

1 **Cardiac adenylyl cyclase type 8 overexpression increases locomotor activity in mice by**
2 **modulating EEG-gamma oscillations**

3 *Jacopo Agrimi^{a, b}, Danilo Menicucci^c, Jia-Hua Qu^b, Marco Laurino^d, Chelsea D Mackey^b, Laila*
4 *Hasnain^b, Yelena S Tarasova^b, Kirill V Tarasov^b, Ross A McDevitt^h, Donald B Hoover^{e, g}, Angelo*
5 *Gemignani*^c, Nazareno Paolocci*^{a, f}, Edward G Lakatta*^b*

6 a) *Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA*

7 b) *Laboratory of Cardiovascular Sciences, National Institute on Aging, National Institutes of Health Biomedical*
8 *Research Center (BRC), Baltimore, MD, USA*

9 c) *Department of Surgical, Medical, Molecular Pathology, and Critical Care Medicine, University of Pisa, Pisa, Italy*

10 d) *Institute of Clinical Physiology, National Research Council, Pisa, Italy*

11 e) *Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University,*
12 *Johnson City TN*

13 f) *Department of Biomedical Sciences, University of Padova, Padova, Italy*

14 g) *Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University,*
15 *Johnson City, TN*

16 h) *The Comparative Medicine Section, National Institute on Aging, National Institutes of Health, Baltimore, MD,*
17 *USA*

18 *Contributed equally

19 **Keywords:** Adenylyl cyclase type 8, EEG Gamma Rhythm, Granger Causality, Locomotor Activity,

20 Heart-Brain Communication, Sympathetic Stress

21 Correspondence to:

22 **Nazareno Paolocci, M.D., Ph.D.**

23 Division of Cardiology, Traylor 911
24 Johns Hopkins Hospital
25 720 Rutland Avenue
26 Baltimore, MD, 21212
27 npaoloc1@jhmi.edu

28 **Edward G. Lakatta, MD.**

29 Laboratory of Cardiovascular Sciences,
30 National Institute on Aging,
31 National Institutes of Health Biomedical Research Center (BRC),
32 Baltimore, MD, 21224
33 lakattae@grc.nia.nih.gov

34

35

36 **Abstract**

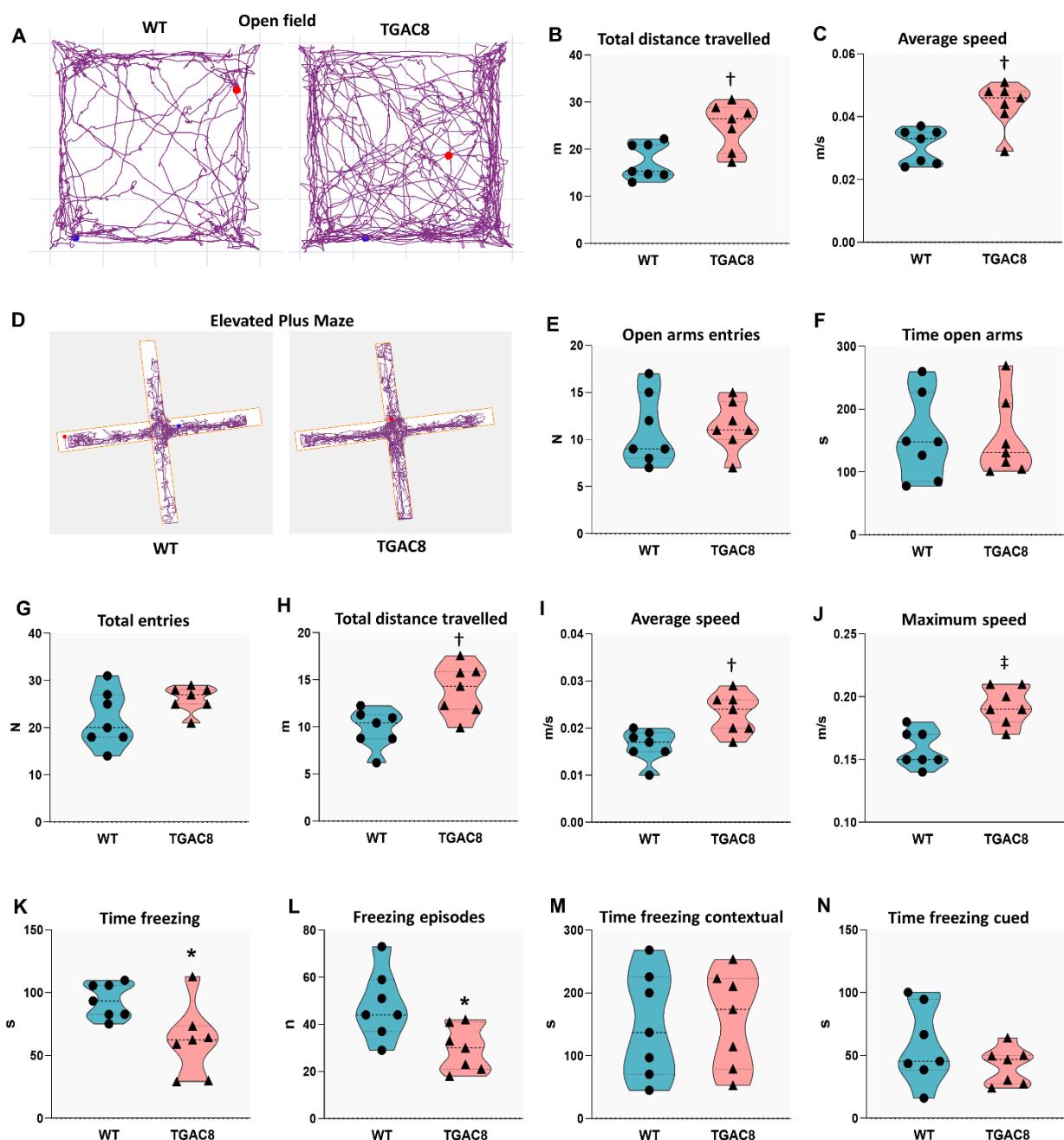
37 The central nervous system modulates heart function on a beat-to-beat basis via increasingly
38 understood mechanisms. Conversely, whether and how humoral/functional cardiac variations
39 shape brain activity and adaptive behavior remains unclear. This study shows that mice
40 overexpressing adenylyl cyclase type 8 in myocytes (TGAC8), characterized by persistently
41 elevated heart rate/contractility, also display increased locomotion. This effect is sustained by
42 enhanced gamma rhythms, as evidenced by simultaneous behavioral and EEG/ECG monitoring.
43 These changes are specific because they are not paralleled by other modifications, such as
44 heightened anxiety-like behavior. In unison, TGAC8 mice hippocampus exhibits upregulated
45 GABA-A receptors, whose activation chiefly accounts for gamma activity generation. Moreover,
46 the Granger causality analysis between ECG and EEG attests to the causal involvement of the
47 autonomic component of the heartbeat in shaping EEG gamma oscillations in a bottom-up
48 modality. Mechanistically, TGAC8 harbors elevated circulating dopamine/DOPA levels of cardiac
49 origin and upregulated hippocampal D5 dopamine receptor levels. In synergy with the GABA-A
50 receptor, D5 activation favors hippocampal inhibitory currents that drive EEG gamma oscillations.
51 These studies, therefore, inform how heart-initiated functional and/or humoral modifications
52 reverberate back to the brain to modulate specific primary adaptive responses, such as
53 locomotion.

54 **Significance**

55 The brain is continuously aware of the functional status of many bodily organs, modulating, for
56 instance, the heart's activity beat-by-beat. Conversely, how cardiac activity modifications impact
57 brain function and behavior is less understood. We disclose that augmenting myocyte adenylyl
58 cyclase 8 (AC8) activity in mice increases their locomotion. Elevated cardiac AC8 levels lead to
59 higher circulating dopamine and DOPA, hormones crucially involved in movement control, and
60 increased expression of the hippocampus's GABA-A and D5 receptors; the activation of the latter
61 modifies hippocampal gamma oscillations shaping locomotor activity. Thus, the brain interprets
62 changes in myocardial AC8 activity as a "sustained exercise-like" situation and responds by
63 activating areas commanding to increase locomotion.

64 **Introduction**

65 Damasio's somatic theory of emotions postulates that afferent somatic signals from the body's
66 peripheral districts are integrated into subcortical and cortical regions, shaping emotional and
67 behavioral responses needed to restore the body's homeostasis (1). At the same time, however,
68 the current perception of stress has significantly departed from the old idea of stress biology as
69 "relevant only under unusual and threatening conditions"(2), in favor of the new notion of "an
70 ongoing, adaptive process of assessing the environment". The individual's ability to sense changes
71 intrinsic and extrinsic to the body would enable her/him to anticipate and thus cope better with
72 future challenges (2).


73 At close inspection, the bidirectional relationship between the heart and the brain falls entirely
74 within this loop. Indeed, besides the autonomic nervous system's descending control of cardiac
75 function, information is also processed by the intrinsic cardiac nervous system (the so-called "little
76 brain of the heart") that communicates back to the brain via ascending fibers located in the spinal
77 cord and vagus nerve (3). These afferent impulses reach relay stations such as the medulla,
78 hypothalamus, thalamus, and, ultimately, the cerebral cortex, carrying sensory information (3).
79 However, despite numerous observational clues supporting the possibility that changes in cardiac
80 activity can anticipate future challenges, thus alter behavior (4–6), definitive mechanistic evidence
81 validating this view and putting forth pathways potentially accounting for these *bottom-up*
82 phenomena remains to be gained.

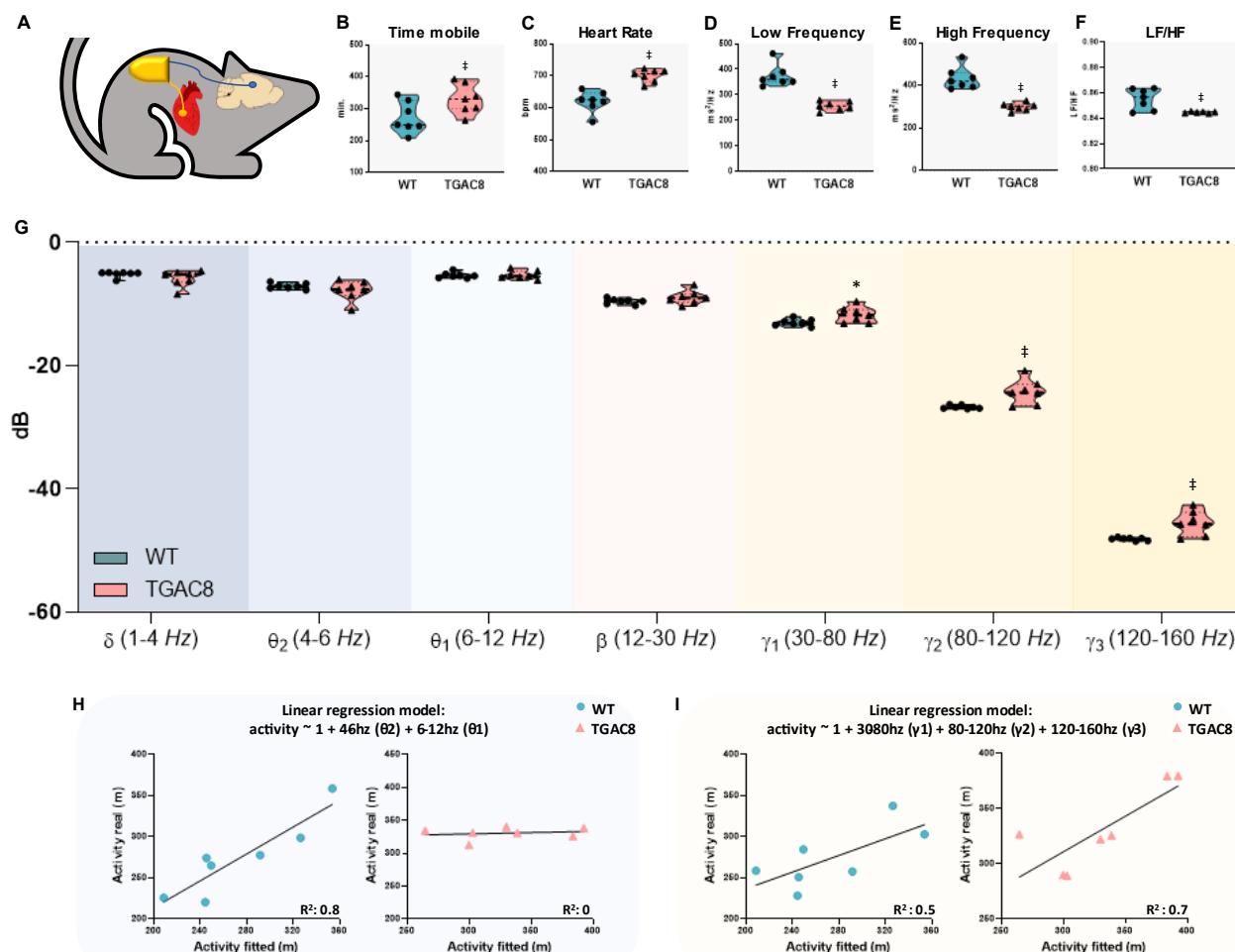
83 Mice harboring a cardiac-specific overexpression of adenylyl cyclase (AC) type 8 (TGAC8)
84 display a persistently elevated heart rate (HR), reduced HR variability (HRV), and increased
85 contractility owing to enduringly elevated cardiac-intrinsic cAMP-PKA-Ca²⁺ signaling (7, 8).
86 Moreover, the heart of these transgenic mice escapes top-down autonomic surveillance by
87 blocking beta-adrenergic signaling and catecholamine production to escape harmful additional
88 sympathetic stress (7). Further, the endocrine portfolio of the TGAC8 heart showcases an
89 accentuated dopamine anabolism mirrored by elevated circulating levels of dopamine and DOPA
90 (7), and the latter can permeate the blood-brain barrier (9). With this tool and evidence in hand,
91 in the present study, we sought to model Damasio's theory of the somatic marker in an

92 experimental setting, proving that bioelectrical, mechanical, and endocrine signaling, borne in the
93 periphery, can shape the activity of specific brain areas and consequently, adaptive behaviors.

94 **Results**

95 **Mice with cardiac overexpression of AC8 display increased locomotor activity**

96 **Figure 1. TGAC8 mice display a general increase in locomotor behavior.** (A) Plot of the animals movements during
97 OF test, WT vs TGAC8 mouse; (B) Open Field test, total distance travelled; (C) Open Field test, average speed;
98 (D) Plot of the animals movements during Elevated Plus Maze test, WT vs TGAC8 mouse; (E) Elevated Plus Maze test, number of


99 entries in the open arms of the labyrinth; (F) Elevated Plus Maze test, time spent in the open arms of the labyrinth; (G)
100 Elevated Plus Maze test, total entries in the open arms of the labyrinth; (H) Elevated Plus Maze test, total distance travelled;
101 (I) Elevated Plus Maze test, average speed; (J) Elevated Plus Maze test, maximum speed; (K) Elevated Plus Maze test, total
102 time freezing; (L) Elevated Plus Maze test, freezing episodes; (M) Fear Conditioning Test, time freezing in a contextual
103 frame; (N) Fear Conditioning Test, time freezing in a cued frame . Results are shown as violins plot, N=7, unpaired t-test
104 has been performed between WT and TGAC8 groups, *p<0.05, †p<0.01, #p<0.001.

105 Whether chronically elevated heart rhythm and/or contractility impact fundamental brain
106 functions is currently unclear. Hence, we first set out to determine whether persistently elevated
107 cardiac chronotropy/inotropy emanating from AC8 overexpression would affect two main
108 behavioral variables, i.e., locomotion and exploratory behavior (i.e., anxiety/like behavior): two
109 major behaviors associated with heart rate modifications (10). When challenged with an open field
110 (OF) test, TGAC8 mice traveled more distance and at a higher speed than their age-matched
111 littermates (+43% and +38%, respectively, p<0.01) (Fig. 1 B, C). Next, we determined their
112 exploratory activity and anxiety-like behavior using the elevated plus maze (EPM) test. First, the
113 EPM test confirmed the ability of TGCA8 mice to cover a longer distance at a higher average speed
114 (Fig.1H, I), and with a maximum speed (Fig.1J) sizably higher than in the controls. Second, this test
115 revealed a considerable decrease in time and episodes of freezing behavior in the transgenic mice
116 (-45%, *p<0.05) (Fig. 1K, L). However, TGAC8 and WT did not differ in the two main parameters
117 evaluating anxiety-like behavior, i.e., the number and times of entry in the open arms (Fig. E, F),
118 results confirmed by the light-dark box test (Sup. Mat.). Further to unveil a possible anxious
119 behavior, we performed the fear conditioning test, which, in contrast to the EPM, cannot be biased
120 by concomitant alterations in locomotor activity (11). Thus, there was no sizable difference
121 between the WT and TGAC8 on the basis of these two main trial parameters, time freezing
122 contextual and cued (Fig. M, N). Hence, these findings indicate that TGAC8 mice - harboring
123 persistently elevated chronotropic/inotropic activity at the heart level – display a hyperkinetic
124 behavior without corollary anxiety.

125 **Cardiac AC8 transgenesis increases EEG-gamma frequencies, shifting the movement control
126 from theta to fast rhythms**

127 To gain initial mechanistic clues explaining TGAC8 hyperlocomotion, we implanted dual lead
128 telemetric devices into TGAC8 and aged-matched WT littermates. This approach enabled us to
129 monitor EEG and ECG activities simultaneously (time series), as well as actigraphy (Fig. 2A). The 24

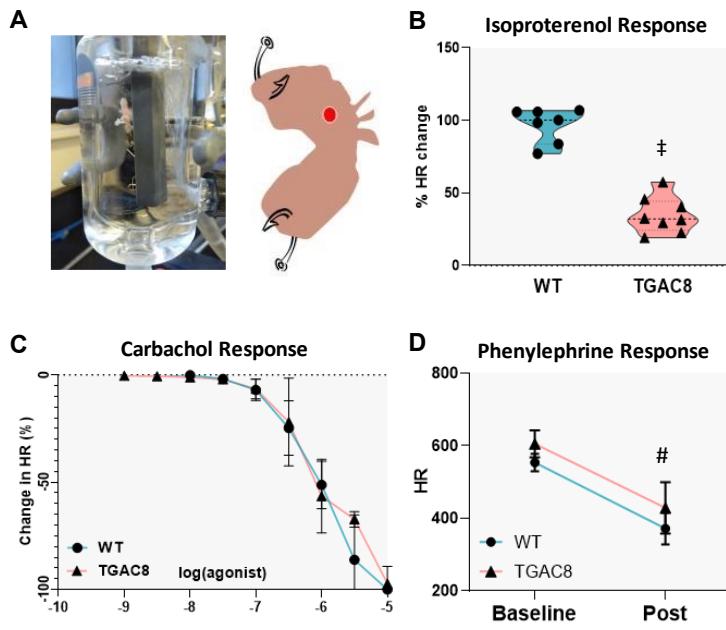
130 hours recording of the activity confirmed that transgenic mice spent more time moving (active)
 131 compared to control littermates (Fig. 2B). Then, we focused on the ECG traces recorded during
 132 the mice's active state. Consistent with previous findings (5, 6), overexpressing AC8 only in cardiac

133 **Figure 2. Double ECG and EEG recording, Heart Rate Variability is impaired, while EEG-gamma rhythms are**
 134 **upregulated in TGAC8 mice.** (A) Schematic of F20-EET double implant for telemetry recording in mice; (B) Actigraphy,
 135 time mobile; (C-F) Heart Rate Variability parameters measured in vivo from telemetric ECG recording; (C) Heart Rate; (D)
 136 Low Frequency; (E) High Frequency; (F) Low Frequency/High Frequency ratio; (G) EEG frequencies bands (from δ to γ_3)
 137 measured in vivo from telemetric EEG recording. Results are shown as violin plots, $N=7$, unpaired t-test has been performed
 138 between WT and TGAC8 groups, $^*p<0.05$, $^{\dagger}p<0.01$, $^{\ddagger}p<0.001$. (H) Linear regression model between activity (time mobile
 139 recorded by actigraphy) and θ power; (I) Linear regression model between activity (time mobile recorded by actigraphy)
 140 and γ power.

141 cells increased heart rate and contractility while rendering the heart unresponsive to autonomic
 142 nerve system (ANS) surveillance (7). Here, however, we validated and expanded this evidence.
 143 Indeed, we observed that TGAC8 mice persistently elevated chronotropic activity paired with a
 144 marked drop in both time domains and high- and low-frequency domains of HR variability. The

145 latter was recorded by an ECG branch of the double telemetry implant ($p < 0.001^{***}$ TGAC8 vs. WT)
146 (Fig. 2D-F). Additionally, when examining the active portion (animals moving) of the 24-hrs EEG
147 traces, we discovered that the TGAC8 mice had an overall increase in gamma activity, i.e., $\gamma 1/2/3$,
148 spanning from 30 Hz to 160 Hz (Fig. 2G).

149 Theta and gamma activities are crucial determinants of overall locomotor behavior in
150 species such as mice (12, 13). Therefore, we next correlated the active movement recorded by the
151 actigraphy with these bands using a linear regression model to determine the degree of
152 association between activity and EEG patterns. We found that the theta bands power (theta-2 and
153 theta-1) is nicely associated with the activity pattern of WT mice ($R^2 = 0.8$), as shown previously
154 (12). Surprisingly, however, the theta band did not influence locomotion in TGAC8 mice ($R^2 = 0$)
155 (Fig. 2H). Conversely, the three gamma bands power were reliably associated to active state
156 (moving animal) in TGAC8 mice ($R^2 = 0.7$) while maintaining a moderate fit for movements in WT
157 mice ($R^2 = 0.5$) (Fig. 2I).

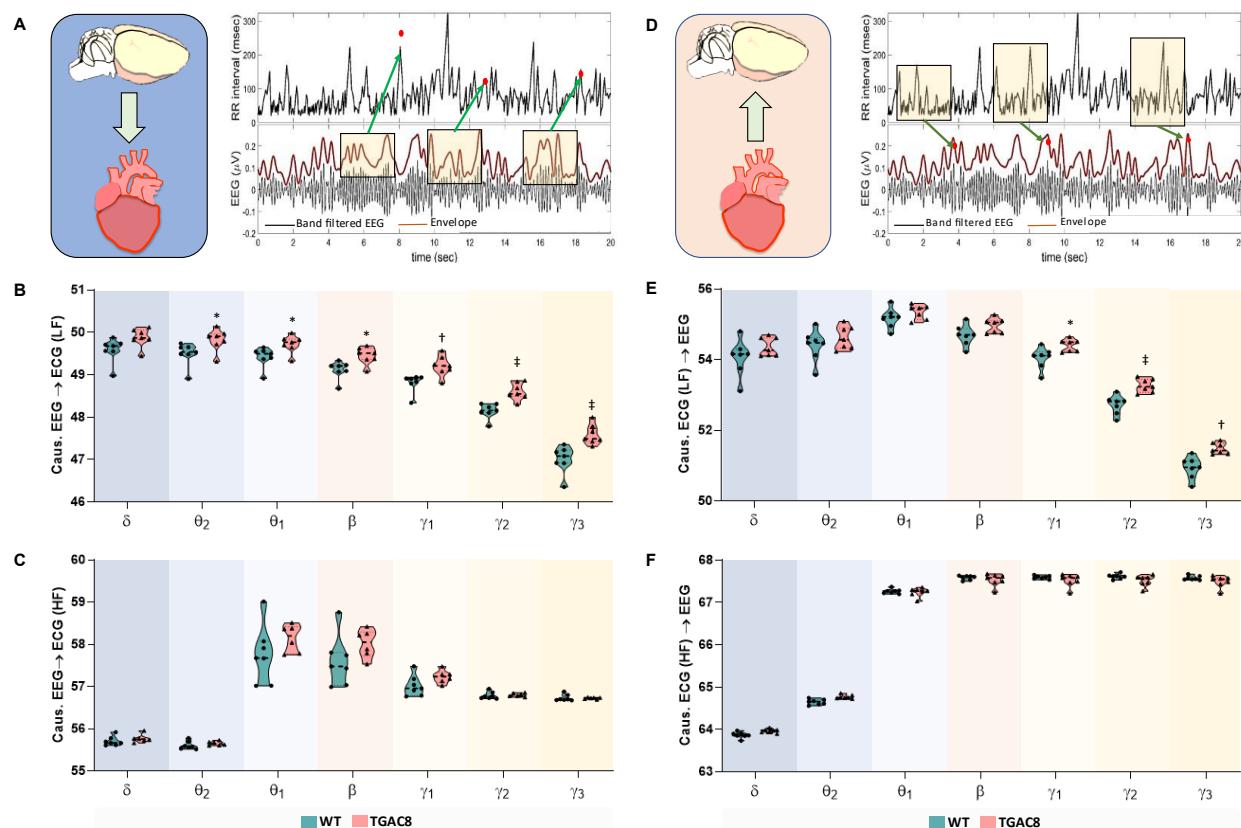

158 In aggregate, these data suggest that cardiac-selective overexpression of AC8 can drive
159 an increase in myocardial performance and concurrently bring about changes in the EEG central
160 patterns, especially within the gamma frequency range. In turn, these modifications can alter the
161 mouse locomotor behavior. Indeed, the current data uncover a shift in the control of locomotion
162 of TGAC8 from the classical theta band to a more prominent role of gamma rhythms.

163

164 ***The flow of information between the heart and brain is augmented in TGAC8 mice***

165 Parallel to the descending control exerted by the ANS on cardiac function, the peripheral
166 information generated within the heart is communicated to the brain via the intrinsic cardiac
167 nervous system through ascending autonomic fibers (3). We next explored the capacity of the
168 TGAC8 hearts to respond to autonomic input. More in detail, we assessed the intrinsic response
169 of the sinoatrial node (SAN) to external sympathetic and parasympathetic stimuli in isolated atria
170 driven by spontaneous SAN impulses (Fig. 3A). Despite a substantial decreased isoproterenol
171 response (Fig. 3B), the parasympathetic effects evoked by carbachol administration were intact
172 (Fig. 3C). Next, we evaluated the baroreflex *in vivo* via phenylephrine administration. Again, both
173 WTs and TGAC8s responded to the stimulation similarly (Fig. 3D). Thus, we confirmed that, despite

174 some alterations, the autonomic communication between the heart and the brain is still in place
175 in TGAC8 mice.

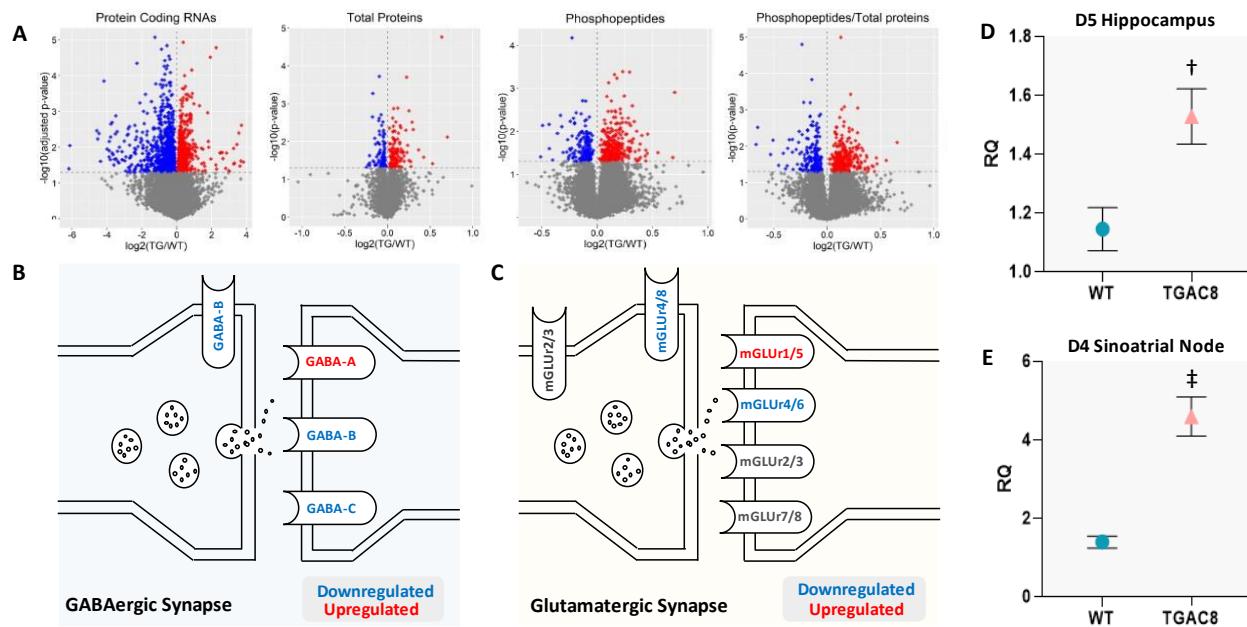

Figure 3. TAC8 mice show a blunted response to sympathomimetic agents, while maintaining parasympathetic reactivity. (A) Representative picture and diagram of isolated atria preparation; (B) Change (in percentage) of heart rate after Isoproterenol administration, $n=7-8$, data are shown as violin plots, unpaired t -test between WT and TGAC8, $\#p<0.001$; (C) Change (in percentage) of heart rate after carbachol administration, $n=4-5$, log dose-response curve. (D) HR change after phenylephrine administration *in vivo*, results are shown as mean and SD, $n=3-4$, two way ANOVA, Baseline Vs Post $\#p<0.01$.

We next determined whether the bidirectional communication, in terms of interaction between ECG and EEG signals, is altered in TGAC8. To this end, we used the Granger causality approach to determine whether and to what extent heart-generated electrical signals causally influence electrical cerebral activities (EEG patterns) and vice-versa (14) (Fig.4A, D).

We filtered the ECG traces for Low (LF) and High Frequencies (HF), which substantially represent the autonomic modulation of heartbeat intervals. Analogously, EEG were also filtered to obtain a signal for each band (from δ up to $\gamma 3$). The GC analysis takes advantage of the variability expressed

193 over time by both brain and heart rhythm. Indeed, it aims to derive the mutual causal influence
194 between heart rate sources (LF and HF) and EEG band activities, and vice versa. Hence, for both
195 ECG and EEG band filtered signals we considered the local amplitude, i.e. envelopes showed in
196 figures 4 A, and D. In terms of brain-to-heart influence, we observed a significant increase in the
197 causal interaction for each EEG band (except for delta) towards LF-filtered ECG RR intervals (Fig.
198 4B). This is not surprising when considering the necessity of the brain to modulate the elevated
199 HR and contractility of TGAC8 negatively. However, no significant changes were observed in the
200 HF-filtered ECG RR intervals range. Concerning the relation between LF-filtered ECG and EEG, we
201 observed a marked rise in the exchange of information for all the three gamma bands, i.e., the
202

203 LF component of heartbeat influences and guides changes in TGAC8s EEG patterns in the range
 204 of gamma (Fig. 4E). However, we noticed no differences between groups when examining HF-
 205 filtered ECG (Fig. 4F).



206

207 **Figure 4. The causal interaction between heart and brain is increased in TGAC8 mice.** (A) Granger Causality (GC)
 208 brain->heart estimate. The amplitude of the envelope of the band-filtered EEG signal (local amplitude) was extracted and
 209 used to estimate its contribution to the prediction of heart rate variability (HRV). The box over the envelope signal depicts
 210 the length of past values in the time series used in the GC analysis to predict the current HRV series. To derive the GC
 211 brain->heart, this predictive contribution was compared with that made by past values of the HRV series on its own current
 212 value; (D) GC heart->brain estimate. HRV time-series (filtered for LF and HF) was extracted and used to estimate its
 213 contribution in the prediction of the local amplitude of band-filtered EEG signal. The box over the HRV time series depicts
 214 the length of past values in the time series used in the GC analysis to predict current band amplitude. To derive the GC
 215 heart->brain, this predictive contribution was compared with that made by past values of the band amplitude series on
 216 its own current value; (B-C) dispersion within groups of GC brain->heart estimates both for LF-filtered ECG RR intervals
 217 and HF-filtered ECG RR intervals; (E-F) dispersion within groups of GC heart->brain estimated both for LF-filtered ECG RR
 218 intervals and HF-filtered ECG RR intervals. Results are shown as violin plots, N=7, unpaired t-test has been performed
 219 between WT and TGAC8 groups, *p<0.05, †p<0.01, ‡p<0.001.

220 We interpret these data to indicate that the flow of information between the heart and brain in
 221 TGAC8 is increased. This increment is particularly evident between the LF component of the ECG
 222 and the gamma frequencies of the EEG, likely accounting for the gamma rhythms rise observed
 223 in TGAC8.

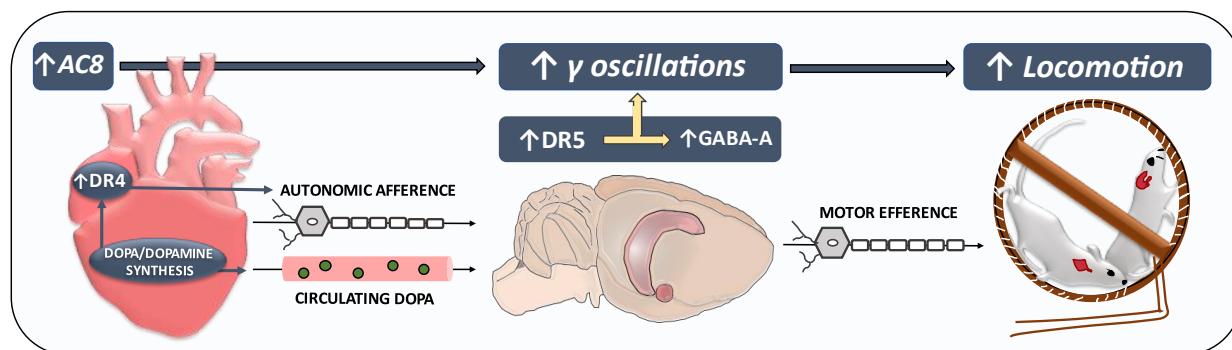
224 **Changes in GABA and glutamate receptors account for increased gamma activity in the**
 225 **hippocampus of TGAC8 mice**

226 **Figure 5. Transcriptomic/proteomic analysis of WT and TGAC8 hippocampus and SA node.** (A) volcano plots of
 227 transcriptomic, proteomic and phosphoproteomic analysis of TGAC8 mice hippocampus: protein coding RNAs,
 228 proteins, phosphopeptides, proteins/phosphopeptides ratio downregulated in blue, upregulated in red; (B) GABAergic synapse
 229 scheme, upregulated receptors in red, downregulated in blue; (C) glutamatergic synapse scheme, upregulated receptors in
 230 red, downregulated in blue; (D) Dopamine receptor 5 (D5) transcription levels in the hippocampus; (E) Dopamine receptor
 231 4 (D4) transcription levels in the SA node. Results in D and E are shown as mean and SD, $n=4$, unpaired t-test between WT
 232 and TGAC8, $\dagger p < 0.01$, $\ddagger p < 0.001$.

233 Because EEG recording indicated that TGCA8 mice displayed a marked increase in gamma power
 234 -from 30 Hz to 160 Hz – when these mice were active (Fig.2 G), we next determined what long-
 235 term neurochemical adaptations may subtend these changes. The hippocampal formation is one
 236 of the primary hubs of gamma activity generation, especially high-speed gamma ripples (15). The
 237 earliest model of gamma oscillations generation is based on the reciprocal connections between
 238 pools of excitatory pyramidal neurons and inhibitory interneurons, i.e., resulting from a
 239 GABAergic/glutamatergic interplay (16). Against this background, we performed a
 240 transcriptomic/proteomic analysis to determine eventual changes (long-term adaptations) in the
 241 transcription and expression of GABA and glutamate receptors' transcription and expression
 242 levels. The receptor GABA-A is now recognized to play a significant role in gamma activity
 243 generation (16). Consistent with this acquired evidence, we found the increased EEG gamma

244 frequency bands in TGAC8 transgenic group coupled with a marked up-regulation of GABA-A.
245 Moreover, the GABA-B, known to inhibit gamma wave generation (17) were downregulated in
246 TGAC8 (Fig.5B). There is a close relationship between GABA-dependent signaling and glutamate
247 receptors synapses in gamma rhythms generation (16, 18). Accordingly, the excitatory receptor
248 mGLU1/5 was upregulated in TGAC8. In contrast, the inhibitory mGLU4/6 and mGLU4/8 were both
249 downregulated in these animals (Fig. 5C). Taken together, these data link the augmented EEG
250 gamma bands to long-term adaptation/remodeling of the GABA/glutamate receptor signaling
251 involved in gamma wave generation, at least at the hippocampal level.

252


253 **TGAC8 mice show an increment of dopamine signaling within the heart, circulating plasma,
254 and hippocampus**

255 The sinoatrial node of the TGAC8s mice displays elevated tyrosine hydroxylase (TH) expression
256 levels with reduced transcription of dopamine beta-hydroxylase: effects converging to augment
257 dopamine bioavailability, as previously shown (7). Moreover, the same study demonstrated a
258 sizable rise in circulating L-Dopa and dopamine in TGAC8 (7). Here, we assessed dopamine
259 receptor transcription levels in the sinoatrial node cells and observed a marked increase in the
260 transcription of the D4 receptor (Fig. 5E). Of note, at the cardiac level, this isoform modulates the
261 activity of the autonomic nervous system (19). This evidence fits very well with the altered
262 bidirectional heart-brain communication detected in the Granger causality analysis. On these
263 grounds, and bearing in mind that DOPA can pass the blood-brain barrier, we hypothesized that
264 increased levels of cardiac-derived DOPA coupled with altered *bottom-up* autonomic signaling
265 account, at least partly, for the hyperlocomotion manifested by the TGAC8 mice. We evaluated
266 dopamine receptor levels in the hippocampus to explore this hypothesis further. Indeed, recent
267 studies proved that the interaction between GABA-A and dopamine D5 receptors is critical to
268 evoking a rise in GABAergic inhibitory postsynaptic currents (IPSCs) (20), an event at the
269 foundation of gamma rhythms generation. In keeping with our initial hypothesis, we found that
270 the expression of D5 receptors was increased in the TGAC8 hippocampus (Fig. 5D).

271

272 **Discussion**

273 The central nervous system continuously monitors peripheral internal (and external) body changes
274 (1); for example, the degree of contraction of visceral muscles, heart rate, and metabolite levels in
275 the internal milieu. Collected by the interoceptive system, these modifications signal back to
276 sensory CNS regions encrypting body region representations to command physiological
277 reactions. The latter ultimately modifies body functions to cope with stress conditions and/or
278 maintain organismal homeostasis (1). Our observations fit nicely in this conceptual framework
279 while providing unprecedented experimental evidence that buttresses and expands the somatic
280 theory of emotions (21). Capitalizing on a mouse model that overexpresses AC8 in
281 cardiomyocytes, here we report that TGAC8 mice manifest increased locomotor behavior
282 sustained by enhanced EEG gamma rhythms. In these mice, the analysis of causality interplay
283 (Granger) between ECG and EEG signals attests to a causal involvement of the autonomic
284 component of the heartbeat in shaping EEG gamma oscillations. Mechanistically, the heart of
285 TGAC8 mice showcases heightened dopamine anabolism translating into elevated circulating
286 dopamine/DOPA, paralleled by an upregulation of D4 dopamine receptor. The latter is a primary
287 modulator of cardiac autonomic activity. Centrally, the hippocampus of the TGAC8 mice retains
288 upregulated expression of both GABA-A and D5 dopamine receptors; the activation of the former
289 chiefly accounts for gamma activity generation, while that of the latter exerts a permissive
290 (synergistic) action on GABA-A activation, favoring hippocampal inhibitory currents generations
291 (Fig. 6).

292 **Figure 6. Mechanistic framework of the study.** At the cardiac level, mice overexpressing adenylyl cyclase type 8 in
293 cardiomyocytes display heightened dopamine anabolism, thus elevated circulating dopamine/DOPA levels, paralleled by
294 the mRNA transcript upregulation of D4 dopamine receptors - primary modulators of cardiac autonomic activity - in the
295 SA node. Centrally, the hippocampus of the TGAC8 mice retains increased expression of both GABA-A and D5 dopamine
296 receptors. The activation of the former chiefly accounts for gamma activity generation, while the latter exerts a permissive

297 (synergistic) action on GABA-A activation, hence favoring overall hippocampal gamma rhythms generation. Owing to this
298 heightened (bottom-up) heart-brain interaction (confirmed by the Granger causality analysis of the ECG and EEG traces),
299 AC8 transgenesis at the myocyte levels initiates and sustains enhanced locomotor activity.

300 **Overexpressing AC8 in cardiomyocytes triggers a locomotion status akin to perpetual
301 exercise**

302 Mice overexpressing AC8 in cardiomyocytes (TGAC8 mice) exhibit a global and persistent
303 increase in locomotor activity independent of changes in other behavioral variables, such as
304 anxiety. We ground our conclusion on the following experimental evidence: 1) actigraphy (24 hrs.
305 recording) showing increased activity in TGAC8s; 2) open field and elevated plus maze showing
306 increased moving time and distance traveled; 3) superior motor performance, i.e., higher average
307 speed and higher maximum speed and decreased freezing. Of relevance, both OF, EPM, and light-
308 dark box reveal the absence of anxiety-like behavior in these mice. This conclusion is reinforced
309 by the fear-conditioning test, an anxiety-centered test completely independent of motor
310 influences.

311 We advance the possibility that the rise in locomotor activity found in the TGAC8 is
312 "functionally justified" and congruent with chronic peripheral physiological modifications, such as
313 the persistently elevated heart rate. Put simply, the TGAC8 mouse heart experiences and must
314 handle a status akin to "perpetual exercise" where the brain, in keeping with the somatic theory
315 of emotions, adapt its outflow, switching the animal behavior from a state of rest to an active one,
316 such as running. This scenario also corresponds to the significant cardiac workload sustained by
317 the TGAC8 mice. Moreover, that these transgenes showcase hyperlocomotion but not anxiety is,
318 in our opinion, not so surprising. Indeed, their cardiac chronotropic rhythm is regular and
319 continuous, mimicking a "perpetual exercise" status. Conversely, sudden and irregular bouts of
320 heart rhythm perturbations typically subtend an anxious behavior, such as palpitations and/or
321 frank arrhythmias (22, 23). We posit that the modified pattern of brain-heart communication
322 observed in the TGAC8 mice occurs in anticipation of exercise performance but in the reverse
323 order. Normally, the brain commands the heart to increase its beating rate, ultimately preparing
324 the body to augment physical efforts (24). In stark contrast, in the present experimental setting,
325 the AC8-driven cardiac humoral (endocrine) and functional alterations signal back to the brain to

326 initiate locomotion. In essence, we postulate that, as with other behavioral domains such as
327 emotion control, a heart-brain loop also exists to start and/or fine-tune locomotion.

328

329 ***Gamma rhythms, locomotion, and heart-brain causal interaction***

330 In rodents, hippocampal theta and gamma rhythms have been linked to locomotion, controlling
331 both its initiation and speed (12, 13). Heightened running speed is accompanied by significant,
332 systematic rises in the frequency of hippocampal network oscillations spanning the entire gamma
333 range (30–120 Hz) and beyond (13). Changes in frequency correlate strongly with firing rate
334 changes of individual interneurons mediated by GABA-A receptors, consistent with gamma
335 generation models (16). In our experimental setting, the 24 hr. EEG recordings documented that,
336 during the active phases, the TGAC8 mice experienced a marked rise in gamma frequencies from
337 30 Hz to 160 Hz. When correlating the animal motor activity with theta and gamma frequencies,
338 we found a prominent correlation between theta frequencies and movement in WTs. Conversely,
339 such correlation was no longer evident (completely abolished) in TGAC8 mice where gamma
340 activity correlated with locomotion.

341 Delving further into this finding, we performed some transcriptomic and proteomic
342 analyses of the hippocampus, i.e., the fundamental hub of gamma activity generation and a
343 primary player in locomotor activity control (12, 15). We observed a biomolecular profile that
344 nicely mirrors what was detected at the EEG level. Indeed, all receptors accounting for gamma
345 activity generation (16, 18) were upregulated (especially GABA-A and mGluR 1/5), while those
346 implicated in gamma inhibition (17), i.e., GABA-B and mGluR 4/8, were down-regulated.

347 Finally, to establish a causal link between the EEG pattern changes and cardiac activity
348 stemming from AC8 cardiac overexpression, we evaluated the extent and characteristics of the
349 heart/brain bidirectional communication, applying the Granger Causality approach to EEG and
350 ECG traces. The main finding is that the autonomic component of the heartbeat (especially LF)
351 causally influences the gamma frequencies in a *bottom-up modality*. Specifically, our analysis takes
352 advantage of the variability expressed over time by both the heart rhythm (decomposed in LF and
353 HF) and EEG frequency bands and checks whether amplitude variations of the former are
354 predictive of changes in the latter.

355 Prior functional magnetic resonance imaging studies using the Granger approach revealed
356 the hippocampus as a pivotal structure in the top-down control of the cardiac output. However,
357 the same study failed to identify causal interactions in the opposite direction, i.e., from the heart
358 to the brain, likely because performed in animals under resting conditions (25). However, recent
359 work by Candia-Rivera and collaborators unveiled the temporal dynamics of brain and cardiac
360 activities in human subjects who underwent emotional elicitation through videos. This research
361 demonstrates, via computational modeling, that emotional stimuli modulate heartbeat activity,
362 stimulating a specific cortical response (4). These observations corroborate both Ledoux's and
363 Damasio's theories on emotions. However, in the study by Candia-Rivera and colleagues, the
364 original stimulus, i.e., the trigger of the adaptive brain response, was not peripheral (somatic), in
365 principle. In our study, we specifically overexpressed AC8 peripherally in the heart, resulting in
366 heart rate elevation, heart contractility, and alterations in heart and plasma neurotransmitter
367 levels. While escaping top-down sympathetic control, these alterations would modify the heart-
368 brain communication in a mere bottom-up modality.

369

370 ***Dopamine and the heart-brain loop***

371 Sinoatrial node cells of the TGAC8s mice harbor markedly elevated levels of tyrosine
372 hydroxylase (TH) with reduced transcription of dopamine beta-hydroxylase, as shown previously
373 (7). And these changes lead to elevation of cardiac and systemic DA/DOPA availability (7). Here,
374 we add to this mosaic two new pieces: first, TGAC8 sinoatrial node cells display a marked rise in
375 D4 transcription levels (Fig. 4E); second, these transgenic mice have an increased hippocampal
376 transcription of D5 receptor (Fig. 4D). In aggregate, the new evidence may have the following
377 functional consequences. First, a recent study shows how atrial D4 can modulate vagal activity
378 (19) (i.e., heart-to-brain and brain-to-heart interaction). This fits very well with what we have
379 observed at the level of bidirectional heart-brain communication by Granger analysis. Second, the
380 incremented levels of circulating DOPA output by the TGAC8 heart can permeate the brain-blood-
381 barrier (BBB), reaching central dopaminergic stations fundamental for the generation and
382 maintenance of locomotor activity such as the basal ganglia (26). Third, the D5 receptor,
383 upregulated in the TGAC8 hippocampus, is one of the primary activators of GABA-A, the main

384 catalyst of gamma activity (16). Accordingly, recent work shows that functional cross-talk exists
385 between GABA-A and D5 in hippocampal neurons, favoring inhibitory current generations (19).
386 Thus, the present results support the novel idea that cardiac dopaminergic signaling shapes heart-
387 to-brain communication through direct endocrine mechanisms (systemic DOPA production) and
388 autonomic ones (D4 modulation on afferent vagal transmission), as well as indirect ones, such as
389 hippocampal upregulation of the D5 receptors.

390

391 ***Limitations and studies in perspective***

392 The chosen experimental model, i.e., persistent intracardiac AC8 overexpression, can be perceived
393 as a limitation of the present study because it is unlikely that AC8 could be so selectively
394 upregulated in a clinical setting. However, such an artifact is instrumental to the current research's
395 conceptual and methodological strut: to generate a peripheral physiological variation to assess
396 how cardiac autologous humoral/functional signaling reverberates back to the brain. Future
397 studies could use, for instance, a loss-of-function approach instead, determining, for example, the
398 repercussions of cardiac-specific deletion of AC8 on heart properties and locomotion to further
399 validate the current findings. Admittedly, we focused primarily on the hippocampus because it
400 regulates locomotor activity while simultaneously generating gamma EEG activity (9). However,
401 we believe that the results of our study will stimulate future studies focusing on other brain
402 regions/areas that are crucially involved in the directional heart-brain communication (for
403 example, the nucleus tractus solitarius or the hypothalamus) or movement control (e.g., basal
404 ganglia and septum).

405

406 **Conclusions**

407 These studies inform how heart-initiated specific humoral/functional changes (in the present case,
408 elevated dopamine/DOPA signaling and increased myocardial performance due to AC8
409 overexpression) trigger modifications of just as definite brain areas (hippocampus) to shape
410 specific adaptive responses, such as locomotion. These data reinforce and expand the relevance
411 of somatic theories of emotions.

412 **Materials and Methods**

413 **Animals**

414 All studies were executed in agreement with the Guide for the Care and Use of Laboratory Animals
415 published by the National Institutes of Health (NIH Publication no. 85-23, revised 1996). The
416 experimental procedures were approved by the Animal Care and Use Committee of the National
417 Institutes of Health (protocol #441-LCS-2016). A breeder pair of TG^{AC8} mice, generated by ligating
418 the murine α -myosin heavy chain promoter to a cDNA coding for human AC8 (27), were a gift
419 from Nicole Defer/Jacques Hanoune, Unite de Recherches, INSERM U-99, Hôpital Henri Mondor,
420 F-94010 Créteil, France. Wild type (WT) littermates, bred from the C57BL/6 background, were used
421 as controls.

422 **Behavioral tests**

423 All the behavioral tests were conducted on mice with transmitters already implanted. Total time
424 mobile or immobile was evaluated during the 24 hours of EEG/ECG recording phase through
425 actigraphy (included in the double implant). All the other behavioral assays were conducted
426 adopting a one-week interval between tests to allow the mice to recover. Tests were performed
427 at the same time of day, with no reversed dark/light cycle.

428 **Open field**

429 Open field (OF) is a gold standard behavioral test used to study locomotor activity, exploratory
430 behavior, and anxiety-like behavior in rodents (28). The animal is free to explore a circumscribed
431 environment (50cm x 50cm arena surrounded by walls) for 10 minutes, and its locomotor activity
432 and tendency to explore open spaces or hide in the peripheral corners of the arena is evaluated.
433 The analysis of the behavioral parameters has been performed using ANY-maze software
434 (Stoelting Co., IL, USA).

435 **Elevated plus maze**

436 Elevated plus maze (EPM) is another consolidated test to study rodents' anxiety-like behavior and
437 locomotor activity. Elevated Plus Maze test exploits the rodent's conflict between aversion to open

438 spaces (i.e., hides in closed arms of a labyrinth) and instinct to explore new environments (e.g.,
439 exploration of open arms of the same maze). The testing apparatus consisted of four white arms
440 at a 90° angle from each other. Tall walls surrounded two "closed" arms, and two "open" arms had
441 no walls (28). Animals were placed at the center of the apparatus facing an open arm and allowed
442 to explore for 5 minutes freely. The analysis of the behavioral parameters has been performed
443 employing ANY-maze.

444 **Light-Dark Box**

445 The light/dark box (LDB) test is based on the innate aversion of mice to illuminated spaces and
446 the spontaneous exploratory activity in response to minor stressors, such as a new environment
447 and light. This experimental task allows the evaluation of the level of anxiety-like behavior
448 experienced by the animals. The test apparatus comprises a small, dark, and larger illuminated
449 compartment (29). The analysis of the behavioral parameters has been performed through ANY-
450 maze software.

451 **Fear Conditioning Test**

452 The fear conditioning (FC) test measures the capacity of rodents to learn and recall an association
453 between environmental cues and aversive experiences. Testing was conducted in standard
454 conditioning chambers (*MED-Associates; St Albans, VT*) equipped with a stainless-steel rod floor
455 that delivered an aversive shock, a ventilation fan emitting background white noise, video
456 recording camera, and a white light that illuminated the chamber. During the 8-minute training
457 session mice were placed in the training context and allowed to explore the environment freely.
458 After two minutes, an auditory cue (80 dB) was presented for 30s, with an electric footshock (0.35
459 mA) delivered continuously during the final 2s of the auditory cue. The tone-shock pairing was
460 repeated on two separate occasions (at 240s and 360s). Mice were left undisturbed in the chamber
461 for 90s and then returned to the home cage to conclude training. Approximately 24 hours later,
462 the conditioning acquisition mice were individually retrieved and placed in the same training
463 context for five minutes for contextual conditioning testing. One hour later, mice were tested for
464 cued conditioning. In this paradigm, mice were first acclimated to a new room for one hour, with
465 red room lighting. Cued fear conditioning was measured in a different context that utilized a white

466 foam floor covering the electrical grid, a modified chamber shape from a black triangle insertion,
467 and white noise was absent. During testing, mice were exposed to the same auditory tone for 3
468 minutes after an initial habituation period of 3 minutes. Freezing behavior during the test was
469 recorded as an index of associative learning (11).

470 **Telemetry double implant to simultaneously monitor the EEG and ECG**

471 Telemetric radio transmitters (F20-EET; Data Sciences International (DSI), St. Paul, MN) were
472 surgically implanted in young (3-4 months) WT and TG^{AC8} mice as described (30). Briefly, two
473 surface electrodes, a positive electrode (parietal cortex; AP, -2.0 mm; L, 2.0 mm) and a reference
474 electrode (cerebellum; AP, -6.0 mm; L, 2.0 mm), were passed subcutaneously to the cranial base
475 and placed directly on the dura mater. Two additional bipotential electrodes were routed
476 subcutaneously via a vertical midline incision overlying the abdomen with leads situated in the
477 right upper chest and lower left abdomen below the heart to monitor continuous heart rate (Fig.1).
478 Following a two-weeks recovery period, 24-hr free behaving electrocardiogram (ECG) and
479 electroencephalogram (EEG) were recorded at a sampling rate of 1000 Hz and 500 Hz, respectively,
480 with simultaneous activity recording using the Dataquest ART acquisition system (DSI, version
481 4.36). Average activity counts were obtained every 10s.

482 **Signal analysis**

483 **ECG analysis**

484 Scoring of wake-sleep states (NeuroScore, DSI, version 3.2.0) allowed for selecting all 10 seconds
485 wake epochs and extracting signals.

486 After appropriate pre-processing (see Supplemental Information), the series of heartbeat time
487 intervals (RR series) was processed to derive HRV features. All features were signal-length
488 independent (31) estimated on 10 seconds epochs to account for highly frequent wake/sleep
489 switches, thus describing the short-time heartbeat dynamics. More in detail, we considered: the
490 mean value of RR intervals and, from frequency spectrum analysis (Hamming-windowed FFT), the
491 power in low frequency (LF: 0.15–1.5 Hz) and high frequency (HF: 1.5–4 Hz) bands. We also
492 estimated some nonlinear features that provide additional information about cardiac dynamics.

493 According to previous works studying non-linearity in a heartbeat series (7), we characterize the
494 RR series auto similarity through the Detrended Fluctuation Analysis (DFA).

495 **EEG Spectral analysis**

496 For each 10 seconds wake epoch, a spectral analysis was performed on the EEG signal. The mean
497 power spectrum density characterizing the wake state of each animal was evaluated by applying
498 a Hamming-windowed Fast Fourier Transform (FFT) and averaging them. Power values were
499 measured in dB, thus, data from FFT were log-transformed (32).

500 **Brain/heart communication**

501 The brain/heart communication study was based on a Granger Causality (GC) analysis. $GC_{x \rightarrow y}$ is a
502 measure of the contribution of the past of the $x(t)$ time series to the prediction of the present
503 value of $y(t)$, compared to the contribution of the past of the $y(t)$ time series in the prediction of
504 its own present value. In our application (Fig. 4) $x(t)$ and $y(t)$ are signals related to brain and heart
505 functioning, and the GC has allowed estimating heart rhythm influence on brain EEG rhythms and
506 vice versa (by switching x and y). Specifically, our analysis takes advantage of the variability
507 expressed over time by both the brain rhythms and heart rhythms and checks whether amplitude
508 variations of the former are predictive of changes in the latter or vice versa. The GC analysis was
509 conducted using the Causal Connectivity Toolbox (33), which assumes a linear model and order
510 within the model, estimated using the Akaike Information Criterion. Herein, in unison with the GC
511 applicability criteria, EEG epochs satisfying the stationarity test (34) were retained for the analysis
512 (more than 95% retained). For each mouse, the median of their epochs model orders was chosen
513 as the representative order. The 95th percentile of 'animals' model orders was taken as the overall
514 order (14): from data collected in this experiment, this corresponded to 20 samples, equivalent to
515 2 seconds. The overall model order was applied to the GC estimates of all wake epochs for all
516 mice (both groups). Finally, the validity of the model order was verified by estimating the model
517 consistency (percentage of data correlation structure explained by the model)¹⁹. Consistency
518 values higher than 75% were considered satisfactory, and all periods had mean consistencies of
519 90% or above.

520 **RNA sequencing (RNA-seq) and transcriptomic data analysis**

521 We used six hippocampal formations from six transgenic mice and six hippocampal formations
522 from six wild-type littermates for the RNA sequencing experiment. The differential expression
523 gene (DEG) analysis was performed using the DESeq2 package in R language. In total, the
524 expression of 17542 protein-coding mRNAs was identified. The adjusted p-value and fold change
525 calculated by DESeq2 (35) were used to draw a volcano plot to figure out the expression changes
526 in transcriptome. Specifically, 927 genes were downregulated ($-\log_{10}(\text{adjusted p-value}) > 1.3$ and
527 $\log_2(\text{fold change}) < 0$) and 666 upregulated ($(-\log_{10}(\text{adjusted p-value}) > 1.3 \text{ and } \log_2(\text{fold}$
528 $\text{change}) > 0$).

529 **Mass spectrometry and proteomic and phosphoproteomic data analysis**

530 4 hippocampal tissues from 4 transgenic mice and 4 hippocampal tissues from 4 wild-type
531 littermates were used for the mass spectrometry experiment. Samples were labeled with the 10-
532 plex tandem mass tag (TMT) according to Thermo Scientific's TMT Mass Tagging kits protocol.
533 About 5% of the labeled tryptic peptides from each of the 24-fractions were used for global
534 proteomics analysis, while the remaining 95% in the 24-fractions were then pooled into 12-
535 fractions and were subjected to subsequent TiO₂-enrichment with a Titansphere Phos-kit (GL
536 biosciences Inc.). All MS and MS/MS raw spectra of TMT experiments from each set were
537 processed and searched using Sequest HT algorithm within the Proteome Discoverer 2.2 (PD2.2
538 software, Thermo Scientific). The subsequent analyses were adapted from our previous work (36).
539 Specifically, the raw counts of total proteins were normalized to the total counts in each sample,
540 and log₂ was transformed. At last, p-values were calculated from the normalized and transformed
541 counts, and fold changes between TG and WT were calculated upon the average expression
542 between the two groups. For quantitative phosphopeptides analysis, additional phosphorylation
543 on Ser, Thr, Tyr residues were specified as variable modifications. We performed the subsequent
544 analyses in two strategies, one for the phosphopeptides and another for the ratio between
545 phosphopeptides/total proteins (also called normalized phosphorylation). For the for the ratio
546 between phosphopeptides/total proteins part, the raw count of phosphorylation was first divided
547 by the raw count of its corresponding protein to obtain the raw normalized phosphorylation
548 count. Then, the raw phosphopeptides or raw normalized phosphorylation counts were
549 normalized to the total counts in each sample, and log₂ transformed. At last, p-values were

550 calculated from the normalized and transformed counts, and fold changes between TG and WT
551 were calculated upon the average expression between the two groups.

552 The p-value and fold change in total proteins, phosphopeptides, and phosphopeptides/total
553 proteins were used to draw volcano plots to determine the expression changes in proteome and
554 phosphoproteome. Specifically, 84 proteins were downregulated ($-\log_{10}(p\text{-value}) > 1.3$ and
555 $\log_2(\text{fold change}) < 0$) and 123 upregulated ($-\log_{10}(p\text{-value}) > 1.3$ and $\log_2(\text{fold change}) > 0$);
556 158 phosphopeptides were downregulated ($-\log_{10}(p\text{-value}) > 1.3$ and $\log_2(\text{fold change}) < 0$) and
557 286 upregulated ($-\log_{10}(p\text{-value}) > 1.3$ and $\log_2(\text{fold change}) > 0$); 196 ratios of
558 phosphopeptides to proteins were downregulated ($-\log_{10}(p\text{-value}) > 1.3$ and $\log_2(\text{fold change}) < 0$) and
559 290 upregulated ($-\log_{10}(p\text{-value}) > 1.3$ and $\log_2(\text{fold change}) > 0$). The normalized and
560 transformed counts and fold changes between TG and WT were calculated upon the average
561 expression between the two groups. For quantitative phosphopeptides analysis, additional
562 phosphorylation on Ser, Thr, Tyr residues were specified as variable modifications. We performed
563 the subsequent analyses in two strategies, one for the phosphopeptides and another for the ratio
564 between phosphopeptides/total proteins (also called normalized phosphorylation). For the for the
565 ratio between phosphopeptides/total proteins part, the raw count of phosphorylation was first
566 divided by the raw count of its corresponding protein to obtain the raw normalized
567 phosphorylation count. Then, the raw phosphopeptides or raw normalized phosphorylation
568 counts were normalized to the total counts in each sample, and \log_2 transformed. At last, p-values
569 were calculated from the normalized and transformed counts, and fold changes between TG and
570 WT were calculated upon the average expression between the two groups. The p-value and fold
571 change in total proteins, phosphopeptides, and phosphopeptides/total proteins were used to
572 draw volcano plots to determine the expression changes in proteome and phosphoproteome.
573 Specifically, 84 proteins were downregulated ($-\log_{10}(p\text{-value}) > 1.3$ and $\log_2(\text{fold change}) < 0$)
574 and 123 upregulated ($-\log_{10}(p\text{-value}) > 1.3$ and $\log_2(\text{fold change}) > 0$); 158 phosphopeptides
575 were downregulated ($-\log_{10}(p\text{-value}) > 1.3$ and $\log_2(\text{fold change}) < 0$) and 286 upregulated ($-\log_{10}(p\text{-value}) > 1.3$ and $\log_2(\text{fold change}) > 0$); 196 ratios of phosphopeptides to proteins were
576 downregulated ($-\log_{10}(p\text{-value}) > 1.3$ and $\log_2(\text{fold change}) < 0$) and 290 upregulated ($-\log_{10}(p\text{-value}) > 1.3$ and $\log_2(\text{fold change}) > 0$).
577
578

579 **RT-qPCR**

580 RT-qPCR of the hippocampus and SA tissue was performed to determine the transcript abundance
581 of dopamine receptors (n=4 WT and 4 TG^{AC8} mice). RNA was extracted from the hippocampus
582 with TRIzol™ Reagent (Thermo Fisher Scientific, Waltham MA) and DNase on column digestion.
583 The cDNA was prepared using MMLV reverse transcriptase (Promega, Madison, WI) using 500 ng
584 of total RNA per reaction. RT-qPCR was performed using a QuantStudio 6 Flex Real-Time PCR
585 System (Thermo Fisher Scientific, Waltham MA) with a 384-well platform. The reaction was
586 performed with a FastStart Universal SYBR Green Master Kit with Rox (Roche, Indianapolis, IN)
587 using the manufacturer's recommended conditions; the sizes of amplicons were verified. Each well
588 contained 0.5 µl of cDNA solution and 10 µl of the reaction mixture. Each sample was
589 quadruplicated. Preliminary reactions were performed to determine the efficiency of amplification.
590 RT-qPCR analysis was performed using the ddCt method. *Hprt* was used as a housekeeping gene
591 and results represented as Mean of Relative Quantification (RQ) normalized to *Hprt* +/- SD (8).
592 Primers were selected with Primer Express 3.0 software (Applied Biosystems).

593 **Statistical analysis procedures**

594 Results are presented as violin plots. All parametric data were analyzed by unpaired t-tests
595 between the WT and TGAC8 groups. Correlations between groups of values were evaluated
596 through multiple linear regressions (37).

597 **Funding**

598 This research was supported by the Intramural Research Program of the NIH, National Institute
599 on Aging (USA).

600

601 1. A. Damasio, G. B. Carvalho, The nature of feelings: evolutionary and neurobiological
602 origins. *Nat Rev Neurosci* **14**, 143–152 (2013).

603 2. B. S. McEwen, H. Akil, Revisiting the Stress Concept: Implications for Affective Disorders.
604 *J. Neurosci.* **40**, 12–21 (2020).

605 3. J. A. Armour, The little brain on the heart. *Cleve Clin J Med* **74 Suppl 1**, S48-51 (2007).

606 4. D. Candia-Rivera, V. Catrambone, J. F. Thayer, C. Gentili, G. Valenza, Cardiac sympathetic-
607 vagal activity initiates a functional brain-body response to emotional arousal. *Proc Natl Acad Sci
608 U S A* **119**, e2119599119 (2022).

609 5. J. Agrimi, *et al.*, Obese mice exposed to psychosocial stress display cardiac and
610 hippocampal dysfunction associated with local brain-derived neurotrophic factor depletion.
611 *EBioMedicine* **47**, 384–401 (2019).

612 6. B. S. McEwen, P. J. Gianaros, Central role of the brain in stress and adaptation: Links to
613 socioeconomic status, health, and disease: Central links between stress and SES. *Annals of the
614 New York Academy of Sciences* **1186**, 190–222 (2010).

615 7. J. M. Moen, *et al.*, Overexpression of a Neuronal Type Adenylyl Cyclase (Type 8) in
616 Sinoatrial Node Markedly Impacts Heart Rate and Rhythm. *Front Neurosci* **13**, 615 (2019).

617 8. K. V. Tarasov, *et al.*, "A Remarkable Adaptive Paradigm Of Heart Performance And
618 Protection Emerges In Response To The Constitutive Challenge Of Marked Cardiac-Specific
619 Overexpression Of Adenylyl Cyclase Type 8" (Physiology, 2022)
620 <https://doi.org/10.1101/2022.05.20.491883> (August 5, 2022).

621 9. P. G. Ravenstijn, H.-J. Drenth, M. J. O'Neill, M. Danhof, E. C. de Lange, Evaluation of
622 blood-brain barrier transport and CNS drug metabolism in diseased and control brain after
623 intravenous L-DOPA in a unilateral rat model of Parkinson's disease. *Fluids Barriers CNS* **9**, 4
624 (2012).

625 10. D. Ho, *et al.*, Heart Rate and Electrocardiography Monitoring in Mice. *CP Mouse Biology*
626 **1**, 123–139 (2011).

627 11. H. Shoji, K. Takao, S. Hattori, T. Miyakawa, Contextual and Cued Fear Conditioning Test
628 Using a Video Analyzing System in Mice. *JoVE*, 50871 (2014).

629 12. F. Bender, *et al.*, Theta oscillations regulate the speed of locomotion via a hippocampus
630 to lateral septum pathway. *Nat Commun* **6**, 8521 (2015).

631 13. O. J. Ahmed, M. R. Mehta, Running Speed Alters the Frequency of Hippocampal Gamma
632 Oscillations. *Journal of Neuroscience* **32**, 7373–7383 (2012).

633 14. A. B. Barrett, *et al.*, Granger causality analysis of steady-state electroencephalographic
634 signals during propofol-induced anaesthesia. *PLoS One* **7**, e29072 (2012).

635 15. A. Oliva, A. Fernández-Ruiz, E. Fermino de Oliveira, G. Buzsáki, Origin of Gamma
636 Frequency Power during Hippocampal Sharp-Wave Ripples. *Cell Rep* **25**, 1693–1700.e4 (2018).

637 16. G. Buzsáki, X.-J. Wang, Mechanisms of gamma oscillations. *Annu Rev Neurosci* **35**, 203–
638 225 (2012).

639 17. L. S. Leung, B. Shen, GABAB receptor blockade enhances theta and gamma rhythms in
640 the hippocampus of behaving rats. *Hippocampus* **17**, 281–291 (2007).

641 18. G. Govindaiah, *et al.*, Group I metabotropic glutamate receptors generate two types of
642 intrinsic membrane oscillations in hippocampal oriens/alveus interneurons. *Neuropharmacology*
643 **139**, 150–162 (2018).

644 19. J. Á. García-Pedraza, *et al.*, Dopamine D4 receptor subtype activation reduces the rat
645 cardiac parasympathetic discharge. *Pflugers Arch - Eur J Physiol* **472**, 1693–1703 (2020).

646 20. F. Maingret, L. Groc, Characterization of the Functional Cross-Talk between Surface
647 GABAA and Dopamine D5 Receptors. *Int J Mol Sci* **22**, 4867 (2021).

648 21. J. E. LeDoux, R. Brown, A higher-order theory of emotional consciousness. *Proc. Natl.*
649 *Acad. Sci. U.S.A.* **114** (2017).

650 22. A. V. Abbott, Diagnostic approach to palpitations. *Am Fam Physician* **71**, 743–750 (2005).

651 23. L. Carnevali, *et al.*, Low vagally-mediated heart rate variability and increased susceptibility
652 to ventricular arrhythmias in rats bred for high anxiety. *Physiology & Behavior* **128**, 16–25 (2014).

653 24. R. Brown, U. Kemp, V. Macefield, Increases in muscle sympathetic nerve activity, heart
654 rate, respiration, and skin blood flow during passive viewing of exercise. *Front. Neurosci.* **7**
655 (2013).

656 25. A. Duggento, *et al.*, Globally conditioned Granger causality in brain–brain and brain–
657 heart interactions: a combined heart rate variability/ultra-high-field (7 T) functional magnetic
658 resonance imaging study. *Phil. Trans. R. Soc. A.* **374**, 20150185 (2016).

659 26. J. L. Lanciego, N. Luquin, J. A. Obeso, Functional neuroanatomy of the basal ganglia. *Cold*
660 *Spring Harb Perspect Med* **2**, a009621 (2012).

661 27. L. Lipskaia, *et al.*, Enhanced cardiac function in transgenic mice expressing a Ca(2+)-
662 stimulated adenylyl cyclase. *Circ Res* **86**, 795–801 (2000).

663 28. N. Sestakova, A. Puzserova, M. Kluknavsky, I. Bernatova, Determination of motor activity
664 and anxiety-related behaviour in rodents: methodological aspects and role of nitric oxide.
665 *Interdisciplinary Toxicology* **6**, 126–135 (2013).

666 29. J. Agrimi, *et al.*, Psychosocial Stress Hastens Disease Progression and Sudden Death in
667 Mice with Arrhythmogenic Cardiomyopathy. *J Clin Med* **9**, E3804 (2020).

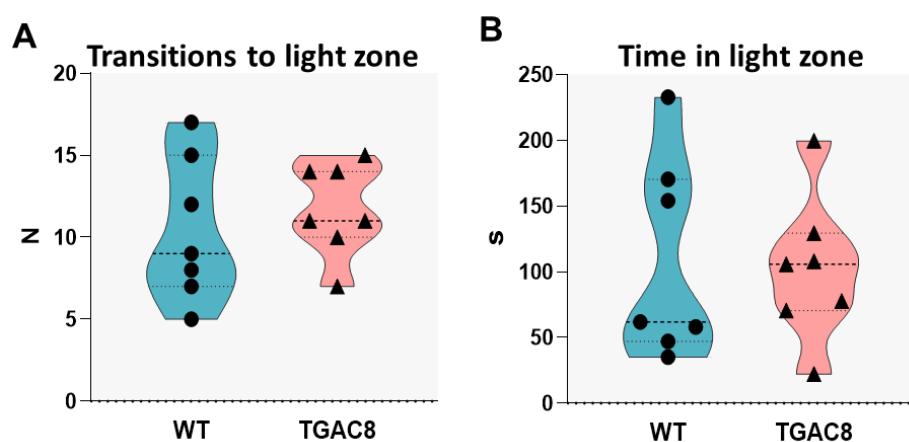
668 30. R. Wan, S. Camandola, M. P. Mattson, Intermittent Food Deprivation Improves
669 Cardiovascular and Neuroendocrine Responses to Stress in Rats. *The Journal of Nutrition* **133**,
670 1921–1929 (2003).

671 31. O. Michel, Holger kantz and Thomas schreiber, nonlinear time series analysis. *J Biol Phys*
672 **24**, 79–80 (1998).

673 32. A. Zaccaro, A. Piarulli, L. Melosini, D. Menicucci, A. Gemignani, Neural Correlates of Non-
674 ordinary States of Consciousness in Pranayama Practitioners: The Role of Slow Nasal Breathing.
675 *Front. Syst. Neurosci.* **16**, 803904 (2022).

676 33. A. K. Seth, A MATLAB toolbox for Granger causal connectivity analysis. *Journal of*
677 *Neuroscience Methods* **186**, 262–273 (2010).

678 34. D. Kwiatkowski, P. C. B. Phillips, P. Schmidt, Y. Shin, Testing the null hypothesis of
679 stationarity against the alternative of a unit root. *Journal of Econometrics* **54**, 159–178 (1992).


680 35. M. I. Love, W. Huber, S. Anders, Moderated estimation of fold change and dispersion for
681 RNA-seq data with DESeq2. *Genome Biol* **15**, 550 (2014).

682 36. J.-H. Qu, *et al.*, "The reprogrammed mouse heart phosphoproteome in response to the
683 chronic stress of markedly high cardiac-specific adenylyl cyclase type 8 overexpression"
684 (Bioinformatics, 2022) <https://doi.org/10.1101/2022.04.29.488779> (August 9, 2022).

685 37. D. A. Freedman, *Statistical Models: Theory and Practice*, 2nd Ed. (Cambridge University
686 Press, 2009) <https://doi.org/10.1017/CBO9780511815867> (August 2, 2022).

687

688 **Supplemental Information**

689
690 *Figure 1: Light-dark box test, TGAC8 mice do not show signs of anxiety-like behavior. A) Light-dark box test, transitions to*
691 *light; B) Light-dark box test, time in the light zone. Results are shown as violins plot, N=7, unpaired t-test has been*
692 *performed between WT and TGAC8 groups.*

693