

1
2 1 Full title: Variable expression of linguistic laws in ape gesture: a case study
3
4 2 from chimpanzee sexual solicitation.
5
6 3
7
8
9
10
11
12 4 Short title: Linguistic laws in chimpanzee solicitation gestures.
13
14 5
15
16 6
17
18
19 7 Alexandra Safryghin¹, Catharine Cross¹, Brittany Fallon¹, Raphaela Heesen³, Ramon Ferrer-i-
20
21 8 Cancho^{2&}, Catherine Hobaiter^{1,4&*}
22
23 9
24
25
26 10 ¹School of Psychology and Neuroscience, University of St Andrews, St Andrews, Fife, United Kingdom
27
28 11 ²Complexity and Quantitative Linguistics Laboratory, Laboratory for Relational Algorithmics,
29
30 12 Complexity, and Learning Research Group, Departament de Ciències de la Computació, Universitat
31
32 13 Politècnica de Catalunya, 08034 Barcelona, Catalonia, Spain
33
34
35 14 ³Department of Psychology, Durham University, Durham, United Kingdom
36
37 15 ⁴Budongo Conservation Field Station, Masindi, Uganda
38
39 16
40
41 17 * Corresponding author
42
43
44 18 Email: clh42@st-andrews.ac.uk (CH)
45
46 19 [&]These authors contributed equally to this work
47
48 20 **Keywords:** compression, communication, Zipf, Menzerath, language
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 21 **Abstract**
4
5
6 22 Two language laws have been identified as consistent patterns shaping animal behaviour,
7
8 23 both acting on the organisational level of communicative systems. Zipf's law of brevity
9
10 24 describes a negative relationship between behavioural length and frequency. Menzerath's
11
12 25 law defines a negative correlation between the number of behaviours in a sequence and
13
14 26 average length of the behaviour composing it. Both laws have been linked with the
15
16 27 information-theoretic principle of compression, which tends to minimise code length. We
17
18 28 investigated their presence in a case study of male chimpanzee sexual solicitation gesture.
19
20 29 We failed to find evidence supporting Zipf's law of brevity, but solicitation gestures followed
21
22 30 Menzerath's law: longer sequences had shorter average gesture duration. Our results
23
24 31 extend previous findings suggesting gesturing may be limited by individual energetic
25
26 32 constraints. However, such patterns may only emerge in sufficiently-large datasets.
27
28 33 Chimpanzee gestural repertoires do not appear to manifest a consistent principle of
29
30 34 compression previously described in many other close-range systems of communication.
31
32 35 Importantly, the same signallers and signals were previously shown to adhere to these laws
33
34 36 in subsets of the repertoire when used in play; highlighting that, in addition to selection on
35
36 37 the signal repertoire, ape gestural expression appears shaped by factors in the immediate
37
38 38 socio-ecological context.
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 44 **Introduction**
4
5

6 45 Over the past 100 years, important statistical regularities have been described across
7
8 46 human languages and in other communicative systems such as genomes, proteins, and
9
10 47 animal vocal and gestural communication (Altmann & Gerlach, 2016; Bentz & Ferrer-I-
11
12 48 Cancho, 2016; Börstell et al., 2016; Hernández-Fernández et al., 2019; Köhler et al., 2005;
13
14 49 Menzerath, 1954; Naranan & Balasubrahmanyam, 2000; Sanada, 2008; Semple et al., 2022;
15
16 50 Wang & Chen, 2015; Zipf, 1936). These regularities are hypothesized to be manifestations of
17
18 51 the information theoretic principle of compression (Ferrer-i-Cancho, Bentz, et al., 2022;
19
20 52 Semple et al., 2022). Compression is a particular case of the principle of least effort (Zipf,
21
22 53 1949) – a principle that promotes the outcome that requires the least amount of energy to
23
24 54 produce or achieve – and thereby promotes coding efficiency (Ferrer-i-Cancho et al., 2013).
25
26
27
28
29
30 55 In communication, compression is expressed as a pressure towards reducing the energy
31
32 56 needed to compose a code but limited by the need to retain the critical information in the
33
34 57 transmission (Cover & Thomas, 2006; Ferrer-i-Cancho et al., 2022).
35
36
37

38 58 Among the statistical patterns predicted by compression at different levels of
39
40 59 organization, Zipf's law of brevity and Menzerath's law have been at the centre of recent
41
42 60 attention in studies of human and non-human communication. Zipf's law of brevity is the
43
44 61 tendency for more frequent words to be shorter in length (Strauss et al., 2007; Zipf, 1949),
45
46 62 and is generalised as the tendency for more frequent elements of many kinds (e.g.,
47
48 63 syllables, words, calls) to be shorter or smaller (Ferrer-i-Cancho et al., 2013) – with similar
49
50 64 patterns found at different levels of analysis, for example in speech at the level of words
51
52 65 (Strauss et al., 2007) syllables (Rujević et al., 2021), and phonemes (Hernández-Fernández et
53
54 66 al., 2019). As well as being found in human spoken, signed, and written languages (Bentz &
55
56 67 Ferrer-i-Cancho, 2016; Börstell et al., 2016; Hernández-Fernández et al., 2019; Sanada,

1
2
3 68 2008; Wang & Chen, 2015), Zipf's law of brevity has been identified in the short-range
4
5 69 communication of diverse taxa: dolphins (Ferrer-i-Cancho et al., 2022), bats (Luo et al.,
6
7 70 2013), penguins (Favaro et al., 2020), hyraxes (Demartsev et al., 2019), and various primates
8
9 71 (macaques: Semple et al., 2013; marmosets: Ferrer-i-Cancho & Hernández-Fernández, 2013;
10
11 72 gibbons: Huang et al., 2020; Indri indri: Valente et al., 2021), as well as in genomes (Naranan
12
13 73 & Balasubrahmanyam, 2000).

17
18 74 At the level of constructs, Menzerath's law states that "*the greater the whole, the*
19
20 75 *smaller its constituents*" (Altmann, 1980; Köhler, 2012; Menzerath, 1954); for example:
21
22 76 longer sentences have words of shorter average length, and words with more syllables
23
24 77 contain syllables of shorter length. Menzerath's law (and its mathematical expression
25
26 78 known as the Menzerath-Altmann's law) has been identified in human spoken and signed
27
28 79 languages (Altmann, 1980; Andres et al., 2021), genomes (Ferrer-i-Cancho & Forns, 2009; Li,
30
31 80 2012), music (Boroda & Altmann, 1991), and in the communication of dolphins (Ferrer-i-
32
33 81 Cancho et al., 2022), penguins (Favaro et al., 2020), and primates (geladas: Gustison et al.,
34
35 82 2016; chimpanzees: Fedurek et al., 2017; Heesen et al., 2019; gibbons: Clink et al., 2020;
36
37 83 Huang et al., 2020; gorillas: Watson et al., 2020; Indri indri: Valente et al., 2021;). While
38
39 84 many studies focused on vocal communication, several have now explored these statistical
40
41 85 regularities in gestural and signed domains. For example, the use of Swedish Sign Language
42
43 86 in (semi-)spontaneous conversation was found to follow a pattern of more frequently used
44
45 87 signs being shorter in duration (Börstell et al., 2016). Zipf's law of brevity was also found in
46
47 88 fingerspelling, with a negative relationship between mean fingerspelled sign duration and
48
49 89 frequency (Börstell et al., 2016). Similarly, Czech sign language was found to follow
50
51 90 Menzerath's law (Andres et al., 2021). Work in non-human gesture has, to date, been more
52
53 91 focused on context-specific signal usage, for example: Zipf's law of brevity was found in the

1
2
3 92 surface behaviour of dolphins (such as tail-slapping; Ferrer-i-Cancho & Lusseau, 2009) but
4
5 93 not in the overall repertoire of play gestures of chimpanzees, where it was only present in
6
7 94 subsets, although these gestures did follow Menzerath's law (Heesen et al., 2019).
8
9

10 95 Chimpanzee gestural communication represents a powerful non-human model in
11
12 96 which to explore compression and language laws. Apes have large repertoires of over 70
13
14 97 distinct gesture types (Byrne et al., 2017); as compared to vocal communication, gestural
15
16 98 repertoires are larger and are more flexibly deployed, with individual gesture types used to
17
18 99 achieve multiple goals (Bard et al., 2019; Call & Tomasello, 2007; Hobaiter & Byrne, 2011a;
19
20 100 Liebal et al., 2004). Gestures are also used intentionally, *i.e.*, to reach social goals by
21
22 101 influencing the receivers' behaviour or understanding (Graham et al., 2018; Hobaiter &
23
24 102 Byrne, 2011a, 2014; Schel et al., 2013), and flexibly across contexts (Call & Tomasello, 2007;
25
26 103 Hobaiter & Byrne, 2011a; Liebal et al., 2004). Nevertheless, Heesen et al.'s (2019) results
27
28 104 support an increasingly diverse range of findings that show variation in the extent and
29
30 105 expression of language laws, suggesting that while they appear statistically universal there is
31
32 106 room for exceptions and/or variation in patterning at different levels of the communicative
33
34 107 construct (Semple et al., 2022).
35
36

37 108 Although a lack of evidence supporting Zipf's law of brevity has been previously
38
39 109 reported (e.g., European heraldry: Miton & Morin, 2019; computer-based neural-networks:
40
41 110 Chaabouni et al., 2019), these remain rare exceptions, and in non-human animal
42
43 111 communication have typically only been reported in long-distance vocal communication
44
45 112 (e.g. gibbon song: Clink et al., 2020; bats: Luo et al., 2013; although *cf.* female hyrax calls:
46
47 113 Demartsev et al., 2019) where the impact of distance on signal transmission fidelity may
48
49 114 have a particularly strong effect on the costs of compression (Ferrer-i-Cancho et al., 2013;
50
51
52
53
54
55
56
57
58
59
60

1
2
3 115 Gustison et al., 2016; Semple et al., 2022). Thus, at present, the repertoire-level absence of
4
5 116 Zipf's law of brevity in chimpanzee gesture remains a conundrum.
6
7

8 117 One explanation for a repertoire-level absence of Zipf's law of brevity – as seen in
9
10 118 some long-distance signals – is that the context in which signals are produced may impact
11
12 119 the emergence and expression of these patterns. Specifically, in the case of chimpanzee
13
14 120 gestures, the absence of a pattern resembling Zipf's law of brevity may result from the use
15
16 121 of gestures produced during play. Expressions of linguistic laws in biological systems reflect
17
18 122 pressures that shape efficient energy expenditure (Semple et al., 2022). Play is produced
19
20 123 when there is an excess of time and energy (Held & Špinka, 2011; Pellis & Pellis, 1996;
21
22 124 Smith, 2014), thus, the energetic need to reduce signal effort through increased
23
24 125 compression may be limited. As a result, it remains unclear whether the failure of Zipf's law
25
26 126 of brevity in chimpanzee gesture was due to the use of gestures from within play, or
27
28 127 whether it reflects a system-wide characteristic.
29
30
31

32 128 In both signed languages and human gesturing, distinctions are made between
33
34 129 different components of their production. First there is the *preparation* of the signal, then
35
36 130 the *action stroke* which represents the movement that defines the gesture as of a particular
37
38 131 type; an individual can then choose to further *hold* the stroke or repeat it, until they decide
39
40 132 to stop gesturing and return the limb to rest during *recovery* from the gestural action
41
42 133 (Kendon, 2004). For example: in a reach gesture this would correspond to the movement of
43
44 134 the hand into position (*preparation*), the extension of the arm and hand towards the
45
46 135 recipient (*action stroke*), the (optional) maintenance of the extension (*hold*), and finally the
47
48 136 return of the hand and arm to a resting state (*recovery*). All four of these phases require
49
50 137 some energetic investment to produce, but there may be variation across them, and aspects
51
52 138 such as preparation and recovery may be nearly, or entirely, absent where several gestures
53
54
55
56
57
58
59
60

1
2
3 139 are strung together. In some gesture types, their production does not include a *hold* phase
4
5 140 (e.g., hit, jump, throw object); we term these *fixed* duration gestures, as the duration of
6
7 141 their expression is relatively constrained across instances of production. Other gesture types
8
9 142 can include a *hold* phase (for example: reach, object shake, swing) which may or may not be
10
11 143 present, and, where present, may vary substantially in length; we term these *loose* duration
12
13 144 gestures. There may be differences in the emergence of Zipf's and Menzerath's laws
14
15 145 regarding the different components of gesture production. Menzerath's law acts from a
16
17 146 proximate perspective on the building of communicative sequences in a specific
18
19 147 communicative instance: for example, gestures produced in longer sequences may be
20
21 148 shortened by variation the duration of components such as the shortening of the *hold* phase
22
23 149 in loose gesture types. In contrast, Zipf's law acts on gesture types across instances of use –
24
25 150 and as such may be less sensitive to the immediate context of production.

31
32 151 Another possible explanation for the variation in the emergence of compression in
33
34 152 ape gesture is that the ability to detect linguistics laws, particularly where they are only
35
36 153 subtly expressed, appears to require powerful datasets. The exploration of statistical
37
38 154 patterns in human languages often employs corpora containing millions of data points (e.g.,
39
40 155 Hatzigeorgiu et al., 2001). In contrast, in ape gesture, as in many studies of non-human
41
42 156 communication, datasets are substantially smaller (in the thousands). In chimpanzee play,
43
44 157 the large repertoire expressed limits the frequency with which particular gesture types are
45
46 158 represented.

51
52 159 We address this open question in a case study of chimpanzee gestural
53
54 160 communication in sexual solicitation. While gesture is relatively under-studied in this area,
55
56 161 sexual solicitations have been contrasted with early descriptions of gesture from studies of
57
58 162 captive ape play, as an example of gesture in a relatively more evolutionarily or biologically

1
2
3 163 'relevant' context for communication (in terms of associated risks and/or impact on
4 reproduction) (Hobaiter & Byrne, 2012; *c.f.* Call & Tomasello, 2007). Chimpanzees,
5
6 164 particularly male chimpanzees, employ prolific use of individual gestures and gesture
7 sequences in sexual solicitations. As solicitations are often vigorous, chimpanzees
8
9 165 incorporate regular use of gesture types that include both visual and audible information
10
11 166 (Hobaiter & Byrne, 2012; Nishida, 1980). While a range of gesture types are employed,
12
13 167 these are typically a smaller sub-set of the available repertoire – *c.f.* play where the majority
14
15 168 of gesture types are deployed. Successful gestures can lead directly to sexual behaviour,
16
17 169 such as inspection or copulation, as well as to a consortship, in which the female follows the
18
19 170 male away from other individuals in the group so that he maintains exclusive sexual access
20
21 171 (Tutin, 1979). Both direct solicitation and consortship are key strategies for individual
22
23 172 fitness (Tutin, 1979; Watts, 2015), and as such behaviour associated with them is likely
24
25 173 subject to strong selective pressures. The energetic costs of lactation mean that adult
26
27 174 female chimpanzees typically conceive only once every 4-5 years (Clark, 1977; Thompson,
28
29 175 2013). So while there are typically 60-80 individuals in a group, the operational sex ratio of
30
31 176 available females in estrus may be very small, and males show substantial variation in
32
33 177 reproductive success (Newton-Fisher et al., 2009; Tutin, 1979). Although highly important,
34
35 178 the performance of sexual solicitations may come with significant costs: besides the
36
37 179 energetic expenditure in producing these signals, there is a risk of potentially aggressive
38
39 180 competition both from other males in their own community (Fawcett & Muhumuza, 2000;
40
41 181 Tutin, 1979) as well as potentially lethal attacks from males in neighbouring groups (Wilson
42
43 182 et al., 2014). For example, during consortships individuals may travel to the boundaries of
44
45 183 their home area, increasing the risk of encounters with neighbouring individuals. Thus, there
46
47 184 are substantial advantages to avoiding potential eavesdroppers within, and particularly
48
49 185 186

1
2
3 187 outside of, one's community (Hobaiter et al., 2017). Therefore, on one hand individuals
4
5 188 benefit from producing conspicuous energetic signals to attract females, often having to
6
7 189 insist to secure mating; on the other, the production of highly conspicuous signals should be
8
9 190 compressed to reduce the risks associated with competition from both within and outside
10
11 191 the group.

12
13
14 192 To assess compression in the sexual solicitation gestures of wild male chimpanzees,
15
16 193 we tested for patterns predicted by Zipf's law of brevity and Menzerath's law, both at the
17
18 194 level of single gesture types and gesture sequences, respectively. To investigate Zipf's law of
19
20 195 brevity and Menzerath's law we fitted two generalised linear mixed models. The first model
21
22 196 explored the presence of Zipf's law assigning gesture duration as the response variable,
23
24 197 proportion of gestures within the dataset and category of gesture (manual vs whole body)
25
26 198 as fixed factors, and signaller's ID, sequence ID, and gesture type as random factors. The
27
28 199 second model tested for Menzerath's law and had gesture duration as response variable,
29
30 200 sequence size as a fixed factor, and proportion of whole-body gestures in the sequence
31
32 201 (PWB), signaller ID, sequence ID, and gesture type as random factors. We included
33
34 202 information on the category of the gesture to allow for comparisons with human studies, in
35
36 203 which gestures are mostly manual. We provide matched models that describe the patterns
37
38 204 of expression both across (i) all males in our data, (ii) for a single prolific individual and (iii)
39
40 205 for the remaining individuals. In doing so, we provide an initial assessment of the
41
42 206 distribution of our findings across male chimpanzee gesturing in this context and provide an
43
44 207 expanded assessment of compression in ape gestural communication.

45
46 208 **Results**

47
48 209 We measured $N=560$ sexual solicitation gestures from 173 videos of 16 wild, habituated
49
50 210 male East African chimpanzees (*Pan troglodytes schweinfurthii*) gesturing to 26 females.

1
2
3 211 Within the 560 gestural instances (from now *tokens*), we identified 26 gesture types: 21
4
5 212 manual gestures and 5 whole-body gestures (Figure 1; for definitions for full repertoire
6
7 213 definitions see Table S1 in supporting Information 1) performed by 16 male chimpanzees
8
9 214 aged 10-42 years old. On average, each individual produced a median of 11.5 ± 70.7 gesture
10
11 215 tokens (range 2-290). One male, Duane, was particularly prolific ($n=290$ gesture tokens;
12
13 216 other males 2-76). To provide context as to what extent our findings are generalizable, we
14
15 217 provide matched analyses using both the full dataset and the dataset limited to Duane only.
16
17 218 An analysis of the data excluding Duane is available in the supplementary information.
18
19
20 219 Gesture token duration was measured via analysis of video data with a minimum
21
22 220 unit of 0.04s (one frame). Duration ranged from 0.04-15.04 seconds (median: $1.56 \pm 2.35s$).
23
24 221 If consecutive gesture tokens were performed with less than 1s in between them, they were
25
26 222 considered to form a sequence (Heesen et al., 2019; Hobaiter & Byrne, 2011b). We detected
27
28 223 a total of 377 sequences, with each male performing a median of 8 ± 44.54 sequences (range
29
30 224 1-181 sequences). Sequence length ranged from 1 to 6 tokens (Table 1). For analyses of
31
32 225 Menzerath's law we excluded 18 sequences for which we were unable to identify the
33
34 226 duration of all the consecutive gesture tokens performed, resulting in the analysis of 359
35
36 227 sequences, containing a total of 530 gesture tokens. 244 sequences were composed of a
37
38 228 single token, the remaining 115 sequences had length $n > 1$. Of the 115 sequences analysed
39
40 229 that were composed of 2 or more gesture tokens; 26 (23%) were formed by the repetition
41
42 230 of the same gesture type, whereas the remaining 89 (77%) included more than one gesture
43
44 231 type (Table 1).
45
46
47 232 **Do chimpanzee sexual solicitation gestures follow Zipf's law of brevity?**
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 233 To test for Zipf's law we ran a Bayesian generalised linear model (Zipf-model), with the log
4
5 234 of gesture duration as the response variable and the proportion of gesture type within the
6
7 235 dataset as a fixed factor (see Supporting information 2 for further detail). The gesture
8
9 236 duration data was log-transformed following an analysis of data distribution. We included
10
11 237 category of gesture as a control, and signaller ID, sequence ID, and gesture type as random
12
13 238 factors. The Zipf-model fitted the data better than a null model that did not include the
14
15 239 proportion of gesture type as a fixed effect (Leave-one-out [LOO] difference and s.d. = $-0.7 \pm$
16
17 240 0.3). For Zipf-model effects Bulk ESS and Tail ESS were >100 and $\hat{R}=1$. However, the
18
19 241 proportion of gesture type did not have a substantial effect on the duration of gestures
20
21 242 (Supporting information 3, Table S5; $b = 0.90$, s.d. = 1.26, 95% Credible Intervals (Crl) [-1.25,
22
23 243 3.81], Figure 2A). When testing the subset of data containing only the gestures produced by
24
25 244 Duane, the full model and null model testing for Zipf's law showed similar fit (LOO
26
27 245 difference: -0.1 ± 0.7 ; Supporting information 3, Table S6, Figure 2B). Similarly, in the same
28
29 246 analysis on data from all individuals except Duane, the full model was no different from the
30
31 247 null model (LOO difference: -0.5 ± 0.5 ; Supporting information 3, Table S7).
32
33
34
35
36
37
38
39
40
41 248 **Do chimpanzee sexual solicitation gesture sequences follow Menzerath's law?**
42
43 249 To test for Menzerath's law we ran a second Bayesian model (Menzerath-model) with the
44
45 250 log of the gesture duration as response variable, the sequence size as fixed factor, the
46
47 251 proportion of whole-body gestures within the sequence (PWB) as a control, and the
48
49 252 signaller ID and sequence ID as random factors. The Menzerath-model fitted the data better
50
51 253 than the null model (LOO difference: -7.7 ± 4.1). All predictors had Bulk ESS and Tail ESS >100
52
53 254 as well as \hat{R} values = 1. Sequence size had a substantial negative effect on gesture duration
55
56 255 within sequence (Supporting information 3, Table S8; $b = -0.18$, s.d. = 0.04, 95% Crl [-0.26, -
57
58
59
60

1
2
3 256 0.11]; Figure 3A). Similar results were found when running the same Menzerath-model but
4
5 257 limited to gestures produced by Duane: the full model fitted the data better than the null
6
7 258 (LOO difference: -13.5 ± 4.5), all predictors had Bulk ESS and Tail ESS>100, $\hat{R} = 1$ and
8
9 259 sequence size had a substantial negative effect on gesture duration (Supporting information
10
11 260 3, Table S9, Figure 3B; $b = -0.23$, s.d. = 0.04, 95% CrI [-0.31, -0.15]). In contrast, where
12
13 261 Duane's data were excluded, the full model was similar to the null model, suggesting no
14
15 262 clear pattern consistent with Menzerath's law (LOO difference: -0.3 ± 0.8 ; Supporting
16
17 263 information 3; Table S10). Visual inspection of the data plotted per individual suggests that
18
19 264 detection of a pattern consistent with Menzerath's law may be impacted by sample size
20
21 265 (Supporting Information 4).

27
28 266 We note that the sample size of sequences of four tokens or longer is smaller than
29
30 267 those of one to three tokens (Table 1), which may have contributed to the apparent tailing
31
32 268 off of a clear relationship in Figure 3A and Figure 3B. In addition, longer sequences were
33
34 269 formed of a) a mix of *loose* and *fixed* duration gestures or b) only *loose* duration gestures
35
36 270 (see supporting information 5, Figures S5 and S6). Thus, the emergence of Menzerath's law
37
38 271 could not be explained by a shift in preference from *fixed* to *loose* gestures with increasing
39
40 272 sequence length.

41
42 273

43
44 274 **Discussion**
45
46
47 275 Chimpanzee sexual solicitation gestures did not follow Zipf's law of brevity: the frequency of
48
49 276 gesture type within the dataset did not predict gesture duration in any of our samples.
50
51 277 However, sequences of chimpanzee solicitation gestures did follow Menzerath's law: longer
52
53 278 sequences of gestures were made up of gestures of shorter average length. Our dataset was
54
55 279 limited both by its relatively small size (c.f. Heesen et al., 2019 on chimpanzee play gestures)

1
2
3 280 and in its bias towards a single highly prolific individual (Duane). As a result, we consider it a
4
5 281 case-study; however, the pattern was present in both the Duane's data and in the full
6
7 282 dataset, as well as in a range of alternative analyses (Supporting Information 6). In the
8
9 283 reduced dataset excluding Duane we did not find a pattern consistent with Menzerath's
10
11 284 law; however, detection of the pattern may have been limited by the small sample size
12
13 285 available in the remaining data set.

17
18 286 These results represent a further absence of evidence in support of Zipf's law of
19
20 287 brevity in great ape gestural communication (Heesen et al., 2019) and support the wider
21
22 288 finding that – unlike most other close-range systems of communication described to date –
23
24 289 the expression of pressure for compression and efficiency may be variably expressed in ape
25
26 290 gesture (Börstell et al., 2016; Ferrer-i-Cancho et al., 2013; Semple et al., 2022). It particularly
27
28 291 highlights that compression does not act on communicative systems uniformly: 20 of the 26
29
30 292 gesture types described here as used in sexual solicitations overlapped with those used in
31
32 293 play (Heesen et al., 2019). Data were collected from the same community over the same
33
34 294 period, and although both studies provided a null result when analysing the full gestural
35
36 295 repertoire, Zipf's law was found in subsets of the play gestures but not in the gestures when
37
38 296 used in sexual solicitations. Moreover, when running traditional correlation analyses in
39
40 297 which features such as signaller identity, or gesture type could not be controlled for, we
41
42 298 found a tendency for an opposite Zipf's law pattern – particularly in manual gestures
43
44 299 (Supporting Information 6). Visual inspection of the Figure 3 shows the substantial variation
45
46 300 in the duration of gestures across instances of communication, as well as an apparent
47
48 301 decrease in a clear relationship between gesture duration and sequence size where sample
49
50 302 size was small (such as for longer sequences). Together these findings suggest that the
51
52 303 expression of these laws is nuanced by aspects of the communicative landscape in which

1
2
3 304 they are deployed, and that large samples may be needed to detect sometimes subtle
4
5 305 relationships. Future work could specifically explore variation in the detection of these
6
7 306 patterns at different sample sizes, for example by randomised subsetting of sufficiently
8
9 307 large datasets. As Semple et al. (2022) suggest, apparent ‘failures’ may be of substantial
10
11 308 assistance in exploring the boundaries of the theoretical framework of these laws, helping
12
13 309 to define the characteristics that shape both their emergence and variation in their
14
15 310 expression.
16
17

18
19
20 311 In contrast to vocal communication across primate species, in chimpanzee sexual
21
22 312 solicitations ‘inefficiency’ in signalling effort by the signaller appears to be at times slightly
23
24 313 favoured. However, these gestures appear to remain effective in terms of achieving the
25
26 314 signaller’s goal of successful communication in a context vital for reproductive success.
27
28
29 315 Given the long inter-birth intervals and active mate guarding (Muller & Wrangham, 2009),
30
31 316 chimpanzee paternity is often heavily biased towards higher-ranking individuals (Newton-
32
33 317 Fisher et al., 2009). With so few opportunities to mate, sexual solicitations may represent
34
35 318 one of the most evolutionarily important contexts in which chimpanzee gestures are
36
37 319 produced. Where the costs of signal failure are high, there is a pressure against compression
38
39 320 and towards redundancy, as in chimpanzees’ use of gesture-vocal signal combinations in
40
41 321 agonistic social interactions (Hobaiter et al., 2017). While there are examples of vocal
42
43 322 communication systems used in biologically ‘relevant’ contexts that adhere to Zipf’s brevity
44
45 323 law (Favaro et al., 2020), the benefits of successful communication to individual fitness in
46
47 324 chimpanzee solicitation appear to outweigh the energetic costs associated with the
48
49 325 production of a vigorous and conspicuous signal. Nevertheless, given that we see a relatively
50
51 326 consistent expression of Menzerath’s law across gesture use in sexual solicitation as in play,
52
53 327 even the production of these prolonged and conspicuous signals appear to remain constrained
54
55
56
57
58
59
60

1
2
3 328 by physiological mechanisms of gestural production. As for primate vocal communication
4
5 329 (Fedurek et al., 2017; Gustison et al., 2016), where breathing constraints and energetic
6
7 330 demands of vocal production were considered drivers for the emergence of Menzerath's
8
9 331 law patterns, increased muscular activity related to the production of sequences of gestures
10
11 332 (Scott, 2008) could be a general limit on energetic investment. As a result, Menzerath's law
12
13 333 appears to emerge across communicative contexts.

17
18 334 There are a number of potential reasons for why language laws appear variable in
19
20 335 their expression within ape gesture. For example, we might be considering the wrong unit of
21
22 336 analysis. In human speech, sign, and gesture – as in other communication systems – it is
23
24 337 possible to consider the production of a 'unit' of communication at different levels. For
25
26 338 example, while Zipf's law is clearly expressed in the duration of male rock hyrax
27
28 339 vocalisations, that is not the case for female vocalisations where Zipf's law of brevity
29
30 340 emerges when analysing call amplitude rather than duration (Demartsev et al., 2019).
31
32 341 Conversely, in Börstell et al. (2016) research on Swedish Sign Language, Zipf's law of brevity
33
34 342 seems to hold across sign categorisation, fingerspelling, and compounding. Interestingly,
35
36 343 this study excluded the hold phase of a sign, limiting their analysis only to the more active
37
38 344 stroke phase.-The production of intentional gestures in apes are shaped not only by the
39
40 345 signaller, but by the interaction between signaller and recipient (Byrne et al., 2017; Graham
41
42 346 et al., 2022). As a result, the duration of hold or repetition phase may be shaped by the
43
44 347 immediate context of the specific interaction – for example, in waiting for a response by the
45
46 348 recipient it may vary between being absent and very prolonged. In contrast, the *action*
47
48 349 *stroke* of a sign or gesture is always present and represents the need to convey information
49
50 350 in that gesture, i.e., to discriminate it from other gesture actions. In Swedish Sign Language
51
52 351 a prolonged and repetitive feedback sign and prolonged turn taking signs were the only two

1
2
3 352 cases that diverged from the general Zipf's pattern, as they were both long in duration as
4
5 353 well as being highly frequent (Börstell et al., 2016). Zipf's law acts on a signal 'type' in an
6
7 354 individual's or species' repertoire – and it may be of interest to compare its expression
8
9 355 across areas of gesture production that are more consistently produced across usage, such
10
11 356 as the action stroke.

12
13
14
15 357 Research to date has typically focused on signal compression at the level of the
16
17 358 communication system, but communication happens *in-situ*. Signallers likely respond to
18
19 359 pressures on signalling efficiency more broadly: an intense but time-limited investment in
20
21 360 clear signalling may be more energetically efficient than the need to travel with a female for
22
23 361 extended periods following a failed signal. A similar solicitation with a different audience
24
25 362 may need to be produced rapidly and inconspicuously, as the detection of this activity by
26
27 363 other males could be fatal (Fawcett & Muhumuza, 2000). In a recent human study,
28
29 364 pressures towards efficiency and accuracy were both required for Zipf's law of brevity to
30
31 365 emerge in experimental communicative tasks between two participants (Kanwal et al.,
32
33 366 2017). Conversely, when participants were required to produce solely time-efficient vs
34
35 367 solely accurate communicative signals no pattern emerged. The sexual solicitation context
36
37 368 tested in our study may mirror the pattern seen in the time-efficient paradigm in the human
38
39 369 study. In play, where urgency and time-efficiency may be less relevant, the same signals
40
41 370 used by the same chimpanzees did show compression. While many vocalizations are
42
43 371 relatively fixed (Janik & Slater, 1997; Fitch et al., 2016), gestural flexibility (in goal and
44
45 372 context – Bard et al., 2019; Call & Tomasello, 2007; Hobaiter & Byrne, 2011a; Liebal et al.,
46
47 373 2004) allows us to explore how compression acts within both specific instances of
48
49 374 communication as well as on whole communication systems. To do so will require large
50
51 375 longitudinal datasets in which it is possible to test both between-individual variation and

1
2
3 376 within-individual variation across different gesture types and sequence lengths. Similarly,
4
5 377 there remains substantial work needed to explore variation across different socio-ecological
6
7 378 contexts of gesture use, for example in the social relationship between the signaller and
8
9 379 recipient (Graham et al., 2022). The use of redundancy within specific subsets of gestural
10
11 380 repertoire, or within specific contexts of gesture demonstrates both the importance of
12
13 381 compression in communicative systems in general, but also the flexibility present in each
14
15 382 specific usage. In doing so, it highlights the importance of exploring the impact of individual
16
17 383 and socio-ecological factors within wider patterns of compression in biological systems in
18
19 384 evolutionary salient scenarios.

24
25
26 385 **Methods**
27
28

29 386 We measured $N=560$ male to female sexual solicitation gestures from 173 videos recorded
30
31 387 within a long-term study of chimpanzee gestural communication depicting 16 wild,
32
33 388 habituated East African chimpanzees (*Pan troglodytes schweinfurthii*) from the Sonso
34
35 389 community of the Budongo Forest Reserve in Uganda ($1^{\circ}35'$ and $1^{\circ} 55'N$ and $31^{\circ} 08'$ and
36
37 390 $31^{\circ}42' E$), collected between December 2007 and February 2014. Observations were made
38
39 391 between 7.30am and 4.30pm with recording of gestures following a focal behaviour
40
41 392 sampling approach (Altmann, 1974). Here, all social interactions were judged to have the
42
43 393 potential for gesture, in practice any situation in which two chimpanzees were in proximity
44
45 394 and not involved in solitary activities, were targeted. Where several potential opportunities
46
47 395 to record co-occurred, preference was given to individuals from whom fewer data had been
48
49 396 collected (with a running record of data collection maintained to facilitate these decisions).

50
51 397 During October 2007 to August 2009 a Sony Handycam (DCR-HC-55) was used. Here
52
53 398 video was recorded on MiniDV tape. The challenges of filming wild chimpanzees in a visually
54
55
56
57
58
59
60

1
2
3 399 dense rainforest environment meant that, at times, the start of gestural sequences was not
4
5 400 captured on video. Where this occurred, it was dictated onto the end of the video and these
6
7 401 sequences were not included in analysis. Similarly, sequences in which part of the sequence
8
9 402 was obscured, for example where a chimpanzee moves through dense undergrowth, were
10
11 403 also discarded. After 2009 video data were collected using Panasonic camcorders (V770, HC-
12
13 404 VXF1) were used which have a 3-second pre-record feature that improves the ability to
14
15 405 capture the onset of behaviour; however, the same procedure was used and any sequences
16
17 406 where the onset of gesturing was not clearly captured continued to be discarded.
18
19
20
21
22
23
24 407 **Sexual solicitation gestures**
25
26 408 Sexual solicitation gestures were defined as those gestures given by a male towards a
27
28 409 female with the goal of achieving sex, usually accompanied by the male having an erection
29
30 410 and the female being in oestrus (Hobaiter & Byrne, 2011a, 2012). We included solicitations
31
32 411 in the context of sexual consortship; here a male gestures in order to escort a female away
33
34 412 from the group to maintain exclusive sexual access, which can occur prior to the peak of the
35
36 413 female oestrus (Tutin, 1979). We restricted our analyses to male to female sexual
37
38 414 solicitation, as female to male sexual solicitation attempts rarely involved sequences of
39
40 415 gestures in this population. We further restricted analysis to solicitations by male individuals
41
42 416 of at least 8-years old, as this is the minimum age of siring recorded in this community,
43
44 417 limiting our signals to those on which there is more direct selective pressure.
45
46
47
48
49
50
51
52 418 **Defining gesture types and tokens**
53
54 419 In quantitative linguistics, word *types* are used to assess Zipf's law of brevity, whereas
55
56 420 *tokens* are used to assess patterns conforming to Menzerath's law. To distinguish the two,
57
58 421 consider the question:
59
60

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

422
423
424
425
426
427

Which witch was which?

428 The question is composed of 4 *tokens* (overall word count), and three different word *types*,
429 (which, witch, was). Gesture *types* (see S4 Table for a detailed repertoire description) were
430 categorized according to the similarity of the gesture movement, which could be used either
431 as a single instance or in a sequence; and each gestural instance represented an individual
432 *token*.

433 Great apes deploy gestural sequences in two distinct forms (Hobaiter & Byrne,
434 2011b): one is the addition of further gestures following response waiting and is typically
435 described as persistence (which may include elaboration). The second is the production of
436 gestures in a 'rapid sequence' – here gestures are produced with less than 1 second
437 between consecutive gesture tokens, and do not meet behavioural criteria for response-
438 waiting occurring within a sequence (although it may occur at the end of it). As the
439 expression of Menzerath's law is typically considered at the level of a unique sequence,
440 rather than one generated through the addition of gestures in response to earlier failure,
441 we limit our analyses here to rapid sequences only. Sequence length was quantified as the
442 number of gesture tokens produced with less than 1s between two consecutive gesture
443 tokens; single gestures were coded as sequences of length one (Heesen et al., 2019;
444 Hobaiter & Byrne, 2011b).

445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460

Gesture duration

461 Gesture duration was calculated using MPEG streamclip (version 1.9.3beta). We measured
462 gesture duration in frames, each lasting 0.04s. Gestural 'units' – like many other signals –
463 can be considered at different levels of analysis, for example: a word is composed of
464 syllables, and syllables of phonemes. Gestures have been described as composed of a

1
2
3 445 preparation, action stroke, hold or repetition, and recovery phase (Kendon, 2004). Here we
4
5 446 follow previous work in (Heesen et al., 2019) in defining the start of a gesture token as the
6
7 447 initial movement of a part of the body required to produce the gesture. The end of a
8
9 448 gesture token corresponded to (1) the cessation of the body movement related to gesture
10
11 449 production, or (2) a change in body positioning if the gesture relied on body alignment, or
12
13 450 (3) the point at which the goal was fulfilled, and any further movement represented
14
15 451 effective action (for example, locomotion or copulation). Where the expression of a gesture
16
17 452 token did not include a full recovery (in which the body part involved is returned to a resting
18
19 state), the end of a token was discriminated from subsequent tokens through (1) a change
20
21 453 in gesture action, e.g., from a reach to a shake, (2) a change in the rhythm or orientation of
22
23 454 a gesture action, hold, or repetition, e.g., the rhythm or direction of an object shake is
24
25 455 broken or changed (Hobaiter & Byrne, 2017).
26
27
28
29
30
31
32
33
34 457 **Intra-observer reliability**
35
36 458 Video-based coding offers the opportunity to conduct reliability measures. Intra-observer
37
38 459 reliability was tested by randomizing the order of the videos and re-coding the duration of
39
40 460 the gestures of every ninth clip, for a total of 75 gestures from 23 clips. We performed an
41
42 461 intraclass correlation coefficient (ICC) test – class 3 with $n=1$ rater (Landers, 2015) – which
43
44 462 revealed very high agreement on gesture duration measurements (ICC=0.995, $p<.001$).
45
46 463 Unfortunately, an additional step of inter-observer reliability was not possible due to the
47
48 464 loss of the file that linked the original dataset to the videos from which data were extracted.
49
50
51
52
53
54 465 **Statistical analysis**
55
56
57 466 All data were analysed using R version 4.0.0 and RStudio version 1.2.5042 (R Core Team,
58
59 467 2020; RStudio Team, 2020). We fitted Bayesian generalised linear multivariate multilevel
60

1
2
3 468 models using the 'brm' function from the 'brms' package (Bürkner, 2017) with minimally
4
5 469 informative priors, 2000 iterations and 3 chains.
6
7

8 470 We ran a first model testing Zipf's law of brevity (Zipf-model), containing gesture
9
10 471 token duration (s) as the response variable, the proportion of occurrences of a particular
11
12 472 gesture type in the dataset (Proportion) as a fixed effect, and gesture Category (manual vs
13
14 473 whole-body) as a control. We included signaller ID, sequence ID, and gesture type as
15
16 474 random effects. We include Category as a variable here to allow for more direct comparison
17
18 475 with previous work, which often excludes or differentiates non-manual signals, either in
19
20 476 great ape gesture (Heesen et al., 2019; Rodrigues et al., 2021) or in signed languages and
21
22 477 fingerspelling (e.g., Börstell et al., 2016).
23
24
25
26

27 478 We tested Menzerath's law by running a second model (Menzerath-model)
28
29 479 containing gesture token duration (s) as the response variable, sequence size (number of
30
31 480 gesture tokens within the sequence) as a fixed factor, and the proportion of whole-body
32
33 481 gestures within the sequence (PWB) as a control. We modelled signaller ID and sequence ID
34
35 482 as random factors.
36
37
38

39 483 It was highlighted during the review process that the emergence of Menzerath's law
40
41 484 may be an artifice created by the selection of *fixed*, as opposed to *loose*, duration gesture
42
43 485 types when producing longer sequences. To address this hypothesis, we produced
44
45 486 histograms depicting the distribution of *loose* and *fixed* duration gestures within sequences
46
47 487 at each sequence size. The majority of gesture types (n=20 of total 26), and of gesture
48
49 488 tokens (n=456 of total 560) were of the *loose* gesture form, thus there were very few
50
51 489 gesture sequences formed only of *fixed* gesture types. However, we further visually
52
53 490 assessed the distributions of *fixed* gestures in sequences formed of only *fixed* gestures.
54
55
56
57
58
59
60

1
2
3 491 As our data may be particularly influenced by a single prolific individual (Duane) who
4
5 492 contributed around half of the data, we assess the generalizability of our findings by
6
7 493 replicating analyses conducted on the full dataset on a subset of the data containing only
8
9 494 gestures by Duane as well as on a subset containing all but the prolific individual Duane. For
10
11 495 the models testing Duane's data, signaller ID was removed from the random factors as it
12
13 496 was no longer relevant (with the inclusion of only one individual). In order to avoid inflation
14
15 497 of the dataset we include date as a random factor; which also allows us to avoid biasing the
16
17 498 analysis towards particularly prolific days and control for within-individual consistency.
18
19
20
21
22
23 499 We ran full-null model comparisons using the Level One Out information criterion
24
25 500 (LOO) (Vehtari et al., 2017) 'loo_compare' function from the 'stan' package (version 2.21.5;
26
27 501 Stan Development Team, 2022) where Zipf's null model contained only the control variable
28
29 502 Category and the random effects, whereas Menzerath's null model contained only the
30
31 503 control variable PWB and the random effects. Prior to the Bayesian analysis we assessed
32
33 504 data distribution using the 'fitdistr' package (version 1.0-14; Delignette-Muller & Dutang,
34
35 505 2015). Following data inspection, we log-transformed gesture duration and average
36
37 506 sequence duration as data from the response variable strongly skewed towards zero (for
38
39 507 data inspection see supporting information 2).
40
41
42
43
44
45 508 Finally, previous work has frequently employed correlation and compression tests,
46
47 509 which looks at whether the expected mean code length observed in the dataset is
48
49 510 significantly smaller than a range of mean code lengths calculated via permutations, to test
50
51 511 the mathematical theory behind both laws. In addition, we also fitted Bayesian generalised
52
53 512 linear multivariate multilevel models with same number of iterations and chains as the
54
55 513 previous models but having the median duration of each of the 26 gesture types as
56
57 514 response variable, category of gesture as a fixed factor, as well as frequency of that gesture
58
59
60

1
2
3 515 type as a predictor. These tests offer limited opportunities to control for potential
4
5 516 confounds such as signaller identity and should be interpreted with caution in relatively
6
7 517 small and variable datasets. We provide them in the supporting information 6 to allow for
8
9 518 comparison with previous work that analysed median durations with or without
10
11 519 implementing generalised linear models (e.g., Hernández-Fernández et al. 2019; Watson et
12
13 520 al. 2020).

17
18
19 521 **Data and code**
20

21 522 Data and code for all analyses are available in a public GitHub repository: github.com/Wild-
22
23 523 Minds/LinguisticLaws_Papers

24
25
26
27 524 **Acknowledgements**
28

29
30 525 We thank the staff and field assistants of the Budongo Conservation Field Station for their
31
32 526 assistance in the original gestural data collection, and the Ugandan National Council for
33
34 527 Science and Technology and the Ugandan Wildlife Authority for permission to conduct the
35
36 528 original research. We thank the Royal Zoological Society of Scotland for its funding of the
37
38 529 field station. We thank Dr Alexander Mielke for his advice on the statistical models. We
39
40 530 thank the editor and three anonymous reviewers for their constructive comments. This
41
42 531 research received funding from the European Union's 8th Framework Programme, Horizon
43
44 532 2020, under grant agreement no 802719.

45
46
47
48
49
50 533 **References**
51

52
53 534 Altmann, G. (1980). Prolegomena to Menzerath's law. *Glottometrika*, 2, 1–10.
54
55
56
57
58
59
60

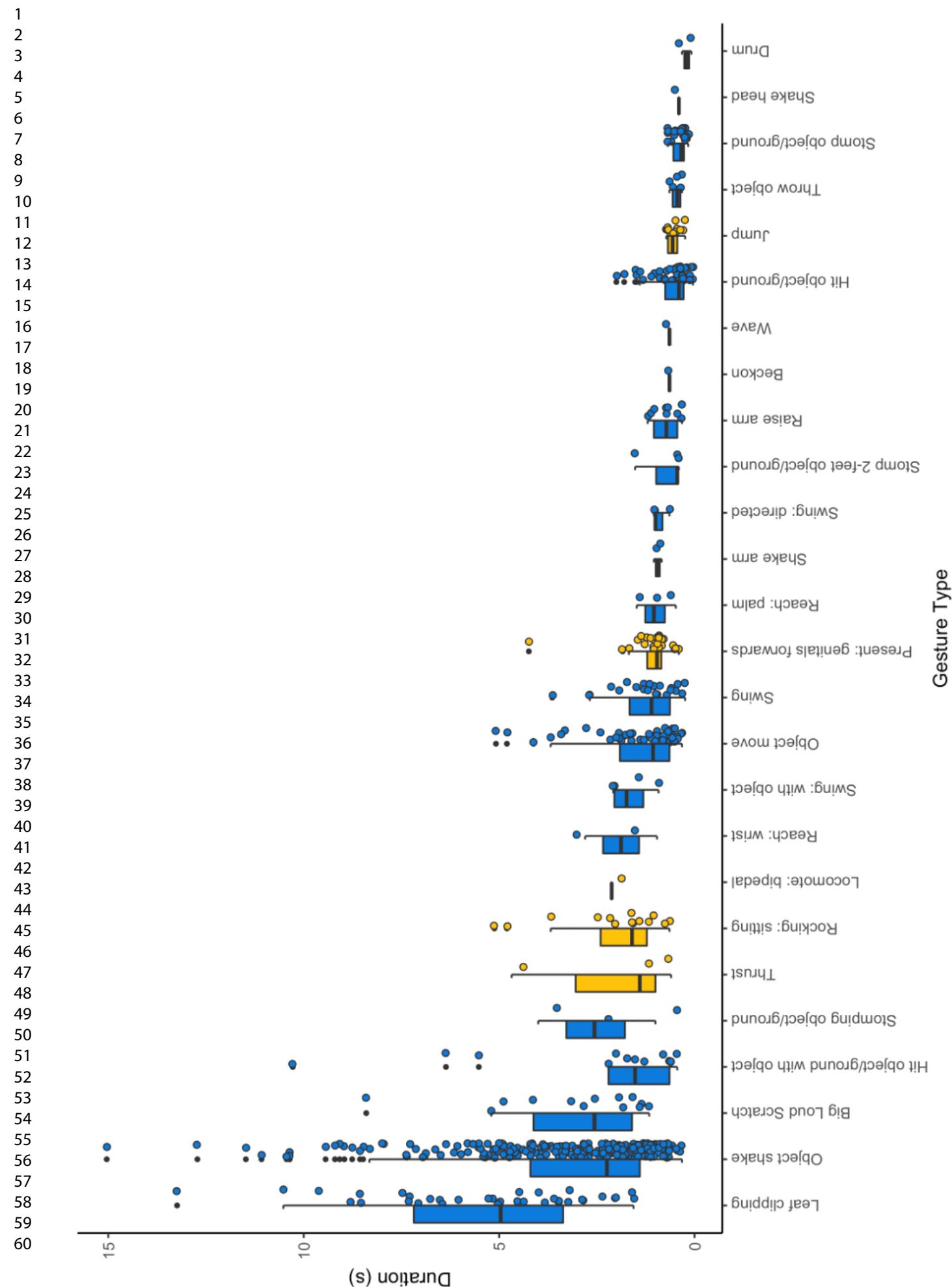
1
2
3 535 Altmann, G., & Gerlach, M. (2016). Statistical Laws in Linguistics. In M. D. Esposti, Altmann,
4
5 536 & F. Pachet (Eds.), *Creativity and Universality in Language* (pp. 7–26). Springer
6
7 537 International Publishing. https://doi.org/10.1007/978-3-319-24403-7_2
8
9 538 Andres, J., Benešová, M., & Langer, J. (2021). Towards a fractal analysis of the sign language.
10
11 539 *Journal of Quantitative Linguistics*, 28(1), 77–94.
12
13 540 <https://doi.org/10.1080/09296174.2019.1656149>
14
15 541 Bard, K. A., Maguire-Herring, V., Tomonaga, M., & Matsuzawa, T. (2019). The gesture
16
17 542 ‘Touch’: Does meaning-making develop in chimpanzees’ use of a very flexible
18
19 543 gesture? *Animal Cognition*, 22(4), 535–550. <https://doi.org/10.1007/s10071-017-1136-0>
20
21
22 544
23
24
25
26
27 545 Bentz, C., & Ferrer-i-Cancho, R. (2016). *Zipf’s law of abbreviation as a language universal*.
28
29
30 546 Leiden workshop on capturing phylogenetic algorithms for linguistics, Leiden,
31
32 547 Netherlands. <https://doi.org/10.15496/PUBLIKATION-10057>
33
34
35 548 Boroda, M. G., & Altmann, G. (1991). Menzerath’s law in musical texts. *Musikometrika*, 3, 1–
36
37 549 13.
38
39
40 550 Börstell, C., Hörberg, T., & Östling, R. (2016). Distribution and duration of signs and parts of
41
42 speech in Swedish Sign Language. *Sign Language & Linguistics*, 19(2), 143–196.
43
44
45 552 <https://doi.org/10.1075/sll.19.2.01bor>
46
47 553 Bürkner, P.-C. (2017). **brms**: An R Package for Bayesian Multilevel Models Using Stan.
48
49
50 554 *Journal of Statistical Software*, 80(1). <https://doi.org/10.18637/jss.v080.i01>
51
52 555 Byrne, R. W., Cartmill, E., Genty, E., Graham, K. E., Hobaiter, C., & Tanner, J. (2017). Great
53
54 ape gestures: Intentional communication with a rich set of innate signals. *Animal*
55
56
57 557 *Cognition*, 20(4), 755–769. <https://doi.org/10.1007/s10071-017-1096-4>
58
59
60

1
2
3 558 Call, J., & Tomasello, M. (Eds.). (2007). *The gestural communication of apes and monkeys*.
4
5 559 Lawrence Erlbaum Associates, Publishers.
6
7 560 Chaabouni, R., Kharitonov, E., Dupoux, E., & Baroni, M. (2019). *Anti-efficient encoding in*
8
9 561 *emergent communication*. 33rd Conference on Neural Information Processing
10
11 562 Systems (NeurIPS 2019), Vancouver, Canada.
12
13 563 Clark, C. B. (1977). A preliminary report on weaning among chimpanzees of the Gombe
14
15 564 National Park, Tanzania. In S. Chevalier-Skolnikoff & F. E. Poirier (Eds.), *Primate Bio-*
16
17 565 *social Development: Biological, Social and Ecological Determinants*. (pp. 235–260).
18
19 566 Garland.
20
21 567 Clink, D. J., Ahmad, A. H., & Klinck, H. (2020). Brevity is not a universal in animal
22
23 568 communication: Evidence for compression depends on the unit of analysis in small
24
25 569 ape vocalizations. *Royal Society Open Science*, 7(4), 200151.
26
27 570 <https://doi.org/10.1098/rsos.200151>
28
29 571 Cover, T. M., & Thomas, J. A. (2006). *Elements of information theory* (2nd ed). Wiley-
30
31 572 Interscience.
32
33 573 Delignette-Muller, M. L., & Dutang, C. (2015). {fitdistrplus}: An {R} Package for Fitting
34
35 574 Distributions. *Journal of Statistical Software*, 64(4), 1–34.
36
37 575 Demartsev, V., Gordon, N., Barocas, A., Bar-Ziv, E., Ilany, T., Goll, Y., Ilany, A., & Geffen, E.
38
39 576 (2019). The “Law of Brevity” in animal communication: Sex-specific signaling
40
41 577 optimization is determined by call amplitude rather than duration. *Evolution Letters*,
42
43 578 3(6), 623–634. <https://doi.org/10.1002/evl3.147>
44
45 579 Favaro, L., Gamba, M., Cresta, E., Fumagalli, E., Bandoli, F., Pilenga, C., Isaja, V., Mathevon,
46
47 580 N., & Reby, D. (2020). Do penguins’ vocal sequences conform to linguistic laws?
48
49 581 *Biology Letters*, 16(2), 20190589. <https://doi.org/10.1098/rsbl.2019.0589>

1
2
3 582 Fawcett, K., & Muhumuza, G. (2000). Death of a wild chimpanzee community member:
4
5 583 Possible outcome of intense sexual competition. *American Journal of Primatology*,
6
7 584 51(4), 243–247. [https://doi.org/10.1002/1098-2345\(200008\)51:4<243::AID-AJP3>3.0.CO;2-P](https://doi.org/10.1002/1098-2345(200008)51:4<243::AID-AJP3>3.0.CO;2-P)
8
9 585
10
11 586 Fedurek, P., Zuberbühler, K., & Semple, S. (2017). Trade-offs in the production of animal
12
13 587 vocal sequences: Insights from the structure of wild chimpanzee pant hoots.
14
15 588 *Frontiers in Zoology*, 14(1), 50. <https://doi.org/10.1186/s12983-017-0235-8>
16
17 589 Ferrer-i-Cancho, R., Bentz, C., & Seguin, C. (2022). Optimal coding and the origins of Zipfian
18
19 590 laws. *Journal of Quantitative Linguistics*, 29(2), 165–194.
20
21 591 <https://doi.org/10.1080/09296174.2020.1778387>
22
23 592 Ferrer-i-Cancho, R., & Forns, N. (2009). The self-organization of genomes. *Complexity*, 15(5),
24
25 593 34-36. <https://doi.org/10.1002/cplx.20296>
26
27 594 Ferrer-i-Cancho, R., & Hernández-Fernández, A. (2013). The failure of the law of brevity in
28
29 595 two new world primates. Statistical Caveats. *Glottotactics*, 4(1), 45-55.
30
31 596 <https://doi.org/10.1524/glot.2013.0004>
32
33 597 Ferrer-i-Cancho, R., Hernández-Fernández, A., Baixeries, J., Dębowski, Ł., & Maćutek, J.
34
35 598 (2014). When is Menzerath-Altmann law mathematically trivial? A new approach.
36
37 599 *Statistical Applications in Genetics and Molecular Biology*, 13(6), 633-644.
38
39 600 <https://doi.org/10.1515/sagmb-2013-0034>
40
41 601 Ferrer-i-Cancho, R., Hernández-Fernández, A., Lusseau, D., Agoramoorthy, G., Hsu, M. J., &
42
43 602 Semple, S. (2013). Compression as a universal principle of animal behavior. *Cognitive
44
45 603 Science*, 37(8), 1565–1578. <https://doi.org/10.1111/cogs.12061>
46
47 604 Ferrer-i-Cancho, R., & Lusseau, D. (2009). Efficient coding in dolphin surface behavioral
48
49 605 patterns. *Complexity*, 14(5), 23–25. <https://doi.org/10.1002/cplx.20266>

1
2
3 606 Ferrer-i-Cancho, R., Lusseau, D., & McCowan, B. (2022). Parallels of human language in the
4
5 607 behavior of bottlenose dolphins. *Linguistic Frontiers*, 5(1), 1-7.
6
7 608 <https://doi.org/10.2478/lf-2022-0002>
8
9
10 609 Fitch, W. T., de Boer, B., Mathur, N., & Ghazanfar, A. A. (2016). Monkey vocal tracts are
11
12 610 speech-ready. *Science Advances*, 2(12), e1600723.
13
14 611 <https://doi.org/10.1126/sciadv.1600723>
15
16
17 612 Graham, K. E., Badihi, G., Safryghin, A., Grund, C., & Hobaiter, C. (2022). A socio-ecological
18
19 613 perspective on the gestural communication of great ape species, individuals, and
20
21 614 social units. *Ethology Ecology & Evolution*, 34(3), 235–259.
22
23 615 <https://doi.org/10.1080/03949370.2021.1988722>
24
25
26 616 Graham, K. E., Hobaiter, C., Ounsley, J., Furuichi, T., & Byrne, R. W. (2018). Bonobo and
27
28 617 chimpanzee gestures overlap extensively in meaning. *PLOS Biology*, 16(2), e2004825.
29
30 618 <https://doi.org/10.1371/journal.pbio.2004825>
31
32
33 619 Gustison, M. L., Semple, S., Ferrer-i-Cancho, R., & Bergman, T. J. (2016). Gelada vocal
34
35 620 sequences follow Menzerath's linguistic law. *Proceedings of the National Academy of
36
37 621 Sciences*, 113(19), E2750–E2758. <https://doi.org/10.1073/pnas.1522072113>
38
39 622 Hatzigeorgiu, N., Mikros, G., & Carayannis, G. (2001). Word length, word frequencies and
40
41 623 Zipf's law in the greek language. *Journal of Quantitative Linguistics*, 8(3), 175–185.
42
43 624 <https://doi.org/10.1076/jql.8.3.175.4096>
44
45
46 625 Heesen, R., Hobaiter, C., Ferrer-i-Cancho, R., & Semple, S. (2019). Linguistic laws in
47
48 626 chimpanzee gestural communication. *Proceedings of the Royal Society B: Biological
49
50 627 Sciences*, 286(1896), 20182900. <https://doi.org/10.1098/rspb.2018.2900>
51
52
53 628 Held, S. D. E., & Špinka, M. (2011). Animal play and animal welfare. *Animal Behaviour*, 81(5),
54
55 629 891–899. <https://doi.org/10.1016/j.anbehav.2011.01.007>
56
57
58
59
60

1
2
3 630 Hernández-Fernández, A., G. Torre, I., Garrido, J.-M., & Lacasa, L. (2019). Linguistic laws in
4
5 631 speech: The case of Catalan and Spanish. *Entropy*, 21(12), 1153.
6
7 632 <https://doi.org/10.3390/e21121153>
8
9
10 633 Hobaiter, C., & Byrne, R. W. (2011a). The gestural repertoire of the wild chimpanzee. *Animal*
11
12 634 *Cognition*, 14(5), 745–767. <https://doi.org/10.1007/s10071-011-0409-2>
13
14
15 635 Hobaiter, C., & Byrne, R. W. (2011b). Serial gesturing by wild chimpanzees: Its nature and
16
17 636 function for communication. *Animal Cognition*, 14(6), 827–838.
18
19
20 637 <https://doi.org/10.1007/s10071-011-0416-3>
21
22
23 638 Hobaiter, C., & Byrne, R. W. (2012). Gesture use in consortship: Wild chimpanzees' use of
24
25 639 gesture for an 'evolutionarily urgent' purpose. In S. Pika & K. Liebal (Eds.), *Gesture*
26
27 640 *Studies* (Vol. 6, pp. 129–146). John Benjamins Publishing Company.
28
29
30 641 <https://doi.org/10.1075/gs.6.08hob>
31
32
33 642 Hobaiter, C., & Byrne, R. W. (2014). The meanings of chimpanzee gestures. *Current Biology*,
34
35 643 24(14), 1596–1600. <https://doi.org/10.1016/j.cub.2014.05.066>
36
37
38 644 Hobaiter, C., Byrne, R. W., & Zuberbühler, K. (2017). Wild chimpanzees' use of single and
39
40 645 combined vocal and gestural signals. *Behavioral Ecology and Sociobiology*, 71(6), 96.
41
42
43 646 <https://doi.org/10.1007/s00265-017-2325-1>
44
45
46 647 Huang, M., Ma, H., Ma, C., Garber, P. A., & Fan, P. (2020). Male gibbon loud morning calls
47
48 648 conform to Zipf's law of brevity and Menzerath's law: Insights into the origin of
49
50 649 human language. *Animal Behaviour*, 160, 145–155.
51
52
53 650 <https://doi.org/10.1016/j.anbehav.2019.11.017>
54
55
56 651 Janik, V. M., & Slater, P. J. B. (1997). Vocal Learning in Mammals. In *Advances in the Study of*
57
58 652 *Behavior* (Vol. 26, pp. 59–99). Elsevier. [https://doi.org/10.1016/S0065-3454\(08\)60377-0](https://doi.org/10.1016/S0065-3454(08)60377-0)
59
60


1
2
3 654 Kanwal, J., Smith, K., Culbertson, J., & Kirby, S. (2017). Zipf's law of abbreviation and the
4
5 655 principle of least effort: Language users optimise a miniature lexicon for efficient
6
7 656 communication. *Cognition*, 165, 45–52.
8
9
10 657 <https://doi.org/10.1016/j.cognition.2017.05.001>
11
12 658 Kendon, A. (2004). *Gesture: Visible Action as Utterance*. Cambridge University Press.
13
14
15 659 <https://doi.org/10.1017/CBO9780511807572>
16
17
18 660 Köhler, R. (2012). *Quantitative syntax analysis*. De Gruyter Mouton.
19
20 661 Köhler, R., Altmann, G., & Piotrowski, R. G. (Eds.). (2005). *Quantitative Linguistik /*
21
22 662 *Quantitative Linguistics: Ein internationales Handbuch / An International Handbook*.
23
24
25 663 De Gruyter Mouton. <https://doi.org/10.1515/9783110155785>
26
27
28 664 Landers, R. (2015). Computing intraclass correlations (ICC) as estimates of interrater
29
30 665 reliability in SPSS [Data set]. In *The Winnower* (Vol. 2, p. e143518).
31
32
33 666 <https://doi.org/10.15200/winn.143518.81744>
34
35 667 Li, W. (2012). Menzerath's law at the gene-exon level in the human genome. *Complexity*,
36
37 668 17(4), 49–53. <https://doi.org/10.1002/cplx.20398>
38
39
40 669 Liebal, K., Call, J., Tomasello, M., & Pika, S. (2004). To move or not to move: How apes adjust
41
42 670 to the attentional state of others. *Interaction Studies. Social Behaviour and*
43
44
45 671 *Communication in Biological and Artificial Systems*, 5(2), 199–219.
46
47
48 672 <https://doi.org/10.1075/is.5.2.03lie>
49
50
51 673 Luo, B., Jiang, T., Liu, Y., Wang, J., Lin, A., Wei, X., & Feng, J. (2013). Brevity is prevalent in
52
53 674 bat short-range communication. *Journal of Comparative Physiology A*, 199(4), 325–
54
55 675 333. <https://doi.org/10.1007/s00359-013-0793-y>
56
57
58 676 Menzerath, P. (1954). *Die Architektonik des deutschen Wortschatzes: Vol. Volume 3*. F.
59
60 677 Dümmler.

1
2
3 678 Miton, H., & Morin, O. (2019). When iconicity stands in the way of abbreviation: No Zipfian
4
5 679 effect for figurative signals. *PLOS ONE*, 14(8), e0220793.
6
7 680 <https://doi.org/10.1371/journal.pone.0220793>
8
9
10 681 Muller, M. N., & Wrangham, R. W. (Eds.). (2009). *Sexual coercion in primates and humans: An evolutionary perspective on male aggression against females*. Harvard University
11
12 682
13
14 683 Press.
15
16
17 684 Naranan, S., & Balasubrahmanyam, V. K. (2000). Information theory and algorithmic
18
19 685 complexity: applications to linguistic discourses and DNA sequences as complex
20
21 686 systems part I: Efficiency of the genetic code of DNA. *Journal of Quantitative
22
23 Linguistics*, 7(2), 129–151. [https://doi.org/10.1076/0929-6174\(200008\)07:02;1-Z;FT129](https://doi.org/10.1076/0929-6174(200008)07:02;1-Z;FT129)
24
25 687
26
27 688
28
29
30 689 Newton-Fisher, N. E., Thompson, M. E., Reynolds, V., Boesch, C., & Vigilant, L. (2009).
31
32 690 Paternity and social rank in wild chimpanzees (*Pan troglodytes*) from the Budongo
33
34 691 Forest, Uganda. *American Journal of Physical Anthropology*, 142(3), 417–428.
35
36 692 <https://doi.org/10.1002/ajpa.21241>
37
38
39 693 Nishida, T. (1980). The leaf-clipping display: A newly-discovered expressive gesture in wild
40
41 694 chimpanzees. *Journal of Human Evolution*, 9(2), 117–128.
42
43 695 [https://doi.org/10.1016/0047-2484\(80\)90068-8](https://doi.org/10.1016/0047-2484(80)90068-8)
44
45
46 696 Nishida, T. (Ed.). (2010). *Chimpanzee behavior in the wild: An audio-visual encyclopedia*.
47
48 697 Springer.
49
50
51 698 Pellis, S. M., & Pellis, V. C. (1996). On knowing it's only play: The role of play signals in play
52
53 699 fighting. *Aggression and Violent Behavior*, 1(3), 249–268.
54
55 700 [https://doi.org/10.1016/1359-1789\(95\)00016-X](https://doi.org/10.1016/1359-1789(95)00016-X)
56
57
58
59
60

1
2
3 701 R Core Team. (2020). *R: A Language and Environment for Statistical Computing* (4.0.0) [R]. R
4
5 702 Foundation for Statistical Computing. <https://www.R-project.org/>
6
7 703 Rodrigues, E. D., Santos, A. J., Veppo, F., Pereira, J., & Hobaiter, C. (2021). Connecting
8
9 704 primate gesture to the evolutionary roots of language: A systematic review.
10
11 705 *American Journal of Primatology*, 83(9). <https://doi.org/10.1002/ajp.23313>
12
13 706 RStudio Team. (2020). *RStudio: Integrated Development Environment for R* (1.2.5042) [R].
14
15 707 RStudio, Inc. <http://www.rstudio.com/>
16
17 708 Rujević, B., Kaplar, M., Kaplar, S., Stanković, R., Obradović, I., & Mačutek, J. (2021).
18
19 709 Quantitative analysis of syllable properties in Croatian, Serbian, Russian, and
20
21 710 Ukrainian. In A. Pawłowski, J. Mačutek, S. Embleton, & G. Mikros (Eds.), *Current*
22
23 711 *Issues in Linguistic Theory* (Vol. 356, pp. 56–67). John Benjamins Publishing
24
25 712 Company. <https://doi.org/10.1075/cilt.356.04ruj>
26
27 713 Sanada, H. (2008). *Investigations in Japanese historical lexicology* (Rev. ed). Peust &
28
29 714 Gutschmidt.
30
31 715 Schel, A. M., Townsend, S. W., Machanda, Z., Zuberbühler, K., & Slocombe, K. E. (2013).
32
33 716 Chimpanzee alarm call Production meets key criteria for intentionality. *PLoS ONE*,
34
35 717 8(10), e76674. <https://doi.org/10.1371/journal.pone.0076674>
36
37 718 Scott, C. B. (2008). *A primer for the exercise and nutrition sciences: Thermodynamics,*
38
39 719 *bioenergetics, metabolism*. Springer.
40
41 720 Semple, S., Ferrer-i-Cancho, R., & Gustison, M. L. (2022). Linguistic laws in biology. *Trends in*
42
43 721 *Ecology & Evolution*, 37(1), 53–66. <https://doi.org/10.1016/j.tree.2021.08.012>
44
45 722 Semple, S., Hsu, M. J., Agoramoorthy, G., & Ferrer-i-Cancho, R. (2013). The law of brevity in
46
47 723 macaque vocal communication is not an artefact of analysing mean call durations.
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 724 *Journal of Quantitative Linguistics*, 20(3), 209–217.
4
5 725 <https://doi.org/10.1080/09296174.2013.799917>
6
7 726 Smith, E. (2014). *Social Play in Primates*. Elsevier Science.
8
9 727 <http://qut.eblib.com.au/patron/FullRecord.aspx?p=1172757>
10
11 728 Sokal, R. R., & Rohlf, F. J. (1995). *Biometry: The principles and practice of statistics in*
12
13 729 *biological research* (3rd ed). W.H. Freeman.
14
15 730 Stan Development Team. (2022). “*RStan: The R interface to Stan*.” (2.21.5) [R]. [https://mc-](https://mc-stan.org/)
16
17 731 [stan.org/](https://mc-stan.org/).
18
19 732 Strauss, U., Grzybek, P., & Altmann, G. (2007). Word Length and Word Frequency. In P.
20
21 733 Grzybek (Ed.), *Contributions to the Science of Text and Language* (Vol. 31, pp. 277–
22
23 734 294). Springer Netherlands. https://doi.org/10.1007/978-1-4020-4068-9_13
24
25 735 Thompson, M. E. (2013). Reproductive ecology of female chimpanzees: Chimpanzee
26
27 736 reproductive ecology. *American Journal of Primatology*, 75(3), 222–237.
28
29 737 <https://doi.org/10.1002/ajp.22084>
30
31 738 Tutin, C. E. G. (1979). Mating patterns and reproductive strategies in a community of wild
32
33 739 chimpanzees (*Pan troglodytes schweinfurthii*). *Behavioral Ecology and Sociobiology*,
34
35 740 6(1), 29–38. <https://doi.org/10.1007/BF00293242>
36
37 741 Valente, D., De Gregorio, C., Favaro, L., Friard, O., Miaretsoa, L., Raimondi, T., Ratsimbazafy,
38
39 742 J., Torti, V., Zanolli, A., Giacoma, C., & Gamba, M. (2021). Linguistic laws of brevity:
40
41 743 Conformity in *Indri indri*. *Animal Cognition*, 24(4), 897–906.
42
43 744 <https://doi.org/10.1007/s10071-021-01495-3>
44
45 745 Vehtari, A., Gelman, A., & Gabry, J. (2017). Practical Bayesian model evaluation using leave-
46
47 746 one-out cross-validation and WAIC. *Statistics and Computing*, 27(5), 1413–1432.
48
49 747 <https://doi.org/10.1007/s11222-016-9696-4>
50
51
52
53
54
55
56
57
58
59
60

1
2
3 748 Wang, Y., & Chen, X. (2015). Structural Complexity of Simplified Chinese Characters. In A.
4
5 749 Tuzzi, M. Benesová, & J. Macutek (Eds.), *Recent Contributions to Quantitative*
6
7 750 *Linguistics*. DE GRUYTER. <https://doi.org/10.1515/9783110420296-019>
8
9
10 751 Watson, S. K., Heesen, R., Hedwig, D., Robbins, M. M., & Townsend, S. W. (2020). An
11
12 752 exploration of Menzerath's law in wild mountain gorilla vocal sequences. *Biology*
13
14 753 *Letters*, 16(10), 20200380. <https://doi.org/10.1098/rsbl.2020.0380>
15
16
17 754 Watts, D. P. (2015). Mating behavior of adolescent male chimpanzees (*Pan troglodytes*) at
18
19 755 Ngogo, Kibale National Park, Uganda. *Primates*, 56(2), 163–172.
20
21 756 <https://doi.org/10.1007/s10329-014-0453-z>
22
23
24 757 Wilson, M. L., Boesch, C., Fruth, B., Furuichi, T., Gilby, I. C., Hashimoto, C., Hobaiter, C. L.,
25
26 758 Hohmann, G., Itoh, N., Koops, K., Lloyd, J. N., Matsuzawa, T., Mitani, J. C., Mjungu, D.
27
28 759 C., Morgan, D., Muller, M. N., Mundry, R., Nakamura, M., Pruetz, J., ... Wrangham, R.
29
30 760 W. (2014). Lethal aggression in *Pan* is better explained by adaptive strategies than
31
32 761 human impacts. *Nature*, 513(7518), 414–417. <https://doi.org/10.1038/nature13727>
33
34
35 762 Zipf, G. K. (1936). *The psycho-biology of language: An introduction to dynamic philology*.
36
37
38 763 Routledge.
39
40
41 764 Zipf, G. K. (1949). *Human behavior and the principle of least effort: An introduction to*
42
43
44 765 *human ecology*. Addison-Wesley Press.
45
46
47 766
48
49
50
51
52
53
54
55
56
57
58
59
60

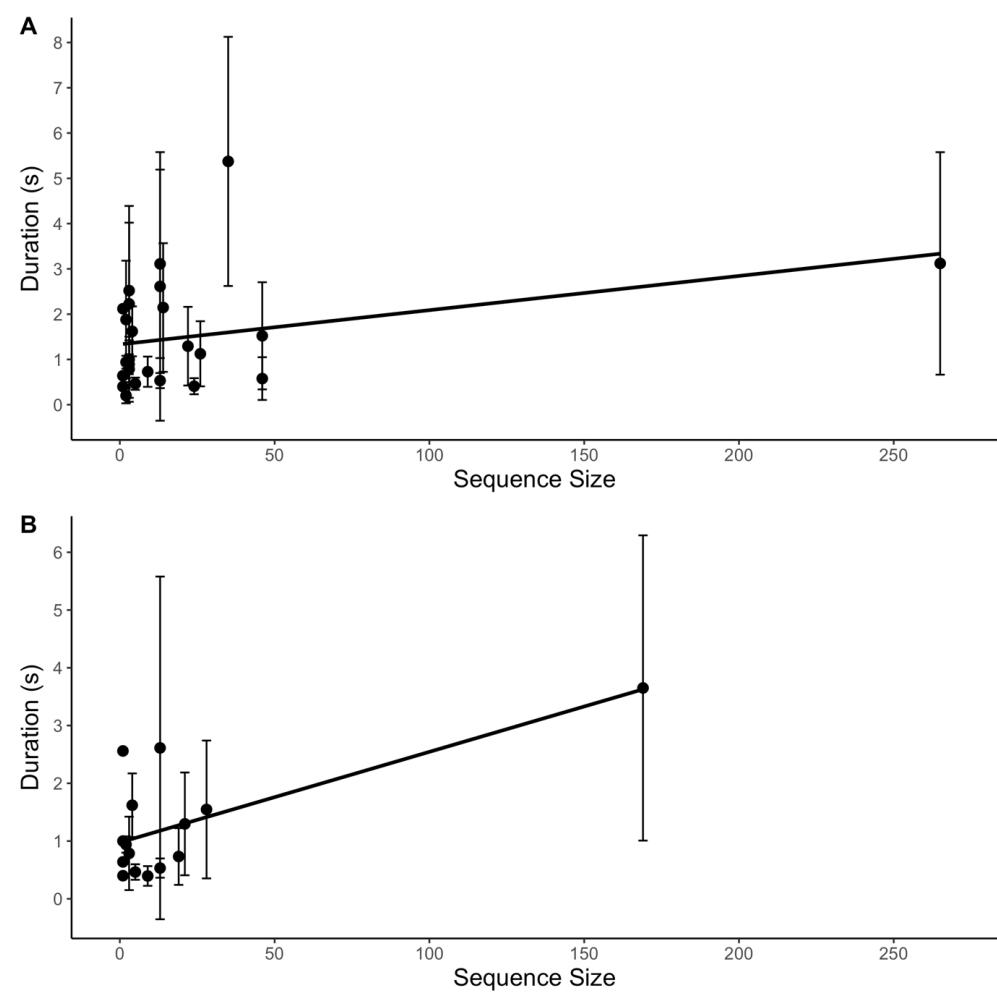


Figure 2. Relationship between frequency of occurrence and gesture duration for the full dataset (A) and Duane only data (B). Points represent the mean duration of each gesture type, with error bars showing the standard deviation from the mean. Black line indicates regression slope.

159x159mm (220 x 220 DPI)

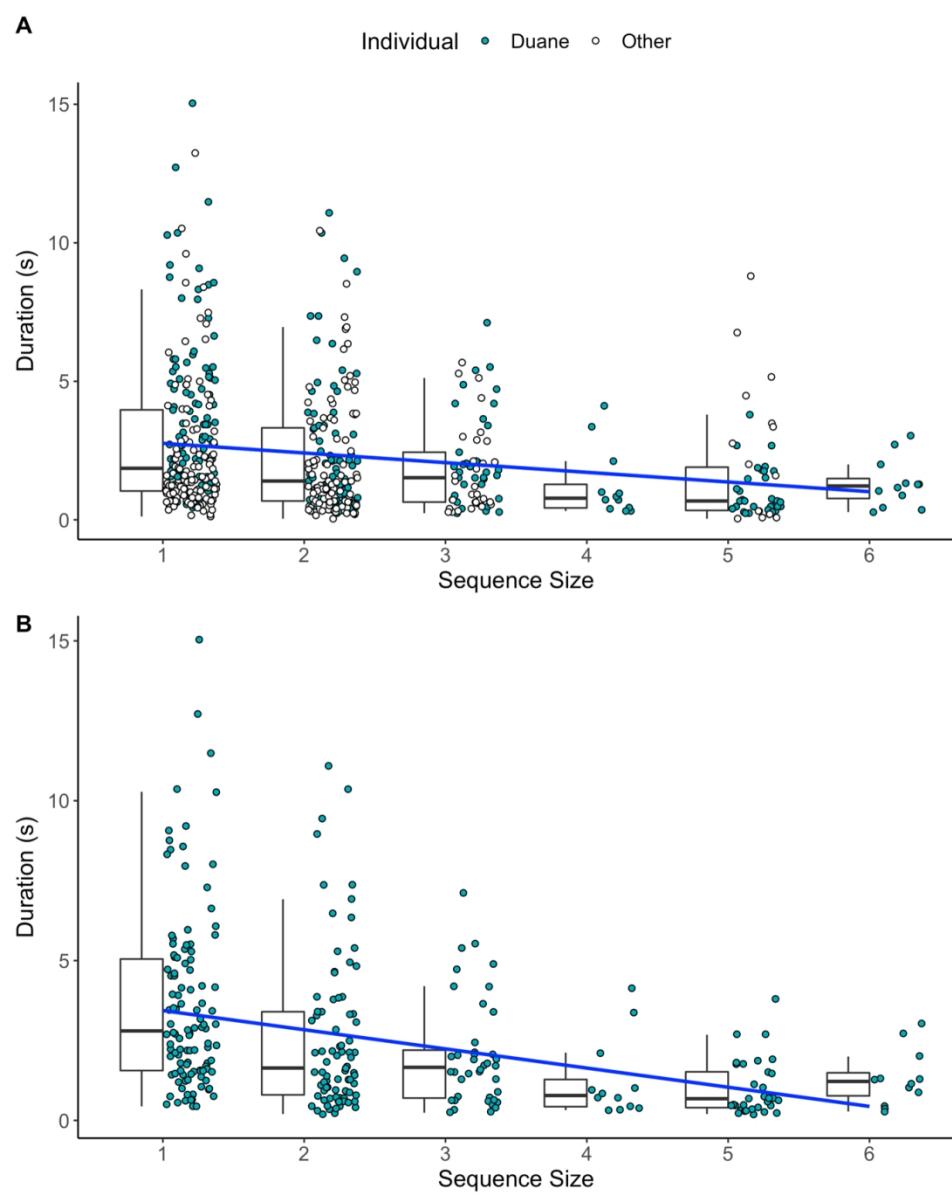


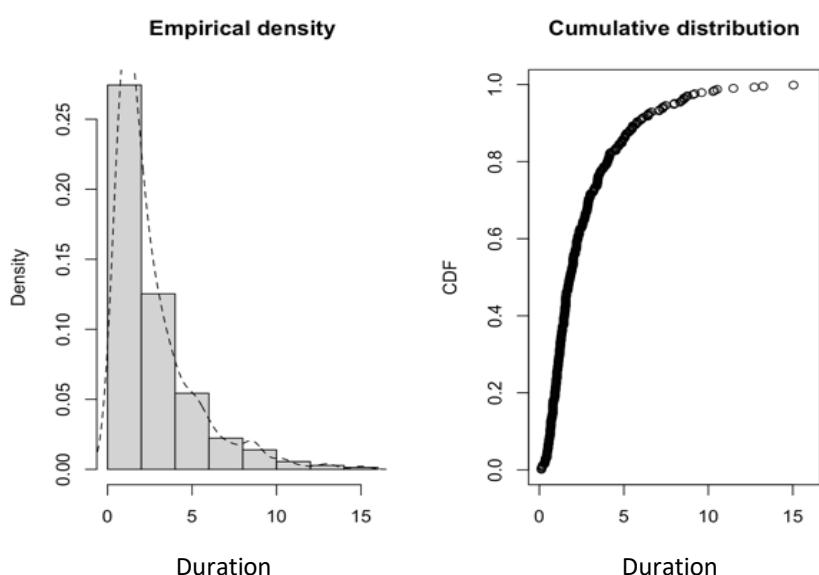
Figure 3. Relationship between sequence size and gesture duration for the full dataset (A) and Duane only data (B). Boxplots represent the median (black bar), the interquartile range – IQR (boxes), and maximum and minimum values excluding outliers (whiskers). Points represent individual gesture tokens, ordered by the length of the sequence they were performed in. Gestural tokens belonging to the individual Duane are indicated in light blue. White circles indicate gesture tokens belonging to all other individuals. Blue line indicates regression slope.

159x199mm (220 x 220 DPI)

1
2
3 **Table 1**
4
5

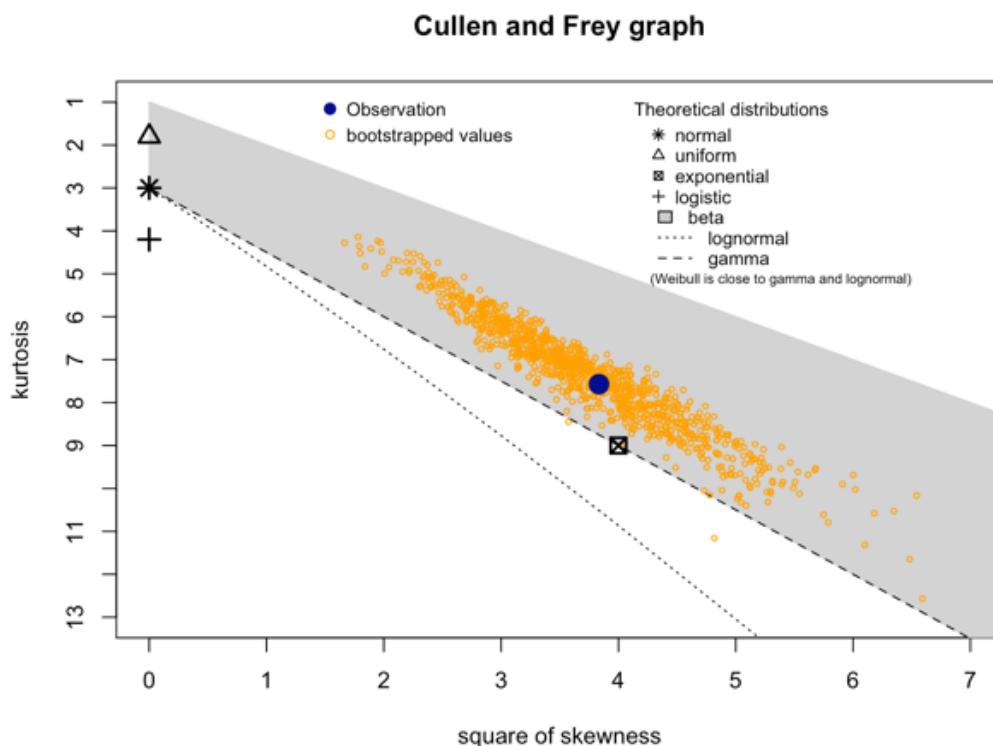
Sequence length	<i>Same type</i>	<i>Different types</i>	<i>Total number of sequences</i>
1	NA	NA	244
2	24	58	82
3	1	20	21
4	0	3	3
5	1	6	7
6	0	2	2
Total	26	89	

Supporting information 1 – Gesture types definitions


Table S1. Ethogram of the 26 gesture types recorded in the dataset. Definitions are taken from (Hobaiter & Byrne, 2011a) and (Nishida, 2010). Video examples and illustrations of these gestures are available at www.greatapedictionary.com

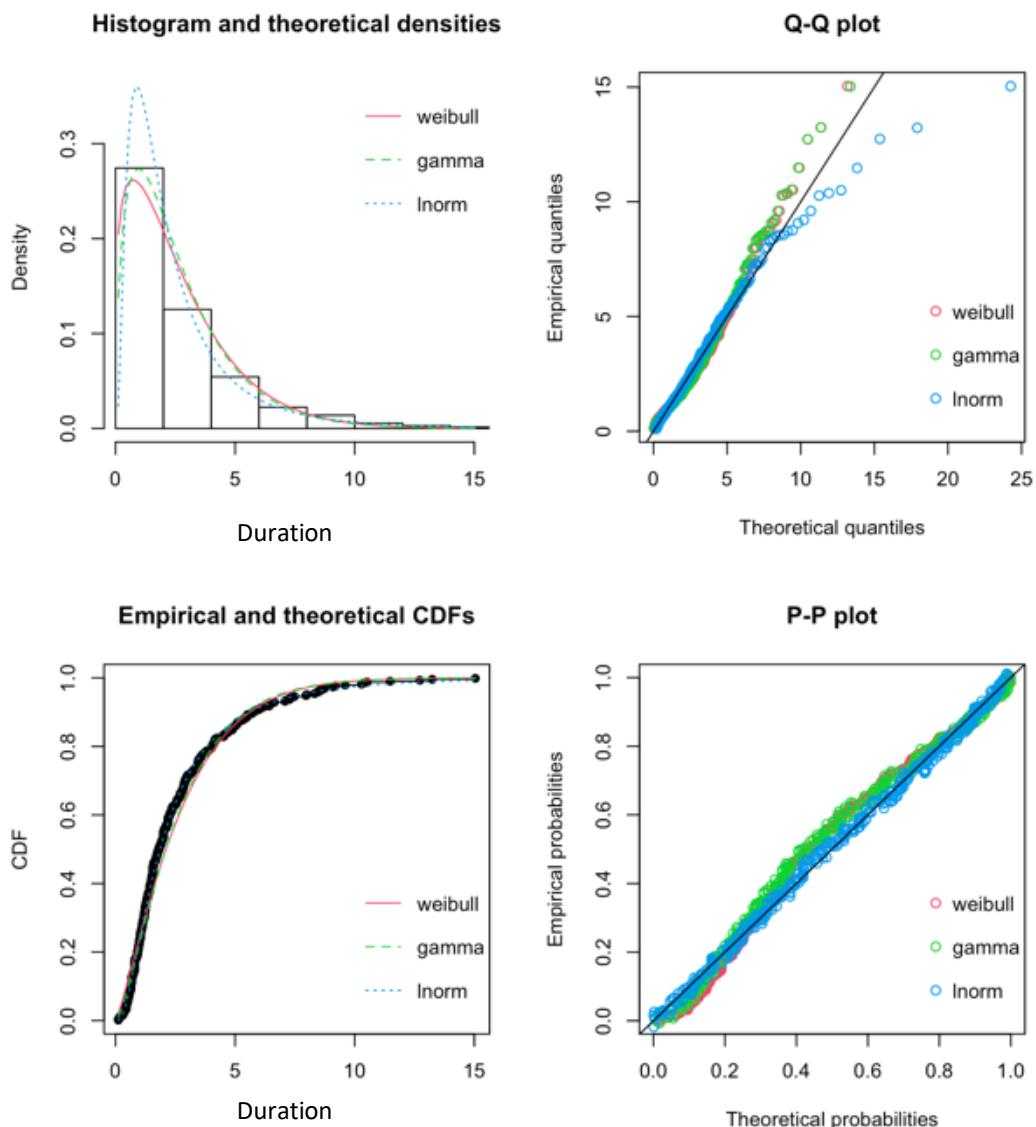
Gesture	Description	Type
Beckon	Hand is moved in an upwards sweep from the elbow or wrist towards signaller.	Manual
Big loud scratch	Loud exaggerated scratching movement on the signaller's own body.	Manual
Drum	Short hard audible contact of alternate palms against an object, usually tree roots.	Manual
Hit object/ground	Movement of whole arm, with short hard audible contact of closed fist to an object or the ground. Includes gestures performed with one and both arms.	Manual
Hit object/ground with object	As 'hit object/ground' but the signaller holds an object in the hand/hands, which contacts the ground.	Manual
Jump	While bipedal, both feet leave the ground simultaneously, accompanied by horizontal displacement through the air.	Body
Leaf clipping	Strips are torn from a leaf (or leaves) held in the hand using the teeth; produces a conspicuous sound.	Manual
Locomote: bipedal	The signaller walks bipedally while standing up.	Body
Object move	Object is displaced in one direction, contact is maintained throughout movement. Includes gestures performed with one or both hands.	Manual
Object shake	Repeated back and forth movement of an object, usually stem of shrub, branch of tree or woody vine, performed with either one or both hands.	Manual
Present: genitals forwards	Signaller shows genitals to recipient.	Body
Raise arm	Raise arm and/or hand vertically in the air and direct palm to companion.	Manual

Reach: palm	Arm extended to the recipient with the palm exposed. Typically held up or to the side, although very occasionally down. It is the palm or tip of the fingers that is closest to the recipient.	Manual
Reach: wrist	Arm extended to the recipient with the palm sheltered (fingers are curled), and it is either the wrist, or the back of the fingers that is reached out to the recipient.	Manual
Rocking: sitting	Slight or vigorous side to side movements of the body when the signaller is sitting.	Body
Shake arm	Small, repeated shake (adduct or abduct) of horizontally held arm at another. Includes gestures performed with either one or both arms.	Manual
Shake head	Small repeated back and forth motion of the head.	Manual
Stomp 2-feet object/ground	As 'stomp object/ground' but performed with both feet.	Manual
Stomp object/ground	Sole of the foot is lifted vertically and brought into a short hard audible contact with the surface being stood upon (e.g., ground, branch).	Manual
Stomping object/ground	As 'stomp object/ground' but performed repeatedly.	Manual
Swing	Large back and forth movement of the arm held below the shoulder, or of leg from the hip. Includes gestures performed with one and two arms.	Manual
Swing: directed	As 'swing' but the direction of the swing indicates the direction of desired movement, immediately followed by the recipient moving as indicated.	Manual
Swing: with object	As 'swing' but the signaller holds an object in their hand/hands (e.g., branch, leaves, etc).	Manual
Throw object	Object is moved and released so that there is displacement through the air after the moment of release.	Manual
Thrust	Rhythmic back and forth movements of the pelvis.	Body
Wave	Large repeated back and forth movement of the arm raised above the shoulder.	Manual


2 Supporting information 2 - Duration distribution analysis

3 Before performing the GLMM analysis we analysed the distribution of the gesture
4 duration data by (1) visually inspecting its empirical density and cumulative distribution
5 (Figure S4) and (2) assessing its skewness and kurtosis via the visual inspection of the Cullen
6 and Frey graph (Figure S5). Figure S5 shows the data are skewed towards low values, as
7 almost half of the data lays between 0 and 3 seconds. Further, we fitted three theoretical
8 distributions to the data – namely Weibull, Gamma, and Lognormal – and compared
9 loglikelihood values (Table S2). We then plotted the three distributions and visually
10 inspected the Q-Q, P-P, and histogram density plots (Figure S6). Finally, we compared
11 Weibull, Gamma, and Lognormal distributions against gesture duration data distribution via
12 goodness-of-fit tests and goodness-of-fit information criterion (Table S3 and S4), which
13 helped identify the lognormal distribution as the best fitting one. Therefore, we proceeded
14 with log-transforming the duration variable to best fit model assumptions.

15 **Figure S1. Empirical distribution of gesture duration.**


16 Histogram and empirical cumulative distribution function (CDF) plots representing the
17 distribution of gesture duration. Histogram bars represent sample distribution, dashed line
18 indicates empirical density.

19 **Figure S2. Cullen and Frey graph for gesture duration.** The graph depicts the distribution of
20 the skewness and kurtosis of gesture duration data with bootstrapped values, plotted
21 against other theoretical distributions, namely normal, uniform, exponential, logistic, beta,
22 lognormal, and gamma.

Table S2. Estimate and standard error for fitting the parameters of three theoretical distributions to the distribution of the gesture duration data.

Distribution	Parameters	Estimate	Std Error	Loglikelihood
Weibull	Shape	1.229711	0.04786805	-695.5846
	Scale	2.848181	0.12958597	
Gamma	Shape	1.5695397	0.10700744	-688.7789
	Rate	0.5933806	0.04755517	
Lognormal	meanlog	0.6214851	0.04530977	-677.7389
	sdlog	0.8584975	0.03203865	

23 **Figure S3. Histogram and theoretical densities, Q-Q and P-P plots depicting the gesture
24 duration data distribution against the fitted Weibull, Gamma, and Lognormal
25 distributions.**

26 Histogram represents the distribution of duration data while the red, dashed green, and
27 dashed blue lines indicate the theoretical Weibull, Gamma, and Lognormal distributions,
28 respectively.

29 **Table S3. Goodness-of-fit statistics compared across fitted distributions to the gesture
duration data.**

Goodness-of-fit statistics	Weibull	Gamma	Lognormal
----------------------------	---------	-------	-----------

Kolmogorov-Smirnov statistic	0. 07621865	0.08155393	0. 03242513
Cramer-von Mises statistic	0.62478933	0.55850079	0.03735280
Anderson-Darling statistic	3.88457421	3.08240994	0.30076490

30

Table S4. Goodness-of-fit information criteria compared across fitted distributions.

Goodness-of-fit criteria	Weibull	Gamma	Lognormal
Akaike's Information Criterion	1395.169	1381.558	1359.478
Bayesian Information Criterion	1402.936	1389.324	1367.244

31

32 Supporting information 3 - Model results

Table S5. Summary of the Bayesian mixed model analysis results for the Zipf-model which included all the data (N=560).

Fixed effects	<i>b</i>	SD	95% CrI	Bulk ESS	Tail ESS	\hat{R}
Intercept	0.02	0.36	[-0.67; 0.72]	1257	1528	1.00
P	0.90	1.26	[-1.25; 3.81]	1298	1173	1.00
<i>Category</i>						
Whole body	<i>Reference</i>					
Manual	-0.24	0.39	[-1.04; 0.49]	966	1762	1.00
<i>Random effects</i>						
Gesture, N=26	0.80	0.14	[0.57; 1.13]	809	1275	1.00
Sequence ID, N=377	0.10	0.07	[0.01; 0.25]	459	960	1.00
Signaller ID, N=16	0.20	0.06	[0.11; 0.34]	1749	1936	1.00

Table S6. Summary of the Bayesian mixed model analysis results for the Zipf-model which included only Duane's data (N=290).

Intercept	-0.48	0.50	[-1.46; 0.55]	1867	1715	1.00
P	1.79	1.15	[-0.39; 4.00]	1029	1547	1.00
<i>Category</i>						
Whole body	<i>Reference</i>					
Manual	0.31	0.50	[-0.72; 1.30]	1663	1672	1.00
<i>Date</i>						
03/02/2008	<i>Reference</i>					
05/01/2008	-0.20	0.11	[-0.43; 0.02]	3183	2572	1.00
20/01/2008	0.12	0.11	[-0.09; 0.35]	2765	2161	1.00
<i>Random effects</i>						
Gesture, N=15	0.49	0.17	[0.23; 0.89]	867	1541	1.00
Sequence ID, N=181	0.11	0.07	[0.01; 0.26]	775	1328	1.00

Table S7. Summary of the Bayesian mixed model analysis results for the Zipf-model which included data from all individuals but Duane (N=270).

Fixed effects	<i>b</i>	SD	95% CrI	Bulk ESS	Tail ESS	\hat{R}
Intercept	0.27	0.46	[-0.61; 1.21]	1442	1499	1.00
P	0.00	0.00	[-0.00; 0.01]	2428	1993	1.00
<i>Category</i>						
Whole body	<i>Reference</i>					
Manual	-0.36	0.50	[-1.38; 63]	1565	1769	1.00
<i>Random effects</i>						
Gesture, N=18	0.87	0.19	[0.58; 1.32]	1194	1657	1.00
Sequence ID, N=196	0.20	0.10	[0.01; 0.38]	468	1053	1.01

Table S8. Summary of the Bayesian mixed model analysis results for the Menzerath-model which included all the data (N=530).

Fixed effects	<i>b</i>	SD	95% CrI	Bulk ESS	Tail ESS	\hat{R}
Intercept	0.69	0.14	[0.41; 0.97]	1316	1809	1.00
Sequence Size	-0.18	0.04	[-0.26; -0.11]	2374	1915	1.00
PWB	-0.31	0.20	[-0.71; 0.08]	2795	2529	1.00
<i>Random effects</i>						
Signaller ID, N=16	0.36	0.11	[0.18; 0.62]	938	1501	1.00
Sequence ID, N=359	0.31	0.10	[0.07; 0.47]	356	539	1.01

Table S9. Summary of the Bayesian mixed model analysis results for the Menzerath-model which included only Duane's data (N=273).

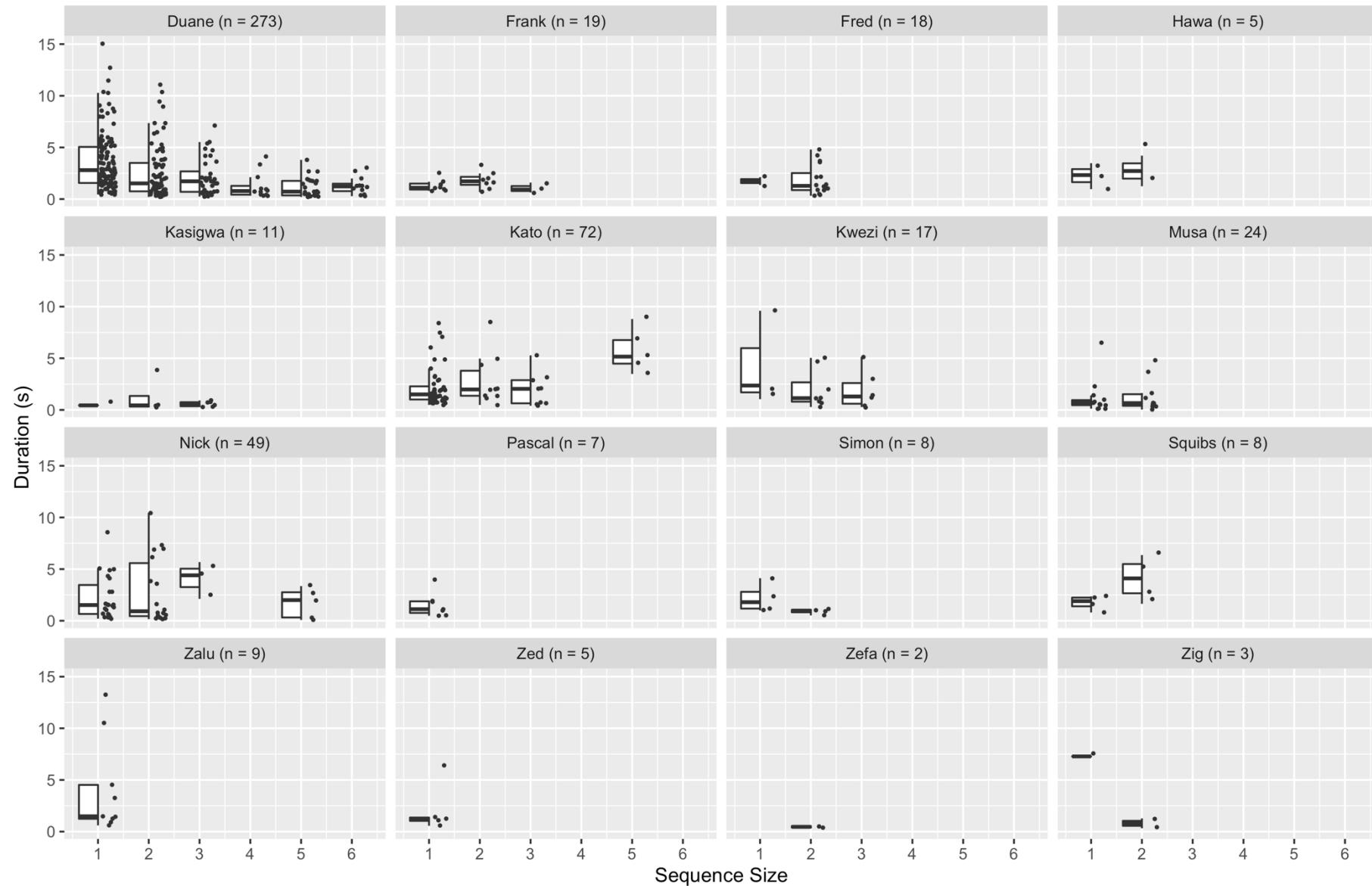
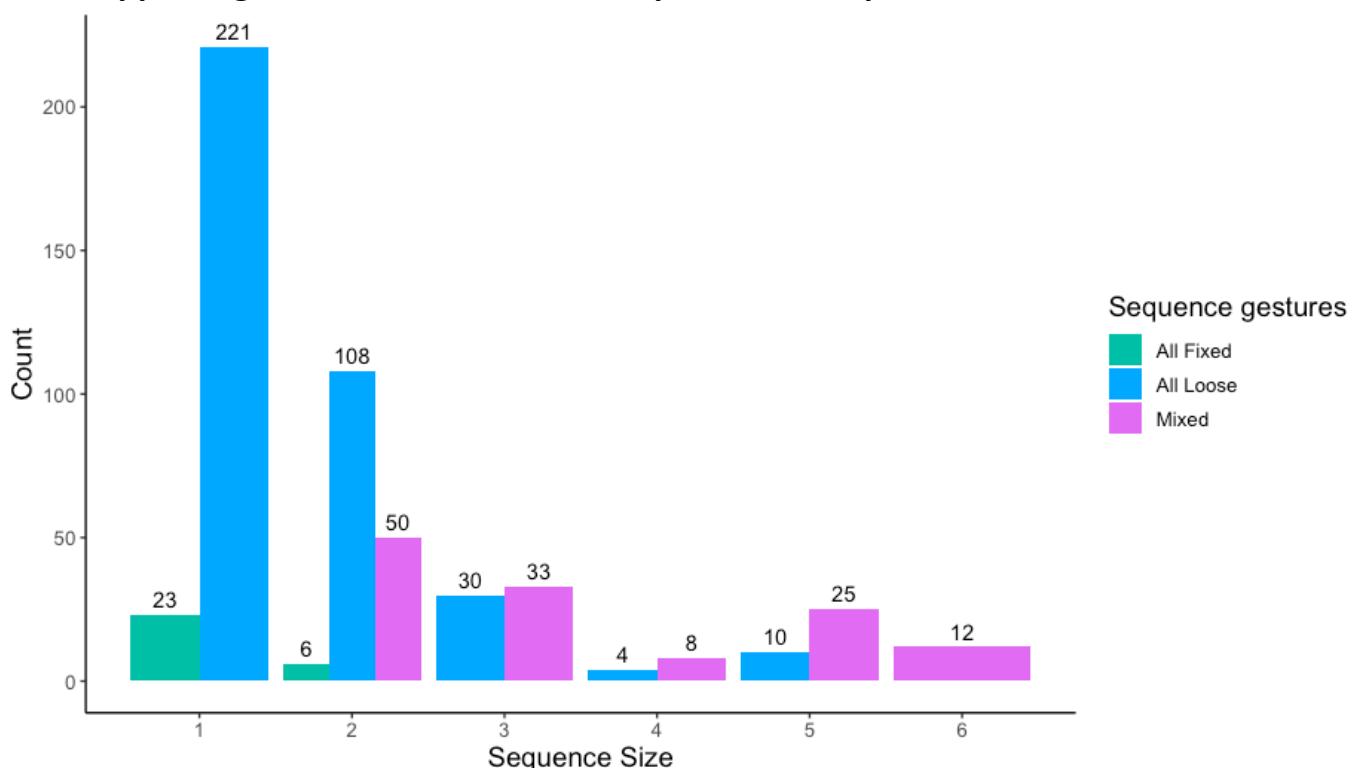

Fixed effects	<i>b</i>	<i>SD</i>	95% CrI	Bulk ESS	Tail ESS	\hat{R}
Intercept	0.92	0.13	[0.67; 1.17]	4365	2026	1.00
Sequence Size	-0.23	0.04	[-0.31; -0.15]	4074	2145	1.00
PWB	-0.69	0.58	[-1.89; 0.38]	4900	2168	1.00
<i>Date</i>						
03/02/2008	<i>Reference</i>					
05/01/2008	0.06	0.14	[-0.22; 0.34]	4821	2130	1.00
20/01/2008	0.48	0.13	[0.22; 0.75]	5325	2610	1.00
<i>Random effects</i>						
Sequence ID, N=181	0.11	0.08	[0.00; 0.30]	995	1009	1.00

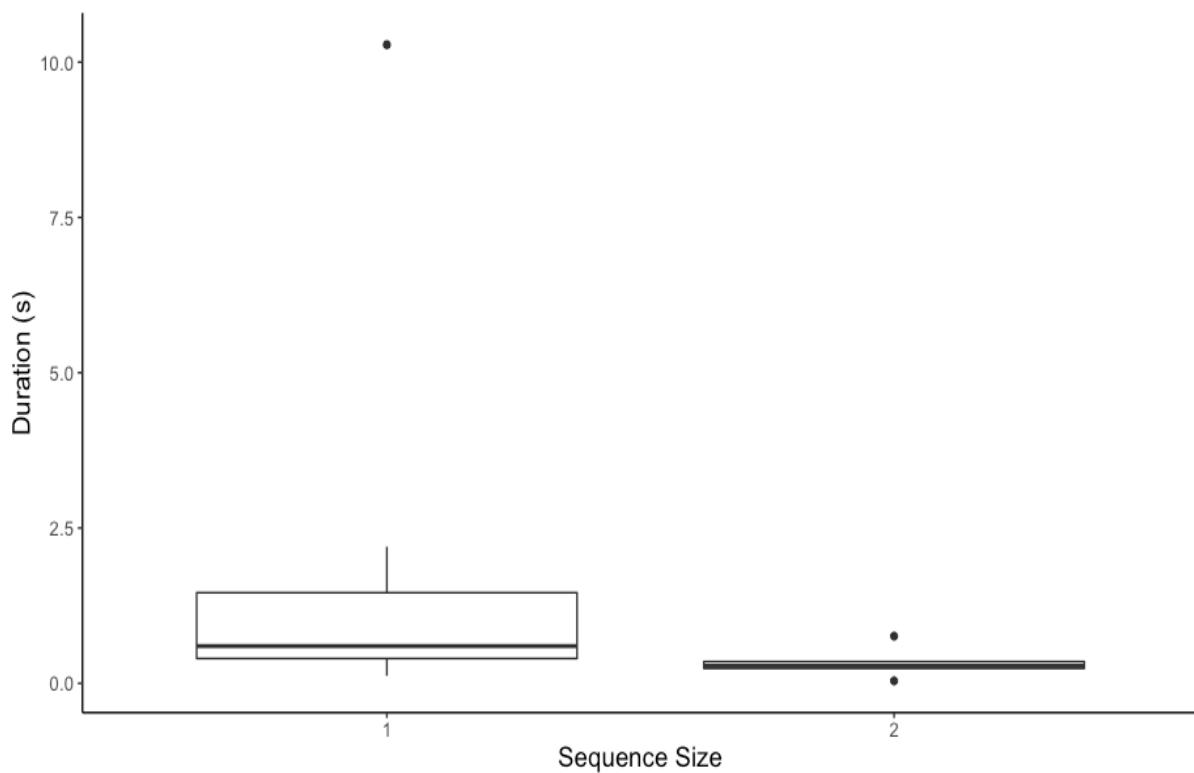
Table S10. Summary of the Bayesian mixed model analysis results for the Menzerath-model which included data from all individuals but Duane (N=257).

Fixed effects	<i>b</i>	<i>SD</i>	95% CrI	Bulk ESS	Tail ESS	\hat{R}
Intercept	0.33	0.18	[-0.04; 0.70]	2167	2241	1.00
Sequence Size	0.01	0.08	[-0.14; 0.16]	2866	2438	1.00
PWB	-0.24	0.22	[-0.69; 18]	3474	2226	1.00
<i>Random effects</i>						
Sequence ID, N=187	0.42	0.11	[0.16; 0.62]	466	423	1.01
Signaller ID, N=15	0.37	0.14	[0.14; 0.70]	842	902	1.00


33 **Abbreviations:** *b*= Estimated mean of the posterior distribution; *SD*= Standard deviation of the posterior
34 distribution; *CrI*= Two-sided 95% Credible intervals based on quantiles; *Bulk ESS*= the effective sample
35 size for rank normalized values using split chains; *Tail ESS*= the minimum of the effective sample sizes for
36 5% and 95% quantiles; \hat{R} =R hat value, provides information about the convergence of the Bayesian
37 model algorithm.

8 Supporting information 4

9 **Figure S4. Distribution of gesture durations based on sequence size for each of the 16 individuals in the dataset.** Points represent individual gesture tokens.
0 Boxplots show median (black central bar), interquartile range (boxes), maximum and minimum values (whiskers). n indicates sample size
1 for each individual.


42 **Supporting information 5 – Visual inspection of sequence structure**

43 **Figure S5. Bar chart showing the frequency distribution of the three different types of
44 sequences depending on their sequence size.**

45 Green sequences comprise only *fixed* duration gestures, blue sequences only *loose* duration
46 gestures. Pink bars represent sequences formed by a mix of *loose* and *fixed* duration
47 gestures. Numbers above bars indicate the frequency of each sequence type per sequence
48 size.

49

50 **Figure S6. Boxplots of the duration of gestures with constrained duration (i.e., *fixed***

51 **duration gestures) in sequences formed of *fixed* duration gestures solely.**

52 Boxplots show median (black central bar), interquartile range (boxes), maximum and

53 minimum values exploding outliers (whiskers) and outliers (circles).

54

55 Supporting information 6 – Alternative analyses

56 Correlation and compression

57 Methods

58 Compression predicts that mean duration should be smaller than expected by chance
59 (Ferrer-i-Cancho et al., 2013). Similarly, optimal compression predicts linguistic laws as a
60 correlation in a specific direction, *i.e.*, the correlation cannot be positive (Ferrer-i-Cancho et
61 al., 2013, 2020). Accordingly, we employed one-tailed tests of compression throughout, but
62 we also report the outcome of two-tailed equivalents for comparison with previous findings
63 (Heesen et al., 2019).

64 We conducted one-tailed Spearman rank correlation tests to analyse the relationship
65 between the frequency within the sample of a gesture type (*frequency*) and its mean
66 duration (*mean gesture type duration*), calculated by dividing the total sum of all durations
67 of the same gesture type (Sum), by *frequency* (*i.e.*, $duration=Sum/frequency$) (Semple et al.,
68 2013). A similar procedure was used to test for a correlation between the mean gesture
69 duration within a given sequence (*sequence*) and the number of gesture tokens in the same
70 sequence (*n*). Mean gesture duration was calculated by dividing the total duration of a
71 gestural sequence (*Total*) – *i.e.*, the sum of all durations of the gesture tokens in the
72 sequence excluding pauses between gestures – by the number of gesture tokens within that
73 sequence *n* (*i.e.*, $mean\ gesture\ duration\ within\ sequence= sum\ of\ durations\ of\ gestures$
74 *within the sequence/number of gestures within the sequence*). A negative correlation
75 between *mean gesture type duration* and *frequency* coherent with Zipf’s law of brevity, and
76 a negative correlation between *t* and *n* conforming to Menzerath’s law could both be
77 unavoidable artefacts given the relationship between *d* and *f*, and between *t* and *n* – as

78 defining d involves f , and defining t involves n – which could lead to $d = 1/f$ and $t=1/n$
79 (Ferrer-i-Cancho et al., 2014). Such artefacts can be excluded by establishing that D and f ,
80 and T and n are significantly positively correlated (Ferrer-i-Cancho et al., 2014; Semple et al.,
81 2013), which we tested using two Spearman rank correlation tests. Current findings suggest
82 that the expressions of linguistic laws are not ‘universal’, and there may be more variation
83 than previously recognised (Semple et al., 2022). For example: earlier research
84 demonstrated Zipf’s law of brevity can be present in parts of a repertoire, when it appears
85 to be absent in the whole repertoire (Ferrer-i-Cancho & Hernández-Fernández, 2013;
86 Heesen et al., 2019). As a result, we also tested for Zipf’s law of brevity in specific subsets of
87 the repertoire, namely manual versus whole-body gesture types as these had been found to
88 differ in previous work (Heesen et al., 2019). Moreover, a specific check of Zipf’s law of
89 brevity in manual gestures aids in comparison with studies of human communication that
90 only consider manual signals (for example in signed languages and fingerspelling).

91

92 **Compression test**

93 **Is the mean duration of chimpanzee sexual solicitation gesture types significantly small?**

94 Following earlier work on chimpanzee play gestures (Heesen et al., 2019), we first calculated
95 mean duration of all gesture types L via the equation:

$$96 \quad L = \sum_{i=1}^n p_i e_i \quad (1)$$

97

98 where n is the number of elements within the repertoire, p_i is the normalized probability of
99 the i^{th} element – calculated by dividing the frequency of the i^{th} gesture by the total

100 frequency of all gestures – and e_i is the magnitude of the i^{th} element (*i.e.*, its average
101 duration d).

102 To test for compression and whether Zipf's law holds in chimpanzee sexual solicitation
103 gestural communication, we used a permutation test assessing whether L was significantly
104 small (Sokal & Rohlf, 1995). Following (Heesen et al., 2019) we created "*a control*
105 *distribution of L (L') defined by a permutation function $\pi (i)$* " and calculated the left p -value
106 by dividing the number of permutations where $L' \leq L$ by the number of total permutations,
107 here 10^5 . L was also calculated and tested for each subset created.

108
$$L' = \sum_{i=1}^n p_i e_{\pi(i)} \quad (2)$$

109 *Is the expected total sum of the duration of gestures of each sequence significantly small?*

110 As explained by (Heesen et al., 2019), the total duration of a collection of sequences
111 can be quantified as

112
$$M = \sum_{i=1}^N T_i \quad (3)$$

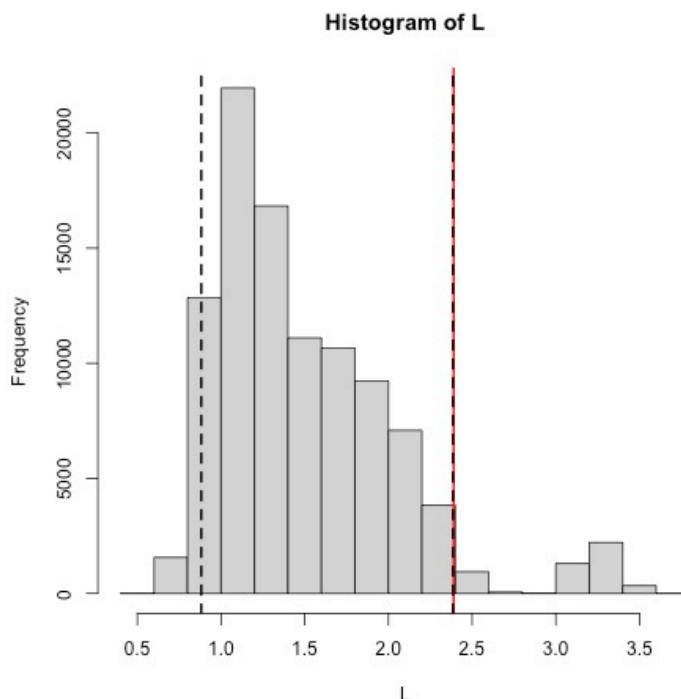
113 where T_i is the total duration of the i th sequence and N is the number of sequences.

114 In turn,

115
$$T = \sum_{j=1}^{n_i} t_{ij} \quad (4)$$

116 where t_{ij} is the duration of the j th element of the i th sequence and n_i is the size of the i th
117 sequence. Given that the mean duration of gestures from the i th sequence can be
118 expressed as $(t_{ij})_i = \frac{T_i}{n_i}$, M can be defined as

119
$$M = \sum_{i=1}^N n_i (t_{ij})_i \quad (5)$$

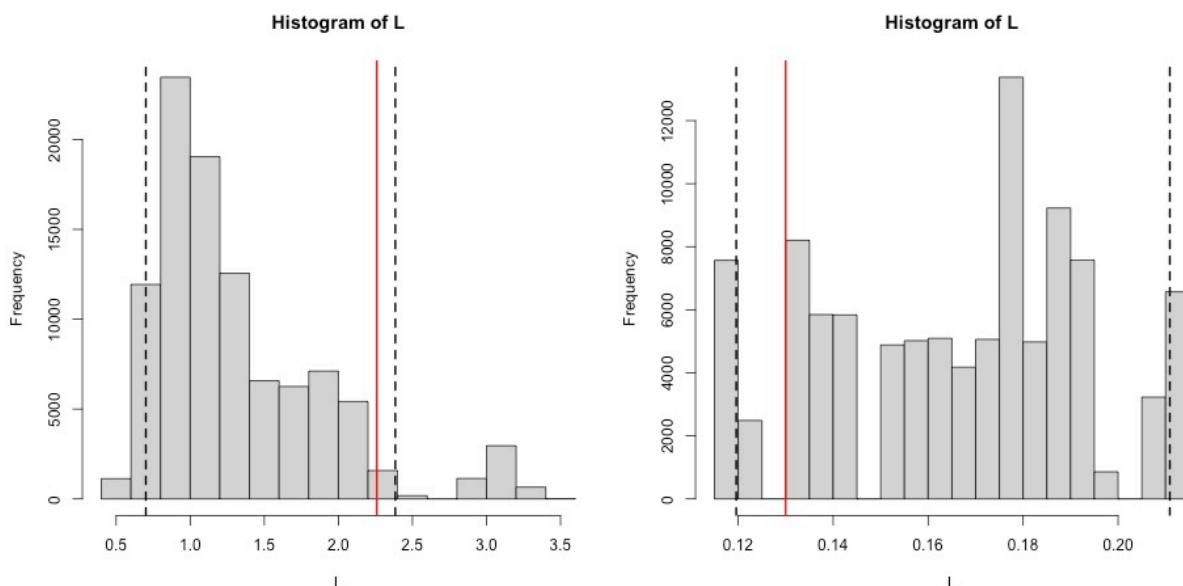

120 M was calculated through this equation and was tested to assess whether it is significantly
121 small. We performed a similar permutation test to that conducted to test for the
122 significance of L , to check whether M was significantly small as compared to the values
123 generated by random permutation of the data (Zipf, 1936). In such case, n_i has the role of p_i
124 and $(t_{ij})_i$ has the role of e_i in the test, with n_i and $(t_{ij})_i$ remaining constant during the test.
125 The permutation test produces a left p -value to check if L (or M) is significantly small
126 and a right p -value to check if L (or M) is significantly large compared to the distribution of
127 the values created by a permutation of the data (Heesen et al., 2019). The total number of
128 permutations carried out was $R=10^5$.
129

130 **Results of one-tailed analyses**

131 **Zipf's law of brevity**

132 **Do chimpanzee sexual solicitation gestures follow Zipf's law of brevity?**

133 We did not find a pattern in agreement with Zipf's law of brevity; there was no evidence for
134 a significant negative correlation between mean gesture type duration (d) and frequency of
135 use (f) (Spearman correlation: $r_s=0.30$, $n=26$, $p=0.066$), in agreement with the Bayesian
136 model analysis. Consistent with this result, the compression test revealed that the expected
137 mean code length of gesture types L had a magnitude of 2.39s and was not significantly
138 small ($p_{left}=0.951$). Rather, L was significantly big ($p_{right}=0.05$, Figure S7).
139

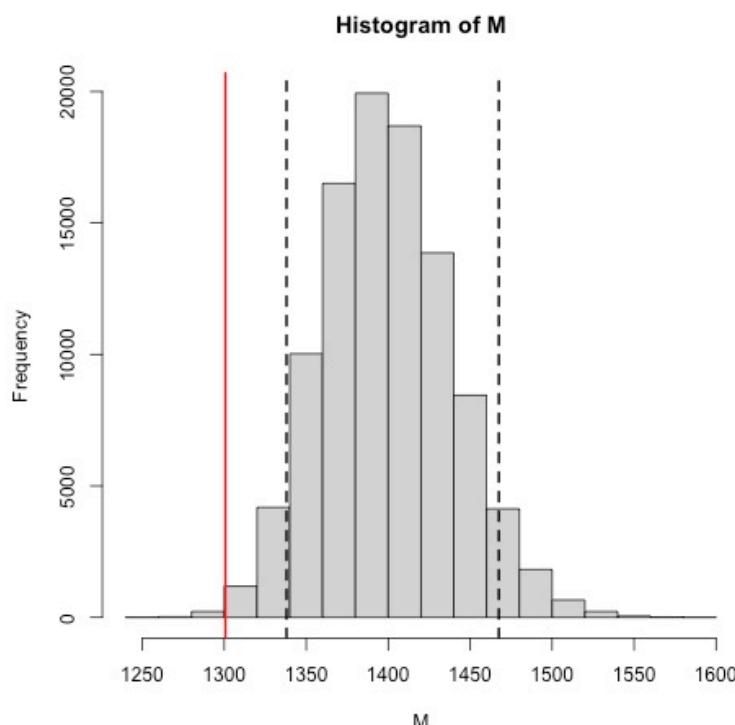

140 **Figure S7. Histogram showing the distribution of the permuted L values. Observed L value**
141 **is highlighted with the red continuous line. Black dashed line indicates the lower and**
142 **upper 5% of the permuted data.**

143

144 **Subset analysis: whole-body and manual gesture types.**

145 We found no evidence for a negative correlation between d and f when separating whole-
146 body gestures from manual gestures (Spearman's rank correlation: whole-body, $r_s=-0.3$, $n=5$,
147 $p=0.342$; manual, $r_s=0.42$, $n=21$, $p_{left}=0.969$). Rather, manual gestures showed a significant
148 positive correlation ($r_s=0.42$, $n=21$, $p_{right}=0.031$). Compression tests revealed that for whole-
149 body gestures, $L=0.13s$ and was neither significantly big or small ($p_{left}=0.174$, $p_{right}=0.817$),
150 and for manual gestures, $L=2.26s$ and, if anything, tended towards being significantly big
151 ($p_{right}=0.058$) rather than small ($p_{left}=0.942$; Figure S8).

152


153 **Figure S8. Histograms showing the distribution of the permuted L values for manual
154 gestures (left) and whole-body gestures (right). Observed L value is highlighted with the
155 red continuous line. Black dashed lines indicate the upper and lower 5% of the permuted
156 data.**

157

158 **Do chimpanzee sexual solicitation gesture sequences follow Menzerath's law?**

159 We tested Menzerath's law in 359 sequences, composed of 530 gesture tokens; there was
160 no evidence for a negative relationship between mean constituent duration and sequence
161 size (Spearman's rank correlation: $r_s=-0.08$ $n=359$, $p=0.076$). However, the compression test
162 revealed that the total sum of the duration of each sequence M had a value of 1300.67 and
163 was significantly small ($n=359$, $p=0.003$; Figure S9).

164

165 **Figure S9. Histogram showing the distribution of the permuted M values. Observed M**
166 **value is highlighted with the red continuous line. Black dashed line indicates lower 5% of**
167 **the permuted data.**

168

169 **Discussion**

170 The results from the correlation analysis must be taken with caution as this analysis does
171 not control for individual variation, gesture type, and sequence in which the gesture is
172 performed. The Bayesian model that included these factors and which tested for Zipf's law
173 of brevity (Zipf-model) was similar to the respective null-model, suggesting that frequency
174 of gesture type within the dataset and category of gesture type did not predict gesture
175 duration.

176

177 The contrast between the correlation analysis and the compression analysis for Menzerath's
178 law highlight how individual variation may show an apparent absence of pattern in the
179 correlation analysis but a strong effect in the Bayesian model analysis, where it is controlled
180 for.

181 **Results of two-tailed analyses**

182 **Zipf's law of brevity**

183 We did not find a pattern corresponding to Zipf's law of brevity, with no correlation
184 between mean gesture type duration (d) and frequency of use (f) (Spearman correlation:
185 $r_s=0.30, n=26, p=0.131$). When analysing only manual gestures, f and d tended to be
186 significantly positively correlated (Spearman correlation: $r_s=0.42, n=21, p=0.061$).
187 Conversely, we did not find any correlation between f and d in whole body gestures
188 (Spearman correlation: $r_s=-0.3, n=5, p=0.683$).

189 **Menzerath's law**

190 We failed to find a pattern between sequence size n and mean constituent duration t of the
191 same sequence that followed Menzerath's law (Spearman correlation: $r_s=-0.08, n=376,$
192 $p=0.142$). When analysing sequences comprising only whole-body size and average gesture
193 duration showed a significant positive correlation (Spearman correlation: $r_s=0.59, n=20$
194 $p=0.005$). Sequence size and average gesture duration did not correlate in sequences
195 composed of only manual gestures (Spearman correlation: $r_s=-0.06, n=315 p=0.324$), or in
196 those formed by both manual and body gestures (Spearman correlation: $r_s=0.09, n=24$
197 $p=0.673$).

198 **Bayesian analysis on the medians of the 26 gesture types**

199 We ran additional brms analysis computing the median duration per each gesture type
200 across the whole dataset. Median duration of each gesture type was assigned as response
201 variable, category of gesture as fixed factor as well as frequency of that gesture type as a
202 predictor. We ran a model with 2000 iterations and 3 chains. The full model was no different
203 from the null model which excluded the frequency of gesture type as a predictor (LOO
204 difference: -0.3 ± 0.5 ; Table S11). We ran a similar analysis on the gestures performed by the
205 one individual Duane, with similar results (full-null model comparison, LOO difference: $-0.6 \pm$
206 1.2; Table S12). Please note that that individual identity is not controlled for in these
207 analyses and they should be interpreted with caution.

208

Table S11. Summary of the Bayesian mixed model analysis results for the Zipf-model which included only a median value per gesture type as response variable, the frequency of gesture type as predictor and category of gesture type as control (N=26).

<i>Fixed effects</i>	<i>b</i>	<i>SD</i>	95% CrI	<i>Bulk ESS</i>	<i>Tail ESS</i>	\hat{R}
Intercept	0.10	0.33	[-0.55; 0.77]	2267	1782	1.00
F	0.00	0.00	[-0.00; 0.01]	2861	1404	1.00
<i>Category</i>						
Whole body	<i>Reference</i>					
Manual	-0.24	0.36	[-0.96; 0.48]	1995	1776	1.00

209

Table S12. Summary of the Bayesian mixed model analysis results for the Zipf-model which included only a median value per gesture type as response variable, the frequency of gesture type as predictor and category of gesture type as control, considering only the gestures performed by Duane (N=15).

<i>Fixed effects</i>	<i>b</i>	<i>SD</i>	95% CrI	<i>Bulk ESS</i>	<i>Tail ESS</i>	\hat{R}
Intercept	-0.55	0.57	[-1.71; 0.60]	2254	1851	1.00
F	0.01	0.00	[-0.00; 0.02]	2566	1771	1.00
<i>Category</i>						
Whole body	<i>Reference</i>					
Manual	0.26	0.57	[-0.89; 1.48]	2334	1714	1.00

210