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Abstract 27 

Objective: Prior genomewide association studies have identified variation in MHC Class I 28 

alleles and CCR5∆32 as genetic predictors of viral control, especially in “elite” controllers, 29 

individuals who remain virally suppressed in the absence of therapy.  30 

Design: Cross-sectional genomewide association study. 31 

Methods: We analyzed custom whole exome sequencing and direct HLA typing from 202 ART-32 

suppressed HIV+ non-controllers in relation to four measures of the peripheral CD4+ T cell 33 

reservoir: HIV intact DNA, total (t)DNA, unspliced (us)RNA, and RNA/DNA. Linear mixed 34 

models were adjusted for potential covariates including age, sex, nadir CD4+ T cell count, pre-35 

ART HIV RNA, timing of ART initiation, and duration of ART suppression.  36 

Results: Previously reported “protective” host genetic mutations related to viral setpoint (e.g., 37 

among elite controllers) were found to predict smaller HIV reservoir size. The HLA “protective” 38 

B*57:01 was associated with significantly lower HIV usRNA (q=3.3x10-3), and among the largest 39 

subgroup, European ancestry individuals, the CCR5∆32 deletion was associated with smaller 40 

HIV tDNA (p=4.3x10-3) and usRNA (p=8.7x10-3). In addition, genomewide analysis identified 41 

several SNPs in MX1 (an interferon stimulated gene) that were significantly associated with HIV 42 

tDNA (q=0.02), and the direction of these associations paralleled MX1 gene eQTL expression.   43 

Conclusions: We observed a significant association between previously reported “protective” 44 

MHC class I alleles and CCR5∆32 with the HIV reservoir size in non-controllers. We also found 45 

a novel association between MX1 and HIV total DNA (in addition to other interferon signaling 46 

relevant genes, PPP1CB, DDX3X). These findings warrant further investigation in future 47 

validation studies.  48 
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Introduction 95 

Although antiretroviral therapy (ART) prolongs life, it does not fully restore health, as 96 

evidenced by persistently high levels of immune activation [1] and increased rates of non-AIDS-97 

related mortality [2] observed in HIV-infected compared to uninfected individuals [3-6]. Persistent 98 

HIV may contribute to ongoing inflammation, immune activation, and subsequent clinical outcomes, 99 

even during effective ART [5-8]. Identifying host genetic predictors of the HIV reservoir in ART-100 

suppressed individuals may shed light on novel (and potentially modifiable) targets to reduce 101 

the HIV reservoir and inflammation- and immune activation-associated adverse effects on long-102 

term morbidity and mortality. 103 

Most prior host genetic HIV studies have focused on identifying variants associated with 104 

viral setpoint, e.g., among “elite controllers”, HIV+ individuals able to maintain viral suppression 105 

in the absence of therapy[9-18]. These studies identified several key single nucleotide 106 

polymorphisms (SNPs) in the human Major Histocompatibility Complex (MHC), or human 107 

leukocyte antigen (HLA)-B and -C regions as well as deletions in the C-C chemokine receptor 108 

type 5 gene (CCR5∆32)[19-22] and a SNP in the HLA complex 5 (HCP5) gene[10]. However, 109 

whether residual viral control during treated HIV disease – i.e., “the HIV reservoir” – is 110 

influenced by the same genetic variants is unknown. We performed custom whole exome 111 

sequencing among HIV non-controllers in relation to four measures of the peripheral CD4+ T 112 

cell HIV reservoir: cell-associated “intact” DNA[23], total DNA, unspliced RNA, and RNA/DNA 113 

(Figure S1). We found that previously reported “protective” HLA-B*57:01[10, 17] and CCR5∆32[20, 114 

21, 24] mutation were associated with smaller HIV reservoir size. Genomewide analyses 115 

demonstrated several novel associations with SNPs in interferon signaling-associated genes 116 

(MX1, PPP1CB, DDX3X) and total HIV DNA reservoir size. Gene set enrichment analysis 117 

identified several interferon signaling-associated genes to significantly predict intact HIV DNA 118 

levels in the largest subgroup, Europeans.  119 
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 120 

Methods 121 

Study participants 122 

HIV+ non-controllers who initiated ART during chronic (>2 years) or early (<6 months) 123 

HIV infection were sampled from the UCSF SCOPE and Options cohorts (Table S1). Inclusion 124 

criteria were laboratory-confirmed HIV-1 infection, availability of 10x106 cryopreserved PBMCs, 125 

and plasma HIV RNA levels below the limit of assay quantification (<40 copies/mL) for at least 126 

24 months at the time of biospecimen collection. HIV “controllers,” individuals with a history of 127 

undetectable viral load in the absence of therapy for at least 1 year prior to the specimen 128 

collection date[25-27] , were excluded. The estimated date of detected infection (EDDI) was 129 

calculated for each study participant to determine recency of infection in relation to ART start 130 

date using detailed clinical HIV diagnostic test results, using the Infection Dating Tool 131 

(https://tools.incidence-estimation.org/idt/)[28]. Additional exclusion criteria were potential factors 132 

that might influence HIV reservoir quantification, including recent hospitalization, infection 133 

requiring antibiotics, vaccination, or exposure to immunomodulatory drugs in the six months 134 

prior to sampling timepoint. The research was approved by the UCSF Committee on Human 135 

Research (CHR), and all participants provided written informed consent. 136 

 137 

Custom whole exome host DNA sequencing 138 

 Genomic DNA was extracted (AllPrep Universal Kit, Qiagen, Hilden, Germany) from 139 

negatively selected CD4+ T cells from cryopreserved PBMCs (StemCell, Vancouver, Canada). 140 

Targeted exome capture was performed with custom addition of 50 Mb regulatory regions 141 

(Roche NimbleGen, Wilmington, MA), sequencing libraries were generated and then run on the 142 

Illumina HiSeq 2000 system (Illumina, San Diego, CA). The custom regions included 50 kb 143 

upstream and 50 kb downstream of 442 candidate genes related to cell cycle regulation, HIV 144 
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host restriction factors, and HIV-host integration, which were selected based on Gene Ontology (GO) 145 

Consortium experimental evidence codes (EXP, IDA, IPI, IMP, IGI, IEP) (Table S2).  146 

 147 

HLA typing 148 

Direct HLA typing was performed from extracted genomic DNA following the PCR-SSOP 149 

(sequence-specific oligonucleotide probing) typing and PCR-SBT (sequence based typing) 150 

protocols recommended by the 13th International Histocompatibility Workshop[29, 30]. Locus-151 

specific primers were used to amplify a total of 25 polymorphic exons of HLA-A & B (exons 1-4), 152 

C (exons 1-5), E (exon 3), DPA1 (exon 2), DPB1 (exons 2-4), DQA1 (exon 1-3), DQB1 (exons 153 

2-3), DRB1 (exons 2-3), and DRB3, 4, 5 (exon 2) genes with Fluidigm Access Array (Fluidigm, 154 

Singapore) and sequenced on an Illumina MiSeq sequencer (Illumina, San Diego, USA). HLA 155 

alleles and genotypes are called using the Omixon HLA Explore (version 2.0.0) software 156 

(Omixon, Budapest, Hungary). 157 

 158 

HIV reservoir quantification from peripheral CD4+ T cells 159 

The HIV reservoir largely consists of “defective” virus that harbors mutations prohibiting 160 

the production of infectious virus[31, 32]. There is currently no “gold standard” for measuring the 161 

HIV reservoir. Therefore, we estimated the frequency of HIV “intact” DNA using a ddPCR-based 162 

assay to quantify the size of the potentially “replication-competent” reservoir[23, 33, 34]. We also 163 

measured HIV total DNA (quantifies both defective and intact HIV) and unspliced RNA 164 

(quantifies full-length HIV RNA) using an HIV-1 LTR-specific quantitative polymerase chain 165 

reaction (qPCR) TaqMan assay[35]. DNA and RNA were simultaneously dual extracted using the 166 

AllPrep Universal Kit (Qiagen, Hilden, Germany). HIV tDNA and usRNA were then quantified in 167 

triplicate reaction wells using a 7-point standard curve (1–10,000 copies/second). To estimate 168 

the frequency of “intact” HIV DNA, five regions on the HIV genome were interrogated in a 169 
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multiplex ddPCR assay[23]. Droplet generation and thermocycling were performed according to 170 

manufacturer instructions. To determine potentially replication-competent (“intact”) HIV 171 

genomes, the number of positive droplets for 3 targets per assay were quantified. Two targets in 172 

a housekeeping gene (RPP30) were used to quantify all cells, and a target in the T cell receptor 173 

D gene (TRD) was used to identify all non-T cells, to normalize the HIV copy numbers/106 CD4+ 174 

T cells. A DNA shearing index (DSI) (using RPP30) was then used to calculate the estimated 175 

number of intact HIV genomes after correcting for shearing.  176 

 177 

Data processing and quality control 178 

The bcbio bioinformatics pipeline[36] was used to perform DNA alignment, which included the 179 

Burroughs-Welcome Aligner (BWA) tool[37] and the GenomeAnalysisToolkit (GATK) 180 

HaplotypeCaller joint variant calling method[38]. Reads were initially mapped to reference 181 

genome b37, then transposed to human genome assembly GRCh38 using Picard tools[39]. SNPs 182 

and insertions or deletions (indels) were then filtered by variant quality score recalibration 183 

(VQSR) using GATK[40]. The whole genome data analysis toolset, PLINK[41], was then used to 184 

validate the chromosomal sex of each individual, filter out individuals with excessive 185 

heterozygosity, and SNPS violating Hardy-Weinberg equilibrium (HWE) at a p-value 186 

threshold of 1x10-8. The VCFtools suite of functions were then used to summarize data, run 187 

calculations, convert data, and filter out data, and convert data, and filter out relevant 188 

SNPs[42].  189 

The GENESIS analysis pipeline[43] was used to analyze the relatedness and ancestries of the 190 

individuals in the study. All individuals were determined to be unrelated (kinship estimates 191 

<0.05) aside from one pair of siblings, so one sibling was randomly removed from the study. The 192 

remaining 199 unrelated individuals had diverse and mixed ancestries (Figure 1). We accounted 193 

for population stratification in the total population by (1) including a genetic effects term with a 194 
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genetic relatedness matrix (GRM), (2) by including the first five PCs as covariates in the 195 

multivariate models, and by (3) performing sensitivity analyses among the largest subgroup, 196 

Europeans.  197 

 198 

Single SNP common variant analyses 199 

Individual SNP associations were calculated with GENESIS "assocTestSingle". For HIV 200 

total DNA, unspliced RNA, RNA/DNA, and intact DNA, respectively, the outcome variables were: 201 

log10((DNA copies/106 CD4+ T cells + offset)); log10((RNA copies/106 CD4+ T cells + offset)); 202 

log10((RNA copies/106 CD4+ T cells + offset) / (DNA copies/106 CD4+ T cells + offset)); 203 

log10((Intact DNA copies/106 CD4+ T cells + offset)). The offsets for RNA and DNA counts 204 

were given by the smallest nonzero measured values of RNA and DNA, respectively, to avoid 205 

divergences in the logarithm. Final covariates in multivariate models were sex, timing of ART 206 

initiation (Figure S2), nadir CD4+ T cell count (Figure S3), and the first 5 PCs. Pre-ART 207 

viral load (Figure S4) and duration of ART suppression (Figure S5) were not associated 208 

with HIV reservoir size nor improved the fit of the final models. A Gaussian link function was 209 

used, and a GRM was included with results filtered for SNPs with MAF ≥5%. SNP 210 

annotations were then obtained using Annovar[44]. 211 

 212 

Gene-based rare variant analyses 213 

Gene level multi-SNP associations were calculated with the GENESIS software package 214 

"assocTestAggregate" function implementing the variant Set Mixed Model Association Test 215 

(SMMAT)[45] for alleles with MAF<5% with weights following the beta distribution parameters of 216 

a1=1 and a2=25[46]. The same covariates, GRM, and regression family were used as for the 217 

individual SNP associations. Outcomes were quantile-normalized to follow a normal 218 

distribution. Gene regions were defined according to UCSC hg38 assembly[47].  219 
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Gene set enrichment analyses (GSEA) were performed using the Molecular Signatures 220 

Database (MSigDB)[48, 49]. For all gene set analyses, introns and flanking regions of ±50kb were 221 

included in the SMMAT p-value calculations for each gene to account for potential regulatory 222 

regions and SNPs with smaller effects. GSEAPreranked was run with default parameters on the 223 

SMMAT gene-level −log10(P). 224 

 225 

HLA analysis 226 

Multivariate regression models were fit using the python statsmodels OLS function[50] with 227 

covariates for sex, timing of ART initiation, nadir CD4+ T cell count, and 3 genetic PCs.  228 

 229 

Results 230 

Study population 231 

A total of 202 HIV-infected ART-suppressed individuals from the UCSF SCOPE and 232 

Options HIV+ cohorts were included in the study. Consistent with our San Francisco-based HIV 233 

patient population, participants were mostly male (94%) with median age of 46 (Table S1). 234 

Participants had a median of 5.1 years of ART suppression, a median nadir CD4+ T cell 235 

count=341 cells/mm3, and pre-ART HIV RNA=5.1 log10copies/mL. The majority of study 236 

participants reported White/European American ethnicity (63%), and the remainder reported 237 

Black/African American (12%), Hispanic/Latino (11%), Mixed Ethnicity/Multiracial (6%), Asian 238 

(4%), Pacific Islander (1.5%), Native American (<1%), and Middle Eastern (<1%) ethnicities. 239 

Most study participants (N=147) had highly detailed clinical test results to be able to calculate 240 

their estimated date of detected infection (EDDI), but a subset of 55 study participants only had 241 

self-reported data regarding date of ART initiation in relation to date of HIV seroconversion. For 242 

these individuals (all of whom initiated ART prior to widespread guidelines for initiating ART at 243 

the time of HIV diagnosis[51]), we mean-imputed values assuming ART initiation starting after 2 244 
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years from infection. This estimation is supported by prior data from our cohort and others 245 

demonstrating that the HIV reservoir size is relatively stable after 2 years of infection[52-56]. 246 

Overall results for all final models were unchanged when performing sensitivity analyses 247 

excluding those with imputed values for timing of ART initiation. 248 

 249 

Earlier ART initiation and lower nadir CD4+ T cell count were associated with smaller HIV 250 

reservoir, and HIV reservoir measures were correlated with each other 251 

Consistent with prior work[32, 57, 58], earlier ART initiation was associated with significantly 252 

smaller HIV reservoirs (tDNA, usRNA, intact DNA) (Figure S2), while lower nadir CD4+ T cell 253 

count was associated with larger HIV reservoir (tDNA, usRNA, intact DNA, RNA/DNA) (Figure 254 

S3). Pre-ART viral load (Figure S4) and duration of ART suppression (Figure S5) were not 255 

associated with HIV reservoir size. Although usRNA was correlated with both tDNA intact DNA 256 

(Figure S6a-b), tDNA was not associated with intact DNA (Figure S6c). 257 

 258 

HLA “protective” B*57:01 and “risk” C*07 alleles were associated with smaller and larger 259 

HIV reservoir sizes, respectively  260 

Using a Benjamini-Hochberg false discovery rate (FDR) adjusted q<0.05 threshold[59], we 261 

examined previously reported protective (B*57:01, B*27:05, B*14, C*08:02, B*52, and A*25) 262 

and risk (B*35 and C*07) alleles for viral setpoint in untreated HIV+ controllers[17] and found a 263 

“protective” association with HLA-B*57:01 and usRNA (β=-1.5, q=3.3x10-3), with a similar trend 264 

observed with tDNA (β=-1.6, q=0.13). Similarly, previously reported HLA-C*07 "risk” allele also 265 

demonstrated a “risk” trend (larger reservoir size) in our European subgroup (tDNA: β=0.76, 266 

q=0.072, and usRNA: β=0.41, q=0.10). Further analyses employing a composite HLA variable 267 

did not identify statistically significant associations (Tables S3-S6). 268 

 269 
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CCR5�32 was associated with smaller HIV reservoir size 270 

 Deletions in the C-C chemokine receptor type 5 gene (CCR5∆32) have previously been 271 

shown to be associated with HIV viral control in the absence of therapy[20, 21, 24]. Among 272 

individuals of European ancestry (where CCR5∆32 is more commonly observed), the presence 273 

CCR5∆32 was associated with smaller HIV reservoir size (tDNA: β=-1.3, p=4.3x10-3; usRNA: 274 

β=-0.78, p=8.7x10-3), with a similar trend observed in the total population (tDNA: β=-0.86, 275 

p=0.045; usRNA: β=-0.41, p=0.12), In addition, the previously reported long noncoding RNA 276 

variant which regulates differential CCR5 expression (rs1015164)[22], was found to be 277 

significantly associated with smaller HIV reservoir size in Europeans (usRNA: β=-0.39, 278 

p=0.027), which reached near-statistical significance in the total population as well (usRNA: β=-279 

0.30, p=0.051),  280 

 281 

Genomewide association analysis identified several SNPs in MX1 associated with larger 282 

and smaller HIV reservoir sizes, paralleling predicted MX1 gene expression 283 

A total of 1,279,156 variants from 23,733 genes were included in the final analysis from 284 

199 study participants whose sequencing data passed quality control metrics (Figure S7). Final 285 

models demonstrated lambda genomic inflation factor[60] values close to 1, supporting adequate 286 

adjustment for possible bias due to population stratification (ancestry) (Figure 2). 287 

 The strongest genomewide associations were observed with HIV total DNA reservoir 288 

measures (Tables 1 and S7).  In particular, 44 SNPs in linkage disequilbrium (LD) in the human 289 

interferon-inducible myxovirus resistance 1 gene, MX1, also known as MXA[61, 62] were significantly 290 

associated with tDNA (all q<0.03). MX1 is closely related to MX2 (MXB), which encodes a well-291 

known potent host restriction factor that inhibits HIV-1 infection[63-65]. We then compared the 292 

directionality of the SNP hits with previously reported whole blood eQTL data at these loci[66-68] 293 

and found the MX1 SNPs associated with larger total HIV DNA reservoir sizes seemed to be in 294 
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eQTL regions predicting increased MX1 expression and vice versa (Table S7). We also 295 

observed two additional SNPs significantly associated with HIV tDNA, the first in 296 

PPP1CB (encodes Protein Phosphatase 1 Catalytic Subunit Beta, which reduces antiviral 297 

potency of MX2 against HIV-1[65], q=0.03) and the second in LRMP (encodes Lymphoid-298 

Restricted Membrane Protein, which plays a critical role in the delivery of peptides to MHC class 299 

I molecules[69], q=0.03) (Table 1). Additional SNPs that showed non-statistically significant 300 

trends with HIV tDNA were in DDX3X (DEAD-box helicase 3 X-linked, regulates the production 301 

of type I interferons[70], q=0.17) and AKAP6 (A-Kinase Anchoring Protein 6, binds to protein 302 

kinase A regulatory subunits, a critical signaling pathway associated with HIV latency reversal 303 

and T cell proliferation[71, 72], q=0.20).  Among Europeans, OSBP (oxysterol-binding protein, 304 

associated with HIV-1 infection of monocyte-derived macrophages from highly-exposed 305 

seronegative individuals[73], q=0.14), showed a non-significant trend with HIV tDNA.  306 

Although not statistically significant, a SNP in PLAVP (protein regulating lymphocyte 307 

migration into lymph nodes[74], q=0.21), lying <30 kilobases upstream of BST2 (tetherin, an HIV 308 

host restriction factor[75]) demonstrated a non-significant trend with usRNA (Table 1). No SNPs 309 

met statistical significance in association with HIV intact DNA or RNA/DNA ratio. 310 

 311 

Gene set enrichment analysis demonstrated several interferon signaling-associated 312 

genes associated with intact HIV DNA 313 

We then performed multi-SNP analyses to identify genes associated with HIV reservoir size. 314 

GSEA identified several interferon signaling-associated genes (e.g., IFITM1, IFITM3, APCS, 315 

IFITM2, FCN3, FCN1, GSN, TRIM59, SNX3, TRIM25, PTX3, TRIM11, TRIM8, MID2, TRIM5, 316 

IFNA2) in the gene set called “Negative Regulation of Viral Entry into Host Cell,” to significantly 317 

predict HIV intact DNA (q=0.03) (Figure 3, Table S8). Several other gene sets showed non-318 

significant trends with HIV reservoir size (Figure 3, Table S8), including gene sets related to 319 

interferon-induced STAT signaling and intact DNA, glycosylation and tDNA, and retroviral 320 
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transcription and usRNA. 321 

 322 

Discussion 323 

HIV eradication remains a critical goal in reducing long-term morbidity and mortality 324 

among all PLWH since life-long viral suppression does not appear to fully restore health, as 325 

evidenced by persistently high levels of immune activation[2] and high rates of mortality[8] in HIV-326 

infected compared to healthy individuals. ART is also expensive, carries long-term risk of 327 

toxicity, and poses major challenges in being able to be accessible to a global population for 328 

decades[76]. HIV cure clinical trials to date have yielded disappointing results[77-82]. Novel 329 

approaches are needed to better target potential immunologic pathways that help maintain the 330 

HIV reservoir.  331 

 Our study is the first host genomic study to evaluate several measures of the peripheral 332 

HIV reservoir in HIV+ non-controllers, including quantification of HIV intact DNA, an estimate of 333 

the putative “replication-competent” reservoir by droplet digital PCR[23, 33, 83]. We also performed 334 

direct HLA typing of 25 polymorphic exons of HLA-A & B, C, E, DPA1, DPB1, DQA1, DQB1, 335 

DRB1, and DRB3,4,5. We performed individual SNP and gene-based analyses including 336 

detailed clinical covariate data such as timing of ART initiation, one of the strongest clinical 337 

predictors of HIV reservoir size, which enhanced the fit of our final multivariate models, 338 

potentially allowing us to detect otherwise difficult-to-discern genetic effects. Unlike prior 339 

genomic studies that have primarily focused on the ~1% of the HIV+ population able to 340 

suppress virus in the absence of therapy (“elite controllers”), we focused on HIV+ ART-341 

suppressed non-controllers, which make up the majority of people living with HIV (PLWH). We 342 

found that prior significant HLA and CCR5∆32 genetic associations predicting viral setpoint 343 

among HIV+ elite controllers[10, 19-22]  in our study, predicted the HIV reservoir size. We also 344 

identified several additional (uninvestigated) host genetic variants associated with the HIV 345 
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reservoir (signals that might have been attenuated in a study population enriched for “stronger” 346 

genetic effects, such as HLA and/or CCR5∆32).   347 

 The most striking finding from our SNP-based analysis was the identification of several 348 

SNPs in MX1, which encodes for a potent antiviral factor which inhibit replication of several RNA 349 

viruses, including influenza A and measles, and DNA viruses, such as hepatitis B[84]. MX1 350 

expression has also been shown to be upregulated in HIV+ vs. HIV-uninfected individuals[85], in 351 

HIV+ individuals with high vs. low viremia[86], and with HIV-1 latency in latently-infected cell lines[87]. 352 

Genomewide (i.e., DNA-based) results cannot directly infer directionality of gene function 353 

without further functional studies. However, for our top hit SNPs in MX1, we compared the 354 

directionality of the SNP hits with previously reported whole blood eQTL data at these loci[66-68] 355 

and found that the MX1 SNPs associated with larger total HIV DNA reservoir sizes seemed to 356 

be in eQTL regions predicting increased MX1 expression and vice versa. However, determining 357 

whether a single variant is responsible for both genomewide and eQTL signals in a locus 358 

can be challenging. Nonetheless, as a further query, we performed colocalization analysis, 359 

an in silico method to integrate GWAS and eQTL results to calculate a probability of 360 

whether a SNP is causal for both an eQTL and disease trait[88], but only found a 1% 361 

probability that the MX1 top SNPs are causally linked to both gene expression and HIV 362 

reservoir size. Gene-based analyses also identified several interferon signaling-associated 363 

genes (within the “negative regulation of viral entry into host cell” gene set) that significantly 364 

predict intact HIV DNA (Table S8), but as these genes were not in eQTL regions, the putative 365 

directionality of these associations could not be further queried. Additional functional genomic 366 

validation, e.g., CRISPR-Cas9 editing of primary human T cells[89], is needed to further 367 

investigate the potential role of MX1 (and other interferon signaling genes) in HIV 368 

persistence. 369 

We also found that the previously reported “protective” HLA-B*57:01 and CCR5∆32 370 

mutation were associated with smaller HIV reservoir size in our study. These findings suggest 371 
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that immune pathways that control viral setpoint during untreated disease may also play a role 372 

in the maintenance of the HIV reservoir during treated infection. It is also possible that identified 373 

genetic variants may have variable “penetrance”[90] – e.g., the genetic variants that may drive 374 

“elite control” might similarly, but less obviously, influence HIV persistence in treated non-375 

controllers.  376 

 There are limitations to our study that deserve mention. Although the HIV reservoir has 377 

been shown to be relatively stable over time[58, 91, 92], our cross-sectional design provides a 378 

“snapshot” of the HIV reservoir after a median of 5.1 years of ART suppression and may not 379 

reflect genetic associations with reservoir decay. Second, as is characteristic of many U.S.-380 

based HIV+ cohorts, our San Francisco-based population consisted mostly of males of 381 

European ancestry. Population stratification is a critically important potential bias in any 382 

multiethnic genomic study. Thus, we approached this in least three ways using well-established 383 

methods to adjust for population stratification bias[43, 93]: first by calculating principal components 384 

and including these as covariates in the final models, second by including a genetic relatedness 385 

matrix (GRM) in the models, and finally by performing stratified analyses, focusing on the 386 

largest homogenous subpopulation (individuals with European ancestry). Overall, the findings 387 

observed in the European ancestral group did not overlap with the non-European (e.g., African-388 

American) subgroup (Table S9). Thus, it is critical that these results be replicated in larger 389 

studies, especially those including women and individuals from different ethnic backgrounds. 390 

Third, the majority of the HIV reservoir persists in lymphoid tissues, not in the periphery[94]. 391 

Although recent data suggests that the tissue compartment largely reflects (and is the likely 392 

source of) the peripheral compartment[52, 95, 96], it will be important to determine whether the 393 

results from our study are generalizable to the tissue HIV reservoir. Fourth, intact HIV DNA 394 

represents the putative replication-competent reservoir. Although we observed several genes 395 

that were significantly associated with intact HIV DNA in the gene set enrichment analyses, 396 

individual genes did not meet statistical significance. This may be due to the challenge in 397 
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estimate the frequency of intact and/or replication-competent HIV when in fact, the majority of 398 

the HIV reservoir consists of defective HIV. For these reasons, quantitative outgrowth assays 399 

and assays to measure intact HIV DNA often result in many low/ zero values compared to total 400 

HIV DNA, which has a larger dynamic range[83, 97, 98]. In our study, HIV intact DNA was 401 

undetectable in over half of our measured samples, while for example, total DNA was 402 

measurable in 95% of samples (Figure S6).  With so many samples below the limit of detection 403 

for intact DNA, the statistical power to detect SNP associations is much lower for this assay 404 

than for the other HIV reservoir assays included in our study. However, when we were able to 405 

enhance the ability to detect an association by performing the gene set enrichment analyses 406 

(essentially, a method that aggregates several rare variants into immunologically relevant “gene 407 

sets” to test for an association with HIV reservoir size), we observed several statistically 408 

significant associations with HIV intact DNA in the total population (STAT signaling, critical for 409 

regulating the innate and adaptive immune responses) and among individuals of European 410 

ancestry, the largest subgroup with the greatest statistical power (“negative regulation of viral 411 

entry into host cell” – which included several interferon signaling genes) (Figure 3, Table S8).  412 

Our findings are in contrast to two recent genomewide studies of the HIV reservoir, 413 

which did not identify an association with MX1, HLA-B*57:01, or CCR5∆32, nor reported similar 414 

findings to each other[99, 100]. The first study performed GWAS microarray genotyping from 797 415 

HIV+ treated individuals (194 with whole exome sequencing data), included several longitudinal 416 

measures of HIV total DNA from peripheral blood mononuclear cells (PBMCs), and imputed 417 

HLA alleles (from genotypes), but did not observe any significant associations with HLA alleles, 418 

CCR5∆32, or SNPs[99]. The second study included 207 HIV+ treated individuals and performed 419 

GWAS microarray (no HLA or CCR5∆32 typing) and included measures of HIV tDNA and 420 

usRNA from peripheral CD4+ T cells. They reported a significant association between tDNA and 421 

a SNP in PTDSS2 (phosphatidylserine synthase 2) at genomewide p<5x10-8, which was not 422 

statistically significant in our analysis.[100] These differences highlight a particular challenge in 423 
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performing genomic studies, let alone for studies of the HIV reservoir size (which can be 424 

measured in several different ways as total HIV DNA, HIV unspliced RNA, HIV intact DNA, etc.) 425 

from different biospecimens (PBMCs, CD4+ T cells). Add to this the use of different study 426 

designs (untreated HIV+ controllers, treated HIV+ non-controllers – and those treated during 427 

chronic versus acute infection), and analytic methods (multivariate models with or without key 428 

clinical covariates such as timing of ART initiation, nadir CD4+ T cell count, etc.) and a lack of 429 

understanding regarding the exact mechanism by which the genetic code is expressed from 430 

DNA to RNA to protein (which also varies by cell type and within different tissues[101]) – then 431 

differences between these three small studies might fall within the expected range of variability. 432 

Given the polygenic nature of the host immune response, the contribution of host genetics in 433 

predicting HIV reservoir size might vary widely, leading to variable results when comparing 434 

small genomic studies. Prior genomewide association studies of HIV progression during 435 

untreated disease explain ~13% of the variability in viral load, with strong genetic predictors 436 

such as HLA and CCR5∆32[102]. Using a tool for genome-wide complex trait analysis 437 

(GCTA)[103], we calculated the heritability of our total HIV DNA phenotype to be up to 0.78, but 438 

the error bars were large (+/-0.94). This suggests that unknown host genetic loci might play a 439 

significant role in determining the size of the HIV reservoir – but that there is a high degree of 440 

variability in that estimate. For these reasons, we are careful to describe our study results within 441 

the limits of a genomewide association study identifying potential novel DNA variants related to 442 

HIV persistence (e.g., only highlighting MX1 as it lies with an eQTL region but the others for 443 

which there are no functional data, we do not) and again emphasize the need for functional 444 

studies to pursue the novel hypotheses identified from our discovery-based study. Our findings 445 

may vary from the two prior published studies due to several differences in (1) study design 446 

(cross-sectional, only including HIV+ ART-suppressed non-controllers), (2) statistical modeling 447 

(detailed clinical covariates for timing of ART initiation, nadir CD4+ T cell count, etc.), (3) HIV 448 

reservoir quantification (e.g., HIV total DNA, unspliced RNA, and intact DNA), (4) sampling 449 
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(CD4+ T cells, not bulk PBMCs), (5) host genomic assays (custom whole exome sequencing 450 

instead of GWAS microarray, and direct HLA typing instead of imputed HLA alleles), and (6) 451 

approach to handling potential population stratification bias (at least three methods - principal 452 

component analysis, genetic related matrix methods, and sensitivity analyses restricted to 453 

ancestral subgroups).  454 

Using carefully selected ART-suppressed HIV non-controllers, we performed custom 455 

whole exome sequencing and direct HLA typing, quantified several measures of the peripheral 456 

HIV reservoir, and fit multivariate models adjusted for clinical and demographic covariates that 457 

influenced the size of the HIV reservoir, and found that the previously reported “protective” HLA-458 

B*57:01 and the favorable CCR5∆32 (during untreated disease) were associated with smaller 459 

HIV reservoir size. Genomewide analyses identified several SNPs in MX1, a type I interferon 460 

stimulated gene, were significantly associated with total HIV DNA, which correlated with 461 

predicted MX1 eQTL gene expression, and HIV intact DNA were associated with several 462 

interferon signaling-associated genes in gene set enrichment analyses. Our findings support a 463 

surprising role of the innate immune response (e.g., genes involved in interferon signaling[104-464 

107]) in maintaining the HIV reservoir during long-term suppressive ART. These findings support 465 

recent studies demonstrating that measures of cell-associated HIV RNA correlate with time to 466 

viral rebound[106, 108-111]. Perhaps host genes driving immediate antiviral responses play a major 467 

role in maintaining the HIV reservoir if the “transcriptionally active” reservoir is indeed a major 468 

source of the “rebound-competent” reservoir.” Additional studies are needed to functionally 469 

validate these findings, especially among more diverse patient populations, including female 470 

and non-European HIV+ patients. 471 

   472 
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FIGURE LEGENDS 473 

 474 

Figure 1. Genetic principal component analysis (PCA) plots of the full study population (with 475 

legend with self-identified race/ethnicity) (a) and of the largest homogenous ancestral 476 

population, males of mostly European ancestry (b).  Recalculated European ancestry male PCA 477 

plot is shown in panel b, from lower left dashed box in panel a. 478 

 479 

Figure 2. Quantile-quantile (QQ) plots (a, c) and Manhattan plots (b, d) of the total study 480 

population (a-b) and of European ancestry (c-d). QQ plots: the blue line represents the expected 481 

-log10 p-values while the black lines denote the expected error bars. Manhattan plots: the 482 

horizontal black line delineates a traditional conservative genome-wide significance of p-value of 483 

5x10−8, while less conservative Benjamini-Hochberg false discovery rate (FDR) statistical 484 

significance of q=0.05 is shown as the horizontal blue line (q=0.25 is shown in grey). 485 

 486 

Figure 3. Gene set enrichment analysis (GSEA) was used to identify associations between 487 

genes, ordered by p-value under a host multi-SNP rare variant (minor allele frequency, MAF, 488 

<5%) analysis using HIV total DNA, unspliced RNA, RNA/DNA, and intact DNA as outcomes; 489 

and biological processes gene sets, in the total study population (a) and among European 490 

ancestry (b). Horizontal dashed lines represent the GSEA Benjamini-Hochberg false discovery 491 

rate (FDR) statistical significance level of q=0.05 (blue) and q=0.025 (grey), respectively. 492 
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Figure 1. Genetic principal component analysis (PCA) plots of the full study population (with legend with self-identified race/ethnicity) (a) and

largest homogenous ancestral population, males of mostly European ancestry (b).  Recalculated European ancestry male PCA plot is shown

panel b, from lower left dashed box in panel a. 
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Figure 2. Quantile-quantile (QQ) plots (a, c) and Manhattan plots (b, d) of the total study population (a-b) and of European ancestry (c-d). QQ

the blue line represents the expected -log10 p-values while the black lines denote the expected error bars. Manhattan plots: the horizontal bl

delineates a traditional conservative genome-wide significance of p-value of 5x10−8, while a less conservative Benjamini-Hochberg false disc

rate (FDR) statistical significance of q=0.05 is shown as the horizontal blue line (q=0.25 is shown in grey). 
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Table 1. Single nucleotide polymorphisms (SNPs) associated with HIV total DNA (upper table) and unspliced RNA (lower table) in the total study 

population. Two additional SNPs were significantly associated with total HIV DNA in the subpopulation of European ancestry (middle table). For 

genes in which there were several SNPs in linkage disequilibrium (LD), the top SNP for each gene is shown, with the full list of SNPs shown in 

Table S7. 

SNP Chrom Position Nearest 
Gene 

Gene 
Location 

MAFa Betab PVEc pd qe Description 

HIV TOTAL DNA 

Full Cohort 

rs10670165 chr21 41421873 MX1 Intron/Exon/ 
5’UTRf 

0.45 -1.2 0.15 1.3x10-7 0.02 Antiviral. Upregulated in HIV+ compared to uninfected 
individuals[69] and associated with higher viremia among 
HIV+ individuals[70].  Associated with HIV-1 latency[71].  
MX2, but not MX1, was shown to be capable of directly 
acting against HIV-1 virus[52, 53]. 

rs74867009 chr12 25063777 LRMP 5’UTRf 0.06 -2.5 0.15 1.5x10-7 0.02 Delivers peptides to MHC class I molecules[58]. 
Differentially expressed in lymphatic tissue[86] and 
peripheral blood mononuclear cells (PBMCs)[87] in HIV+ 
individuals in response to ART initiation and cessation, 
respectively. 

rs751660317 chr2 28786774 PPP1CB Intronic 0.07 -1.8 0.11 4.1x10-6 0.03 Encodes a subunit of PP1. Depletion of PPP1CB was 
shown to reduce the antiviral potency of MX2 against 
HIV[54]. PP1 is involved in transcription of HIV-1; 
inhibition of PP1 inhibits HIV-1 transcription[88]. 

rs776025235 chr6 51638799 PKHD1 Intronic 0.09 -1.7 0.09 2.5x10-5 0.17 Predicted to have a transmembrane-spanning domain 
and an immunoglobulin-like plexin-transcription-factor 
domain. We could not find a direct relationship with HIV 
in the literature. 

N/A chrX 41382082 DDX3X; 
NYX 

Intergenic 0.18 -1.4 0.09 2.5x10-5 0.17 DDX3X regulates the production of type I IFNs[59] and 
encodes a protein that shuttles HIV-1 RNA from the 
nucleus to the cytoplasm. Is upregulated in HIV-infected 
cells; knockdown of DDX3X suppresses HIV-1 
replication[89]. Also plays a key role in innate 
antimicrobial immunity[59]. 

rs17506750 chr14 32599402 AKAP6 Intronic 0.07 -1.8 0.09 3.0x10-5 0.20 Binds to regulatory subunits of protein kinase A (PKA) 
and anchors them to the nuclear membrane. PKA 
activation has been associated with HIV-1 infection, T 
cell proliferation, and dysfunction[60, 61]. 

European Ancestry Subgroup 

rs469390 chr21 41446003 MX1 Intron/Exon/ 
5’UTRf 

0.54 1.3 0.2 1.0x10-6 0.03 Antiviral. Upregulated in HIV+ compared to uninfected 
individuals[69] and associated with higher viremia among 
HIV+ individuals[70].  Associated with HIV-1 latency[71]. 
MX2, but not MX1, was shown to be capable of directly 
acting against HIV-1 virus[52, 53]. 

N/A chr11 59574427 OSBP 3’UTRf 0.15 -1.8 0.15 1.9x10-5 0.14 Oxysterol binding protein involved in intracellular lipid 
transport. Associated with in vitro HIV-1 infection of 
monocyte-derived macrophages (MDMs) from highly 
(HIV)-exposed seronegatives (HESNs)[62]. Is required for 
the replication of several human viruses such as 
hepatitis C (HCV), encephalomyocarditis (EMCV), Zika, 
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etc.[90]. 

HIV UNSPLICED RNA 

Full Cohort 

N/A chr19 17374631 PLVAP Intronic 0.1 -1.2 0.14 6.9x10-7 0.21 Endothelial membrane protein, also controls the entry of 
lymphocytes and antigens into lymph nodes[63]. Located 
within 30kb of BST2, an interferon stimulated gene 
encoding the host restriction factor tetherin, which is 
known to inhibit HIV-1 release by directly tethering 
virions to cells[64]. 

a MAF = minor allele frequency in the study population. 
b Beta = estimate from multivariate linear mixed model adjusted for age, sex, nadir CD4+ T cell count, timing of ART initiation, and ancestry.  
c PVE = proportion of phenotype variance explained. 
d p = two sided p-value. 
e q = two-sided false discovery rate (FDR) Benjamini-Hochberg q-value.  
f UTR= untranslated region. 
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Figure 3. Gene set enrichment analysis (GSEA) was used to identify associations between genes, ordered by p-value under a host multi-SN

variant (minor allele frequency, MAF, <5%) analysis using HIV total DNA, unspliced RNA, RNA/DNA, and intact DNA as outcomes; and biolo

processes gene sets, in the total study population (a) and among European ancestry (b). Horizontal dashed lines represent the GSEA Benjam

Hochberg false discovery rate (FDR) statistical significance level of q=0.05 (blue) and q=0.025 (grey), respectively. 
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