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Abstract 
The search for biomarkers of psychiatric disorders has remained elusive, in part, due to high 
comorbidity, low specificity, and poor concordance between neurobiological abnormalities and 
existing diagnostic categories. Developmental factors that have impacts on symptom expression 
and brain function further complicate biomarker identification. Growing evidence suggests that 
incorporating cognition into studies of psychopathology may be a path forward, as cognitive 
dysfunction is a common feature across psychiatric disorders. Recent neuroimaging advances 
have allowed for characterization of functional connectomes, the collective set of functional 
connectivity across the whole-brain, using resting-state fMRI. Functional connectomes may be 
useful psychiatric biomarkers as they have been shown to underlie individual differences in 
cognition and explain variance in psychopathology across individuals. In the present study, we 
sought to identify brain-based dimensions that are associated with general cognitive capacity and 
psychopathology using canonical correlation analysis in a sample of 7,383 preadolescents from 
the Adolescent Brain Cognitive Development study. Our analysis revealed patterns of functional 
connectivity correlated with cognitive control capacity and psychopathology. In particular, we 
identified a principal connectome-based latent brain variate that was positively correlated with 
cognitive measures across domains and negatively correlated with parent-reported 
psychopathology across diagnoses and domains. Functional connectivity loadings of the brain 
variate were across distributed cortical and subcortical brain networks and showed a dose-
dependent relationship with the cumulative number of current psychiatric disorders in present. 
These findings provide preliminary evidence for a connectome-based biomarker that underlies 
individual differences in cognitive function and predicts transdiagnostic psychopathology in a 
dose-dependent fashion.  

Significance Statement 

Adolescence is a critical developmental window when most psychiatric disorders emerge, 
meanwhile comorbidity among disorders is prevalent. Using functional MRI and behavioral 
assessments from a large community-based sample of preadolescents aged 9-10, we identified a 
specific pattern of functional connectome (the regional activity synchronization across brain at 
rest) that showed directionally opposite associations with cognitive capacity and mental health 
problems. Specifically, the connectome pattern predicted individual differences in the 
performance on a range of cognitive tasks and the severity of parent-reported psychopathological 
problems. Notably, it predicted the comorbidity of current psychiatric disorders, pointing to a 
dose-response relationship. Our findings provide preliminary support that this connectome-based 
brain measure could represent a resiliency biomarker for protection against transdiagnostic 
psychopathology during preadolescence.  
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Main Text 

 

Introduction 
Over the past fifty years since the inception of the diagnostic and statistical manual (DSM) and 
the standardization of psychiatric nomenclature in the 1970s, psychiatry has focused on 
establishing diagnostic categories based upon clinical symptoms. The absence of established 
biomarkers to aid in diagnosis and treatment selection for psychiatric conditions has limited 
progress in the field (1). Further complicating psychiatric nosology are issues of comorbidity and 
specificity (2). There is a high degree of comorbidity across psychiatric disorders and many 
symptoms are present across diagnostic categories (3). Emerging biological research points to 
shared genetic risk and overlapping structural and functional abnormalities across psychiatric 
disorders, that could, in part, explain some of the comorbidity across conditions (4–7). This 
disconnection between current psychiatric nosology and biological findings highlights the need to 
examine neurobiological substrates and clinical symptoms that are shared across diagnoses. 

On top of this complexity, developmental factors play a large role in brain and behavioral 
expression related to psychiatric disorders impacting biomarker identification. Three quarters of 
all psychiatric disorders emerge before the age of 21 years with 35% emerging before the age of 
14 years (8). Few studies have examined transdiagnostic features and neurobiological correlates 
of psychiatric conditions in youth samples. The presentation of psychiatric symptoms and 
disorders and brain structure and function change across the lifespan with marked shifts 
occurring during adolescence (9, 10). These findings highlight the importance of taking age- and 
developmental-stage into account in biomarker identification. Additionally, they suggest that there 
is value in focusing on the prepubertal-to-pubertal-transition age period as this represents a 
critical period of vulnerability during which approximately 40% of all psychiatric conditions emerge 
(8).  

Given the problems identifying biomarkers of specific psychiatric disorders, the field is shifting 
towards transdiagnostic and dimensional investigations, spearheaded by the NIMH’s Research 
Domain Criteria (RDoC) (11). RDoC is a biologically grounded framework for studying psychiatric 
conditions that takes a dimensional approach and conceptualizes individual differences in 
symptoms as emerging from mixed-dimensional abnormalities of specific brain circuits (12). 
Recent neuroimaging techniques, such as resting-state fMRI, and resting-state functional 
connectivity (rsFC) analysis, enable noninvasive investigation of the system-level organization of 
brain circuits via the temporal synchrony between brain regions (13). The functional connectome, 
the collective set of functional connectivity in the brain, can reliably discriminate one brain from 
another like a fingerprint(14). and is thought to underlie individual differences in cognitive and 
affective functions (14, 15) or in expression or regulation of the psychopathological symptoms 
(16). Altered functional connectomes have been suggested to associate with a number of 
different psychiatric disorders (17).  

One approach to dissect biological heterogeneity and improve understanding of comorbidity 
across psychiatric disorders is to focus on neuropsychological features or symptom clusters that 
are present across diagnostic categories. Recent studies suggest that incorporating cognition into 
studies of psychopathology may be a path forward. Cognitive dysfunction is one common feature 
across psychiatric disorders (18, 19). Studies of cognition suggest a hierarchical framework with 
both higher order processes (e.g., executive function and planning) and lower order processes 
(e.g., motor skills, perception, and memory), and an underlying, largely heritable, latent factor 
reflecting general cognition (g-factor) (20). Measures of general cognition and higher order 
cognitive processes have been shown to predict socio-occupational stability, academic success, 
and quality of life (20, 21). Additionally, recent research has identified genetic, epigenetic, 
developmental and environmental factors that collectively affect the configuration of brain 
networks and their efficiency in modulating cognition (22–24). Individual differences in cognition 
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may reflect variability in the connectivity of underlying neurocognitive brain networks, and predict 
psychopathology (25, 26). Relationships between cognition and psychopathology are complex 
and may be bidirectional (27). Problematically, to date, much of the research in this area has 
focused on cognitive functioning within specific psychiatric disorder categories (e.g., 
schizophrenia) (28) without examining relative differences in cognition across comorbid 
psychiatric disorders. 

In parallel with general cognition, psychopathology also appears to exhibit a hierarchical 
framework with most disorders falling into larger externalizing (e.g., attention deficit hyperactivity 
disorder and conduct disorder) and internalizing (e.g., depression and anxiety) domains (29). 
Evidence from epidemiological studies have also shown evidence of a dimensional general 
psychopathology factor (p-factor), parallel to the g-factor, that cuts across disorder boundaries 
and is predictive of lifespan functional impairment and prospective psychopathology beyond 
current symptom-based prediction (30). In adults and children, higher p-factor scores predict 
worse performance on higher order cognitive tasks related to working memory, planning and is 
associated with lower academic achievement and lower IQ (30, 31). In fact, general cognition and 
psychopathology scores are commonly anticorrelated (27, 30). Much work remains to be done in 
this area. For example, whether these cognition-psychopathology relationships emerge as the 
product of common underlying neurocognitive deficits across psychiatric disorders and whether 
unique disorder and domain-specific relationships are present remain unanswered questions in 
the field (30).  

In the present study, we seek to identify latent brain-behavior associations between the functional 
connectome and a broad set of behavioral assessments spanning the cognition and 
psychopathology domains in preadolescent youth. We analyzed data from the Adolescent Brian 
Cognitive Development (ABCD) study (32, 33), which includes brain imaging and comprehensive 
behavioral assessments from a large community-based sample of 9-10-year-old children in U.S., 
using canonical correlation analysis (CCA), a multi-view machine learning approach (34, 35). The 
CCA identifies latent components from two high-dimensional data sets that show maximized 
cross-set correlations (34, 35). As a novel tool for brain-behavior association analyses, CCA 
delineates whole-brain connectivity patterns associated with a set of behavior assessments 
without a prior assumptions (36–38). In this study, a single functional connectivity pattern was 
identified that showed a significant and generalizable association with the behavioral 
assessments, positively correlating with cognitive functions while negatively correlating with 
psychopathological measures in a transdiagnostic manner. Furthermore, the rsFC pattern 
showed a dose-dependent relationship to the cumulative number of psychiatric diagnoses 
present.  

Results 
The overarching goal of the study was to characterize latent sources of brain-behavior 
associations linking individual differences in functional brain connectome and multiple behavioral 
assessments spanning cognitive functions and psychopathology related constructs in the 
preadolescent population.  

Brain and behavioral data used in the current analysis were from the baseline assessment and 
first fMRI scan visit of the ABCD study collected in a nationally-representative community sample 
of preadolescent participants (32, 39). From a total of 11,875 participants, 7,382 (3,714 females, 
aged 9.95 ± 0.62 y/o) were included in the current analysis (see Figure S1 for exclusion criteria, 
and Table S1 for demographic information of the included participants). Individual functional 
connectomes were constructed from 20-min resting-state fMRI data using resting-state functional 
connectivity (rsFC) between 352 regions-of-interest(40) (ROIs) across the brain including 333 
cortical areas and 19 subcortical areas. The behavioral data included 20 assessments of 
cognitive function (Table S2) and 31 dimensional assessments of psychopathology-related 
constructs (Table S3).  
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The multivariate statistical method of CCA (41) was used to identify latent sources of the brain-
behavior associations (Figure 1). Before submitted to CCA, covariates related to the data 
acquisition (including scanner type, head motion, and number of frames after motion censoring) 
were regressed from both the rsFC and the behavioral datasets. Dimension of the two data sets 
were reduced using principal component analysis (PCA). For the behavioral set, 49 dimensions 
explaining 100% of the variance were kept, and for the rsFC set, the number of reduced 
dimensions were tuned as a hyperparameter (See method for details).  

The whole CCA procedure described above was performed in a 5-fold cross-validation framework 
(Figure S2, Figure S3). In each fold, the CCA model was generated from a training set (5906 
participants, 80% of the total samples used in the analysis) with a nested 5-fold cross-validation 
for tuning the PCA-based dimension reduction, and subsequently tested for its generalizability on 
the test set (1476 participants, 20% of the total samples used in the analysis). The optimal 
number of PC varied from 650 to 1050 among the 5 outer folds as listed in Table S4.  

Determined by the rank of the behavioral set, 49 modes of associated canonical variates (CVs) 
were identified between the functional connectome and the multi-dimensional behavioral 
assessments. Among them, 5 modes of connectome-behavior associations showed both 
significant canonical correlation and out-of-sample generalizability. The first CCA mode further 
showed its unique features compared to the other 4 modes in that it extracted a substantially 
large proportion of the population variance (characterized by normalized redundant variance(42, 
43) and was the only mode that exceeded the null confidence interval of 0.01 based on a 
permutation test. As shown in Table S4, the first mode accounted for the dominant proportion of 
the population variance in the connectome set (26.32%~28.34% variance across folds for mode 1 
vs. 4.57%~6.78% variance across folds, for the largest of any other mode) and in the behavioral 
set (23.84%~29.22% variance for mode 1  vs. 5.50%~8.05% variance, for any other modes). A 
substantial proportion of the extracted population variance in a CCA mode would facilitate its 
cross-set prediction (42, 43). In the following, we present results of the first (or principal) mode in 
the main text and those of other 4 modes (modes 2-5) are detailed in Table S4, Figure S4 and 
S5.  

The Principal Mode of Connectome-Behavior Association 
As shown in a typical fold of the cross validation (Figure 2), the canonical correlation of the 
principal mode exhibits a large effect size (ρ = 0.72, family-wise error rate [fwer] adjusted pfwer < 
10-3) in the training set and can be generalized to the hold-out test set (ρ = 0.56, pfwer < 10-3). See 
Table S4 for the result of other folds. 

To understand the behavioral relevance of the principal CCA mode, we examined its behavioral 
loading. Behavioral loading, defined as the correlation between the behavioral CV to each 
behavioral assessment, reflects the variance of each behavioral assessment that is extracted by 
the latent behavioral CV of the CCA (Figure 3A). For the principal mode, nearly all assessments 
related to cognitive ability show positive loadings on the latent behavioral CV, whereas most of 
the psychopathology-related constructs show negative loadings. Furthermore, differences were 
observed across externalizing and internalizing domains of psychopathology. Measures indexing 
externalizing ‘spectrum’ problems generally exhibited (e.g., r = -0.27 for CBCL Rule Breaking and 
r = -0.25 for CBCL Conduct Problem), compared to measures indexing internalizing ‘spectrum’ 
problems (e.g., r = -0.008 for CBCL Anxious-Depression and r = -0.06 for CBCL Withdrawn-
Depression) exhibits lower loadings .  

Figure 3B shows the FC loading, defined as correlation between each FC and the connectome 
CV of the principal mode. A positive loading indicates that the rsFC of the ROI pair contributed 
positively to the association in which higher brain connectome variate was correlated with better 
performance in cognitive tasks and lower severity of parent-reported psychopathological 
symptoms. A measurement of ROI loading was defined by summing the rsFC loadings of that 
ROI (i.e., each row in the loading matrix in Figure 3B), indicating the overall contribution of the 
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rsFC associated with the given ROI to the identified brain connectome CV. Inequality of ROI 
loadings was tested for the positive and negative loading matrices, separately, and both negative 
and positive loadings distributed unequally across ROIs (see Figure S6). Accordingly, ROIs 
across the brain formed two clusters, each being dominated with significant positive or negative 
rsFC loadings (Figure 3C), compared to the null distribution of ROI loading generated by 
permutating the loading matrix of Figure 3B.  

ROIs with significant positive loadings include cortical areas of the anterior insula/frontal 
operculum (aI/fO), dorsal anterior cingulate cortex (dACC), ventral lateral prefrontal cortex 
(vlPFC), dorsal medial prefrontal cortex (dmPFC), superior temporal gyrus (STG), as well as 
subcortical regions of the caudate, putamen, accumbens, thalamus and brain stem. ROIs with 
significant negative loadings encompass cortical regions of the intra-parietal sulcus and superior 
parietal lobule (IPS/SPL), frontal eye field (FEF), as well as the pre-motor area (PMA), and 
associative visual areas in the occipital lobe (Figure 3C).  

Furthermore, the loading of the ROIs significantly differed by their affiliation to large-scale 
functional networks (Figure 3D; one-way ANOVA, F(7,344) = 42.58, p < 0.001). Specifically, 
negative loadings appeared mainly in the visual (VIS) and the dorsal attention network (DAN), 
while the largest positive loadings were mainly presented in the salience/ventral attention network 
(SAL/VAN), default mode network (DMN), and subcortical network (SBC).  

In summary, the principal CCA mode revealed a specific pattern of rsFC, that is associated with 
behaviors spanning across cognition and psychopathology related constructs. FC loadings 
revealed that a cortico-subcortical system, mainly encompassing frontal and parietal cortex and 
subcortical regions contributed the most to the connectome CV. Associations between the rsFC 
component and the multi-dimensional behavior set showed an interesting pattern, with the 
corresponding behavioral CV positively correlating with cognitive measures and negatively 
correlating with psychopathological measures. 

Cross-domain Consistency of the Principal Connectome-Behavior Association Mode 
As revealed by the principal CCA mode, the single rsFC pattern covaried with behavioral CV that 
correlated positively with cognitive functions and negatively with psychopathology related 
constructs. Such a transdiagnostic association implies that deficit of cognitive functions and 
severity of psychopathological problems may proxy the functioning of a common neural process. 
Or alternatively, such an association may be driven by only one domain of the behaviors. For 
example, the principal CCA mode may simply reflect the association between cognitive functions 
and rsFC. And in such a case, psychopathological measures may still show negative loadings 
due to the negative correlation between p- and g- factors.  

To exclude the alternative hypothesis, we tested the cross-domain consistency of the CCA 
modes. Specifically, the same CCA procedure described above was conducted, but with 
behavioral assessments from only a single domain of cognition or psychopathology at a time. In 
both cases, the principal mode survived from both tests of within-sample significance and out-of-
sample generalizability. Though the values of canonical correlation differ between the CCA 
models estimated from cognition, psychopathology (Figure S7) or their combination (Figure 2), 
the connectome CV showed very high consistency among the three cases (combined vs. 
cognition only, r = 0.99; combined vs. psychopathology only, r =0.95; Figure 4). Note that cross-
domain consistency with perfect correlation (|r| > 0.9) was found to be specific to the principal 
mode (see Table S5 for other significant modes).  

These results confirm the non-trivial transdiagnostic nature of the connectome variate of the 
principal mode and suggest that it may act as the core neural substrate shared by the cognitive 
impairment and psychopathology in youth population. 
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Connectome Variate Predictive of Multi-domain Behavioral Assessments 
Our CCA identified a robust connectome CV associated with a latent mixture of multi-domain 
behavioral assessments. However, interpreting the clinical relevance of brain-behavior 
associations in the latent space is difficult. We further assessed the utility of the identified 
connectome CV for predicting individual behavioral assessments in their original feature space 
(See Method for details). 

As shown in Figure 5, by projecting onto the principal connectome-behavior association mode, 
rsFC alone is capable of predicting a wide range of univariate behavior assessments across the 
domains of cognition and psychopathology. Specifically, all assessments in the cognitive domain, 
except for the cash choice task and stop-signal reaction time, are significantly predicted (FDR-
adjusted p < 0.05).  

The significantly predicted psychopathology related constructs (FDR-adjusted p < 0.05) crossed 
the externalizing problems, e.g., CBCL scales of Rule-breaking Behavior and Conduct Problems; 
other CBCL syndrome of Social Problem and Oppositional Defiant Problem, ADHD; internalizing 
problems, e.g. Stress, Anxiety and Somatic Problems; impulsivity related scales of Positive 
Urgency, Negative Urgency, Reward Responses, and Fun Seeking; the scale of Mania, and the 
scale of Psychosis Severity. While the analysis showed that the connectome CV predicted 
psychopathology across domains, an externalizing ‘spectrum’ predominance was observed 
compared to the internalizing ‘spectrum’. 

In line with the cross-domain consistency of the principal connectome CV, this prediction of 
behaviors holds for the connectome CV identified with CCA applied on single behavioral domain 
of cognition or psychopathology-related construct (Figures S7- S9).  

Connectome Variate Predictive of Clinical Diagnoses 
To validate the connectome variate of the principal mode as a transdiagnostic factor, we 
assessed the association between the predicted connectome variate score with clinical 
diagnoses.  

When all the 7382 participants were stratified into clinical diagnostic groups, a common pattern 
was identified whereby preadolescents with current psychiatric disorders had lower connectome 
CV scores compared to those without any current diagnosis (Figure 6A). ). In examining 
diagnosis-specific associations, our results showed that groups with Conduct Disorder (childhood 
and adolescent onset), Separation Anxiety, Unspecified Bipolar and Related Disorder, ADHD, 
Social Anxiety Disorder, Obsessive Compulsive Disorder, Oppositional Defiant Disorder reached 
statistical significance (FDR-adjustment p < 0.05).  

In analyses examining the impact of severity of psychopathology, a main effect of number of 
current psychiatric disorders on the connectome variate score was found (One-way ANOVA, 
F(3,7378) = 4.62, p < 0.01; Figure. 6B). Post-hoc tests revealed that preadolescents with 2 and 

≥3 psychiatric disorders showed significantly lower connectome variate scores compared to the 

children with no diagnoses (2 vs. 0: t(378) = 2.68, FDR-adjusted p = 0.04; ≥3 vs. 0 t(259) = 5.21, 

FDR-adjusted p < 0.001), and children with ≥3 diagnoses showed a significant lower 

connectome variate score compared to the children with 1 or 2 diagnoses ( ≥3 vs. 2: t(474) = 

2.65, FDR-adjusted p < 0.05; ≥3 vs. 1: t(474) = 3.83, FDR-adjusted p < 0.001).  

Moreover, participants with low connectome CV scores (≤1 SD below MEAN) had 1.32 times the 
risk of having one or more current psychiatric disorders compared to those with high connectome 

variate scores (≥1 SD above MEAN) (Risk Ratio = 1.32, CI:1.18-1.48, p < 0.001). The 

contingency table is shown in Table S6.  
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Again, above associations between clinical diagnoses and the connectome CV score holds, when 
CCA was performed associating the connectome set with behaviors within single domain of 
cognition assessments (Figure S10). 

Heritability of the Connectome Canonical Variate 
It has been found children’s cognitive ability and psychopathology are both heritable (44–46). And 
the anticorrelation between the two domains of behavior are genetically rooted (47). A possibility 
is that these two domains of behaviors are driven by a shared brain system which is heritable per 
se. We hypothesize this can be measured with the principal connectome CV.  

We tested the heritability of the principal mode connectome CV using the twin data from the 
ABCD study. Heritability of the connectome CV was estimated using classic twin design and 
structural equation modeling (66). From the 7,832 participants, 38 pairs of monozygotic (MZ) 
twins and 62 pairs of dizygotic (DZ) twins were included in the analysis. 

Intrapair correlation for the connectome variate score were rMZ = 0.71 for MZ twins and rDZ = 0.39 
for DZ twins. Mean value and variances of rsFC variate score did not differ significantly between 

MZ and DZ twins. Because 0.5rMZ < rDZ, a full Cholesky ACE (Additive genetic, Common 
environmental, and Unique Environmental) model and its sub-models were tested, which 
attributes the phenotypical variance of the connectome variate into three sources, additive 
genetic, common environmental, and non-shared environmental. The ACE model can be reduced 
to an AE mode (∆χ2 = 0.02, df = 1, p = 0.99, ACE vs. AE), indicating a non-significant influence of 

the common environmental factor. However, the non-genetic model E model was rejected (∆χ2 = 
36.93, df = 1, p < 10-4, AE vs. E), indicating the significant influence of additive genetic factor. 
Finally, the result indicated a heritability of the rsFC variate: h2 = 74.42% (95% CI: 56.76%-
85.42%).  

Impact of Sociodemographic Factors 
Finally, we conducted sensitivity tests to evaluate how the principal connectome-behavior 
association was affected by sociodemographic factors. We focused on the key sociodemographic 
variables(48), including sex, race/ethnicity, household income, and parent education. We 
regressed out these sociodemographic variables as covariates one at a time, in addition to the 
Tier-1 nuisances, i.e. scanner type, mean frame displacement and remaining number of frames 
after censoring. As shown in Figure S11, the principal connectome-behavior association was 
reproduced with similar connectome variate loading (r = 0.86~0.99), behavioral loading (r = 
0.98~0.99) and generalized canonical correlation (ρ = 0.48~0.58).  
 

Discussion  
Applying CCA to a multidimensional dataset that included comprehensive measurements of rsFC, 
cognition, and psychopathology from a large community-based sample of U.S. preadolescents, 
we identified a single connectome-based latent brain variate that covaried with a broad number of 
cognitive and psychopathological measurements. The connectome CV had rsFC loadings 
distributed in attention and cognitive control networks and was positively correlated with cognitive 
performance across domains and negatively correlated with parent-reported psychopathology 
measures across dimensions and diagnoses. In a held-out sample of unseen participants, the 
brain variate predicted a range of behavioral measures including cumulative number of current 
psychiatric disorders, which showed a dose-response relationship. Together, these findings 
provide preliminary evidence for a connectome-based biomarker that indexes individual 
differences in cognitive performance and transdiagnostic vulnerability to psychopathology across 
multiple psychiatric disorders. 

Identification of psychiatric biomarkers is essential for both understanding the ontology of 
psychiatric disorders and for developing precise treatments for them. Traditional efforts to identify 
psychiatric biomarkers have relied predominantly on case-control designs and focused on neural 
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alterations within a single disease. However, few clinically useful disorder-specific brain-behavior 
associations have been discovered using these approaches. This has led to a shift in approach 
towards identifying core brain-behavior associations that cross traditional diagnostic boundaries 
as promoted by the RDoC initiative (12, 49). Neuroimaging studies using the transdiagnostic 
framework have demonstrated more consistent findings showing overlapping neural alteration 
deficits, including lower gray matter volume (6) and impaired activation during cognitive tasks 
(50), across diagnostic categories. Consistent with these findings, results of our current study 
identified the altered FC across large-scale brain networks, suggestive of maladaptive 
connectomes, that are associated with a broad spectrum of psychopathology and cognitive 
processes, and may represent a transdiagnostic neural marker for psychiatric disorders. 
However, while the RDoC approach seeks associations with specific cognitive and affective 
functions across diagnoses, we found a single CV that related to most aspects of both cognition 
and psychopathology, irrespective of diagnosis. In addition, given the ABCD sample, our findings 
extended the developmental window for observing the transdiagnostic neural deficits from 
adulthood down to middle childhood, a critical period for the onset of mental disorders. As such, 
our connectome-based variate may provide unique predictive or prognostic value related to the 
emergence and progression of psychiatric disorders from preadolescence to young adulthood, 
providing a roadmap for developing brain-based treatment targets. 

Our findings parallel prior epidemiologic research showing that general cognition and 
psychopathology factors are anticorrelated (31, 51). Furthermore, our results extend this work by 
showing that measures of cognition and psychopathology that have traditionally been viewed as 
separate constructs, load on the positive and negative ends of the same dimensional factor 
(rather than orthogonal ones) and covary with the same brain variate. It is particularly notable that 
we derived essentially the same brain variate when using the cognitive or behavioral features in 
isolation as when using them in combination, suggesting the brain variate captures the essential 
shared neural process underlying the two domains of behavior. The general/non-specific 
association between our connectome-based brain variate and wide array of psychopathology 
measures and psychiatric diagnoses, suggests that this brain signal indexes transdiagnostic 
rather than disorder-specific vulnerability in preadolescents. That the brain variate exhibits a 
dose-response relationship with cumulative number of current psychiatric disorders suggests 
potential clinical applicability as a diagnostic-severity staging biomarker, and warrants further 
exploration. While our findings require cautious interpretation until out of sample validation and 
prospective testing is performed, they provide early support for the latent connectome-based 
brain variate being a candidate biomarker indexing individual differences in risk for 
transdiagnostic psychopathology and cognition in preadolescents. 

In addition to its efficiency in explaining individual variance shared by the multiple behaviors, our 
identified brain-based variate mirrors the general behavior-derived factors like g- (44, 47, 52) and 
p- (45, 46, 53) in their heritability. Note that the general behavioral factors are genetically 
associated (47). In the current twin data, the connectome CV exhibited a high heritability, which is 
significant and with a comparable extent to the general cognitive function and externalizing 
problems. This again confirms that the identified connectome CV may reflect the same genetically 
rooted individual difference that has been commonly observed with p- and g-. It suggests that the 
specific pattern of rsFC may participant in the active gene-environment correlation (rGE) process 
as a mediator (54), by facilitating youth’s capability to select, modify and create their own 
experiences , especially in interaction with negative environment during the development. 

Our rsFC loadings identified diverse cortical and subcortical brain regions including the aIns/fO, 
dlPFC, vmPFC, STG, IPS/SPL, FEF, PMA, striatum, thalamus and brain stem that contributed 
significant variance to the connectome-based brain variate. Notably, many of these cortical 
regions map onto a frontoparietal brain system which includes the VAN/SAL and DAN, which are 
implicated in attention-based cognitive control.(55–59) As such, proper functioning of this network 
may be required to support healthy cognitive performance and protect against the development of 
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psychiatric disorders,(16) and alterations of rsFC in these ROIs may result in both cognitive 
dysfunction and the emergence of psychopathology. Interestingly, we found that ROIs of 
significant loadings form two clusters according to the direction of their loadings. Specifically, 
negative loadings were mainly located in the DAN while positive ones in the VAN/SAL, which may 
be aligned with the separated functions of these two subsystems in supporting the attention-
based cognitive control.(56, 60) Subcortical regions including the striatum, thalamus, and brain 
stem also had significant positive loadings. This may indicate the critical role of these regions in 
supporting cognition by relaying, shifting, and sustaining functional information from their cortical 
counterparts.(61) 

This study has some noteworthy limitations. As the study is a secondary analysis of ABCD data, 
we were reliant on the assessments, data collection procedures, imaging parameters, and 
acquisition and harmonization choices made by the primary study team. While broad 
psychopathology indices were collected, they were restricted to parent-report measures at this 
timepoint which is limiting and should be cross-validated for accuracy with multi-informant 
assessments from subsequent data waves. The ABCD data used in the present study are cross-
sectional and when combined with our correlational analytic approach precludes causal 
interpretation of our findings. However, given the longitudinal design of the ABCD study, we will 
be able to test the ability of the candidate biomarker identified in this study to prospectively 
predict future psychopathology by incorporating later waves of ABCD data in subsequent 
analyses. It is also important to point out that our data-driven analytic approach using CCA was 
designed to detect linear associations between the two multi-dimensional datasets of functional 
connectome and behavioral assessments. It was unexpected that one mode accounted for the 
majority of variance across both cognitive and psychopathological measures in the study. The 
four other modes, while accounting for much less variance than our primary mode, did show 
some distinct brain-behavior associations with specific cognitive and psychopathological 
measures that warrant further investigation. Although psychopathological scales showed 
generally negative correlations with the connectome variate, scales within the internalizing 
spectrum had lower extent than those in the externalizing spectrum. This suggests that 
association of psychopathology with functional connectome might not be fully captured by the 
current linear model of CCA, especially for those in the internalizing spectrum. Non-linear models 
such as kernel CCA(34) might be valuable for identifying other linkages between functional 
connectome and the multi-domain behaviors, which would be important for finding biotypes within 
specific clinical categories or cognitive domains. 

Materials and Methods 

Participants 
Neuroimaging data and behavioral assessments of 11,875 children aged 9- to 10-years were 
obtained from the ABCD study (32). The large and long-term ongoing project aimed to 
characterize psychological and neurobiological development from pre-adolescence to young 
adulthood. Participants and their families were recruited through school and community settings 
in 21 centers across the US, following locally and centrally approved Institutional Review Board 
procedures as detailed in Garavan et al., 2018 (62). Participants were excluded due to missing 
data, having a neurological condition or poor data quality. Exclusion criteria are detailed in Figure 
S1. 

Assessments of Multi-domain Behavior 
The behavioral dataset comprised assessments spanning two domains including cognitive 
functions and psychopathology-related constructs. The cognitive ability of the participants was 
quantified with 20 scores derived from their performance on the ABCD 15-test neuro-cognitive 
battery (63) and behavior from the 3 neuroimaging tasks(39). Cognitive tests and measures are 
detailed in supplementary materials. Psychopathology-related constructs were measured with 31 
dimensional scores including the parent-reported Child Behavioral Checklist (CBCL), scale of 
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mania, youth reported scales of impulsivity, and psychosis risk. Measurements of the 
psychopathology-related constructs are detailed in Supplementary Materials. 

Clinical Diagnoses of Psychiatric Disorders 
The clinical diagnostic assessment was measured with the computerized Kiddie Schedule for 
Affective Disorders and Schizophrenia (K-SADS) for DSM-5 (KSADS-5) (64, 65).  

Resting-State Functional Connectome 
In the ABCD Study, four 5-min resting-state functional image series and a T1-weighted structural 
image were collected for each participant with 3T scanners. Scanning parameters slightly differed 
across scanning sites and are detailed in Supplementary Materials.  

Structural and functional MR images were preprocessed and housed in the ABCD-BIDS 
Community Collection (ABCC) from the Developmental Cognition and Neuroimaging (DCAN) 
Labs. The preprocessing pipeline included Human Connectome Project (HCP)'s minimal 
preprocessing pipeline(66) and the DCAN BOLD Processing (DBP) software (67). Processed 
data were obtained from collection 3165 provided by DCAN Labs. Descriptions of the pre-
processing and access of data are detailed in Supplementary Materials. 

The functional connectomes of individual brains were constructed from resting-state functional 
connectivity between 352 regions-of-interest (ROIs) across the brain. The ROIs were defined by 
the parcellation scheme from Gordon et al 2016 (40), which included 333 cortical areas and 19 
subcortical areas. The ROIs were originally assigned into 12 functional communities (40) and 
further assembled into 7 large-scale networks according to the guideline by Uddin et al. (68). 
Functional connectivity was indexed with z-transformed Pearson’s correlation of pre-processed 
BOLD time series between ROIs. From the 352-by-352 matrix, the 61,776 upper-triangular values 
were used to describe the individual’s functional connectome. 

Covariates 
In the current study, we considered two tiers of covariates that may affect the CCA analysis (48). 
The Tier-1 covariates included the scanner type, head motion measured with mean framewise 
displacement (mean FD), and the number of retained frames after motion censoring. These Tier-
1 covariates could induce artificial rsFC values, and the head motion during scanning could be 
associated with behavioral measures. Therefore, they might bias the CCA results with a spurious 
brain-behavior association. To eliminate such potential effect, we regressed out Tier-1 covariates 
from both brain and behavioral data in all our CCA analyses.  

The Tier-2 covariates included 5 major sociodemographic variables, i.e., sex, age, race/ethnicity, 
household income, and parental education. These variables may have effects on the brain-
behavior association, however a causal mechanism is unclear. These variables might also proxy 
for both confounding factors and mediators or colliders simultaneously (48). Therefore, we 
conducted our original analyses without considering these variables and then conducted 
subsequent CCA analyses regressing out the Tier-2 covariates one at a time in addition to Tier-1 
covariates, in order to investigate the impact of these Tier-2 covariates on the identified brain-
behavior association.  

Discovery of Brain-Behavior Associated Dimensions with CCA 
To identify associations between the functional connectome of the youth brain and multi-domain 
behavioral assessments, we conducted a CCA (41) on the two datasets. To ensure the 
generalizability of the multi-variable result, the CCA was conducted in a hold-out framework(69). 
The 7,382 participants were randomly split into a training set of 5906 subjects (80% of the total 
samples) for discovery and a test set of 1476 subjects (20% of the total samples) for validation. 
Within the training set, a nested 5-fold hold out validation (80% vs. 20% for each fold) was 
performed to tune the hyperparameter, the number of principle components retained after the 
dimension reduction procedure (see more details below).  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 31, 2022. ; https://doi.org/10.1101/2021.10.14.464403doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.14.464403
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

12 

 

Before submitting the brain features into the CCA, two preprocessing steps were performed at the 
group level. First, Tier-1 covariates were regressed out from the connectome and behavior 
dataset separately, and the residuals were transformed into a lower dimensional basis where 
data are exchangeable (70, 71). Second, a procedure of Principal Component Analysis (PCA) 
was applied on both datasets of functional connectome and the multi-domain behaviors, 
respectively. Note that CCA is invariant to linear transformations (70). Therefore, PCA does not 
change the result of CCA applied on original feature space. However, removing the low-ranked 
PCs prevents small perturbations in the original data from causing instability in the CCA solutions 
and therefore leading to overfitting. Though the PCA-based dimension reduction is a common 
practice used for CCA, the number of PCs to retain has not been fully addressed. Therefore, we 
tuned this hyperparameter for a highest generalizability of the CCA results through a nested 5-
fold cross-validation procedure within the training set. Note that, in the cross-validation, PCA was 
only performed on the training dataset, and then the resultant coefficients were applied to the test 
dataset. 

CCA simultaneously identifies orthogonal latent variates from the brain and behavior datasets, 
while ensuring a maximized correlation between the two variates paired by their orders (modes). 
To identify meaningful brain-behavior associations, we tested these modes for their statistical 
significance (70, 71), and generalizability (69), and redundancy index (36, 42) via permutation 
tests (see supplementary materials for more details).  

Association Between Connectome Variate and Behavioral Assessments 
To assess the association between the connectome variate and individual differences in cognitive 
performance and psychopathological measures, we conducted a connectome-based prediction. 
The prediction was performed in a hold-out manner. Coefficients of the first CCA mode estimated 
from the training set, produced by multiplying the weighting matrices given by PCA and CCA, 
were applied to the connectome data in the test set. Correlations between the predicted 
connectome variate score to each behavioral assessment were calculated and tested with 
Pearson’s correlation. P values were corrected for multiple comparisons using the Benjamini-
Hochberg false discovery rate (FDR) method (72). 

Association Between Connectome Variate and Clinical Diagnoses 
To validate the connectome variate as a transdiagnostic factor, the association between the 
connectome variate and clinical diagnoses was assessed. First, all the 7382 participants with 
psychiatric disorders were grouped by their K-DSADS diagnoses, and the connectome variate 
score of each diseased group was compared with the group with no current psychiatric diagnosis. 
Second, participants with psychiatric disorders were grouped by 0, 1, 2, or ≥3 comorbid 
diagnoses. In these two analyses, groups with insufficient size (<20) were excluded. Welch two-
sample t-tests(73) were used to compare differences between groups. Finally, the risk of at least 
one diagnosis was compared between participants with rsFC score above MEAN+1SD vs. under 
MEAN-1SD in the whole cohort.  

Heritability of Connectome Variate 
To estimate the heritability of the connectome variate of the principal mode, we fitted linear 
structural equation model with a classic twin study design (CTS) (74) using the R openMx 
package (75). In CTS, the information of MZ and DZ twin pairs were used to disentangle the 
influence of genetic and environmental factors on phenotypical trait, i.e., the connectome variate 
score in the current case. The total phenotypical variance, P, was attributed into a sum of genetic 
and environmental factors (P = A + C + D + E): additive genetic influences (A), non-additive 
genetic influences (dominance, D), environmental influence shared by family members (common 
environmental variance, C) and unique environmental influence (E). The CTS assumed that (1) 
MZ and DZ twin pairs shared their environments to the same extent; (2) Random mating and (3) 
Minimal gene-by-environmental interaction. Therefore, MZ and DZ twins had the same degree of 
C and E, but varied degree of A and D, and such varied structures allow the different variance 
components to be estimated via a path analysis (74). Though C and D were included in the CTS, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 31, 2022. ; https://doi.org/10.1101/2021.10.14.464403doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.14.464403
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

13 

 

they cannot be estimated simultaneously. In the current case, ACE was selected over ADE 
because rDZ > 0.5* rMZ.  

Goodness of fit (GOF) was tested for the full ACE model and its sub-models (models restricting 
one or more path to be zero). Significance of each path was assessed by comparing the fit of the 
restricted model to the full model. Chi-square test was used for statistical assessment. Relatively, 
Akaike’s information criterion (AIC), AIC = χ2 -2df was used to determine the best fit model 
considering both the GOF and the parsimony of the model.  

Finally, heritability (h2) was estimated as the ratio of the genetics related variance to the total 
phenotypical variance. In the current case of AE model, h2 = (a2)/(a2+e2).  
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Figures and Tables 
 

 
Figure 1. Scheme of canonical correlation analysis (CCA). (A) Construction of functional connectome. Preprocessed 
time-series were extracted from 352 parcels defined by the Gordon atlas(40). Then z-transformed Pearson’s 
correlation of the time series were calculated for each pair of the brain parcels. Network abbreviations modules are 
listed in the SI. (B) Connectome dataset. Functional connectome data of 7382 young participants (including 5906 as 
the training set and 1476 as the test set) were included as the brain feature set. (C) Behavioral-assessment dataset. 
The behavioral assessments consisted of 20 scales for cognitive ability and 31 scales for mental-health related 
constructs. (D) Youth population in the aligned latent space identified by CCA. CCA identifies linear subspaces for the 
two datasets. The two datasets are ensured to be maximally correlated when projected to the latent spaces, and thus 
reveal latent brain-behavior associations in the youth population. 
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Figure 2. Canonical correlations (CCs) between the brain and behavioral datasets. (A) CCs in the training set. Dots in 
the plot indicate CCs of the 49 CCA modes from the training set. In the training set, top five (red and light gray points) 
modes show significant correlations in comparison to the null distribution. (B) CCs in the test set. CCA modes in the 
test set were obtained from the hold-out validation, i.e., by applying the training-set CCA coefficients on the data in 
the test set. Dots in the plot indicate CCs of the 49 modes from the training set. When generalizing to the test set, the 
top five CCA mode shows significant CCs in comparison to the null distributions five (red and light gray points). (C) and 
(D) Scatter plots of the associated brain and behavior variate scores in mode 1, for training and test sets 
respectively. Dots in the plots represent individuals in the space formed by brain and behavior variates. Correlation 
between these two variates shows significant and consistent correlations in both the training set (ρ = 0.72, p < 10-3, N 
= 5906) and the test set (ρ = 0.56, p < 10-3, N = 1476). Inset plots represent permutation test results conducted for CC 
in the training and test sets 
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Figure 3 Brain and behavioral loadings of the principal CCA mode. (A) Loading of each behavioral assessment on the 
behavioral variate. Abbreviates are listed in Table S2 and S3 (B) Loading of rsFC on the brain connectome variate. (C) 
Map of ROI loading. Highlighted borders indicate ROIs with significant positive (dark red) or significant negative (dark 
blue) loadings compared with a permutation-generated null distribution . The significance level was set at p < 0.01 
and was FDR-corrected for multiple comparison. (D) Distribution of ROI loadings across large-scale functional brain 
networks. The 352 parcels were grouped into 7 cortical networks and the subcortex (76). 
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Figure 4 Cross-domain consistent connectome variate of the principal mode. Loading map of the principal CCA mode 
obtained by associating the connectome data set to the (A) Cognition only (B) Combined cognition and 
psychopathology and (C) Psychopathology only behavioral sets show high consistency (spatial Pearson’s correlation) 
between them. Loading maps are averaged by the cross-validation folds. The resultant p values are corrected for 
multiple comparison using the FDR procedure, *** FDR-adjusted p < 0.001 .  
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Figure 5 Behavioral assessment prediction from the connectome variate score. The bar plot shows the performance 
of using the CCA estimated connectome variate to predict behavior assessment scores in an unseen population. 
Behavioral assessments are ordered by the rank of their behavioral loadings. Inset plot shows the cross-population 
prediction procedure. The predictive ability of behavioral assessments was assessed with Pearson’s correlation, with 
p-values FDR corrected. * FDR-adjusted p < 0.05, ** FDR-adjusted p < 0.01, *** FDR-adjusted p < 0.001 
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Figure 6 Relationships between connectome variate scores and current psychiatric disorders in the entire sample. 
(A) Group-wise comparison of mean connectome variate scores in preadolescents with different psychiatric 
diagnoses. Dots and lines in the plot indicate mean and standard error of the connectome variate score in each group 
of KSADS diagnosis. The participant group with no current psychiatric diagnoses was used as the baseline. Welch’s t-
tests were used to compare differences in mean connectome variate scores in each diagnostic subgroup (e.g., 
participants with conduct disorder) compared to the baseline group. P-values were FDR-adjusted for multiple 
comparisons. (B) Differences in mean connectome variate scores in preadolescent participants as a function of 
cumulative number of current psychiatric diagnoses identified via the KSADS. Pair-wise group differences were post-
hoc compared using the Games-Howell procedure. * Adjusted p < 0.05, ** Adjusted p < 0.01, *** Adjusted p < 0.001 

 

Table 1 Intrapair twin correlations, influence of genetic/environmental factors, heritability of 
connectome variate 

Twin Correlations  Variance  Heritability 

rMZ (N) rDZ (N)  a2 (95% CI) e2 (95% CI)  h2 (95% CI) 

0.71 (76) 0.39 (126)  0.60 (0.42 -0.82) 0.20 (0.13 - 0.32)  0.74 (0.56-0.86) 
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