-neoplastic brain 

microenvironment cells, including neurons and glia [1, 2]. This is the microenvironment into which 

tumor cells migrate and proliferate, leading to recurrence, and is also the target of adjuvant 

therapy. Thus, understanding the cellular milieu of the tumor microenvironment at presentation 

and recurrence, including both neoplastic and non-neoplastic cells, is vital for advancing the 

management of GBM. Our goal is to determine patterns of cellular composition and transcriptional 

states in primary and recurrent GBM, including both neoplastic glioma cells and non-neoplastic 

brain cells. 

Early studies used bulk RNA sequencing approaches to understand GBM states in MRI-

localized samples from contrast-enhancing (CE) and non-contrast enhancing (NCE) margins [3-

6]. More resolution is attained using single cell RNAseq (scRNAseq) approaches, which are being 

increasingly used to understand heterogeneity in gliomas. Several studies have employed 

scRNAseq from freshly resected surgical samples to explore the heterogeneity of GBM [2, 7-12]. 

These studies have significantly advanced our understanding of the heterogeneity and pathology 

of glioma. However, application of whole cell scRNAseq is faced with practical challenges related 
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to the limitations of acquiring and processing freshly resected glioma tissue and the technical 

incompatibility with banked frozen glioma tissue. Moreover, scRNAseq is limited in sampling non-

neoplastic cells of the microenvironment like neurons and astrocytes, which are major 

constituents of the tumor-margins [2, 8-11], in part because of cell-type survivability/selection bias 

during tissue dissociation. Thus, while advances have been made in defining the genetic 

alterations in recurrent glioma [13, 14] and features of myeloid cells [15], comprehensive analyses 

of cellular composition and diversity of cellular phenotypes in primary and recurrent gliomas 

remain a challenge. 

Here, we circumvented these limitations of scRNAseq by using single nucleus RNAseq 

(snRNAseq), which allowed us to analyze frozen tissue, and inclusively sample cells of the 

microenvironment from primary and recurrent glioma. We sampled glioma-infiltrated tissue, from 

cellular tumor to minimally infiltrated surrounding brain tissue at the single cell level. 

Transcriptional analysis of copy number variations (CNVs) provided a metric to distinguish 

neoplastic (CNVpos) and non-neoplastic (CNVneg) nuclei, and unbiased clustering revealed that 

primary and recurrent tumors harbor CNVpos glioma cells with similar transcriptional states. 

Conversely, the microenvironment of primary and recurrent glioma displayed distinct cell-type 

specific states and different compositional landscapes. Leveraging information from the 

snRNAseq-derived compositional make-up of glioma-infiltrated samples defines three 

generalizable “tissue states” defined by cellular cohabitation in the glioma-infiltrated tissue, with 

each tissue state showing enrichment for specific gene signatures that can be identified in more 

accessible bulk RNAseq samples. This cohabitation of cell-types/transcriptional states was 

confirmed using spatial transcriptomics. We demonstrate that tissue states are prognostically 

relevant and display metabolic dependencies that can be pharmacologically targeted. 

RESULTS 

Transcriptional analysis of the glioma microenvironment reveals prognostically significant 

subpopulations of non-neoplastic astrocytes 

 

Given the importance of glioma microenvironment in tumor progression, we decided to investigate 

the implications of microenvironmental states on the prognosis of GBM. To achieve that, we first 

identified neoplastic and non-neoplastic nuclei based on chromosomal copy number variation 

(CNV) inference (Supplementary results). Given the repertoire of transcriptional states glioma 

cells that have been previously described ([2, 7-10, 12]), we confirmed that our CNV positive 

(CNVpos) neoplastic nuclei from primary and post-treatment recurrence GBM recapitulate known 

transcriptional states. We provide this data in the supplementary results including discussion of 

glioma states in primary and recurrent glioma (Figures S1, S3), CNV analysis of primary and 

recurrent glioma samples (Figures S2, S4), localization studies of glioma states in the tissue 

(Figure S5), survival analysis of glioma signatures (Figure S6), and details on other low grade 

glioma and epilepsy samples included in this study (Figures S7-8). We focused on the non-

neoplastic CNV negative (CNVneg) nuclei of the glioma microenvironment and combined in our 

analysis nuclei from primary and recurrent glioma, as well as nuclei from low-grade glioma (LGG) 

and epilepsy, to include a spectrum of neurological diseases with alterations to non-neoplastic 

cells in the brain microenvironment. The clinical data on the samples, QC metrics, and number of 

nuclei per lineage/cluster is provided in supplementary table-1. Our CNVneg nuclei datasets 

included 16831 nuclei: 6929 from primary glioma, 6008 from post-treatment recurrent glioma, 

2875 from epilepsy, and 1019 from LGG. We projected these nuclei in UMAP space and assigned 
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cell lineages as shown in Figure-1A. The expression of a select number of marker genes per 

lineage is shown in Figure-1B. We present the results on myeloid lineage nuclei in the 

supplementary results (Figure-S10), which demonstrates that monocyte-derived tumor-

associated macrophages (TAMs) were enriched in recurrent glioma, while microglia-derived 

TAMs were enriched in primary glioma, consistent with a previous report[15].  

We focused on astrocytes, which are key elements of the glioma microenvironment and 

are not well represented in glioma single-cell RNAseq datasets [2, 7-12, 16]. A recent paper 

implicated GBM-associated astrocytes in promoting an immunosuppressive microenvironment 

[17]. Moreover, the distinction between tumor-astrocytes and reactive-astrocytes is of major 

diagnostic importance in neuropathology. Thus, we analyzed astrocytes (707 nuclei – 284 from 

primary glioma, 254 from recurrent glioma, 45 from LGG, and 121 from epilepsy) in isolation from 

other cell types, reduced their dimensions, and clustered them into three states; Ast1 – 

protoplasmic astrocytes, Ast2 – reactive astrocytes with expression of oligodendroglial and 

neuronal genes, and Ast3 – reactive astrocytes with inflammatory gene expression (Figure-1C 

and supplementary table 4). The astrocytes are projected by disease condition in Figure 1D. 

Expression of select markers of these astrocytes states is shown in Figure 1E. A more in depth 

analysis of glioma-microenvironment astrocytes, including discussion of the sub-clusters, sub-

cluster markers, differential distribution between conditions, and prognostic relevance are 

provided in the supplementary results (Figure-S9A-F and supplementary table-5). Notably, a 

random forest classifier trained to identify astrocytes from Huntington disease versus controls[18], 

when applied to our glioma data classified the majority of Ast3 cells as Huntington disease like, 

and the majority of Ast1 as control like (Figure-1F). Since astrocytes and glioma shared gene 

signatures (for example, CLU and LGALS3 expression), we performed differential gene 

expression analysis between primary and recurrent glioma non-neoplastic astrocytes and all 

CNVpos glioma nuclei and identified 1620 genes were higher in astrocytes compared to glioma 

and 3380 were higher glioma compared to astrocytes.  Examples of genes higher in non-

neoplastic astrocyte include genes associated with Alzheimer’s disease (CLU, APOE)[19, 20], 

metallothionein genes (MT1H, MT1G, MT1M, MT1F, MT1E, MT1X, MT2A, and MT3 – increased 

in reactive astrocytes [18]), Synuclein genes (SNCA, SNCB, and SNCG), WIF1, CHI3L2 

(associated with poor prognosis in glioma[21]), ALDOC, ALDOA, AQP4, carbonic anhydrases 

CA2 and CA11, and CXCL14, a cytokine implicated in promoting glioma invasion [22] 

(Supplementary Table-4). Conversely, genes higher in CNVpos glioma include EGFR, PTPRZ1, 

NOVA1, CD24, Nestin (NES), SOX5, and SOX4. We used KEGG pathway enrichment analysis 

to query the function of these genes (Figure-1G-H). Further analysis of the differentially 

expressed genes showed that several KEGG pathways were enriched in genes higher in non-

neoplastic astrocytes (Figure-1G), with some relating to neurodegeneration such as Parkinson 

disease, and prion disease. Notably, these signatures are highly enriched in oxidative 

phosphorylation genes (supplementary Table-4), which is dysregulated in neurodegenerative 

diseases [23]. Moreover, other metabolic pathways enriched in astrocyte DGE included 

metabolism of fatty acids, glycolysis, TCA cycle, and ferroptosis. Conversely, KEGG pathways 

increased in CNVpos tumor-astrocytes were largely related to DNA replication, cancer-related 

pathways including ErbB and MAPK signaling, DNA replication and mismatch repair (Figure-1H 

and Supplementary Table-4).  

Re-convolution of snRNAseq identifies three tissue states based on cellular composition of glioma 

and its microenvironment  
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Given the heterogeneity of cellular states of glioma and non-neoplastic cells in the glioma 

microenvironment, we hypothesized that the transcriptional landscape of GBM is determined by 

patterns of cohabitation of specific types and transcriptional states of neoplastic and non-

neoplastic cells. To test this hypothesis, we first asked if specific glioma, or brain 

microenvironment lineages were differentially abundant or deplete across primary and recurrent 

glioma using a regression model [24] to test for differential abundance (Figure-2A). The results 

showed that for CNVpos cells, gl_Mes2 were significantly more abundant in recurrent glioma, 

while gl_PN1 were more abundant in primary glioma, (Benjamini-Hochberg adjusted p values (q-

value) 3.99e-2 and 1.318e-5 respectively). For the CNVneg cells in the glioma microenvironment, 

OPCs were significantly more abundant in primary glioma (q-value 1.085e-03). These results 

show that patterns of cellular composition vary in primary and recurrent glioma, and likely 

contribute to determining the transcriptional landscape of glioma. 

To uncover patterns of ‘tissue states” with correlated cell states/lineages, we took 

advantage of the relatively unbiased sampling of cellular composition in the brain tumor 

microenvironment provided by snRNAseq. We approximated the cellular composition of each 

surgical sample by recombining the cells from all the distinct cell populations, as identified by 

snRNA-seq, to create a compositional matrix containing the abundance of all cell types across all 

samples (Supplementary Table-1). The cellular composition matrix includes three astrocytic 

clusters (Ast1-3 – see methods), five immune-cell states (Myel1, moTAM, mgTAM, prTAM, and 

T cells - see supplementary results and methods), neurons, oligodendrocytes, endothelial cells, 

OPCs, and glioma cells. We then used principal component analysis of the resulting cellular 

composition matrix and identified the compositional features that account for the variance across 

the samples (Figure-2B). We used the glioma states as supplementary quantitative variables [25] 

– the coordinates of which can be predicted from the other variables inputted into the PCA 

analysis. The results showed that the relative abundance of CNVpos glioma cells versus CNVneg 

non-neoplastic cells (neurons, oligodendrocytes, OPCs) is the major feature of the first principal 

component, and the abundance of reactive astrocytes (Ast3), macrophage-like myeloid cells 

(moTAM), and T cells is the major feature of the second principal component. Notably, the 

abundance of a specific subpopulation of mesenchymal glioma cells (gl_Mes2) was also highly 

correlated with the second principal component (PC2). These finding indicate that specific 

subpopulations of neoplastic and non-neoplastic cells tend to co-inhabit glioma samples. 

Additionally, PC2 was positively correlated with the recurrent glioma condition (p.value= 0.027). 

To assess if the cohabitation of cell types and transcriptional states is prognostically relevant, we 

used the IDH-WT GBM TCGA and CGGA survival datasets and performed a log-rank test on 

samples with positive versus negative PC2 signature enrichment and found that positive 

enrichment is significantly associated with poor survival (Figure-2C). This data show that glioma 

infiltrated tissue shows patterns of cellular composition driven by co-habitation of specific cell-

types and transcriptional states and reveal prognostically-relevant gene signatures that span 

across both neoplastic and non-neoplastic cell states that co-inhibit tissue samples.  

As a second approach to characterize the patterns of co-habitation of cell types and 

transcriptional states in GBM, we analyzed nine samples of IDH-WT GBM infiltrated brain tissue 

using spatial transcriptomics (ST - Supplementary table-1, Figure 2D-E and Figure S11). This 

analysis highlighted the spatial patterns of colocalization of high enrichment scores for specific 

glioma states and non-neoplastic cell types, such as astrocyte-like/mesenchymal glioma 

(gl_Mes2) and reactive astrocytes Ast3 (Figure 2D). Extending this analysis, we determined the 

enrichment scores of all cell-type/transcriptional state gene signatures measured across all nine 
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GBM-infiltrated ST samples, correlated them using Pearson correlation, and then clustered the 

cell-types/transcriptional states on the Euclidian distance matrix derived from the correlation 

scores using hierarchical clustering (Figure 2E – see methods). Three main clusters were 

apparent: 1- which showed high correlation between astrocyte-like/mesenchymal glioma gl_Mes1 

and gl_Mes2, reactive astrocytes Ast3, endothelial cells, T-cells, and monocyte-like myeloid cells 

moTAM; 2- with high correlation between OPCs and proliferative glioma gl_Pro1 and gl_Pro2; 

and 3- with high correlation between neurons, proneural glioma gl_PN1 and gl_PN2, mgTAM, 

protoplasmic astrocytes Ast1. These findings are consistent with the results from snRNAseq, and 

provide additional evidence to support cohabitation of cell-types/transcriptional states. 

Driven by the above findings, we clustered the snRNAseq samples into 3 distinct “tissue-

states” based on the approximated cellular compositions described above; tissue-state A 

samples are predominantly composed of non-neoplastic brain cells, including neurons 

oligodendrocytes, and OPCs, tissue-state B samples are enriched in reactive astrocytes, 

myeloid/macrophages, and T-cells, and tissue-state C samples are predominantly composed of 

CNVpos glioma cells (Figure 3A-B). To generate a gene signature for each tissue state, we 

combined the snRNAseq for all nuclei in each sample and performed differential gene expression 

analysis between tissue-state clusters, using the re-convolved expression profile of each sample 

as a biological replicate. This analysis identified the top-differentially expressed genes unique to 

each tissue state (Supplementary Table-7). To assess the generalizability of the three tissue-

states, we performed single sample GSEA analysis for the tissue state gene signatures using a 

dataset of bulk RNAseq analysis performed on 91 primary and recurrent MRI-localized samples 

from 39 patients. We found that these samples separated into 3 compositional clusters based on 

their enrichment score for snRNAseq-defined “tissue-states” (Figure 3C). We refer to the 

compositional clusters and tissue-states interchangeably henceforth. These three tissue-states 

are further demonstrated by projecting the RNA-expression levels for canonical markers of the 

predominant cell types for each tissue-state in Figure 3E showing RBFOX3 (neuronal marker) in 

tissue-state A, CD68 (myeloid marker) in tissue-state B, and MKI67 (proliferation marker) in 

tissue-state C. Sox2 (pan-glioma marker) was widely distributed across the samples, indicating 

variable degrees of tumor infiltration across samples in all three tissue-states (Figure 3E). Further 

analysis revealed that these tissue-state gene signatures are enriched for specific biologically 

relevant functional ontologies. For example, Tissue-state A is enriched of genes involved in 

synaptic transmission, tissue-state B is enriched for genes associated with oxidative stress and 

inflammation, and tissue state C is associated with cell proliferation (Figure 3D). To further 

validate these findings, we quantified total cellularity and the IHC labeling indices SOX2, NeuN, 

CD68, and Ki67 in 45 recurrent and primary glioma samples (Figure 3F) and found that total 

cellularity was highest in cluster C, which also had the highest abundance of SOX2+ and Ki67+ 

cells, while cluster A had the highest abundance of NeuN+ cells, and Cluster B had the highest 

abundance of CD68+ cells. While Clusters A and B resemble normal and reactive brain tissue, 

the SOX2 and Ki67 labeling indices indicate that these clusters comprise samples with variable 

levels of glioma infiltration.  

To substantiate the clinical relevance of investigating glioma tissue in terms of tissue 

states, we investigated whether the enrichment of tissue state signatures correlated with survival 

in the TCGA-CGGA IDH-WT glioblastoma dataset. Given that tissue state B was enriched for the 

gene signatures of Ast3, moTAM, T-cells, and gl_Mes2 (Figure-3G), and considering our findings 

in Figure-2C, we expected it to be associated with increased risk of death in survival cohorts. As 

expected, enrichment of Cluster B gene signature in the IDH-WT TCGA and CGGA datasets was 
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associated with a significant increase in the hazard of death in cox proportional hazard regression 

model, with covariates controlled for including age, gender, and MGMT methylation status (Figure 

3H). To further establish the clinical relevance of taking a tissue state approach in investigating 

glioblastoma transcriptomics, we asked if the tissue state B differentially enriched in primary 

versus recurrent glioblastoma status. This question was especially relevant given that 

compositional cluster B was largely composed of recurrent glioma samples (Figure-3A). We thus 

asked if that signature is positively enriched in RNAseq profiles from previously published paired 

primary and recurrent glioblastoma samples [26] (Figure-3I). The results showed significant 

enrichment is tissue state B signatures at recurrence. Together, the results show that tissue state 

B signature is prognostic and enriched during GBM recurrence. As a third way to establish the 

clinical relevance of tissue states, we determined if these signatures are localized to specific 

radiographic regions of glioblastoma. Our results showed that while control samples were most 

enriched in tissue state A signature, GBM-infiltrated samples displayed spatially defined patterns 

that varied according to the disease condition (primary vs post-treatment recurrence - Figure 

S12C). For example, contrast-enhancing primary GBM samples were most enriched in tissue 

state C signature, while contrast-enhancing recurrent samples were most enriched in tissue state 

B signature. Glioma-margin samples (FLAIR abnormal) from primary GBM showed a range of 

enrichment scores for each of the three tissue state signatures. In contrast, most FLAIR-abnormal 

samples from recurrent GBM showed enrichment of tissue state A or B signatures, but very few 

showed enrichment for the tissue state C signature (see supplementary results - Figure S12).  

Glioma-associated tissue states are targetable and associated with distinct metabolic states  

 

Given the distinct cohabitation patterns that drive tissue states, we hypothesized that these 

patterns of cellular cohabitation are associated with metabolic dependencies. To test this 

hypothesis, we investigated whether metabolic pathways are differentially enriched in genes 

differentially expressed between bulk RNAseq samples of the three tissue states. Unbiased 

analysis of enrichment of KEGG pathways in genes differentially expressed between 

compositional clusters/tissue-states revealed that they exhibit enrichment of multiple unique and 

specific pathways (Figure 4A). Interestingly, several of the tissue state-enriched pathways were 

metabolic pathways. Tissue-state A showed highest enrichment for oxidative phosphorylation and 

beta-glutamate metabolism, tissue-state C was most enriched for pyrimidine, folate, and branched 

chain amino acid metabolism, and tissue-state B showed highest enrichment of fatty acid and 

lipid metabolism (Figure 4B). We focused on fatty acid biosynthesis genes, a tissue state B 

enriched pathway, and projected the average normalized expression per lineage as a heatmap in 

Figure 4C. We found that genes in this pathway were distributed across multiple cell types, 

suggesting that the metabolic status of a tissue can have distinct, but functionally related effects 

on different cell types in that tissue. Notably, fatty acid synthase (FASN), a rate-limiting enzyme 

in fatty acid synthesis{Garcia Corrales, 2021 #2471}, was most highly expressed in astrocytes 

and glioma cells (Figure 4C). FASN inhibition has been shown to kill glioma cells [27], however, 

the impact of FASN blockade on the glioma microenvironment is yet to be fully explored. Defining 

the effects of FASN blockade on the glioma microenvironment is important because fatty acid 

metabolism is a physiologic pathway that involves interactions between multiple cell types that 

reside in the same habitat. In non-neoplastic brain tissue, fatty acids are synthesized by 

astrocytes and are distributed to other cells including neurons and oligodendrocytes [28], where 

they drive physiologic and cellular functions like neuronal maturation, membrane synthesis [29], 

and neuroprotection [30]. We thus hypothesized blocking fatty acid synthesis pathway would 
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interfere with the cells that make up tissue state B and/or their interactions, and therefore would 

lead to depletion of tissue state B signature in glioblastoma infiltrated brain. To test this 

hypothesis, we treated astrocytes and explants of human IDH-WT glioblastoma with the FASN 

inhibitor Cerulenin (5mg/ml) and measured gene expression using the plate-seq RNAseq (Figure 

4D). Astrocytes treated with Cerulenin exhibited numerous differentially expressed genes 

compared with DMSO controls (Supplementary table-8, Figure 4E). Genes increased in treated 

astrocytes were enriched in KEGG and Reactome pathways involved in mTOR signaling, 

ferroptosis, and unfolded protein response, while those decreased in treated astrocytes were 

enriched in pathways involved in cell cycle. Cerulenin treatment did not alter astrocyte viability 

(data not shown). We then treated IDH-WT glioblastoma explants with DMSO or Cerulenin 

(Supplementary table-8) and measured gene expression (Figure 4F). We found that genes 

increased in Cerulenin treated astrocytes were significantly enriched in Cerulenin treated IDH-

WT glioblastoma explants, and that the tissue state B signature was depleted (negatively 

enriched). Overall, these results demonstrate that tissue-states exhibit enrichment of metabolic 

pathways, which can be targeted leveraging compositional information and metabolic 

dependencies.  

DISCUSSION  
In this work, we investigated the landscape cellular composition and transcriptional states 

of glioma and its microenvironment in primary and post-treatment recurrent IDH-WT GBM using 

snRNAseq and spatial transcriptomics. Understanding heterogeneity of GBM is important for 

guiding treatment and meeting the challenge of recurrence. Recent studies revealed a diversity 

of glioma states that resemble cell lineages found during development and adulthood [2, 9-12, 

16]. Our study provides a comprehensive analysis of the GBM microenvironment, including non-

neoplastic cell types. Using a compositional approach rooted in relatively unbiased sampling of 

different GBM microenvironment cell types, we discovered that specific cell types/transcriptional 

states colocalize in “tissue states”. Leveraging insight into correlated cellular states and lineages 

that co-inhabit tissue samples, we identified gene signatures that classify primary and recurrent 

GBM tissue into three tissue states: (A) normal brain, (B) reactive/inflammatory tissue, and (C) 

cellular/proliferative tumor. The tissue states exhibited variable levels of infiltrated by glioma cells. 

The patterns of co-habitation in the tissue state model are further supported by spatial 

transcriptomics data, which highlights the differential distribution of specific astrocyte states. 

Importantly, we discovered that enrichment tissue state B, a reactive state that harbors a reactive 

astrocyte state (Ast3) resembling neurodegenerative astrocytes, was associated with increased 

risk of death. We show that gene signatures for these tissue states can also be identified in more 

accessible bulk RNAseq samples and correlate with immunohistochemical profiles. Significantly, 

we found that tissues states were transcriptionally enriched in distinct metabolic pathways, and 

that targeting fatty acid synthesis, a pathway enriched tissue state B, resulted in depletion of that 

signature in ex vivo GBM slice cultures. The therapeutic implications of our findings help expand 

the target of therapy from targeting one gene or one cell type, to targeting to tissue states 

comprising cell populations that co-inhabit the tissue under defined metabolic constraints.  

Our analysis of the cellular phenotypes in the glioma microenvironment revealed that 

subpopulations of non-neoplastic astrocytes show enrichment for abnormal transcriptional 

signatures that are also seen in the context of neurodegenerative diseases. In contrast to CNVpos 

neoplastic astrocytes, which express high levels of proliferation and glioma genes, a 

subpopulation of non-neoplastic astrocytes (Ast3) displayed a reactive signature reminiscent of 
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astrocytes described in neurodegenerative diseases like Huntington disease, Parkinson disease 

and Alzheimer’s disease cortex [18, 31]. An unbiased random forest classifier also demonstrated 

that most Ast3 cells were classified as similar to Huntington disease astrocytes. It is notable that 

the non-neoplastic glia in the microenvironment of glioma exhibited neurodegenerative signatures 

even though most of the cases we profiled were less than 65 years old - the age after which 

neurodegenerative diseases become more prevalent. Our findings thus uncover commonalities 

in the astrocytic response to glioma and neurodegeneration. Given that GBM is a disease of the 

elderly population, one can envisage that future astrocyte modifying therapies developed for 

neurodegenerative disease may have a role in therapeutically modifying the microenvironment of 

GBM.  

 Our analysis of glioma states (supplementary results) revealed they can be grouped into 

three main categories based on commonalities with previously described glioma-state signatures: 

astrocyte-like/mesenchymal (gl_Mes1 and gl_Mes2), progenitor-like/proneural (gl_PN1 and 

gl_PN2), and proliferative (gl_Pro1 and gl_Pro2). We found that the astrocyte-like/mesenchymal 

signatures (gl_Mes1 in primary GBM and gl_Mes2 in recurrent GBM) portended poor survival in 

the IDH-WT GBM survival series (TCGA and CGGA), consistent with previous studies [6]. 

Moreover, GBM recurrence was correlated with increased gl_Mes2 and reduced gl_PN1 

abundance in our dataset. This is consistent with results from bulk RNAseq on paired primary-

recurrent glioma pairs, where the authors found enrichment of the mesenchymal subtype, and 

depletion of the classical subtype [6]. Analysis of paired primary and recurrent GBM samples from 

Wang et al. 2021 [26] revealed that tissue state B was enriched at recurrence. That being stated, 

our dataset is based on largely unpaired snRNAseq from primary and recurrent GBM and is of 

relatively smaller size, which may preclude us from further interpretation.  

One of the main findings highlighted by our analysis of cellular composition is that specific 

cell types are correlated with each other both compositionally and spatially, indicating that they 

co-inhabit the same tissue-states. Cohabitation between cell types and transcriptional states was 

reflected in enrichment of distinct metabolic pathways. For example, tissue state B was enriched 

in the glutathione pathway, which determines a cell’s sensitivity to ferroptosis-inducing drugs [32], 

and in fatty acid metabolism, which has been implicated in glioma survival, stemness and 

progression [27, 33, 34]. We found that fatty acid metabolism genes were distributed among 

different cell types in the brain, however, FASN, the rate-limiting enzyme in fatty acid synthesis 

{Garcia Corrales, 2021 #2471} was most highly expressed in astrocytes and glioma cells. 

Astrocytes play key roles in lipid metabolism; for example, in synthesizing fatty acids necessary 

for neuronal membranes {Tabernero, 2001 #2491} and catabolizing fatty acids released by 

neurons during excitotoxicity {Ioannou, 2019 #2493}. We showed that blocking FASN effectively 

depleted tissue state B signature from treated GBM slices. This may be explained by either a 

change in the composition of the GBM slices,  given that FASN inhibition may lead to glioma cell 

death [34]{Grube, 2014 #2418}, a change of gene expression of the cells that reside in the slices, 

or both. The latter is likely the case, given that GBM slices treated with FASN inhibitor showed a 

positive enrichment for the gene signature of astrocytes treated with FASN inhibitor, and negative 

enrichment for tissue state B. These finding are clinically relevant, given FASN is a promising 

target against glioblastoma [36], and highlight how the tissue-state approach can provide new 

insights into the effects of targeted therapies on the GBM microenvironment. 
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Methods  

Human subjects and glioma tissue  

Frozen primary untreated GBM tissue was acquired from the Bartoli brain tumor bank at Columbia 

University Medical Center. All diagnoses were rendered by specialized neuropathologists. Study 

protocols were approved by Columbia University Medical Center Institutional Review Board. All 

clinical samples were de-identified prior to analysis. Analyses were carried out in alignment with 

the principles outlined in the WMA Declaration of Helsinki and the Department of Health and 

Human services Belmont Report. Informed written consent was provided by all patients. The 

demographics of the cases used are provided in Supplementary Table 1.  

Extraction of nuclei and snRNAseq procedure 

Nuclei were isolated from frozen surgical resection specimen as described in Al-Dalahmah O et 

al. 2020. Briefly, the frozen tissue samples were dissected from fresh frozen tissue or frozen OCT-

embedded tissue blocks to yield tissue measuring in general from 5 x 2 x 1 mm to 10 x 6 x 3 mm. 

The tissue was homogenized using a dounce homogenizer in ice-cold 30% sucrose 0.1% Triton-

X 100 based homogenization buffer. 10-15 strokes of the loose dounce pestle were followed by 

10-15 strokes of the tight dounce pestle on ice. Mixing using a P1000 pipette followed before 

filtration through a BD Falcon 40um filters.  Filtration was repeated after a 10-minute spin at 1000g 

at 4c. A cleanup step followed using a density gradient step as described in [37]. The nuclear 

pellet was suspended in 1% BSA in PBS resuspension buffer containing RNAse inhibitors. A final 

filtration step using 20um Flowmi ™ filters followed before dilution to 700-1200 nuclei per ul in 

resuspension buffer. The nuclear suspensions were processed by the Chromium Controller (10x 

Genomics) using single Cell 3’ Reagent Kit v2 or v3 (Chromium Single Cell 3’ Library & Gel Bead 

Kit v2, catalog number: 120237; Chromium Single Cell A Chip Kit, 48 runs, catalog number: 

120236; 10x Genomics). 

Sequencing and raw data analysis 

Sequencing of the resultant libraries was done on Illumina NOVAseq 6000 platformV4 150bp 
paired end reads. Alignment was done using the CellRanger pipeline (10X Genomics) to 
GRCh38.p12 (refdata-cellranger-GRCh38-1.2.0 file provided by 10x genomics). Count matrices 
were generated from BAM files using default parameters of the DropEst pipeline (Petukhov V et 
al. 2018). Filtering and QC was done using the scater package (3). Nuclei with percent exonic 
reads from all reads in the range of 25-75% were included. Nuclei with percent mitochondrial 
reads aligning to mitochondria genes of more than 19% were excluded. Genes were filtered by 
keeping features with >10 counts per row in at least in 31 cells. Further filtering of low quality cells 
was done to include cells with at least 400 detected genes and 10,000 reads.  

Single Nuclei RNAseq analysis 

Sequencing and analysis of raw data 

Sequencing of the resultant libraries was done on Illumina NOVAseq 6000 platformV4 150bp 
paired end reads. We used 10X chromium v2 chemistry for samples PO1 and PO2, and v3 
chemistry for samples PA1, PA2, and P3. Read alignment was done using the CellRanger 
pipeline (v3.1 - 10X genomics) to reference GRCh38.p12 (refdata-cellranger-GRCh38-1.2.0 file 
provided by 10x genomics). Count matrices were generated from BAM files using default 
parameters of the DropEst pipeline [38].  

Data-cleanup  

Filtering and QC was done using the scater package [39, 40]. Nuclei with percent exonic reads 

from all reads in the range of 25-73% were included. Nuclei with percent mitochondrial reads 

aligning to mitochondria genes of more than 15% were excluded. Genes were filtered by keeping 
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features with >10 counts per row in at least in 31 cells. The count matrix of each sample was 

normalized by first running the quickcluster function, then estimating size-factors by calling 

scran::computeSumFactors() function with default options and clusters set to clusters identified 

by calling quickcluster function. scater::normalize() function was then used to generated 

normalized counts. Doublet identification was done using scran::doubletCells function with default 

options, and cells with doublet score of NMADs > 3 were excluded as we described previously 

[18].  

Combining multiple datasets from different sequencing batches 
To control sequencing and technical batches, we utilized canonical correlation analysis in Seurat 
[41] accounting for batch and mitochondrial read percentage for CNVneg nuclei. For CNVpos 
nuclei, we accounted for case and mitochondrial read percentage.  

Pre-Clustering and clustering of nuclei 

Pre-clustering of nuclei was done in Seurat using the shared nearest neighbor smart local moving 

algorithm. PCA reduction was used as the reduction in the FindNeighbors() step. Pre-cluster 

identity determination was done using geneset enrichment analysis of lineage markers [18] and 

by inspecting cluster markers generated by scran::findmarkers(direction=”up”) function. Microglia 

+/- oligodendrocytes were used as negative control cell for InferCNV pipeline (below). Once 

CNVneg cells were verified, cells from all cases were aligned using Seurat and clustered. Clusters 

with mixed identities based on enrichment of multiple lineage genes were sub-clustered iteratively 

until all “pre-clusters” showed pure identities. Only then do we combine the pre-clusters of the 

same lineage into lineages (Astrocytes, neurons, oligodendrocytes, myeloid, endothelial).  For 

subclustering of astrocytes and myeloid cells, we analyzed the nuclei in isolation of other lineages, 

and re-aligned them in Seurat, and reduced the dimensions before subclustering. For CNVpos 

nuclei, unbiased clusters were combined into glioma states/lineages based on similarity in marker 

expression and enrichment for known gene sets described in Figures 1D and 2C. 

Count normalization 

Raw counts were normalized in Seurat using the sctransform function SCT() function with default 

settings and controlling for percent mitochondrial gene expression [42].  

Copy number variation analysis of snRNAseq  

To detect putative neoplastic tumor cells, we used combination of marker expression and large 

scale copy number variation inference as per the InferCNV R package [43]. We used the default 

parameter as described in the package documentation.  As a control population, we used 

microglia and oligodendrocytes from case PO2_1. Iteratively, CNVneg clusters including 

Oligodendrocytes and Neurons were identified and added as control cells. Different gene window 

sizes were tested (50, 100, 200) and yield similar results. We then applied an orthogonal approach 

to label putative neoplastic cells based on previous approaches described in [2, 44]. Briefly, 

Log2+1 counts were averaged across chromosomes for each nucleus. A principal component 

analysis (PCA) was performed on autosomal chromosomes in factominer R package [25]. 

Chromosomes with high correlation with PC2 were the same as the ones shown in the detected 

by inferCNV() with the exception is PO1, where no neoplastic cells were detected by InferCNV or 

CONICS. A malignancy score was calculated by dividing the log2 gained chromosome counts 

over the sum of those that are lost (selection was limited to three chromosomes or less). The 

scores were then z-neoplastic per sample. To identify putative neoplastic nuclei in this method, 

we next performed K means clustering of the scaled malignancy scores in R using the kmeans 
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function and centers argument set to 2. PO1 does not show bimodal malignancy score distribution 

and the results of kmeans clustering were not considered. For case PA3, only a minority of nuclei 

had malignancy scores > 2 standard deviations above the mean. Therefore, these cells were 

identified using outlier detection in a normal distribution as done in the getOutliers(, method = "I", 

rho=c(0.1,3))$iRight) in R. getOutliers is part of extremevalues R package 

https://github.com/markvanderloo/extremevalues. Only the consensus nuclei that were identified as 

CNV positive in both approaches were considered for analysis. Less than 7.0% of the nuclei were 

called alternately by the two methods and were excluded from the analysis. Identification of 

CNVpos nuclei in recurrent glioma samples was conducted through a combination of InferCNV 

and identification of clusters with high expression of tumor markers SOX2 and PTPRZ1.  

Survival Analysis  
Survival analysis was performed using the survfit() function in the survival package in R [45, 46], 

using the binarized enrichment of each of the gene sets as the covariate in the formula. For cox 

proportional hazards, the function coxph() was used in R, and the covariates are indicated in the 

main figures.  

Correlation Analysis 

Correlation between deconvolution of values of microglial as well as astrocytic clusters, and 

glioma proportions was done using Pearson correlation (function cor() in R). The heatmap was 

generated using the corrplot package in R.  

Identification of glioma state and lineage top gene markers 

The lineage specific genes were determined using scater::findmarkers(…, direction =”up”) 

function on the top-level lineages (Neurons, astrocytes, microglia, undetermined, 

oligodendrocytes, OPC, and endothelial cells). The glioma-state specific genes were determined 

using scater::findmarkers(…, direction =”up”) function on the neoplastic glioma states only. To 

select specific lineage/glioma state markers, we further filtered the top markers generated above 

by selecting the genes with positive log-fold change values in 90% or more of the cluster-to-cluster 

comparisons. The top 150 genes were selected and are provided in Supplementary Tables 2-4 

for primary glioma, recurrent glioma, and non-neoplastic lineages, respectively. 

Principal component analysis 

PCA analysis was done in factorminer R package[25]. A matrix of snRNAseq sample x cell 

type/cluster was used as input. The composition of each snRNAseq sample astrocyte and myeloid 

subclusters was consolidated as follows: Astrocytes subclusters 0, 1, and 8 were combined as 

Ast1 (baseline/protoplasmic); subclusters 2, 3, 4, and 5 as Ast2, and subclusters 6 and 7 as Ast3. 

Myeloid subclusters 0 and 9 were combined as Myel1 (baseline), subclusters 1 and 3 – moTAM 

(monocyte derived TAMs); subclusters 2, 4, 6, and 8 as mgTAM (microglia-derived TAMs); 

subcluster 5 was kept as prTAM (proliferative TAMs); and subcluster 7 was kept as T-cells. The 

all CNV positive cells were consolidated as CNVpos, and the glioma states were included as 

supplementary quantitative variables. Condition (primary versus recurrent) was used as a 

supplementary qualitative variable. 

Random forest classifier 

Classification of astrocytes as control versus Huntington disease like was done by training a 

random forest classifier based on the HD vs control astrocytes dataset previously published [18]. 

The classifier was trained on normalized log2+1 gene expression values (15516 genes) from 
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1064 astrocytic nuclei using the package caret[47] in R. The training dataset was centered and 

scaled. Three-fold cross-validation followed. The classifier achieved a 97.5% accuracy. The 

classification. 

Acquisition of Tissue and Preparation of Acute Slice Cultures 

Primary GBM tissue from two separate surgeries, TB 6571 (3 blocks of tissue) and TB 6579 (2 

blocks of tissue) (see supplemental table for related clinical information), performed at Columbia 

University Medical Center/New York Presbyterian Hospital were retrieved fresh from the operating 

room in a sterile specimen cup and transported back to the laboratory on ice. Primary GBM acute 

slice cultures were prepared exactly as described previously [48]. Slices were treated as 

described previously with either DMSO or 5µg/mL Cerulenin for 18 hours prior to preservation 

and RNA extraction.  

Bulk RNAseq using Plate-Seq  

RNA extraction was done using the RNeasy Mini Kit (Qiagen cat# 74106). RNAseq was on 

spatially localized biopsies was performed using Plate-seq as described [49]. 75bp paired end 

sequencing was performed on Illumina NextSeq platform and read alignment was done using 

STAR [50] to the human genome (hg19, annotation: UCSC known genes), and analysis was 

done as previously described [3]. FPKM values were used in GSEA analysis. The count matrix 

for the TCGA GBM dataset was downloaded using the GDCquery tool in R. The Chinese 

Glioma Genome Atlas (CGGA) RNAseq datasets [51, 52] was downloaded from 

(http://www.cgga.org.cn/download.jsp). The counts were normalized using the vst() function in 

deseq2 R package [53]. IDH-WT only samples were kept from both datasets (TCGA: 139 

samples, CGGA: 179 samples) and used for downstream analysis.  

 For acute slice-culture PLATE-seq analysis, slices were then transferred to OCT and 

frozen into blocks. Tissue from each slice was isolated for RNA extraction by the Columbia 

Molecular Pathology Core using QiaSymphony extraction method. Total RNA was quantified 

using Nanodrop measurements, and 150ng of RNA from each slice/condition was loaded into a 

well of a 96 well plate. Pooled library amplification for transcriptome expression (PLATE-Seq) was 

then performed on the 96 well plate as previously described [49]. FASTQ files were demultiplexed 

and aligned to reference genome and transcript counts were normalized via DESeq2. 

Geneset enrichment analysis and Gene Ontology Analysis 

The average normalized counts per gene per cluster was calculated. The resultant cluster-wise 

count matrix was used as input to the GSVA pipeline [54]. Gene sets used for various tests are 

provided in the supplementary material (Supplementary Table-1). The options used for 

performing the GSVA pipeline are as follows: method= ssgsea, kcdf="Gaussian", mx.diff=TRUE. 

Heat maps were generated using the heatmap.2 in R function from the package gplots (R 

Package) and scores z-scaled were indicated. Ontology enrichment analysis in gProfiler with 

default settings [55]. For GSEA of the combined TCGA and CGGA dataset, the enrichment was 

performed using method = “ssgsea” option on normalized counts, which normalizes the 

enrichment scores for each gene set per sample. GSEA in Figure-3 was conducted using pre-

ranked GSEA and was performed as described in Subramanian et al 2005 with 1000 permutations 

[56].  Log-2-fold-change between cluster B and the remaining clusters was used to rank the genes 

for the analysis, and marker genes from each sub-lineage was used for the gene sets. For GSEA 

in Figure-4, preranked GSEA (based on log2foldchange) was performed using tissue cluster gene 

sets and the genes significantly upregulated after astrocyte treatment with cerulenin. 
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Spatial transcriptomics 

Spatial transcriptomics was conducted using 10X™ Visium Spatial Gene Expression Slide & 

Reagent Kit, 16 rxns (PN-1000184), according to the protocol detailed in document 

CG000239_RevD available in 10X demonstrated protocols. 10 micron-thick tissue sections were 

mounted on the ST slides and stained for nuclei – DAPI among other antigens using a rapid 

immunofluorescence protocol described in document CG000312_RevB available in 10X 

demonstrated protocols. Imaging of whole slides was done at 20X magnification on a Leica Aperio 

Versa scanner or a Leica DMI6 thunder tissue imager. After imaging, the slides were de-cover-

slipped and the tissue permeabilized for 11 minutes (which was empirically determined to yield 

best results based on the Visium Spatial Tissue Optimization Slide & Reagent Kit  PN-1000193 

as detailed in the protocol provided in document CG000238_RevD available in 10X demonstrated 

protocols). The remaining steps were conducted according to the manufacturer’s protocol. The 

libraries were sequenced on multiple Illumina Nextseq 550 (paired end dual-indexed sequencing) 

flowcells to achieve the recommended number reads per ST spot. The spatial transcriptomic (ST) 

samples were prepared using 10X genomics Cell Ranger (version 6.1.2) and Space Ranger 

(version 1.2.1) software. Raw tiff images of the tissue were labeled with Cell Ranger which 

generated a json file for Space Ranger to use during alignment. Labeled spots from Cell Ranger 

were inputted into the loupe-alignment argument in Space Ranger along with its respective tiff 

image file, FASTQ reads, and slide numbers. The reference genome used for alignment was built 

using the Space Ranger function spaceranger mkgtf with GRCh38 as the assembly and 

Ensemble 91 for the transcript annotations. All other parameters to generating the counts data for 

ST were set to its default setting. After the alignment was complete, counts data were pre-

processed using Seurat's SCTransform (version 4.06) function to account for technical variates 

while retaining biological variance in the tissues. To increase robustness of downstream analysis, 

counts from ~20 neighboring ST spots were summed into 10 ST regions that are approximately 

1 mm in diameter before use for gsea of lineage/cell type signatures. The ST regions were 

determined using an unbiased k-means clustering method on the actual distance matrix between 

the ST points, with k set to 10. ssGSEA (GSVA package)  analysis was performed on the summed 

counts. The process of tissue shattering was repeated 100 times and the average GSEA scores 

per 1 mm ST region was used for correlation (Pearson) analysis as indicated above.  

Differential gene expression analysis  

EdgeR glmQLFTest was used and the top 3000 differentially expressed genes with an FDR cutoff 

of 25% [57] were extracted. Only datapoints with adjusted p-values less than 0.05 were used in 

downstream analysis. For plate-seq data differential gene expression analysis between treatment 

and control was performed adjusting for tissue block and patient using the Deseq2 pipeline [53]. 

For astrocyte cultures, differential gene expression analysis between treatment and control was 

performed adjusting for astrocyte passage and cell culture batch using the Deseq2 pipeline. 

Immunohistochemistry, histology, and in situ hybridization  

Standard chromogenic Immunohistochemistry was done as described previously [18]. Paraffin-

embedded formalin-fixed tissue sections or fresh frozen sections briefly fixed in 4% PFA, for 10 

min (40 C) in 4% PFA in PBS. Paraffin sections after deparaffinization were treated with antigen 

unmasking solution according manufacture recommendations (Vector Laboratories, Burlingame, 

CA). The following antibodies and dilutions were used SOX2 (1:200, Mouse monoclonal, Abcam, 

Ab218520), KI67 (1:500, rat monoclonal polyclonal, Thermo Scientific, 14-5698-80), CD68 

(1:200, mouse monoclonal, Abcam cat# ab955), NeuN (1:1000, mouse monoclonal, Millipore, 

MAB377). For fluorescent IHC, secondary antibody conjugated to fluorophores: anti-mouse Alexa 
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Fluor 488 and 594 and anti-rabbit Alexa Fluor 488 and 594; goat or donkey (1:300, ThermoFisher 

Scientific, Eugene, OR) were applied for 1 hr at room temperature. In situ hybridization was done 

using RNAscope™ multiplex fluorescent v2 (ACDbio cat no 323100) per the manufacturer’s 

protocol in 5-micron paraffin-embedded, formalin-fixed tissue sections. We used predesigned 

probes for PTPRZ1, CLU, TOP2A, NOVA1, MEG3, and SOX2 from ACDbio; cat# 584781, 

584771, 470321, 400871, 584801, and 400871, respectively. Fluorescent images were taken on 

a Zeiss 810 Axio confocal microscope at 40X. Brightfield fluorescent images were taken on an 

Aperio LSM™ slide scanner at 20X and 40X. 

Quantification of ISH 

For quantification of in situ hybridization images we used the positive cell detection function in 

Qupath v0.2.3 [58]. We only quantified signal contained in DAPI-positive nuclei. First, DAPI 

positive nuclei were detected using the cell detection tool.  Next, subcellular detection function 

was employed to segment puncta per each of the three probe channels. A random forest classifier 

was used to classify nuclei to be positive or negative, with a minimum of two puncta per channel 

to classify a nucleus as positive for the probe. Infiltrated cortex and cellular  tumor core were 

annotated by a neuropathologist. 

Cell Culture 

Human Astrocytes (ScienCell cat #1800) were cultured in Astrocyte culture medium (ScienCell cat# 

1801), 2% fetal bovine serum (ScienCell cat #0010), 1% astrocyte growth supplement (ScienCell cat# 

1852) and 1% penicillin/streptomycin (ScienCell cat # 0503). The cells were maintained as adherent 

cultures on poly-L-Lysine coated tissue culture plates. The cells were passaged at 70-90% confluence and 

treated at passage numbers 5-7. DMSO or Cerulunin Sigma cat#C2389 at 5ug/ml was used to treat the 

cells for 18hours as indicated. 

Statistical testing 

Statistical comparisons were done using one-way ANOVA (or Kruskal Wallis test) and Tuckey 

post-hoc comparison in R. Statistical testing for RNAseq application is reported in the main text 

or respective methods section. Differential abundance analysis was done employing a moderated 

regression model in ANCOMBC with default parameters, assigned Condition (primary vs post-

treatment recurrence) and CNVpos proportions in the design formula, and as described by the 

authors ([24]). One tailed paired t-tests were done to compare the core and margin percentages 

of the same case (Figure 3).  A one sample t-test was conducted to determine if the percentage 

of TOP2A+ that were CLU+ was less than 50%. 

Data availability 

Data for spatial transcriptomic can be queried using an interactive web app: 

https://vmenon.shinyapps.io/gbm_expression/. All other data will be deposited as in GEO 

repositories prior to publication. 
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Supplementary Results 

Single nucleus RNAseq reveals proliferative, astrocyte-like/mesenchymal, and progenitor-

like/proneural states in both primary and recurrent GBM 

 

Radiographically, GBM typically has a CE core surrounded by a non-enhancing infiltrated brain 

that is highlighted by FLAIR-signal abnormality by MRI (Figure-S1A). The histopathological 

features of the resected tumor can vary from highly cellular tumor with vascular proliferation to 

less cellular infiltrated brain. These features are shown in Figure-S1H, demonstrating samples 

with a cellular GBM core (red star in Figure-1A, Figure-S2H PA1, PA2, PA3, and PO2_1) and 

others with overlying cortex (green star in Figure-S1A, Figure-S2H PO2_2 and PO1), which we 

use below. 

To explore the heterogeneity of primary GBM, we analyzed several banked surgical 

samples using snRNAseq as shown in (Figure-S1A). A total of 8 samples from 7 patients were 

selected for analysis (Supplementary Table-1). Neuropathological assessment of tumor 

cellularity ranged from cellular tumor with hallmarks of GBM, to reactive brain parenchyma with 

few atypical cells. This assessment was made on Hematoxylin and Eosin (H&E) stained formalin 

fixed paraffin embedded sections adjacent to or frozen cryosections of the frozen tissue analyzed 

by snRNAseq (Figure-S2H). We isolated nuclei from the frozen tissue and subjected them to 

snRNAseq followed by downstream analyses including clustering, differential gene expression 

analysis, cluster marker detection, and gene set enrichment analysis (GSEA) as outlined (Figure-

S1A). 15189 nuclei passed our QC (Supplementary Table-1). To distinguish putative glioma 

cells from non-neoplastic cells, we employed an established approach that infers large scale copy 

number alterations/variations (CNV) from RNA expression profiles [43]. Chromosomal heat maps 

showing putative neoplastic nuclei are shown in Supplementary Figure-S2A-G. Next, we also 

applied a second method to label nuclei based on a “malignancy score”, which we have previously 

shown to be a robust metric to distinguish glioma cells from non-neoplastic cells [2, 10], and the 

consensus nuclei designated by both methods was used for downstream analysis. Nuclei with no 

consensus CNV status were excluded (4.7%). Uniform manifold approximation and projection 

(UMAP) plots from individual cases labeled by transformation status are shown in Figure-S1B. 
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We identified 7954 putative neoplastic nuclei with inferred large scale chromosomal CNV 

(CNVpos/glioma nuclei). Glioma nuclei showed multiple chromosomal alterations including gains 

of chromosome 7 and losses of chromosome 10 (Figure-S1). Having identified neoplastic and 

non-neoplastic nuclei, we aligned the datasets from multiple samples and performed clustering 

analyses separately on CNVpos (glioma) nuclei from all cases using shared nearest neighbor and 

the smart local moving algorithm [59]. A UMAP plot is shown for all primary glioma nuclei non-

neoplastic nuclei color-coded by glioma state/lineage Figure-S1C. This approach identified 6 

distinct clusters: these resembled progenitors (oligodendrocyte-progenitors (gl_PN1 - proneural) 

and neural-progenitors (gl_PN2 - proneural), astrocytes (gl_Mes1 and gl_Mes2 - mesenchymal), 

and proliferative cells (gl_Pro1 and gl_Pro2).  

The identity of the glioma states is akin to previously described glioma states, as 

demonstrated by the enrichment of several gene lists from [3, 9, 60, 61] – (Figure-S1D, 

supplementary Table-2).  For example, gl_Pro1 and gl_Pro2 showed enrichment in gene sets 

specific for cell-cycle phases [61], with gl_Pro1 showing highest enrichment of G2/M genes 

(Gobin_G1) and gl_Pro2 showing highest enrichment of G1/S phase genes and DNA repair 

related genes (Gobin_G3). Clusters gl_PN1 showed enrichment of the Verhaak’s proneural, and 

OPC signature genes, while gl_PN2 showed enrichment of NPC signature genes. Finally, 

gl_Mes1 showed enrichment of astrocyte-like signatures and Verhaak’s classical signature while 

cluster gl_Mes2 showed enrichment of several gene sets related to reactive astrocytes, and 

Verhaak’s mesenchymal signature [3, 7, 60]. Our clustering is consistent with that described in 

Neftel et al. 2019 [9] and Wang et al. 2019 [7], and the states we describe are compatible with 

those in Yuan et al 2018 [2].  To further clarify the cellular phenotypes represented in our glioma 

clusters, we measured the enrichment of the major biologic process and molecular function gene 

ontologies (GO) in the glioma state top gene markers (see methods). GO enrichment analysis 

demonstrated enrichment of GO’s relating to locomotion, neurogenesis, neuronal migration, and 

cell projection in gl_PN1 markers genes; Notch signaling, neuron development, and GABA 

reuptake differentiation, and synaptic signaling in gl_PN2 genes; response to organic substances, 

ion homeostasis, and Signaling by tyrosine kinases in gl_Mes1 genes; response to cytokines, 

interferon gamma, and leukocyte activation and immune response in gl_Mes2 genes; mitosis and 

nuclear division in gl_Pro1, and S-phase, DNA replication, and DNA repair in gl_Pro2(Figure-

S1F and Supplementary Table-2). The identities of the clusters can also be appreciated by 

examining select gene markers Figure-S1E and Supplementary Table-2. gl_Pro1 expressed 

cell-cycle genes TOP2A, CENPF, and AURKB. gl_Pro2 showed highest expression of DNA 

damage/repair including FANCI, HELLS, and XRCC2. gl_PN2 showed high levels of CD24, 

MEG3, and SOX4. gl_Mes1 showed high levels of protoplasmic astrocyte genes including 

SLC1A3, LIFR, ATP1A2, C1orf61, and NTM, while gl_Mes2 showed highest expression levels for 

reactive astrocyte and immune genes including CLU, VIM, and SAT1. While our glioma states 

resemble those described in the literature, less is known about whether glioma cells assume 

similar states in the recurrent setting. Therefore, we bridged this gap by directly analyzing 

recurrent IDH-WT glioma samples using the same approach we used for primary GBM samples.  

To define the states of IDH-WT glioma in the post-treatment recurrence setting, we 

analyzed 8 cases of post-recurrent IDH-WT glioma using snRNAseq (Figure-S3A). We identified 

8908 neoplastic nuclei harboring large-scale CNV (Supplementary Figure-S4). Of the eight 

cases, two were paired recurrences from the primary samples (TB5124 – recurrent of TB4916, 

and TB5053 – recurrent of TB4718, see respective section on comparing paired samples below). 

We treated recurrent gliomas similarly to the treatment naïve primary tumors and clustered all 
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neoplastic nuclei together. Like primary gliomas, we found that recurrent glioma clusters can be 

assigned two proneural, two mesenchymal, and two proliferative states (Figure-S3B). The gene 

markers of the recurrent glioma states are enriched for similar ontologies to those seen for primary 

glioma states (Figure-S3C and Supplementary Table-3), showed similar patterns of enrichment 

for the previously presented gene sets in Figure-S1D (Figure-S3D), and displayed comparable 

gene marker expression (Figure-S3F). These results demonstrate that post-treatment recurrent 

glioma states closely resemble states observed in the primary pre-treatment setting. Indeed, 

Pearson correlation analysis demonstrates that corresponding states were positively correlated 

(Figure-S3E). The correlation patterns reveal that gl_Mes1 and gl_Mes2 are positively correlated 

with each in the primary and recurrent settings. This is also seen with gl_PN1 and gl_PN2, as 

well as gl_Pro1 and gl_Pro2. We therefore contend that a view of primary and recurrent glioma 

states may benefit from simplification and embrace a viewpoint that primary and recurrent glioma 

states can be classified as progenitor-like/proneural (gl_PN1 and gl_PN2), astrocyte-

like/mesenchymal (gl_Mes1 and gl_Mes2), and proliferative (gl_Pro2 and gl_Pro1) states. A 

select set of markers of both primary and recurrent GBM states is provided in Figure S4I. 

Assigning cell cycle scores using Seurat cell-cycle score assignment reveals that gl_Pro1 has the 

majority of cells in G2M phase, whilst gl_Pro2 has the majority of cells in S phase Figure S4I. 

Integration of both primary and recurrent glioma nuclei shows cells from primary and recurrent 

samples overlap in the UMAP space, and that this overlap is seen for all 6 GBM states (Figure 

S5G). 

While the transcriptional signatures of glioma are relatively well defined, the spatial 

distribution of these glioma states is less well understood. Given the marked difference in cellular 

composition between the cortex and the deeper (typically more heavily infiltrated) white matter, 

and the highly cellular tumor core, we asked if these different anatomic regions harbor distinct 

glioma states. In other words, we posited that the cellular microenvironment of glioma influences 

glioma states. Specifically, we hypothesized that we would find more glioma cells that resemble 

astrocytes (astrocyte-like/mesenchymal glioma) or neurons (progenitor-like - specifically gl_PN2) 

in the cortical margins. To address this question, we examined the expression of select 

combinations of glioma state transcripts using in situ hybridization (ISH) across the cellular tumor 

and the infiltrated cortical margin. We used probes to detect PTPRZ1 (high in glioma), CLU (high 

in astrocytes and astrocyte-like/mesenchymal glioma), SOX2 (high glioma), NOVA1 (high in 

progenitor-like/proneural glioma), and MEG3 (high in neurons and progenitor-like/proneural 

glioma - gl_PN2) in the cellular core and overlying infiltrated cortical margin in 5 cases of primary 

GBM (Figure-S5A, C). We found that significantly higher proportion of PTPRZ1+ glioma cells co-

expressed CLU in the cortex versus the core (Figure-S5B). Similarly, we found that significantly 

higher proportion of SOX2+NOVA1+MEG3+ glioma cells in the cortex versus the core (Figure-

3D). These findings indicate that the different glioma states have distinct distributions throughout 

the landscape of glioma and suggest that local tissue cellular composition and perhaps other 

microenvironmental influences can affect glioma states. We note that astrocyte-like/mesenchymal 

glioma states were negatively correlated with proliferative states. Consistent with this result, our 

ISH findings demonstrated a significantly smaller proportion of CLU+ cells that co-expressed 

TOP2A (mean=31.71388837%, Standard deviation = 15.73850618, one-tailed t-test p= 

0.000249641, n=5, Figure S5E-F). 

Comparison between primary and recurrent glioma pairs 

Not surprisingly, the recurrent tumors did not show identical chromosomal CNVs with their primary 

counterparts. While TB5014 retained the CNV of the TB4916 (gain of 7, loss of 10 and 14) and 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 14, 2022. ; https://doi.org/10.1101/2021.07.06.451295doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.06.451295
http://creativecommons.org/licenses/by-nc-nd/4.0/


acquired additional alterations including gains in chromosomes 19 and 20 (Figures S2F and 

S4A), TB5053 showed a complex gains and losses across multiple chromosomes (Figures S2G 

and S4B).  

In the main text, we note that gl_PN1 is depleted from our recurrent GBM samples (Figure 2A). 

This is consistent with the literature [6], since the Verhaak classical subtype resembles our 

gl_PN1, which showed positive enrichment scores of the Verhaak’s classical gene set. Of the 

non-neoplastic cell types, OPCs were depleted in recurrence. This may be explained by the fact 

the OPCs are the proliferative cell type in the brain and glioma treatment with chemotherapy and 

radiotherapy depletes proliferative cells, as have been previously demonstrated [62].  

  

Survival analysis of glioblastoma state signatures  

To determine if enrichment of our glioma states has prognostic relevance we performed GSEA of 

the top gene markers for each glioma state, both primary and recurrent gene sets 

(Supplementary Table 2 and 3), using the TCGA-GBM [63] and the Chinese Glioma Genome 

Atlas (CGGA) databases [51, 52]. 318 IDH-WT samples (TCGA - 139, CGGA - 179) were used 

for survival analysis. Kaplan-Meyer survival curves are shown on Figure-S6A-B for primary and 

recurrent glioma gene sets, respectively. The astrocyte-like/mesenchymal signatures Mes1 in 

primary and Mes2 in recurrent glioma significantly predicted poor survival. These two gene sets 

share 46 genes including CD44, and CHI3L1, which may explain the effect of primary gl_Mes1 

and recurrent gl_Mes2 with survival.  

Analysis of low-grade glioma and epilepsy cases 

To sample states of myeloid cells and astrocytes across different disease states, we chose to 

analyze the microenvironment of low-grade glioma (LGG) and temporal lobe epilepsy. We 

conducted snRNAseq on 6 cases: two IDH-mutant oligodendroglioma (TB3652 & TB3926), one 

IDH-mutant astrocytoma (TB4100), and three temporal lobe epilepsies (TB4189, TB4437, & 

TB4957). We identified 970, 1154, 1036 nuclei for LGG cases TB3652, TB3926, and TB4100, 

respectively. We identified CNVpos nuclei using a combination of chromosomal CNV, clustering, 

and tumor marker expression as shown in Figure S7. Cases TB3652 and TB3926 had typical 

chromosome 1p and 19q codeletions (Figure S7A, D), and harbored 817 and 942 CNVpos nuclei, 

respectively (Figure S7B, E). The tumor nuclei expressed tumor markers SOX2, EGFR, and 

PTPRZ1, and/or OPC markers DSCAM and TNR; myeloid cells expressed a CD74, C3, ITGAX 

(CD11c), ITM2B, and/or HLA-B; while oligodendrocytes expressed MBP and MOG (Figure S7C, 

F). 382 CNVpos nuclei were found in case TB4100, which did not harbor CNVs across most cells, 

and CNVpos nuclei were identified by clustering and marker expression as noted above. Of the 

epilepsy cases, we identified 2558, 179, and 138 nuclei in cases TB4189, TB4437, and TB4957, 

respectively. Figure S8A-C show marker expression in cases TB4437, TB4189, and TB4957, 

where markers of astrocytes (GFAP, AQP4, SLC1A2, SLC1A3), neurons (RBFOX3, MEG3, 

GAD1, and SLC17A6), myeloid cells (CD74, ITGAX, C3, ITM2B), oligodendrocytes (MBP, MOG, 

OPALIN, and CNP), and OPCs (DSCAM, TNR, SOX2, and PDGFRA). The CNVneg nuclei from 

all LGG and epilepsy cases were combined with those from primary and recurrent IDH-WT GBM 

and were analyzed as presented in the section below (myeloid cells) and main text (astrocytes). 

Astrocyte subclusters and prognostic relevance 

Based on unbiased shared nearest neighbor clustering of all astrocytes, we identified multiple 

sub-clusters that share in gene expression. These are projected in the tSNE space in figure S9A. 
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Select markers are shown in violin plots and gene expression heatmap in figure S9B-C, 

respectively. The markers of the subclusters based on gene-wise Wilcox test are provided in 

supplementary table 5. Generally, all sub-clusters showed expression of canonical astrocyte 

gene GFAP, as well as variable levels of expression of other astrocyte genes including AQP4, 

S100B, GPC5, SLC1A2, SLC4A4, and ATP1B2. Examples of gene expression are show in violin 

plots in (Figure-S9B). Compared to other sub-clusters, sub-clusters 1 and 8 showed significantly 

higher expression of many of the protoplasmic genes such as SLC1A2 and GLUL, whereas sub-

clusters 6 and 7 showed significantly higher expression of reactive genes including CLU, LGALS3, 

and VIM. One sub-cluster was characterized by expression of ribosomal genes (sub-cluster 3). 

While an over-representation of ribosomal genes may be a sign of low-coverage, we filtered cells 

with less than 10,000 reads and 400 detected genes and thus interpret this ribosomal gene 

signature as of potential biologic relevance - future studies will investigate that further.  Another 

sub-cluster had a hypoxic signature characterized by expression of VEGFA and HILPDA (sub-

cluster 5). Sub-clusters 2, 4, and 5 were each characterized by expression of genes associated 

with other lineages including MEG3 and PDFGRA (Sub-cluster 5), GRIA1, TNR (Sub-cluster 4), 

and PLP1 as well as SNAP25 (Sub-cluster 2). We previously showed that reactive astrocytes can 

mis-express non-astrocyte lineage genes in neurodegenerative setting [18]. Sub-cluster 0 did not 

show many differentially increased genes and is thus considered a baseline sub-cluster (Figure-

S9B-C).  

Astrocyte sub-clusters were differentially distributed between primary glioma, recurrent 

glioma, LGG, and epilepsy (Figure-S9D). Specifically, sub-clusters 2 and 3 were mostly 

represented in primary glioma, sub-clusters 6 and 7 in recurrent glioma, sub-cluster 1 in epilepsy, 

and sub-cluster 4 in LGG. Moreover, sub-cluster 0 was represented in all glioma conditions, 

mostly in primary and recurrent gliomas and least in epilepsy, while sub-cluster 8 was represented 

in recurrent glioma and epilepsy (Figure-S9D).  

Because sub-cluster 6 shows significantly higher expression of several genes previously 

associated with poor glioma outcomes, including CD44, CHI3L1, LGALS3, CLU and APOE [64-

66], we asked if the gene signature for sub-cluster 6 (Supplementary Table-5) has prognostic 

relevance in survival data associated with publicly available datasets. We performed GSEA of the 

top gene markers for astrocyte sub-clusters, using the TCGA-GBM [63] and the Chinese Glioma 

Genome Atlas (CGGA) databases [51, 52]. 318 IDH-WT samples (TCGA - 139, CGGA - 179) 

were used for survival analysis. Enrichment of the gene signature for astrocyte sub-cluster 6 is 

significantly associated with poor survival (p=0.007 negative log rank test - Figure-S9E) on 

univariate analysis by the Kaplan-Meier method. To investigate the relationship between survival 

and enrichment of each astrocyte sub-cluster top gene markers, we determined the hazard ratio 

of death given enrichment of each gene set using the cox proportional hazard regression model, 

accounting for age as a covariate (Figure-S9F). Only positive enrichment of sub-cluster 6 genes 

was significantly associated with increased hazard ratio of death by more than 1.5 folds 

(confidence interval 1.08-2.20, p.value 0.015 Figure-S9F), an effect independent of age.  

Based on the overlap of gene expression between astrocyte clusters, and the 

resemblance to known astrocyte phenotypes we derived three gene sets (Supplementary Table-

5), which represent three major astrocyte states (protoplasmic, reactive-1, and reactive-2), and 

then re-clustered astrocyte nuclei using Ward D2 hierarchical clustering on the Manhattan 

distance of the enrichment scores (overlaid on the 3D tSNE plots in Figure-S9G-I), into a 

protoplasmic cluster (Ast1), and two reactive clusters (Ast2 and Ast3 – as described in the main 
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text Figure 1C). These astrocyte states correspond very closely to those used in the 

compositional PCA (Figure-S9J - see methods).  

Analysis of myeloid cell states 

Myeloid cells have been implicated in modulating glioma migration, infiltration, and progression 

[67]. We identified 5925 nuclei we classified as myeloid cells. Unbiased clustering revealed 8 

subclusters which we then used to assign the specific myeloid lineages. We merged clusters with 

similar enrichment scores of gene sets representing microglia-derived tumor-associated 

macrophages (mgTAM), monocyte-derived TAMs (moTAM), proliferative TAMs (prTAMs), and T-

cells as described in [15] Figure S10A - see methods (section on PCA analysis). The enrichment 

of these gene sets in the final myeloid states is provided in Figure S10E. A subset of myeloid 

cells showed mixed enrichment scores across mgTAM, moTAM, and dendritic cells, and were 

considered baseline (referred to as Myel1). Overall, we classified 2678, 1346, 1364, 360, and 177 

nuclei as Myel1, moTAM, mgTAM, prTAM, and T-cells, respectively, and these are shown in 3D 

tSNE space in Figure S10A. Myel1 state showed higher expression of SAT1, CEBPD, and GLUL 

(Figure S10C-top row). moTAM showed highest expression of CD163, MS4A4E, NHSL1, FMN1, 

and MSR1 (Figure S10C-2nd row). mgTAM showed highest expression of SORL1, RIN3, ITGAX, 

HS3ST4, and FRMD4A (Figure S10C-3rd row). prTAMs showed highest expression of CST3, 

MEF2A, DBI, PLXDC2, and DOCK4 (Figure S10C-4th row). Finally, T-cells showed highest 

expression of CD2, CD247, CD96, FYN, and SKAP1 (Figure S10C-5th row). Different myeloid 

states were accounted for different conditions (Figure S10B). While Myel1 was present in 

Epilepsy, primary and recurrent GBM, mgTAM was the main state found in LGG, but was also in 

primary and recurrent GBM. moTAM, T-cells, and prTAM were found in primarily in recurrent GBM 

(Figure S10D). The gene-wise DGE between myeloid states and the myeloid state markers are 

provided in Supplementary Table-6. 

The spatial landscape of glioma associated tissue-states in primary and recurrent GBM 

 

To understand the spatial landscape of primary and recurrent glioma, we mapped the distribution 

of our “tissue-state” signatures in space in primary and recurrent GBM. First, we tested one of our 

cases that we utilized for snRNAseq (PO2) and took 48 localized biopsies that we analyzed using 

plate-seq [49]. Immunofluorescence of frozen sections taken prior to analysis revealed a cellular 

DAPI-dense glioma core and a NeuN rich cortical margin (Figure S12A).  We conducted GSEA 

analysis of our tissue-state signatures in the RNAseq data from the localized biopsies and 

mapped that against the location of the biopsies (Figure S12B). Tissue-state C signature was 

highest in the core, compared to tissue-state A signature, which was highest in the cortical margin. 

Tissue-state B signature showed a more patchy distribution with foci of enrichment in both the 

core and margin. Interestingly, the intermediate region between the core and cortex, showed 

mixed enrichment across all three tissue-states. This data highlights the anatomic localization of 

tissue-state signatures and underscores the heterogeneous patterns in the intermediate non-

cortical “margin” region. Next, to assess the generalizability of these results, we conducted the 

same enrichment analysis on a dataset of MRI-localized primary and recurrent GBM samples [3] 

(Figure S12C). As expected, control brain samples showed high enrichment of tissue-state A 

signature while the contrast-enhancing samples in primary GBM showed high enrichment of 

tissue-state C signature. Notably, the contrast enhancing samples from post-treatment recurrent 

GBM showed highest enrichment of tissue states B and C, indicating a mixture of recurrent tumor 

and treatment effect. The FLAIR+ primary GBM samples showed a wide distribution of enrichment 
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of all three tissue types while the FLAIR+ recurrent GBM samples showed enrichment of tissue-

states A and B, with only a few samples showing enrichment of tissue state C.  This data indicates 

that the non-enhancing margins of recurrent GBM samples predominantly represent 

reactive/gliotic brain tissue with relatively low levels of tumor infiltration, whereas the non-

enhancing margins of primary GBM can contain a wider range of pathological features, including 

regions of abundant glioma infiltration. 
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Figure legends 
Figure 1: Astrocytes in the glioma microenvironment are heterogeneous and prognostically 

relevant  

A) Uniform-manifold approximation and projection (UMAP) graphs showing putative non-

neoplastic (CNVneg) from primary glioma, recurrent glioma, low grade glioma (LGG) - and 

epilepsy (see supplementary data for the analysis of LGG and epilepsy cases). The nuclei are 

color-coded by lineage (Oligodendrocytes, oligodendrocyte-precursor cells (OPC), neurons, 

astrocytes, myeloid cells, and endothelial cells). B) Dot plots showing normalized expression of 

select lineage genes (row) in the lineage from A (columns). The size of each circle corresponds 

to the proportion of the lineage that expresses a given gene. C) Three-dimensional tSNE plots 

showing all astrocyte nuclei color-coded by astrocyte state (Ast1 – protoplasmic astrocytes, 

Ast2 – reactive astrocytes with misexpression of non-astrocyte lineage genes, and Ast3 – 

reactive astrocytes with expression of inflammatory genes. D) Three-dimensional tSNE plots 

showing all astrocyte nuclei color-coded by disease condition. E) Gene expression dot plots 

showing select gene marker expression for the astrocyte states. (F) Classification of astrocytes 

states into Huntington disease (HD) like or control (Con) like based on Al-Dalahmah et al. 2020 

human astrocyte dataset, using a random forest classifier. The heatmap indicates the 

proportions of astrocytes classified into each class scaled by astrocytes state (column). G-H) 

Active subnetwork enrichment analysis of KEGG pathways in genes differentially expressed in 

CNVneg glioma-associated astrocytes compared to CNVpos glioma cells in primary and 

recurrent IDH-WT glioma. Fold enrichment is represented on the x-axis and the pathways in the 

y-axis. The pathways are clustered to denote shared genes driving enrichment. The size of the 

circle per pathway denotes the number of enriched genes, and the negative log10 of the 

adjusted p.value is represented by color. Pathways enriched in genes significantly higher in 

astrocytes compared to glioma cells are shown in G and include neurodegenerative diseases 

and oxidative phosphorylation, metabolism including fatty acid metabolism. Pathways enriched 

in genes significantly higher in glioma cells compared to astrocytes are shown on the H and 

include DNA replication, splicing, and ErbB signaling.  

Figure 2: snRNAseq and spatial transcriptomics identify patterns of co-habitation that correlate 

with survival 

A) Bar plots demonstrating the fractional composition of each one of 16 samples analyzed by 

snRNAseq (8 primary IDH-WT glioma from 7 patients, one case was divided to core and overlying 

cortex, and 8 recurrent IDH-WT glioblastoma) The first row of bar plots represent the fraction of 

neoplastic (CNVpos) and non-neoplastic (CNVneg) nuclei. The middle row represents the fraction 

of the non-neoplastic nuclei contributed by neurons, oligodendrocytes, OPCs, astrocytes, myeloid 
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cells, endothelial cells, and astrocytes. The red arrowhead in the OPC legend box indicate that 

OPCs were significantly reduced in recurrent GBM as determined by differential abundance 

analysis. The bottom row represents the fraction of the neoplastic nuclei contributed by 

proneural/progenitor-like glioma (gl_PN1, gl_PN2), astrocyte-like/mesenchymal glioma (gl_Mes1, 

gl_Mes2), and proliferative glioma (gl_Pro1, and gl_Pro2). The description of glioma states is 

provided in the supplementary results. The red arrowhead in the gl_Mes2 legend box and the 

black star in gl_PN1 indicate that gl_Mes2 and gl_PN1 were significantly increased and reduced 

in recurrent GBM, respectively, as determined by differential abundance analysis. B) Principal 

component analysis of the fractional composition matrix of 19 samples encompassing eight 

primary and eight recurrent gliomas plus three epilepsy samples. The tissue composition matrix 

consists of the percentage of nuclei per each tissue state. Immune cell states are: mgTAMs 

(microglia-derived Tumor-associated macrophages), moTAM (monocyte-derived TAMs), prTAM 

(proliferative TAM), Myel1 (baseline myeloid cells), and T cells. Astrocyte states include baseline 

(protoplasmic) astrocytes (Ast1), reactive CD44+ astrocytes (Ast3), and reactive astrocytes with 

expression of non-astrocyte genes (Ast2) – see text and supplementary results for additional 

description of these cell states. CNVpos represents the total percentage of all tumor states per 

sample. Individual tumor states were not used in PCA calculation, rather they were used as used 

supplementary quantitative variables and their coordinates were predicted from the PCA analysis 

– see methods. C) Kaplan-Meier survival plot graphing survival in the combined TCGA and CGGA 

RNAseq datasets. The samples were classified based on enrichment of gene signatures of 

microenvironment states correlated with PC2 into positive or negative enrichment. Statistical 

significance was computed using the log rank test. D) Representative plots showing enrichment 

scores of gene signatures of astrocyte state and select glioma states projected in space in a GMB-

infiltrated sample analyzed by spatial transcriptomics. E) Heatmap showing the Pearson 

Correlation of cell-type and cell-state transcriptional signatures in nine GBM-infiltrated samples 

analyzed by spatial transcriptomics. Hierarchical clustering of the distance matrix derived from 

the correlations showed three clusters.  

Figure 3: Tissue composition analysis defines “tissue states” recapitulated in validation bulk 

RNAseq dataset glioma and microenvironmental states better predict prognosis 

A) Dendrogram of hierarchically clustered glioma and epilepsy samples based on Minkowski 

sample distance analysis drawn from the fractional composition matrix (see Figure 4A). Three 

clusters were identified and are color-coded on the dendrogram in black (Tissue-state C), red 

(Tissue-state B), and green (Tissue-state A). The condition (primary, recurrent and epilepsy) is 

indicated in the top bar below. The proportion of neoplastic nuclei (CNVprop) is indicated in the 

bottom bar. B) Three-dimensional scatter plot showing the samples in A projected in the first 

three principal component loadings – see figure 4B for PCA analysis. The samples are color-

coded by cluster designation as in A. C) Bulk RNAseq samples from 92 primary and recurrent 

IDH-WT glioblastoma samples projected in the space represented by the enrichment of the 

three gene signatures characteristic of the tissue states in B. The samples were clustered on 

the Minkowski distance of the enrichment scores into three clusters A-C and are color-coded as 

such. D) Gene ontology term analysis of the genes uniquely and differentially expressed in each 

of the clusters in C. The bar plots are color coded as per the clusters in C. KEGG, REACTOME, 

or Biological Process GO pathways are shown in the y-axis. Negative log10 of the adjusted p-

value is shown on the x-axis. E) Normalized expression of select genes characteristic of each of 

the clusters projected onto the compositional-signature enrichment score space shown in C. 

Red denotes high expression, and grey denotes low expression. NeuN (RBFOX3) is highest in 
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the samples of Cluster A. CD68 is highest in the samples of cluster B. SOX2 is highest in the 

samples of clusters B and C. MKI67 is highest in the samples of cluster C. F) Quantification of 

histological cellularity analysis (far left) as well as immunohistochemistry labeling indices of 

(from left to right) SOX2, KI67, CD68, and NeuN. The labeling index is shown on the y-axis. 

Note that the y-axis for the cellularity graph is total cellularity normalized to the most cellular 

sample. The sample clusters are labeled (A-C) as in C. p values were calculated using Kruskal-

Wallis test and are indicated on the graphs. N=8 for cluster A, 25 for cluster B, and 12 for cluster 

C.  G) Pre-ranked Gene Set Enrichment Analysis (GSEA) comparing tissue state B bulk 

RNAseq samples with tissue states A & C samples for 4 sub-lineages: Ast3, moTAM, gl_Mes2, 

and T-cells. Marker genes for each sub-lineage were used as the gene set for each analysis. 

Normalized Enrichment Score (NES) is displayed, along with p-values and FDR-adjusted q-

values. H) Cox proportional hazard ratio of survival in the combined TCGA and CGGA IDH-WT 

GBM dataset given enrichment of each of the tissue state signatures. Age, gender, and MGMT 

status are included as co-variates in the model. The p values are shown on the left, bars 

indicate confidence intervals (also noted on the right). Enrichment of each geneset was 

categorized as negative or positive. I) Boxplots of the tissue state B normalized enrichment 

scores in the Wang, L. et al. 2021 paired primary and recurrent GBM dataset. Paired samples 

are denoted by connected points. Paired t-test – one-tailed. The p value is indicated.  

Figure 4: Metabolic pathways drive targetable tissue state signatures  

A) Heatmap displaying scaled enrichment scores for all KEGG pathways across all PLATE-seq 

samples. The heatmap is grouped by tissue state (cluster A, B, C), annotated by the horizontal 

bar at the top. Hierarchical clustering was performed on the rows (pathways), demonstrating 

cluster-specific metabolic programs. B) Bar plot displaying scaled ssGSEA scores for select 

KEGG metabolic programs from A. Bar plots represent mean scaled ssGSEA score ± standard 

error for each of the three clusters for a given pathway. C) Representative example showing a 

heatmap displaying mean lineage-specific scaled normalized expression of genes in the GO: 

Biological Process - Fatty Acid Biosynthesis gene set – which was most enriched in tissue state 

B. Note the expression of the rate-limiting enzyme FASN is highest in astrocytes and glioma cells. 

D) Scheme of in vitro and ex vivo FASN perturbation studies. E) Volcano plot showing the log2 

fold change (x-axis) and log10 p value (y-axis) of differentially expressed genes in astrocytes 

treated with Cerulenin (5mg/ml) versus control – Upper panel. Lower panel shows KEGG and 

Reactome pathway enrichment analysis with the terms indicated on the y-axis, and the log10 p 

value on the x-axis. The sign of the log10 p value indicates the direction of change (i.e. negative 

= reduced in Cerulenin treatment). F) Volcano plot showing the log2 fold change (x-axis) and 

log10 p value (y-axis) of differentially expressed genes in GBM slice cultures treated with 

Cerulenin (5mg/ml) versus control – Upper panel. Lower panel indicate GSEA plots of pre-ranked 

enrichment of the genes increased in astrocytes treated with Cerulenin (left) and tissue state B 

signature (right). The normalized enrichment scores (NES), p value (p), and adjusted p value (q)  

are indicated.  

Figure S1: snRNAseq-derived transcriptional states and lineage of putative neoplastic nuclei from 

primary IDH-wildtype GBM samples 

A) Outline of Analytic Design: T 2/FLAIR and post-contrast T1 MRI sequences of a glioblastoma 

showing the classic radiological appearance of a glioblastoma (Case PO2); with a ring enhancing 

mass (red star) with surrounding increased FLAIR signal (green star). The tumor was resected 

and banked (frozen). Nuclei are extracted from frozen tissue and are subjected to droplet based 

single nuclei RNA sequencing using the 10X chromium platform. The resultant barcoded cDNA 
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is then sequenced and analyzed. Analyses performed include identification of putative neoplastic 

cells by identifying cells with inferred copy number variations (CNV), clustering, differential gene 

expression (DGE), and gene set enrichment analysis (GSEA). Scale bars = 50 um. B) Uniform-

manifold approximation and projection (UMAP) graphs showing putative neoplastic (CNVpos) and 

non-neoplastic (CNVneg) nuclei from the seven primary IDH-wildtype glioma cases selected for 

analysis indicated by subpanels b1-b7. C) UMAP plot showing all putative CNVpos (C) nuclei 

from the seven primary glioma cases aligned and projected in shared UMAP spaces. The nuclei 

are color-coded by glioma state: Oligodendrocyte-progenitor-like (proneural - gl_PN1), Neural-

progenitor-like (proneural - gl_PN2), Mesenchymal/astrocyte like (gl_Mes1 and gl_Mes2), and 

proliferative (gl_Pro1 & gl_Pro2). D) Geneset enrichment analysis (GSEA) of selected genesets 

from Verhaak et al. 2009 (v), Gobin M et al 2019, Gill et al 2014, Wang et al. 2019 (W), and Neftel 

et al. 2019 (N) showing enrichment of genes specific for states described in the literature in our 

described glioma states. E) Gene ontology (GO) term enrichment analysis (KEGG and 

REACTOME pathways and biological process GO) of the major terms enriched in glioma state 

top gene markers. The bars represent the negative log10 of the false discovery rate adjusted 

p.value, and are color-coded as in C. 

Figure S2: Histopathologic characterization of glioma cases, Identifying neoplastic nuclei 

Large scale chromosomal copy number alterations were inferred from RNA expression using 

InferCNV R package (see methods for details). The heat maps show gains (red) and losses (blue) 

in case PA1 (A), PA2 (B), PA3 (C), PO1 (D), PO2 (two samples – core and margin) (E), TB4916 

(F), and TB4718 (G). Representative Hematoxylin and Eosin-stained section of the brain tissue 

used for single nuclei RNAseq of the first five cases (H). Some cases showed clear infiltration 

with glioma cells PA1, PA2, PA3, and PO2_c, PO2_2. Cases PO1 and PO2_m showed no clear 

evidence of cellular tumor.  

Figure S3 snRNAseq-derived transcriptional states and lineage of putative neoplastic nuclei from 

post-treatment recurrent IDH-wildtype GBM samples 

A) Uniform-manifold approximation and projection (UMAP) graphs showing putative neoplastic 

(CNVpos) and non-neoplastic (CNVneg) nuclei from the eight post-treatment recurrent IDH-

wildtype glioblastoma cases. B) UMAP plot showing all putative CNVpos nuclei from the eight 

recurrent glioma cases aligned and projected in shared UMAP spaces. The nuclei are color-coded 

by glioma state: Oligodendrocyte-progenitor-like (proneural - gl_PN1), Neural-progenitor-like 

(proneural - gl_PN2), Mesenchymal/astrocyte like (gl_Mes1 and gl_Mes2), and proliferative 

(gl_Pro1 & gl_Pro2). C) Gene ontology (GO) term enrichment analysis (KEGG and REACTOME 

pathways and biological process GO) of the major terms enriched in glioma state top gene 

markers. The bars represent the negative log10 of the false discovery rate adjusted p.value and 

are color-coded as in B. D) Geneset enrichment analysis (GSEA) of selected genesets from 

Verhaak et al. 2009, Gobin M et al 2019, Gill et al 2014, and Neftel et al. 2019 showing enrichment 

of genes specific for states described in the literature in our described glioma states. E) 

Correlation heatmap between glioma states in primary and post-treatment recurrent GBM based 

on expression on glioma state marker genes. The size and color of the circles denote the strength 

of correlation. F) Gene expression dot plots showing select gene marker expression in glioma 

states. 

Figure S4: CNV analysis of recurrent glioma samples 

Large scale chromosomal copy number alterations were inferred from RNA expression using 

InferCNV R package. The heat maps show gains (red) and losses (blue) in case TB5014 (A), 
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TB5053 (B), TB3864 (C), TB4898 (D), TB8762 (E), TB4416 (F), and TB4027 (G), and TB3966 

(H). I) Dotplot showing expression of select set of markers of both primary and recurrent glioma 

states. The proportion of each glioma state in cell cycle phases as determined by Seurat cell-

cycle scoring is shown on the bottom. 

Figure S5: The spatial landscape of glioma states across the cellular tumor and cortical  

A) Confocal images showing optical sections of in situ hybridization for PTPRZ1 and CLU in the 

core (upper row) and cortex (lower row). The pial surface is outlined (lower row). High-power 

images of the insets show that PTPRZ1+ CLU+ cells (arrows) are more abundant in the cortex, 

while PTPRZ1+CLU- (arrowheads) are more numerous in the core. scale bars = 20 μm. M.V: 

Microvascular proliferation B) Quantification of PTPRZ1 and CLU expression across the core 

(orange boxplot) and cortex (green boxplot). The data is shown as boxplots, with the bar indicating 

the median. Paired t-test, N=5. The p value is indicated. C) Confocal images showing optical 

sections of in situ hybridization for NOVA, SOX2, and MEG3 in the core (upper row) and cortex 

(lower row). The pial surface is outlined (lower row). High-power images of the insets show that 

NOVA1+SOX2+MEG3+ cells (arrows) are more abundant in the cortex, while MEG3- cells 

(arrowheads) are more numerous in the core. scale bars = 20 μm. C) Quantification of 

MEG3+NOVA1+SOX2+ cells as a proportion of all tumor cells (SOX2+ and/or NOVA1+) across 

the core (orange boxplot) and cortex (green boxplot). The data is shown as boxplots, with the bar 

indicating the median. Paired t-test, N=5. The p value is indicated. E) Confocal images showing 

optical sections of in situ hybridization for TOP2A and CLU in the GBM infiltrated tissue. Arrows 

indicate CLU+TOP2A+ cells, and arrowheads indicate CLU+TOP2A- cells. scale bar = 20 μm. F) 

Quantification of TOP2A and CLU expression. The percentage of TOP2A+CLU+/CLU+ cells is 

shown as a boxplot. One-sample t-test, N=5. *=p value < 0.001. G) Integration of primary and 

recurrent GBM CNVpos nuclei color-coded by glioma state and condition 

Figure S6: Prognostic relevance of glioma-state signatures 

Kaplan-Meyer plots showing the survival curves of IDH-WT glioblastoma cases from the 

combined TCGA and CGGA dataset stratified by enrichment of each of the glioma-state genesets 

of primary (A) and recurrent (B) glioma datasets. The p values are shown.  

Figure S7: Analysis of Low-grade glioma samples using single nucleus RNAseq 

Large scale chromosomal copy number alterations were inferred from RNA expression of cases 

TB3652 (A), TB3926 (D) – both IDH1-mutant oligodendrogliomas, and TB4100 (G) – IDH-mutant 

astrocytoma. Uniform manifold approximation and projection (UMAP) plots of the three cases are 

shown in panels B, E, and H, color-coded by copy number alteration status. Gene expression 

UMAPs showing markers of tumor cells (PTPRZ1, EGFR, SOX2, TNR, and DSCAM), immune 

cells (CD74, C3, HLA-B, ITGAX, ITM2B), and oligodendrocytes (MBP, MOG) of cases TB3652, 

TB3926, and TB4100 in panels C, F, and I, respectively.  

Figure S8: Analysis of Epilepsy samples using single nucleus RNAseq 

A-C) Uniform-manifold approximation and projection (UMAP) graphs plots showing normalized 

gene expression of select lineage markers for cases TB4437 (A), TB4189 (B), TB4957 (C). The 

markers include astrocyte markers (GFAP, AQP4, SLC1A2, and SLC1A3), neuron makers 

(RBFOX3, MEG3, GAD1, SLC17A6), myeloid markers (CD74, C3, ITGAX, ITM2B), 

oligodendrocyte markers (MBP, MOG, OPALIN, CNP), and OPC markers (PDGFRA, DSCAM, 

TNR, and SOX2). 
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Figure S9: Related to Figure 1. Astrocytes sub-clusters  

A) tSNE plot (three-dimensional) showing astrocytes color-coded by sub-cluster. B) Violin plots 

showing  expression of select astrocyte markers in the unbiased sub-clusters. Note all sub-

clusters show expression of GFAP. C) Scaled gene expression heatmap showing select gene 

marker expression for the unbiased astrocyte sub-clusters. Sub-clusters 1 and 8 show high 

expression of protoplasmic astrocyte genes, while sub-clusters 6 and 7 show high expression of 

reactive genes. Sub-cluster 0 has very few differentially increased genes and is considered 

baseline. D) Heatmap showing the proportion of nuclei in each astrocyte sub-cluster (columns) 

contributed by disease condition (row). The proportions are scaled by columns. E) Kaplan-Meier 

survival plot graphing survival in the combined TCGA and CGGA RNAseq datasets. The samples 

were classified based on enrichment of Astrocyte sub-cluster 6 signature genes into positive or 

negative enrichment. Statistical significance was computed using the log rank test. F) Cox 

proportional hazard ratio of survival in the combined TCGA and CGGA dataset given enrichment 

of each of the astrocyte cluster specific signature. Age is also included in the model. The p values 

are shown on the left, bars indicate confidence intervals (also noted on the right). Enrichment of 

each geneset was categorized as negative or positive. G-I) Geneset enrichment scores used for 

astrocyte state detection (clustering). J) The scaled proportion of the astrocytes nuclei used for 

compositional analysis (c-ast1, c-ast2, c-ast3 - columns) that were clustered into the three 

astrocyte states (Ast1, Ast2, and Ast3 – as per clustering on gene-set enrichment scores). Scaling 

was done by column.  

Figure S10: The transcriptional landscape of microglia in glioma 

A) Uniform-manifold approximation and projection (UMAP) graphs plots showing all myeloid 

nuclei from color-coded by cluster (B) and condition (primary glioma, recurrent glioma, low grade 

glioma (LGG), and epilepsy (C). Gene expression violin plots showing select gene marker 

expression for the immune cell clusters from top to bottom; Myel1, mgTAM, moTAM, prTAM, and 

T cells. D) Heatmap showing the proportion of nuclei in each cluster (columns) contributed by 

condition (rows). E) Heatmap showing the scaled enrichment scores of gene sets derived from 

Movahedi et al 2021 in the nuclei pooled from each myeloid cluster.  

Figure S11: Spatial transcriptomics samples 

A) DAPI images of each of the 9 spatial transcriptomics (ST) capture regions, with 1mm scale 

bar. B) Transcript counts per spot projected on ST object. C) Representative iteration of k=10 

segmentation of each ST object, used for the correlation analysis in Figure 2E. The scale bars 

are indicated.  

Figure S12: The spatial landscape of glioma margins  
A) Outline of spatial transcriptomic analysis of infiltrating GBM. DAPI (left) and NeuN (right) 

immunostains of frozen sections from case PO2, for which snRNAseq was done. Each circle 

represents a biopsy on which bulk RNAseq was done. After the biopsies were taken, the specimen 

was bisected along the dashed white line (y-axis) and subjected to snRNASeq. B) Enrichment 

analysis of each of the spatially mapped biopsies using the genesets of the three compositional 

clusters (see text for details) displaying normalized single sample GSEA enrichment scores for 

the tumor cluster (C - upper panel), the tumor-reactive cluster (B– middle panel), and the normal 

brain cluster (A – lower panel). The enrichment scores are coded by color and size. The 

normalized RNA data for the spatial biopsy map is available in an interactive web interface at 

https://vmenon.shinyapps.io/gbm_expression/. C) Enrichment of the tissue state genesets as in 

B, applied to the Gill et al. 2014 MRI localized biopsy dataset. The normalized enrichment scores 
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for each tissue state are shown in histograms for the control brain, contrast enhancing 

(Contrast_E) samples, and FLAIR-abnormal margin samples from primary and recurrent samples. 

The lighter segments of the histograms indicate samples with negative enrichment. 
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