

Host variation in type I interferon signaling genes (*MX1*), *CCR5* Δ 32, and MHC class I alleles in treated HIV+ non-controllers predict viral reservoir size

David A. Siegel¹, Cassandra Thanh⁴, Eunice Wan², Rebecca Hoh¹, Kristen Hobbs⁴, Tony Pan⁴,
Erica A. Gibson⁴, Deanna L. Kroetz³, Peter W. Hunt⁴, Jeffrey Martin⁵, Frederick Hecht¹,
Christopher Pilcher¹, Jeffrey Milush⁴, Maureen Martin⁶, Mary Carrington^{6,7}, Satish Pillai⁸, Michael
P. Busch⁸, Mars Stone⁸, Claire N. Levy⁹, Meei-Li Huang^{10,11}, Pavitra Roychoudhury^{10,11}, Florian
Hladik^{9,11}, Keith R. Jerome^{10,11}, Hans-Peter Kiem^{10,11}, Timothy J. Henrich⁴, Steven G. Deeks^{1*},
and Sulggi Lee^{1#}

¹ Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine, University of California San Francisco, 995 Potrero Avenue, San Francisco, CA 94110, USA. ² Institute of Human Genetics, University of California San Francisco, CA 94143, USA. ³ Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, CA 94158. ⁴ Department of Medicine, Division of Experimental Medicine, University of California San Francisco, CA 94110, USA. ⁵ Department of Biostatistics & Epidemiology, University of California San Francisco, CA 94158, USA. ⁶ Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD and Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD USA. ⁷ Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA. ⁸ Vitalant Blood Bank, San Francisco, CA 94118 USA. ⁹ Department of Obstetrics and Gynecology, University of Washington, WA, 98105 USA. ¹⁰ Department of Laboratory Medicine and Pathology, University of Washington, Seattle WA 98195, USA. ¹¹ Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle WA 98109, USA.

*Co-correspondence: sulgi.lee@ucsf.edu; steven.deeks@ucsf.edu

#Lead contact

26 Word count (Max 3500): 4502

27 **Abstract**

28 **Objective:** Prior genomewide association studies have identified variation in MHC Class I
29 alleles and *CCR5Δ32* as genetic predictors of viral control, especially in “elite” controllers,
30 individuals who remain virally suppressed in the absence of therapy.

31 **Design:** Cross-sectional genomewide association study.

32 **Methods:** We analyzed custom whole exome sequencing and direct HLA typing from 202 ART-
33 suppressed HIV+ non-controllers in relation to four measures of the peripheral CD4+ T cell
34 reservoir: HIV intact DNA, total (t)DNA, unspliced (us)RNA, and RNA/DNA. Linear mixed
35 models were adjusted for potential covariates including age, sex, nadir CD4+ T cell count, pre-
36 ART HIV RNA, timing of ART initiation, and duration of ART suppression.

37 **Results:** Previously reported “protective” host genetic mutations related to viral setpoint (e.g.,
38 among elite controllers) were found to predict smaller HIV reservoir size. The HLA “protective”
39 *B*57:01* was associated with significantly lower HIV usRNA ($q=3.3\times 10^{-3}$), and among the largest
40 subgroup, European ancestry individuals, the *CCR5Δ32* deletion was associated with smaller
41 HIV tDNA ($p=4.3\times 10^{-3}$) and usRNA ($p=8.7\times 10^{-3}$). In addition, genomewide analysis identified
42 several SNPs in *MX1* (an interferon stimulated gene) that were significantly associated with HIV
43 tDNA ($q=0.02$), and the direction of these associations paralleled *MX1* gene eQTL expression.

44 **Conclusions:** We observed a significant association between previously reported “protective”
45 MHC class I alleles and *CCR5Δ32* with the HIV reservoir size in non-controllers. We also found
46 a novel association between *MX1* and HIV total DNA (in addition to other interferon signaling
47 relevant genes, *PPP1CB*, *DDX3X*). These findings warrant further investigation in future
48 validation studies.

49

50 **Abstract (max 250 words):** 247

51 **Keywords:** HIV reservoir, host genetics, type I interferon, MHC class I, CCR5

52

53 **Conflicts:** The authors do not have a commercial or other association that might pose a conflict
54 of interest.

55

56 **Funding:** This work was supported in part by the National Institutes of Health: K23GM112526
57 (SAL), the DARE Collaboratory (U19 AI096109; SGD), the Division of Intramural Research of
58 the National Institutes (MC), UM1 AI126623 (HPK, KRJ), and NIH/NIAID R01A141003 (TJH).
59 This project has been funded in whole or in part with federal funds from the Frederick National
60 Laboratory for Cancer Research, under Contract No. HHSN261200800001E (MC). The content
61 of this publication does not necessarily reflect the views or policies of the Department of Health
62 and Human Services, nor does mention of trade names, commercial products, or organizations
63 imply endorsement by the U.S. Government. This Research was supported in part by the
64 Intramural Research Program of the NIH, Frederick National Lab, Center for Cancer Research
65 (MC). This work was also supported by the amfAR Research Consortium on HIV Eradication
66 a.k.a. ARCHE (108072-50-RGRL; SGD) and a Collaboration for AIDS Vaccine Discovery
67 (CAVD) grant from the Bill & Melinda Gates Foundation (INV-008500), the Reservoir Assay
68 Validation and Evaluation Network (RAVEN) Study Group (MB). The funders had no role in the
69 study design, data collection and analysis, decision to publish, or preparation of the manuscript.

70

71 **Reprints:** Reprint requests can be directed to Dr. Sulgi Lee, the corresponding author (contact
72 information above).

73

74

75

76 **Acknowledgements**

77 The authors wish to acknowledge the participation of all the study participants who contributed
78 to this work as well as the clinical research staff of the SCOPE and Options who made this
79 research possible. All funders had no role in study design, data collection and analysis, decision
80 to publish, or preparation of the manuscript. All authors provided critical feedback in finalizing
81 the report. SAL conceived and designed the study with critical feedback from SGD, PWH, TH,
82 DLK, KRJ, and SP. SGD, JM, FH, CP, RH, and SAL coordinated the collection, management,
83 and quality control processes for the cohort clinical data and SGD, JM, FH, CP, MPB, MS
84 provided biospecimens. SAL and EW performed the whole exome sequencing assays. SAL,
85 CT, JM, KB, TP, EAG performed participant sample processing, SAL and EW performed the
86 whole exome sequencing, and DAS and SAL performed quality control analyses and the
87 genomic association analyses for the study. SAL, CT, and KH performed the qPCR HIV
88 reservoir assays (total DNA, unspliced RNA) in the lab of TH. CNL and MLH performed the
89 ddPCR HIV reservoir assay (intact DNA) in the labs of FH, KRJ, and HPK. PR, DAS, TJH, and
90 SAL analyzed these HIV reservoir data in relation to host genomic and clinical phenotype data.
91 MM and MC performed the HLA typing to determine HLA alleles for the analyses. DAS and SAL
92 wrote the report. All authors provided critical feedback in finalizing the manuscript.

93

94

95 **Introduction**

96 Although antiretroviral therapy (ART) prolongs life, it does not fully restore health, as
97 evidenced by persistently high levels of immune activation^[1] and increased rates of non-AIDS-
98 related mortality^[2] observed in HIV-infected compared to uninfected individuals^[3-6]. Persistent
99 HIV may contribute to ongoing inflammation, immune activation, and subsequent clinical outcomes,
100 even during effective ART^[5-8]. Identifying host genetic predictors of the HIV reservoir in ART-
101 suppressed individuals may shed light on novel (and potentially modifiable) targets to reduce
102 the HIV reservoir and inflammation- and immune activation-associated adverse effects on long-
103 term morbidity and mortality.

104 Most prior host genetic HIV studies have focused on identifying variants associated with
105 viral setpoint, e.g., among “elite controllers”, HIV+ individuals able to maintain viral suppression
106 in the absence of therapy^[9-18]. These studies identified several key single nucleotide
107 polymorphisms (SNPs) in the human Major Histocompatibility Complex (MHC), or human
108 leukocyte antigen (HLA)-B and -C regions as well as deletions in the C-C chemokine receptor
109 type 5 gene (*CCR5Δ32*)^[19-22] and a SNP in the HLA complex 5 (*HCP5*) gene^[10]. However,
110 whether *residual* viral control during *treated* HIV disease – i.e., “the HIV reservoir” – is
111 influenced by the same genetic variants is unknown. We performed custom whole exome
112 sequencing among HIV non-controllers in relation to four measures of the peripheral CD4+ T
113 cell HIV reservoir: cell-associated “intact” DNA^[23], total DNA, unspliced RNA, and RNA/DNA
114 (**Figure S1**). We found that previously reported “protective” HLA-B*57:01^[10, 17] and *CCR5Δ32*^{[20,}
115 ^{21, 24]} mutation were associated with smaller HIV reservoir size. Genomewide analyses
116 demonstrated several novel associations with SNPs in interferon signaling-associated genes
117 (*MX1*, *PPP1CB*, *DDX3X*) and total HIV DNA reservoir size. Gene set enrichment analysis
118 identified several interferon signaling-associated genes to significantly predict intact HIV DNA
119 levels in the largest subgroup, Europeans.

120

121 **Methods**

122 **Study participants**

123 HIV+ non-controllers who initiated ART during chronic (>2 years) or early (<6 months)
124 HIV infection were sampled from the UCSF SCOPE and Options cohorts (**Table S1**). Inclusion
125 criteria were laboratory-confirmed HIV-1 infection, availability of 10×10^6 cryopreserved PBMCs,
126 and plasma HIV RNA levels below the limit of assay quantification (<40 copies/mL) for at least
127 24 months at the time of biospecimen collection. HIV “controllers,” individuals with a history of
128 undetectable viral load in the absence of therapy for at least 1 year prior to the specimen
129 collection date^[25-27], were excluded. The estimated date of detected infection (EDDI) was
130 calculated for each study participant to determine recency of infection in relation to ART start
131 date using detailed clinical HIV diagnostic test results, using the Infection Dating Tool
132 (<https://tools.incidence-estimation.org/idt/>)^[28]. Additional exclusion criteria were potential factors
133 that might influence HIV reservoir quantification, including recent hospitalization, infection
134 requiring antibiotics, vaccination, or exposure to immunomodulatory drugs in the six months
135 prior to sampling timepoint. The research was approved by the UCSF Committee on Human
136 Research (CHR), and all participants provided written informed consent.

137

138 **Custom whole exome host DNA sequencing**

139 Genomic DNA was extracted (AllPrep Universal Kit, Qiagen, Hilden, Germany) from
140 negatively selected CD4+ T cells from cryopreserved PBMCs (StemCell, Vancouver, Canada).
141 Targeted exome capture was performed with custom addition of 50 Mb regulatory regions
142 (Roche NimbleGen, Wilmington, MA), sequencing libraries were generated and then run on the
143 Illumina HiSeq 2000 system (Illumina, San Diego, CA). The custom regions included 50 kb
144 upstream and 50 kb downstream of 442 candidate genes related to cell cycle regulation, HIV

145 host restriction factors, and HIV-host integration, which were selected based on Gene Ontology (GO)
146 Consortium experimental evidence codes (EXP, IDA, IPI, IMP, IGI, IEP) (**Table S2**).
147

148 **HLA typing**

149 Direct HLA typing was performed from extracted genomic DNA following the PCR-SSOP
150 (sequence-specific oligonucleotide probing) typing and PCR-SBT (sequence based typing)
151 protocols recommended by the 13th International Histocompatibility Workshop^[29, 30]. Locus-
152 specific primers were used to amplify a total of 25 polymorphic exons of HLA-A & B (exons 1-4),
153 C (exons 1-5), E (exon 3), DPA1 (exon 2), DPB1 (exons 2-4), DQA1 (exon 1-3), DQB1 (exons
154 2-3), DRB1 (exons 2-3), and DRB3, 4, 5 (exon 2) genes with Fluidigm Access Array (Fluidigm,
155 Singapore) and sequenced on an Illumina MiSeq sequencer (Illumina, San Diego, USA). HLA
156 alleles and genotypes are called using the Omixon HLA Explore (version 2.0.0) software
157 (Omixon, Budapest, Hungary).

158

159 **HIV reservoir quantification from peripheral CD4+ T cells**

160 The HIV reservoir largely consists of “defective” virus that harbors mutations prohibiting
161 the production of infectious virus^[31, 32]. There is currently no “gold standard” for measuring the
162 HIV reservoir. Therefore, we estimated the frequency of HIV “intact” DNA using a ddPCR-based
163 assay to quantify the size of the potentially “replication-competent” reservoir^[23, 33, 34]. We also
164 measured HIV total DNA (quantifies both defective and intact HIV) and unspliced RNA
165 (quantifies full-length HIV RNA) using an HIV-1 LTR-specific quantitative polymerase chain
166 reaction (qPCR) TaqMan assay^[35]. DNA and RNA were simultaneously dual extracted using the
167 AllPrep Universal Kit (Qiagen, Hilden, Germany). HIV tDNA and usRNA were then quantified in
168 triplicate reaction wells using a 7-point standard curve (1–10,000 copies/second). To estimate
169 the frequency of “intact” HIV DNA, five regions on the HIV genome were interrogated in a

170 multiplex ddPCR assay^[23]. Droplet generation and thermocycling were performed according to
171 manufacturer instructions. To determine potentially replication-competent (“intact”) HIV
172 genomes, the number of positive droplets for 3 targets per assay were quantified. Two targets in
173 a housekeeping gene (*RPP30*) were used to quantify all cells, and a target in the T cell receptor
174 D gene (*TRD*) was used to identify all non-T cells, to normalize the HIV copy numbers/10⁶ CD4+
175 T cells. A DNA shearing index (DSI) (using *RPP30*) was then used to calculate the estimated
176 number of intact HIV genomes after correcting for shearing.

177

178 **Data processing and quality control**

179 The bcbio bioinformatics pipeline^[36] was used to perform DNA alignment, which included the
180 Burroughs-Welcome Aligner (BWA) tool^[37] and the GenomeAnalysisToolkit (GATK)
181 HaplotypeCaller joint variant calling method^[38]. Reads were initially mapped to reference
182 genome b37, then transposed to human genome assembly GRCh38 using Picard tools^[39]. SNPs
183 and insertions or deletions (indels) were then filtered by variant quality score recalibration
184 (VQSR) using GATK^[40]. The whole genome data analysis toolset, PLINK^[41], was then used to
185 validate the chromosomal sex of each individual, filter out individuals with excessive
186 heterozygosity, and SNPs violating Hardy-Weinberg equilibrium (HWE) at a p-value
187 threshold of 1x10⁻⁸. The VCFtools suite of functions were then used to summarize data, run
188 calculations, convert data, and filter out data, and convert data, and filter out relevant
189 SNPs^[42].

190 The GENESIS analysis pipeline^[43] was used to analyze the relatedness and ancestries of the
191 individuals in the study. All individuals were determined to be unrelated (kinship estimates
192 <0.05) aside from one pair of siblings, so one sibling was randomly removed from the study. The
193 remaining 199 unrelated individuals had diverse and mixed ancestries (**Figure 1**). We accounted
194 for population stratification in the total population by (1) including a genetic effects term with a

195 genetic relatedness matrix (GRM), (2) by including the first five PCs as covariates in the
196 multivariate models, and by (3) performing sensitivity analyses among the largest subgroup,
197 Europeans.

198

199 **Single SNP common variant analyses**

200 Individual SNP associations were calculated with GENESIS "assocTestSingle". For HIV
201 total DNA, unspliced RNA, RNA/DNA, and intact DNA, respectively, the outcome variables were:
202 $\log_{10}((\text{DNA copies}/10^6 \text{ CD4+ T cells} + \text{offset}))$; $\log_{10}((\text{RNA copies}/10^6 \text{ CD4+ T cells} + \text{offset}))$;
203 $\log_{10}((\text{RNA copies}/10^6 \text{ CD4+ T cells} + \text{offset}) / (\text{DNA copies}/10^6 \text{ CD4+ T cells} + \text{offset}))$;
204 $\log_{10}((\text{Intact DNA copies}/10^6 \text{ CD4+ T cells} + \text{offset}))$. The offsets for RNA and DNA counts
205 were given by the smallest nonzero measured values of RNA and DNA, respectively, to avoid
206 divergences in the logarithm. Final covariates in multivariate models were sex, timing of ART
207 initiation (**Figure S2**), nadir CD4+ T cell count (**Figure S3**), and the first 5 PCs. Pre-ART
208 viral load (**Figure S4**) and duration of ART suppression (**Figure S5**) were not associated
209 with HIV reservoir size nor improved the fit of the final models. A Gaussian link function was
210 used, and a GRM was included with results filtered for SNPs with MAF $\geq 5\%$. SNP
211 annotations were then obtained using Annovar^[44].

212

213 **Gene-based rare variant analyses**

214 Gene level multi-SNP associations were calculated with the GENESIS software package
215 "assocTestAggregate" function implementing the variant Set Mixed Model Association Test
216 (SMMAT)^[45] for alleles with MAF < 5% with weights following the beta distribution parameters of
217 $a_1=1$ and $a_2=25$ ^[46]. The same covariates, GRM, and regression family were used as for the
218 individual SNP associations. Outcomes were quantile-normalized to follow a normal
219 distribution. Gene regions were defined according to UCSC hg38 assembly^[47].

220 Gene set enrichment analyses (GSEA) were performed using the Molecular Signatures
221 Database (MSigDB)^[48, 49]. For all gene set analyses, introns and flanking regions of $\pm 50\text{kb}$ were
222 included in the SMMAT p-value calculations for each gene to account for potential regulatory
223 regions and SNPs with smaller effects. GSEAPreranked was run with default parameters on the
224 SMMAT gene-level $-\log_{10}(P)$.

225

226 **HLA analysis**

227 Multivariate regression models were fit using the python statsmodels OLS function^[50] with
228 covariates for sex, timing of ART initiation, nadir CD4+ T cell count, and 3 genetic PCs.

229

230 **Results**

231 **Study population**

232 A total of 202 HIV-infected ART-suppressed individuals from the UCSF SCOPE and
233 Options HIV+ cohorts were included in the study. Consistent with our San Francisco-based HIV
234 patient population, participants were mostly male (94%) with median age of 46 (**Table S1**).
235 Participants had a median of 5.1 years of ART suppression, a median nadir CD4+ T cell
236 count=341 cells/mm³, and pre-ART HIV RNA=5.1 log₁₀copies/mL. The majority of study
237 participants reported White/European American ethnicity (63%), and the remainder reported
238 Black/African American (12%), Hispanic/Latino (11%), Mixed Ethnicity/Multiracial (6%), Asian
239 (4%), Pacific Islander (1.5%), Native American (<1%), and Middle Eastern (<1%) ethnicities.
240 Most study participants (N=147) had highly detailed clinical test results to be able to calculate
241 their estimated date of detected infection (EDDI), but a subset of 55 study participants only had
242 self-reported data regarding date of ART initiation in relation to date of HIV seroconversion. For
243 these individuals (all of whom initiated ART prior to widespread guidelines for initiating ART at
244 the time of HIV diagnosis^[51]), we mean-imputed values assuming ART initiation starting after 2

245 years from infection. This estimation is supported by prior data from our cohort and others
246 demonstrating that the HIV reservoir size is relatively stable after 2 years of infection^[52-56].
247 Overall results for all final models were unchanged when performing sensitivity analyses
248 excluding those with imputed values for timing of ART initiation.

249

250 **Earlier ART initiation and lower nadir CD4+ T cell count were associated with smaller HIV
251 reservoir, and HIV reservoir measures were correlated with each other**

252 Consistent with prior work^[32, 57, 58], earlier ART initiation was associated with significantly
253 smaller HIV reservoirs (tDNA, usRNA, intact DNA) (**Figure S2**), while lower nadir CD4+ T cell
254 count was associated with larger HIV reservoir (tDNA, usRNA, intact DNA, RNA/DNA) (**Figure
255 S3**). Pre-ART viral load (**Figure S4**) and duration of ART suppression (**Figure S5**) were not
256 associated with HIV reservoir size. Although usRNA was correlated with both tDNA intact DNA
257 (**Figure S6a-b**), tDNA was not associated with intact DNA (**Figure S6c**).

258

259 **HLA “protective” B*57:01 and “risk” C*07 alleles were associated with smaller and larger
260 HIV reservoir sizes, respectively**

261 Using a Benjamini-Hochberg false discovery rate (FDR) adjusted $q<0.05$ threshold^[59], we
262 examined previously reported protective (B*57:01, B*27:05, B*14, C*08:02, B*52, and A*25)
263 and risk (B*35 and C*07) alleles for viral setpoint in untreated HIV+ controllers^[17] and found a
264 “protective” association with HLA-B*57:01 and usRNA ($\beta=-1.5$, $q=3.3\times 10^{-3}$), with a similar trend
265 observed with tDNA ($\beta=-1.6$, $q=0.13$). Similarly, previously reported HLA-C*07 “risk” allele also
266 demonstrated a “risk” trend (larger reservoir size) in our European subgroup (tDNA: $\beta=0.76$,
267 $q=0.072$, and usRNA: $\beta=0.41$, $q=0.10$). Further analyses employing a composite HLA variable
268 did not identify statistically significant associations (**Tables S3-S6**).

269

270 **CCR5Δ32 was associated with smaller HIV reservoir size**

271 Deletions in the C-C chemokine receptor type 5 gene (*CCR5Δ32*) have previously been
272 shown to be associated with HIV viral control in the absence of therapy^[20, 21, 24]. Among
273 individuals of European ancestry (where *CCR5Δ32* is more commonly observed), the presence
274 *CCR5Δ32* was associated with smaller HIV reservoir size (tDNA: $\beta=-1.3$, $p=4.3\times10^{-3}$; usRNA:
275 $\beta=-0.78$, $p=8.7\times10^{-3}$), with a similar trend observed in the total population (tDNA: $\beta=-0.86$,
276 $p=0.045$; usRNA: $\beta=-0.41$, $p=0.12$), In addition, the previously reported long noncoding RNA
277 variant which regulates differential CCR5 expression (rs1015164)^[22], was found to be
278 significantly associated with smaller HIV reservoir size in Europeans (usRNA: $\beta=-0.39$,
279 $p=0.027$), which reached near-statistical significance in the total population as well (usRNA: $\beta=-$
280 0.30 , $p=0.051$),

281

282 **Genomewide association analysis identified several SNPs in *MX1* associated with larger
283 and smaller HIV reservoir sizes, paralleling predicted *MX1* gene expression**

284 A total of 1,279,156 variants from 23,733 genes were included in the final analysis from
285 199 study participants whose sequencing data passed quality control metrics (**Figure S7**). Final
286 models demonstrated lambda genomic inflation factor^[60] values close to 1, supporting adequate
287 adjustment for possible bias due to population stratification (ancestry) (**Figure 2**).

288 The strongest genomewide associations were observed with HIV total DNA reservoir
289 measures (**Tables 1 and S7**). In particular, 44 SNPs in linkage disequilibrium (LD) in the human
290 interferon-inducible myxovirus resistance 1 gene, *MX1*, also known as *MXA*^[61, 62] were significantly
291 associated with tDNA (all $q<0.03$). *MX1* is closely related to *MX2* (*MXB*), which encodes a well-
292 known potent host restriction factor that inhibits HIV-1 infection^[63-65]. We then compared the
293 directionality of the SNP hits with previously reported whole blood eQTL data at these loci^[66-68]
294 and found the *MX1* SNPs associated with larger total HIV DNA reservoir sizes seemed to be in

295 eQTL regions predicting increased *MX1* expression and vice versa (**Table S7**). We also
296 observed two additional SNPs significantly associated with HIV tDNA, the first in
297 *PPP1CB* (encodes Protein Phosphatase 1 Catalytic Subunit Beta, which reduces antiviral
298 potency of MX2 against HIV-1^[65], $q=0.03$) and the second in *LRMP* (encodes Lymphoid-
299 Restricted Membrane Protein, which plays a critical role in the delivery of peptides to MHC class
300 I molecules^[69], $q=0.03$) (**Table 1**). Additional SNPs that showed non-statistically significant
301 trends with HIV tDNA were in *DDX3X* (DEAD-box helicase 3 X-linked, regulates the production
302 of type I interferons^[70], $q=0.17$) and *AKAP6* (A-Kinase Anchoring Protein 6, binds to protein
303 kinase A regulatory subunits, a critical signaling pathway associated with HIV latency reversal
304 and T cell proliferation^[71, 72], $q=0.20$). Among Europeans, *OSBP* (oxysterol-binding protein,
305 associated with HIV-1 infection of monocyte-derived macrophages from highly-exposed
306 seronegative individuals^[73], $q=0.14$), showed a non-significant trend with HIV tDNA.

307 Although not statistically significant, a SNP in *PLAVP* (protein regulating lymphocyte
308 migration into lymph nodes^[74], $q=0.21$), lying <30 kilobases upstream of *BST2* (tetherin, an HIV
309 host restriction factor^[75]) demonstrated a non-significant trend with usRNA (**Table 1**). No SNPs
310 met statistical significance in association with HIV intact DNA or RNA/DNA ratio.

311

312 **Gene set enrichment analysis demonstrated several interferon signaling-associated
313 genes associated with intact HIV DNA**

314 We then performed multi-SNP analyses to identify genes associated with HIV reservoir size.
315 GSEA identified several interferon signaling-associated genes (e.g., *IFITM1*, *IFITM3*, *APCS*,
316 *IFITM2*, *FCN3*, *FCN1*, *GSN*, *TRIM59*, *SNX3*, *TRIM25*, *PTX3*, *TRIM11*, *TRIM8*, *MID2*, *TRIM5*,
317 *IFNA2*) in the gene set called “Negative Regulation of Viral Entry into Host Cell,” to significantly
318 predict HIV intact DNA ($q=0.03$) (**Figure 3, Table S8**). Several other gene sets showed non-
319 significant trends with HIV reservoir size (**Figure 3, Table S8**), including gene sets related to
320 interferon-induced STAT signaling and intact DNA, glycosylation and tDNA, and retroviral

321 transcription and usRNA.

322

323 **Discussion**

324 HIV eradication remains a critical goal in reducing long-term morbidity and mortality
325 among all PLWH since life-long viral suppression does not appear to fully restore health, as
326 evidenced by persistently high levels of immune activation^[2] and high rates of mortality^[8] in HIV-
327 infected compared to healthy individuals. ART is also expensive, carries long-term risk of
328 toxicity, and poses major challenges in being able to be accessible to a global population for
329 decades^[76]. HIV cure clinical trials to date have yielded disappointing results^[77-82]. Novel
330 approaches are needed to better target potential immunologic pathways that help maintain the
331 HIV reservoir.

332 Our study is the first host genomic study to evaluate several measures of the peripheral
333 HIV reservoir in HIV+ non-controllers, including quantification of HIV intact DNA, an estimate of
334 the putative “replication-competent” reservoir by droplet digital PCR^[23, 33, 83]. We also performed
335 direct HLA typing of 25 polymorphic exons of HLA-A & B, C, E, DPA1, DPB1, DQA1, DQB1,
336 DRB1, and DRB3,4,5. We performed individual SNP and gene-based analyses including
337 detailed clinical covariate data such as timing of ART initiation, one of the strongest clinical
338 predictors of HIV reservoir size, which enhanced the fit of our final multivariate models,
339 potentially allowing us to detect otherwise difficult-to-discriminate genetic effects. Unlike prior
340 genomic studies that have primarily focused on the ~1% of the HIV+ population able to
341 suppress virus in the absence of therapy (“elite controllers”), we focused on HIV+ ART-
342 suppressed non-controllers, which make up the majority of people living with HIV (PLWH). We
343 found that prior significant HLA and CCR5 Δ 32 genetic associations predicting viral setpoint
344 among HIV+ elite controllers^[10, 19-22] in our study, predicted the HIV reservoir size. We also
345 identified several additional (uninvestigated) host genetic variants associated with the HIV

346 reservoir (signals that might have been attenuated in a study population enriched for “stronger”
347 genetic effects, such as HLA and/or *CCR5* Δ 32).

348 The most striking finding from our SNP-based analysis was the identification of several
349 SNPs in *MX1*, which encodes for a potent antiviral factor which inhibit replication of several RNA
350 viruses, including influenza A and measles, and DNA viruses, such as hepatitis B^[84]. *MX1*
351 expression has also been shown to be upregulated in HIV+ vs. HIV-uninfected individuals^[85], in
352 HIV+ individuals with high vs. low viremia^[86], and with HIV-1 latency in latently-infected cell lines^[87].
353 Genomewide (i.e., DNA-based) results cannot directly infer directionality of gene function
354 without further functional studies. However, for our top hit SNPs in *MX1*, we compared the
355 directionality of the SNP hits with previously reported whole blood eQTL data at these loci^[66-68]
356 and found that the *MX1* SNPs associated with larger total HIV DNA reservoir sizes seemed to
357 be in eQTL regions predicting increased *MX1* expression and vice versa. However, determining
358 whether a single variant is responsible for both genomewide and eQTL signals in a locus
359 can be challenging. Nonetheless, as a further query, we performed colocalization analysis,
360 an *in silico* method to integrate GWAS and eQTL results to calculate a *probability* of
361 whether a SNP is causal for both an eQTL and disease trait^[88], but only found a 1%
362 probability that the *MX1* top SNPs are causally linked to both gene expression and HIV
363 reservoir size. Gene-based analyses also identified several interferon signaling-associated
364 genes (within the “negative regulation of viral entry into host cell” gene set) that significantly
365 predict intact HIV DNA (**Table S8**), but as these genes were not in eQTL regions, the putative
366 directionality of these associations could not be further queried. Additional functional genomic
367 validation, e.g., CRISPR-Cas9 editing of primary human T cells^[89], is needed to further
368 investigate the potential role of *MX1* (and other interferon signaling genes) in HIV
369 persistence.

370 We also found that the previously reported “protective” HLA-B*57:01 and *CCR5* Δ 32
371 mutation were associated with smaller HIV reservoir size in our study. These findings suggest

372 that immune pathways that control viral setpoint during untreated disease may also play a role
373 in the maintenance of the HIV reservoir during treated infection. It is also possible that identified
374 genetic variants may have variable “penetrance”^[90] – e.g., the genetic variants that may drive
375 “elite control” might similarly, but less obviously, influence HIV persistence in treated non-
376 controllers.

377 There are limitations to our study that deserve mention. Although the HIV reservoir has
378 been shown to be relatively stable over time^[58, 91, 92], our cross-sectional design provides a
379 “snapshot” of the HIV reservoir after a median of 5.1 years of ART suppression and may not
380 reflect genetic associations with reservoir decay. Second, as is characteristic of many U.S.-
381 based HIV+ cohorts, our San Francisco-based population consisted mostly of males of
382 European ancestry. Population stratification is a critically important potential bias in any
383 multiethnic genomic study. Thus, we approached this in least three ways using well-established
384 methods to adjust for population stratification bias^[43, 93]: first by calculating principal components
385 and including these as covariates in the final models, second by including a genetic relatedness
386 matrix (GRM) in the models, and finally by performing stratified analyses, focusing on the
387 largest homogenous subpopulation (individuals with European ancestry). Overall, the findings
388 observed in the European ancestral group did not overlap with the non-European (e.g., African-
389 American) subgroup (**Table S9**). Thus, it is critical that these results be replicated in larger
390 studies, especially those including women and individuals from different ethnic backgrounds.
391 Third, the majority of the HIV reservoir persists in lymphoid tissues, not in the periphery^[94].
392 Although recent data suggests that the tissue compartment largely reflects (and is the likely
393 source of) the peripheral compartment^[52, 95, 96], it will be important to determine whether the
394 results from our study are generalizable to the tissue HIV reservoir. Fourth, intact HIV DNA
395 represents the putative replication-competent reservoir. Although we observed several genes
396 that were significantly associated with intact HIV DNA in the gene set enrichment analyses,
397 individual genes did not meet statistical significance. This may be due to the challenge in

398 estimate the frequency of intact and/or replication-competent HIV when in fact, the majority of
399 the HIV reservoir consists of defective HIV. For these reasons, quantitative outgrowth assays
400 and assays to measure intact HIV DNA often result in many low/ zero values compared to total
401 HIV DNA, which has a larger dynamic range^[83, 97, 98]. In our study, HIV intact DNA was
402 undetectable in over half of our measured samples, while for example, total DNA was
403 measurable in 95% of samples (**Figure S6**). With so many samples below the limit of detection
404 for intact DNA, the statistical power to detect SNP associations is much lower for this assay
405 than for the other HIV reservoir assays included in our study. However, when we were able to
406 enhance the ability to detect an association by performing the gene set enrichment analyses
407 (essentially, a method that aggregates several rare variants into immunologically relevant “gene
408 sets” to test for an association with HIV reservoir size), we observed several statistically
409 significant associations with HIV intact DNA in the total population (STAT signaling, critical for
410 regulating the innate and adaptive immune responses) and among individuals of European
411 ancestry, the largest subgroup with the greatest statistical power (“negative regulation of viral
412 entry into host cell” – which included several interferon signaling genes) (**Figure 3, Table S8**).

413 Our findings are in contrast to two recent genomewide studies of the HIV reservoir,
414 which did not identify an association with *MX1*, *HLA-B*57:01*, or *CCR5Δ32*, nor reported similar
415 findings to each other^[99, 100]. The first study performed GWAS microarray genotyping from 797
416 HIV+ treated individuals (194 with whole exome sequencing data), included several longitudinal
417 measures of HIV total DNA from peripheral blood mononuclear cells (PBMCs), and imputed
418 HLA alleles (from genotypes), but did not observe any significant associations with HLA alleles,
419 *CCR5Δ32*, or SNPs^[99]. The second study included 207 HIV+ treated individuals and performed
420 GWAS microarray (no HLA or *CCR5Δ32* typing) and included measures of HIV tDNA and
421 usRNA from peripheral CD4+ T cells. They reported a significant association between tDNA and
422 a SNP in *PTDSS2* (phosphatidylserine synthase 2) at genomewide $p < 5 \times 10^{-8}$, which was not
423 statistically significant in our analysis.^[100] These differences highlight a particular challenge in

424 performing genomic studies, let alone for studies of the HIV reservoir size (which can be
425 measured in several different ways as total HIV DNA, HIV unspliced RNA, HIV intact DNA, etc.)
426 from different biospecimens (PBMCs, CD4+ T cells). Add to this the use of different study
427 designs (untreated HIV+ controllers, treated HIV+ non-controllers – and those treated during
428 chronic versus acute infection), and analytic methods (multivariate models with or without key
429 clinical covariates such as timing of ART initiation, nadir CD4+ T cell count, etc.) and a lack of
430 understanding regarding the exact mechanism by which the genetic code is expressed from
431 DNA to RNA to protein (which also varies by cell type and within different tissues^[101]) – then
432 differences between these three small studies might fall within the expected range of variability.
433 Given the polygenic nature of the host immune response, the contribution of host genetics in
434 predicting HIV reservoir size might vary widely, leading to variable results when comparing
435 small genomic studies. Prior genomewide association studies of HIV progression during
436 untreated disease explain ~13% of the variability in viral load, with strong genetic predictors
437 such as HLA and *CCR5Δ32*^[102]. Using a tool for genome-wide complex trait analysis
438 (GCTA)^[103], we calculated the heritability of our total HIV DNA phenotype to be up to 0.78, but
439 the error bars were large (+/-0.94). This suggests that unknown host genetic loci might play a
440 significant role in determining the size of the HIV reservoir – but that there is a high degree of
441 variability in that estimate. For these reasons, we are careful to describe our study results within
442 the limits of a genomewide association study identifying potential novel DNA variants related to
443 HIV persistence (e.g., only highlighting *MX1* as it lies with an eQTL region but the others for
444 which there are no functional data, we do not) and again emphasize the need for functional
445 studies to pursue the novel hypotheses identified from our discovery-based study. Our findings
446 may vary from the two prior published studies due to several differences in (1) study design
447 (cross-sectional, only including HIV+ ART-suppressed non-controllers), (2) statistical modeling
448 (detailed clinical covariates for timing of ART initiation, nadir CD4+ T cell count, etc.), (3) HIV
449 reservoir quantification (e.g., HIV total DNA, unspliced RNA, and intact DNA), (4) sampling

450 (CD4+ T cells, not bulk PBMCs), (5) host genomic assays (custom whole exome sequencing
451 instead of GWAS microarray, and direct HLA typing instead of imputed HLA alleles), and (6)
452 approach to handling potential population stratification bias (at least three methods - principal
453 component analysis, genetic related matrix methods, and sensitivity analyses restricted to
454 ancestral subgroups).

455 Using carefully selected ART-suppressed HIV non-controllers, we performed custom
456 whole exome sequencing and direct HLA typing, quantified several measures of the peripheral
457 HIV reservoir, and fit multivariate models adjusted for clinical and demographic covariates that
458 influenced the size of the HIV reservoir, and found that the previously reported “protective” HLA-
459 B*57:01 and the favorable CCR5 Δ 32 (during untreated disease) were associated with smaller
460 HIV reservoir size. Genomewide analyses identified several SNPs in *MX1*, a type I interferon
461 stimulated gene, were significantly associated with total HIV DNA, which correlated with
462 predicted *MX1* eQTL gene expression, and HIV intact DNA were associated with several
463 interferon signaling-associated genes in gene set enrichment analyses. Our findings support a
464 surprising role of the innate immune response (e.g., genes involved in interferon signaling<sup>[104-
465 107]</sup>) in maintaining the HIV reservoir during long-term suppressive ART. These findings support
466 recent studies demonstrating that measures of cell-associated HIV RNA correlate with time to
467 viral rebound^[106, 108-111]. Perhaps host genes driving immediate antiviral responses play a major
468 role in maintaining the HIV reservoir if the “transcriptionally active” reservoir is indeed a major
469 source of the “rebound-competent” reservoir. Additional studies are needed to functionally
470 validate these findings, especially among more diverse patient populations, including female
471 and non-European HIV+ patients.

472

473 **FIGURE LEGENDS**

474

475 **Figure 1.** Genetic principal component analysis (PCA) plots of the full study population (with
476 legend with self-identified race/ethnicity) (a) and of the largest homogenous ancestral
477 population, males of mostly European ancestry (b). Recalculated European ancestry male PCA
478 plot is shown in panel b, from lower left dashed box in panel a.

479

480 **Figure 2.** Quantile-quantile (QQ) plots (a, c) and Manhattan plots (b, d) of the total study
481 population (a-b) and of European ancestry (c-d). QQ plots: the blue line represents the expected
482 $-\log_{10}$ p-values while the black lines denote the expected error bars. Manhattan plots: the
483 horizontal black line delineates a traditional conservative genome-wide significance of p-value of
484 5×10^{-8} , while less conservative Benjamini-Hochberg false discovery rate (FDR) statistical
485 significance of $q=0.05$ is shown as the horizontal blue line ($q=0.25$ is shown in grey).

486

487 **Figure 3.** Gene set enrichment analysis (GSEA) was used to identify associations between
488 genes, ordered by p-value under a host multi-SNP rare variant (minor allele frequency, MAF,
489 <5%) analysis using HIV total DNA, unspliced RNA, RNA/DNA, and intact DNA as outcomes;
490 and biological processes gene sets, in the total study population (a) and among European
491 ancestry (b). Horizontal dashed lines represent the GSEA Benjamini-Hochberg false discovery
492 rate (FDR) statistical significance level of $q=0.05$ (blue) and $q=0.025$ (grey), respectively.

493 **REFERENCES**

494 1. Yukl SA, Gianella S, Sinclair E, Epling L, Li Q, Duan L, et al. **Differences in HIV burden and**
495 **immune activation within the gut of HIV-positive patients receiving suppressive**
496 **antiretroviral therapy.** *J Infect Dis* 2010; 202(10):1553-1561.

497 2. Hunt PW, Martin JN, Sinclair E, Bredt B, Hagos E, Lampiris H, et al. **T cell activation is**
498 **associated with lower CD4+ T cell gains in human immunodeficiency virus-infected**
499 **patients with sustained viral suppression during antiretroviral therapy.** *J Infect Dis* 2003;
500 187(10):1534-1543.

501 3. Lohse N, Hansen AB, Pedersen G, Kronborg G, Gerstoft J, Sorensen HT, et al. **Survival of**
502 **persons with and without HIV infection in Denmark, 1995-2005.** *Ann Intern Med* 2007;
503 146(2):87-95.

504 4. Antiretroviral Therapy Cohort C. **Causes of death in HIV-1-infected patients treated with**
505 **antiretroviral therapy, 1996-2006: collaborative analysis of 13 HIV cohort studies.** *Clin*
506 *Infect Dis* 2010; 50(10):1387-1396.

507 5. Eisele E, Siliciano RF. **Redefining the viral reservoirs that prevent HIV-1 eradication.**
508 *Immunity* 2012; 37(3):377-388.

509 6. Volberding PA, Deeks SG. **Antiretroviral therapy and management of HIV infection.**
510 *Lancet* 2010; 376(9734):49-62.

511 7. **Causes of death in HIV-1-infected patients treated with antiretroviral therapy, 1996-**
512 **2006: collaborative analysis of 13 HIV cohort studies.** *Clinical infectious diseases : an official*
513 *publication of the Infectious Diseases Society of America* 2010; 50(10):1387-1396.

514 8. Lohse N, Hansen AB, Pedersen G, Kronborg G, Gerstoft J, Sorensen HT, et al. **Survival of**
515 **persons with and without HIV infection in Denmark, 1995-2005.** *Annals of internal medicine*
516 2007; 146(2):87-95.

517 9. Dalmasso C, Carpentier W, Meyer L, Rouzioux C, Goujard C, Chaix ML, et al. **Distinct**
518 **genetic loci control plasma HIV-RNA and cellular HIV-DNA levels in HIV-1 infection: the**

519 **ANRS Genome Wide Association 01 study.** *PLoS One* 2008; 3(12):e3907.

520 10. Fellay J, Shianna KV, Ge D, Colombo S, Ledergerber B, Weale M, et al. **A whole-genome**
521 **association study of major determinants for host control of HIV-1.** *Science* 2007;
522 317(5840):944-947.

523 11. Fellay J, Frahm N, Shianna KV, Cirulli ET, Casimiro DR, Robertson MN, et al. **Host genetic**
524 **determinants of T cell responses to the MRKAd5 HIV-1 gag/pol/nef vaccine in the step**
525 **trial.** *J Infect Dis* 2011; 203(6):773-779.

526 12. Fellay J, Ge D, Shianna KV, Colombo S, Ledergerber B, Cirulli ET, et al. **Common genetic**
527 **variation and the control of HIV-1 in humans.** *PLoS Genet* 2009; 5(12):e1000791.

528 13. Herbeck JT, Gottlieb GS, Winkler CA, Nelson GW, An P, Maust BS, et al. **Multistage**
529 **genomewide association study identifies a locus at 1q41 associated with rate of HIV-1**
530 **disease progression to clinical AIDS.** *J Infect Dis* 2010; 201(4):618-626.

531 14. Le Clerc S, Limou S, Coulonges C, Carpentier W, Dina C, Taing L, et al. **Genomewide**
532 **association study of a rapid progression cohort identifies new susceptibility alleles for**
533 **AIDS (ANRS Genomewide Association Study 03).** *J Infect Dis* 2009; 200(8):1194-1201.

534 15. Limou S, Le Clerc S, Coulonges C, Carpentier W, Dina C, Delaneau O, et al. **Genomewide**
535 **association study of an AIDS-nonprogression cohort emphasizes the role played by HLA**
536 **genes (ANRS Genomewide Association Study 02).** *J Infect Dis* 2009; 199(3):419-426.

537 16. Pelak K, Goldstein DB, Walley NM, Fellay J, Ge D, Shianna KV, et al. **Host determinants**
538 **of HIV-1 control in African Americans.** *J Infect Dis* 2010; 201(8):1141-1149.

539 17. International HIVCS, Pereyra F, Jia X, McLaren PJ, Telenti A, de Bakker PI, et al. **The**
540 **major genetic determinants of HIV-1 control affect HLA class I peptide presentation.**
541 *Science* 2010; 330(6010):1551-1557.

542 18. Petrovski S, Fellay J, Shianna KV, Carpenetti N, Kumwenda J, Kamanga G, et al. **Common**
543 **human genetic variants and HIV-1 susceptibility: a genome-wide survey in a**
544 **homogeneous African population.** *AIDS* 2011; 25(4):513-518.

545 19. de Roda Husman AM, Koot M, Cornelissen M, Keet IP, Brouwer M, Broersen SM, et al.

546 **Association between CCR5 genotype and the clinical course of HIV-1 infection.** *Ann Intern*
547 *Med* 1997; 127(10):882-890.

548 20. Dean M, Carrington M, Winkler C, Huttley GA, Smith MW, Allikmets R, et al. **Genetic**
549 **restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CCR5**
550 **structural gene. Hemophilia Growth and Development Study, Multicenter AIDS Cohort**
551 **Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, ALIVE Study.**
552 *Science* 1996; 273(5283):1856-1862.

553 21. Rappaport J, Cho YY, Hendel H, Schwartz EJ, Schachter F, Zagury JF. **32 bp CCR-5 gene**
554 **deletion and resistance to fast progression in HIV-1 infected heterozygotes.** *Lancet* 1997;
555 349(9056):922-923.

556 22. Kulkarni S, Lied A, Kulkarni V, Rucevic M, Martin MP, Walker-Sperling V, et al. **CCR5AS**
557 **lncRNA variation differentially regulates CCR5, influencing HIV disease outcome.** *Nat*
558 *Immunol* 2019; 20(7):824-834.

559 23. Levy CH, S.; Roychoudhury, P.; Reeves, D. B.; Amstuz, C.; Zhu, H.; et al. **A highly**
560 **multiplexed droplet digital PCR assay to measure the intact HIV-1 proviral reservoir.** *Cell*
561 *Reports Medicine* 2021; 2.

562 24. de Roda Husman AM, Koot M, Cornelissen M, Keet IP, Brouwer M, Broersen SM, et al.

563 **Association between CCR5 genotype and the clinical course of HIV-1 infection.** *Annals of*
564 *internal medicine* 1997; 127(10):882-890.

565 25. Ramirez CM, Sinclair E, Epling L, Lee SA, Jain V, Hsue PY, et al. **Immunologic profiles**
566 **distinguish aviremic HIV-infected adults.** *AIDS* 2016; 30(10):1553-1562.

567 26. Boufassa F, Lechenadec J, Meyer L, Costagliola D, Hunt PW, Pereyra F, et al. **Blunted**
568 **response to combination antiretroviral therapy in HIV elite controllers: an international**
569 **HIV controller collaboration.** *PLoS One* 2014; 9(1):e85516.

570 27. Emu B, Sinclair E, Hatano H, Ferre A, Shacklett B, Martin JN, et al. **HLA class I-restricted**

571 **T-cell responses may contribute to the control of human immunodeficiency virus**
572 **infection, but such responses are not always necessary for long-term virus control. J**
573 *Virol* 2008; 82(11):5398-5407.

574 28. Grebe E, Facente SN, Bingham J, Pilcher CD, Powrie A, Gerber J, et al. **Interpreting HIV**
575 **diagnostic histories into infection time estimates: analytical framework and online tool.**
576 *BMC Infect Dis* 2019; 19(1):894.

577 29. Martin MP, Gao X, Lee JH, Nelson GW, Detels R, Goedert JJ, et al. **Epistatic interaction**
578 **between KIR3DS1 and HLA-B delays the progression to AIDS.** *Nat Genet* 2002; 31(4):429-
579 434.

580 30. Martin MP, Qi Y, Gao X, Yamada E, Martin JN, Pereyra F, et al. **Innate partnership of**
581 **HLA-B and KIR3DL1 subtypes against HIV-1.** *Nat Genet* 2007; 39(6):733-740.

582 31. Ho YC, Shan L, Hosmane NN, Wang J, Laskey SB, Rosenbloom DI, et al. **Replication-**
583 **competent noninduced proviruses in the latent reservoir increase barrier to HIV-1 cure.**
584 *Cell* 2013; 155(3):540-551.

585 32. Bruner KM, Murray AJ, Pollack RA, Soliman MG, Laskey SB, Capoferro AA, et al. **Defective**
586 **proviruses rapidly accumulate during acute HIV-1 infection.** *Nat Med* 2016; 22(9):1043-
587 1049.

588 33. Bruner KM, Wang Z, Simonetti FR, Bender AM, Kwon KJ, Sengupta S, et al. **A quantitative**
589 **approach for measuring the reservoir of latent HIV-1 proviruses.** *Nature* 2019;
590 566(7742):120-125.

591 34. Levy CN, Hughes SM, Roychoudhury P, Amstuz C, Zhu H, Huang ML, et al. **HIV reservoir**
592 **quantification by five-target multiplex droplet digital PCR.** *STAR Protoc* 2021; 2(4):100885.

593 35. Malnati MS, Scarlatti G, Gatto F, Salvatori F, Cassina G, Rutigliano T, et al. **A universal**
594 **real-time PCR assay for the quantification of group-M HIV-1 proviral load.** *Nat Protoc* 2008;
595 3(7):1240-1248.

596 36. Chapman Bea. **bcbio/bcbio-nextgen.** In. v.1.2.8 ed: Zenodo; 2021.

597 37. Li H. **Aligning sequence reads, clone sequences and assembly contigs with BWA-**
598 **MEM.** *arXiv*:13033997 2013.

599 38. Poplin R, et al. **Scaling accurate genetic variant discovery to tens of thousands of**
600 **samples.** *bioRxiv* 2017; 201178.

601 39. **Picard toolkit.** In; 2019.

602 40. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. **A framework for**
603 **variation discovery and genotyping using next-generation DNA sequencing data.** *Nat*
604 *Genet* 2011; 43(5):491-498.

605 41. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. **PLINK: a tool**
606 **set for whole-genome association and population-based linkage analyses.** *Am J Hum*
607 *Genet* 2007; 81(3):559-575.

608 42. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al. **The variant call**
609 **format and VCFtools.** *Bioinformatics* 2011; 27(15):2156-2158.

610 43. Gogarten SM, Sofer T, Chen H, Yu C, Brody JA, Thornton TA, et al. **Genetic association**
611 **testing using the GENESIS R/Bioconductor package.** *Bioinformatics* 2019; 35(24):5346-
612 5348.

613 44. Wang K, Li M, Hakonarson H. **ANNOVAR: functional annotation of genetic variants**
614 **from high-throughput sequencing data.** *Nucleic Acids Res* 2010; 38(16):e164.

615 45. Chen H, Huffman JE, Brody JA, Wang C, Lee S, Li Z, et al. **Efficient Variant Set Mixed**
616 **Model Association Tests for Continuous and Binary Traits in Large-Scale Whole-Genome**
617 **Sequencing Studies.** *Am J Hum Genet* 2019; 104(2):260-274.

618 46. Wu MC, Lee S, Cai T, Li Y, Boehnke M, Lin X. **Rare-variant association testing for**
619 **sequencing data with the sequence kernel association test.** *Am J Hum Genet* 2011;
620 89(1):82-93.

621 47. Bioconductor Core Team BPMMBO. **Txdb.hsapiens.ucsc.hg38.knowngene.** In; 2017.

622 48. Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, et al. **PGC-**

623 **1alpha-responsive genes involved in oxidative phosphorylation are coordinately**
624 **downregulated in human diabetes.** *Nat Genet* 2003; 34(3):267-273.

625 49. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. **Gene set**
626 **enrichment analysis: a knowledge-based approach for interpreting genome-wide**
627 **expression profiles.** *Proc Natl Acad Sci U S A* 2005; 102(43):15545-15550.

628 50. Seabold; Skipper; Perktold J. **statsmodels: Econometric and statistical modeling with**
629 **python.** In: *Proceedings of the 9th Python in Science Conference*; 2010.

630 51. (OARAC). DPoAGfAaAAWGotOoARAC. **Guidelines for the use of antiretroviral agents**
631 **in adults and adolescents with HIV.** *AIDSinfo*. 2019 Dec 18. 2018.

632 52. Josefsson L, von Stockenstrom S, Faria NR, Sinclair E, Bacchetti P, Killian M, et al. **The**
633 **HIV-1 reservoir in eight patients on long-term suppressive antiretroviral therapy is stable**
634 **with few genetic changes over time.** *Proc Natl Acad Sci U S A* 2013; 110(51):E4987-4996.

635 53. Buzon MJ, Martin-Gayo E, Pereyra F, Ouyang Z, Sun H, Li JZ, et al. **Long-term**
636 **antiretroviral treatment initiated at primary HIV-1 infection affects the size, composition,**
637 **and decay kinetics of the reservoir of HIV-1-infected CD4 T cells.** *J Virol* 2014;
638 88(17):10056-10065.

639 54. Archin NM, Vaidya NK, Kuruc JD, Liberty AL, Wiegand A, Kearney MF, et al. **Immediate**
640 **antiviral therapy appears to restrict resting CD4+ cell HIV-1 infection without accelerating**
641 **the decay of latent infection.** *Proc Natl Acad Sci U S A* 2012; 109(24):9523-9528.

642 55. Hocqueloux L, Avettand-Fenoel V, Jacquot S, Prazuck T, Legac E, Melard A, et al. **Long-**
643 **term antiretroviral therapy initiated during primary HIV-1 infection is key to achieving**
644 **both low HIV reservoirs and normal T cell counts.** *J Antimicrob Chemother* 2013;
645 68(5):1169-1178.

646 56. Jain V, Hartogensis W, Bacchetti P, Hunt PW, Hatano H, Sinclair E, et al. **Antiretroviral**
647 **Therapy Initiated Within 6 Months of HIV Infection Is Associated With Lower T-Cell**
648 **Activation and Smaller HIV Reservoir Size.** *The Journal of infectious diseases* 2013;

649 208(8):1202-1211.

650 57. Eriksson S, Graf EH, Dahl V, Strain MC, Yukl SA, Lysenko ES, et al. **Comparative analysis**
651 **of measures of viral reservoirs in HIV-1 eradication studies.** *PLoS pathogens* 2013;
652 9(2):e1003174.

653 58. Bachmann N, von Siebenthal C, Vongrad V, Turk T, Neumann K, Beerewinkel N, et al.
654 **Determinants of HIV-1 reservoir size and long-term dynamics during suppressive ART.**
655 *Nat Commun* 2019; 10(1):3193.

656 59. Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I. **Controlling the false discovery rate in**
657 **behavior genetics research.** *Behav Brain Res* 2001; 125(1-2):279-284.

658 60. Yang J, Weedon MN, Purcell S, Lettre G, Estrada K, Willer CJ, et al. **Genomic inflation**
659 **factors under polygenic inheritance.** *Eur J Hum Genet* 2011; 19(7):807-812.

660 61. Staeheli P, Haller O. **Human MX2/MxB: a Potent Interferon-Induced Postentry Inhibitor**
661 **of Herpesviruses and HIV-1.** *J Virol* 2018; 92(24).

662 62. Haller O, Kochs G. **Human MxA protein: an interferon-induced dynamin-like GTPase**
663 **with broad antiviral activity.** *J Interferon Cytokine Res* 2011; 31(1):79-87.

664 63. Goujon C, Moncorgé O, Bauby H, Doyle T, Ward CC, Schaller T, et al. **Human MX2 is an**
665 **interferon-induced post-entry inhibitor of HIV-1 infection.** *Nature* 2013; 502(7472):559-562.

666 64. Liu Z, Pan Q, Ding S, Qian J, Xu F, Zhou J, et al. **The interferon-inducible MxB protein**
667 **inhibits HIV-1 infection.** *Cell Host Microbe* 2013; 14(4):398-410.

668 65. Betancor G, Jimenez-Guardeno JM, Lynham S, Antrobus R, Khan H, Sobala A, et al. **MX2-**
669 **mediated innate immunity against HIV-1 is regulated by serine phosphorylation.** *Nat*
670 *Microbiol* 2021; 6(8):1031-1042.

671 66. Consortium GT, Laboratory DA, Coordinating Center -Analysis Working G, Statistical
672 Methods groups-Analysis Working G, Enhancing Gg, Fund NIHC, et al. **Genetic effects on**
673 **gene expression across human tissues.** *Nature* 2017; 550(7675):204-213.

674 67. Szabo PA, Levitin HM, Miron M, Snyder ME, Senda T, Yuan J, et al. **Single-cell**

675 **transcriptomics of human T cells reveals tissue and activation signatures in health and**
676 **disease.** *Nat Commun* 2019; 10(1):4706.

677 68. Wang S, Zhang Q, Hui H, Agrawal K, Karris MAY, Rana TM. **An atlas of immune cell**
678 **exhaustion in HIV-infected individuals revealed by single-cell transcriptomics.** *Emerg*
679 *Microbes Infect* 2020; 9(1):2333-2347.

680 69. Collins KL. **How HIV evades CTL recognition.** *Curr HIV Res* 2003; 1(1):31-40.

681 70. Szappanos D, Tschismarov R, Perlot T, Westermayer S, Fischer K, Platanitis E, et al. **The**
682 **RNA helicase DDX3X is an essential mediator of innate antimicrobial immunity.** *PLoS*
683 *Pathog* 2018; 14(11):e1007397.

684 71. Perfettini JL, Roumier T, Castedo M, Larochette N, Boya P, Raynal B, et al. **NF- κ B**
685 **and p53 are the dominant apoptosis-inducing transcription factors elicited by the HIV-1**
686 **envelope.** *J Exp Med* 2004; 199(5):629-640.

687 72. Troger J, Moutty MC, Skroblin P, Klussmann E. **A-kinase anchoring proteins as potential**
688 **drug targets.** *Br J Pharmacol* 2012; 166(2):420-433.

689 73. Saulle I, Ibba SV, Vittori C, Fenizia C, Mercurio V, Vichi F, et al. **Sterol metabolism**
690 **modulates susceptibility to HIV-1 Infection.** *AIDS* 2020; 34(11):1593-1602.

691 74. Rantakari P, Auvinen K, Jappinen N, Kapraali M, Valtonen J, Karikoski M, et al. **The**
692 **endothelial protein PLVAP in lymphatics controls the entry of lymphocytes and antigens**
693 **into lymph nodes.** *Nat Immunol* 2015; 16(4):386-396.

694 75. Perez-Caballero D, Zang T, Ebrahimi A, McNatt MW, Gregory DA, Johnson MC, et al.
695 **Tetherin inhibits HIV-1 release by directly tethering virions to cells.** *Cell* 2009; 139(3):499-
696 511.

697 76. Deeks SG, Archin N, Cannon P, Collins S, Jones RB, de Jong M, et al. **Research priorities**
698 **for an HIV cure: International AIDS Society Global Scientific Strategy 2021.** *Nat Med* 2021;
699 27(12):2085-2098.

700 77. Gay CL, Kuruc JD, Falcinelli SD, Warren JA, Reifeis SA, Kirchherr JL, et al. **Assessing the**

701 **impact of AGS-004, a dendritic cell-based immunotherapy, and vorinostat on persistent**
702 **HIV-1 Infection.** *Sci Rep* 2020; 10(1):5134.

703 78. Fidler S, Stohr W, Pace M, Dorrell L, Lever A, Pett S, et al. **Antiretroviral therapy alone**
704 **versus antiretroviral therapy with a kick and kill approach, on measures of the HIV**
705 **reservoir in participants with recent HIV infection (the RIVER trial): a phase 2,**
706 **randomised trial.** *Lancet* 2020; 395(10227):888-898.

707 79. Gutierrez C, Serrano-Villar S, Madrid-Elena N, Perez-Elias MJ, Martin ME, Barbas C, et al.
708 **Bryostatin-1 for latent virus reactivation in HIV-infected patients on antiretroviral therapy.**
709 *AIDS* 2016; 30(9):1385-1392.

710 80. Vibholm L, Schleimann MH, Hojen JF, Benfield T, Offersen R, Rasmussen K, et al. **Short-**
711 **Course Toll-Like Receptor 9 Agonist Treatment Impacts Innate Immunity and Plasma**
712 **Viremia in Individuals With Human Immunodeficiency Virus Infection.** *Clin Infect Dis* 2017;
713 64(12):1686-1695.

714 81. Riddler SA, Para M, Benson CA, Mills A, Ramgopal M, DeJesus E, et al. **Vesatolimod, a**
715 **Toll-like Receptor 7 Agonist, Induces Immune Activation in Virally Suppressed Adults**
716 **Living With Human Immunodeficiency Virus-1.** *Clin Infect Dis* 2021; 72(11):e815-e824.

717 82. Elliott JH, McMahon JH, Chang CC, Lee SA, Hartogensis W, Bumpus N, et al. **Short-term**
718 **administration of disulfiram for reversal of latent HIV infection: a phase 2 dose-escalation**
719 **study.** *Lancet HIV* 2015; 2(12):e520-529.

720 83. Levy CN, Hughes SM, Roychoudhury P, Reeves DB, Amstuz C, Zhu H, et al. **A highly**
721 **multiplexed droplet digital PCR assay to measure the intact HIV-1 proviral reservoir.** *Cell*
722 *Rep Med* 2021; 2(4):100243.

723 84. Verhelst J, Hulpiau P, Saelens X. **Mx proteins: antiviral gatekeepers that restrain the**
724 **uninvited.** *Microbiol Mol Biol Rev* 2013; 77(4):551-566.

725 85. Zhao G, Liu L, Su B, Zhang T, Chen P, Li W, et al. **The dynamic changes of interferon**
726 **lambdas related genes and proteins in JAK/STAT pathway in both acute and chronic HIV-**

727 **1 infected patients.** *AIDS Res Ther* 2017; 14(1):31.

728 86. Van Hecke C, Trypsteen W, Malatinkova E, De Spiegelaere W, Vervisch K, Rutsaert S, et
729 al. **Early treated HIV-1 positive individuals demonstrate similar restriction factor**
730 **expression profile as long-term non-progressors.** *EBioMedicine* 2019; 41:443-454.

731 87. Lee SY, Choi BS, Yoon CH, Kang C, Kim K, Kim KC. **Selection of biomarkers for HIV-1**
732 **latency by integrated analysis.** *Genomics* 2019; 111(3):327-333.

733 88. Hormozdiari F, van de Bunt M, Segre AV, Li X, Joo JWJ, Bilow M, et al. **Colocalization of**
734 **GWAS and eQTL Signals Detects Target Genes.** *Am J Hum Genet* 2016; 99(6):1245-1260.

735 89. Shifrut E, Carnevale J, Tobin V, Roth TL, Woo JM, Bui CT, et al. **Genome-wide CRISPR**
736 **Screens in Primary Human T Cells Reveal Key Regulators of Immune Function.** *Cell* 2018;
737 175(7):1958-1971 e1915.

738 90. Cooper DN, Krawczak M, Polychronakos C, Tyler-Smith C, Kehrer-Sawatzki H. **Where**
739 **genotype is not predictive of phenotype: towards an understanding of the molecular**
740 **basis of reduced penetrance in human inherited disease.** *Hum Genet* 2013; 132(10):1077-
741 1130.

742 91. Peluso MJ, Bacchetti P, Ritter KD, Beg S, Lai J, Martin JN, et al. **Differential decay of**
743 **intact and defective proviral DNA in HIV-1-infected individuals on suppressive**
744 **antiretroviral therapy.** *JCI Insight* 2020; 5(4).

745 92. Falcinelli SD, Kilpatrick KW, Read J, Murtagh R, Allard B, Ghofrani S, et al. **Longitudinal**
746 **Dynamics of Intact HIV Proviral DNA and Outgrowth Virus Frequencies in a Cohort of**
747 **Individuals Receiving Antiretroviral Therapy.** *J Infect Dis* 2021; 224(1):92-100.

748 93. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. **Principal**
749 **components analysis corrects for stratification in genome-wide association studies.**
750 *Nature genetics* 2006; 38(8):904-909.

751 94. Pantaleo G, Graziosi C, Butini L, Pizzo PA, Schnittman SM, Kotler DP, et al. **Lymphoid**
752 **organs function as major reservoirs for human immunodeficiency virus.** *Proc Natl Acad*

753 Sci U S A 1991; 88(21):9838-9842.

754 95. Evering TH, Mehandru S, Racz P, Tenner-Racz K, Poles MA, Figueroa A, et al. **Absence of**
755 **HIV-1 evolution in the gut-associated lymphoid tissue from patients on combination**
756 **antiviral therapy initiated during primary infection.** PLoS Pathog 2012; 8(2):e1002506.

757 96. Imamichi H, Degray G, Dewar RL, Mannon P, Yao M, Chairez C, et al. **Lack of**
758 **compartmentalization of HIV-1 quasispecies between the gut and peripheral blood**
759 **compartments.** J Infect Dis 2011; 204(2):309-314.

760 97. Procopio FA, Fromentin R, Kulpa DA, Brehm JH, Bebin AG, Strain MC, et al. **A Novel**
761 **Assay to Measure the Magnitude of the Inducible Viral Reservoir in HIV-infected**
762 **Individuals.** EBioMedicine 2015; 2(8):872-881.

763 98. Eriksson S, Graf EH, Dahl V, Strain MC, Yukl SA, Lysenko ES, et al. **Comparative analysis**
764 **of measures of viral reservoirs in HIV-1 eradication studies.** PLoS Pathog 2013;
765 9(2):e1003174.

766 99. Thorball CW, Borghesi A, Bachmann N, Von Siebenthal C, Vongrad V, Turk T, et al. **Host**
767 **Genomics of the HIV-1 Reservoir Size and Its Decay Rate During Suppressive**
768 **Antiretroviral Treatment.** J Acquir Immune Defic Syndr 2020; 85(4):517-524.

769 100. Zhang Z, Trypsteen W, Blaauw M, Chu X, Rutsaert S, Vandekerckhove L, et al. **IRF7 and**
770 **RNH1 are modifying factors of HIV-1 reservoirs: a genome-wide association analysis.**
771 BMC Med 2021; 19(1):282.

772 101. Dolcemascolo R, Goiriz L, Montagud-Martinez R, Rodrigo G. **Gene regulation by a**
773 **protein translation factor at the single-cell level.** PLoS Comput Biol 2022; 18(5):e1010087.

774 102. McLaren PJ, Carrington M. **The impact of host genetic variation on infection with HIV-**
775 **1.** Nat Immunol 2015; 16(6):577-583.

776 103. Yang J, Lee SH, Goddard ME, Visscher PM. **GCTA: a tool for genome-wide complex**
777 **trait analysis.** Am J Hum Genet 2011; 88(1):76-82.

778 104. Pace MJ, Agosto L, Graf EH, O'Doherty U. **HIV reservoirs and latency models.** Virology

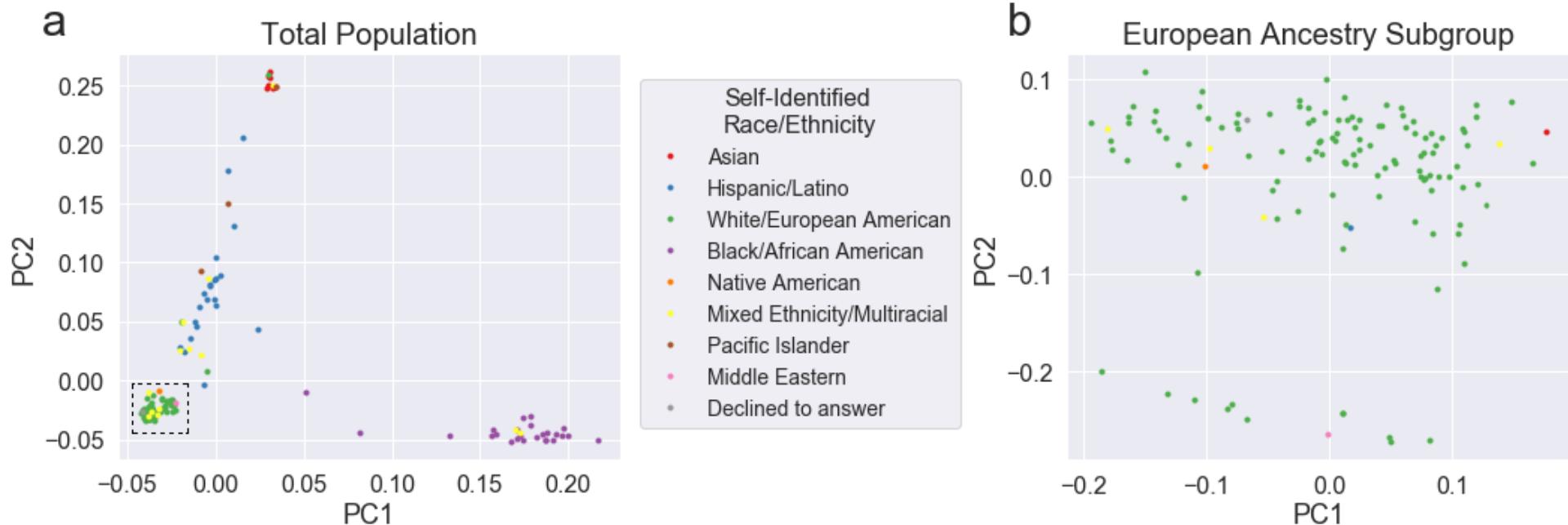
779 2011; 411(2):344-354.

780 105. McManus WR, Bale MJ, Spindler J, Wiegand A, Musick A, Patro SC, et al. **HIV-1 in lymph**
781 **nodes is maintained by cellular proliferation during antiretroviral therapy.** *J Clin Invest*
782 2019; 129(11):4629-4642.

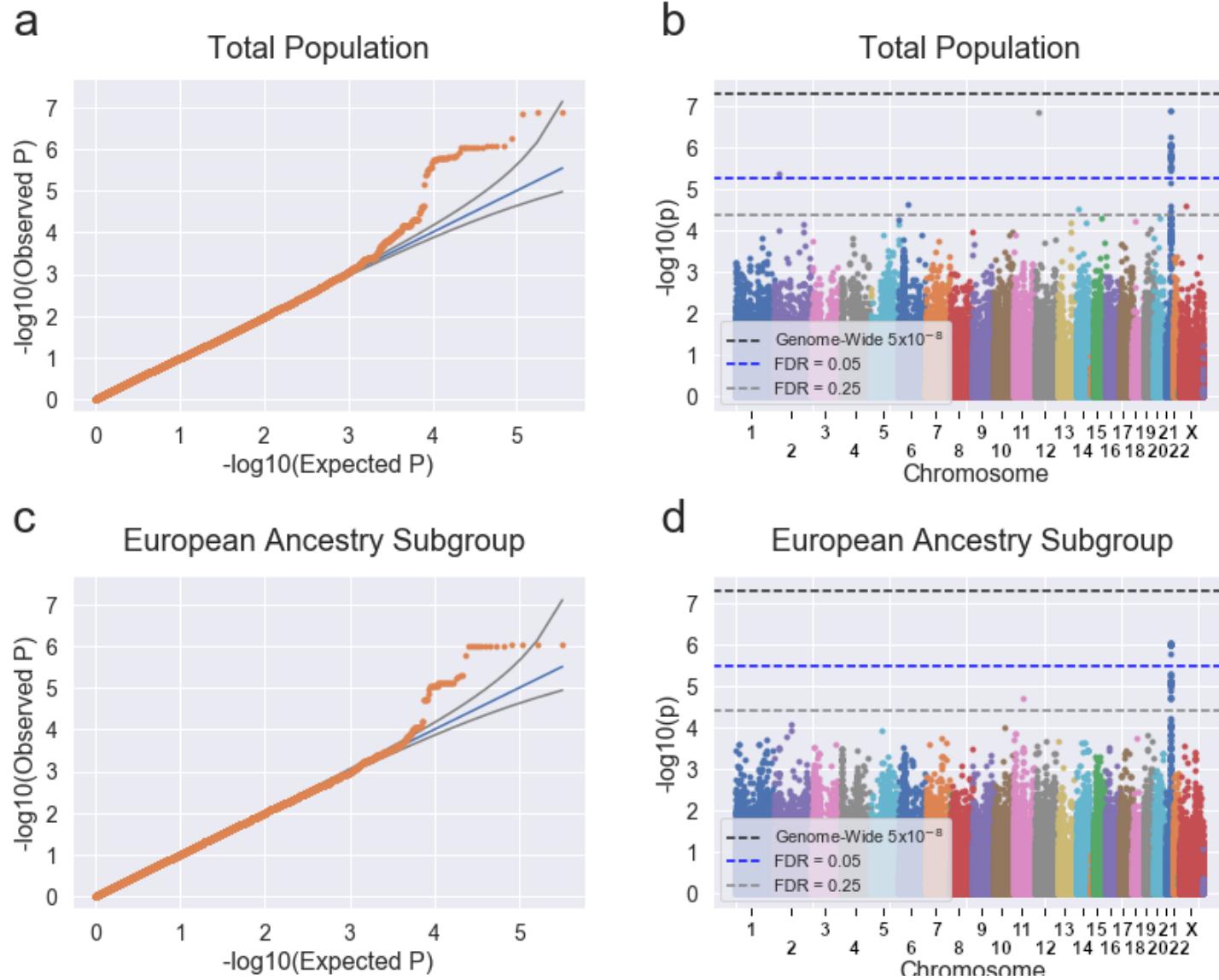
783 106. Kearney MF, Wiegand A, Shao W, Coffin JM, Mellors JW, Lederman M, et al. **Origin of**
784 **Rebound Plasma HIV Includes Cells with Identical Proviruses That Are Transcriptionally**
785 **Active before Stopping of Antiretroviral Therapy.** *J Virol* 2016; 90(3):1369-1376.

786 107. Wiegand A, Spindler J, Hong FF, Shao W, Cyktor JC, Cillo AR, et al. **Single-cell analysis**
787 **of HIV-1 transcriptional activity reveals expression of proviruses in expanded clones**
788 **during ART.** *Proc Natl Acad Sci U S A* 2017; 114(18):E3659-E3668.

789 108. Fischer M, Joos B, Hirschel B, Bleiber G, Weber R, Gunthard HF, et al. **Cellular viral**
790 **rebound after cessation of potent antiretroviral therapy predicted by levels of multiply**
791 **spliced HIV-1 RNA encoding nef.** *J Infect Dis* 2004; 190(11):1979-1988.


792 109. Li JZ, Etemad B, Ahmed H, Aga E, Bosch RJ, Mellors JW, et al. **The size of the**
793 **expressed HIV reservoir predicts timing of viral rebound after treatment interruption.**
794 *AIDS* 2016; 30(3):343-353.

795 110. Pasternak AO, Grijsen ML, Wit FW, Bakker M, Jurriaans S, Prins JM, et al. **Cell-**
796 **associated HIV-1 RNA predicts viral rebound and disease progression after**
797 **discontinuation of temporary early ART.** *JCI Insight* 2020; 5(6).


798 111. Moron-Lopez S, Kim P, Sogaard OS, Tolstrup M, Wong JK, Yukl SA. **Characterization of**
799 **the HIV-1 transcription profile after romidepsin administration in ART-suppressed**
800 **individuals.** *AIDS* 2019; 33(3):425-431.

801

Figure 1. Genetic principal component analysis (PCA) plots of the full study population (with legend with self-identified race/ethnicity) (a) and of the largest homogenous ancestral population, males of mostly European ancestry (b). Recalculated European ancestry male PCA plot is shown in panel b, from lower left dashed box in panel a.

Figure 2. Quantile-quantile (QQ) plots (a, c) and Manhattan plots (b, d) of the total study population (a-b) and of European ancestry (c-d). QQ plots: the blue line represents the expected $-\log_{10}$ p-values while the black lines denote the expected error bars. Manhattan plots: the horizontal black line delineates a traditional conservative genome-wide significance of p-value of 5×10^{-8} , while a less conservative Benjamini-Hochberg false discovery rate (FDR) statistical significance of $q=0.05$ is shown as the horizontal blue line ($q=0.25$ is shown in grey).

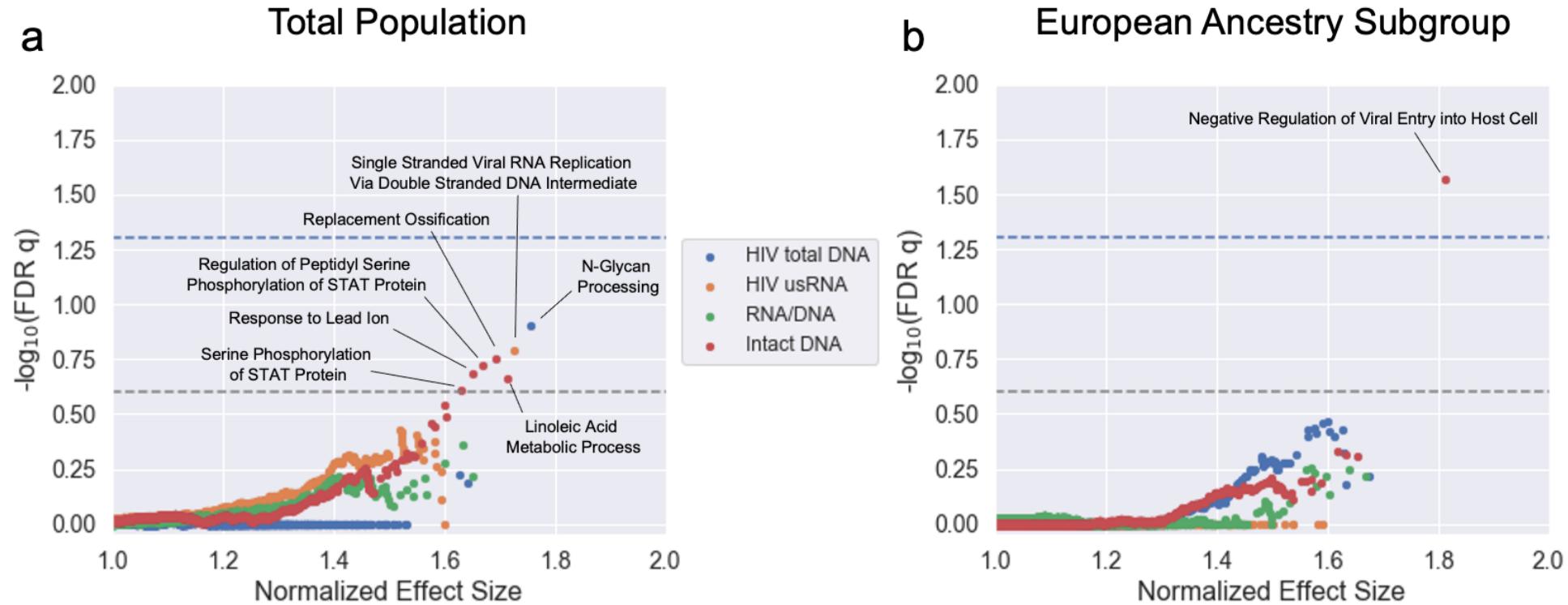
Table 1. Single nucleotide polymorphisms (SNPs) associated with HIV total DNA (upper table) and unspliced RNA (lower table) in the total study population. Two additional SNPs were significantly associated with total HIV DNA in the subpopulation of European ancestry (middle table). For genes in which there were several SNPs in linkage disequilibrium (LD), the top SNP for each gene is shown, with the full list of SNPs shown in Table S7.

SNP	Chrom	Position	Nearest Gene	Gene Location	MAF ^a	Beta ^b	PVE ^c	p ^d	q ^e	Description
HIV TOTAL DNA										
Full Cohort										
rs10670165	chr21	41421873	MX1	Intron/Exon/5'UTR ^f	0.45	-1.2	0.15	1.3x10 ⁻⁷	0.02	Antiviral. Upregulated in HIV+ compared to uninfected individuals ^[69] and associated with higher viremia among HIV+ individuals ^[70] . Associated with HIV-1 latency ^[71] . MX2, but not MX1, was shown to be capable of directly acting against HIV-1 virus ^[52, 53] .
rs74867009	chr12	25063777	LRMP	5'UTR ^f	0.06	-2.5	0.15	1.5x10 ⁻⁷	0.02	Delivers peptides to MHC class I molecules ^[58] . Differentially expressed in lymphatic tissue ^[86] and peripheral blood mononuclear cells (PBMCs) ^[87] in HIV+ individuals in response to ART initiation and cessation, respectively.
rs751660317	chr2	28786774	PPP1CB	Intronic	0.07	-1.8	0.11	4.1x10 ⁻⁶	0.03	Encodes a subunit of PP1. Depletion of PPP1CB was shown to reduce the antiviral potency of MX2 against HIV ^[54] . PP1 is involved in transcription of HIV-1; inhibition of PP1 inhibits HIV-1 transcription ^[88] .
rs776025235	chr6	51638799	PKHD1	Intronic	0.09	-1.7	0.09	2.5x10 ⁻⁵	0.17	Predicted to have a transmembrane-spanning domain and an immunoglobulin-like plexin-transcription-factor domain. We could not find a direct relationship with HIV in the literature.
N/A	chrX	41382082	DDX3X; NYX	Intergenic	0.18	-1.4	0.09	2.5x10 ⁻⁵	0.17	DDX3X regulates the production of type I IFNs ^[59] and encodes a protein that shuttles HIV-1 RNA from the nucleus to the cytoplasm. Is upregulated in HIV-infected cells; knockdown of DDX3X suppresses HIV-1 replication ^[89] . Also plays a key role in innate antimicrobial immunity ^[59] .
rs17506750	chr14	32599402	AKAP6	Intronic	0.07	-1.8	0.09	3.0x10 ⁻⁵	0.20	Binds to regulatory subunits of protein kinase A (PKA) and anchors them to the nuclear membrane. PKA activation has been associated with HIV-1 infection, T cell proliferation, and dysfunction ^[60, 61] .
European Ancestry Subgroup										
rs469390	chr21	41446003	MX1	Intron/Exon/5'UTR ^f	0.54	1.3	0.2	1.0x10 ⁻⁶	0.03	Antiviral. Upregulated in HIV+ compared to uninfected individuals ^[69] and associated with higher viremia among HIV+ individuals ^[70] . Associated with HIV-1 latency ^[71] . MX2, but not MX1, was shown to be capable of directly acting against HIV-1 virus ^[52, 53] .
N/A	chr11	59574427	OSBP	3'UTR ^f	0.15	-1.8	0.15	1.9x10 ⁻⁵	0.14	Oxysterol binding protein involved in intracellular lipid transport. Associated with in vitro HIV-1 infection of monocyte-derived macrophages (MDMs) from highly (HIV)-exposed seronegatives (HESNs) ^[62] . Is required for the replication of several human viruses such as hepatitis C (HCV), encephalomyocarditis (EMCV), Zika,

										etc. ^[90] .
HIV UNSPLICED RNA										
Full Cohort										
N/A	chr19	17374631	<i>PLVAP</i>	Intronic	0.1	-1.2	0.14	6.9×10^{-7}	0.21	Endothelial membrane protein, also controls the entry of lymphocytes and antigens into lymph nodes ^[63] . Located within 30kb of BST2, an interferon stimulated gene encoding the host restriction factor tetherin, which is known to inhibit HIV-1 release by directly tethering virions to cells ^[64] .

^a MAF = minor allele frequency in the study population.

^b Beta = estimate from multivariate linear mixed model adjusted for age, sex, nadir CD4+ T cell count, timing of ART initiation, and ancestry.


^c PVE = proportion of phenotype variance explained.

^d p = two sided p-value.

^e q = two-sided false discovery rate (FDR) Benjamini-Hochberg q-value.

^f UTR= untranslated region.

Figure 3. Gene set enrichment analysis (GSEA) was used to identify associations between genes, ordered by p-value under a host multi-SNP rare variant (minor allele frequency, MAF, <5%) analysis using HIV total DNA, unspliced RNA, RNA/DNA, and intact DNA as outcomes; and biological processes gene sets, in the total study population (a) and among European ancestry (b). Horizontal dashed lines represent the GSEA Benjamini-Hochberg false discovery rate (FDR) statistical significance level of $q=0.05$ (blue) and $q=0.025$ (grey), respectively.

