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Abstract

Long noncoding RNAs (IncRNAs) can act as tumour suppressors or oncogenes to
repress/promote tumour cell proliferation via RNA-dependent mechanisms. Recently, genome
sequencing has identified elevated densities of tumour somatic single nucleotide variants
(SNVs) in IncRNA genes. However, this has been attributed to phenotypically-neutral
“passenger” processes, and the existence of positively-selected fitness-altering “driver” SNVs
acting via IncRNAs has not been addressed. We developed and used ExInAtor2, an improved
driver-discovery pipeline, to map pancancer and cancer-specific mutated INncRNAs across an
extensive cohort of 2583 primary and 3527 metastatic tumours. The 54 resulting INcRNAs are
mostly linked to cancer for the first time. Their significance is supported by a range of clinical
and genomic evidence, and display oncogenic potential when experimentally expressed in
matched tumour models. Our results revealed a striking SNV hotspot in the iconic NEAT1
oncogene, which was ascribed by previous studies to passenger processes. To directly
evaluate the functional significance of NEAT1 SNVs, we used in cellulo mutagenesis to
introduce tumour-like mutations in the gene and observed a consequent increase in cell
proliferation in both transformed and normal backgrounds. Mechanistic analyses revealed that
SNVs alter NEAT1 ribonucleoprotein assembly and boost subnuclear paraspeckles. This is
the first experimental evidence that mutated IncRNAs can contribute to the pathological fithess

of tumour cells.
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Introduction

Tumours arise and develop via somatic mutations that confer a fithess advantage on
cells 1. Such “driver” mutations exert their phenotypic effect by altering the function of genes
or genomic elements, and are characterised by signatures of positive evolutionary selection 2.
This is complicated by numerous “passenger” mutations, which do not impact cell phenotype
and are evolutionarily neutral 3. Identification of driver mutations, and the “driver genes”
through which they act, is a critical step towards understanding and treating cancer 14,

Most tumours are characterised by a limited and recurrent sequence of driver mutations,
which promote disease hallmarks via functional changes to encoded oncogene or tumour
suppressor proteins. However, the vast majority of somatic single nucleotide variants (SNVs)
fall outside protein-coding genes °. Combined with increasing awareness of the disease roles
of noncoding genomic elements ¢, this naturally raises the question of whether non-protein
coding mutations can also shape cancer cell fitness 7. Growing numbers of both theoretical &
13 and experimental studies 2417 implicate noncoding SNVs in cell fitness by altering the
function of elements such as enhancers, promoters, insulator elements and small RNAs 8.

Surprisingly, one important class of cancer-promoting noncoding genes has been largely
overlooked: long noncoding RNAs (IncRNAs) 1°. LncRNA transcripts are modular assemblages
of functional elements that can interact with other nucleic acids and proteins via defined
sequence or structural elements?>2!, Of the >50,000 loci mapped in the human genome 22,
hundreds of “cancer-IncRNAs” have been demonstrated to act as oncogenes or tumour
suppressors 23, Their clinical importance is further supported by copy number variants (CNVs)
24-26 tumour-initiating transposon screens in mouse 2’ and function-altering germline cancer
variants .

We and others have previously reported statistical evidence for positively-selected SNVs
in INcRNAs 22930 For example, NEAT1 IncRNA, which is a structural component of subnuclear
paraspeckle bodies, has been noted for its high mutation rate across a variety of cancers
293132 This raises the possibility that a subset of cancer-IncRNAs may also act as “driver-
IncRNAs”, where SNVs promote cell fitness by altering IncRNA activity. However, most studies
have argued that mutations in NEAT1 and other IncRNAs arise from phenotypically-neutral
passenger effects 2%°. To date, the fitness effects of IncRNA SNVs have not been investigated

experimentally.
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In the present study, we investigate the existence of driver-IncRNAs. We develop an
enhanced IncRNA driver discovery pipeline, and use it comprehensively map candidate driver-
IncRNAs across the largest cohort to date of somatic SNVs from both primary and metastatic
tumours. We evaluate the clinical and genomic properties of these candidates. Finally, we
employ a range of functional and mechanistic assays to gather the first experimental evidence

for fitness-altering driver mutations acting through IncCRNAs.
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88 Results
89

90 Integrative driver IncRNA discovery with ExInAtor2
91 Driver genes can be identified by signals of positive selection acting on their somatic
92  mutations. The two principal signals are mutational burden (MB), an elevated mutation rate,
93 and functional impact (FI), the degree to which mutations are predicted to alter encoded
94  function. Both signals must be compared to an appropriate background, representing
95  mutations under neutral selection.
96 To search for INcRNAs with evidence of driver activity, we developed ExInAtor2, a driver-
97  discovery pipeline with enhanced sensitivity due to two key innovations: integration of both MB
98 and Fl signals, and empirical background estimation (see Methods) (Figure 1a, Supplementary
99  Figure 1a, b). For MB, local background rates are estimated, controlling for covariates of
100 mutational signatures and large-scale effects such as replication timing, which otherwise can
101  confound driver gene discovery . For Fl, we adopted functionality scores from the Combined
102  Annotation Dependent Depletion (CADD) system, due to its widespread use and compatibility
103  with a range of gene biotypes 3. Importantly, ExInAtor2 remains agnostic to the biotype of
104 genes / functional elements, allowing independent benchmarking with established protein-

105 coding gene data.
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Figure 1- Driver IncRNA discovery with ExInAtor2

a) ExInAtor2 accepts input in the form of maps of single nucleotide variants (SNVs) from cohorts of
tumour genomes. Two sighatures of positive selection are evaluated and compared to simulated local
background distributions, to evaluate statistical significance. The two significance estimates are
combined using Fisher's method. b) Summary of the primary tumour datasets used here, obtained from
Pancancer Analysis of Whole Genomes (PCAWG) project. c) A filtered IncRNA gene annotation was

prepared, and combined with a set of curated cancer IncRNAs from the Cancer LncRNA Census 3.

Accurate discovery of known and novel driver genes
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116 We began by benchmarking ExInAtor2 using the maps of somatic single nucleotide
117  variants (SNVs) from tumour genomes sequenced by the recent PanCancer Analysis of Whole
118 Genomes (PCAWG) project !, comprising altogether 45,704,055 SNVs from 2,583 donors
119 (Figure 1b, Methods). As it was generated from whole-genome sequencing (WGS), this
120 dataset makes it possible to search for driver genes amongst both non-protein-coding genes
121  (including IncRNAS) and better-characterised protein-coding genes.

122 To maximise sensitivity and specificity, we prepared a carefully-filtered annotation of
123  IncRNAs. Beginning with high-quality curations from Gencode %, we isolated intergenic
124  IncRNAs lacking evidence for protein-coding capacity. To the resulting set of 6981 genes
125 (Figure 1c), we added the set of 294 confident, literature-curated IncRNAs from Cancer
126  LncRNA Census 2 dataset 23, for a total set of 7275 genes.

127 We compared the performance of ExInAtor2 to ten leading driver discovery methods and
128 PCAWG'’s consensus measure, which integrates and outperforms these individual methods
129  (Figure 2a) *. Performance was benchmarked on curated sets of protein-coding and IncRNA
130 cancer genes (Figure 2b). Judged by correct identification of cancer IncCRNAs at a false
131  discovery rate (FDR) cutoff of <0.1, ExInAtor2 displayed the best overall accuracy in terms of
132  F1 measure (Figure 2c, d). Quantile-quantile (QQ) analysis of resulting p-values (P) displayed
133  no obvious inflation or deflation and has amongst the lowest Mean Log Fold Change (MLFC)
134  values (Figure 2e), together supporting ExInAtor2’s low and controlled FDR.

135 ExInAtor2 is biotype-agnostic, and protein-coding driver datasets are highly refined
136  (Figure 2b). To further examine its performance, we evaluated sensitivity for known protein-
137  coding drivers from the benchmark Cancer Gene Census . Again, ExInAtor2 displayed
138 competitive performance, characterised by low false positive predictions (Supplementary
139  Figure 2a-c).

140 To test ExInAtor2’s FDR estimation, we repeated the IncRNA analysis on a set of
141  carefully-randomised pancancer SNVs (see Methods). Reassuringly, no hits were discovered
142  and QQ plots displayed neutral behaviour (MLFC 0.08) (Supplementary Figure 2d). Analysing
143  at the level of individual cohorts, ExInAtor2 predicted 3 / 40 IncRNA-cohort associations in the
144  simulated / real datasets, respectively. This corresponds to an empirical FDR rate of 0.075,
145  consistent with the nominal FDR cutoff of 0.1.

146 We conclude that ExInAtor2 identifies known driver genes with a low and controlled false

147  discovery rate.
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148
149  Figure 2. ExInAtor2 accurately identifies driver genes

150 a) The list of driver discovery methods to which ExInAtor2 was compared. The signatures of positive
151 selection employed by each method are indicated to the right. PCAWGc indicates the combined driver
152 prediction method from Pan-Cancer Analysis of Whole Genomes (PCAWG), which integrates all ten
153 methods. b) Benchmark gene sets. LncRNAs (blue) were divided in positives and negatives according
154  to their presence or not in the Cancer LncRNA Census 23, respectively, and similarly for protein-coding
155 genes in the Cancer Gene Census . ¢) Comparing performance in terms of precision in identifying true
156 positive known cancer INcRNAs from the CLC dataset, using PCAWG Pancancer cohort. x-axis: genes
157  sorted by increasing p-value. y-axis: precision, being the percentage of true positives amongst
158 cumulative set of candidates at increasing p-value cutoffs. Horizontal black line shows the baseline,
159 being the percentage of positives in the whole list of tested genes. Coloured dots represent the precision
160 at cutoff of g = 0.1. Inset: Performance statistics for cutoff of q < 0.1. d) Driver prediction performance
161  for all methods in all PCAWG cohorts. Cells show the F1-score of each driver method (x-axis) in each
162  cohort (y-axis). Grey cells correspond to cohorts where the method was not run. The bar plot on the top
163 indicates the total, non-redundant number of True Positives (TP) and False Positives (FP) calls by each

164 method. Driver methods are sorted from left to right according to the F1-score of unique candidates.
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165 e) Evaluation of p-value distributions for driver IncRNA predictions. Quantile-quantile plot (QQ-plot)
166  shows the distribution of observed vs expected —logl10 p-values for each method run on the PCAWG
167  Pancancer cohort. The Mean Log-Fold Change (MLFC) quantifies the difference between observed and
168  expected values (Methods).

169

170 The landscape of driver IncRNA in primary human tumours

171 We next set out to create a genome-wide panorama of mutated INcRNAs across human
172  primary cancers. Tumours from PCAWG were grouped into a total of 37 cohorts, ranging in
173  size from two tumours (Cervix-AdenoCa, Lymph-NOS and Myeloid-MDS tumour types) to 314
174  (Liver-HCC tumour type), in addition to the entire pancancer set (Figure 3a).

175 After removing likely false positive associations using the same stringent criteria as
176  PCAWG 1, ExInAtor2 revealed altogether 21 unique cancer-IncRNA associations, involving 17
177  IncRNAs (Figure 3b) — henceforth considered putative “driver IncRNAs”. Of these, nine are
178 annotated IncRNAs that have not previously been linked to cancer, denoted “novel”. The
179 remaining “known” candidates are identified in the literature-curated Cancer LncRNA Census
180 2 dataset 2. Known IncRNAs tend to be hits in more individual cohorts than novel IncRNAS,
181  with cases like NEAT1 being detected in four cohorts (Figure 3b). While most driver IncRNAs
182  display exonic mutation rates ~50-fold greater than background (coloured cells, Figure 3b), the
183  number of mutations in such genes is diverse between cohorts, being Pancancer, Lymph-CLL
184  and Skin-Melanoma the biggest contributors of mutations.

185 Supporting the accuracy of these predictions, the set of driver IncRNAs is highly enriched
186  for known cancer INcRNAs 22 (8/17 or 48%, Fisher test P=2e-6) (Figure 3c). Driver IncRNAs
187 are also significantly enriched in three other independent literature-curated databases
188 (Supplementary Figure 3a).

189

190 Driver IncRNAs carry features of functionality and clinical relevance

191 To further evaluate the quality of driver INcCRNA predictions, we tested their association
192  with genomic and clinical features expected of bona fide cancer genes. LncRNA catalogues
193 are likely to contain a mixture of both functional and non-functional genes. The former group
194 is characterised by purifying evolutionary selection and high expression in healthy and
195 diseased tissues ?’. We found that driver IncRNAs display higher evolutionary sequence
196 conservation and higher steady-state levels in healthy organs (Figure 3d). Their sequence also
197 contains more microRNA binding sites, suggesting integration with post-transcriptional

198 regulatory networks.
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199 In contrast, we could find no evidence that driver IncRNAs are enriched for genomic
200 covariates and features arising from artefactual results. They have earlier replication timing
201 (whereas later replication is associated with greater mutation) */, less exonic repetitive
202  sequence (ruling out mappability biases), and similar exonic GC content (ruling out sequencing
203  bias) compared to tested non-candidates (Figure 3d). However, driver IncRNAs tend to have
204  longer spliced length, likely reflecting greater statistical power for longer genes that affects all
205  driver methods %°.

206 Driver IncRNAs also have clinical features of cancer genes (Figure 3e). They are on
207  average 158-fold higher expressed in tumours compared to normal tissues (133 vs 0.84 FPKM)
208 (Figure 3e, PCAWG RPKM), 2.15-fold enriched for germline cancer-associated small
209  nucleotide polymorphism (SNP) in their gene body (4.7% vs 2.5%) (Figure 3e, SNPs per MB),
210 and enriched in orthologues of driver IncRNAs carrying common insertion sites (CIS),
211  discovered by transposon insertional mutagenesis (TIM) screens in mouse IM screens identify
212  (17.6 vs 1.6%) (Supplementary Figure 3a) 2. Finally, driver IncRNAs significantly overlap
213  growth-promoting hits discovered by CRISPR functional screens (11.8 vs 1.3%)
214  (Supplementary Figure 3a). In conclusion, driver INCRNA display evidence for functionality
215 across a wide range of functional and clinical features, strongly suggesting that they are
216  enriched for bona fide cancer driver genes.

10
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Figure 3. The landscape of known and novel driver IncRNASs in primary tumors

a) “Oncoplot” overview of driver INcRNA analysis in PCAWG primary tumours. Rows: 17 candidate driver
IncRNAs at cutoff of g < 0.1. Columns: 2580 tumours. b) LncRNA candidates across all cohorts. Rows:
Cohorts where hits were identified. Columns: 17 candidate driver IncRNAs. “Known” IncRNAs are part
of the literature-curated Cancer LncRNA Census (CLC2) dataset 3. Functional labels (oncogene /

tumour suppressor / both) were also obtained from the same source.
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225 c¢) Intersection of candidate driver IncRNAs identified in PCAWG primary tumours, Hartwig Medical
226  Foundation (HMF) metastatic tumours and the CLC2 set. Statistical significance was estimated by
227  Fisher's exact test. d) Genomic features of driver IncRNAs. Each plot displays the values of indicated
228  features for 17 candidate driver IncRNAs (blue) and all remaining tested IncRNAs (non-candidates,
229 grey). Significance was calculated using Wilcoxon test. For each comparison, the ratio of means was
230  calculated as (mean of candidate values / mean of non-candidate values). See Methods for more details.
231 e) Clinical features of driver IncRNAs. Each point represents the indicated feature. y-axis: log2-
232  transformed ratio of the mean candidate value and mean non-candidate value. x-axis: The statistical
233  significance of candidate vs non-candidate values, as estimated by Wilcoxon test and corrected for
234  multiple testing. See Methods for more details.

235

236  The landscape of IncRNA drivers in metastatic tumours

237 We further extended the driver IncRNA landscape to metastatic tumours, using 3,527
238 genomes from 31 cohorts sequenced by the Hartwig Medical Foundation (Supplementary
239  Figure 3 b-d) ®. Performing a similar analysis as above, we identified 43 driver IncRNAs in a
240  total of 53 IncRNA-tumour combinations (Supplementary Figure 3b). Eight predicted drivers
241  are known cancer IncRNAs, significantly higher than random expectation (P=0.004) (Figure
242  3c). Further adding confidence to these findings is the significant overlap of driver IncCRNAs
243 identified in the metastatic and primary tumour cohorts (Figure 3c).

244

245  Driver mutations identify oncogenic IncRNAs with therapeutic potential

246 We wished to evaluate the therapeutic and functional relevance of novel IncRNAs
247  identified by driver analysis. ENSG00000241219 (RP11-572M11.1), herein named MILC
248  (Mutated in Liver Cancer) displayed elevated mutation rates in Hepatocellular Carcinoma
249  (HCC) tumours (Figure 4a) and has been detected as driver in both the PCWG and HFM
250 datasets. It has, to our knowledge, never previously been implicated in cancer. According to
251 the latest Gencode version 38, its single annotated isoform comprises three exons, and
252  displays low expression in normal tissues (Supplementary Figure 4a). We could detect MILC
253 in two HCC cell lines, HUH7 and SNU-475 (Figure 4c and Supplementary Figure 4c). To
254  perturb MILC expression, we designed two different antisense oligonucleotides (ASOs) that
255  reduced steady-state levels by >50% in both cell lines (Figure 4b,c and Supplementary Figure
256  4c). We evaluated the role of MILC in HCC cell proliferation, by measuring changes in growth
257 rates following ASO transfection. The significant decrease in growth resulting from both ASOs
258 in both cell backgrounds points to the importance of MILC in cell fitness (Figure 4d and

259  Supplementary Figure 4d).
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260 These results prompted us to ask whether MILC can also promote cell growth in other
261  cancer types. Thus, we turned to CRISPR-activation, to upregulate the IncRNA from its
262  endogenous locus in HelLa cervical carcinoma cells. Three independent sgRNAs increased
263  gene expression by 4 to ~20-fold (Figure 4e and Supplementary Figure 4b), of which two
264  significantly and specifically increased cell proliferation (Figure 4f).

265 Having established that MILC promotes cell growth, we next asked whether tumour
266  mutations can enhance this activity, as would be expected for driver mutations. To do so, we
267  designed overexpression plasmids for the wild-type or mutated forms of the transcript (Figure
268 4g). The mutated form contained four SNVs, some of them recurrently observed in
269 independent tumours from both PCAWG and HFM dataset (Figure 4a). Transfection of wild-
270 type MILC boosted cell growth, consistent with ASO results above. More important, the
271  mutated form resulted in a significant additional increase cell proliferation, compared to the
272  wild-type (Figure 4h).

273 Another IncRNA, AC087463.1, herein named MIHNC (Mutated in Head and Neck
274  Cancer) was identified as a potential driver in the Head and Neck (HN) tumour cohort (Figure
275  4i). MIHNC is transcribed from the same locus as the INcCcRNA PWRN1, previously reported as
276  atumour suppressor in gastric cancer 44. It is annotated as a single isoform with three exons
277  (Figure 4i), with the mutations falling in the second, unique exon (Figure 4i). A similar strategy
278 as above showed that overexpression of a mutated form carrying 5 SNVs (Figure 4j) increased
279  tumorigenicity in HN cells, as measured by colony-forming potential (Figure 4k).

280 Together, these results show that driver analysis is capable of identifying novel

281 oncogenic IncRNAs and, critically, their activity is enhanced by tumour mutations.
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Figure 4. Mutations in MILC and MIHNC enhance cell fitness

a) The genomic locus of hepatocellular carcinoma (HCC) candidate driver IncRNA MILC. Also shown
are SNVs from PCAWG and Hartwig (HMF). The SNVs included in the mutated version of the plasmids
are indicated in the grey boxes. b) Antisense oligonucleotides (ASOs) were transfected into cells to
knock down expression of target INcCRNAs. ¢) Reverse transcription quantitative polymerase chain
reaction (QRT-PCR) measurement of RNA levels in HuH HCC cells after transfection of control ASO, or
two different ASOs targeting MILC. Statistical significance was estimated using one-sided Student’s t-

test with n=3 independent replicates.
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291 d) Populations of ASO-transfected cells were measured at indicated time points. Each measurement
292 represents n=3 independent replicates. €) Overview and performance of CRISPR-activation (CRISPRa)
293 targeting MILC. On the right, gRT-PCR measurements of RNA levels with indicated sgRNAs in HelLa
294  cells. Values were normalised to the housekeeping gene HPRT1 and to a control sgRNA targeting the
295  AAVSI1 locus. Values represent n=3 independent replicates. f) The effect of CRISPRa on Hela cells’
296  viability, as measured by Cell Titre Glo reagent. Values represent n=6 independent replicates, and
297 statistical significance was estimated by comparison to the Control sgRNA by paired t-test at the 48 hrs
298 timepoint. g) Plasmids expressing spliced MILC sequence, in wild-type (WT) or mutated (Mut) form were
299 transfected into HuH cells. The steady state levels of RNA were measured by gRT-PCR and normalised
300 to cells transfected with similar EGFP-expressing plasmid. Values represent n=3 independent
301 replicates, each one with 6 technical replicates. h) Populations of plasmid-transfected cells were
302 measured at indicated timepoints. Statistical significance was estimated by one-sided Student’s t-test
303 based on n=3 independent replicates. i) The genomic locus of head and neck cancer candidate driver
304  IncRNA MIHNC. Also shown are SNVs from PCAWG and Hartwig. The SNVs included in the mutated
305 version of the plasmids are indicated in the grey boxes. j) Plasmids expressing spliced MIHNC
306  sequence, in wild-type (WT) or mutated (Mut) form were transfected into HN5 cells. The steady state
307 levels of RNA were measured by qRT-PCR and normalised to cells transfected with similar EGFP-
308 expressing plasmid. Values represent n=3 independent replicates. k) Results of colony formation assay
309 in HN5 cells. Values indicate the percent of well area covered. Statistical significance was estimated
310 using One-way ANOVA has been used to determine statistical significance, based on 18 culture wells.
311

312

313  Mutations in NEAT1 promote cell fitness and correlate with survival

314 To gain mechanistic insights into how fitness-enhancing driver mutations may act
315 through IncRNAs, we turned to a relatively well-understood IncRNA, NEAT1, for which
316 confident mechanistic and functional data is available. Based on ExInAtor2 analysis, NEAT1
317  mutations, spanning the entire gene length, display evidence for positive selection in altogether
318 4 and 3 cancer cohorts in PCAWG and Hartwig, respectively. PCAWG and others also noted
319 this highly elevated mutation rate in the NEAT1 gene, although it has been argued that these
320 result from neutral passenger processes, possibly linked to the high expression of the gene
321 2,31,40_

322 NEAT1 produces short and long isoforms (called NEAT1_1/ NEAT1_2) of 3.7 and 22.7
323 kb, respectively **, which are completely overlapping at the 5 of the gene (Figure 5b).
324 NEAT1 1 is a ubiquitous, abundant, polyadenylated and highly conserved transcript 2. In
325 contrast, NEAT1_2, responsible for formation of membraneless nuclear paraspeckle
326  structures, is not polyadenylated and expressed under specific conditions or in response to

327  various forms of stress 4344,
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328 We sought to test whether indels in NEAT1 can act as drivers. We hypothesised that
329  tumour indels could be simulated wild-type Cas9 protein, which is known to cause similar
330 mutations when double strand breaks are resolved by error-prone DNA repair pathways 545,
331  We selected six regions of NEATL, based on high mutation density, evolutionary conservation
332 and known functions “¢, hereafter called Regl, Reg2, etc.., and targeted them with altogether
333 15 sgRNAs (Figure 5a). To control for the non-specific fithess effects of double strand breaks
334 (DSBs) 48, we also created two neutral control sgRNAs targeting AAVS1 locus, and a
335  positive-control paired sgRNA (pgRNA) to delete the entire NEAT1_1 region (Figure 5b and
336  Supplementary Figure 5a). Sequencing of treated cells’ gDNA revealed narrowly-focussed
337  substitutions and indels at target regions, similar to that observed in real tumours (Figure 5c¢
338 and Supplementary Figure 5b).

339 To quantify mutations’ effects on cell fithess, we established a competition assay
340 Dbetween mutated mCherry-labelled cells and control GFP-labelled cells (Figure 5d and
341  Supplementary Figure 5c) **. As expected, deletion of entire NEAT1_1 in HelLa cells led to
342  reduced growth (KO), while control sgRNAs did not (Figure 5d). Notably, HelLa cells carrying
343  NEAT1 mutations in defined regions displayed increased fitness: two at the 5 of the gene
344  (Reg2 and Reg3), one internally near the alternative polyadenylation site (Reg4) and one at
345 the 3’ end (Regb) (blue line, Figure 5d and Supplementary Figure 5c¢). These findings were
346  supported in 3/4 cases in HCT116 colorectal carcinoma cells (green line, Figure 5d and
347  Supplementary Figure 5c).

348 To corroborate these findings, we repeated fitness assays in the more complex pooled
349 competition assay. Here, the evolution of defined mixtures of mutant cells is quantified by
350 amplicon sequencing of sgRNA barcodes. Consistent with previous results, cells carrying
351 NEAT1 mutations outcompeted control cells over time (Figure 5e).

352 These results were obtained from monolayer cells, whose relevance to real tumours is
353  disputed. Thus, we performed additional experiments in 3-dimensional spheroids grown from
354 mutated HCT116 cells, and observed again that Reg2 mutations led to increased growth
355  (Figure 5f).

356 The experiments thus far were performed in transformed cancer cells. To investigate
357 whether NEAT1 mutations also enhance fitness in a non-transformed background, we
358 performed similar experiments in MRC5 immortalised foetal lung fibroblasts. Again, NEAT1
359  mutations were observed to increase fitness, in terms of cell growth (Figure 5¢g) and, at least

360 for Reg2, in terms of anchorage-independent growth (Figure 5h).
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We sought independent evidence for the importance of NEAT1 mutations in real-life
cancer progression. Using patient survival data from the PCAWG cohort, we asked whether
presence of a NEAT1 mutation correlates with shorter survival. Indeed, in lymphoid cancer
patients, NEAT1 mutations correlate with significantly worse prognosis (Figure 5i). This effect
remains even after accounting for differences in total mutation rates using the Cox proportional
hazards model (P=0.02).

In summary, NEAT1 tumour mutations consistently increase cell fitness in vitro
independent of genetic background, and are associated with poor prognosis in lymphoid

cancer patients.
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Figure 5. Mutations in NEAT1 promote cell fithess and correlate with survival

a) Overview of the experimental strategy to simulate tumour mutations in the NEAT1 IncRNA gene by
wild-type Cas9 protein. b) A detailed map of the six NEAT1 target regions and 15 sgRNAs. Paired
gRNAs used for the deletion of NEAT1_1 are indicated as KO- sgRNA1 and KO- sgRNA2. Previously
described functional regions of NEAT1 are indicated below, according to the publication of Yamazaki
and colleagues “®. c¢) Analysis of mutations created by Cas9 recruitment. The target region was

amplified by PCR and sequenced. The frequency, size and nature of resulting DNA mutations are
plotted.
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380 d) Competition assay to evaluate fitness effects of mutations. Above: Rationale for the assay. Labelled
381  mutated (mCherry, red) and control (GFP, green) cells are mixed in equal proportions at the start of the
382  experiment. At successive timepoints their red/green ratio is measured by flow cytometry, and this value
383 is used to infer fitness effects. Below: Red/green ratios for indicated mutations. “Control1/2” indicate
384 sgRNAs targeting intergenic regions. “KO” indicates paired sgRNAs designed to delete the entire
385 NEAT1_1 region. Separate experiments were performed in HeLa and HCT116 cells. n=4 replicated
386 experiments were performed, and statistical significance was estimated by linear regression model on
387 log2 values. e) Upper panel: Setup of mini CRISPR fitness screen. HelLa cells are infected with lentivirus
388 carrying defined mixtures of sgRNAs. The sgRNA sequences are amplified and sequenced at defined
389 timepoints. Changes in abundance reflect effects on cell fithess. Lower panel: Abundances of displayed
390 sgRNAs, normalised to the Control 2 negative control. n=4 independent experiments were performed,
391 and statistical significance was estimated by linear regression model. f) HCT116 cells were cultured as
392 spheroids and their population measured. n=4 replicated experiments were performed, and statistical
393  significance was estimated using Student’s one-sided t-test. g) As for Panel D, but with non-transformed
394 MRCS5 lung fibroblast cells at timepoint Day 14. Statistical significance was estimated by one-sided
395 Student’s t-test based on n=3 independent replicates. h) MRC5 cells were seeded in soft agar, and the
396  area of colonies at 3 weeks were calculated. The mean of n=2 replicated experiments are shown. i)
397  The survival time of 184 lymphoid cancer patients from PCAWG is displayed. Patients were stratified
398  according to whether they have 21 SNVs in the NEAT1 gene.

399

400 Mutations alter the NEAT1 protein interactome and increase paraspeckle formation
401 NEAT1 is a necessary component of subnuclear paraspeckles 48,54,55, which assemble
402  when specific architectural proteins bind to nascent NEAT1_2 transcripts °1. Paraspeckles are
403 nuclear condensates containing diverse gene regulatory proteins %3. They are often observed
404 in cancer cells, 2, and are associated with poor prognosis °3. Thus, we hypothesised that
405 NEAT1 mutations might affect cell fithess via alterations in paraspeckle number or structure.
406 We first evaluated changes in NEAT1 expression and isoform usage in response to
407  mutations. Mutations caused no statistically-significant change in NEAT1_1 expression, while
408 deletion of NEAT1 1 reduced steady-state levels, as expected (Figure 6a). Interestingly, the
409 only mutation to significantly increase NEAT1 2 levels was in Region 4 (Figure 6b), which is
410 consistent with the fact that it contains the alternative polyadenylation site that mediates
411  switching between the short and long isoforms 4.

412 Using fluorescence in situ hybridisation (FISH) with NEAT1_2 probes, we next asked
413  whether mutations impact on paraspeckle number or structure (Figure 6¢). Despite changes
414  inisoform expression noted above, mutations in Region 4 resulted in no change in the number
415  or size of paraspeckles, in line with previous findings “ (Figure 6d,e). However, mutations in

416  Region 2 yielded a significant increase in number and size of paraspeckles (Figure 6c,e).
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417 NEATL1 is known to function via a diverse cast of protein partners. Region 2 mutations
418  overlap several known protein binding sites, and fall in or near to areas of deep evolutionary
419  conservation of sequence and structure (Supplementary Figure 5d).

420 To better understand how Region 2 mutations alter NEAT1 function, and evaluate if
421  mutation could affect the binding of proteins to NEAT1 (Figure 6f), we compared the protein-
422  interactome of wild-type and mutant RNA by in vitro pulldown coupled to mass-spectrometry.
423  We created a 288 nt fragment of NEAT1-Region 2 for wild-type (WT) and mutated sequence,
424  the latter containing two SNVs observed in patient tumours (Figure 6g). We performed RNA
425  pull-down with nuclear lysate from HeLa cells, followed by mass spectrometry. Altogether, 154
426 interacting nuclear proteins were identified for wild-type sequence. Supporting the usefulness
427  of this approach, interacting proteins highly enriched for both known NEAT1-binders and
428  paraspeckle proteins (see Methods) and include well known examples like NONO 4555 (Figure
429  6h). Comparing mutant to WT interactomes, we observed widespread changes in NEAT1
430 complexes: altogether 8 (4.6%) proteins are lost by mutant RNA, and 18 (10.3%) gained
431  (Figure 6i).

432 We investigated whether mutations create or destroy known binding motifs of changing
433  proteins, but could find no evidence for this. However, we did note that mutations lead to
434  increased binding of previously-discovered interactors, U2SURP and PTBP1 (Figure 6i).
435  Intriguingly, increased binding was also observed for PQBP1 protein, whose disordered
436  domain has been linked to condensate formation, offering a potential mechanism in facilitating
437  paraspeckle formation °¢. Conversely, STRING analysis revealed that the proteins lost upon
438 mutation are highly enriched for members of the core RNA Polymerase Il complex
439  (strength=2.51, P=0.016; basic list enrichment by STRING, Benjamini-Hochberg corrected)
440 and physically interacting with other proteins of this complex (Figure 6j). In summary, tumour
441  mutations in NEATL1 give rise to reconfiguration of the protein interactome, creating several
442  potential mechanisms by which paraspeckles formation is promoted in transformed cells.

443

20


https://doi.org/10.1101/2021.11.06.467555
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.06.467555; this version posted July 28, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Figure 6

a Total NEAT1 expression, HeLa p NEAT1_2 expression, HeLa ¢ Fluorescent In Situ Hybridization, HeLa

;lﬁm A olm w’ﬁﬁ

D D
FF S F Qoo\ooo\‘

=0.04

N w H (4]

P;

N w BN [9,]
Control2

Relative exdpression
(normalized to HPRT1)
Relative exdpression
(normalized to HPRT1)

o"o

Reg2

d Paraspeckle counts, HeLa e  Paraspeckle size, HelLa

4

N
o

» (3
O ¥
293 320
s E g ‘g 15
282 £0
B9 2210
5904 o T 52
gz % ll 8%o0s
D [
2&o0 £ =00
] LY D> H O > k<t
5 S EHRFSE é: & P S
d [$
g NEAT1 Region 2 pulldown h NEAT1 known interactors
known known
W i R iy ‘ NEAT1 paraspeckle .
chrt1 (hg3) 1(hg38) == 4 proteins roteins 1
Saivies  ose3zenoeaziast
Mut G C TTTTTTC B = N B
1 103 19 287 %
D =
8
3
. . . 5 o
j STRING interaction network & N
o c
POLR2B 3 20
_POLRZD AF1s £ AR
o= q &
= \GTFzeﬁPOLRgp £ &
\I B N
o
o J

-5 -3 101 3 5
10g2FC (Mut / WT)

444

445 Figure 6. Mutations at the 5’ end of NEAT1 increase paraspeckle formation and alter the protein
446  interactome

447 a) Normalised steady state RNA levels of NEAT1, as estimated using primers for the total NEAT1 region.
448 Statistical significance was estimated using Student’s one-sided t-test. P-values =0.05 are not shown.
449 b) As for Panel A, but using primers for NEAT1_2. ¢) Representative images from fluorescence in situ
450 hybridisation (FISH) visualisation of NEAT1 in HeLa cells expressing sgRNAs for Control 2 and NEAT1
451  Region 2. d) Counts of paraspeckles in HelLa cells treated with indicated sgRNAs, normalised and
452  compared to Control 2 cells. Values were obtained from 80-100 cells per replicate. N=5 biological
453 replicates. Statistical significance was estimated using paired t-test. e) As for Panel D, but displaying
454 paraspeckle size. f) Schematic representation of the mechanism of action of driver mutations within
455 NEAT1 sequence. g) Sequences of biotinylated probes used for mass-spectrometry analysis of NEAT1-

456  interacting proteins.
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h) Proteins detected by wild-type (WT) NEAT1 probe, filtered for nuclear proteins only, are ranked by
intensity and labelled when intersecting databases of previously-detected NEAT1-interacting proteins
(green) and paraspeckle proteins (orange). Statistical significance was calculated by hypergeometric
test (to background of all nuclear proteins n=6758). i) Histogram shows differential detection of proteins
comparing mutated (Mut) and wild-type (WT) probes. Dotted lines indicate log2 fold-change cutoffs of -
1/+1.]) STRING interaction network based on a subset of the proteins lost upon mutation (grey borders)

interacting with the RNA polymerase Il core complex.
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465 Discussion

466
467 Understanding which mutations give rise to pathogenic cell fitness, and how they do so,

468  are fundamental goals of cancer genomics. Here we have focussed on a particularly intriguing
469 class of potential driver elements, the IncRNAs, which are known to be both potent cancer
470 genes and highly mutated in tumours, and yet for which no driver mutation has been
471  experimentally validated to date 22%3157,

472 To address this gap, we here developed an improved method, ExInAtor2, to search for
473  driver IncRNAs based on integrated signatures of positive selection. In total, this identified 54
474  candidate driver IncRNAs across the largest tumour cohort tested to date. The value of these
475  predictions is supported by consistency between independent cohorts, overlap with various
476  cancer IncRNA databases, and from functional screens in mouse. Nevertheless, in silico driver
477  analyses suffer from a variety of constraints, from false positives due to localised, non-selected
478  mutational processes, to false negatives due to the limited sample size. Such factors have
479 limited the confidence with which previous studies 2°2° could interpret the functional relevance
480  of highly mutated IncRNAs, underlining the importance of experimental results presented here.
481 The usefulness of novel ExInAtor2 predictions was demonstrated by functional studies
482  on two IncRNAs, MIHNC (Head and Neck cancer) and MILC (Hepatocellular Carcinoma). Not
483  only are both capable of promoting cancer cell growth in their wild-type form, but interestingly,
484  this activity is enhanced by tumour mutations. These findings provide experimental support for
485  the usefulness of driver analysis in identifying novel cancer IncCRNAs.

486 Among the candidate driver IncRNAs we identified the widely-studied NEAT1. Previous
487  tumour sequencing studies have noted the elevated density of SNVs at this locus, but generally
488  attributed them to passenger mutational processes, possibly a consequence of unusually high
489 transcription rate 22°31%7 Here, we have provided experimental evidence, via naturalistic in
490 cellulo mutagenesis with CRISPR-Cas9, that NEAT1 SNVs reproducibly give rise to increased
491  cell proliferation, in a range of backgrounds including non-transformed cells. The latter raises
492  the intriguing possibility that NEAT1 SNVs might contribute to early stages of tumorigenesis.
493  Other observations are worthy of mention. Firstly, amongst fitness-altering NEAT1 SNVs, we
494  only observed those that increase growth, and none that decreased it. Secondly, not all tested
495 regions of NEAT1 could host fitness-altering mutations, and these were clustered at
496  previously-mapped functional elements in mature RNA 4446, Altogether, these findings suggest
497  that tumour SNVs at particular regions of NEAT1 are phenotypically non-neutral and capable
498  of increasing cell fitness by altering function of encoded RNA. The notion that the NEAT1 gene
499 represents a vulnerability to tumorigenesis is further supported by our demonstration that
500 patients carrying mutations in the gene have worse prognosis, as well as published transposon

501 insertional mutagenesis screens in mouse #’.
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502 The relatively well-understood role of NEAT1 in assembling ribonucleoprotein phase-
503 separated paraspeckle organelles afforded important insights into SNVs' molecular
504  mechanisms. Introduction of tumour mutations at the gene’s 5’ end impacted protein binding,
505 including a significant loss of interaction with the RNA Polymerase Il complex mediated by
506 known NEATL1 interactor TAF15. Other known protein interactions are potentiated in mutated
507 RNA, suggesting that changes in paraspeckles may be mediated by both gains and losses of
508 protein interactions. The fact that these same mutations gave rise to increased numbers and
509 sizes of paraspeckle structures, suggests a model where SNVs alter the assembly of NEAT1
510 ribonucleoprotein complexes, thereby promoting paraspeckle formation and hence cell growth.
511 Future studies will have to address a number of gaps and questions raised here. Firstly,
512 the available of larger tumour cohorts will afford statistical power to discover candidate driver
513 IncRNAs with greater accuracy, while improved statistical models and gene annotations will
514  reduce false positives and false negatives, respectively. While we have provided functional
515  experimental evidence for effects on cell phenotype arising from SNVs, it will be important to
516 replicate this in better models, notably by introducing precise tumour mutations into cellular
517 genomes (eg by recent Prime Editing method)®®%°, and testing their effects in faithful tumour
518 models, such as mice or tumour organoids %62, Finally, key mechanistic questions remain to
519 be answered, such as the precise protein partners whose interaction is altered to result in
520 paraspeckle changes.

521 Phenotype-altering IncRNA mutations could have eventual implications for therapy. We
522  have shown how IncRNA mutations can be prognostic for patient survival, and how driver
523 analysis leads to potential new targets for antisense oligonucleotide (ASO) therapeutics. In
524  future, patients carrying identified driver SNVs in tumour-specific IncRNAs might be treated
525  using personalised cocktails of ASOs, for low-toxicity and effective therapy 62754,

526 In summary, this work represents the first experimental evidence that fithess-boosting
527  somatic tumour mutations can act via changes in IncRNA function. We have sketched a first
528 mechanistic outline of how this process occurs via altered protein interaction and changes to
529 membraneless organelles, in this case, paraspeckles. Our catalogue of candidate driver
530 IncRNAs across thousands of primary and metastatic tumours provides a foundation for future

531 elucidation of the extent and mechanism of driver IncRNAs.
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532 Methods

533
534  ExInAtor2 algorithm
535 ExInAtor2 is composed of two separate modules for detection of positive selection: one

536 for recurrence (RE), comparing the exonic mutation rate to that of the local background,;
537 another for functional impact (FI), comparing the estimated functional impact of mutations to
538 background, both estimated in exons.

539 As an improvement to the first version of ExInAtor °, the RE module compares the
540 number of observed exonic mutations against a distribution of simulated exonic counts
541  (Supplementary Figure 1a), obtained by random repositioning of the variants the between the
542 exonic and background regions while maintaining the same trinucleotide spectrum.
543  Background region is defined for each gene as introns plus 10 kb up and downstream, after
544  removing nucleotides overlapping exons from any other gene. Exonic and background regions
545  can be further filtered to remove any additional “masked” regions defined by the user. In this
546  manuscript, this functionality was used to mask low mappability regions and gap regions
547  obtained from the UCSC Genome Browser (Supplementary Filel).

548 The use of local background and controlling for trinucleotide content is intended to avoid
549  known sources of false positives arising from covariates in mutational processes and
550 mutational signatures, such as replication timing, gene expression, chromatin state, etc *,
551 A p-value is assigned to each gene, being the fraction of simulations with higher or equal

552  number of mutations compared to the observed number (Formula 1).

553
# of simulated exonic counts > observed exonic count
554 REp_yaiue = _ -
total # of simulations
555

556 Formula 1: p-value calculation for the recurrence (RE) module.

957

558 The second FI module compares the mean functional score of the observed exonic

559 mutations to a distribution of simulated values. Simulations are performed by random
560 repositioning of mutations in exonic regions, while maintaining identical trinucleotide content
561 (Supplementary Figure 1b). Similar to the RE model, a p-value is obtained by comparing the
562 number of simulations with an exonic mean functional score higher or equal to the observed
563 value (Formula 2). This module work with any base-level scoring method. Given its previous
564  successful use and integrative nature, we selected the Combined Annotation Dependent
565 Depletion (CADD) scoring system .

566
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# of simulated exonic means = observed exonic mean
567 Flp—value =

total # of simulations

568

569 Formula 2: p-value calculation for the Functional Impact (FI) module.

570

571 In a final step, RE and FI p-values are combined using the Fisher method (Formula 3).
572

573 Combinedy,_yqpe = —2 * [ln (REp_value) + In (Flp_value)]

574

575 Formula 3: Fisher method for p-value integration.
576

577 Tumour somatic mutations

578 The principal source of mutations were primary tumours from the Pan-Cancer Analysis
579  of Whole Genomes (PCAWG) project *. This dataset was created according to a uniform and
580 strict methodology, including collection of samples, DNA sequencing and somatic variant
581 calling, aggressive filtering to remove potential artefacts and false positive mutations *. For
582  practical reasons, we only considered Single Nucleotide Variants (SNVs) arising from
583  substitutions, insertions and deletions of length 1 bp (indels) (Figure 1b). After this filtering, the
584 PCAWG dataset comprises 37 cancer cohorts, 2,583 samples and 45,703,485 SNVs (Figure
585 1b). Analyses were performed either on individual cohorts, or on the “Pancancer” union of all
586  cohorts.

587

588 Gene annotation and filtering

589 We employed a filtered IncRNA gene annotation based upon Gencode annotation.
590 Beginning with Gencode v19 annotation, we discarded INcCRNA genes overlapping protein-
591 coding genes, or containing at least one transcript predicted to be protein-coding by CPAT ¢7,
592  with default settings of coding potential >=0.364. To the remaining list of 6981 genes, we added
593 294 genes from Cancer LncRNA Census (CLC) %, not annotated in Gencode v19. The
594  resulting set of 7275 INCRNA genes were used here unless otherwise specified (Figure 1c;
595  Supplementary File 2).

596

597  ExInAtor2 benchmarking against other driver discovery methods
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598 We collected driver predictions from 10 methods, in addition to the combined
599 predictions generated by the PCAWG driver group (PCAWG combined, PCAWGCc) that
600 displayed best overall performance 2. We only selected PCAWG methods that were run in both
601 protein-coding and IncRNAs, and for which predictions were available for individual cohorts
602  (Figure 2a).

603 The original PCAWG publication used carefully filtered annotations for protein-coding
604 and IncRNA genes 2. Only coding sequences (CDS) of protein-coding genes were considered,
605 while INcRNAs were strictly filtered by distance to protein coding genes, transcript biotype,
606 gene length, evolutionary conservation and RNA expression. For benchmarking, we ran
607  ExInAtor2 using the same PCAWG annotations.

608

609 Evaluation of p-value distributions

610 Under the assumption that most genes are not cancer drivers and follow the null
611  distribution, the collection of p-values should mimic a uniform distribution with deviation of a
612 small number of genes at very low p-values . Quantile-quantile plots (QQ-plot) (Figure 2b
613 and Supplementary Figure 3a) display the observed and expected p-values in -log10 scale. In
614  order to generate the theoretical distribution for each driver method across all 37 cohorts and
615 the Pancancer set, we ranked the total list of n observed p-values from lowest to highest, then
616 for each i observed p-value we calculated an expected p-value according to the uniform
617  distribution (Formula 4).

618

i
619 expected ; = -

620

621 Formula 4: Expected p-value calculation. i represents the rank of the corresponding observed

622 p-value in the total distribution of n observed p-values, therefore i values range from 1 to n.

623

624 For each driver method, only genes with a reported p-value were included in this analysis,

625 i.e., NA cases were discarded. By visual inspection of the QQ-plots, a correct observed
626  distribution of p-values should follow a line with O as intercept and 1 as slope, where extreme
627  values beyond approximately 2 in the x-axis should deviate above the diagonal line. We used
628 the Mean Log Fold Change (MLFC) (Formula 5) to numerically estimate such deviation and
629 evaluate the performance of driver gene predictions . The closer to zero the MLFC, the better
630 the statistical modelling of passenger genes following the null distribution ©8.

631

n
1
632 MLEC = -« Z

observed; |
n

i expected;
l
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633

634 Formula 5: Mean Log Fold Change (MLFC). n represents the total number of p-values an i the

635 lowest p-value.

636

637 Gene benchmark sets

638 We downloaded known driver genes from the Cancer Gene Census * (CGC)

639 (www.cancer.sanger.ac.uk/census) on 06/02/2019 as a TSV file. We extracted all Gencode

640 ENSG identifiers, resulting in a list of 703 genes. For IncRNAs we used the second version of
641 the Cancer LncRNA Census 2%, which contains 513 Gencode IncRNAs.

642

643  Precision, sensitivity and F1 comparison

644 CGC and CLC genes were used as ground truth for driver predictions of protein-coding
645 and IncRNAs, respectively. Three metrics were used to compare driver predictions: Precision,
646  the proportion of predictions that are ground truth genes (Formula 6); Sensitivity, the fraction
647  of ground truth genes that are correctly predicted (Formula 7); F1-score, the harmonic mean
648  of precision and sensitivity (Formula 8).

649

650 Precision = 100

TP+ FP
651

652 Formula 6: Precision.

653

654 Sensitivity = 100

TP+ FN
655

656 Formula 7: Sensitivity.
657

Precision * Sensitivity

658 F1 —score = 2 * — —
Precision + Sensitivity

659

660 Formula 8: F1-score.

661

662 Simulated mutation datasets
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663 To generate realistic simulated data, each mutation was randomly repositioned to
664  another position with identical trinucleotide signature (ATA > ATA, being the central nucleotide
665 the one mutated) within a window of 50 kb on the same chromosome.

666

667 Generation and comparison of genomic features

668 Evolutionary conservation: We downloaded base-level PhastCons scores for all 46way
669 and 100way alignments ©° from the UCSC Genome Browser °. We calculated the average
670 value across all exons of each gene.

671 Expression in normal samples: We obtained RNA-seq expression estimates in
672  transcripts per million (TPM) units for 53 tissues from GTEX
673  (https://gtexportal.org/home/datasets). For tissue specificity, we calculated tau values as

674  previously described " (https://github.com/severinEvo/gene _expression/blob/master/tau.R).

675 Replication timing: We collected replication time data of 16 different cell lines from the
676 UCSC browser 0 (http://genome.ucsc.edu/cqi-
677  bin/hgFileUi?db=hgl19&g=wgEncodeUwRepliSeq).

678 mMiRNA binding: We downloaded both bioinformatically predicted (miTG scores) and

679 experimentally validated miRNA binding to IncRNAs from LncBase "2

680 (http://carolina.imis.athena-innovation.gr/diana tools/web/index.php?r=Incbasev2%2Findex).

681 Tumour expression: Expression values in units of FPKM-uq were obtained from
682 PCAWG L

683 Drug-expression association: We extracted expression-drug association p-values from
684  LncMAP 7 (http://bio-bigdata.hrbmu.edu.cn/LncMAP).

685 Germline cancer small nucleotide polymorphisms (SNPs): We downloaded SNPs from
686 the GWAS Catalogue " (https://www.ebi.ac.uk/gwas/).

687 CIS evidence in mice: We downloaded CIS coordinates from CCGD ® (http://ccqd-

688  starrlab.oit.umn.edu/download.php) and mapped them to human hgl9 with LiftOver

689 (https://genome.ucsc.edu/cgi-bin/hgLiftOver) from the UCSC browser °. Then, we calculated

690 the number of CIS intersecting each IncRNA divided by the gene length with a custom script
691  using BEDtools ®. CIS per Mb values are available in Supplementary File 3.
692

693  Survival analysis
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694 Survival plots were constructed using donor-centric whole genome mutations dataset,
695 overall survival data and tumour histology data from UCSC Xena Hub:
696  https://xenabrowser.net/datapages/?cohort=PCAWG%20(donor%20centric)&removeHub=htt

697 ps%3A%2F%2Fxena.treehouse.qgi.ucsc.edu%3A443. The whole genome mutations file was

698 intersected with comprehensive gene annotation v37
699 (https://www.gencodegenes.org/human/release_38lift37.html) using BEDtools intersect to
700 isolate donors with mutations in IncRNA of interest. Survival of donors with mutations in

701 IncRNA of interest was then compared against the group of donors without mutations in

702  IncRNA of interest using R packages “survival” (https://cran.r-
703  project.org/web/packages/survival/index.html) and “survminer” (https://cran.r-

704  project.org/web/packages/survminer/index.html)

705
706  NEATI1 structure and element analysis
707 Elements: The window spanning 300 bp around Mutla and Mutlb (hgl9

708  chrl1:65190589-65190888; hg38 chrl1:65423118-65423417) was annotated with the
709 program ezTracks '’ using the following datasets as input: (i) structural features: RNA
710  structures conserved in vertebrates (CRS) 78, DNA:RNA triplex structures 7, R-Loops lifted
711  over to hg38 8 (ii) conservation: phastCons conserved elements in 7, 20, 30 and 100-way
712  multiple alignments ° retrieved from UCSC genome browser 8%; (iii) high confidence narrow
713  peaks from eCLIP experiments from ENCODE 82 (Complete list of accessions is located at
714  Supplementary Table 2).

715 RBP motif mapping. The 20 bp-padded sequence around Mutla and Mutlb (hgl9
716 chrl1:65190719-65190775) was extracted and then used to generate the sequence of the
717  three distinct alleles WT, only Mutla and only Mutlb. The three sequences were used as input
718  for de novo RBP motif matching in the web servers RBPmap & using the option Genome: other
719  and all Human/Mouse motifs) and RBPDB 84 (using the default score threshold, 0.8). Outputs
720  were manually parsed and further processed using an in-house Python script.

721 SNP structural impact analysis. Sequences for the window spanning 300 bp around
722  each mutation target were extracted. Then, only substitutions were kept and encoded
723  according to their relative position and submitted to the MutaRNA web server 8, which also
724  reports scores from RNAsnp 86,

725

726

727  Cell culture
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728 HelLa, HEK 293T and HCT116 were a kind gift from Roderic Guigo's lab (CRG,
729 Barcelona). The MRC5-SV cells were provided by the group of Ronald Dijkmanthe (Institute
730  of Virology and Immunology, University of Bern) and the HN5 tongue squamous cell carcinoma
731  cells by Jeffrey E. Myers (MD Anderson) to Y. Zimmer. All the cell lines were authenticated
732  using Short Tandem Repeat (STR) profiling (Microsynth Cell Line Typing) and tested negative
733  for mycoplasma contamination.

734 HelLa, HN5 and HEK 293T cell lines were cultured at 37°C in 5% CO2 in Dulbecco’s
735 Modified Eagle's Medium high-glucose (Sigma) supplemented with: 10% FBS (Gibco), 1% L-
736  Glutamine (ThermoFisher), 100 I.U./mL of Penicillin/Streptomycin (Thermo Fisher).

737 HCT-116 and MRC5-SV were cultured in McCoy (Sigma) and EMEM (Sigma),
738  respectively, both supplemented with 10% FBS (Gibco), 1% L-Glutamine (ThermoFisher), 100
739  L.U./mL of Penicillin/Streptomycin (Thermo Fisher). SNU-475 (ATCC) and HuH7 (Cell Line
740  Service) hepatocellular carcinoma cell lines were cultured at 37°C in 5% CO2 in RPMI-1640,
741  GlutaMAX™ (Gibco) supplemented with 10% FBS (Gibco) and 100 LU./mL of
742  Penicillin/Streptomycin (Thermo Fisher).

743

744  Gene overexpression and knockdown experiments

745 Both the wild-type and mutated IncRNA spliced sequences were synthesized by Gene
746  Universal Inc, into pcDNA3.1 vector backbone. Control pcDNA3.1 plasmids contained the
747  sequence of enhanced green fluorescent protein (EGFP).

748  Overexpression in HN5 cells: For each transfection 1.6 ug of plasmid DNA has been incubated
749  for 20 minutes with 4 ul of Lipofectamine 2000 transfection reagent (Invitrogen) in 0.2 ml of
750 OptiMEM media (Gibco) and added to the cells cultured in a 6-well plate. As all plasmids
751 contain G418 resistance gene, cells were cultured in 2.5 mg/ml of G418 (Gibco) 48h after
752  transfection.

753 Overexpression in HUH7 cells: For each transfection, 100 ng of plasmid DNA were
754  incubated for 20 minutes with 0.15 pl Lipofectamine 3000 and 0.2 pl P3000 transfection
755  reagent (Invitrogen) in 10 ul RPMI-1640, GlutaMAX™ (Gibco) and added on top of 2000 HuH7
756  cells cultured in a 96-well plate. Transfection efficiency was measured with gPCR after 120h.
757  Knockdown in SNU-475 and HuH7 cells: For the transfections, 10 nM of each ASO were
758 incubated with 0.15 pl Lipofectamine 3000 (Invitrogen) for 20 min in 10 ul RPMI-1640,
759  GlutaMAX™ (Gibco) and added on top of 2000 SNU-475 or HuH7 cells cultured in a 96-well
760 plate. Transfection efficiency was measured with qPCR after 144h.

761  ASO sequences available in Supplementary File 4.

762

763  Crystal violet staining
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764 Cells were dissociated with 0.05% trypsin-EDTA (Gibco), resuspended in complete
765 media and counted in Neubauer chamber. Subsequently, 1000 cells per well were plated in a
766  6-well plate, cultured for one week and stained in a 2% Crystal violet (Sigma) solution. The
767  area percentage covered with cells was analysed using ImageJ (%Area). Data analysis was
768  conducted in Graphpad Prism version 8.0.1. One-way ANOVA was used to determine

769  statistical significance, alpha=0.05.

770
771  Proliferation assay — SNU-475 and HuH7
772 After transfection, the proliferative capacity of SNU-475 and HUH7 was measured every

773  24h by resazurin assay. Briefly, Resazurin sodium salt (Sigma) was added to each well to
774  reach a final concentration of 3 uM and was incubated at 37°C for 2h. Absorbance was

775 measured with Tecan Spark Plate Reader at 545 nm and 590 nm.

776
777 CRISPR sgRNA design and cloning
778 CRISPR activation in HelLa cells was performed as described by Sanson and

779  colleagues ®. sgRNAs were designed using the GPP sgRNA Designer CRISPRa from the
780  Broad Institute (https://portals.broadinstitute.org/gpp/public/) (Supplementary File 4). For each
781  sgRNA, forward and reverse DNA oligos were synthesized introducing the BsmB1 overhangs.
782  The two oligos were phosphorylated with the Anza™ T4 PNK Kit (Thermofisher) according to
783  the manufacturer instructions in a 10 pl final volume. The phosphorylation/annealing reaction
784  was set up in a thermocycler at 20° C for 15 min, followed by 95°C for 5 min and then ramp
785 down to 25° C at 5° C/min rate. For ligation of annealed oligos into the pXPR_502 backbone
786  (Addgene #96923), the plasmid was first digested and dephosphorylated with FastDigest
787  BsmBlI and FastAP (Thermofisher) at 37°C for 2 hrs. Ligation reaction was carried out with the
788  Rapid DNA Ligation Kit (Thermo) according to the manufacturer instructions.

789 sgRNAs targeting NEAT1 were designed using the GPP sgRNA Designer CRISPRKo
790 from the Broad Institute (https://portals.broadinstitute.org/gpp/public/) (Supplementary File 4),
791 and cloned into the pDECKO backbone (Addgene #78534) as described above.

792

793  Lentivirus production
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794 For lentivirus production, HEK293T cells (2.5 x10"6) were seeded in poly-L-lysine
795  coated 100 mm culture dishes 24 hrs prior to transfection. Cells were then co-transfected in
796  serum-free medium with 12.5 ug of the plasmid of interest (Lenti dCAS-VP64_Blast plasmid
797  or sgRNA-containing pXPR_502 or pDECKO), 4 ug of the envelope-encoding plasmid pVSVg
798 (Addgene 12260) and 7.5 pg of the packaging plasmid psPAX2 (Addgene 8454) with
799 Lipofectamine 2000 (ThermoFisher) according to the manufacturer instructions. After 4-6 hrs
800 the medium was replaced with complete DMEM. Virus-containing supernatant was collected
801  after 24, 48 and 72 hours post-transfection. The three harvests were pooled and centrifuged
802 at 3000 rpm for 15 min to remove cells and debris. The supernatant was collected, and for
803  every four volumes, one volume of cold PEG-it Virus Precipitation Solution was added. The
804 mix was refrigerated overnight at 4°C and centrifuged at 1500 x g for 30 min at 4°C.The
805 supernatant was discarded, and the sample centrifuged at 1500 x g for 5 min. The lentiviral
806 pellet was suspended in cold, sterile PBS, aliquoted into cryogenic vials and stored at -70°C.
807

808 Lentivirus transduction

809 CRISPRKo: For the generation and transduction of Cas9-expressing cell lines, Hela,
810 HCT116 and MRC5-SV Cas9 were incubated for 24 hrs with culture medium containing
811  concentrated viral preparation carrying pLentiCas9-T2A-BFP and 8 pg/ml Polybrene. 24 hrs
812  post-infection, antibiotic selection was induced by supplementing the culturing medium with 4
813  ug/ml blasticidin (Thermofisher) for 5 days. Blasticidin selected cells were subjected to 3
814  rounds of fluorescence-activated cell sorting (FACS) to isolate high BFP-expressing cells.
815 CRISPRa: For the generation and transduction of dCas9-expressing cell lines, HelLa
816 cells were incubated for 24 hrs with culture medium containing concentrated viral preparation
817  carrying pLenti dCas9-T2A-BFP-VP64 and 8 ug/ml Polybrene. Cells underwent FACS sorting
818  to enrich for high BFP expressing cells.

819 sgRNAs: pLentiCas9-T2A-BFP or dCas9-T2A-BFP-VP64 stable cell line were seeded
820 into 6 well plates at 1076 cells per well and supplemented with sgRNAs pDECKO or pXPR_502
821 lentiviral preps, respectively, and spinfected in the presence of polybrene (2 ug/ml) for 95 min
822 at 2000 rpm at 37 °C, followed by medium replacement. 24 hrs post-infection, antibiotic
823  selection was induced by supplementing the culturing medium with 2 pg/ml puromycin
824  (Thermofisher) for at least 3 days.

825

826 RT-gPCR gene expression analysis
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827 HelLa cells were lysed, and total RNA was extracted by using the Quick-RNA™
828  Miniprep Kit (Zymo Research). For each sample, RNA was retro-transcribed into cDNA by
829 using the GoScript™ Reverse Transcription System (Promega) and the expression of the
830 target gene was assessed through Real-Time PCR with the GoTag® gPCR Master Mix. To
831 this purpose target-specific mostly intron-spanning primers (Supplementary File 4) were
832  designed by using the online tool Primer 3 version 4.1.0.

833

834  Cell viability assay

835 After puromycin selection, cells expressing controls and candidates’ guides were
836 collected and seeded in 96-well plates in at least 3 technical replicates for each time point
837 (3000 cells per well). Proliferation assay was performed using the Cell-Titer Glo 2.0 (Promega)
838 reagent according to the manufacturer instructions. Luminescence was measured with the
839 INFINITE 200 PRO series TECAN reader instrument. Time point 0 (TO) reading was performed
840  4-5 hours after cell seeding.

841
842 1.1 competition assay
843 HeLa, HCT116 and MRC5-SV cells were infected with pDECKO lentiviruses

844  expressing fluorescent proteins. Control plasmids containing sgRNAs targeting AAVS1
845 expressed GFP protein (pgRNAs-AASV1-GFP+), while the sgRNAs targeting the different
846  regions of NEAT1 expressed mCherry. After infection, and seven days of puromycin (2 pg/ml)
847  selection, GFP and mCherry cells were mixed 1:1 in a six-well plate (150,000 cells). Cell counts
848  were analysed by LSR Il SORP instrument (BD Biosciences) and analysed by FlowCore
849  software.

850

851 Pooled competition assay

852 Screen: Hela cells stably expressing sgRNAs targeting NEAT1 Reg2, Reg3, Reg4,
853 Reg5 and KO, and Hela cells stably expressing sgRNAs Controll and Control2 were counted
854  and mixed in the following ratio 10:10:10:10:25:25. At Day 0, 2M cells were collected, while
855 2M were plated and passaged every 2-3 days. Cells were harvested at 7, 14, 21 and 28 days

856  for gDNA extraction. The experiment was conducted in six biological replicates.
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857 Genomic DNA preparation and sequencing: Genomic DNA (gDNA) was isolated using
858 the Blood & Cell Culture DNA Mini (<5e6 cells) Kits (Qiagen, cat. no. 13323) as per the
859  manufacturer’s instructions. The gDNA concentrations were quantified by Nanodrop. For PCR
860 amplification, 1 ug of gDNA was amplified in a 200 pl reaction using Q5® High-Fidelity 2X
861  Master Mix (NEB #M0491). PCR master mix (100 pl Q5, and 10 pl of Forward universal primer,
862 and 10 ul of a uniquely barcoded P7 primer (both stock at 10 uM concentration). PCR cycling
863  conditions: an initial 30 sec at 98 °C; followed by 10 sec at 98 °C, 30 sec at 68 °C, 20 sec at
864 72°C, for 22 cycles; and a final 2 min extension at 72°C. NGS primers are listed in
865  Supplementary File 4. PCR products were purified with Agencourt AMPure XP SPRI beads
866  according to manufacturer’s instructions (Beckman Coulter, cat. no. A63880). Purified PCR
867  products were quantified using the Qubit™ dsDNA HS Assay Kit (ThermoFisher, cat. no.
868 Q32854). Samples were sequenced on a HiSeq2000 (lllumina) with paired-end 150 bp reads.
869 The raw sequencing reads from individual samples were analysed by using a custom shell
870  script to count the number of reads containing each sgRNA. The sgRNA counts were then
871 normalized over the TO and Control2.

872
873  Deep sequencing to determine indel spectrum
874 Genomic DNA was extracted using the Blood & Cell Culture DNA Mini (<5M cells) Kits

875 (Qiagen, cat. no. 13323) as per the manufacturer’s instructions. To prepare samples for
876 lllumina sequencing, a two-step PCR was performed to amplify the different regions of NEAT1.
877  For each sample, we performed two separate 100 ul reactions (25 cycles each) with 250 ng of
878  input gDNA using Q5 MASTER MIX (NEB #M0491) and the resulting products were pooled
879 (PCR reaction: 30 sec at 98 °C; followed by 10 sec at 98 °C, 30 sec at 68 °C, 20 sec at 72 °C,
880 for 22 cycles; and a final 2 min extension at 72 °C). PCR amplicons were purified using solid
881 phase reversible immobilization (SPRI) beads, run on a 1.5% agarose gel to verify size and
882  purity, and quantified by Qubit Fluorometric Quantitation (Thermo Fisher Scientific). The
883  resulting DNA was used for reamplification with primers containing lllumina adaptors using the
884 Q5 master Mix. lllumina adaptors and index sequences were added to 100 ng of purified PCR
885 amplicon (PCR reaction: 30 sec at 98 °C; followed by 10 sec at 98 °C, 30 sec at 68 °C, 20 sec
886 at 72°C, for 8 cycles; and a final 2 min extension at 72 °C).

887

888 RNA-FISH and immunofluorescence
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889 HelLa cells grown on coverslips were fixed using 4% paraformaldehyde and
890 permeabilised by 70% ethanol overnight. For RNA-FISH, Stellaris® FISH Probes, targeting
891 Human NEAT1 Middle Segment, labelled with FAM dye (1:100, Biosearch Technologies) were
892 used and the procedure was carried out according to the manufacturer's instructions. Cells
893 nuclei were counterstained with 1:15,000 DAPI (4',6-diamidino-2-phenylindole) at room
894  temperature and then mounted onto slides by using the VectaShield (Vector Laboratories)
895 mounting media. Fluorescence signals were imaged at 100x (UPLS Apo 100x/1.40) using the
896 DeltaVision Elite Imaging System and Softworx software (GE Healthcare). Images were
897 acquired as Z-stacks, subjected to deconvolution, and projected with maximum intensity.
898 Images were processed using a custom CellProfiler pipeline to determine paraspeckle number
899 and size.

900

901 Soft agar assay

902 The soft agar colony formation assay was performed as previously described (Borowicz
903 S, etal., 2014). Briefly, the assay was carried out in 6-well plates coated with a bottom layer
904  of 1% noble agar in 2X DMEM (ThermoFisher) supplemented with: sodium bicarbonate, 10%
905 FBS (Gibco), 1% L-Glutamine (ThermoFisher), 100 I.U./ml of Penicillin/Streptomycin
906  (ThermokFisher). Then, 7000 cells were suspended in 2X DMEM and 0.6% noble agar. The
907  suspension mixture was subsequently applied as the top agarose layer. A layer of growth
908 medium was added over the upper layer of agar to prevent desiccation. The plates were
909 incubated at 37 °C in 5% CO2 for 3 weeks until colonies formed. After 20 days the colonies
910 were stained with 200 ml of MTT [(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
911 bromide), (5 mg/ml), Sigma] and incubated for 3 hours at 37 °C. Numbers of colonies were
912  counted using the analysis software ImageJ.

913

914 3D spheroid assay

36


https://doi.org/10.1101/2021.11.06.467555
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.06.467555; this version posted July 28, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

915 HCT116 stably expressing Cas9-BFP and sgRNA-mCherry targeting NEAT1 locus were
916 FACS sorted to enrich the population BFP+/mCherry+. The cells were allowed to grow for 7
917 days, then detached, counted and seeded onto Corning® 96-well Flat Clear Bottom White
918 (Corning, cat. no. 3610) in 20 yl domes of Matrigel® Matrix GFR, LDEV-free (Corning, cat. no.
919 356231) and McCoy (Sigma, cat. No. M9309) growth medium (1:1) with a density of 10,000
920 cells per dome in four technical replicates. Matrigel containing the cells was allowed to solidify
921 for an hour in the incubator at 37 °C before adding 80ul of McCoy growth media on top of the
922  wells. The spheroids were allowed to grow in the incubator at 37°C in a humid atmosphere
923  with 5% CO2. After 4 h the number of viable cells in the 3D cell culture was recorded as time
924  point 0 (TO), CellTiter-Glo® 3D Cell Viability Assay (Promega, cat. no. G9682) was added to
925 the wells, following the manufacturer’s instructions for the reading with the Tecan Infinite® 200
926  Pro. After one week the measurement was repeated.

927

928 RNA pull-down and Mass Spectrometry

929 RNA pull-down analysis was performed as previously described (Marin-Béjar O, Huarte
930 M., 2015). Briefly, wild-type and mutant NEAT1 RNA fragments were transcribed in vitro using
931 HiScribe™ T7 High Yield RNA Synthesis Kit (NEB, #E2040S) and labelled with Biotin using
932 Biotin RNA Labelling Mix (Roche, #11685597910) according to the manufacturers’
933 instructions. Biotinylated RNA (10 pmol) was denatured for 10 min at 65 °C in RNA Structure
934  Buffer (10 mM tris-HCI, 10 mM MgCl,;, and 100 mM NH4C1) and slowly cool down to 4 °C.
935 Nuclear fractions were collected as described previously (Carlevaro-Fita J., et al., 2018) and
936  precleared for 30 min at 4 °C using Streptavidin Mag Sepharose® (Sigma, #GE28-9857-99)
937 and NT2 Buffer [50 mM tris-HCI (pH 7.4), 150 mM NaCl, 1 mM MgCI2, 0.05% NP-40,1 mM
938 DTT, 20 mM EDTA, 400 mM vanadyl-ribonucleoside, RNase inhibitor (0.1 U/ul; Promega), and
939 Ix protease inhibitor cocktail (Sigma)]. The precleared nuclear lysates (2 mg) were incubated
940  with purified biotinylated RNA in NT2 buffer along with Yeast tRNA (20 ug/ml; Thermo Fisher
941  Scientific #AM7119) with gentle rotation for 1.5 hours at 4°C. Washed Streptavidin Magnetic
942  Beads were added to each binding reaction and further incubated at 4 °C for 1 h to precipitate
943 the RNA-protein complexes. Beads were washed briefly five times with NT2 Buffer, and the
944  retrieved proteins were then subjected to mass spectrometry analysis, performed by the
945  Proteomics & Mass Spectrometry Core Facility (PMSCF) of the University of Bern, Switzerland,

946  using MaxQuant software for protein identification and quantification.

947
948 Mass Spectrometry Data Processing
949 Intensity Based Absolute Quantification (iBAQ) and label-free quantitation (LFQ)

950 intensities from the MaxQuant output were used for quantitative within-sample comparisons

951 and fold-enrichment between-sample comparisons respectively. A protein was considered
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enriched / depleted in a sample condition if its intensity was at least 2-fold greater / lesser than
in the reference condition (proteins not detected in one of the conditions are imputed with the
lowest value for that sample by MaxQuant). Additionally, the resulting lists of proteins were
filtered for nuclear localization % to exclude potential false positives. To calculate the
significance of the overlap with known NEAT1 binding proteins 8! and known paraspeckle
proteins “® a hypergeometric test was applied to the background of all nuclear proteins
(n=6758). STRING was used for interaction analysis (physical subnetwork, minimum
interaction score=0.4, max number of direct interactors=10) and GO term enrichment analysis

92 Visualization of the results was done with R version 4.1.1 and BioRender.com.

Code availability
The code is accessible at: https://github.com/gold-lab/ExInAtor2.qgit
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