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Abstract

Objective: Prior genomewide association studies have identified variation in MHC Class |
alleles and CCR5A32 as genetic predictors of viral control, especially in “elite” controllers,
individuals who remain virally suppressed in the absence of therapy.

Design: Cross-sectional genomewide association study.

Methods: We analyzed custom whole exome sequencing and direct HLA typing from 202 ART-
suppressed HIV+ non-controllers in relation to four measures of the peripheral CD4+ T cell
reservoir: HIV intact DNA, total (t)DNA, unspliced (us)RNA, and RNA/DNA. Linear mixed
models were adjusted for potential covariates including age, sex, nadir CD4+ T cell count, pre-
ART HIV RNA, timing of ART initiation, and duration of ART suppression.

Results: Previously reported “protective” host genetic mutations related to viral setpoint (e.g.,
among elite controllers) were found to predict smaller HIV reservoir size. The HLA “protective”
B*57:01 was associated with significantly lower HIV usRNA (q=3.3x107%), and among the largest
subgroup, European ancestry individuals, the CCR5A32 deletion was associated with smaller
HIV tDNA (p=4.3x107) and usRNA (p=8.7x10®). In addition, genomewide analysis identified
several SNPs in MX1 (an interferon stimulated gene) that were significantly associated with HIV
tDNA (g=0.02), and the direction of these associations paralleled MX1 gene eQTL expression.
Conclusions: We observed a significant association between previously reported “protective”
MHC class | alleles and CCR5A32 with the HIV reservoir size in non-controllers. We also found
a novel association between MX1 and HIV total DNA (in addition to other interferon signaling
relevant genes, PPP1CB, DDX3X). These findings warrant further investigation in future

validation studies.
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95 Introduction

96 Although antiretroviral therapy (ART) prolongs life, it does not fully restore health, as
97 evidenced by persistently high levels of immune activation ¥ and increased rates of non-AIDS-
98 related mortality ¥ observed in HiV-infected compared to uninfected individuals ®®. Persistent
99  HIV may contribute to ongoing inflammation, immune activation, and subsequent clinical outcomes,
100  even during effective ART . |dentifying host genetic predictors of the HIV reservoir in ART-
101  suppressed individuals may shed light on novel (and potentially modifiable) targets to reduce
102 the HIV reservoir and inflammation- and immune activation-associated adverse effects on long-

103  term morbidity and mortality.

104 Most prior host genetic HIV studies have focused on identifying variants associated with
105 viral setpoint, e.g., among “elite controllers”, HIV+ individuals able to maintain viral suppression
106 in the absence of therapy®'®. These studies identified several key single nucleotide
107  polymorphisms (SNPs) in the human Major Histocompatibility Complex (MHC), or human
108 leukocyte antigen (HLA)-B and -C regions as well as deletions in the C-C chemokine receptor
109 type 5 gene (CCR5A32)"*??l and a SNP in the HLA complex 5 (HCP5) gene®®. However,
110  whether residual viral control during treated HIV disease - i.e., “the HIV reservoir” — is
111  influenced by the same genetic variants is unknown. We performed custom whole exome
112 sequencing among HIV non-controllers in relation to four measures of the peripheral CD4+ T
113 cell HIV reservoir: cell-associated “intact” DNA[23], total DNA, unspliced RNA, and RNA/DNA
114  (Figure S1). We found that previously reported “protective” HLA-B*57:01™* 1 and CCR5A32[%
115 2 2 mutation were associated with smaller HIV reservoir size. Genomewide analyses
116  demonstrated several novel associations with SNPs in interferon signaling-associated genes
117  (MX1, PPP1CB, DDX3X) and total HIV DNA reservoir size. Gene set enrichment analysis
118 identified several interferon signaling-associated genes to significantly predict intact HIV DNA

119 levels in the largest subgroup, Europeans.
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120
121 Methods

122 Study participants

123 HIV+ non-controllers who initiated ART during chronic (>2 years) or early (<6 months)
124 HIV infection were sampled from the UCSF SCOPE and Options cohorts (Table S1). Inclusion
125  criteria were laboratory-confirmed HIV-1 infection, availability of 10x10° cryopreserved PBMCs,
126  and plasma HIV RNA levels below the limit of assay quantification (<40 copies/mL) for at least
127 24 months at the time of biospecimen collection. HIV “controllers,” individuals with a history of
128 undetectable viral load in the absence of therapy for at least 1 year prior to the specimen

129  collection date!?%"

, were excluded. The estimated date of detected infection (EDDI) was
130 calculated for each study participant to determine recency of infection in relation to ART start
131 date using detailed clinical HIV diagnostic test results, using the Infection Dating Tool
132 (https://tools.incidence-estimation.org/idt/)??®. Additional exclusion criteria were potential factors
133 that might influence HIV reservoir quantification, including recent hospitalization, infection
134  requiring antibiotics, vaccination, or exposure to immunomodulatory drugs in the six months
135 prior to sampling timepoint. The research was approved by the UCSF Committee on Human
136 Research (CHR), and all participants provided written informed consent.

137

138  Custom whole exome host DNA sequencing

139 Genomic DNA was extracted (AllPrep Universal Kit, Qiagen, Hilden, Germany) from
140 negatively selected CD4+ T cells from cryopreserved PBMCs (StemCell, Vancouver, Canada).
141  Targeted exome capture was performed with custom addition of 50 Mb regulatory regions
142 (Roche NimbleGen, Wilmington, MA), sequencing libraries were generated and then run on the

143 Illlumina HiSeq 2000 system (lllumina, San Diego, CA). The custom regions included 50 kb

144  upstream and 50 kb downstream of 442 candidate genes related to cell cycle regulation, HIV
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145  host restriction factors, and HIV-host integration, which were selected based on Gene Ontology (GO)
146  Consortium experimental evidence codes (EXP, IDA, IPI, IMP, IGI, IEP) (Table S2).

147

148  HLAtyping

149 Direct HLA typing was performed from extracted genomic DNA following the PCR-SSOP
150 (sequence-specific oligonucleotide probing) typing and PCR-SBT (sequence based typing)

29,301 | ocus-

151  protocols recommended by the 13th International Histocompatibility Workshop
152  specific primers were used to amplify a total of 25 polymorphic exons of HLA-A & B (exons 1-4),
153 C (exons 1-5), E (exon 3), DPA1 (exon 2), DPB1 (exons 2-4), DQAL (exon 1-3), DQB1 (exons
154  2-3), DRBL1 (exons 2-3), and DRB3, 4, 5 (exon 2) genes with Fluidigm Access Array (Fluidigm,
155  Singapore) and sequenced on an lllumina MiSeq sequencer (lllumina, San Diego, USA). HLA
156 alleles and genotypes are called using the Omixon HLA Explore (version 2.0.0) software
157  (Omixon, Budapest, Hungary).

158

159  HIV reservoir quantification from peripheral CD4+ T cells

160 The HIV reservoir largely consists of “defective” virus that harbors mutations prohibiting
161  the production of infectious virus® *?. There is currently no “gold standard” for measuring the
162  HIV reservoir. Therefore, we estimated the frequency of HIV “intact” DNA using a ddPCR-based
163  assay to quantify the size of the potentially “replication-competent” reservoir® ** 34 We also
164 measured HIV total DNA (quantifies both defective and intact HIV) and unspliced RNA
165 (quantifies full-length HIV RNA) using an HIV-1 LTR-specific quantitative polymerase chain
166  reaction (qQPCR) TagMan assay®. DNA and RNA were simultaneously dual extracted using the
167  AllPrep Universal Kit (Qiagen, Hilden, Germany). HIV tDNA and usRNA were then quantified in

168 triplicate reaction wells using a 7-point standard curve (1-10,000 copies/second). To estimate

169 the frequency of “intact” HIV DNA, five regions on the HIV genome were interrogated in a
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170  multiplex ddPCR assay®?®. Droplet generation and thermocycling were performed according to
171  manufacturer instructions. To determine potentially replication-competent (“intact”) HIV
172  genomes, the number of positive droplets for 3 targets per assay were quantified. Two targets in
173  a housekeeping gene (RPP30) were used to quantify all cells, and a target in the T cell receptor
174 D gene (TRD) was used to identify all non-T cells, to normalize the HIV copy numbers/10° CD4+
175 T cells. A DNA shearing index (DSI) (using RPP30) was then used to calculate the estimated
176  number of intact HIV genomes after correcting for shearing.

177

178 Data processing and quality control

179 The bcbio bioinformatics pipelinel®®

was used to perform DNA alignment, which included the
180  Burroughs-Welcome Aligner (BWA) tool®” and the GenomeAnalysisToolkit (GATK)
181  HaplotypeCaller joint variant calling method®®. Reads were initially mapped to reference
182  genome b37, then transposed to human genome assembly GRCh38 using Picard tools?®*¥. SNPs
183 and insertions or deletions (indels) were then filtered by variant quality score recalibration
184  (VQSR) using GATKM. The whole genome data analysis toolset, PLINK!*Y, was then used to
185 validate the chromosomal sex of each individual, filter out individuals with excessive
186 heterozygosity, and SNPS violating Hardy-Weinberg equilibrium (HWE) at a p-value
187  threshold of 1x10®. The VCFtools suite of functions were then used to summarize data, run
188 calculations, convert data, and filter out data, and convert data, and filter out relevant
189  SNPsH*.

190 The GENESIS analysis pipeline!*® was used to analyze the relatedness and ancestries of the
191 individuals in the study. All individuals were determined to be unrelated (kinship estimates
192  <0.05) aside from one pair of siblings, so one sibling was randomly removed from the study. The

193 remaining 199 unrelated individuals had diverse and mixed ancestries (Figure 1). We accounted

194  for population stratification in the total population by (1) including a genetic effects term with a
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195 genetic relatedness matrix (GRM), (2) by including the first five PCs as covariates in the
196  multivariate models, and by (3) performing sensitivity analyses among the largest subgroup,
197  Europeans.

198

199  Single SNP common variant analyses

200 Individual SNP associations were calculated with GENESIS "assocTestSingle". For HIV

201  total DNA, unspliced RNA, RNA/DNA, and intact DNA, respectively, the outcome variables were:
202  logio((DNA copies/lO6 CD4+ T cells + offset)); logio((RNA copies/lO6 CD4+ T cells + offset));
203  logio((RNA copies/lO6 CD4+ T cells + offset) / (DNA copies/lO6 CD4+ T cells + offset));

204  logio((Intact DNA copies/lO6 CD4+ T cells + offset)). The offsets for RNA and DNA counts
205 were given by the smallest nonzero measured values of RNA and DNA, respectively, to avoid
206  divergences in the logarithm. Final covariates in mulivariate models were sex, timing of ART
207  initiation (Figure S2), nadir CD4+ T cell count (Figure S3), and the first 5 PCs. Pre-ART
208 viral load (Figure S4) and duration of ART suppression (Figure S5) were not associated
209  with HIV reservoir size nor improved the fit of the final models. A Gaussian link function was
210 used, and a GRM was included with results filtered for SNPs with MAF >5%. SNP
211  annotations were then obtained using Annovar**.

212

213  Gene-based rare variant analyses

214 Gene level multi-SNP associations were calculated with the GENESIS software package
215 "assocTestAggregate" function implementing the variant Set Mixed Model Association Test
216  (SMMAT)*!for alleles with MAF<5% with weights following the beta distribution parameters of
217 a;=1 and a,=25"%. The same covariates, GRM, and regression family were used as for the
218 individual SNP associations. Outcomes were quantile-normalized to follow a normal

219  distribution. Gene regions were defined according to UCSC hg38 assembly™*’..
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220 Gene set enrichment analyses (GSEA) were performed using the Molecular Signatures
221  Database (MSigDB)"® *?!. For all gene set analyses, introns and flanking regions of +50kb were
222  included in the SMMAT p-value calculations for each gene to account for potential regulatory
223  regions and SNPs with smaller effects. GSEAPreranked was run with default parameters on the
224  SMMAT gene-level —log10(P).

225

226  HLA analysis

227  Multivariate regression models were fit using the python statsmodels OLS function®™ with
228  covariates for sex, timing of ART initiation, nadir CD4+ T cell count, and 3 genetic PCs.

229

230 Results

231  Study population

232 A total of 202 HIV-infected ART-suppressed individuals from the UCSF SCOPE and
233  Options HIV+ cohorts were included in the study. Consistent with our San Francisco-based HIV
234  patient population, participants were mostly male (94%) with median age of 46 (Table S1).

235 Participants had a median of 5.1 years of ART suppression, a median nadir CD4+ T cell

236 count=341 ceIIs/mm3, and pre-ART HIV RNA=5.1 logjccopies/mL. The majority of study
237  participants reported White/European American ethnicity (63%), and the remainder reported
238  Black/African American (12%), Hispanic/Latino (11%), Mixed Ethnicity/Multiracial (6%), Asian
239  (4%), Pacific Islander (1.5%), Native American (<1%), and Middle Eastern (<1%) ethnicities.
240  Most study participants (N=147) had highly detailed clinical test results to be able to calculate
241  their estimated date of detected infection (EDDI), but a subset of 55 study participants only had
242  self-reported data regarding date of ART initiation in relation to date of HIV seroconversion. For
243  these individuals (all of whom initiated ART prior to widespread guidelines for initiating ART at

244 the time of HIV diagnosis®Y), we mean-imputed values assuming ART initiation starting after 2
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245  years from infection. This estimation is supported by prior data from our cohort and others
246  demonstrating that the HIV reservoir size is relatively stable after 2 years of infection®.
247  Overall results for all final models were unchanged when performing sensitivity analyses
248  excluding those with imputed values for timing of ART initiation.

249

250 Earlier ART initiation and lower nadir CD4+ T cell count were associated with smaller HIV
251 reservoir, and HIV reservoir measures were correlated with each other

252 Consistent with prior workE? %758 earlier ART initiation was associated with significantly
253  smaller HIV reservoirs (tDNA, usRNA, intact DNA) (Figure S2), while lower nadir CD4+ T cell
254  count was associated with larger HIV reservoir (tDNA, usRNA, intact DNA, RNA/DNA) (Figure
255  S3). Pre-ART viral load (Figure S4) and duration of ART suppression (Figure S5) were not
256  associated with HIV reservoir size. Although usRNA was correlated with both tDNA intact DNA
257  (Figure S6a-b), tDNA was not associated with intact DNA (Figure S6c).

258

259  HLA “protective” B*57:01 and “risk” C*07 alleles were associated with smaller and larger
260  HIV reservoir sizes, respectively

261 Using a Benjamini-Hochberg false discovery rate (FDR) adjusted q<0.05 threshold®™, we
262 examined previously reported protective (B*57:01, B*27:05, B*14, C*08:02, B*52, and A*25)

7 and found a

263  and risk (B*35 and C*07) alleles for viral setpoint in untreated HIV+ controllers
264  “protective” association with HLA-B*57:01 and usRNA (B=-1.5, q=3.3x107), with a similar trend
265  observed with tDNA (B=-1.6, g=0.13). Similarly, previously reported HLA-C*07 "risk” allele also
266  demonstrated a “risk” trend (larger reservoir size) in our European subgroup (tDNA: =0.76,
267 g=0.072, and usRNA: =0.41, g=0.10). Further analyses employing a composite HLA variable

268  did not identify statistically significant associations (Tables S3-S6).

269
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270 CCR5A432 was associated with smaller HIV reservoir size
271 Deletions in the C-C chemokine receptor type 5 gene (CCR5A32) have previously been

272  shown to be associated with HIV viral control in the absence of therapy?® 2% 24

. Among
273  individuals of European ancestry (where CCR5A32 is more commonly observed), the presence
274  CCR5A32 was associated with smaller HIV reservoir size (tDNA: p=-1.3, p=4.3x10'3; usRNA:
275 P=-0.78, p=8.7x107), with a similar trend observed in the total population (tDNA: B=-0.86,
276  p=0.045; usRNA: B=-0.41, p=0.12), In addition, the previously reported long noncoding RNA
277 variant which regulates differential CCR5 expression (rs1015164)%% was found to be
278  significantly associated with smaller HIV reservoir size in Europeans (usRNA: [=-0.39,
279  p=0.027), which reached near-statistical significance in the total population as well (usRNA: =-
280  0.30, p=0.051),

281

282 Genomewide association analysis identified several SNPs in MX1 associated with larger
283 and smaller HIV reservoir sizes, paralleling predicted MX1 gene expression

284 A total of 1,279,156 variants from 23,733 genes were included in the final analysis from
285 199 study participants whose sequencing data passed quality control metrics (Figure S7). Final
286  models demonstrated lambda genomic inflation factor®® values close to 1, supporting adequate
287  adjustment for possible bias due to population stratification (ancestry) (Figure 2).

288 The strongest genomewide associations were observed with HIV total DNA reservoir
289 measures (Tables 1 and S7). In particular, 44 SNPs in linkage disequilbrium (LD) in the human
290 interferon-inducible myxovirus resistance 1 gene, MX1, also known as MXAP @ were significantly
291 associated with tDNA (all g<0.03). MX1 is closely related to MX2 (MXB), which encodes a well-
292  known potent host restriction factor that inhibits HIV-1 infection®™®. We then compared the
293  directionality of the SNP hits with previously reported whole blood eQTL data at these locil®®!

294  and found the MX1 SNPs associated with larger total HIV DNA reservoir sizes seemed to be in
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295 eQTL regions predicting increased MX1 expression and vice versa (Table S7). We also
296 observed two additional SNPs significantly associated with HIV tDNA, the first in
297 PPP1CB (encodes Protein Phosphatase 1 Catalytic Subunit Beta, which reduces antiviral
298  potency of MX2 against HIV-1 g=0.03) and the second in LRMP (encodes Lymphoid-
299  Restricted Membrane Protein, which plays a critical role in the delivery of peptides to MHC class
300 | molecules®™, g=0.03) (Table 1). Additional SNPs that showed non-statistically significant
301 trends with HIV tDNA were in DDX3X (DEAD-box helicase 3 X-linked, regulates the production
302 of type | interferons!®, q=0.17) and AKAP6 (A-Kinase Anchoring Protein 6, binds to protein
303 kinase A regulatory subunits, a critical signaling pathway associated with HIV latency reversal
304 and T cell proliferation™ @, q=0.20). Among Europeans, OSBP (oxysterol-binding protein,
305 associated with HIV-1 infection of monocyte-derived macrophages from highly-exposed
306 seronegative individuals™, q=0.14), showed a non-significant trend with HIV tDNA.

307 Although not statistically significant, a SNP in PLAVP (protein regulating lymphocyte
308 migration into lymph nodes!™, q=0.21), lying <30 kilobases upstream of BST2 (tetherin, an HIV
309 host restriction factor™) demonstrated a non-significant trend with usRNA (Table 1). No SNPs
310 met statistical significance in association with HIV intact DNA or RNA/DNA ratio.

311

312 Gene set enrichment analysis demonstrated several interferon signaling-associated
313 genes associated with intact HIV DNA

314 We then performed multi-SNP analyses to identify genes associated with HIV reservoir size.
315 GSEA identified several interferon signaling-associated genes (e.g., IFITM1, IFITM3, APCS,
316 IFITM2, FCN3, FCN1, GSN, TRIM59, SNX3, TRIM25, PTX3, TRIM11, TRIM8, MID2, TRIM5,
317 IFNA2) in the gene set called “Negative Regulation of Viral Entry into Host Cell,” to significantly
318 predict HIV intact DNA (g=0.03) (Figure 3, Table S8). Several other gene sets showed non-
319 significant trends with HIV reservoir size (Figure 3, Table S8), including gene sets related to

320 interferon-induced STAT signaling and intact DNA, glycosylation and tDNA, and retroviral
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321  transcription and usRNA.

322

323  Discussion

324 HIV eradication remains a critical goal in reducing long-term morbidity and mortality
325 among all PLWH since life-long viral suppression does not appear to fully restore health, as
326  evidenced by persistently high levels of immune activation® and high rates of mortality®® in HIV-
327 infected compared to healthy individuals. ART is also expensive, carries long-term risk of
328 toxicity, and poses major challenges in being able to be accessible to a global population for
329 decades™. HIV cure clinical trials to date have vyielded disappointing results?’’®2. Novel
330 approaches are needed to better target potential immunologic pathways that help maintain the
331 HIV reservoir.
332 Our study is the first host genomic study to evaluate several measures of the peripheral
333 HIV reservoir in HIV+ non-controllers, including quantification of HIV intact DNA, an estimate of

R[?% 33 8] \We also performed

334  the putative “replication-competent” reservoir by droplet digital PC
335 direct HLA typing of 25 polymorphic exons of HLA-A & B, C, E, DPAL, DPB1, DQA1, DQB1,
336 DRB1, and DRB3,4,5. We performed individual SNP and gene-based analyses including
337 detailed clinical covariate data such as timing of ART initiation, one of the strongest clinical
338 predictors of HIV reservoir size, which enhanced the fit of our final multivariate models,
339 potentially allowing us to detect otherwise difficult-to-discern genetic effects. Unlike prior
340 genomic studies that have primarily focused on the ~1% of the HIV+ population able to
341 suppress virus in the absence of therapy (“elite controllers”), we focused on HIV+ ART-
342  suppressed non-controllers, which make up the majority of people living with HIV (PLWH). We
343  found that prior significant HLA and CCR5A32 genetic associations predicting viral setpoint

10, 19-22]

344  among HIV+ elite controllers! in our study, predicted the HIV reservoir size. We also

345 identified several additional (uninvestigated) host genetic variants associated with the HIV
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346  reservoir (signals that might have been attenuated in a study population enriched for “stronger”
347  genetic effects, such as HLA and/or CCR5A32).

348 The most striking finding from our SNP-based analysis was the identification of several
349 SNPs in MX1, which encodes for a potent antiviral factor which inhibit replication of several RNA
350 viruses, including influenza A and measles, and DNA viruses, such as hepatitis B®. MX1
351 expression has also been shown to be upregulated in HIV+ vs. HIV-uninfected individuals®, in
352  HIV+ individuals with high vs. low viremia®, and with HIV-1 latency in latently-infected cell lines®.
353 Genomewide (i.e., DNA-based) results cannot directly infer directionality of gene function
354  without further functional studies. However, for our top hit SNPs in MX1, we compared the
355 directionality of the SNP hits with previously reported whole blood eQTL data at these loci®®®®®
356 and found that the MX1 SNPs associated with larger total HIV DNA reservoir sizes seemed to
357 bein eQTL regions predicting increased MX1 expression and vice versa. However, determining
358 whether a single variant is responsible for both genomewide and eQTL signals in a locus
359 can be challenging. Nonetheless, as a further query, we performed colocalization analysis,
360 an in silico method to integrate GWAS and eQTL results to calculate a probability of
361 whether a SNP is causal for both an eQTL and disease trait[ggl, but only found a 1%
362  probability that the MX1 top SNPs are causally linked to both gene expression and HIV
363 reservoir size. Gene-based analyses also identified several interferon signaling-associated
364 genes (within the “negative regulation of viral entry into host cell” gene set) that significantly
365 predict intact HIV DNA (Table S8), but as these genes were not in eQTL regions, the putative
366  directionality of these associations could not be further queried. Additional functional genomic

[89]

367 validation, e.g., CRISPR-Cas9 editing of primary human T cells'™™, is needed to further
368 investigate the potential role of MX1 (and other interferon signaling genes) in HIV
369 persistence.

370 We also found that the previously reported “protective” HLA-B*57:01 and CCR5A32

371  mutation were associated with smaller HIV reservoir size in our study. These findings suggest
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372  that immune pathways that control viral setpoint during untreated disease may also play a role
373 in the maintenance of the HIV reservoir during treated infection. It is also possible that identified

"9 _ e g., the genetic variants that may drive

374  genetic variants may have variable “penetrance
375  “elite control” might similarly, but less obviously, influence HIV persistence in treated non-
376  controllers.

377 There are limitations to our study that deserve mention. Although the HIV reservoir has
378 been shown to be relatively stable over time®®® 9 % our cross-sectional design provides a
379  “snapshot” of the HIV reservoir after a median of 5.1 years of ART suppression and may not
380 reflect genetic associations with reservoir decay. Second, as is characteristic of many U.S.-
381 based HIV+ cohorts, our San Francisco-based population consisted mostly of males of
382 European ancestry. Population stratification is a critically important potential bias in any
383  multiethnic genomic study. Thus, we approached this in least three ways using well-established
384 methods to adjust for population stratification bias!*® %*: first by calculating principal components
385 and including these as covariates in the final models, second by including a genetic relatedness
386 matrix (GRM) in the models, and finally by performing stratified analyses, focusing on the
387 largest homogenous subpopulation (individuals with European ancestry). Overall, the findings
388 observed in the European ancestral group did not overlap with the non-European (e.g., African-
389 American) subgroup (Table S9). Thus, it is critical that these results be replicated in larger
390 studies, especially those including women and individuals from different ethnic backgrounds.
391  Third, the majority of the HIV reservoir persists in lymphoid tissues, not in the periphery!®*.
392  Although recent data suggests that the tissue compartment largely reflects (and is the likely

393  source of) the peripheral compartment®® % %!

, it will be important to determine whether the
394  results from our study are generalizable to the tissue HIV reservoir. Fourth, intact HIV DNA
395 represents the putative replication-competent reservoir. Although we observed several genes

396 that were significantly associated with intact HIV DNA in the gene set enrichment analyses,

397 individual genes did not meet statistical significance. This may be due to the challenge in
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398 estimate the frequency of intact and/or replication-competent HIV when in fact, the majority of
399 the HIV reservoir consists of defective HIV. For these reasons, quantitative outgrowth assays
400 and assays to measure intact HIV DNA often result in many low/ zero values compared to total

401  HIV DNA, which has a larger dynamic range!® °" %

. In our study, HIV intact DNA was
402  undetectable in over half of our measured samples, while for example, total DNA was
403 measurable in 95% of samples (Figure S6). With so many samples below the limit of detection
404  for intact DNA, the statistical power to detect SNP associations is much lower for this assay
405 than for the other HIV reservoir assays included in our study. However, when we were able to
406 enhance the ability to detect an association by performing the gene set enrichment analyses
407  (essentially, a method that aggregates several rare variants into immunologically relevant “gene
408 sets” to test for an association with HIV reservoir size), we observed several statistically
409 significant associations with HIV intact DNA in the total population (STAT signaling, critical for
410 regulating the innate and adaptive immune responses) and among individuals of European
411 ancestry, the largest subgroup with the greatest statistical power (“negative regulation of viral
412  entry into host cell” — which included several interferon signaling genes) (Figure 3, Table S8).

413 Our findings are in contrast to two recent genomewide studies of the HIV reservair,
414  which did not identify an association with MX1, HLA-B*57:01, or CCR5A32, nor reported similar
415  findings to each other®®® % The first study performed GWAS microarray genotyping from 797
416  HIV+ treated individuals (194 with whole exome sequencing data), included several longitudinal
417 measures of HIV total DNA from peripheral blood mononuclear cells (PBMCs), and imputed
418 HLA alleles (from genotypes), but did not observe any significant associations with HLA alleles,
419 CCR5A32, or SNPs®®. The second study included 207 HIV+ treated individuals and performed
420 GWAS microarray (no HLA or CCR5A32 typing) and included measures of HIV tDNA and
421  usRNA from peripheral CD4+ T cells. They reported a significant association between tDNA and
422 a SNP in PTDSS2 (phosphatidylserine synthase 2) at genomewide p<5x107®, which was not

423 statistically significant in our analysis."® These differences highlight a particular challenge in
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424  performing genomic studies, let alone for studies of the HIV reservoir size (which can be
425 measured in several different ways as total HIV DNA, HIV unspliced RNA, HIV intact DNA, etc.)
426  from different biospecimens (PBMCs, CD4+ T cells). Add to this the use of different study
427  designs (untreated HIV+ controllers, treated HIV+ non-controllers — and those treated during
428  chronic versus acute infection), and analytic methods (multivariate models with or without key
429  clinical covariates such as timing of ART initiation, nadir CD4+ T cell count, etc.) and a lack of
430 understanding regarding the exact mechanism by which the genetic code is expressed from
431 DNA to RNA to protein (which also varies by cell type and within different tissues™) — then
432  differences between these three small studies might fall within the expected range of variability.
433  Given the polygenic nature of the host immune response, the contribution of host genetics in
434  predicting HIV reservoir size might vary widely, leading to variable results when comparing
435 small genomic studies. Prior genomewide association studies of HIV progression during
436 untreated disease explain ~13% of the variability in viral load, with strong genetic predictors
437 such as HLA and CCR5A32M'°4. Using a tool for genome-wide complex trait analysis
438 (GCTA)*® we calculated the heritability of our total HIV DNA phenotype to be up to 0.78, but
439 the error bars were large (+/-0.94). This suggests that unknown host genetic loci might play a
440  significant role in determining the size of the HIV reservoir — but that there is a high degree of
441  variability in that estimate. For these reasons, we are careful to describe our study results within
442  the limits of a genomewide association study identifying potential novel DNA variants related to
443  HIV persistence (e.g., only highlighting MX1 as it lies with an eQTL region but the others for
444 which there are no functional data, we do not) and again emphasize the need for functional
445  studies to pursue the novel hypotheses identified from our discovery-based study. Our findings
446  may vary from the two prior published studies due to several differences in (1) study design
447  (cross-sectional, only including HIV+ ART-suppressed non-controllers), (2) statistical modeling
448  (detailed clinical covariates for timing of ART initiation, nadir CD4+ T cell count, etc.), (3) HIV

449  reservoir quantification (e.g., HIV total DNA, unspliced RNA, and intact DNA), (4) sampling
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450 (CD4+ T cells, not bulk PBMCs), (5) host genomic assays (custom whole exome sequencing
451  instead of GWAS microarray, and direct HLA typing instead of imputed HLA alleles), and (6)
452  approach to handling potential population stratification bias (at least three methods - principal
453 component analysis, genetic related matrix methods, and sensitivity analyses restricted to
454  ancestral subgroups).

455 Using carefully selected ART-suppressed HIV non-controllers, we performed custom
456  whole exome sequencing and direct HLA typing, quantified several measures of the peripheral
457  HIV reservoir, and fit multivariate models adjusted for clinical and demographic covariates that
458 influenced the size of the HIV reservoir, and found that the previously reported “protective” HLA-
459 B*57:01 and the favorable CCR5A32 (during untreated disease) were associated with smaller
460  HIV reservoir size. Genomewide analyses identified several SNPs in MX1, a type | interferon
461  stimulated gene, were significantly associated with total HIV DNA, which correlated with
462  predicted MX1 eQTL gene expression, and HIV intact DNA were associated with several
463 interferon signaling-associated genes in gene set enrichment analyses. Our findings support a
464  surprising role of the innate immune response (e.g., genes involved in interferon signaling™®*
465 ) in maintaining the HIV reservoir during long-term suppressive ART. These findings support
466 recent studies demonstrating that measures of cell-associated HIV RNA correlate with time to
467  viral rebound™®® 9811 perhaps host genes driving immediate antiviral responses play a major
468 role in maintaining the HIV reservoir if the “transcriptionally active” reservoir is indeed a major
469 source of the “rebound-competent” reservoir.” Additional studies are needed to functionally
470 validate these findings, especially among more diverse patient populations, including female
471  and non-European HIV+ patients.

472
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473 FIGURE LEGENDS

474

475  Figure 1. Genetic principal component analysis (PCA) plots of the full study population (with
476  legend with self-identified race/ethnicity) (a) and of the largest homogenous ancestral

477  population, males of mostly European ancestry (b). Recalculated European ancestry male PCA
478  plot is shown in panel b, from lower left dashed box in panel a.

479

480 Figure 2. Quantile-quantile (QQ) plots (a, c) and Manhattan plots (b, d) of the total study

481  population (a-b) and of European ancestry (c-d). QQ plots: the blue line represents the expected
482  -logl0 p-values while the black lines denote the expected error bars. Manhattan plots: the

483  horizontal black line delineates a traditional conservative genome-wide significance of p-value of
484  5x107°, while less conservative Benjamini-Hochberg false discovery rate (FDR) statistical

485  significance of g=0.05 is shown as the horizontal blue line (g=0.25 is shown in grey).

486

487  Figure 3. Gene set enrichment analysis (GSEA) was used to identify associations between

488 genes, ordered by p-value under a host multi-SNP rare variant (minor allele frequency, MAF,
489  <5%) analysis using HIV total DNA, unspliced RNA, RNA/DNA, and intact DNA as outcomes;
490 and biological processes gene sets, in the total study population (a) and among European

491  ancestry (b). Horizontal dashed lines represent the GSEA Benjamini-Hochberg false discovery

492 rate (FDR) statistical significance level of g=0.05 (blue) and g=0.025 (grey), respectively.
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Figure 1. Genetic principal component analysis (PCA) plots of the full study population (with legend with self-identified race/ethnicity) (a) and of the
largest homogenous ancestral population, males of mostly European ancestry (b). Recalculated European ancestry male PCA plot is shown in

panel b, from lower left dashed box in panel a.
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Figure 2. Quantile-quantile (QQ) plots (a, ¢) and Manhattan plots (b, d) of the total study population (a-b) and of European ancestry (c-d). QQ plots:
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Table 1. Single nucleotide polymorphisms (SNPs) associated with HIV total DNA (upper table) and unspliced RNA (lower table) in the total study
population. Two additional SNPs were significantly associated with total HIV DNA in the subpopulation of European ancestry (middle table). For

genes in which there were several SNPs in linkage disequilibrium (LD), the top SNP for each gene is shown, with the full list of SNPs shown in

Table S7.
SNP Chrom | Position Nearest | Gene MAF® | Beta” | PVE® | p° q° Description
Gene Location
HIV TOTAL DNA
Full Cohort
rs10670165 chr2l | 41421873 | MX1 Intron/Exon/ | 0.45 | -1.2 0.15 | 1.3x10” 0.02 | Antiviral. Upregulated in HIV+ compared to uninfected
5UTR' individuals'®” and associated with higher viremia among

HIV+ individuals”®. Associated with HIV-1 latency™.
MX2, but not MX1, was shown to be capable of directly

acting against HIV-1 virus®®* >,

rs74867009 chrl2 | 25063777 | LRMP 5UTR' 0.06 |-25 |0.15 | 1.5x10" | 0.02 | Delivers peptides to MHC class | molecules"™”.
Differentially expressed in lymphatic tissue’® and
peripheral blood mononuclear cells (PBMCs)®" in HIV+
individuals in response to ART initiation and cessation,
respectively.

rs751660317 chr2 28786774 | PPP1CB | Intronic 0.07 -1.8 0.11 | 4.1x10° 0.03 | Encodes a subunit of PP1. Depletion of PPP1CB was
shown to reduce the antiviral potency of MX2 against
HIVEY. PP1 is involved in transcription of HIV-1;
inhibition of PP1 inhibits HIV-1 transcription®.

rs776025235 | chr6 51638799 | PKHD1 Intronic 0.09 |-1.7 0.09 | 2.5x10° 0.17 | Predicted to have a transmembrane-spanning domain
and an immunoglobulin-like plexin-transcription-factor
domain. We could not find a direct relationship with HIV
in the literature.

N/A chrX | 41382082 | DDX3X; | Intergenic | 0.18 | -1.4 | 0.09 | 2.5x10° | 0.17 | DDX3X regulates the production of type I IFNs™” and
NYX encodes a protein that shuttles HIV-1 RNA from the
nucleus to the cytoplasm. Is upregulated in HIV-infected
cells; knockdown of DDX3X suppresses HIV-1
replication®. Also plays a key role in innate
antimicrobial immunity®®.
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rs17506750 chrl4 32599402 | AKAP6 Intronic 0.07 -1.8 0.09 | 3.0x107 0.20 | Binds to regulatory subunits of protein kinase A (PKA)
and anchors them to the nuclear membrane. PKA
activation has been associated with HIV-1 infection, T
cell proliferation, and dysfunction®® ®,

European Ancestry Subgroup

rs469390 chr2l | 41446003 | MX1 Intron/Exon/ | 0.54 | 1.3 0.2 1.0x10° 0.03 | Antiviral. UEregulated in HIV+ compared to uninfected

5UTR' individuals'®” and associated with higher viremia among
HIV+ individuals™. Associated with HIV-1 latency[71].
MX2, but not MX1, was shown to be capable of directly
acting against HIV-1 virus®* >,

N/A chrll 59574427 | OSBP IUTR' 0.15 -1.8 0.15 1.9x10° 0.14 | Oxysterol binding protein involved in intracellular lipid
transport. Associated with in vitro HIV-1 infection of
monocyte-derived macrophages (MDMSZ from highly
(HIV)-exposed seronegatives (HESNs). Is required for
the replication of several human viruses such as
hepatitis C (HCV), encephalomyocarditis (EMCV), Zika,
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Endothelial membrane protein, also controls the entry of
lymphocytes and antigens into lymph nodes®®. Located
within 30kb of BST2, an interferon stimulated gene
encoding the host restriction factor tetherin, which is
known to inhibit HIV-1 release by directly tethering
virions to cells®.

4 MAF = minor allele frequency in the study population.

® Beta = estimate from multivariate linear mixed model adjusted for age, sex, nadir CD4+ T cell count, timing of ART initiation, and ancestry.
° PVE = proportion of phenotype variance explained.
b = two sided p-value.

¢ q = two-sided false discovery rate (FDR) Benjamini-Hochberg g-value.
fUTR= untranslated region.
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Figure 3. Gene set enrichment analysis (GSEA) was used to identify associations between genes, ordered by p-value under a host multi-SNP rare

variant (minor allele frequency, MAF, <5%) analysis using HIV total DNA, unspliced RNA, RNA/DNA, and intact DNA as outcomes; and biological

processes gene sets, in the total study population (a) and among European ancestry (b). Horizontal dashed lines represent the GSEA Benjamini-

Hochberg false discovery rate (FDR) statistical significance level of q=0.05 (blue) and q=0.025 (grey), respectively.
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