

Establishing farm dust as a useful viral metagenomic surveillance matrix

Kirsty T. T. Kwok^{a*#}, Myrna M. T. de Rooij^b, Aniek B. Messink^b, Inge M. Wouters^b, Lidwien A. M. Smit^b, Matthew Cotten^{a*†}, Dick J.J. Heederik^b, Marion P. G. Koopmans^a, My V. T. Phan^{a†#}

^a Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands

^b Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands

Running Head: Viromes from farm dust and farmed chicken feces

*Current affiliation: MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom

†Current affiliation: London School of Hygiene and Tropical Medicine, London, United Kingdom

Address correspondence to Kirsty T.T. Kwok (Kirsty.Kwok@glasgow.ac.uk) and My V.T. Phan (my.phan@lshtm.ac.uk)

Keywords: virome; dust; one health; airborne farm dust; viral metagenomics; picornavirus; astrovirus; calicivirus; parvovirus; poultry

Word counts for main text: 3895 words (max = 4500 words)

1 **ABSTRACT (186 words, word limit = 200 words)**

2 Farm animals may harbor viral pathogens, some with zoonotic potential which can possibly cause severe
3 clinical outcomes in animals and humans. Documenting the viral content of dust may provide
4 information on the potential sources and movement of viruses. Here, we describe a dust sequencing
5 strategy that provides detailed viral sequence characterization from farm dust samples and use this
6 method to document the virus communities from chicken farm dust samples and paired feces collected
7 from the same broiler farms in the Netherlands. From the sequencing data, *Parvoviridae* and
8 *Picornaviridae* were the most frequently found virus families, detected in 85-100% of all fecal and dust
9 samples with a large genomic diversity identified from the *Picornaviridae*. Sequences from the
10 *Caliciviridae* and *Astroviridae* families were also obtained. This study provides a unique characterization
11 of virus communities in farmed chickens and paired farm dust samples and our sequencing
12 methodology enabled the recovery of viral genome sequences from farm dust, providing important
13 tracking details for virus movement between livestock animals and their farm environment. This study
14 serves as a proof of concept supporting dust sampling to be used in viral metagenomic surveillance.
15

16 **1. INTRODUCTION**

17 Many emerging infectious diseases are of zoonotic origins¹. Approximately 70 % of zoonoses are
18 proposed to originate from wildlife and outbreaks of MERS-CoV² from camels, Nipah virus³ from bats
19 and SARS-CoV-2 from minks⁴ have shown that livestock and farmed animals can act as intermediate
20 hosts and/or reservoirs which can sustain zoonotic transmission. In addition to passing viruses from
21 wildlife to humans, livestock and farmed animals are also reservoir of zoonotic pathogens, such as
22 bacteria *Coxiella burnetii* (*C. burnetii*) that causes Q-fever in goats, sheep and cattle⁵, and avian
23 influenza^{6,7}. Additionally, epidemiological studies have found evidence for an increased risk of
24 respiratory disease in persons exposed to large-scale animal farming^{8,9}. In part, this can be attributed to
25 farm dust exposure for which adverse health effects have been demonstrated¹⁰⁻¹², and the potential of
26 zoonotic infections in these cases could be important yet under-reported. For instance, a Q-fever
27 outbreak affecting approximately 4,000 people was reported in the Netherlands in 2007-2010 that was
28 linked to circulation of *C. burnetii* in local dairy goat farms and dairy sheep farms¹³. Q-fever was not
29 notifiable in small ruminant farms in the Netherlands before the outbreak, making early detection of

30 zoonotic transmission of *C. burnetii* challenging¹⁴. Similarly, MERS-CoV had been circulating among
31 dromedary camels long before it was recognized as a cause of severe respiratory disease in humans¹⁵.
32 These livestock-associated zoonotic disease outbreaks emphasize that continued surveillance of
33 livestock is essential, especially when the intensification of livestock production is widely practiced to
34 meet increasing food demands of growing populations¹⁶.

35 Advances in next-generation sequencing (NGS) technology can provide a detailed description of the
36 viral content of environmental samples and offers great potential for viral surveillance. Viral
37 metagenomic approaches (using random priming rather than target specific primers) allow the
38 detection of viruses present in a sample without prior knowledge of its presence^{17,18} as well as
39 characterization of complex viral communities^{19,20}. Indeed, reports of virus diversity in animals including
40 bats²¹⁻²³, pigs²⁴⁻²⁶, wild birds^{27,28}, and chickens²⁹ have been published since the development of NGS
41 methods.

42 Chickens (*Gallus gallus domesticus*) are the most abundant domestic livestock in the world.
43 According to the Food and Agriculture Organization of the United Nations (FAO), the global chicken
44 population was >22 billion birds in 2017³⁰. Chicken farming ranges from backyard to large-scale
45 commercial farms that house ten-thousands of chickens. The Netherlands is the second largest
46 agricultural exporter in the world^{31,32}. There are approximately 0.1 billion housed chickens and around
47 1,700 chicken farms in the Netherlands in 2020³³. Chicken can carry various pathogens such as
48 *Salmonella*³⁴, *Campylobacter*³⁵ and avian influenza viruses including subtypes that can cause severe
49 infection in humans like H5N1³⁶ and H7N9⁶; and it has been found that avian influenza virus can be
50 transmitted to humans as a result of close exposure to contaminated chicken⁷. Monitoring virus
51 diversity in chickens and other livestock may be a key component for identifying potential zoonotic
52 threats. Meanwhile, little is known about the virome composition of farm dust, although it has been
53 suggested that farm dust might play a role in infectious disease transmission^{37,38}. Farm dust typically
54 consists of fragments of animal feed, bedding material, animal feces, animal dander, mites and
55 microorganisms³⁹, as well as fragments of poultry feathers in the case of poultry farm dust. The
56 complex composition of dust particles allows them to accumulate and serve as a vector of biologically
57 active material including antibiotic resistance genes, endotoxin, and, as shown here, complete viral
58 genomes. Farm dust exposure may cause adverse health effects^{40,41}. Most studies on farm dust have

59 focused on measuring antimicrobial gene sequences ⁴² and endotoxins ^{10,12}, with no published reports
60 documenting the viral sequence content of farm dust samples.

61 Here, we describe a metagenomic NGS characterization of virus diversity in a paired sample set of
62 farm dust and chicken feces collected at multiple time points in three commercial chicken farms across
63 the Netherlands. We hypothesized that the viral sequences identified from dust samples would share
64 similarities with viral sequences detected from chicken fecal samples from the same farms. We develop
65 and present a sequencing methodology that enabled recovery of virus genome sequences from farm
66 dust samples. We show that the chicken fecal virome and farm dust virome show similar patterns,
67 demonstrating the potential of using dust as a part of surveillance matrix for monitoring farm virus. This
68 study provides useful insights in understanding the virus communities in chicken and surrounding farm
69 environments and provides an important tool for monitoring viral movement by dust, a previously
70 underappreciated source of viral movement through our environment.

71

72 **2. RESULTS**

73 2.1 Comparative virus detection in chicken farm dust samples and paired feces

74 A total of 46 individual farm dust samples and 56 pooled chicken feces were collected. Five
75 chicken fecal samples were excluded due to insufficient cDNA concentration for library preparation.
76 Individual farm dust samples collected at the same sampling moment from the same farm were pooled
77 together during sample processing for sequencing, making up a final set of 13 pooled farm dust samples.
78 Metagenomic deep sequencing of pooled chicken farm dust samples (N=13) and pooled chicken feces
79 (N=51) generated ca 1-3 million paired-end short reads per sample. The negative blank control did not
80 yield sufficient nucleic acid to be analyzed, indicating that consumables and reagents used were free of
81 detectable viral materials.

82 The distribution of viral contigs from different virus families detected in chicken feces and
83 chicken farm dust samples were generally similar (**Figure 1**). The number of contigs detected in
84 *Picornaviridae* (farm dust samples: 199; chicken feces: 914) was the highest in both chicken farm dust
85 and chicken feces samples, followed by *Parvoviridae* (farm dust samples: 183; chicken feces: 293),
86 *Astroviridae* (farm dust samples: 135; chicken feces: 267) and *Caliciviridae* (farm dust samples: 85;
87 chicken feces: 226). Interestingly, more DNA virus contigs were generally detected in chicken farm dust

88 samples when comparing to that of chicken fecal samples, including adenoviruses, genomoviruses,
89 smacoviruses and circoviruses.

90 From the total of 64 chicken farm dust samples (prefix: V_E; N=13) and chicken feces (prefix:
91 V_M; N=51) analyzed, viral sequences belonging to the family *Parvoviridae* were consistently detected
92 in all samples, followed by *Picornaviridae* with a 85% and 100% detection rate in chicken dust samples
93 and chicken feces respectively (**Table 1**). *Astroviridae* were the third most commonly detected virus
94 family detected in 85% of farm dust samples and 82% chicken feces, followed by *Caliciviridae* which
95 were present in 69% (farm dust samples) and 78% (chicken feces) detection rate. The overall pattern of
96 virus detection observed in dust samples was similar to that in chicken feces, some more variability was
97 observed within farms over time (**Table 1** and **Figure S1**).

98 Although the number of *Parvoviridae* positive samples was slightly higher than for *Picornaviridae*,
99 the actual number of *Picornaviridae* sequence contigs detected was the highest (**Figure 1 and 2**). Within
100 the *Picornaviridae* family, *Sicinivirus* sequences were consistently detected in 69% of farm dust samples
101 and in all chicken feces (**Table 2**), followed by *Anativirus* (farm dust samples: 61%; chicken feces: 70%),
102 and *Megrivirus* (farm dust samples: 46%; chicken feces: 43%). Of note, the number of contigs detected
103 in different picornavirus genera corresponded to the detection pattern (**Figure 3 & Figure S2**). In
104 particular, *Anativirus*, *Gallivirus*, *Megrivirus* and *Sicinivirus* sequences were detected in all three farms,
105 while *Orivirus* was only identified in farm F_01 and F_03 and *Avisivirus* was only found in farm F_03
106 (**Figure S2**). When looking at the virus family level, we did not observe any substantial differences in
107 overall viral contents (**Figure 2**) and virus-specific detection (**Figure S1**) of samples from different farms
108 and from different production cycles (different chicken ages) within farms.

109 2.2 Genomic diversity in viral sequences identified from chicken farm dust samples and paired feces

110 2.2.1 *Picornaviridae*

111 Phylogenetic construction was performed to compare the reported *Picornaviridae* sequences
112 from 5 genera (*Avisivirus*, *Anativirus*, *Gallivirus*, *Megrivirus* and *Sicinivirus*) with global sequences. Forty-
113 six picornavirus sequences with $\geq 80\%$ genome coverage (farm dust samples: 8; chicken feces: 38) were
114 included in the phylogenetic analysis of the polyprotein region. The maximum-likelihood (ML)
115 phylogenetic tree (**Figure 4A**) showed that the sequences identified from farm F_03, albeit small
116 number (N=12), belonged to all 5 different genera *Avisivirus*, *Anativirus*, *Gallivirus*, *Megrivirus* and

117 *Sicinivirus*, suggesting a high viral diversity circulating among chicken in this farm. Interestingly, farm
118 F_02 with the highest number of picornavirus contigs identified (N=31) has a moderate level of viral
119 diversity, with these contigs belonging to 3 genera *Anativirus*, *Sicinivirus* and *Megrivirus*. Only 3
120 picornavirus genomic sequences identified were from farm F_01, belonging to *Sicinivirus* (N=1) and
121 *Anativirus* (N=2). *Sicinivirus* and *Anativirus* are the most commonly detected virus genera found with
122 virus sequences detected in all 3 farms, while sequences of *Gallivirus* and *Avisivirus* were less commonly
123 detected, found in only 1 farm, farm F_03.

124 Genome sequences detected from farm dust samples belonged to *Sicinivirus* and *Megrivirus*
125 from farm F_02 that clustered with sequences identified in chicken feces from the same farm (**Figure**
126 **4A**). Viral sequences in the *Sicinivirus* genus were detected in 69% of dust samples and all chicken feces
127 samples with the highest number of viral contigs identified in each sample as compared to other genera
128 in the *Picornaviridae* family. Slightly longer branches in the *Sicinivirus* sequences in the ML tree indicates
129 higher diversity within this *Sicinivirus* clade (**Figure 4A**). We further reconstructed a ML tree for all
130 identified *Sicinivirus* polyprotein nucleotide sequences (N=15; farm dust samples: 4; chicken feces: 11) in
131 this study and compared them with global reference sequences (**Figure 4B**). Two sequences from
132 chicken feces (V_M_005_picorna_5 from farm F_01 and V_M_034_picorna_3 from farm F_03) were
133 most distinct from the rest of the identified sequences (sharing only 69.4-72.3% nt identity) and were
134 most closely related to strain JSY previously identified in China (78.9-79.0% nt identity). Other *Sicinivirus*
135 sequences from the same farm often formed a monophyletic lineage, suggesting within-farm *Sicinivirus*
136 sequences are highly genetically similar. Viral sequences identified from chicken feces and farm dust
137 samples consistently clustered with each other forming their own sub-clusters within major clades in the
138 ML trees, indicating high similarity between sequences from feces and dusts and that they are more
139 closely related as compared to global reference sequences.

140

141 2.2.2 *Astroviridae*

142 Sixteen astrovirus sequences with $\geq 80\%$ genome coverage were identified in this study, among
143 which only 1 astrovirus sequence was found in farm dust (VE_7_astro_14; farm F_02). There was only 1
144 astrovirus genomic sequence from farm F_01. RNA-dependent RNA polymerase (RdRp) and capsid
145 regions of these sequences were extracted for phylogenetic analyses (**Figure 5A and 5B**, respectively).

146 ML trees of both regions showed that these 16 astrovirus sequences belonged to two distinct lineages,
147 A1 and A2 (**Figure 5**). Sequences from samples from farm F_02 and F_03 were found in both lineages A1
148 and A2, suggesting co-circulation of different astrovirus strains in both farms. The 12 sequences from
149 lineage A1 were most closely related to avian nephritis virus strains previously reported in China and
150 Brazil (GenBank accession number: [HM029238](#), [MN732558](#) and [MH028405](#)), while the 4 sequences
151 from lineage A2 were more closely related to each other and clustered with chicken astroviruses
152 previously identified in Malaysia, Canada and the USA (GenBank accession number: [MT491731-2](#),
153 [MT789782](#), [MT789784](#) and [JF414802](#)). The 12 sequences from lineage A1 shared 96-100% amino acid
154 (aa) identity in the RdRp region while 4 sequences from lineage A2 shared a higher 99-100% aa identity.
155 For the less conserved capsid region, three small sub-lineages can be observed within lineage A1 (**Figure**
156 **5B**). Notably, the only astrovirus sequence found in dust (strain VE_7_astro_14) was identical to
157 astrovirus sequence recovered from its paired chicken feces sample (strain V_M_038_astro_4) at the
158 same farm.

159

160 2.2.3 *Caliciviridae*

161 Similar to astrovirus distribution in feces versus dust, 13 out of 14 calicivirus sequences identified
162 (with $\geq 80\%$ genome coverage) were recovered from fecal samples with only 1 calicivirus sequence
163 identified from a dust sample. Partial ORF1 polyprotein region of these sequences was extracted to
164 construct ML tree for comparing the local calicivirus with global sequences. The ML tree showed that
165 the reported calicivirus sequences were from two distinct lineages (C1 and C2) (**Figure 6**). All calicivirus
166 sequences from farm F_02 and F_03 belonged to lineage C1, while sequences from F_01 belonged to
167 both lineages C1 and C2. The 11 sequences in lineage C1 shared 98.7-100% aa identity despite being
168 collected from different farms and they shared 97.2-99.1% aa similarity with two partial ORF1
169 sequences identified in Germany in 2010 (GenBank accession number: [JQ347523](#) and [JQ347527](#)). BLAST
170 searches and multiple sequence alignment indicated that these 11 local calicivirus sequences are the
171 first report of complete ORF1 sequence of that particular chicken calicivirus lineage. The only calicivirus
172 sequence from dust (VE_8_calici_66) clustered in lineage C1. The 3 sequences in lineage C2 are highly
173 similar, sharing 99.9-100% aa identity and were all collected from farm F_01 at two time points. These 3
174 sequences shared 93.8-96.8% aa similarity with reference sequences from Germany, USA, Korea and

175 Brazil (*Bavaria virus*, *Bavovirus* genus, GenBank accession number: [HQ010042](#), [MN810875](#), [KM254170-1](#),
176 [MG846433-4](#)).

177

178 2.2.4 *Parvoviridae*

179 A total of 34 parvovirus sequences with $\geq 80\%$ genome coverage were identified (chicken farm
180 dust: 8; chicken feces: 28). The amino acid sequences of the nonstructural protein (NS1) region were
181 extracted for ML tree reconstruction. Two distinct lineages (P1 and P2) were observed in the ML tree
182 supported by $>70\%$ bootstrap value (Figure 7). All but one sequences from farm F_01 and F_03 were
183 clustered in lineage P1 and lineage P2 respectively, while sequences from farm F_02 belonged to both
184 lineages. The 16 sequences in lineage P1 shared 99.5%-100% aa identity and they shared 97.3-99.6% aa
185 identity with sequences from Switzerland and Brazil (GenBank accession number: [OM469025](#),
186 [OM469088](#), [OM469107](#) and [MG846442-3](#)). The 18 sequences in lineage P2 shared 99.4-100% aa identity
187 with each other and 98.7-99.9% aa identity to sequences from Switzerland, Brazil, Korea and Canada
188 (GenBank accession number: [OM469032](#), [OM469027](#), [MG846441](#), [KM254174](#) and [MW306779](#)). The
189 inter-lineage aa identity between lineage P1 and P2 ranged from 73.7-74.4%.

190

191 2.2.5 Other virus families

192 Three nearly-complete coronavirus genome sequences were identified in 3 chicken feces (V_M_001,
193 V_M_002 and V_M_003) from farm F_01. BLAST analyses showed that these sequences are infectious
194 bronchitis virus (IBV) strains and share 99.92-99.95% identity at the nucleotide level with IBV vaccine
195 strain 4/91 (GenBank accession number: [KF377577](#)), suggesting these IBV may possibly be viral shedding
196 following vaccination or environmental contamination as vaccines are generally provided in drinking
197 water.

198

199 2.3 Mash analysis

200 The phylogenetic comparison of large contig sequences presented above support the findings about
201 the similarities between sequences from dust samples and possible farm animal sources. However,
202 additional information can be obtained with global analyses that would compare all available sequence
203 data from the samples. A method that allows a comparison of the large amount of unclassified

204 sequences that are commonly observed in NGS data would provide additional information. We
205 therefore used a kmer comparison tool [Mash](#)^{43,44} that prepares a hash description of all kmers of a
206 given length and then allows rapid quantitative comparison of similarity of the kmers sets generated
207 from different sequenced samples. We used the Mash distance function to calculate a Jaccard distance
208 value for all pairs of dust sequence samples.

209 We compared all assembled viral contigs of the dust samples. Figure 8A shows the Jaccard distance
210 between all 13 dust samples from 3 farms, colored by farm source. In all comparisons, pairs of dust
211 samples from the same farm have lower Jaccard distance values (= greater similarity, darker blue in the
212 figure) than inter-farm samples. It is also apparent that farm F_01 and farm F_02 were slightly more
213 related to each other than either were to farm F_03. Similar patterns were obtained using all quality-
214 controlled short read data from each dust sample (**Figure 8B**).

215

216 3. DISCUSSION

217 Animals including livestock kept in close proximity to humans can act as intermediate hosts and/or
218 sources for zoonotic disease transmission⁴⁵. The current COVID-19 pandemic has raised awareness of
219 zoonotic risks and has prompted the need for more proactive surveillance strategies involving animal
220 surveillance, which could potentially guide zoonotic outbreak preparedness. Chickens are the most
221 abundant livestock in the world³⁰ and have been identified as reservoirs for various zoonotic pathogens
222^{35,36}. In this study, we employed viral metagenomic deep sequencing to document the viruses present in
223 farm dust samples and paired chicken feces collected within the same farms. These data revealed
224 potential virus flow between chickens and their farm environment, highlighting the important role of
225 dust as part of surveillance matrix to bring useful insights into the equation for monitoring virus flows at
226 the animal-environment interface.

227 In this study, we described a random-primed viral metagenomic deep sequencing strategy to obtain
228 viral sequences from dust samples. We were able to obtain long viral sequences providing $\geq 80\%$ viral
229 genome coverage from farm dust samples. Farm dust is known to be associated with adverse
230 respiratory effects observed in farm workers with prolonged exposure⁴⁰; however, whether viruses play
231 a role is thus far unknown due to a knowledge gap in virus detection and virus diversity in farm dust.
232 Characterizing farm dust viromes will aid in investigating possible health effects of occupational and

233 environmental exposure to virus-containing farm dust. The method we have developed provides a
234 platform for future surveillance in farm animals and environmental samples.

235 Viral contig distribution of chicken dust samples was in general comparable to that of chicken fecal
236 samples. Viral sequences from *Picornaviridae*, *Parvoviridae*, *Astroviridae* and *Caliciviridae* were the most
237 commonly detected in both sample types (Figure 1), although a higher abundance of DNA virus
238 sequences was interestingly observed in dust samples. Our phylogenetic analyses indicated that for all
239 three farms monitored, viruses identified from farm dust samples were genetically closer to viruses
240 identified from chicken feces collected from the same farm than from the other two farms in the study.
241 Furthermore, the Jaccard similarity analysis (Figure 8) further showed that for both known and unknown
242 sequences the dust sequences were closer to other samples from the same farm, indicating some
243 source specificity in the sampling method. This observation is in agreement with a previous study that
244 reported the correlation found in the bacterial antimicrobial resistomes between animal feces and farm
245 dust⁴⁶. Although infectivity of the viruses identified was not determined in our study, the presence of
246 nearly complete viral genome sequences and the complex protein/lipid/nucleic acid composition of dust
247 makes it likely that dust indeed contains infectious virus particles. Future investigation on the infectivity
248 of viruses in farm dust will provide useful insights in mapping virus flows between chickens and their
249 surrounding environment, which collectively would guide future outbreak control strategies within and
250 between farms.

251 Viral sequences identified in chicken feces from different farms were phylogenetically closely related
252 to each other and formed sub-lineages or monophyletic lineages when comparing to global related
253 sequences. This could possibly be explained by the pyramid structure of the broiler production system,
254 as chicks found at each farm were all bought from a few suppliers; in other words, chicks could have
255 been infected from the supplier and then brought the virus to different broiler farms with further
256 spread within the farms, leading to similar viruses circulating in different broiler farms. Of note, the
257 pyramid production structure was also suggested as a possible transmission route for ESBL/pAmpC
258 producing bacteria between broiler farms⁴⁷. Future characterization of virus diversity of chickens from
259 the top part of the pyramid (suppliers) is needed to confirm the speculation.

260 Viral sequences belonging to five genera of the *Picornaviridae* family were identified in our study,
261 suggesting a great diversity of picornaviruses circulating in chickens, which is consistent with previous

262 studies that detected various picornavirus genera in chicken respiratory samples^{48,49}. Astroviruses
263 identified in this study clustered in two distinct phylogenetic lineages. All chicken astroviruses are
264 grouped to one single species according to the current taxonomy assignment from International
265 Committee on Taxonomy of Viruses⁵⁰. Current classification of avastrovirus is based on phylogenetic
266 analysis of capsid (ORF2) amino acid sequences⁵¹. More comprehensive assignment of genotypes is
267 hindered by the limited number of complete capsid sequences. A similar observation was seen for
268 *Caliciviridae*, where we identified two types of caliciviruses forming two distinct lineages in the ML tree.
269 Lineage C2 is closely related to the *Bavovirus* genus, while the sequences from C1 are most related to an
270 unclassified chicken calicivirus strain F10026n⁵² that only possessed a partial ORF1 sequence. Our data
271 have provided 16 astrovirus and 14 calicivirus sequences, which helps expand the current knowledge of
272 chicken astrovirus and calicivirus diversity and could potentially contribute to improved taxonomic
273 assignment.

274 We observed that viral sequences in the *Parvoviridae* and *Picornaviridae* families were consistently
275 detected in chicken feces and farm dust samples at multiple time points in all three farms. These virus
276 families could potentially be used as signature markers when monitoring chicken and farm dust
277 exposure. Additionally, these viruses could also be used as markers to assess the efficiency of
278 disinfection procedures in farms and their impact on surrounding environments although stabilities of
279 different viruses may differ due to different structures and we caution that viral activity assays have not
280 yet been performed on this material. Further and perhaps larger scale of longitudinal surveillance with
281 the inclusion of samples from layer hens and more environmental samples from surrounding areas, as
282 well as samples from other bird species are certainly necessary to confirm our observation and the
283 applicability of using these identified viruses as signature virus fingerprint.

284 Our study has several limitations. Although we collected chicken feces and farm dust samples
285 longitudinally, limited number of samples per each time point especially for farm dust samples has
286 hindered in-depth statistical comparisons between samples collected from different time points. An
287 important limitation that should be considered is that the fecal and dust samples were each generated
288 from pooled material, and dust by its very nature is a pooled sample (i.e. possibly containing sequences
289 from multiple individual infections). The possibility that the resulting assembled genomes from these
290 fecal and dust samples may be chimeras assembled from multiple individual infections should be

291 considered in interpreting the results. This means that although one might intuitively expect identical
292 sequences identified from the dust originating from the same source as the fecal sample, the technology
293 and the pooling means that identical genome sequences may be difficult to find even though the
294 sources of the viruses could be the same. Virologically important viruses should be examined using
295 alternate methods such as direct isolation from individually infected animals. Chicken fecal samples and
296 dust samples were processed slightly differently because of different sample nature and reagent
297 availability, which could potentially lead to minor differences in detection sensitivity. Our finding
298 showed that viral sequence content found in dust and chicken feces are relatively similar, suggesting
299 any potential bias is minimal.

300 In conclusion, we provide a dataset of viral sequences generated from farm dust samples and feces
301 and show a similar pattern between viral sequences from dust and feces samples in terms of
302 composition and genetic similarity. These results support the idea that dust sampling can provide an
303 accurate description of the farm virome and could potentially be incorporated as part of viral
304 metagenomic surveillance matrix. In the long term, understanding virus flow between animals and
305 humans is vital for identifying potential zoonotic threats and zoonotic outbreak control and
306 preparedness.

307

308 4. MATERIALS AND METHODS

309 4.1 Sample collection

310 Pooled chicken feces and farm dust samples were collected in three commercial broiler farms in the
311 Netherlands at 4-5 time points from May to August 2019. The three commercial broiler farms are
312 located in three different regions in the Netherlands (Western part: Noord/Zuid-Holland region;
313 Northern part: Friesland/Groningen region; Eastern part: Gelderland region). Detailed sampling strategy
314 and sample metadata is described in **Table 3**. Each pooled poultry fecal sample was manually picked
315 from the floor and contains fresh fecal material from 3-4 chicks. The chicks were not kept in cages but
316 could walk freely. Farm dust samples were collected using a passive air sampling approach using
317 electrostatic dustfall collectors (EDCs)^{53,54}. Electrostatic cloths were sterilized through incubation at
318 200°C for 4 hours. Sterilized electrostatic cloths were then fixed to a pre-cleaned plastic frame. EDCs
319 were exposed for 7 days at 1 meter above the floor with the electrostatic cloths facing up in broiler

320 farms to enable sampling of settling airborne dust instead of resuspended dust from the floor. EDCs
321 were contained in a sterile plastic bag before and after sampling. All samples were transported under
322 cold chain management and stored at -20°C/-80°C before processing.

323

324 *4.2 Sample processing and metagenomic deep sequencing*

325 Chicken fecal samples were processed as previously described⁵⁵. Briefly, chicken fecal suspension
326 was prepared in Phosphate-buffered saline (PBS) and treated with TURBO DNase (Thermo Fisher, USA)
327 at 37 °C for 30 minutes, and then subjected to total nucleic acid extraction using QIAamp viral RNA mini
328 kit (Qiagen, Germany) according to manufacturer's instruction without addition of carrier RNA. For dust
329 samples, electrostatic cloths were incubated in 3% beef extract buffer for 1 hour on rolling as previously
330 published⁵⁶. After incubation, the suspension was collected and centrifugated at 4,000 g at 4°C for 4
331 minutes to pellet any large particles or debris. Total viruses in dust suspension were concentrated using
332 polyethylene glycol (PEG) similar to virus concentration in sewage published previously^{57,58}. Briefly, PEG
333 6000 was added to each dust suspension to make up a final 10% PEG 6000 (Sigma-Aldrich, USA)
334 concentration, followed by pH adjustment to pH 4 and overnight incubation at 4°C with shaking. After
335 overnight incubation, sample was centrifuged at 13,500 g at 4°C for 90 minutes. Supernatant was
336 removed and the remaining pellet was resuspended in 500 µL of pre-warmed glycine buffer, and then
337 subjected to 5-minute centrifugation at 13,000 g at 4°C. Supernatant was collected, and supernatants
338 from EDC samples that were collected in the same farm at the same time point (N=1-4) were pooled
339 together for further processing. Viral-enriched dust suspension samples were then treated with TURBO
340 DNase as previously described⁵⁵ to remove non-encapsulated DNA, followed by total nucleic acid
341 extraction using MagMAXTM viral RNA isolation kit (Thermo Fisher, USA) according to manufacturer'
342 instructions but without the use of carrier RNA. Reverse transcription (using SuperScript III reverse
343 transcriptase [Invitrogen, USA] and non-ribosomal hexamers⁵⁹) and second strand cDNA synthesis
344 (using Klenow fragment 3'-5' exo- [New England BioLabs, USA]) of chicken fecal samples and dust
345 samples was performed as previously described⁵⁵ and following manufacturer' instructions.

346 Standard Illumina libraries were prepared using Nextera XT DNA library kit following the
347 manufacturers' instructions. Final libraries were sequenced on the Illumina MiSeq platform (600 cycles;
348 paired-end 2x300 bp). Chicken fecal samples were sequenced with a multiplex range of 16-19 samples

349 per run. Dust samples and negative blank controls were sequenced with a multiplex of 12 samples per
350 run.

351

352 **4.3 Sequencing data analysis**

353 Raw reads were subjected to adapter removal using Trim Galore/default Illumina software, followed
354 by quality trimming using QUASR⁶⁰ with a threshold of minimum length of 125 nt and median Phred
355 score ≤ 30 . The resulting quality-controlled reads were *de novo* assembled using metaSPAdes v3.12.0⁶¹.
356 *De novo* assembled contigs were classified using UBLAST v11.0667⁶² against eukaryotic virus family
357 protein databases as previously described^{23,26}. We set a detection threshold of contig with minimum
358 amino acid identity of 70%, minimum length of 300 nt and an e-value threshold of 1×10^{-10} when
359 interpreting our contig classification results. Contig classification results were analyzed and visualized
360 using R packages including dplyr, reshape2 and ComplexHeatmap⁶³⁻⁶⁵ and python package [squarify](#).
361

362

362 **4.4 Phylogenetic analysis**

363 Sequences with $\geq 80\%$ of genome coverage from the *Picornaviridae*, *Astroviridae*, *Caliciviridae* and
364 *Parvoviridae* families were used for phylogenetic analyses, comparing them with global sequences
365 retrieved from GenBank. Multiple sequence alignments were performed using MAFFT v7.427⁶⁶ and
366 manually checked in Geneious v2021.0.3 (Biomatters, New Zealand). Best-fit models of evolution for
367 phylogenetic tree reconstruction were estimated using ModelFinder module in IQ-TREE v1.6.11⁶⁷,
368 determined by Akaike Information Criterion (AIC). Maximum-likelihood trees were constructed using
369 RAxML-NG v1.0.1⁶⁸ with 100 pseudo-replicates. Resulting trees were visualized and annotated using R
370 package ggtree⁶⁹.
371

372

372 **4.5 Kmer analysis with MASH**

373 To compare Jaccard distances between dust samples, all quality controlled short reads, or resulting
374 assembled viral contigs were analyzed using the Triangle function from Mash v2.3^{43,44} with a kmer size
375 of 32 (-k 32) and a sketch size of 10,000 (-s 10000). The resulting distances were visualized in a heatmap
376 using R package ggplot2⁷⁰.
377

378 **4.6 *Data availability***

379 The raw reads are available in the SRA under the BioProject accession number [PRJNA670873](#) (chicken
380 feces) and [PRJNA701384](#) (farm dust samples) (**Table S1**). All sequences in phylogenetic analysis have
381 been deposited in GenBank under the accession numbers MW684778 to MW684847 (**Table S2**).
382

383 **ACKNOWLEDGMENTS**

384 We thank all the participating farms for their cooperation, Pella van der Wal and Gaby van Dijk from
385 Erasmus MC for providing sequencing service. This virome study was funded by ZonMW TOP project
386 91217040 (K.T.T.K., M.M.T.dR., L.A.M.S., D.J.J.H. and M.P.G.K.) and a Marie Skłodowska-Curie Individual
387 Fellowship, supported by Horizon 2020 (grant no. 799417; M.V.T.P.). M.V.T.P and M.C. was additionally
388 supported by the Wellcome Trust and FCDO (grant agreement number 220977/Z/20/Z, awarded to
389 M.C.). Sample collection was supported with internal funds from the Utrecht University (M.M.T.dR.,
390 A.B.M., and I.M.W.).
391

392 **AUTHOR CONTRIBUTION**

393 K.T.T.K., M.P.G.K., M.C. and M.V.T.P. conceived the study. K.T.T.K. and M.V.T.P. performed experiments.
394 M.M.T.dR and I.M.W. designed sampling strategy. M.M.T.dR. and A.B.M. conducted fieldwork, handled
395 sample collection and collected associated metadata. K.T.T.K., M.C. and M.V.T.P. analyzed data. K.T.T.K.
396 drafted the manuscript. K.T.T.K., M.V.T.P., M.C. , M.P.G.K., L.A.M.S., I.M.W., M.M.T.dR and A.B.M.
397 edited the manuscript. M.V.T.P., M.P.G.K. and I.M.W. supervised the study. M.P.G.K., M.C., D.J.J.H. and
398 L.A.M.S. acquired the funding.
399

REFERENCES

1. Jones, K. E. *et al.* Global trends in emerging infectious diseases. *Nature* (2008) doi:10.1038/nature06536.
2. Azhar, E. I. *et al.* Evidence for camel-to-human transmission of MERS coronavirus. *New England Journal of Medicine* (2014) doi:10.1056/NEJMoa1401505.
3. Hsu, V. P. *et al.* Nipah virus encephalitis reemergence, Bangladesh. *Emerging Infectious Diseases* (2004) doi:10.3201/eid1012.040701.
4. Munnink, B. B. O. *et al.* Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans. *Science* (2021) doi:10.1126/science.abe5901.
5. Ganter, M. Zoonotic risks from small ruminants. *Veterinary Microbiology* (2015) doi:10.1016/j.vetmic.2015.07.015.
6. Chen, Y. *et al.* Human infections with the emerging avian influenza A H7N9 virus from wet market poultry: Clinical analysis and characterisation of viral genome. *The Lancet* (2013) doi:10.1016/S0140-6736(13)60903-4.
7. Koopmans, M. *et al.* Transmission of H7N7 avian influenza A virus to human beings during a large outbreak in commercial poultry farms in the Netherlands. *Lancet* (2004) doi:10.1016/S0140-6736(04)15589-X.
8. Kalkowska, D. A. *et al.* Associations between pneumonia and residential distance to livestock farms over a five-year period in a large population-based study. *PLoS ONE* (2018) doi:10.1371/journal.pone.0200813.

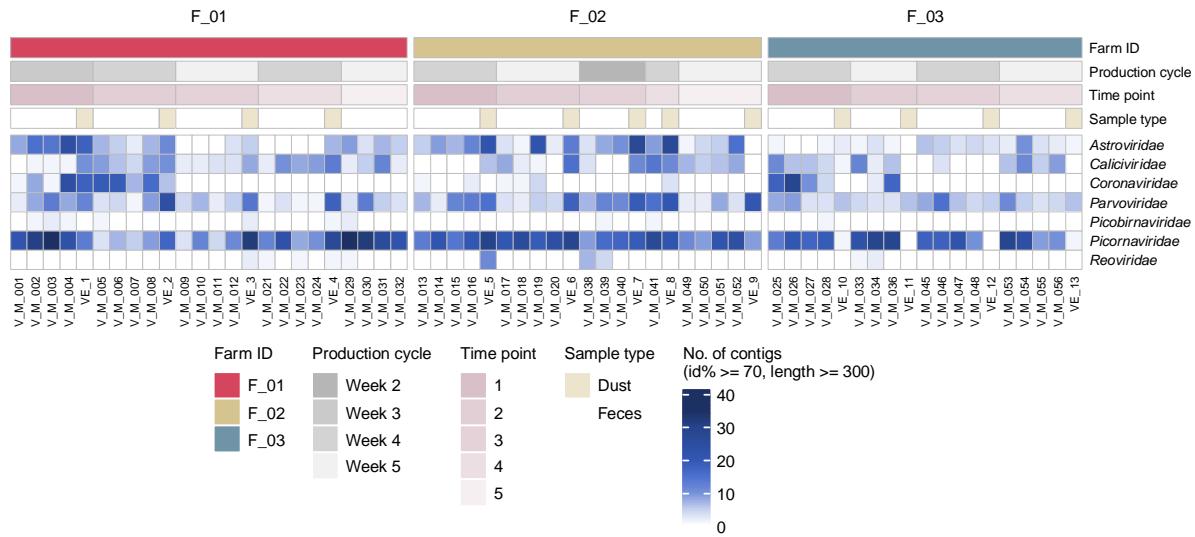
9. Smit, L. A. M. *et al.* Increased risk of pneumonia in residents living near poultry farms: does the upper respiratory tract microbiota play a role? *Pneumonia* (2017) doi:10.1186/s41479-017-0027-0.
10. Kirychuk, S. P. *et al.* Endotoxin and dust at respirable and nonrespirable particle sizes are not consistent between cage- and floor-housed poultry operations. *Annals of Occupational Hygiene* (2010) doi:10.1093/annhyg/meq047.
11. Rimac, D. *et al.* Exposure to poultry dust and health effects in poultry workers: Impact of mould and mite allergens. *International Archives of Occupational and Environmental Health* (2010) doi:10.1007/s00420-009-0487-5.
12. Dosman, J. A. *et al.* Respiratory response to endotoxin and dust predicts evidence of inflammatory response in volunteers in a swine barn. *American Journal of Industrial Medicine* (2006) doi:10.1002/ajim.20339.
13. Schimmer, B. *et al.* Sustained intensive transmission of Q fever in the south of the Netherlands, 2009. *Eurosurveillance* **14**, (2009) doi: 10.2807/ese.14.19.19210-en.
14. Van Der Hoek, W. *et al.* Epidemic Q fever in humans in the Netherlands. *Advances in Experimental Medicine and Biology* (2012) doi:10.1007/978-94-007-4315-1_17.
15. Corman, V. M. *et al.* Antibodies against MERS coronavirus in dromedary camels, Kenya, 1992-2013. *Emerging Infectious Diseases* (2014) doi:10.3201/eid2008.140596.
16. Jones, B. A. *et al.* Zoonosis emergence linked to agricultural intensification and environmental change. *Proc Natl Acad Sci U S A* (2013) doi:10.1073/pnas.1208059110.

17. Barzon, L., Lavezzo, E., Militello, V., Toppo, S. & Palù, G. Applications of next-generation sequencing technologies to diagnostic virology. *International Journal of Molecular Sciences* Preprint at <https://doi.org/10.3390/ijms12117861> (2011).
18. Bexfield, N. & Kellam, P. Metagenomics and the molecular identification of novel viruses. *Veterinary Journal* Preprint at <https://doi.org/10.1016/j.tvjl.2010.10.014> (2011).
19. Dávila-Ramos, S. *et al.* A review on viral metagenomics in extreme environments. *Frontiers in Microbiology* (2019) doi:10.3389/fmicb.2019.02403.
20. Kristensen, D. M., Mushegian, A. R., Dolja, V. V. & Koonin, E. V. New dimensions of the virus world discovered through metagenomics. *Trends in Microbiology* (2010) doi:10.1016/j.tim.2009.11.003.
21. Zheng, X. yan *et al.* Viral metagenomics of six bat species in close contact with humans in southern China. *Archives of Virology* (2018) doi:10.1007/s00705-017-3570-3.
22. Dacheux, L. *et al.* A preliminary study of viral metagenomics of french bat species in contact with humans: Identification of new mammalian viruses. *PLoS ONE* (2014) doi:10.1371/journal.pone.0087194.
23. Phan, M. V. T. *et al.* Identification and characterization of Coronaviridae genomes from Vietnamese bats and rats based on conserved protein domains. *Virus Evolution* (2018) doi:10.1093/ve/vey035.
24. Chen, Q. *et al.* Metagenomic analysis of the RNA fraction of the fecal virome indicates high diversity in pigs infected by porcine endemic diarrhea virus in the United States. *Virol J* (2018) doi:10.1186/s12985-018-1001-z.
25. Shan, T. *et al.* The Fecal Virome of Pigs on a High-Density Farm. *Journal of Virology* (2011) doi:10.1128/jvi.05217-11.

26. Phan, M. V. T. *et al.* Unbiased whole-genome deep sequencing of human and porcine stool samples reveals circulation of multiple groups of rotaviruses and a putative zoonotic infection. *Virus Evolution* (2016) doi:10.1093/ve/vew027.
27. Vibin, J. *et al.* Metagenomics detection and characterisation of viruses in faecal samples from Australian wild birds. *Scientific Reports* (2018) doi:10.1038/s41598-018-26851-1.
28. Vibin, J., Chamings, A., Klaassen, M., Bhatta, T. R. & Alexandersen, S. Metagenomic characterisation of avian parvoviruses and picornaviruses from Australian wild ducks. *Scientific Reports* (2020) doi:10.1038/s41598-020-69557-z.
29. Lima, D. A. *et al.* Faecal virome of healthy chickens reveals a large diversity of the eukaryote viral community, including novel circular ssDNA viruses. *Journal of General Virology* (2017) doi:10.1099/jgv.0.000711.
30. FAO. Gateway to poultry production and products. <http://www.fao.org/poultry-production-products/production/poultry-species/chickens/en/> (2021).
31. Netherlandsandyou.nl. Agriculture and food: the Netherlands and Finland. <https://www.netherlandsandyou.nl/your-country-and-the-netherlands/finland/and-the-netherlands/agriculture-and-food>.
32. CBS. *CBS Internationalisation Monitor 2016-II Agribusiness*. (2016).
33. Centraal Bureau voor de Statistiek. Agriculture; crops, livestock and land use by general farm type, region. <https://www.cbs.nl/en-gb/figures/detail/80783eng?q=chicken> (2021).
34. Finstad, S., O'Bryan, C. A., Marcy, J. A., Crandall, P. G. & Ricke, S. C. Salmonella and broiler processing in the United States: Relationship to foodborne salmonellosis. *Food Research International* (2012) doi:10.1016/j.foodres.2011.03.057.


35. Silva, J. *et al.* *Campylobacter* spp. As a foodborne pathogen: A review. *Frontiers in Microbiology* Preprint at <https://doi.org/10.3389/fmicb.2011.00200> (2011).
36. Sims, L. D. *et al.* Origin and evolution of highly pathogenic H5N1 avian influenza in Asia. *Veterinary Record* (2005) doi:10.1136/vr.157.6.159.
37. De Rooij, M. M. T. *et al.* Detection of *Coxiella Burnetii* in ambient air after a large Q fever outbreak. *PLoS ONE* (2016) doi:10.1371/journal.pone.0151281.
38. Zhao, Y. *et al.* Airborne transmission may have played a role in the spread of 2015 highly pathogenic avian influenza outbreaks in the United States. *Scientific Reports* (2019) doi:10.1038/s41598-019-47788-z.
39. Cambra-López, M., Torres, A. G., Aarnink, A. J. A. & Ogink, N. W. M. Source analysis of fine and coarse particulate matter from livestock houses. *Atmospheric Environment* (2011) doi:10.1016/j.atmosenv.2010.10.018.
40. Viegas, S. *et al.* Occupational exposure to poultry dust and effects on the respiratory system in workers. *Journal of Toxicology and Environmental Health - Part A: Current Issues* (2013) doi:10.1080/15287394.2013.757199.
41. Danuser, B., Weber, C., Künzli, N., Schindler, C. & Nowak, D. Respiratory symptoms in Swiss farmers: An epidemiological study of risk factors. *American Journal of Industrial Medicine* (2001) doi:10.1002/ajim.1032.
42. Munk, P. *et al.* Abundance and diversity of the faecal resistome in slaughter pigs and broilers in nine European countries. *Nature Microbiology* (2018) doi:10.1038/s41564-018-0192-9.
43. Ondov, B. D. *et al.* Mash: Fast genome and metagenome distance estimation using MinHash. *Genome Biology* (2016) doi:10.1186/s13059-016-0997-x.

44. Ondov, B. D. *et al.* Mash Screen: High-throughput sequence containment estimation for genome discovery. *Genome Biology* (2019) doi: 10.1186/s13059-019-1841-x.
45. Gardy, J. L. & Loman, N. J. Towards a genomics-informed, real-time, global pathogen surveillance system. *Nature Reviews Genetics* Preprint at <https://doi.org/10.1038/nrg.2017.88> (2018).
46. Luiken, R. E. C. *et al.* Farm dust resistomes and bacterial microbiomes in European poultry and pig farms. *Environment International* (2020) doi:10.1016/j.envint.2020.105971.
47. Dame-Korevaar, A., Fischer, E. A. J., van der Goot, J., Stegeman, A. & Mevius, D. Transmission routes of ESBL/pAmpC producing bacteria in the broiler production pyramid, a literature review. *Preventive Veterinary Medicine* Preprint at <https://doi.org/10.1016/j.prevetmed.2018.12.002> (2019).
48. Lau, S. K. P. *et al.* Chickens host diverse picornaviruses originated from potential interspecies transmission with recombination. *Journal of General Virology* (2014) doi:10.1099/vir.0.066597-0.
49. Boros, Á. *et al.* A diarrheic chicken simultaneously co-infected with multiple picornaviruses: Complete genome analysis of avian picornaviruses representing up to six genera. *Virology* (2016) doi:10.1016/j.virol.2015.12.002.
50. Lefkowitz, E. J. *et al.* Virus taxonomy: The database of the International Committee on Taxonomy of Viruses (ICTV). *Nucleic Acids Research* (2018) doi:10.1093/nar/gkx932.
51. Donato, C. & Vijaykrishna, D. The broad host range and genetic diversity of mammalian and avian astroviruses. *Viruses* Preprint at <https://doi.org/10.3390/v9050102> (2017).
52. Wolf, S. *et al.* Discovery and genetic characterization of novel caliciviruses in German and Dutch poultry. *Archives of Virology* (2012) doi:10.1007/s00705-012-1326-7.


53. Noss, I. *et al.* Passive airborne dust sampling with the electrostatic dustfall collector: Optimization of storage and extraction procedures for endotoxin and glucan measurement. *Annals of Occupational Hygiene* (2010) doi:10.1093/annhyg/meq026.
54. Liebers, V. *et al.* Assessment of airborne exposure to endotoxin and pyrogenic active dust using Electrostatic Dustfall Collectors (EDCs). *Journal of Toxicology and Environmental Health - Part A: Current Issues* (2012) doi:10.1080/15287394.2012.674919.
55. Kwok, K. T. T. *et al.* Genome Sequences of Seven Megrivirus Strains from Chickens in The Netherlands . *Microbiology Resource Announcements* (2020) doi:10.1128/mra.01207-20.
56. Prussin, A. J. *et al.* Seasonal dynamics of DNA and RNA viral bioaerosol communities in a daycare center. *Microbiome* (2019) doi:10.1186/s40168-019-0672-z.
57. Strubbia, S. *et al.* Metavirome sequencing to evaluate norovirus diversity in sewage and related bioaccumulated oysters. *Frontiers in Microbiology* (2019) doi:10.3389/fmicb.2019.02394.
58. Nieuwenhuijse, D. F. *et al.* Setting a baseline for global urban virome surveillance in sewage. *Scientific Reports* (2020) doi:10.1038/s41598-020-69869-0.
59. Endoh, D. *et al.* Species-independent detection of RNA virus by representational difference analysis using non-ribosomal hexanucleotides for reverse transcription. *Nucleic Acids Research* (2005) doi:10.1093/nar/gni064.
60. Watson, S. J. *et al.* Viral population analysis and minority-variant detection using short read next-generation sequencing. *Philosophical Transactions of the Royal Society B: Biological Sciences* (2013) doi:10.1098/rstb.2012.0205.
61. Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. MetaSPAdes: A new versatile metagenomic assembler. *Genome Research* (2017) doi:10.1101/gr.213959.116.

62. Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. *Bioinformatics* (2010) doi:10.1093/bioinformatics/btq461.
63. Wickham, H., François, R., Henry, L. & Müller, K. *dplyr: A Grammar of Data Manipulation*. <https://cran.r-project.org/package=dplyr> (2019).
64. Wickham, H. Reshaping data with the reshape package. *Journal of Statistical Software* (2007) doi:10.18637/jss.v021.i12.
65. Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. *Bioinformatics* (2016) doi:10.1093/bioinformatics/btw313.
66. Katoh, K., Misawa, K., Kuma, K. I. & Miyata, T. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. *Nucleic Acids Research* (2002) doi:10.1093/nar/gkf436.
67. Nguyen, L. T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. *Molecular Biology and Evolution* (2015) doi:10.1093/molbev/msu300.
68. Kozlov, A. M., Darriba, D., Flouri, T., Morel, B. & Stamatakis, A. RAxML-NG: A fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. *Bioinformatics* (2019) doi:10.1093/bioinformatics/btz305.
69. Yu, G., Smith, D. K., Zhu, H., Guan, Y. & Lam, T. T. Y. *ggtree: an r package for visualization and annotation of phylogenetic trees with their covariates and other associated data*. *Methods in Ecology and Evolution* (2017) doi:10.1111/2041-210X.12628.
70. Wickham, H. *ggplot2*. *ggplot2* (2009) doi:10.1007/978-0-387-98141-3.

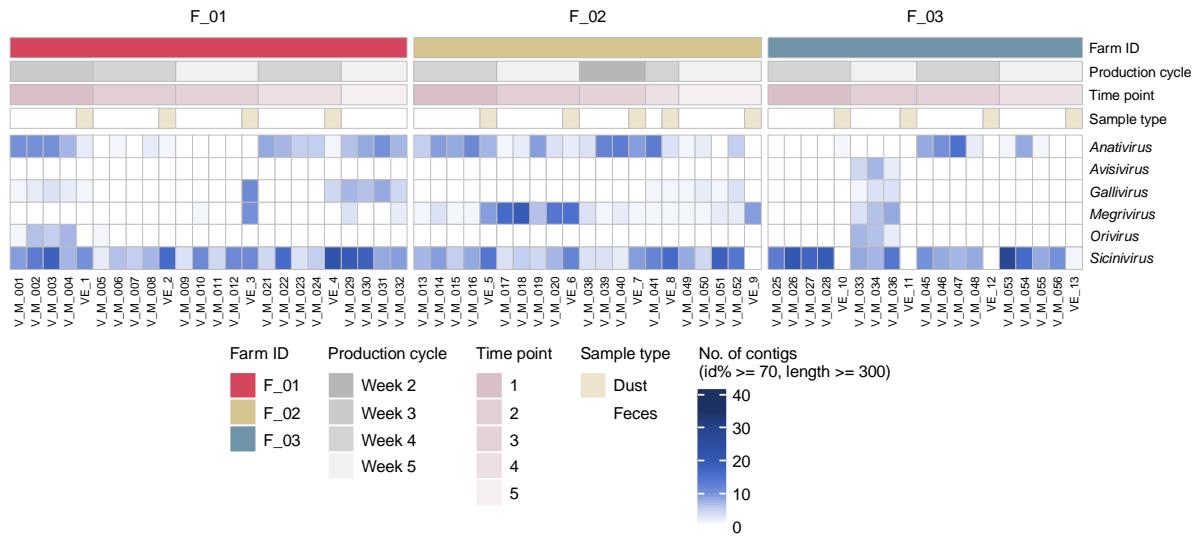

Figures

Figure 1. An overview treemap of the number of viral contigs detected in all chicken fecal samples (panel A) and all chicken farm dust samples (panel B). The size of each virus family sector is proportional to the number of contigs detected in the family (=number of contigs in this family/total number contigs observed). Only viral contigs with minimum length of 300 nt, at least 70 % identity to the reference sequences and a detection e-value threshold of $<1 \times 10^{-10}$ when comparing with the closest reference sequence in our database were included.

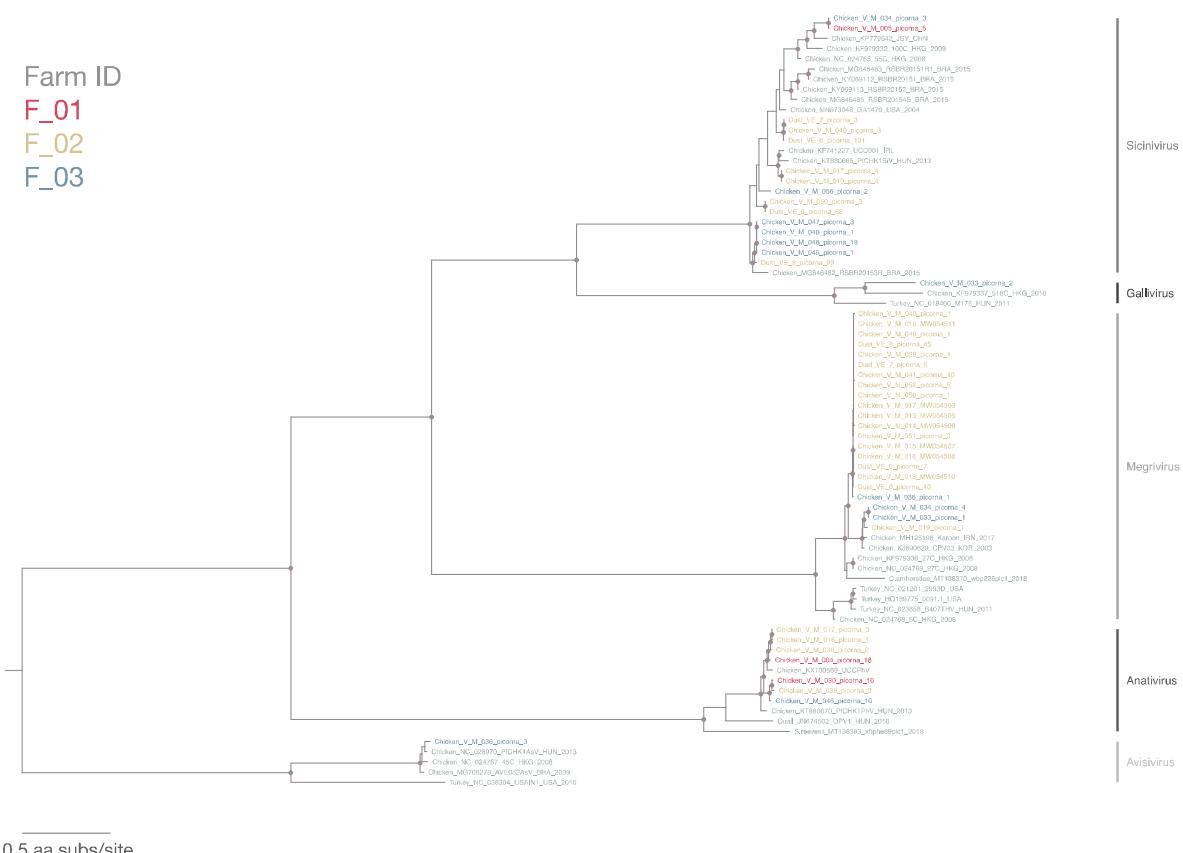
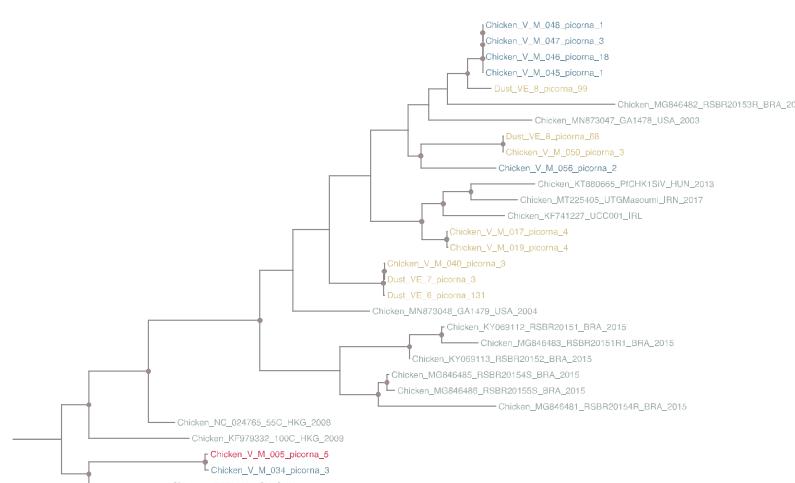

Figure 2. An overview of virus contigs detected in chicken feces and chicken farm dust samples. Each column represents one sample. Associated metadata is shown at the top panel. The color intensity of the heatmap (bottom panel) is determined by number of contigs with minimum length of 300 nt/bp, at least 70% identity and an e-value threshold of 1×10^{-10} when comparing with closest reference in our database. Sample order is assorted by farm ID, sampling time point. Time point is an arbitrary number. Samples were collected at the same time and place when both Farm ID and Time point match.

Figure 3. An overview of picornavirus contigs detected in chicken feces and chicken farm dust samples. Each column represents one sample. Associated metadata is shown at the top panel. The color intensity of the heatmap (bottom panel) is determined by number of contigs with minimum length of 300 nt, at least 70% identity and an e-value threshold of 1×10^{-10} when comparing with closest reference in our database. Sample order is assorted by farm ID, sampling time point. Time point is an arbitrary number. Samples were collected at the same time and place when both Farm ID and Time point match.

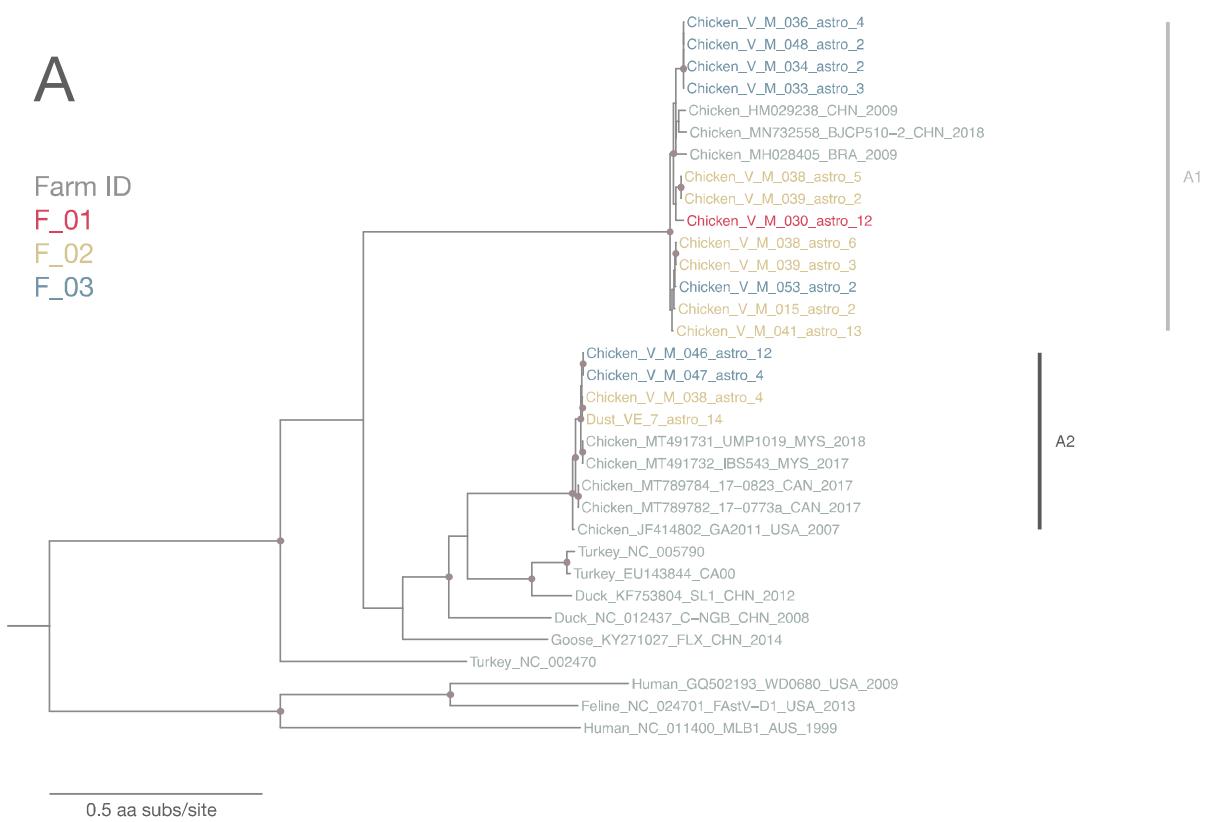
A


Farm ID
F_01
F_02
F_03

0.5 aa subs/site

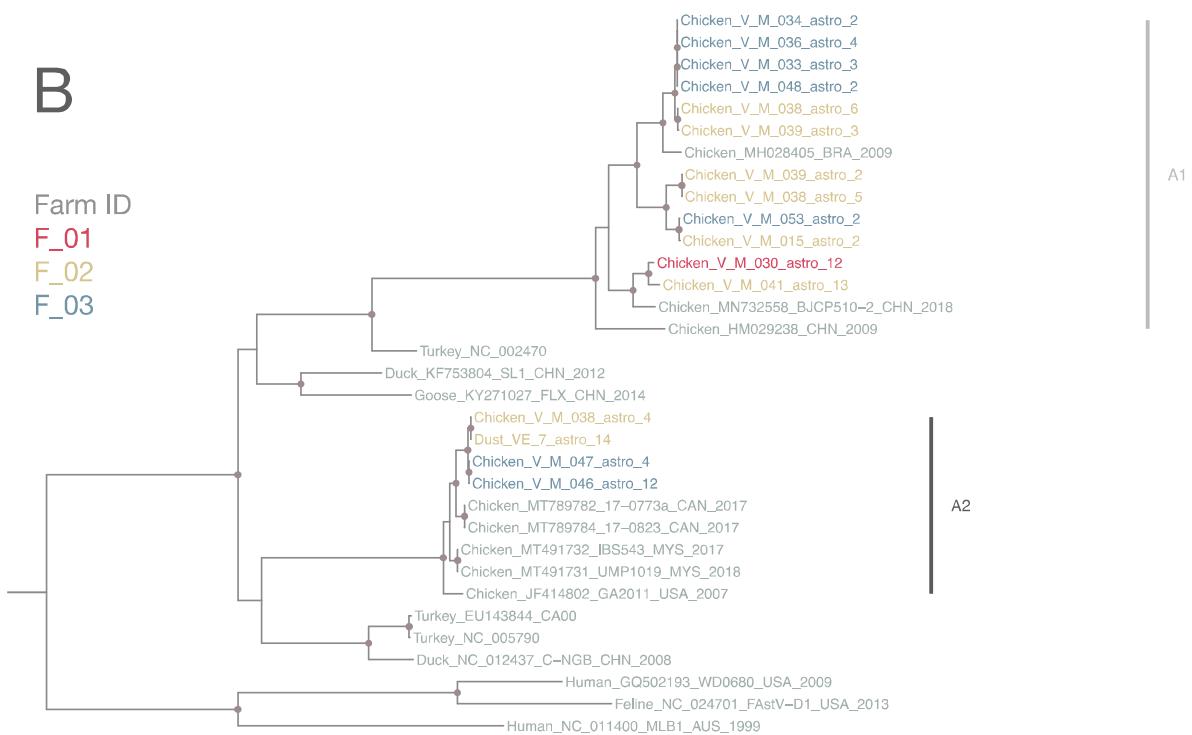
B

Farm ID
F_01
F_02
F_03

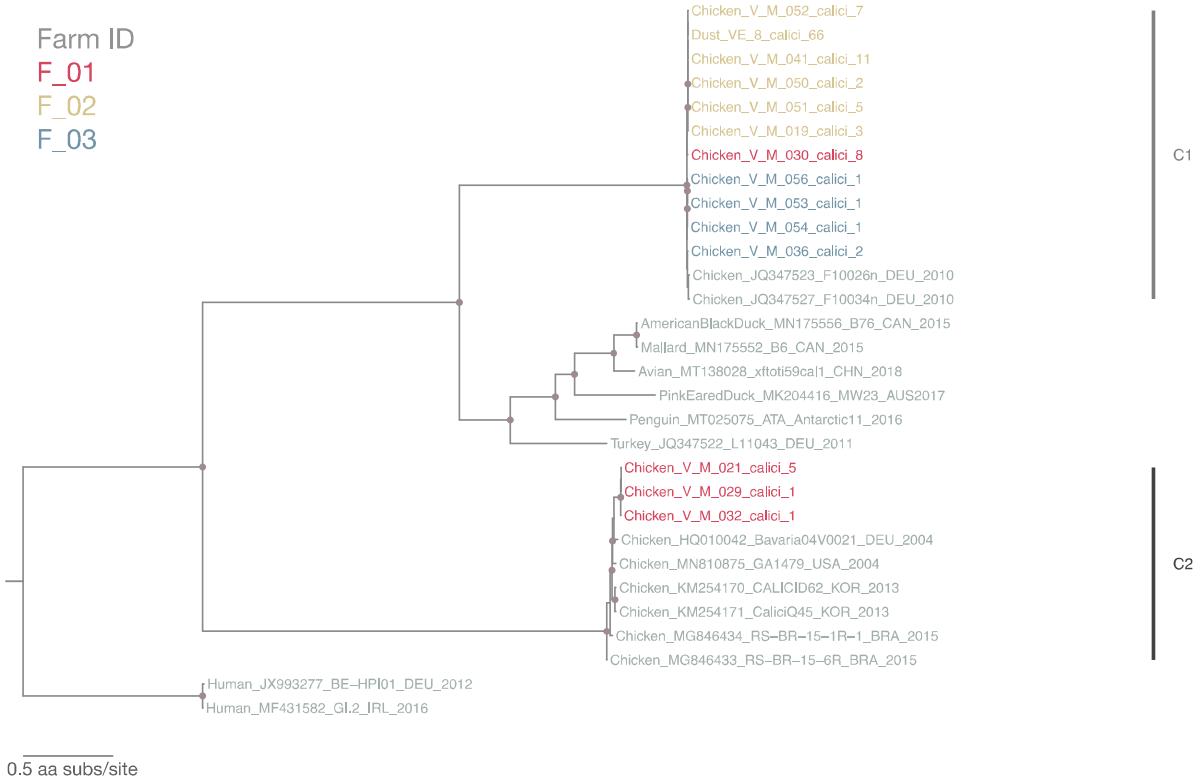


0.2 nt subs/site

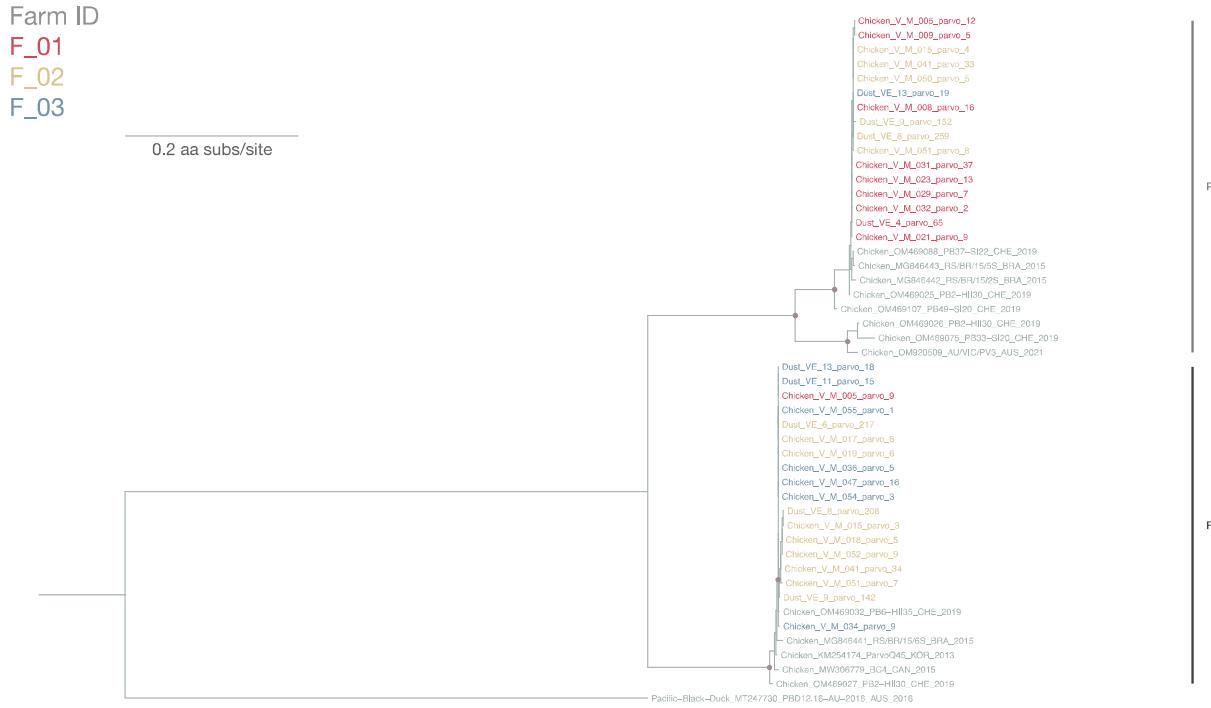
Figure 4. A. Maximum-likelihood phylogenetic tree of 76 (sequences from this study: 46; reference sequences: 30) picornavirus partial polyprotein amino acid sequences (3786 sites) reconstructed using a best-fit evolutionary model LG+FC+R10. For clarity, only bootstrap supports ≥ 70 are shown as a navy-blue node point. Tip labels of our samples are color-coded by corresponding farm ID. Reference sequences are in grey. Tree was mid-point rooted for clarity. **B.** Maximum-likelihood phylogenetic tree of 30 *Sicinivirus* partial polyprotein nucleotide sequences (sequences from this study: 15; reference sequences: 15; 8672 sites) reconstructed using a best-fit evolutionary model GTR+F+R10. For clarity, only bootstrap supports ≥ 70 are shown as a navy-blue node point. Tip labels of our samples are color-coded by corresponding farm ID. Reference sequences are in grey and tree was mid-point rooted for clarity.

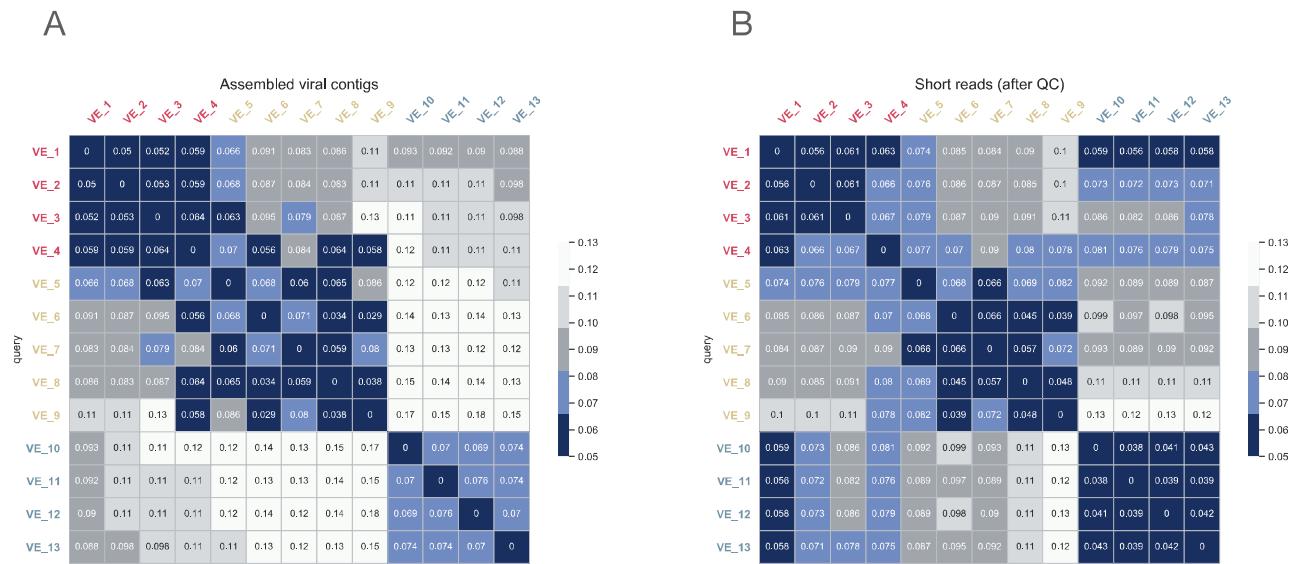

A

Farm ID
F_01
F_02
F_03



B


Farm ID
F_01
F_02
F_03


Figure 5. A. Maximum-likelihood phylogenetic tree of 33 astrovirus partial RdRp amino acid sequences (sequences from this study: 16; reference sequences: 17; 548 sites) reconstructed using a best-fit evolutionary model LG+FC+I+G4m. **B.** Maximum-likelihood phylogenetic tree of 33 astrovirus partial capsid amino acid sequences (sequences from this study: 16; reference sequences: 17; 908 sites) reconstructed using a best-fit evolutionary model LG+FC+I+G4m. For clarity, only bootstrap supports ≥ 70 are shown as a navy-blue node point. Tip labels of our samples are color-coded by corresponding farm ID. Reference sequences are in grey and tree was mid-point rooted for clarity.

sing a
a navy-

Figure 7. Maximum-likelihood phylogenetic tree of 48 parovirus partial NS1 amino sequences (sequences from this study: 34; reference sequences: 14; 700 sites) reconstructed using a best-fit evolutionary model JTT+FC+R2. For clarity, only bootstrap supports ≥ 70 are shown as a navy-blue node point. Tip labels of our samples are color-coded by corresponding farm ID. Reference sequences are in grey. The tree is rooted to a chaphamaparvovirus 1 strain, named PBD12.16-AU-2016, identified from Pacific black duck (GenBank accession number: MT247730).

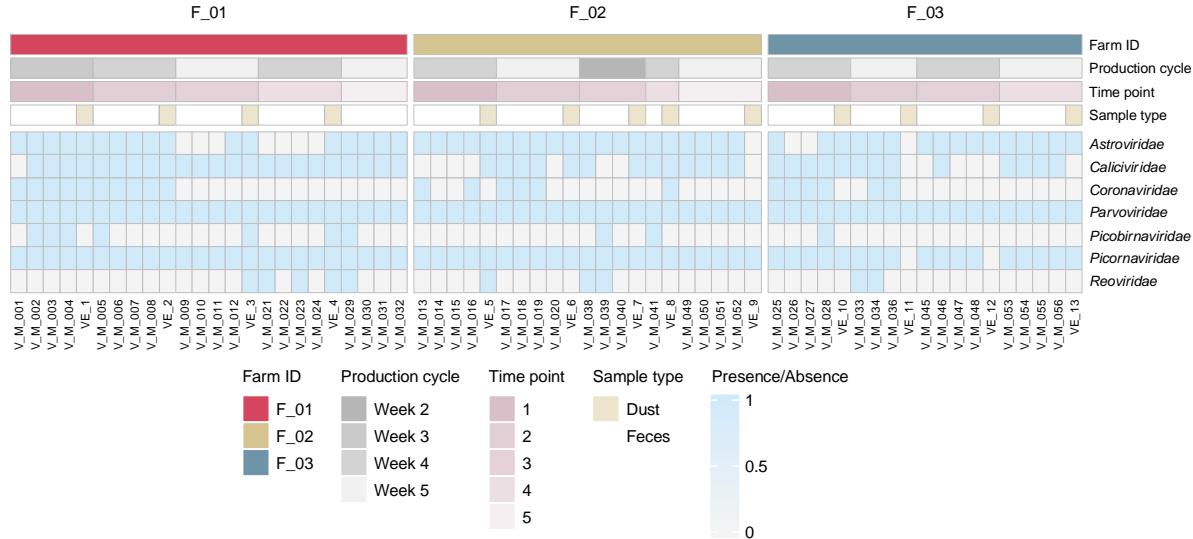
Figure 8. A. Jaccard distance analysis of assembled viral contigs of 13 pooled farm dust samples. B. Jaccard distance analysis of quality-controlled short reads of 13 pooled farm dust samples. The color intensity of the heatmaps is determined by MASH distance. Corresponding MASH distances are also shown in the heatmap. Sample labels are color-coded by farm ID and farm ID was added as prefix for clarity.

Table 1. Detection of viral sequences from different eukaryotic virus families in chicken feces and farm dust samples

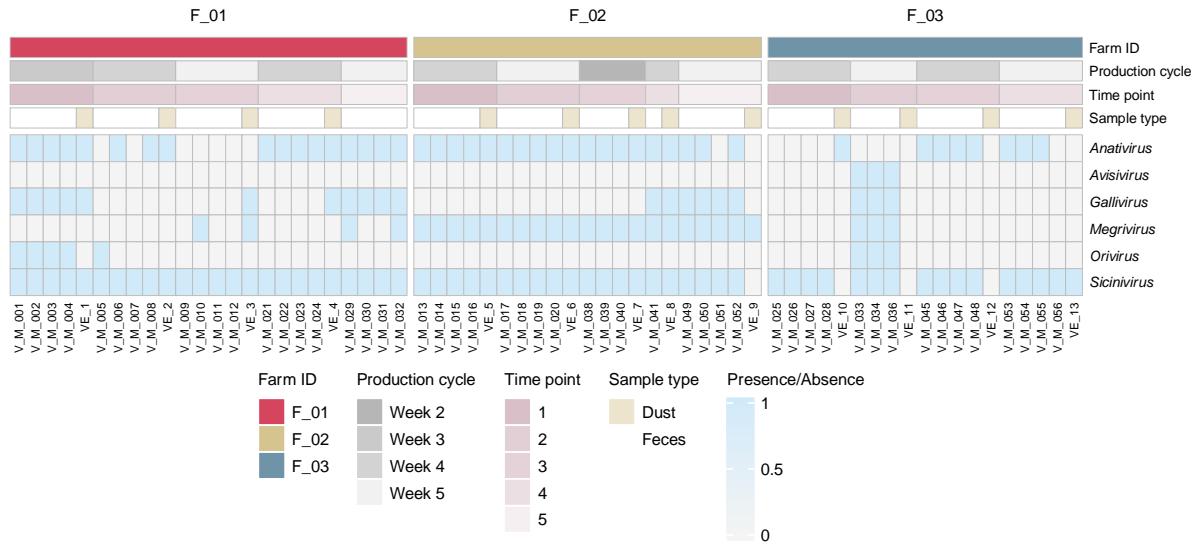
Sample types		Chicken feces (N=51)	Farm dust (N=13)
Virus family	<i>Astroviridae</i>	42 (82%)	11 (85%)
	<i>Caliciviridae</i>	40 (78%)	9 (69%)
	<i>Coronaviridae</i>	19 (37%)	3 (23%)
	<i>Parvoviridae</i>	51 (100%)	13 (100%)
	<i>Picobirnaviridae</i>	8 (16%)	2 (15%)
	<i>Picornaviridae</i>	51 (100%)	11 (85%)
	<i>Reoviridae</i>	7 (14%)	3 (23%)

N is the total number of the samples. The value represents the number of viral sequences with minimum amino acid identity of 70%, minimum length of 300 nt and an e-value threshold of 1×10^{-10} were included. The percentage is the detection percentage of the virus family in our samples.

Table 2. Detection of viral sequences from picornavirus genera in chicken feces and farm dust samples


Sample types		Chicken feces (N=51)	Farm dust (N=13)
Picornavirus genera	<i>Anativirus</i>	36 (70%)	8 (61%)
	<i>Avisivirus</i>	3 (5%)	0 (0%)
	<i>Gallivirus</i>	16 (31%)	4 (30%)
	<i>Megrivirus</i>	22 (43%)	6 (46%)
	<i>Orivirus</i>	8 (15%)	0 (0%)
	<i>Sicinivirus</i>	51 (100%)	9 (69%)

N is the total number of the samples. The value represents the number of viral sequences with minimum amino acid identity of 70%, minimum length of 300 nt and an e-value threshold of 1×10^{-10} were included. The percentage is the detection percentage of the picornavirus genera in our samples.


Table 3. Detailed sampling strategy

Farm #	Sampling moment identifier	Time point	No. of pooled fecal sample(s) collected	No. of pooled dust sample(s) collected (no. of individual dust sample[s] collected)	Week production cycle
F_01	F_01_1	1	4	1 (4)	3
	F_01_2	2	4	1 (4)	4
	F_01_3	3	4	1 (4)	5
	F_01_4	4	4	1 (1)	4
	F_01_5	5	4	0 (0)	5
F_02	F_02_1	1	4	1 (2)	4
	F_02_2	2	4	1 (4)	5
	F_02_3	3	4	1 (4)	2
	F_02_4	4	4	1 (4)	4
	F_02_5	5	4	1 (4)	5
F_03	F_03_1	1	4	1 (3)	4
	F_03_2	2	4	1 (4)	5
	F_03_3	3	4	1 (4)	4
	F_03_4	4	4	1 (4)	5

Supplementary materials

Figure S1. Detection of viral sequences from different virus families in chicken feces and farm dust samples. Associated metadata is shown at the top panel. The color intensity of the heatmap (bottom panel) is determined by number of contigs with minimum length of 300 nt, at least 70% identity and an e-value threshold of 1×10^{-10} when comparing with closest reference in our database. Sample order is assorted by farm ID, sampling time point. Time point is an arbitrary number. Samples were collected at the same time and place when both Farm ID and Time point match.

Figure S2. Detection of viral sequences from picornavirus genera in chicken feces and farm dust samples. Associated metadata is shown at the top panel. The color intensity of the heatmap (bottom panel) is determined by number of contigs with minimum length of 300 nt, at least 70% identity and an e-value threshold of 1×10^{-10} when comparing with closest reference in our database. Sample order is assorbed by farm ID, sampling time point. Time point is an arbitrary number. Samples were collected at the same time and place when both Farm ID and Time point match.

Table S1. A list of corresponding BioProject, BioSample and SRA accession numbers for all samples.

Table S2. A list of corresponding GenBank accession numbers for sequences used in phylogenetic analyses.