

1 Warming During Embryogenesis Induces a Lasting 2 Transcriptomic Signature in Fishes

4 *Daniel M. Ripley^{1*}, Terence Garner², Samantha A. Hook³, Ana Veríssimo^{4,5}, Bianka Grunow⁶, Timo
5 Moritz^{7,8}, Peter Clayton², Holly A. Shiels¹, Adam Stevens^{2*}*

7 ¹Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of
8 Manchester, Manchester, UK.

9 ²Division of Developmental Biology and Medicine, Faculty of Biology, Medicine, and Health, The
10 University of Manchester, Manchester, UK.

11 ³Department of Earth and Environmental Sciences, The University of Manchester, Manchester, UK.

13 ⁴CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório
14 Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal

15 ⁵BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-
16 661 Vairão, Portugal

17 ⁶Institute of Muscle Biology and Growth, Research Institute for Farm Animal Biology, Wilhelm-Stahl-
18 Allee 2, 18196 Dummerstorf, Germany.

19 ⁷Deutsches Meeresmuseum, Katharinenberg 14–20, 18439 Stralsund, Germany

20 ⁸Institute of Biological Sciences, University of Rostock, Albert-Einstein-Straße 3, 18059 Rostock,
21 Germany

23 **CORRESPONDING AUTHORS** *Daniel.ripley@manchester.ac.uk, Adam.stevens@manchester.ac.uk*

25 **KEYWORDS** climate change, long term effect, gene expression, plasticity, developmental
26 programming, *Scyliorhinus canicula*, RNA-seq.

28 **RUNNING HEADER** Warming programs the transcriptome of fishes

30 **Abstract**

31 Exposure to elevated temperatures during embryogenesis has profound acute effects on the cardiac
32 performance, metabolism, and growth of embryonic fishes. Some temperature-induced effects may
33 be retained into, or manifest in, later-life through a mechanism termed developmental programming.
34 In this study, we incubated small-spotted catshark (*Scyliorhinus canicula*) embryos at either 15°C or
35 20°C before transferring the newly hatched sharks to a common set of conditions (15°C) for 5 months.
36 Lasting transcriptomic differences associated with the developmental environment were identified,
37 and interactions between genes were investigated using network modelling. Development at an
38 elevated temperature caused an increase in transcriptomic entropy, a parameter thought to relate to
39 plasticity. We then validated this observation through a novel re-analysis of published zebrafish
40 (*Danio rerio*), European seabass (*Dicentrarchus labrax*), and three-spined stickleback
41 (*Gasterosteus aculeatus*) datasets and show that developmental temperatures influence the
42 transcriptional response to future thermal challenges by, in part, altering the organisation of gene
43 networks.

44 **1 INTRODUCTION**

45 Developmental programming comprises changes to an organism's phenotype that are induced, or
46 programmed, by the environmental conditions experienced during development (Bateson *et al.*,
47 2014). These developmental conditions elicit changes in DNA and chromatin methylation patterns,
48 with consequent alterations in gene expression (Anastasiadi *et al.*, 2017, Fellous *et al.*, 2015). Some
49 of these changes in methylation pattern, and their concomitant influence on gene expression, can be
50 retained into later life. For instance, changes in developmental temperature cause hypermethylation in
51 threespined stickleback (Metzger & Schulte, 2017), and studies in rainbow trout (*Oncorhynchus*
52 *mykiss*) demonstrate the ability of early-life hypoxic events (Liu *et al.*, 2017) and dietary composition
53 (Geurden *et al.*, 2014) to alter glucose metabolism and homeostasis in later-life. Finally, the
54 developmental temperature of zebrafish (*Danio rerio*) has been shown to program their gene
55 expression and physiology, culminating in an enhanced thermal tolerance (Schaefer & Ryan, 2006)
56 and acclimation capacity (Schnurr *et al.*, 2014; Scott & Johnston, 2012) in adulthood.

57 As well as altering mean trait values, the embryonic environment can also program an organism's
58 ability to acclimate to conditions experienced in later-life (Beaman *et al.*, 2016). That is, the capacity
59 to physiologically respond to and mitigate future environmental challenges can be enhanced,
60 hindered, or simply altered by an individual's embryonic conditions (Beaman *et al.*, 2016). Evidence in
61 zebrafish (*Danio rerio*) (Scott & Johnston, 2012; Schnurr *et al.*, 2014) and mosquitofish (*Gambusia*
62 *holbrookii*) (Seebacher *et al.*, 2014), amongst other species (Beaman *et al.*, 2016), show that the
63 thermal environment experienced during early-life can have lasting effects on the acclimation capacity
64 of multiple physiological traits, including metabolic scope (Seebacher *et al.*, 2014), critical thermal
65 maximum (Healy *et al.*, 2019), and swimming performance (Scott & Johnston, 2012).

66 Phenotypic changes arising from physiological plasticity are underwritten by changes in an organism's
67 gene expression in response to environmental cues. Such plasticity can be affected by an individual's
68 embryonic environment, which may either facilitate or hinder changes in gene expression later in life
69 (Beaman *et al.*, 2016). Thus, there is a link between an organism's phenotype, gene expression, and
70 plastic potential, which can be modulated by its embryonic environment (Beaman *et al.*, 2016).

71 Shannon entropy (herein entropy) of the transcriptome is a metric describing the order or predictability
72 of gene-gene interactions within a transcriptional network. These gene-gene interactions can either be
73 direct (pairwise) or indirect (higher order interactions) (Sanchez, 2019). The more entropic a network,
74 the less structured and less predictable its behaviour. Transcriptional entropy is known to correlate
75 with the differentiation potency and phenotypic plasticity of single cells (Banerji *et al.*, 2013;
76 Teschendorff & Enver, 2017). The more entropic a cell, the greater its number of possible fates
77 (Teschendorff & Enver, 2017), and thus the more plasticity it possesses. Given that several studies
78 have shown that the environmental temperature experienced during development can alter plasticity
79 in the adult organism (Beaman *et al.*, 2016), we aimed to assess whether developmental temperature
80 also alters gene-level plasticity by measuring the network entropy of the transcriptome in later life.

81 Whilst many animals may experience adverse environmental conditions during embryogenesis, some
82 species, owing to their ecology, are more susceptible than others. Oviparous elasmobranchs,

83 because of their protracted, sessile developmental period, are susceptible to experiencing sub-
84 optimal environmental conditions for long durations. Oviparous elasmobranchs develop inside
85 collagenous egg cases termed mermaid's purses, which the embryo remains within for several
86 months to over a year, depending on the species (Benjamins *et al.*, 2021; McLaughlin & Ogower,
87 1971). Throughout embryogenesis the embryo is unable to move from the purse, and thus may be
88 consistently exposed to unfavourable environmental conditions such as elevated temperatures. As
89 the world's oceans continue to warm (IPCC, 2021, Cai *et al.*, 2014), and the frequency of marine
90 heatwaves is increasing (Oliver *et al.*, 2018), the likelihood of oviparous elasmobranchs developing in
91 sub-optimal conditions increases too. Exposure to elevated temperatures is known to affect the
92 growth and development of elasmobranch embryos (Hume, 2019; Musa *et al.*, 2020; Rosa *et al.*,
93 2014, Ripley *et al.*, 2021). However, no studies have investigated how embryogenesis at elevated
94 temperatures may have lasting effects on elasmobranchs through developmental programming.

95 Here, we incubate *Scyliorhinus canicula* embryos at 15°C or 20°C throughout embryogenesis, before
96 moving them to a common-garden environment (15°C) upon hatching. Following 5 months in the
97 common garden environment, we sacrificed the animals and performed RNA-seq on the ventricle
98 tissue of six individuals to investigate whether the developmental environment could program lasting
99 changes in the gene expression and organisation of the *S. canicula* ventricular transcriptome.

100 Ventricle tissue was chosen for sequencing owing to the ventricle's key role in mediating thermal
101 performance and tolerance (Pörtner and Knust, 2007). Finally, to validate our findings, we re-analysed
102 published datasets of temperature-induced developmental programming in zebrafish (*Danio rerio*)
103 hypaxial fast muscle (Scott & Johnston, 2012), European seabass (*Dicentrarchus labrax*) muscle
104 (Anastasiadi *et al.*, 2021), and threespine stickleback (*Gasterosteus aculeatus*) muscle (Metzger and
105 Schulte, 2018) to test the consistency of our observations across multiple species of fishes and other
106 striated muscle tissues.

107

108 **2 MATERIAL AND METHODS**

109 **2.1 Experimental animals**

110 Details of the experimental design can be found in figure 1. *Scyliorhinus canicula* embryos were
111 collected from a population of 7 randomly mating adult individuals held at 15°C at the Ozeaneum,
112 Stralsund, Germany, and transported to the University of Manchester, UK. Upon arrival the health and
113 developmental stage of each embryo was assessed using the Musa scale (Musa *et al.*, 2018). Only
114 healthy embryos at stage 1 were used in the study (Musa *et al.*, 2018). All regulated procedures
115 received approval from the institution's ethical review board and were performed under the Home
116 Office License P005EFE9F9 held by HAS.

117 Following embryonic staging, individuals were randomly assigned to a temperature treatment group
118 (15 ± 0.3°C or 20 ± 0.3°C). For the control condition, 15°C was chosen as it falls within the range of
119 temperatures experienced by *S. canicula* in the wild and is the holding temperature of the parent
120 population at the Ozeaneum, Stralsund, Germany. For the treatment group, +5°C (20°C) was chosen

121 as is it represents the increase in ocean temperature predicted by the end of the century, whilst also
122 being within the current range of temperatures experienced by some *S. canicula* populations in the
123 wild (Pegado *et al.*, 2020). The egg cases in each treatment group were hung vertically in two, well
124 aerated, 55 l static seawater (35ppt salinity) tanks equipped with internal filters and left to continue
125 their embryonic development.

126 Upon hatching, fin clips were taken to facilitate identification in later-life through microsatellite
127 analysis. The fin clips were stored in 98% ethanol at -20°C, and the sharks were moved into one of
128 four well aerated 400 l static seawater tanks held at 15°C ± 0.3°C. The hatchlings from the 20°C
129 treatment group were lowered to 15°C at a rate of 2.5°C per day, and sharks from both treatment
130 groups were mixed and randomly allocated to a tank. The sharks were fed a mixture of squid, crab
131 and krill three times per week. The sharks from both treatment groups were held at 15°C ± 0.3°C for
132 an average of 136 days prior to tissue sampling. During the entire experiment, saltwater changes
133 were performed three times weekly to maintain ammonia, nitrite, and nitrate below detectable levels.

134 **2.2 Tissue sampling**

135 Sharks at 4-5 months age (mean ± SEM = 136 ± 6.3days) were euthanised with an overdose of
136 buffered tricane methanesulfonate and a fin clip was taken post-humous. The ventricle was excised
137 from each individual, placed into RNAlater, and frozen in liquid nitrogen before being stored at -80°C
138 prior to RNA-sequencing.

139 **2.3 Individual identification using microsatellite analysis**

140 To identify which condition an individual was developed in, microsatellite analysis was performed on
141 the fin clips taken at birth and at the end of the experiment to match each individual using the
142 methods described in Hook *et al.* (2019). Fin clips were extracted using a BioLine Isolate Genomic kit
143 with an extended proteinase K digestion to maximise DNA yield. DNA yield was assessed using a
144 NanoDrop ND-1000 spectrophotometer (Thermo Fisher Scientific, USA) and gel electrophoresis. A
145 one-primer cocktail containing 11 microsatellites and three tail dyes was used for DNA amplification
146 (Griffiths *et al.*, 2011) using the QIAGEN multiplex PCR kit. The thermocycling protocol consisted of
147 initial denaturation cycle at 95°C for 15 minutes, followed by 35 cycles of 94°C for 30 seconds, 60°C
148 for 90 seconds and 72°C for 45 seconds, and finalised by one cycle at 72°C for 30 minutes. The
149 products were visualised on a gel and then genotyped using an ABI sequencer. Positive control
150 samples were added to each plate genotyped to account for possible allele slippage.

151 Genotypes were scored using GeneMapper© v4.1 (Applied Biosystems) and validated through
152 Microchecker (van Oosterhout *et al.*, 2004). Duplicates were found between the two batches using
153 CERVUS (Marshall *et al.*, 1998). In cases where some alleles within the genotype did not match,
154 controls were used as a reference to identify possible allele slippage. Probabilities of the identity
155 analysis (pID) were taken from CERVUS to confirm match identification between the two batches. As
156 *S. canicula* lay multiple eggs, microsatellite analysis was also used to confirm that no samples used
157 for RNA-sequencing were taken from full siblings.

158

159 **2.4 *Danio rerio*, *Dicentrarchus labrax*, and *Gasterosteus aculeatus* re-analysis**

160 The computational analysis pipeline (sections 2.5 and 2.6 below) was also implemented on previously
161 published RNA-seq datasets of temperature-induced developmental programming in zebrafish (*D.*
162 *rerio*) hypaxial fast muscle (Scott & Johnston, 2012), European seabass (*D. labrax*) muscle tissue
163 (Anastasiadi *et al.*, 2021), and threespine stickleback (*G. aculeatus*) muscle tissue (Metzger and
164 Schulte, 2018). This re-analysis was performed to assess the robustness and between-species
165 consistency of any temperature-induced effects observed in *S. canicula*.

166 The *D. rerio*, *D. labrax*, and *G. aculeatus* data were processed in an identical manner to the *S.*
167 *canicula* data. Developmental conditions and transcriptome assembly statistics for the four species
168 are shown in table 1. Full details of the animals used in the re-analysis can be found in Scott &
169 Johnston 2012 (*D. rerio*, N = 4), Anastasiadi *et al.* 2021 (*D. labrax*, N = 5), and Metzger and Schulte
170 (2018 (*G. aculeatus*, N = 6 respectively).

171

172 **2.5 de-novo transcriptome assembly and differential expression analysis**

173 The ventricle tissue from six individuals (N = 3 per treatment group), stored in RNAlater at -80°C, was
174 used for generating the transcriptome. The tissue samples were extracted using the Qiagen kit with
175 homogenisation. Basic sample quality was assessed using a Nanodrop (ThermoFisher) and the high-
176 quality ventricular RNA samples were sequenced using a 76 base pair long, pair-ended reads on the
177 Illumina TruSeq system. Reads that mapped to human, bacterial, and viral sequences were removed
178 using DeconSeq (Schmieder and Edwards, 2011) whilst reads mapping to ribosomal RNA were
179 removed using sortmeRNA (Kopylova *et al.*, 2012). Adaptor sequences and sequences with a low-
180 quality score (regions averaging a score <5 over a 4bp sliding window, and leading/trailing sequences
181 scoring <5) were then removed from the cleaned reads using Trimmomatic (Bolger *et al.*, 2014) prior
182 to transcriptome assembly. 264 million bases survived the quality control process and were used for
183 transcriptome assembly in Trinity 2.8.4 (Grabherr *et al.*, 2011; Haas *et al.*, 2013). Default parameters
184 were used in Trinity, except –normalize_reads, producing 347710 contigs with a N50 of 1422, and a
185 BUSCO score of 88.8%, with 519 single copy, and 2458 duplicated copy, BUSCOs (BUSCO v5.2.2,
186 Simao *et al.*, 2015). Open reading frames (ORFs) were predicted from the transcripts using
187 Transdecoder (<https://github.com/TransDecoder/TransDecoder/wiki>) with a minimum length threshold
188 of 100 amino acids. This filtered dataset was then annotated using a BLAST search against the
189 SwissProt database. The reads were then pseudo-aligned to the curated transcript assemblies using
190 Kallisto (Bray *et al.*, 2016), allowing the relative abundance of each transcript to be calculated. Where
191 multiple transcripts mapped to a single BLAST hit, the sum of the transcripts abundances was used.
192 The abundance estimates were filtered by removing fragments that had zero mapped reads in any of
193 the samples before differential expression analysis was performed with EdgeR (McCarthy *et al.*, 2012;
194 Robinson *et al.*, 2010) in R 3.6.0 (R core team, 2019) using the R-script available in Metzger and

195 Schulte, 2018. Significance levels were adjusted for multiple testing using a false discovery rate
196 (FDR) correction.

197 **2.6 Entropy analysis**

198 Entropy of both pairwise and higher-order interaction networks was determined in each treatment
199 group. See figure 2 for a conceptual overview. The expression of each gene was tested for
200 correlations against all the assembled transcripts within each treatment group. The correlation values
201 were binarized such that strong positive (top 10% of R-values) or strong negative (bottom 10% of R-
202 values) correlations were retained (denoted as 1) and weak correlations were discarded (denoted as
203 0). This binarized correlation matrix is square and represents the pairwise interaction network.

204 To generate the higher order interaction networks (hypernetworks), the binarized correlation matrix
205 was multiplied by the transpose of itself ($M \times M^t$) to return the adjacency matrix of the hypernetwork,
206 where the values in each cell represent the number of shared correlations any given pair of genes
207 have to the rest of the transcriptome. These values also represent the dimensionality of the
208 hyperedge connecting each pair of nodes.

209 To assess whole-transcriptome properties, we selected subsets of 200 genes from the network (either
210 the binarized network or the hypernetwork) and calculated the entropy of each gene using the R
211 packages mixOmics (Rohart *et al.*, 2017) and BioQC (Zhang *et al.*, 2017) in R 3.6.0 (R core team,
212 2019). The mean gene-level entropy was then calculated for each iteration. This approach was
213 iterated 1000 times for both the binarized and hyper-networks to provide a whole-transcriptome
214 assessment of both pairwise (binarized network) and higher order (hypernetwork) entropy for animals
215 from each treatment group. Hypernetwork entropy was then scaled to one by taking $\log_2 N^2$, where N
216 is the length of the gene list. Wilcoxon tests were used to contrast entropy between the sharks
217 incubated at 15°C and 20°C. This same approach was applied to re-analysed zebrafish, seabass, and
218 stickleback datasets.

219

220 **2.7 Gene ontology analysis**

221 Gene ontology analysis, leveraging the pairwise and higher-order network entropy, was used to
222 identify specific gene-pathways whose organisation was influenced by developmental temperature.
223 Gene pathways (geneontology.org) of interest were selected *a priori* and each treatment group was
224 analysed separately. Gene networks (both pairwise and higher-order) were created (as described in
225 section 2.6) from a subset (N = 20) of genes within each gene ontology term, and an entropy score
226 was calculated. This approach was iterated 1000 times per gene pathway to generate a distribution of
227 entropy scores for each gene ontology term. A Bayesian approach was used to assess the
228 differences between groups; entropy distributions for each gene pathway contrasted between
229 developmental temperatures and β entropy scores were calculated. These β values represent the
230 difference in entropy between warm and control incubated fish for a given gene pathway. The
231 posterior of β entropy values were plotted and the 89% credible intervals calculated. Differences in

232 pathway entropy were defined as significant where the 89% credible interval did not cross 0, per
233 standard protocol (McElreath, 2018).

234 **2.8 Zebrafish acclimation analysis**

235 A subset of zebrafish from both developmental temperatures in the Scott and Johnston (2012) paper
236 were cold acclimated (16°C for 28-30 days) in adulthood prior to RNA-sequencing. We re-analysed
237 these data (transcriptome assembly, read quantification and annotation as described in sections 2.5
238 and 2.6 above) to look at the effects of developmental temperature on temperature-induced gene
239 expression changes in later-life. The proportion of genes whose expression changed due to cold
240 acclimation was compared using Fisher's exact test, and the magnitude of change in the differentially
241 expressed genes (DEGs) was contrasted with a Wilcoxon test. Finally, we created a logistic
242 regression model (R package 'lme4' (Bates *et al.*, 2015)) to assess whether a gene's response
243 (differentially expressed or not, as defined by a false discovery rate corrected p-value (FDR) cut-off of
244 0.05) to cold-acclimation was influenced by its pre-acclimation entropy in both the pairwise and
245 higher-order interaction networks. Pairwise network entropy, higher order network entropy,
246 developmental condition, direction of the change (positive or negative fold change), and all their
247 interactions were included in the initial logistic regression model. Model simplification was then
248 performed to remove redundant predictors using stepAIC from the package 'MASS' (Venables and
249 Ripley, 2002). Predictors retained into the final model were tested for significance using a Wald test
250 (package 'aod', Lesnoff and Lancelot, 2012), and their effect size calculated (package 'oddsratio',
251 Schratz, 2020).

252

253 **3 RESULTS**

254 Developmental warming caused the differential expression of 163 (FDR < 0.05) genes in juvenile *S.*
255 *canicula*, compared to 66 (FDR < 0.05), 68 (FDR < 0.05), and 21 (FDR < 0.05) in adult *D. labrax*, *D.*
256 *rerio*, and *G. aculeatus* respectively (figure 3). The DEGs showed little overlap between species
257 (figure 3).

258 Entropy of the pairwise interaction networks was increased due to embryonic warming in all species
259 (*S. canicula*; figure 4a, $p < 0.0001$. *D. labrax*; figure 4b, $p < 0.0001$. *D. rerio*; figure 4c, $p < 0.0001$. *G.*
260 *aculeatus*; figure 4d, $p < 0.0001$), whilst cooling caused an entropy decrease in *G. aculeatus* (figure
261 4d, $p < 0.0001$). Gene ontology revealed warming-induced entropy differences in 11/14 (*S. canicula*),
262 10/14 (*D. labrax*), 13/14 (*D. rerio*) and 7/14 (*G. aculeatus*) of the pathways investigated (figure 5).
263 Developmental cooling altered the entropy of 14/14 pathways in *G. aculeatus*.

264 Entropy of the higher-order interaction networks was also increased by developmental warming in *S.*
265 *canicula* (figure 6a, $p < 0.0001$), *D. labrax* (figure 6b, $p < 0.0001$) and *D. rerio* (figure 6c, $p < 0.0001$),
266 but not in *G. aculeatus*, where entropy of the higher-order interactions was highest in the control
267 animals, and reduced by both developmental warming and cooling (figure 6d, $p < 0.0001$ & $p <$
268 0.0001). Gene ontology revealed warming-induced entropy differences in 13/14 (*S. canicula*), 9/14 (*D.*

269 *labrax*), 10/14 (*D. rerio*) and 4/14 (*G. aculeatus*) of the pathways investigated (figure 7).
270 Developmental cooling altered the entropy of 5/14 pathways in *G. aculeatus*.
271 *D. rerio* that were incubated at an elevated temperature showed a greater number (figure 8a, $p <$
272 0.0001) and magnitude (figure 8b, $p < 0.0001$) of gene expression change following 28-30 days cold
273 acclimation (16°C) than *D. rerio* developed in control conditions. Of the cold-induced DEGs, 44.1%
274 were shared across both developmental groups. Genes that were programmed by the developmental
275 environment were more likely to respond to cold acclimation in adulthood than genes that were not
276 developmentally programmed (figure 8c, $p < 0.0001$). The gene-level entropy of both the pairwise ($p =$
277 0.031) and higher order ($p = 0.044$) interaction networks before cold-acclimation were associated with
278 the probability of a gene responding to cold-acclimation in later-life (pseudo $R^2 = 0.091$). An increase
279 in higher order entropy was associated with a reduced likelihood of a gene's expression changing
280 (one-unit increase in higher order network entropy: odds ratio & 95% CI – 0.816, 0.671-0.996), whilst
281 an increase in pairwise network entropy was positively associated with the probability of a gene's
282 expression changing (one-unit increase in pairwise network entropy: odds ratio & 95% CI – 6.344,
283 1.184-33.699).

284 **4 DISCUSSION**

285 Previous studies have shown that the thermal environment experienced during embryogenesis can
286 have persistent effects on the physiology, gene expression, and phenotypic plasticity of fishes
287 (Anastasiadi *et al.*, 2021; Beaman *et al.*, 2016; Schnurr *et al.*, 2014; Scott & Johnston, 2012, Metzger
288 and Schulte 2017). Here, we document temperature-induced developmental programming for the first
289 time in elasmobranchs and show that elevated embryonic temperature programs lasting changes to
290 the organisation of transcriptional networks in small-spotted catshark (*S. canicula*) ventricular tissue.
291 Furthermore, we demonstrate the consistency of this observation across species and muscle types
292 through a novel re-analysis of previously published datasets on zebrafish (*D. rerio*), European
293 seabass (*D. labrax*) and three-spined stickleback (*G. aculeatus*) muscle tissue. Such transcriptomic
294 signatures, seen here in both ventricle and muscle tissue, begin to suggest a tissue independent
295 effect such as those previously demonstrated during growth in mammals (Stevens *et al.*, 2013, Lui *et*
296 *al.*, 2010, Lui *et al.*, 2008). Finally, we suggest that these entropy changes may play a role in the
297 previously observed phenomena of developmentally programmed, temperature-induced changes in
298 phenotypic plasticity (Beaman *et al.*, 2016).

299 Developmental warming programmed few (21-163) differentially expressed genes in later-life, with
300 little overlap between species (figure 3). However, a consistent increase in the entropy of pairwise
301 gene interaction networks was observed across each species with increasing developmental
302 temperature (figure 4). These pairwise interaction networks represent gene-gene correlations, and the
303 consistent differences in the pairwise network entropy across species gives strong support that
304 developmental temperature influences the organisation of these simple gene-gene connections in
305 fishes. Gene ontology analysis of these pairwise networks revealed that pathways involved in
306 ribosome assembly, response to hypoxia, DNA repair, protein folding, organismal growth, and insulin

307 receptor signalling were affected by developmental temperature in all four species, with insulin
308 receptor signalling showing a consistent direction of change (figure 5). The insulin receptor signalling
309 pathway is a key modulator of growth and metabolism. Environmental temperature is known to have
310 both immediate (Musa *et al.*, 2020) and delayed (compensatory growth, Mortensen and Damsgard,
311 1993) effects on growth, which may relate to changes in insulin receptor pathway signalling (Won and
312 Borski, 2013).

313 Entropy of the higher order interactions was also affected by developmental warming, increasing in
314 the catshark, seabass, and zebrafish, but decreasing in the stickleback (figure 6). Only the DNA repair
315 and protein folding pathways showed warming-induced changes in all four species, with neither
316 sharing a consistent between-species direction of change (figure 7). These higher order interactions
317 represent networks of shared connections between gene pairs, and thus capture more nuanced and
318 complex structure within the transcriptome than the simple gene-gene connections. Given this, it is
319 perhaps unsurprising that the effects of developmental warming on the structure of these more
320 complex (hyper)networks are less consistent across species. Whilst it is tempting to speculate on the
321 reason that the higher order interaction networks of the stickleback differ to those of the catshark,
322 zebrafish, and seabass, especially given the stickleback's complex evolutionary history (McKinnon
323 and Rundle, 2002), the data required to disentangle this question does not yet exist. Nevertheless,
324 these developmentally programmed changes in transcriptional entropy, of both the pairwise and
325 higher order interaction networks, may change the response of the transcriptome to future
326 environmental challenges, potentially resulting in altered phenotypic plasticity. Indeed, our zebrafish
327 re-analysis shows that fish incubated in warmer conditions exhibit increased transcriptional entropy
328 and a greater number and magnitude of gene-expression changes in response to later-life thermal
329 challenges (figure 8). Interestingly, genes that were programmed by the developmental environment
330 (figure 3) were more likely to change in response to later-life cold-acclimation than those not affected
331 by developmental warming (figure 8c). Thus, there is a degree of consistency in temperature-sensitive
332 genes throughout ontogeny in zebrafish, which aligns with findings from previous studies on three
333 spined stickleback (*G. aculeatus*, Metzger and Schulte, 2018). Furthermore, the pre-cold acclimation
334 entropy of individual genes in both the pairwise and higher order interaction networks was associated
335 with the likelihood of a gene's expression changing in response to later-life cold acclimation. Whilst
336 the R^2 of the logistic regression was modest, both the pairwise and higher order entropy had
337 significant effects on the probability of gene expression change. Furthermore, the odds ratios and
338 their associated confidence intervals did not cross 1, demonstrating that there is a significant effect of
339 entropy on the transcriptomic response to temperature acclimation. Whilst this effect may be small
340 and noisy at the level of individual genes, the cumulative effects across the whole transcriptome may
341 be marked. Thus, the thermal environment experienced during embryogenesis may influence an
342 individual's responsiveness to future temperature challenges via changes in entropy of the pairwise
343 and higher order gene interactions within the transcriptome.

344 Recent studies have suggested that the developmental environment influences the capacity to
345 acclimate to environmental changes in later-life (Beaman *et al.*, 2016). For example, intertidal

346 copepods (*Tigriopus californicus*) that undergo embryogenesis at 25°C have the capacity to raise their
347 critical thermal maximum as adults through temperature acclimation (Healy *et al.*, 2019). However,
348 embryos of the same species incubated at 20°C show no acclimation capacity in critical thermal
349 maximum as adults (Healy *et al.*, 2019). Given that phenotypic plasticity is facilitated by co-ordinated
350 changes in gene expression, these developmentally programmed changes in phenotypic plasticity
351 may relate to the changes in transcriptional organisation observed in our study. Further studies
352 support the link between embryonic temperature and later-life acclimation capacity. Mosquitofish
353 (*Gambusia holbrooki*) produce multiple generations per year, with those born in summer experiencing
354 a warm but constant environment, and those born in spring experiencing cool, but steadily warming,
355 conditions. Recent work has demonstrated that mosquitofish born in the more thermally variable
356 spring environment have a greater capacity to acclimate their metabolic processes than mosquitofish
357 from the more thermally stable summer conditions (Seebacher *et al.*, 2014). Finally, studies of fruit
358 flies (*Drosophila melanogaster*) have shown that heat tolerance is influenced not just by acclimation
359 temperature, but by an interaction between acclimation temperature and embryonic temperature,
360 further supporting the role of the early-life thermal environment in dictating an individual's response to
361 future temperature challenges (Willot *et al.*, 2021).

362 Studies of developmental programming resulting from environmental challenges in fish and reptiles
363 often show a protective phenotype in later-life, in contrast to the negative effects typically reported in
364 mammals (Galli *et al.*, 2021; Hellgren *et al.*, 2021; Ruhr *et al.*, 2019; Seebacher *et al.*, 2014). For
365 example, work on the common snapping turtle (*Chelydra serpentina*) revealed that hypoxia exposure
366 (50% air saturation) throughout embryogenesis improved the anoxia tolerance of the cardiomyocytes
367 isolated from juveniles (Ruhr *et al.*, 2019). Similarly, jacky dragons (*Amphibolurus muricatus*) raised
368 with extended basking times (11 vs. 7 hours of daily heat lamp exposure) show a higher panting
369 threshold than those from control conditions, implying a greater thermal tolerance (So & Schwanz,
370 2018). Such protective phenotypes, programmed by environmental challenges during embryogenesis,
371 may be associated with the altered transcriptional landscape resulting from environmental stresses
372 during early life. However, exposure to a stressor during embryogenesis does not always facilitate
373 resilience to that stressor in adulthood. Cuban brown anole (*Anolis sagrei*) eggs incubated under cool,
374 warm, and hot temperature fluctuations, and then raised in standard conditions after hatching, show
375 no differences in thermal tolerance as adults (Gunderson *et al.*, 2020). Thus, whilst developmental
376 exposure to a stressor often influences the capacity to respond to that same stressor in later-life, it is
377 not always the case.

378 One mechanism linking the developmental environment to later-life acclimation capacity is through
379 the activity of DNA-methyltransferases (DNMTs) (Radford, 2018). DNA methylation by DNMTs can
380 repress gene expression either directly, whereby the methylation prevents the interaction between a
381 gene and its DNA binding proteins (Watt & Molloy, 1988), or indirectly, through recognition of the
382 methyl cytosine by methyl cytosine binding proteins, and the consequent recruitment of transcriptional
383 corepressors (Boyes & Bird, 1991; Klose & Bird, 2006). Through these mechanisms, DNMTs can alter
384 gene expression. Changes in embryonic temperature have been shown to alter DNA methylation

385 patterns in fish (Metzger & Schulte, 2017), with a recent study identifying DNMT3a as the mediator of
386 developmental thermal plasticity in zebrafish (*Danio rerio*) (Loughland *et al.*, 2021). Thus, by
387 modulating DNMT3a's activity, changes in embryonic temperature can have persistent effects on the
388 gene expression and plasticity of fishes (Loughland *et al.*, 2021; Metzger & Schulte, 2017). Whilst the
389 DEGs identified in our study show little overlap between the species/tissue-types (figure 3), the
390 observed changes in entropy span the entire transcriptome. This transcriptome-wide remodelling
391 suggests that a mechanism upstream of gene expression, such as DNA/chromatin methylation, may
392 be facilitating the developmentally programmed changes in gene network co-ordination.

393 As well as implications for an organism's plasticity, changes in transcriptional entropy are known to be
394 a predictor of biological fitness (Zhu *et al.*, 2020). As stress increases, gene expression patterns
395 become more random and consequently transcriptional entropy increases (Zhu *et al.*, 2020). The
396 negative relationship between transcriptional entropy and fitness has been demonstrated in seven
397 species of bacteria, across a range of contexts, and found to be robust (Zhu *et al.*, 2020). Although
398 the same relationship remains to be tested in fish, the increase in entropy caused by developmental
399 exposure to elevated temperature could have similar effects on fitness. *Drosophila subobscura*
400 incubated at elevated temperatures throughout juvenilehood show a lower reproductive performance
401 as adults than those incubated in control conditions, regardless of the temperatures experienced
402 during later-life (Santos *et al.*, 2021). Therefore, the link between the embryonic environment and
403 later-life fitness is present in ectotherms, and future studies should probe the potential importance of
404 transcriptional entropy in mediating these effects.

405 Climate change is a major threat facing animals. As the world's oceans and rivers continue to warm
406 (Cai *et al.*, 2014; Oliver *et al.*, 2018), the physiological and population-level stresses exerted upon
407 fishes will continue to grow. Embryogenesis is a sensitive period in many animal's life histories, and
408 the conditions experienced during embryonic development influence their growth, physiology, and
409 behaviour throughout their life. Consequently, it is crucial that we expand our understanding of the
410 mechanisms by which the developmental environment can influence an organisms' physiology and
411 capacity to respond to future environmental challenges.

412

413 **Acknowledgements**

414 We thank Vicky Taylor and the aquarist team in the Biological Services Facility at the University of
415 Manchester for their assistance in animal husbandry. We thank Mar Pineda and Pierre Delaroche for
416 their dissection skills. We thank Dr William Joyce for thoughtful discussion of the project. We thank the
417 aquarist team of the Ozeaneum, Stralsund for shark breeding. We thank Milton Tan and Lafage for their
418 stickleback and seabass silhouettes shared, unchanged, through PhyloPic under the license: Creative
419 Commons — Attribution 3.0 Unported — CC BY 3.0. Finally, we acknowledge the assistance given by
420 Research IT and the use of the Computational Shared Facility at The University of Manchester.

421

422 **Competing Interests**

423 We declare no competing interests.

424

425 **Funding**

426 This work was supported by the Biotechnology and Biological Sciences Research Council Doctoral
427 Training Studentship to D.M.R, the Higher Education Innovation Fund through the University of
428 Manchester's Knowledge and Innovation Hub for Environmental Stability to H.A.S, and the pump
429 priming fund through the University of Manchester's Cardiovascular Division awarded to H.A.S, A.S,
430 and P.C.

431 **Author Contributions**

432 D.M.R co-ordinated the experiments, analysed the data, and drafted the manuscript. T.G contributed
433 to the code and analytical method development. S.A.H and A.V performed the microsatellite analysis,
434 and S.A.H identified the individual animals. B.G and T.M supplied *Scyliorhinus canicula* eggs. H.A.S,
435 P.C, and A.S conceived the study, secured funding, and reviewed and revised the manuscript. All
436 authors contributed to the manuscript and gave their approval for publication.

437 **Data Availability**

438 Data are available through NCBI's Gene Expression Omnibus (GEO, Edgar et al., 2002) at the GEO
439 accession number GSE189976.

440

441 **References**

442 Anastasiadi, D., Diaz, N. & Piferrer, F. (2017). 'Small ocean temperature increases elicit stage-
443 dependent changes in DNA methylation and gene expression in a fish, the European sea
444 bass', *Scientific Reports*, 7.

445 Anastasiadi, D., Shao, C. W., Chen, S. L. & Piferrer, F. (2021). 'Footprints of global change in marine
446 life: Inferring past environment based on DNA methylation and gene expression
447 marks', *Molecular Ecology*, 30(3), pp. 747-760.

448 Banerji, C. R. S., Miranda-Saavedra, D., Severini, S., Widschwendter, M., Enver, T., Zhou, J. X. &
449 Teschendorff, A. E. (2013). 'Cellular network entropy as the energy potential in Waddington's
450 differentiation landscape', *Scientific Reports*, 3.

451 Bates, D., Machler, M., Bolker, B. M. & Walker, S. C. (2015). 'Fitting Linear Mixed-Effects Models
452 Using lme4', *Journal of Statistical Software*, 67(1), pp. 1-48.

453 Bateson, P., Gluckman, P. & Hanson, M. (2014). 'The biology of developmental plasticity and the
454 Predictive Adaptive Response hypothesis', *Journal of Physiology-London*, 592(11), pp. 2357-
455 2368.

456 Beaman, J. E., White, C. R. & Seebacher, F. (2016). 'Evolution of Plasticity: Mechanistic Link
457 between Development and Reversible Acclimation', *Trends in Ecology & Evolution*, 31(3),
458 pp. 237-249.

459 Benjamins, S., Cole, G., Naylor, A., Thorburn, J. A. & Dodd, J. (2021). 'First confirmed complete
460 incubation of a flapper skate (*Dipturus intermedius*) egg in captivity', *Journal of Fish Biology*.

461 Bolger, A. M., Lohse, M. & Usadel, B. (2014). 'Trimmomatic: a flexible trimmer for Illumina sequence
462 data', *Bioinformatics*, 30(15), pp. 2114-2120.

463 Boyes, J. & Bird, A. (1991). 'Dna methylation inhibits transcription indirectly via a methyl-cpg binding-
464 protein', *Cell*, 64(6), pp. 1123-1134.

465 Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. (2016). 'Near-optimal probabilistic RNA-seq
466 quantification', *Nature Biotechnology*, 34(5), pp. 525-527.

467

468 Cai OR, Poloczanska ES, Brewer PG, Sundby S, Hilmi K, Fabry VJ, Jung S (2014) The ocean in
469 climate: change 2014: impacts, adaptation, and vulnerability. Part B: regional aspects. In VR
470 Barros, CB Field, DJ Dokken, MD Mastrandrea, KJ Mach, TE Bilir, M Chatterjee, KL Ebi, YO
471 Estrada, RC Genova *et al.*, eds, Contribution of Working Group II to the Fifth Assessment
472 Report of the Intergovernmental Panel on Climate Change. Cambridge University Press,
473 Cambridge, United Kingdom and New York, NY, USA, pp. 1655–1731

474 Edgar, R., Domrachev, M. & Lash, A. E. (2002). 'Gene expression omnibus: Ncbi gene expression
475 and hybridization array data repository' *Nucleic Acids Research*, 30 (1), pp. 207-210. DOI:
476 10.1093/nar/30.1.207 Available at: <Go to ISI>://WOS:000173077100055

477 Fellous, A., Favrel, P. & Riviere, G. (2015). 'Temperature influences histone methylation and mRNA
478 expression of the Jmj-C histone-demethylase orthologues during the early development of
479 the oyster *Crassostrea gigas*', *Marine Genomics*, 19, pp. 23-30.

480 Galli, G. L. J., Ruhr, I. M., Crossley, J. & Crossley, D. A. (2021). 'The Long-Term Effects of
481 Developmental Hypoxia on Cardiac Mitochondrial Function in Snapping Turtles', *Frontiers in
482 Physiology*, 12.

483 Geurden, I., Mennigen, J., Plagnes-Juan, E., Veron, V., Cerezo, T., Mazurais, D., Zambonino-
484 Infante, J., Gatesoupe, J., Skiba-Cassy, S. & Panserat, S. (2014). 'High or low dietary
485 carbohydrate: protein ratios during first-feeding affect glucose metabolism and intestinal
486 microbiota in juvenile rainbow trout', *Journal of Experimental Biology*, 217(19), pp. 3396-
487 3406.

488 Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., Adiconis, X., Fan,
489 L., Raychowdhury, R., Zeng, Q. D., Chen, Z. H., Mauceli, E., Hacohen, N., Gnrke, A., Rhind,
490 N., di Palma, F., Birren, B. W., Nusbaum, C., Lindblad-Toh, K., Friedman, N. & Regev, A.
491 (2011). 'Full-length transcriptome assembly from RNA-Seq data without a reference
492 genome', *Nature Biotechnology*, 29(7), pp. 644-U130.

493 Griffiths, A. M., Casane, D., McHugh, M., Wearmouth, V. J., Sims, D. W. & Genner, M. J. (2011).
494 'Characterisation of polymorphic microsatellite loci in the small-spotted catshark (*Scyliorhinus
495 canicula* L.)', *Conservation Genetics Resources*, 3(4), pp. 705-709.

496

497 Gunderson AR, Fargevieille A, Warner DA. 2020 Egg incubation temperature does not influence adult
498 heat tolerance in the lizard *Anolis sagrei*. *Biol. Lett.* 16: 20190716.
499 <http://dx.doi.org/10.1098/rsbl.2019.0716>

500 Haas, B. J., Papanicolaou, A., Yassour, M., Grabherr, M., Blood, P. D., Bowden, J., Couger, M. B.,
501 Eccles, D., Li, B., Lieber, M., MacManes, M. D., Ott, M., Orvis, J., Pochet, N., Strozzi, F.,
502 Weeks, N., Westerman, R., William, T., Dewey, C. N., Henschel, R., Leduc, R. D., Friedman,
503 N. & Regev, A. (2013). 'De novo transcript sequence reconstruction from RNA-seq using the
504 Trinity platform for reference generation and analysis', *Nature Protocols*, 8(8), pp. 1494-
505 1512.

506 Healy, T. M., Bock, A. K. & Burton, R. S. (2019). 'Variation in developmental temperature alters
507 adulthood plasticity of thermal tolerance in *Tigriopus californicus*', *Journal of Experimental
508 Biology*, 222(22).

509 Hellgren, K. T., Premanandhan, H., Quinn, C. J., Trafford, A. W. & Galli, G. L. J. (2021). 'Sex-
510 dependent effects of developmental hypoxia on cardiac mitochondria from adult murine
511 offspring', *Free Radical Biology and Medicine*, 162, pp. 490-499.

512 Hook, S. A., McMurray, C., Ripley, D. M., Allen, N., Moritz, T., Grunow, B. & Shiels, H. A. (2019).
513 'Recognition software successfully aids the identification of individual small-spotted
514 catsharks *Scyliorhinus canicula* during their first year of life', *Journal of Fish Biology*, 95(6),
515 pp. 1465-1470.

516 Huang, D. W., Sherman, B. T. & Lempicki, R. A. (2009a). 'Bioinformatics enrichment tools: paths
517 toward the comprehensive functional analysis of large gene lists', *Nucleic Acids
518 Research*, 37(1), pp. 1-13.

519 Huang, D. W., Sherman, B. T. & Lempicki, R. A. (2009b). 'Systematic and integrative analysis of
520 large gene lists using DAVID bioinformatics resources', *Nature Protocols*, 4(1), pp. 44-57.

521 Hume, J. B. (2019). 'Higher temperatures increase developmental rate & reduce body size at
522 hatching in the small-eyed skate *Raja microocellata*: implications for exploitation of an
523 elasmobranch in warming seas', *Journal of Fish Biology*, 95(2), pp. 655-658.

524

525 IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the
526 Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-
527 Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L.
528 Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T.
529 Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press. In Press.

530 Klose, R. J. & Bird, A. P. (2006). 'Genomic DNA methylation: the mark and its mediators', *Trends in
531 Biochemical Sciences*, 31(2), pp. 89-97.

532 Kopylova, E., Noe, L. & Touzet, H. (2012). 'SortMeRNA: fast and accurate filtering of ribosomal
533 RNAs in metatranscriptomic data', *Bioinformatics*, 28(24), pp. 3211-3217.

534 Langmead, B. & Salzberg, S. L. (2012). 'Fast gapped-read alignment with Bowtie 2', *Nature
535 Methods*, 9(4), pp. 357-U54.

536 Lesnoff, M., Lancelot, R. (2012). *aod: Analysis of Overdispersed Data*. R package version 1.3.2.

537 Liu, J. W., Dias, K., Plagnes-Juan, E., Veron, V., Panserat, S. & Marandel, L. (2017). Long-term
538 programming effect of embryonic hypoxia exposure and high-carbohydrate diet at first feeding
539 on glucose metabolism in juvenile rainbow trout. *Journal of Experimental Biology*, 220(20),
540 3686-3694.

541 Loughland, I., Little, A. & Seebacher, F. (2021). 'DNA methyltransferase 3a mediates developmental
542 thermal plasticity', *Bmc Biology*, 19(1).

543 Lui, J. C., Chen, W. P., Barnes, K. M. & Baron, J. (2010). 'Changes in gene expression associated
544 with aging commonly originate during juvenile growth', *Mechanisms of Ageing and
545 Development*, 131(10), pp. 641-649.

546 Lui, J. C., Finkielstain, G. P., Barnes, K. M. & Baron, J. (2008). 'An imprinted gene network that
547 controls mammalian somatic growth is down-regulated during postnatal growth deceleration
548 in multiple organs', *American Journal of Physiology-Regulatory Integrative and Comparative
549 Physiology*, 295(1), pp. R189-R196.

550

551 Marshall, T. C., Slate, J., Kruuk, L. E. B. & Pemberton, J. M. (1998). 'Statistical confidence for
552 likelihood-based paternity inference in natural populations', *Molecular Ecology*, 7(5), pp. 639-
553 655.

554 McCarthy, D. J., Chen, Y. S. & Smyth, G. K. (2012). 'Differential expression analysis of multifactor
555 RNA-Seq experiments with respect to biological variation', *Nucleic Acids Research*, 40(10),
556 pp. 4288-4297.

557 McElreath, R. (2018). "Statistical Rethinking : A Bayesian Course with Examples in R and Stan,"
558 *Statistical Rethinking: A Bayesian Course with Examples in R and Stan*, pp. 1-469.

559 McLaughlin, R. H. & Ogower, A. K. (1971). 'Life-history and underwater studies of a heterodont
560 shark', *Ecological Monographs*, 41(4), pp. 271.

561 McKinnon, J. S. & Rundle, H. D. (2002). 'Speciation in nature: The threespine stickleback model
562 systems' *Trends in Ecology & Evolution*, 17 (10), pp. 480-488.

563 Metzger, D. C. H. & Schulte, P. M. (2017). 'Persistent and plastic effects of temperature on DNA
564 methylation across the genome of threespine stickleback (*Gasterosteus*
565 *aculeatus*)', *Proceedings of the Royal Society B-Biological Sciences*, 284(1864).

566 Metzger, D. C. H. & Schulte, P. M. (2018). 'Similarities in temperature-dependent gene expression
567 plasticity across timescales in threespine stickleback (*Gasterosteus aculeatus*)', *Molecular
568 Ecology*, 27(10), pp. 2381-2396.

569 Mortensen, A. & Damsgard, B. (1993). 'Compensatory growth and weight segregation following light
570 and temperature manipulation of juvenile atlantic salmon (*Salmo-salar*) and arctic charr
571 (*Salvelinus-alpinus*)', *Aquaculture*, 114(3-4), pp. 261-272.

572 Musa, S. M., Czachur, M. V. & Shiels, H. A. (2018). 'Oviparous elasmobranch development inside
573 the egg case in 7 key stages', *Plos One*, 13(11).

574 Musa, S. M., Ripley, D. M., Moritz, T. & Shiels, H. A. (2020). 'Ocean warming and hypoxia affect
575 embryonic growth, fitness and survival of small-spotted catsharks, *Scyliorhinus*
576 *canicula*', *Journal of Fish Biology*, 97(1), pp. 257-264.

577 Oliver, E. C. J., Donat, M. G., Burrows, M. T., Moore, P. J., Smale, D. A., Alexander, L. V.,
578 Benthuysen, J. A., Feng, M., Sen Gupta, A., Hobday, A. J., Holbrook, N. J., Perkins-
579 Kirkpatrick, S. E., Scannell, H. A., Straub, S. C. & Wernberg, T. (2018). 'Longer and more
580 frequent marine heatwaves over the past century', *Nature Communications*, 9.

581 Pegado, M. R., Santos, C. P., Raffoul, D., Konieczna, M., Sampaio, E., Maulvault, A. L., Diniz, M. &
582 Rosa, R. (2020). 'Impact of a simulated marine heatwave in the hematological profile of a
583 temperate shark (*Scyliorhinus canicula*)', *Ecological Indicators*, 114.

584 Portner, H. O. & Knust, R. (2007). 'Climate change affects marine fishes through the oxygen
585 limitation of thermal tolerance' *Science*, 315 (5808), pp. 95-97.

586

587 R Core Team (2019). R: A language and environment for statistical computing. R Foundation for
588 Statistical Computing, Vienna, Austria. URL <https://www.R-project.org/>.

589 Radford, E. J. (2018). 'Exploring the extent and scope of epigenetic inheritance', *Nature Reviews
590 Endocrinology*, 14(6), pp. 345-355.

591 Ripley, D. M., et al. (2021). 'Ocean warming impairs the predator avoidance behaviour of
592 elasmobranch embryos' *Conservation Physiology*, 9 pp. 1-7.

593 Robinson, M. D., McCarthy, D. J. & Smyth, G. K. (2010). 'edgeR: a Bioconductor package for
594 differential expression analysis of digital gene expression data', *Bioinformatics*, 26(1), pp.
595 139-140.

596 Rohart, F., Gautier, B., Singh, A. & Le Cao, K. A. (2017). 'mixOmics: An R package for 'omics feature
597 selection and multiple data integration', *Plos Computational Biology*, 13(11).

598 Rosa, R., Baptista, M., Lopes, V. M., Pegado, M. R., Paula, J. R., Trubenbach, K., Leal, M. C.,
599 Calado, R. & Repolho, T. (2014). 'Early-life exposure to climate change impairs tropical shark
600 survival', *Proceedings of the Royal Society B-Biological Sciences*, 281(1793).

601 Ruhr, I. M., McCourt, H., Bajjig, A., Crossley, D. A., Shiels, H. A. & Galli, G. L. J. (2019).
602 'Developmental plasticity of cardiac anoxia-tolerance in juvenile common snapping turtles
603 (*Chelydra serpentina*)', *Proceedings of the Royal Society B-Biological Sciences*, 286(1905).

604 Sanchez, A. (2019). 'Defining higher-order interactions in synthetic ecology: Lessons from physics
605 and quantitative genetics' *Cell Systems*, 9 (6), pp. 519-520.

606 Santos, M. A., Carromeu-Santos, A., Quina, A. S., Santos, M., Matos, M. & Simoes, P. (2021). 'High
607 developmental temperature leads to low reproduction despite adult temperature', *Journal of
608 Thermal Biology*, 95.

609 Schaefer, J. & Ryan, A. (2006). 'Developmental plasticity in the thermal tolerance of zebrafish *Danio
610 rerio*', *Journal of Fish Biology*, 69(3), pp. 722-734.

611 Schmieder, R. & Edwards, R. (2011). 'Fast Identification and Removal of Sequence Contamination
612 from Genomic and Metagenomic Datasets', *Plos One*, 6(3).

613 Schnurr, M. E., Yin, Y. & Scott, G. R. (2014). 'Temperature during embryonic development has
614 persistent effects on metabolic enzymes in the muscle of zebrafish', *Journal of Experimental
615 Biology*, 217(8), pp. 1370-1380.

616 Schratz, P. (2020). package 'oddsratio'.

617 Scott, G. R. & Johnston, I. A. (2012). 'Temperature during embryonic development has persistent
618 effects on thermal acclimation capacity in zebrafish', *Proceedings of the National Academy
619 of Sciences of the United States of America*, 109(35), pp. 14247-14252.

620 Seebacher, F., Beaman, J. & Little, A. G. (2014). 'Regulation of thermal acclimation varies between
621 generations of the short-lived mosquitofish that developed in different environmental
622 conditions', *Functional Ecology*, 28(1), pp. 137-148.

623 Simao, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. (2015). 'BUSCO:
624 assessing genome assembly and annotation completeness with single-copy
625 orthologs', *Bioinformatics*, 31(19), pp. 3210-3212.

626 So, C. K. J. & Schwanz, L. E. (2018). 'Thermal plasticity due to parental and early-life environments
627 in the jacky dragon (*Amphibolurus muricatus*)', *Journal of Experimental Zoology Part a-
628 Ecological and Integrative Physiology*, 329(6-7), pp. 308-316.

629 Stevens, A., Hanson, D., Whatmore, A., Destenaves, B., Chatelain, P. & Clayton, P. (2013). 'Human
630 growth is associated with distinct patterns of gene expression in evolutionarily conserved
631 networks', *Bmc Genomics*, 14.

632 Teschendorff, A. E. & Enver, T. (2017). 'Single-cell entropy for accurate estimation of differentiation
633 potency from a cell's transcriptome', *Nature Communications*, 8.

634 Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M. & Shipley, P. (2004). 'MICRO-CHECKER:
635 software for identifying and correcting genotyping errors in microsatellite data', *Molecular
636 Ecology Notes*, 4(3), pp. 535-538.

637

638 Venables, W. N. & Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth Edition. Springer,
639 New York. ISBN 0-387-95457-0

640 Watt, F. & Molloy, P. L. (1988). 'Cytosine methylation prevents binding to dna of a hela-cell
641 transcription factor required for optimal expression of the adenovirus major late
642 promoter', *Genes & Development*, 2(9), pp. 1136-1143.

643 Willot, Q., Ben, L. & Terblanche, J. S. (2021). 'Interactions between developmental and adult
644 acclimation have distinct consequences for heat tolerance and heat stress recovery', *Journal
645 of Experimental Biology*, 224(16).

646

647 Won, E .T., Borski, R. J. (2013). 'Endocrine regulation of compensatory growth in fish', *Front in
648 Endocrinology*, 4(74).

649 Zhang, J. T. D., Hatje, K., Sturm, G., Broger, C., Ebeling, M., Burtin, M., Terzi, F., Pomposiello, S. I.
650 & Badi, L. (2017). 'Detect tissue heterogeneity in gene expression data with BioQC', *Bmc
651 Genomics*, 18.

652 Zhu, Z. Y., Surujon, D., Ortiz-Marquez, J. C., Huo, W. W., Isberg, R. R., Bento, J. & van Opijken, T.
653 (2020). 'Entropy of a bacterial stress response is a generalizable predictor for fitness and
654 antibiotic sensitivity', *Nature Communications*, 11(1).

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

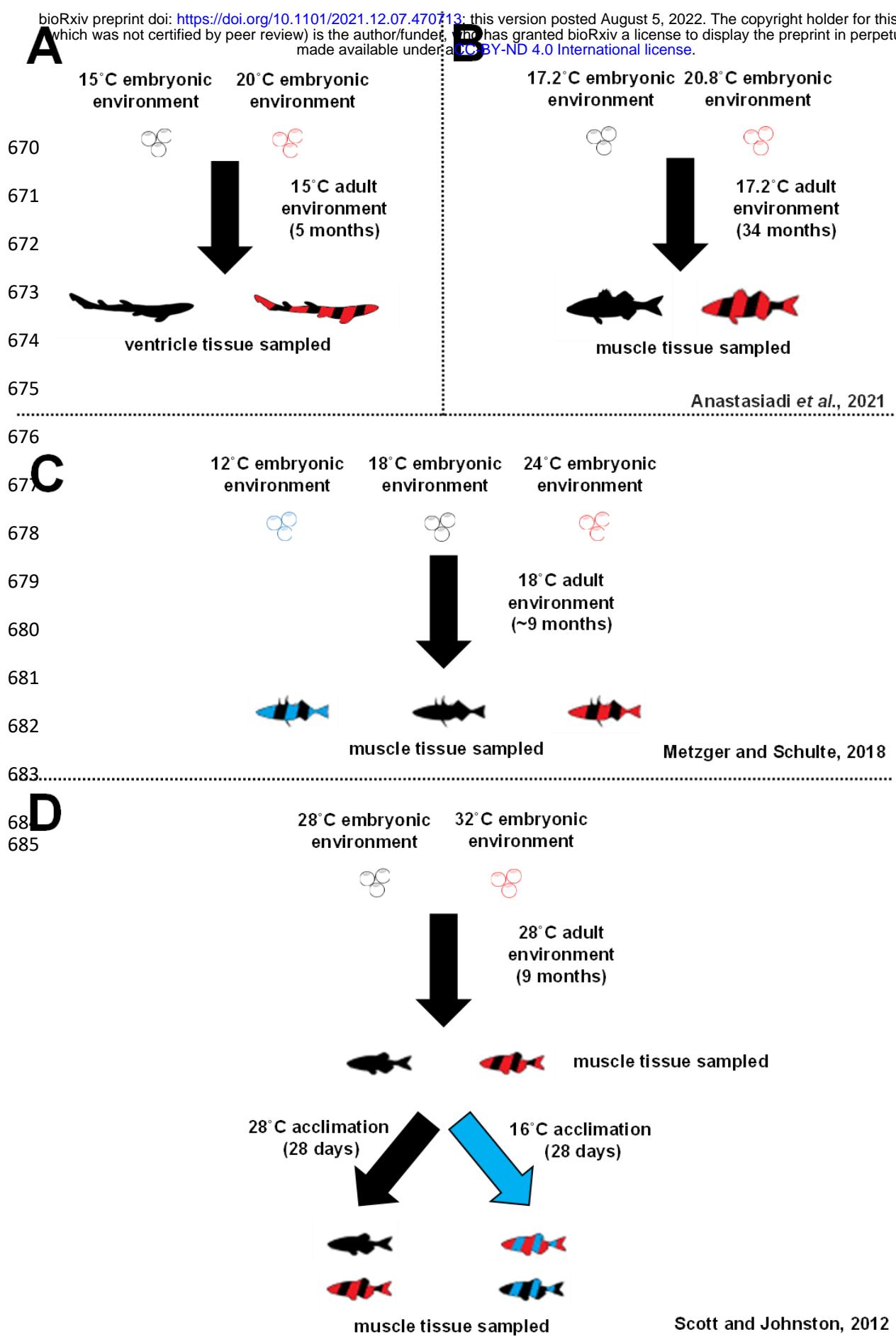
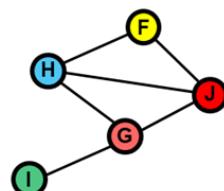


Figure 1: An overview of the experimental design for the RNA-seq data collected from **A**) *Scyliorhinus canicula*, and data re-analysed from **B**) *Dicentrarchus labrax* (Anastasiadi et al., 2021), **C**) *Gasterosteus aculeatus* (Metzger and Schulte, 2018), and **D**) *Danio rerio* (Scott and Johnston, 2012).

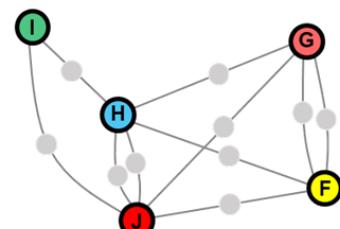
TABLE 1 Experimental details and transcriptome assembly statistics for *Scyliorhinus canicula*, *Danio rerio* (Scott and Johnston 2012), *Dicentrarchus labrax* (Anastasiadi *et al.*, 2021) and *Gasterosteus aculeatus* (Metzger and Schulte, 2017).

Parameter	Species			
	<i>Scyliorhinus canicula</i>	<i>Danio rerio</i>	<i>Dicentrarchus labrax</i>	<i>Gasterosteus aculeatus</i>
time since exposure	4-5 months	8-9 months	34 months	~9 months
developmental temperatures	15°C and 20°C	27°C and 32°C	17.2°C and 20.8°C	12°C, 18°C and 24°C
exposure period	until hatching (~15 weeks)	until hatching (~3 days)	6-63dpf (57 days)	until hatching (5-23 days)
life stage at sampling	juvenile	adult	adult	adult
tissue sampled	ventricle	hypaxial fast muscle	muscle	muscle
N50	1422	916	1601	459
median contig length	363	325	428	338
686				
687				
688				
689				
690				
691				
692				
693				
694				
695				
696				
697				
698				
699				
700				
701				
702				
703				


A

Pairwise Interaction Networks

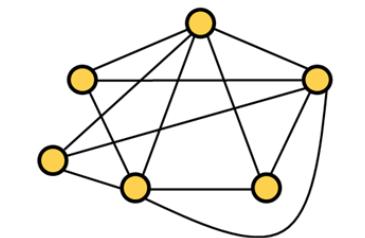
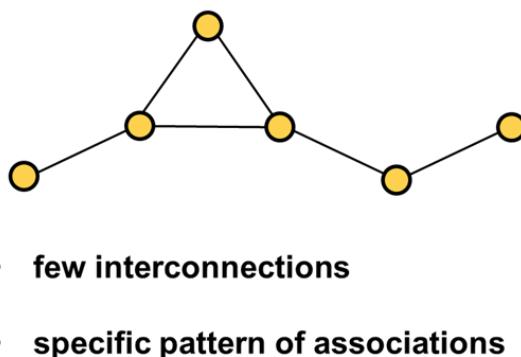
B


Higher Order Interaction Networks

704
705
706
707
708
709
710
711
712
713
714
715

	F	G	H	I	J
F	1	0	1	0	1
G	0	1	1	1	1
H	1	1	1	0	1
I	0	1	0	1	0
J	1	1	1	0	1

Peripheral genes

	F	G	H	I	J
F	2	2	1	0	1
G	2	3	1	0	1
H	1	1	3	1	2
I	0	0	1	1	1
J	1	1	2	1	3

C

Low Entropy Network

High Entropy Network

720
721
722
723
724
725
726
727
728
729
730

Figure 2: An example **A**) pairwise gene interaction network. Correlations between pairs of focal genes are shown by a solid black line, and denoted by a 1 in the associated matrix. Pairwise gene network entropy is calculated from the pairwise interaction matrix and represents the networks' information content (complexity). **B**) an example higher order interaction network. Focal genes (the two being assessed for their interaction) are associated via their shared connections to peripheral (not in the focal network) genes, denoted by the grey lines. An interaction between two focal genes can occur via one (gene H – gene I) or multiple (gene I – gene J) shared connections to the peripheral genes. The adjacency matrix denotes the number of shared connections to peripheral genes each pair of focal genes has. Higher order network entropy is calculated from this adjacency matrix and represents the networks' information content (complexity). **C**) an example low and high entropy network.

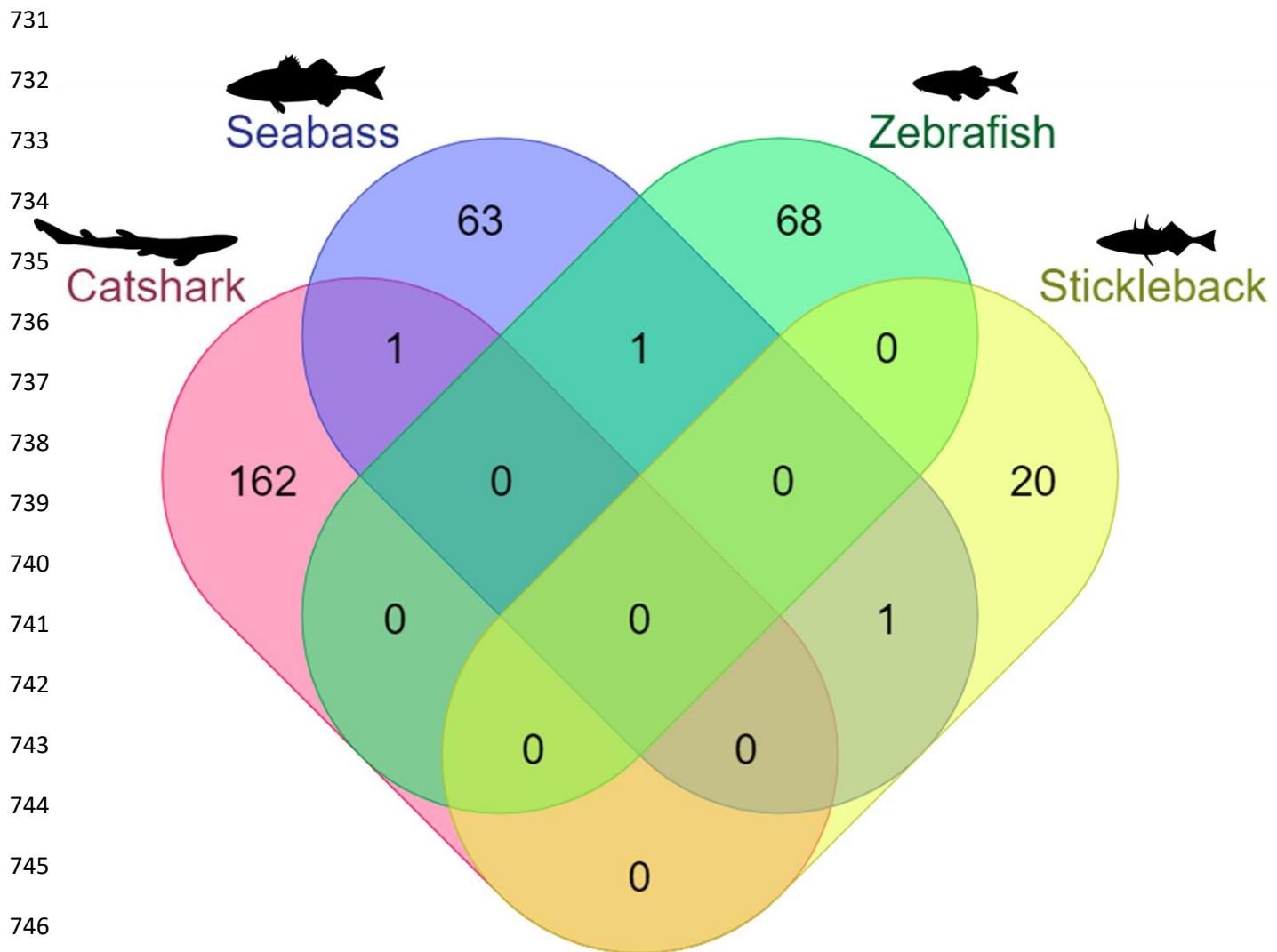
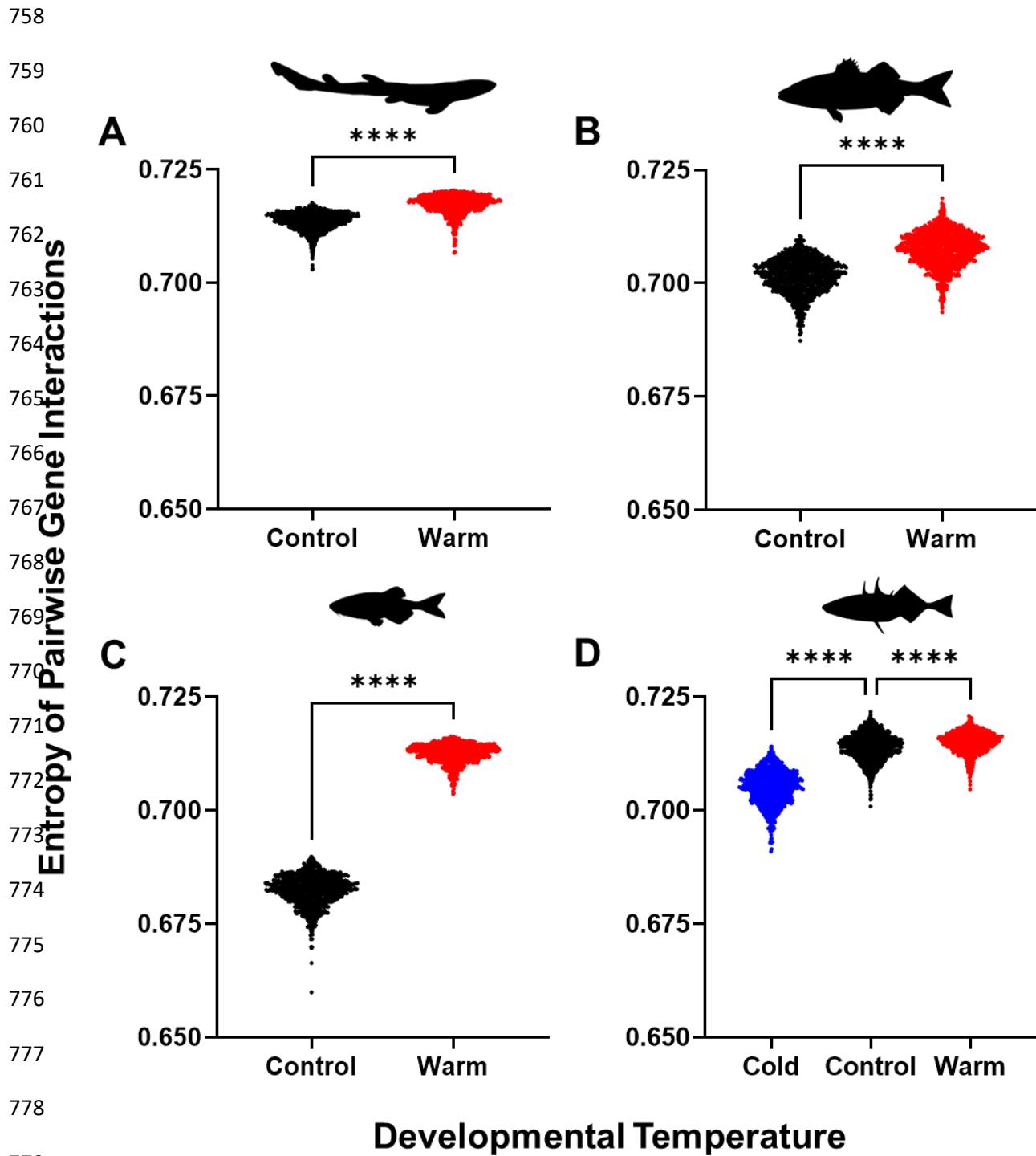



Figure 3: Overlap of genes in *Scyliorhinus canicula* (red), *Dicentrarchus labrax* (blue), *Danio rerio* (green), and *Gasterosteus aculeatus* (yellow) that are differentially expressed (FDR < 0.05) in later-life due to an increased embryonic temperature. *D. labrax*, *D. rerio*, and *G. aculeatus* data are re-analysed from Anastasiadi *et al.*, 2021, Scott and Johnston 2012, and Metzger and Schulte 2017 respectively.

Developmental Temperature

Figure 4: Entropy of pairwise gene interaction networks in **A) Scyliorhinus canicula**, **B) Dicentrarchus labrax**, **C) Danio rerio**, and **D) Gasterosteus aculeatus** that underwent embryogenesis at different temperatures. *Scyliorhinus canicula*; Wilcoxon test, $p < 0.0001$, $N = 3$ per group. *Dicentrarchus labrax*; Wilcoxon test, $p < 0.0001$, $N = 5$ per group. *Danio rerio*; Wilcoxon test, $p < 0.0001$, $N = 4$ per group. *Gasterosteus aculeatus*; Kruskal-wallis test and Dunn's multiple comparisons test, $p < 0.0001$ (cold vs. control) and $p < 0.0001$ (warm vs. control), $N = 6$ per group. *D. labrax*, *D. rerio*, and *G. aculeatus* data are re-analysed from Anastasiadi *et al.*, 2021, Scott and Johnston 2012, and Metzger and Schulte 2017 respectively.

Gene Ontology Process

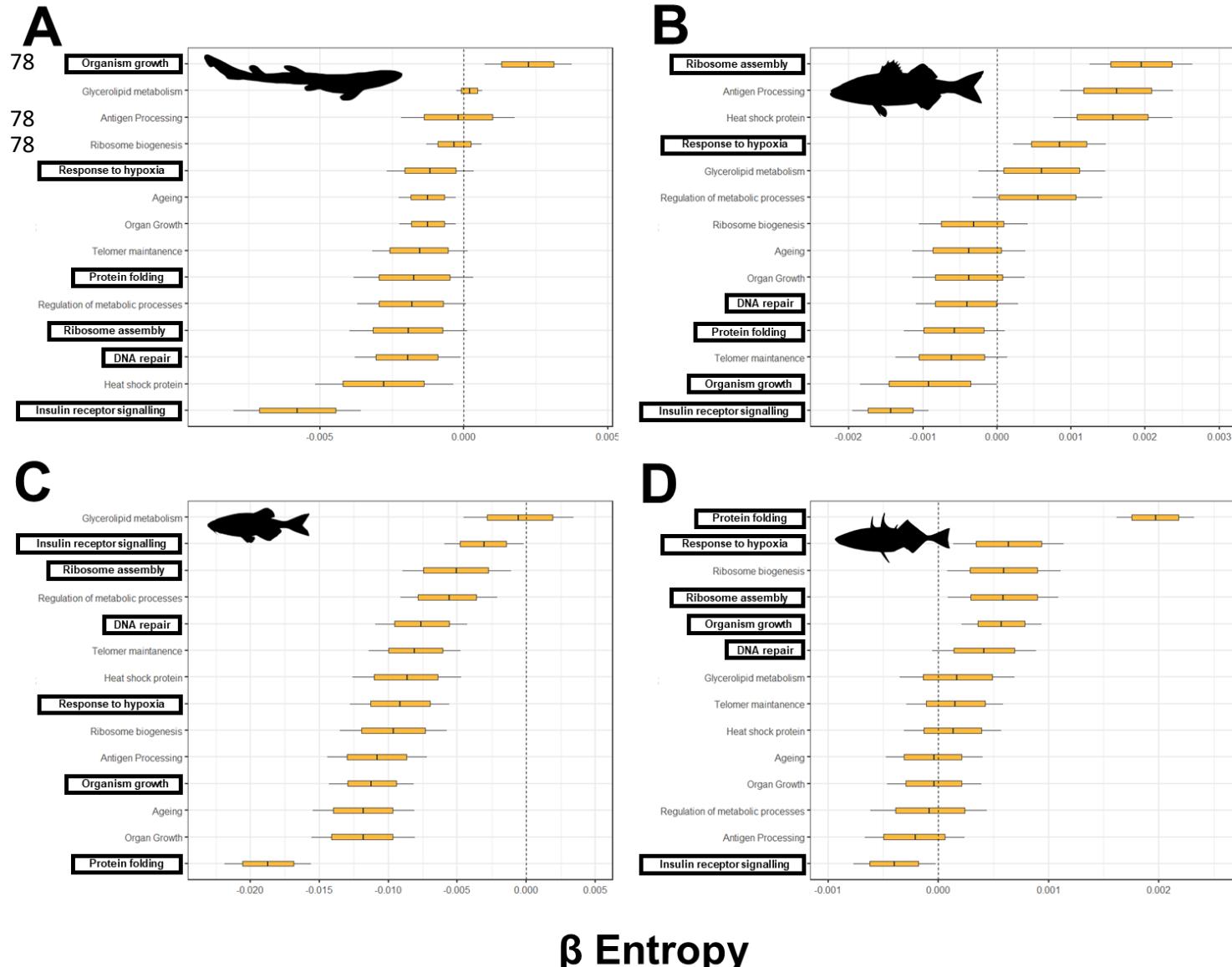


Figure 5: Median and 89% credibility intervals for pairwise network entropy of gene ontology pathways between control and warm incubated **A) *Scyliorhinus canicula*** (N = 3), **B) *Dicentrarchus labrax*** (N = 5), **C) *Danio rerio*** (N = 4), and **D) *Gasterosteus aculeatus*** (N = 6). β entropy represents the difference in entropy between warm and control incubated animals. Pathways that are significantly altered by developmental temperature in all species are highlighted in bold. *D. labrax*, *D. rerio*, and *G. aculeatus* data are re-analysed from Anastasiadi *et al.*, 2021, Scott and Johnston 2012, and Metzger and Schulte 2017 respectively.

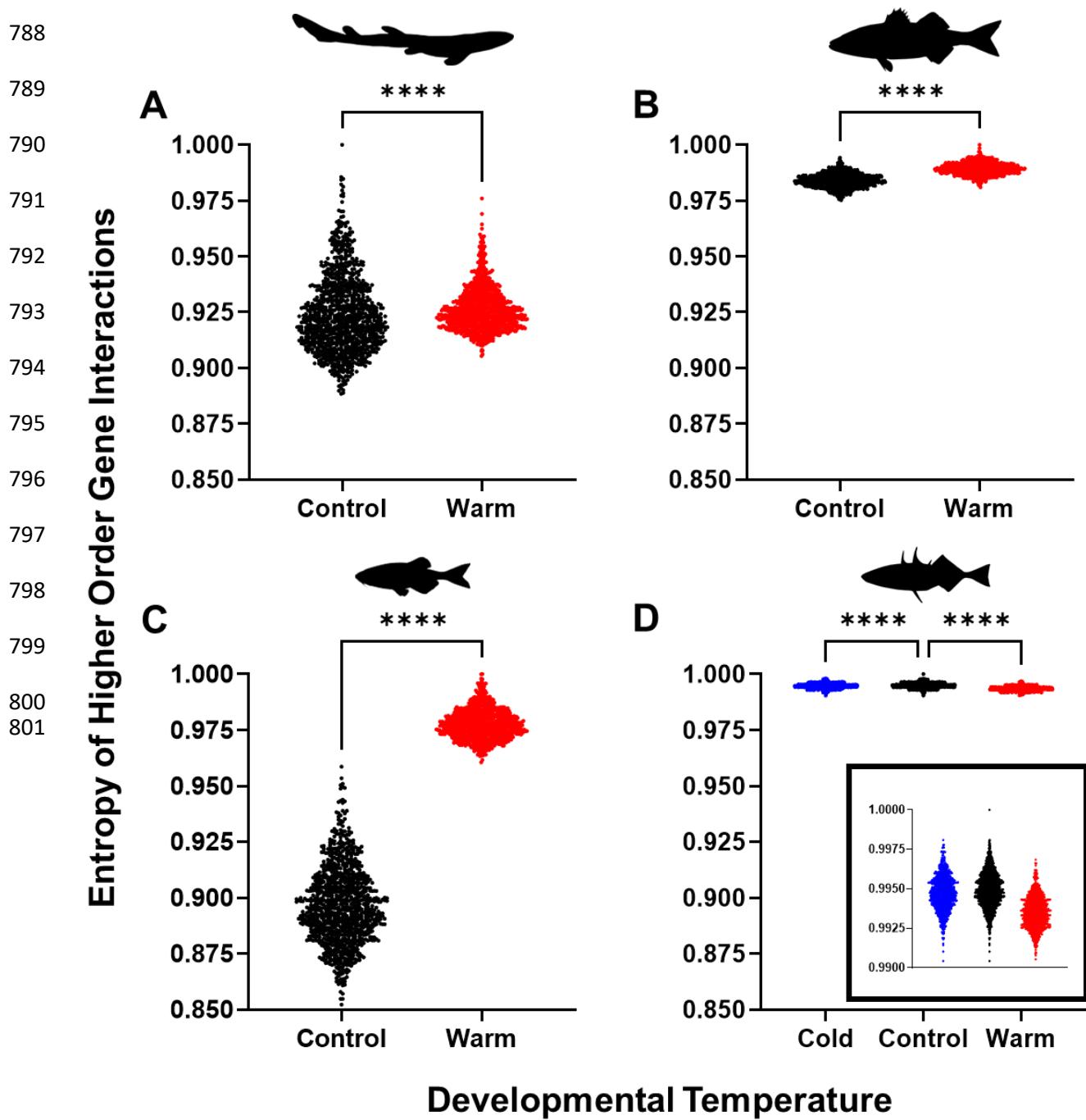
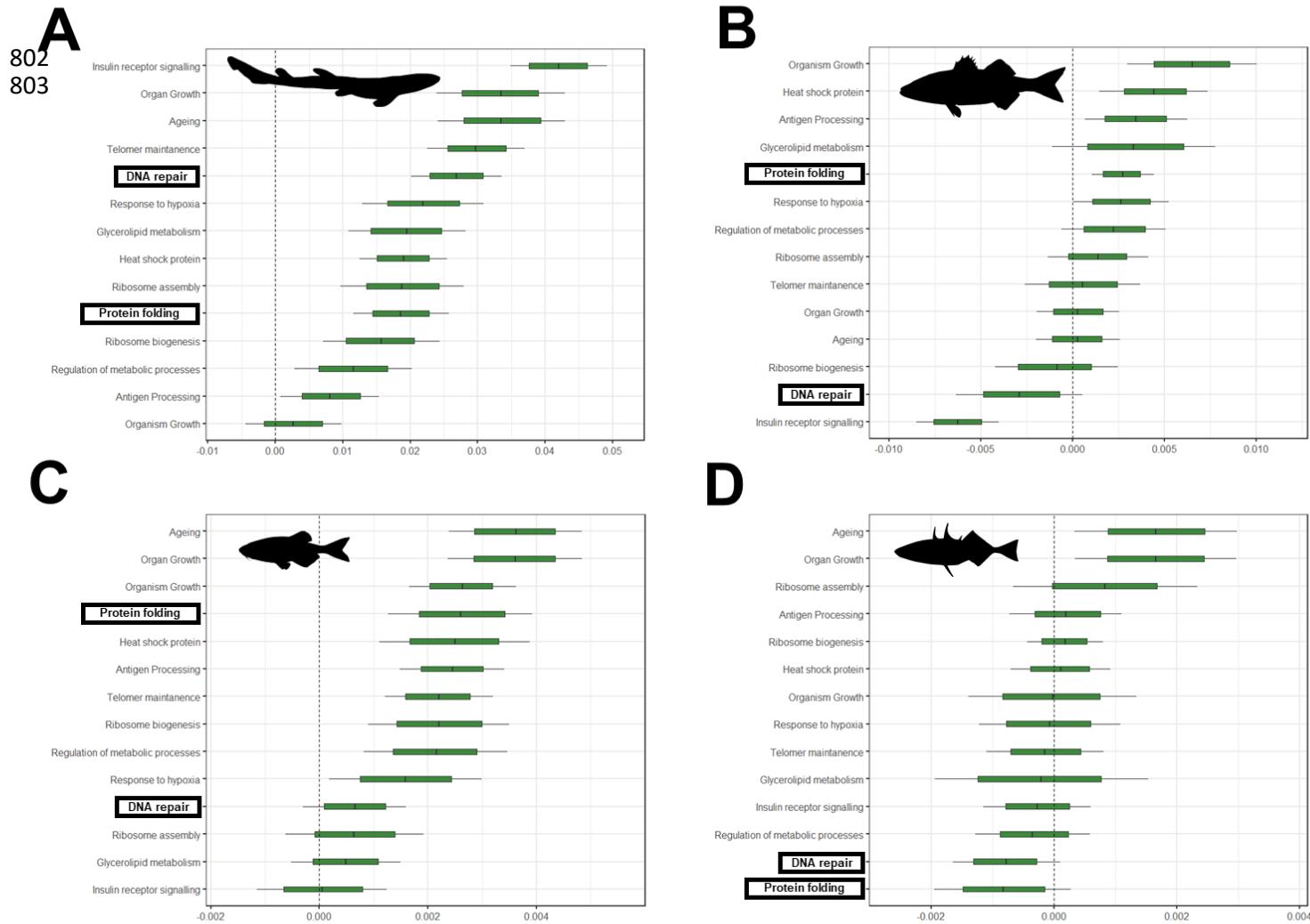
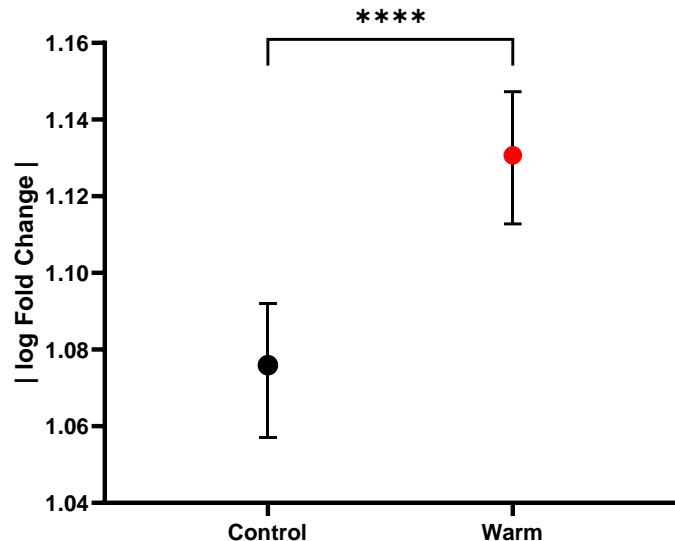
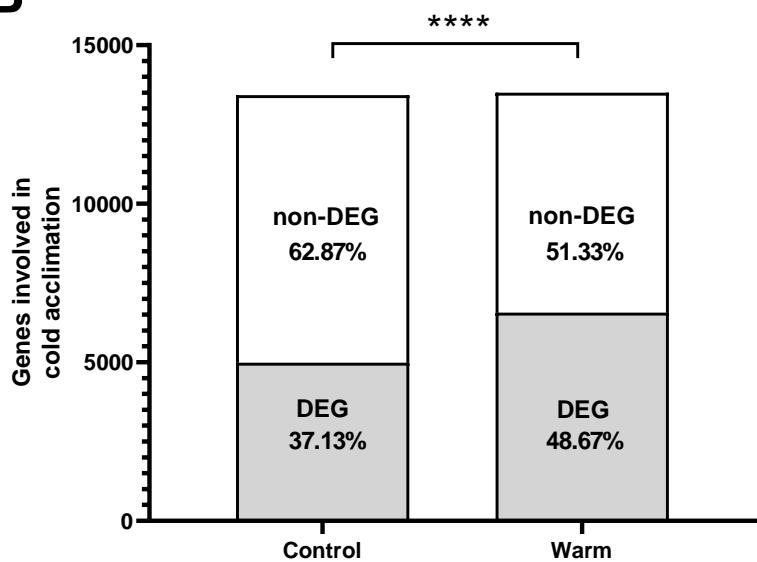



Figure 6: Entropy of higher-order gene interaction networks in **A**) *Scyliorhinus canicula*, **B**) *Dicentrarchus labrax*, **C**) *Danio rerio*, and **D**) *Gasterosteus aculeatus* that underwent embryogenesis at different temperatures. *Scyliorhinus canicula*; Wilcoxon test, $p < 0.0001$, $N = 3$ per group. *Dicentrarchus labrax*; Wilcoxon test, $p < 0.0001$, $N = 5$ per group. *Danio rerio*; Wilcoxon test, $p < 0.0001$, $N = 4$ per group. *Gasterosteus aculeatus*; Kruskal-Wallis test and Dunn's multiple comparisons test, $p < 0.0001$ (cold vs. control) and $p < 0.0001$ (warm vs. control), $N = 6$ per group. *D. labrax*, *D. rerio*, and *G. aculeatus* data are re-analysed from Anastasiadi *et al.*, 2021, Scott and Johnston 2012, and Metzger and Schulte 2017 respectively.

Gene Ontology Process



β Entropy


Figure 7: Median and 89% credibility intervals for hypernetwork entropy of gene ontology pathways between control and warm incubated **A**) *Scyliorhinus canicula* (N = 3), **B**) *Dicentrarchus labrax* (N = 5), **C**) *Danio rerio* (N = 4), and **D**) *Gasterosteus aculeatus* (N = 6). β entropy represents the difference in entropy between warm and control incubated animals. Pathways that are significantly altered by developmental temperature in all species are highlighted in bold. *D. labrax*, *D. rerio*, and *G. aculeatus* data are re-analysed from Anastasiadi *et al.*, 2021, Scott and Johnston 2012, and Metzger and Schulte 2017 respectively.

804

A

B

C

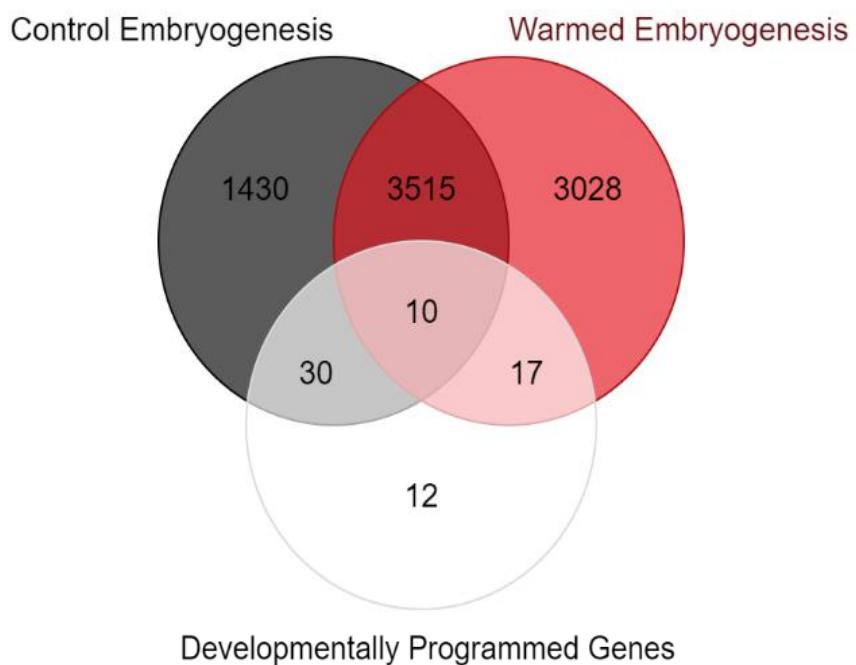


Figure 8: The cold-acclimation response of zebrafish (*Danio rerio*) that underwent embryogenesis in either control or warmed conditions. **A)** median \pm 95% CI of the modulus fold change of the differentially expressed genes (Wilcoxon test, $p < 0.0001$, $N = 4$ per group), **B)** the number and proportion of gene expression changes (Fisher's exact test, $p < 0.0001$, $N = 4$ per group), and **C)** the similarity of gene expression changes between developmental groups (Fisher's exact test, $p < 0.0001$, $N = 4$ per group). *D. rerio* data are re-analysed from Scott and Johnston 2012.