
 

 

 
  

 
 

A Network Approach to Mapping Mouse Brain-wide  

Mitochondrial Respiratory Chain Capacity in Relation to Behavior 

 
 
 

Ayelet M Rosenberg1, Manish Saggar2, Peter Rogu3, Aaron Limoges4.5, Alex Junker1, Carmen 

Sandi6, Eugene V. Mosharov7, Dani Dumitriu3,8,9, Christoph Anacker3,4,10, Martin Picard1,10,11 

1 Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical 
Center, New York NY 

2 Department of Psychiatry and Behavioral Sciences, Stanford University 
3 The Sackler Institute, Department of Psychiatry, Columbia University Irving Medical Center, 

New York NY 
 4 Department of Biological Sciences, Columbia University 

5 Division of Systems Neuroscience, Department of Psychiatry, Columbia University Irving 
Medical Center, New York NY 

6 Brain Mind Institute, Ecole Polytechnique Federal de Lausanne (EPFL), Switzerland  
7Division of Molecular Therapeutics, Department of Psychiatry, Columbia University Irving 

Medical Center, New York NY 
8 Department of Pediatrics, Columbia University Irving Medical Center, New York NY 

9 Division of Developmental Neuroscience, Department of Psychiatry, Columbia University Irving 
Medical Center, New York NY 

10 New York State Psychiatric Institute, New York NY 
11 Department of Neurology, Columbia University Irving Medical Center, New York NY 

 
 
 
 
Correspondence: martin.picard@columbia.edu 
 
 
 
 
 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 3, 2022. ; https://doi.org/10.1101/2021.06.02.446767doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.02.446767
http://creativecommons.org/licenses/by/4.0/


 2

Abstract  

The brain and behavior are under energetic constraints, limited by mitochondrial energy 

production capacity. However, the mitochondria-behavior relationship has not been 

systematically studied on a brain-wide scale. Here we examine the association between multiple 

features of mitochondrial respiratory chain capacity and stress-related behaviors in mice with 

diverse behavioral phenotypes. Miniaturized assays of mitochondrial respiratory chain enzyme 

activities and mitochondrial DNA (mtDNA) content were deployed on 571 samples across 17 

brain regions, defining specific patterns of mito-behavior associations that vary across brain 

regions and behaviors. Furthermore, multi-slice network analysis applied to our brain-wide 

mitochondrial dataset identified three large-scale networks of brain regions with shared 

mitochondrial signatures. A major network composed of cortico-striatal regions exhibited the 

strongest mitochondria-behavior correlations, suggesting that this mito-based network is 

functionally significant. Mito-based networks also overlap with regional gene expression and 

structural connectivity, thereby providing convergent multimodal evidence of mitochondrial 

respiratory chain functional organization anchored in gene, brain and behavior. 
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Introduction  

The shaping of behaviors by life experiences is driven by energetically demanding 

circuitry across the brain1. The brain’s enormous energetic demand is mainly met by ATP 

produced through oxidative phosphorylation (OxPhos), subserved by the combined activities of 

respiratory chain (RC) enzymes within mitochondria2. As a result, mitochondria influence 

multiple aspects of brain development and function ranging from dendritic and axonal 

branching3,4, remodeling of gene expression5, regulation of neurotransmitter release and 

excitability in mature synapses6-8, neurogenesis9, and inflammation10. Thus, the mounting 

molecular and functional evidence that the brain is under energetic constraints11,12 suggests that 

if we want to understand the basis of brain function and behavior, we must understand key 

aspects of brain mitochondrial biology. 

Mitochondria are small, dynamic, multifunctional organelles with their own genome13, but 

not all mitochondria are created equal. Mitochondria serving different cellular demands (i.e., in 

different cell types) have different relative molecular compositions, morphologies, and functional 

phenotypes14-19. Therefore, developing a comprehensive understanding of the association 

between mitochondrial biology and animal behavior calls for assessments of multiple functional 

and molecular mitochondrial features, across multiple brain regions. By analyzing mitochondrial 

features across multiple brain regions simultaneously, we can also potentially uncover unknown 

brain “mitochondrial circuits”. This idea aligns with the evolving understanding of large-scale 

brain circuitry and metabolism11,20, and of the network distribution of neural activity achieved 

using brain-wide, high spatial resolution methods (e.g., MRI-based functional and structural 

connectivity maps)21,22. Although a similar degree of resolution for mitochondrial phenotyping is 

not feasible with current technologies, miniaturization of biochemical and molecular 

mitochondrial assays open new possibilities to systematically map mitochondria-to-behavior 

associations across multiple cortical and sub-cortical brain regions in the same animal.   

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 3, 2022. ; https://doi.org/10.1101/2021.06.02.446767doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.02.446767
http://creativecommons.org/licenses/by/4.0/


 4

Both mitochondrial biology and animal behaviors measured on standardized tests exhibit 

naturally occurring and acquired (i.e., experience-dependent) variation, providing an opportunity 

to map their associations. For example, behaviorally, exposure to social stress such as chronic 

social defeat predictably increases potential threat vigilance and social avoidance23, but animals 

differ in their vulnerability/resilience to these stress-induced behavior changes24,25. Experimental 

challenges aimed at modeling neuroendocrine disturbances resulting from chronic stress, such 

as chronic exposure to corticosterone, also induce avoidance behaviors associated with 

recalibrations in specific brain circuitry26, gene expression27,28, and anatomical plasticity (i.e., 

atrophy) in stress-sensitive brain regions like the hippocampus29. In relation to mitochondria, a 

separate body of literature similarly documents naturally-occurring mitochondrial variation30-32, 

as well as stress-induced functional mitochondrial recalibrations that occur within days to weeks 

of stress exposure33-35 (meta-analysis in 36), potentially linking mitochondrial biology to behavior. 

More direct causal experiments show that mitochondrial RC enzyme activities directly influence 

the brain and specific behavioral domains including working memory37,38, social 

dominance31,39,40 and anxiety-related behavior4. Targeted mitochondrial defects even cause 

mood disorder-like phenotypes in animals41, positioning mitochondria as upstream modulators 

of brain function and behavior. Moreover, mitochondrial RC defects are likely implicated in the 

etiology of psychiatric, neurological and degenerative disorders in humans42, and in vivo brain 

metabolic imaging studies show that energy metabolism in specific brain areas (e.g., nucleus 

accumbens, NAc) predict cognitive performance and anxiety43-45, making these biological 

questions also potentially relevant to human mental health.  

Although the importance of mitochondria for brain structure and function is unequivocal, 

we lack an understanding of potential differences in mitochondria across different brain regions. 

This calls for more systematic mapping of region-specific brain mitochondrial biology in relation 

to behavior. To address the hypothesis that mitochondrial phenotypes in specific brain regions 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 3, 2022. ; https://doi.org/10.1101/2021.06.02.446767doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.02.446767
http://creativecommons.org/licenses/by/4.0/


 5

are associated with behaviors, we have further miniaturized existing biochemical and molecular 

assays of mitochondrial OxPhos enzyme activities for sub-milligram tissue samples and 

deployed them across 17 cortical and sub-cortical brain regions in mice with a wide range of 

behavioral phenotypes, quantified through four behavioral tests. Using network-based 

connectivity analysis, we also sought to explore the distribution of mitochondrial phenotypes 

across brain regions, finding evidence that mouse brain mitochondria specialize as distinct 

functional networks linked to behavior. Further, we use gene co-expression and 

structural/anatomical connectivity data, which anchor the newly observed mitochondrial circuits 

into other modalities, and provide a foundation for future mechanistic studies to elucidate the 

specific energetic contributions to behavioral variation. 

Results 

Miniaturization of mitochondrial assays for sub-milligram resolution  

Although enzymatic activity assays directly reflect the capacity of RC complexes and 

therefore energy production capacity, previously available assays suffer from low throughput 

that preclude a multi-region, brain-wide analysis in dozens of animals. Building from our efforts 

to miniaturize and scale the throughput of mitochondrial RC activity assays in immune cells30,32, 

here we miniaturized and optimized spectrophotometric assays in 96-well plate format for brain 

tissue, validated against the standard cuvette-based reaction (Extended Data Fig. 1, and 

Methods). Using this optimized platform, we can quantify the enzymatic activities of RC complex 

I (CI, NADH-ubiquinone oxidoreductase), complex II (CII, succinate-ubiquinone 

oxidoreductase), complex IV (CIV, cytochrome c oxidase), and citrate synthase (CS, a Krebs 

cycle enzyme and marker of mitochondrial content) in two 1mm-diameter, 200μm deep tissue 

punches, establishing in our hands the lowest detection limit for mouse brain tissue. This 

represents <1mg of tissue (estimated 0.33mg), over an order of magnitude more sensitive than 

currently available methods.  
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In this pipeline, the same biological sample used for enzymatic activities is also used to 

quantify mtDNA abundance, both by i) the classical metric relative to the nuclear genome – 

mtDNA/nDNA ratio, termed mtDNA copy number (mtDNAcn)46, and ii) per tissue volume 

(mtDNA copies per μm3 or per mg), termed mtDNA density. qPCR data of nuclear genome 

abundance across the brain, independent of the mtDNA, showed that cellular density varies by 

up to ~8.5-fold between brain regions (highest: cerebellum, lowest: visual cortex). Unlike in 

peripheral tissues, this remarkably large variation in neuronal and glial cell somata density 

significantly skews mtDNAcn estimates. Extended Data Fig. 2 shows the inter-correlations of 

mtDNAcn and mtDNA density in relation to enzyme activities. Compared to mtDNAcn, which is 

confounded by the presence or absence of somata/nuclear genome, mtDNA density was more 

consistently associated with RC enzymatic mitochondrial phenotypes across all brain regions, 

and therefore likely represents a more generalizable estimate of mitochondrial genome 

abundance across mouse brain regions. 

We subsequently combined these five primary mitochondrial measures into a 

mitochondrial health index (MHI) by dividing RC activities (CI+CII+CIV) by mitochondrial content 

(CS+mtDNA density), thus creating an index of energy production capacity on a per-

mitochondrion basis30 (see Methods for details). Although each of the six resulting features are 

partially correlated with other features, the proportion of shared variance between individual 

features across brain regions is 31-64%, indicating that they each contribute some non-

redundant information about mitochondrial phenotypes, which can be deployed at scale. 

Our study design first aimed to profile animal-to-animal differences in mitochondrial 

phenotypes across a broad set of brain regions known to be associated with anxiety-related 

behavior, social behaviors, cognition, or mitochondrial disorders, and to relate these measures 

to each animal’s behavioral phenotypes. In total, we enzymatically and molecularly phenotyped 

571 samples covering 17 cortical, sub-cortical and brainstem brain regions isolated by bilateral 
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punches at defined stereotaxic coordinates (Table 1, Extended Data Fig. 3). To eventually 

compare the specificity of our findings related to brain and behavior, 5 peripheral tissues were 

also collected and analyzed from each animal, which we expected to show somewhat related 

but more modest associations with behavioral outcomes.  

Protein levels and enzymatic activity 

We initially explored if RC protein abundance is a viable surrogate for mitochondrial RC 

activity31, which could theoretically allow high spatial resolution imaging of the entire brain. We 

focused on the cerebellum due to its well-defined cellular composition and laminar organization, 

where the Purkinje cell layer is flanked by molecular and granular layers14 (Extended Data Fig. 

4a). Compared to protein abundance, enzymatic activity ultimately determines mitochondrial RC 

function and energy production capacity and consequently should be regarded as the most 

representative measure of mitochondrial phenotypes. In consecutive cerebellar slices, we 

compared RC complex II enzymatic activity measured spectrophotometrically, to the protein 

abundance of a complex II subunit, SDHA (succinate dehydrogenase, subunit A), for which a 

validated high-affinity antibody allows its quantification by microscopy (Extended Data Fig. 4b-

c). Across the three cerebellar layers, enzyme activity did not correlate with protein abundance 

assessed by immunohistochemistry and densitometry (proportion of shared variance, r2=0.02-

0.07), indicating that protein abundance and enzymatic activity are not equivalent (Extended 

Data Fig. 4d). The reasons for this finding could include the action of post-translational 

modifications, stoichiometry of the four SDH subunits, or the biochemical context that drive 

biochemical activity independent of protein content (e.g.,47). Therefore, we focus all downstream 

analyses on direct measures of mitochondrial RC enzymatic activity and mtDNA density.   

Diversity of mitochondrial RC activities between animals 

We next examined mitochondria-behavior associations in a cohort of mice exhibiting 

naturally-occurring behavioral and mitochondrial variation. Our goal was to identify robust and 
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generalizable associations between mitochondrial phenotypes and behavior, rather than 

potential correlations that would exist among only subgroups of animals (naïve or stressed). 

Therefore, to further extend the spectrum of mito-behavior variation using well-characterized 

rodent stress models, subgroups of the cohort were either chronically administered 

corticosterone (CORT)48 for three months, or exposed to 10 days of chronic social defeat stress 

(CSDS)49 (see Extended Data Fig. 3a). To create additional diversity among groups, half of the 

CSDS mice were allowed to recover for two months, as some stress-induced behavioral and 

mitochondrial changes may change again when the stressor is removed. Based on previous 

work24,50, we also expected naturally-occurring behavioral and brain molecular phenotype 

differences between animals that are resilient or susceptible to CSDS (based on the social 

interaction test; see Methods)51. The naturally-occurring variation in mitochondria and behavior 

plus the effects of various exposures provides a strong test of robustness for our hypothesis, 

which was that across a diverse population of mice, mitochondrial phenotypes in specific brain 

regions are consistently associated with behaviors. 

Across our cohort of inbred male mice with a range of exposures, a wide spectrum of 

mitochondrial phenotypes was observed. The average variation for all measures (4 individual 

RC enzymatic activities and mtDNA density) across all animals and all 17 brain regions was a 

C.V. of 36% (coefficient of variation = standard deviation / mean). For any given brain region, 

the absolute variation in mitochondrial phenotypes between mice reached up to 2.9-fold 

between the animal with the lowest and the animal with the highest activities. This means that 

for a given brain region, there are large mouse-to-mouse differences in mitochondrial content 

and RC activities, even among inbred naïve mice not exposed to stressors (Extended Data Fig. 

5). Peripheral tissues showed an average animal-to-animal C.V. of 25%, about a third less 

variation than for brain regions, indicating that the brain may exhibit particularly large inter-

individual differences.  
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To verify that the interventions used to enhance naturally-occurring variation in behavior 

and mitochondria were effective, we first compared mitochondrial features in mice exposed to 

CORT and CSDS relative to naïve mice. The effects of CORT and CSDS on mitochondrial 

phenotypes were quantified as standardized effect sizes (Hedges g) and shown in Figure 1a-c 

(detailed in Extended Data Fig. 6). Both interventions altered mitochondrial RC complexes, CS 

enzymatic activities, mtDNA density, and MHI in a region-specific manner. Although not 

statistically significant, CORT-treated mice tended to have higher mitochondrial activities than 

non-stressed animals in ~60% of brain regions, whereas CSDS animals trended towards lower 

activities in ~82% of brain regions, which was statistically significant for CI, CIV, and MHI 

measures (Figure 1d), suggesting opposing effects of these two different stress models on 

brain mitochondria. This could be due to either the nature of the stressor, or their durations. The 

amygdala (Amyg) showed the greatest CORT-induced increase in CII enzymatic activity (+49%, 

p<0.05, unadjusted p value), whereas the periaqueductal gray (PAG) showed the largest 

CSDS-induced decrease in CI activity (-42%, p<0.05, unadjusted). 

To determine if brain regions were co-regulated in their stress-induced mitochondrial 

recalibrations, we employed a topological data analysis (TDA)-based Mapper approach. Mapper 

is a variant of nonlinear dimensionality reduction methods (manifold learning) that produces a 

graph or network embedding of the high-dimensional data (a.k.a. shape graph) while recovering 

projection loss using an additional partial clustering step52,53. When applied to the six 

mitochondrial features (i.e., four enzyme activities, mtDNA density, and the MHI) separately for 

CORT and CSDS (both measured as delta of stress vs the naïve group average), the shape 

graphs revealed differences in regional mitochondrial recalibrations across the two groups 

(Figure 1e-f). This was quantified using a graph-theoretical measure of participation coefficient 

(PC)54, where higher values of PC indicate uniformly distributed connectivity across regions 

(integrated network) and lower values indicate a segregated connectivity pattern. CORT-
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induced mitochondrial recalibrations were relatively more region-specific or segregated, 

whereas CSDS caused a more coherent or integrated mitochondrial response across all brain 

regions (Figure 1g).  

 Although we were not powered to make statistical comparisons between recovery-

susceptible and -resilient mice based on the social interaction test for CSDS mice, we did 

observe relatively large differences in effect sizes (g > 0.8) in mitochondrial recalibrations 

between the groups that could be explored in the future work (Extended Data Fig. 7). 

Additionally, compared to non-recovered CSDS mice, animals who were allowed to recover 

from CSDS for 57 exhibited mitochondrial phenotype changes only marginally different from 

control mice, and in a limited number of brain regions (Extended Data Fig. 8). This result 

suggests, along with the main group differences, that the brain mitochondrial recalibrations are 

dynamic over time scales ranging from days to weeks. 

Overall, these univariate and TDA-based results established the existence of naturally-

occurring and acquired variation in brain mitochondrial phenotypes between animals, providing 

a strong basis to test the existence of conserved associations with behaviors. 

Diversity of anxiety and depressive like behaviors 

Similar to the spectrum of mitochondrial phenotypes across mice, as expected from 

previous work, animals also naturally exhibited large variation in their behavioral phenotypes. 

Behavioral tests included potential threat (“anxiety”) monitored by the open field test (OFT) and 

elevated plus maze (EPM), hyponeophagia monitored by novelty suppressed feeding test 

(NSF), and approach-avoidance conflict using the social interaction test (SI). Because specific 

behavioral tests are generally administered in conjunction with specific interventions (CORT, 

CSDS), some animals were only tested on some and not all behaviors. Both CORT and CSDS 

produced the expected elevation in anxiety-related behavior compared to naïve mice (Extended 

Data Fig. 9). Results from the behavioral tests either correlated moderately with each other 
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(EPM and OFT, r=0.60), were not correlated (OFT and NSF, r=-0.02), or were negatively 

correlated (OFT and SI, r=-0.46). This indicated that each test captures different aspects of 

behavior, thereby providing a basis to examine how different aspects of behavior might relate to 

region-specific brain mitochondrial phenotypes.  

Brain MHI correlates with specific behaviors 

We next evaluated the extent to which mitochondrial phenotypes in different brain 

regions was associated with behavior across all animals (Figure 2a). Behavioral scores were 

transformed so that higher scores on each test indicate higher avoidance/anxiety-like behaviors 

(as in 24) (See Methods, Extended Data Fig. 9). Behavioral scores were then correlated with 

the 6 measures of mitochondrial phenotypes, where higher values indicate higher mitochondrial 

content or RC functioning. A frequency distribution of the effect sizes (Spearman r) for all 

mitochondrial-behavior pairs revealed a significant non-zero correlation between MHI in the 17 

brain regions and behavior on OFT (p<0.01), EPM (p<0.0001), and SI (p<0.0001), but not for 

NSF (Figure 2b, Gaussian frequency distributions for the other mitochondrial features are 

shown in Extended Data Fig. 10). Time to feed on the NSF was capped at 600 seconds, so the 

correlations are less precise than for other tests.  

To better understand which brain regions were driving the direction and magnitude in the 

distributions, we then examined the patterns of correlations for all 17 brain regions, for all 6 

mitochondrial features, across the 4 behavioral tests (Figure 2c). In the majority of brain 

regions, higher mitochondrial metrics were correlated with higher avoidance scores based on 

OFT (average r=0.12) and EPM (average r=34), although these overall correlations did not 

reach statistical significance. The strongest correlations were of 0.51 for CII in the primary motor 

cortex (M1) and OFT (p=0.025, linear regression, unadjusted), and 0.92 for MHI in the nucleus 

accumbens (NAc) and EPM (p=0.0005, unadjusted). Previous research in rodents showed that 

mitochondrial RC function in brain regions such as the NAc is linked to complex behaviors such 
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as social dominance and anxiety4,31.  For NSF there was more heterogeneity between brain 

regions, with a similar number of positive and negative correlations. Finally, for SI, we observed 

the opposite relationship; animals with higher mitochondrial content and RC activities generally 

displayed greater sociability (lower social avoidance) (average r=-0.21, strongest for MHI in the 

substantia nigra (SN) and SI, r=-0.78, p=0.0035, unadjusted). Interestingly, of the six 

mitochondrial features, the strongest mito-behavior correlations (for 3 out of 4 behaviors) were 

for MHI, which may reflect the superiority of MHI as an integrative measure of mitochondrial 

energy production capacity over individual enzymatic and molecular features, as previously 

observed30,55,56.  

As expected, the average correlation between RC activities and behaviors was 

significantly more consistent for brain mitochondria than for mitochondria in peripheral tissues 

(Figure 2d). For example, whereas mitochondrial phenotypes in several brain regions correlate 

with anxiety-related behavior on the EPM, mitochondrial measures in the muscles, heart, liver, 

or adrenal glands of the same animals on average, did not correlate with behavior. This finding 

aligns with recent work in mice showing that mitochondrial phenotypes exhibit strong 

segregation between different cell types and tissues57, and has two implications. First, it 

reinforces the specificity of these mito-behavior findings for the brain. Second, it implies that 

mitochondria across the brain and other tissues within an individual mouse are not equivalent, 

and likely differentially regulated57. This naturally raised the question whether specific brain 

regions within an animal could also exhibit independently regulated mitochondrial properties, 

and whether brain regions could be functionally organized into separate networks based on their 

mitochondrial properties.  

Mitochondrial phenotype-based organization of the brain 

 To address this question, we first asked whether mitochondrial features in each brain 

region/tissues were statistically independent or correlated with other tissues. Using the same 
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rationale that underlie functional connectivity analysis in fMRI data58-60, we first generated a 

correlation-based similarity matrix of all mitochondrial measures across brain regions and non-

brain tissues (Figure 3a). Within the 17 brain regions, mitochondrial features were generally 

positively correlated (average r=0.22, p<1-100, two-sample t-test), with a few exceptions. Thus, 

within the brain, higher mitochondrial activities in one region generally also implies higher 

activities in other regions (p<1-82, one-sample t-test).  

Consistent with the co-regulation of RC enzymes within the mitochondrion, a modular 

structure was also apparent, indicating that mitochondrial features within each region were more 

similar than with other regions (p<0.0001, permutation test). Figure 3b shows the average 

correlations of each mitochondrial feature with other features among all brain regions – RC 

enzymes were most strongly co-regulated (average rs=∼0.7-0.8), followed by mtDNA density (r=

∼0.6), and MHI (r=∼0.5), again suggesting that MHI captures different information than individual 

measures. To compute how similar each region is to other regions, we computed nodal degree 

(i.e., average inter-regional correlation, similar to the concept of global connectivity) for all 

regions. Nodal degree was highest in the cerebellum (average r=0.34) and lowest in the 

brainstem vestibular nucleus (r=0.05) (Figure 3c), suggesting that the region-to-region similarity 

in mitochondrial phenotypes is not randomly distributed across the mouse brain.  

As suggested above from the divergence between brain regions and peripheral tissues 

in the mito-behavior correlation patterns, the mitochondrial features in peripheral tissues were 

not correlated with brain mitochondria (average r=0.02) or with other peripheral tissues 

mitochondria (average r=-0.03) (Figure 3d). The lack of association between brain and non-

brain tissues of the same animals suggest that MHI (as well as content and RC activities, data 

not shown) is not a ubiquitous animal-level feature, but rather relatively independently defined in 

the brain, and further specified among each brain region.  
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Given the overall positive connectivity across the brain and recent evidence of circuit-

level metabolic coupling across large neural networks in the Drosophila brain12, we examined 

whether certain regions exhibited particularly strong mitochondrial feature co-regulation. 

Functional brain networks in the living brain are defined by synchronous activity patterns (e.g., 

default-mode network, fronto-parietal network). Similarly, we reasoned that connectivity patterns 

of mitochondrial features (based on single measurements) could reflect networks of brain 

regions with similar bioenergetic properties. To examine this hypothesis with a framework 

agnostic to anatomical categorization and inclusive of all mitochondrial features, we performed 

multi-slice community detection analysis61, with mitochondrial features represented in six 

separate layers (Figure 3e). Categorical multi-slice community detection allow to detect 

cohesive groups of brain regions, or communities, that: i) are more similar to each other than 

they are to the rest of the regions, and ii) have cohesion converging across the six layers of 

mitochondrial features. Representing all 17 brain regions, and across 6 mitochondrial features, 

we found 3 separate communities, or networks: 1) Cortico-striatal network: CPu, visual, motor, 

mOFC, mPFC and NAc; 2) Salience/Spatial navigation network: cerebellum, vestibular nuclei, 

VTA, thalamus, hippocampus (CA3), and dentate gyrus (dorsal and ventral); and 3) Threat 

response network: amygdala, hypothalamus, substantia nigra, and periaqueductal grey (Figure 

3f).  

To examine whether this functional organization of the brain revealed using 

mitochondrial phenotypes was also evident cross-modally, we used two Allen Brain Atlas 

datasets of brain-wide gene co-expression62, and EYFP-labeled axonal projections that define 

the structural connectome63, developed in the same mouse strain. Specifically, we examined 

whether gene expression correlations and structural connectivity within brain regions that are 

functionally grouped together as a network, based on mitochondrial features, is higher than 

expected by chance. We used two independent graph theoretical metrics: strength fraction 
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(S.F.)64 and quality of modularity (Q_mod)65, to examine whether similar communities exist in 

gene and structural connectivity data as in our mitochondrial phenotype data. Using permutation 

testing, we randomly shuffled community structure of brain regions 10,000 times to determine 

whether the community structure derived from mitochondrial features is also evident in gene co-

expression and structural connectivity data. Both strength fraction and quality modularity 

statistics indicated that mitochondria-derived networks also have higher similarity in gene co-

expression (S.F. p=0.020; Q_mod p=0.008) and structural connectome data (S.F. p=0.029; 

Q_mod p=0.015) than expected by chance (Extended Data Fig. 11). Hence, this provides 

convergent multimodal evidence of mitochondrial phenotypic organization overlapping with gene 

expression and structural connectivity. 

Network-level mitochondria-behavior correlation 

Finally, to examine the potential significance and added value of this effective brain-wide 

mitochondrial connectivity in relation to animal behavior, we used the mitochondria-derived 

network results to partition the brain into three networks, and then analyzed the ability of each 

network to linearly predict behaviors. The mitochondrial-behavior correlations varied both in 

strength and direction between the three networks, and the mitochondrial phenotypes among 

the three networks had largely divergent associations with behaviors. The average 

mitochondrial activity in the cortico-striatal network consistently showed the strongest average 

correlations with behaviors measured in the OFT, EPM, and SI tests (r=0.20, 0.54, -0.41, 

respectively). For the EPM, mitochondrial features in the cortico-stratal network (1) accounted 

for up to 33% of the animal-to-animal variance in behavior (EPM). In contrast, the 

salience/spatial navigation network (2) exhibited the weakest average correlations for the same 

three behaviors (r=-0.03, 0.18, -0.14), accounting for <5% of behavioral variance (Figure 3g). 

Together, these results suggest the presence, specificity, and functional significance of brain-

wide mitochondrial networks, embedded within existing neural circuitry in the mouse brain. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 3, 2022. ; https://doi.org/10.1101/2021.06.02.446767doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.02.446767
http://creativecommons.org/licenses/by/4.0/


 16

Discussion 

Using a high-throughput approach to functionally phenotype hundreds of brain samples 

from a heterogenous mouse cohort, we have defined brain-wide associations between 

mitochondrial phenotypes and behaviors. Combined with previous findings31,35, the diverging 

mito-behavior associations between brain regions, and between brain and non-brain tissues, 

brought to light the possibility that different brain regions might exhibit different mitochondrial 

phenotypes. In particular, the network characteristics of mitochondrial phenotypes across the 

brain provided evidence for the modular distribution of mitochondria across cortical and sub-

cortical regions, as well as their relevance to animal behaviors. Based on these data, we 

conclude that mouse brain mitochondria may exist as behaviorally-relevant networks 

overlapping with, but distinct from, other modalities including gene expression and structural 

connectivity.  

Utilizing CORT and CSDS interventions to induce behavioral variation in our animal 

cohort also allowed us to compare the effects of these two interventions on mitochondrial 

phenotypes. Some brain regions were found to respond, in some cases, in opposite directions, 

particularly after exposure to CORT. In contrast to CORT, the recalibrations of brain 

mitochondria to CSDS was more uniform, with the majority of brain regions exhibiting a 

coordinated reduction in most mitochondrial features. This difference in mitochondrial 

recalibrations between both stress models may be driven by several factors. This includes the 

stressor duration, although the temporal dynamics over which stress-induced mitochondrial 

recalibrations take place remain porrly defined and will require further focused attention. 

Differences in the effects of CORT vs CSDS on mitochondria also could be related to their 

neuroendocrine underpinnings (single hormone for CORT vs multiple physiological 

neuroendocrine recalibrations for CSDS), regional differences in glucocorticoid and 
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mineralocorticoid receptor density, or other factors generally relevant to interpreting chronic 

stress rodent models.  

One valuable aspect of our study is that it highlights the specificity of earlier findings 

indicating a connection between mitochondrial RC function in the NAc and anxiety behaviors4,31. 

In our study, the strongest correlation between EPM-based anxiety-like behavior and MHI was 

in the NAc, confirming the strong association between NAc mitochondrial energy production 

capacity and anxious behavior. We also extend this finding to show that mitochondrial 

phenotypes are linked to behaviors across not only isolated regions, but likely distributed among 

brain networks. Similar to the conceptual shift from regional and cellular perspectives towards 

distributed brain networks, circuits, and neuronal ensembles66,67, our findings therefore advance 

the notion that mitochondria may modulate brain function and behavior through distributed mito-

networks. This notion is consistent with recent evidence of metabolic coupling with distributed 

brain-wide patterns of neural activity linked to behavior in Drosophila12. 

While we cannot directly explain why distinct mitochondrial phenotypes appear to exist 

across brain regions, this may be driven by three main factors. First, mitochondria could 

respond to differences in neuronal circuit functioning, in agreement with observed coupling of 

neuronal and metabolic activities12, such that the cellular infrastructure of neural circuits that fire 

together not only wire together, but also generate similar mitochondrial phenotypes (i.e., 

mitotypes). A second possibility is that brain regions which are regularly co-activated, i.e., within 

the same functional networks, harbor similar levels of receptors for neuroendocrine factors 

(stress and sex steroids) known to influence mitochondrial biogenesis and/or functional 

specialization68,69. A third possibility would involve differences in metabolites and substrates that 

regulate mitochondrial RC activities, arising similarly among co-activated brain regions. These 

and other potential factors underlying the modularity of mitochondria within the mouse brain 

remain to be investigated. 
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 From a mitochondrial biology perspective, our data highlights a potentially important 

distinction between mitochondrial content (abundance of mitochondria) and RC activity 

normalized to mitochondrial content, such as the MHI (respiratory chain activity per 

mitochondrion). Frozen tissue measurements naturally reflect the maximal functional capacity of 

the mitochondria RC, rather than their actual in vivo rates that are driven by neural activity and 

metabolic demands. Interestingly, the behavioral correlations with mitochondrial content 

features (mtDNA density and CS activity) for social avoidance behavior were similar to one 

another, and differed somewhat from RC enzyme activities. Experimentally, the specificity of 

these findings contrasting content from RC enzyme activities highlights the value of parallel 

assessments of multiple mitochondrial features reflecting unique mitochondrial phenotypes (i.e., 

mitochondria are not all created equal). In neuroimaging terms, the composite MHI can be 

understood as the mitochondrial analog to fMRI-based multi-variate pattern analysis 

(MVPA)70,71, where multiple features (mitochondrial enzymes for MHI, voxels for MVPA) are 

combined to create a more stable and statistically accurate metric of the desired outcome 

(mitochondrial health for MHI, or brain activation for MVPA). Moreover, mtDNAcn has previously 

been assessed across multiple brain regions72, but our results go beyond these observations in 

showing that quantifying mtDNA content on a per-cell basis (mtDNA:nDNA ratio) is heavily 

skewed by cellularity variations across brain regions and not directly related to RC energy 

production capacity. As such, the mtDNA:nDNA ratio (mtDNAcn) is driven by how many cell 

bodies are present in the tissue, and correlates poorly with either mitochondrial content or RC 

activity. Therefore, our data reinforce the notion that mtDNAcn on its own is not a valid measure 

of mitochondrial phenotypes73,74. In the mouse brain, our findings suggest that mtDNA density 

per unit of volume (rather than per cell) is a more biologically meaningful mitochondrial feature 

when comparing brain regions that differ in cellularity.  
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By examining mitochondrial features across the mouse brain, we discovered a moderate 

level of global functional connectivity across mitochondria in most brain regions, but not among 

peripheral tissues (Figure 3). By functional connectivity, we do not imply that mitochondria are 

directly connected to each other in the same way that neurons project and chemically 

(de)activate each other; but rather that they share functional properties. If mitochondrial 

phenotypes are directly determined by genetic and physiological factors, the logical expectation 

is that all mitochondria within different organs of the same organism should exhibit a high 

degree of coherence (i.e., correlated with each other). In other words, the animal with the 

highest mitochondrial content or RC activities in the one brain region should also be the animal 

with the highest activities in other brain regions and tissues. Our results strongly disprove this 

point. Similarly, previous work on multiple human tissues showed that mtDNAcn was not 

significantly correlated between organs, including across three brain regions75. Here we extend 

these data to 17 brain regions and 5 non-brain tissues, demonstrating that identified correlations 

are relatively modest (the strongest is r=0.31 for the cerebellum, representing less than 10% of 

shared variance). Notably, while on average we observed some degree of mitochondrial 

phenotype coregulation across the brain, some brain regions exhibited no consistent correlation 

with other regions. The most parsimonious explanation for this result is that individual animals 

differentially recruit different circuitry, which secondarily shape their mitochondria and drive 

animal-specific patterns of regional mitochondrial variation. Considering theories that stipulate 

that the brain strives for maximal energetic efficiency1 and that there may be limits to cellular 

energy conversion rates76, we also cannot exclude the possibility that a limited quantity of 

resources (i.e., mitochondrial content or energy conversion) is available within the brain or the 

whole organism, which are distributed unequally in an activity-dependent manner among 

different organ systems, functional networks, and individual brain regions. Thus, we speculate 

that different animals may achieve an optimal balance of systemic and neural functions through 
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specific combinations of mitochondrial activity in different brain regions, a possibility that 

remains to be tested. 

In trying to better understand why certain regions displayed stronger brain-wide 

connectivity than others, we identified mitochondria-based communities, or networks of brain 

regions. Interestingly, these mitochondria-derived networks share general anatomical features 

with established large-scale networks. For example, the identified cortico-striatal network 1 

includes the CPu, NAc, mOFC, mPFC, and motor and visual cortex, which are implicated in 

decision making and executing actions77. Network 2 (Cereb, VN, VTA, Thal, CA3, DGv and 

DGd) is the most heterogenous but comprised of regions that are known to be connected and 

involved in salience and spatial navigation78. Lastly, network 3 includes limbic and limbic-

associated regions (Amyg, Hypoth, PAG and SN) involved in threat responses79,80. In comparing 

these mitochondria-derived networks to gene expression and structural connectome data we 

found that the communities significantly overlap across modalities. However, they are not 

identical, suggesting that mitochondrial properties are not the simple product of either gene 

expression nor structural connectivity. Finally, each network’s integrated mitochondrial 

phenotype exhibited different associations with behavioral responses. Unsurprisingly, the 

cortico-striatal network 1 explained the greatest proportion of variance in behavior, accounting 

for up to one third of the variance in anxiety-related behavior among animals. This quantitative 

observation increases the likelihood that the identified large-scale mitochondrial networks are 

functionally relevant. This network perspective may provide a basis to further delineate and 

develop accurate models brain-wide mitochondria organization and specialization. 

Until now, the methods used to reveal neurobiological and metabolic networks in 

mammals have typically been through indirect functional and structural connectivity analysis20. 

Here we have developed a scalable approach to examine mitochondrial phenotypes across a 

large number of brain regions in mice with a range of behavioral phenotypes. We showed that 
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mitochondrial phenotype connectivity was non-random, and linked with gene co-expression and 

structural connectivity, thereby providing converging evidence of mitochondria-based networks 

across modalities. This study synergizes with recent work12 providing the technical and 

empirical foundation to bring mitochondrial biology into brain-wide, network-based models of 

neural systems in mammals. Applied to mitochondria, network-based analytics should 

contribute to develop more accurate maps, and eventually an understanding of what drives 

mitochondrial and metabolic properties across interacting neural circuits. Developing a spatially-

resolved understanding of brain mitochondrial biology will help to resolve the energetic 

contraints on brain function and behavior.  

Limitations. Notable limitations of this study include the lack of cell type specificity. 

Neurons operate in a metabolic partnerwhip with astrocytes and glial cells81, and different cell 

types exhibit different molecular mitochondrial phenotypes (e.g.,82) that cannot be disentangled 

in tissue homogenates. While neither enzymatic or functional mitochondrial profiling at the 

single brain cell is currently technically feasible, it remains possible that mitochondrial 

phenotypes between brain regions are influenced by differences in cell type proportions. 

Moreover, our molecular and biochemical mitochondrial phenotypes do not reflect other factors 

that can influence the efficiency or activity of the mitochondrial RC or OxPhos system in vivo, 

such as variations in cofactor abundance and RC structural assembly (e.g., supercomplexes)83. 

Because functional assays require harvesting brain tissue, it also was not feasible to asertain 

within a given animal how stable (trait) or dynamic (state) the brain biochemical mitochondrial 

phenotypes are. If mitochondrial phenotypes were more dynamic than expected, our estimated 

proportion of behavioral variance attributable to mitochondrial biology could be substantially 

underestimated. 
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Methods 

Animals 

This study was carried out in accordance with NIH Guidelines, and was approved by the 

Institutional Animal Care and Use Committee (IACUC) at New York State Psychiatric Institute. 

Adult (52 weeks old) C57BL/6J male mice were obtained from Jackson Laboratories (n=29). 

Three month-old CD1 retired breeder male mice were obtained from Charles River, and were 

used as the aggressors in the social defeat model.  

Chronic Social Defeat Stress (CSDS) 

Aggressors Prescreening: All CD1 mice used in the experiment were pre-screened for 

aggressive behaviors as previously described50. During a three-day screening procedure, a 

novel C57BL/6J mouse was placed in the cage of the CD1 mouse for 3 min. C57BL/6J 

screener mice were not further used in the study. The latency of the CD1 mouse to attack the 

C57BL/6J screener mouse was recorded. CD1 mice that attacked in less than 1 minute on at 

least the last two consecutive screening days were considered to be aggressive.  

Experimental Groups: Thirteen C57BL/6J mice underwent social defeat stress, while 6 

remained in their cages, to serve as the naïve group. Animals were randomly assigned to these 

groups. One mouse subjected to social defeat died of unknown causes during the duration of 

the experiment. Of the remaining 12 social defeat mice, half (n=6) were sacrificed two days after 

the completion of the stressor, and they are referred to as the ‘stressed’ CSDS group. Three 

naïve mice were sacrificed at the same time. The other half of the CSDS mice (n=6) along with 

3 naïve mice, were allowed an 8.5 weeks (59 days) stress recovery period prior to sacrifice. 

This group is referred to as the ‘recovered’ group. Animals were selected for the recovery group 

from the CSDS group so that there was an even ratio of susceptible to resilient mice in the 

‘stressed’ and ‘recovered’ groups.  
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Social Defeat Paradigm: Adult experimental male C57BL/6J mice (n = 13) were exposed 

to a CSDS paradigm daily, for 10 days. The experimental C57BL/6J mice were placed in the 

cage of a new CD1 aggressor mouse for 5 minutes every day, for 10 consecutive days. After 

the 5 minutes of physical defeat, the C57BL/6J mice were housed in the same cage as the CD1 

aggressor, with a perforated plexiglass divider to separate them for 24 hours. After the 10 days 

of defeats, experimental C57BL/6J mice and CD1 mice were singly housed. Adult naïve male 

C57BL/6J mice (n = 6) were housed 2 mice per cage separated by a perforated plexiglass 

divider. To control for the effects of experimental handling, each naïve mouse was paired with a 

new naïve mouse every day for 10 days. 

Corticosterone administration (CORT) 

Corticosterone (Sigma Aldrich, St Louis, MO) was dissolved in vehicle (0.45% ß-

cyclodextrin) at a concentration of 35 µg/ml, equivalent to administration of ~5 mg/kg/day per 

mouse48. C57BL/6J mice (n=5) were group-housed and administered corticosterone in their 

drinking water. Naïve mice (n=5) were group-housed and received only vehicle. Animals 

were randomly allocated to the two groups. Water bottles were prepared twice a week, and the 

mice never had access to other water. Behavioral testing began on day 56 of CORT 

administration. Experimental and naïve mice were sacrificed on day 63 following the completion 

of behavioral testing. The duration of administration was 9 consecutive weeks. The study design 

with the number of animals allocated to each condition are listed in Supplemental Table 1 and 

in Extended Data Figure 2. 

 

Behavioral tests 

Social Interaction (SI) Test: Social avoidance was measured 24 hrs after the completion 

of the last day of defeat (day 11). During the first trial, experimental mice were allowed to 
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explore an open field arena (40 cm × 40 cm × 40 cm) containing an empty wire enclosure for 

2.5 minutes. During the second trial, a CD1 mouse was placed into the wire enclosure, and the 

C57BL/J6 mouse was reintroduced for 2.5 minutes. Time spent in the SI zone and time spent in 

the corner zones during the first and second trial were recorded. SI ratios were calculated as 

time spent in the SI zone during the second trial divided by time spent in the interaction zone 

during the first trial 24. Mice with SI ratios of  <1 were considered ‘susceptible’ (n = 6), while mice 

with SI ratios >1 were considered ‘resilient’   (n = 7)84. Corner zone ratios were calculated as 

time spent in the corner zones during the second trial divided by time spent in the corner zones 

during the first trial.  

Open Field Test (OFT)- both groups: OFT were run 24 hrs after the SI tests for CSDS 

mice, and on day 56 of CORT administration. Each mouse was placed in an open field arena 

(40 cm × 40 cm × 40 cm) for 10 minutes. A camera on a tripod stand was set up above the 

arena to record the activity, and the video was later analyzed using Ethovision XT (Noldus). 

The percent of time spent in the center of the open field (20 cm x 20 cm) and the percent 

distance traveled in the center of the open field were analyzed.  

Elevated Plus Maze (EPM): EPM tests were done the day after the OFT for CORT 

mice (day 57 of treatment). Each mouse was placed in an elevated plus maze for 10 minutes. 

A camera on a tripod stand was set up above the arena to record the activity, and the video 

was later analyzed using Ethovision XT (Noldus). The percent of time spent in the open arms 

was analyzed.  

Novelty Suppressed Feeding (NSF): NSF was performed after EPM for CORT mice 

(day 59 of treatment), and as previously described85. Briefly, NSF testing apparatus consisted 

of a plastic box (50 x 50 x 20 cm) with 2 cm of wood chip bedding. The center of the arena was 

brightly lit (1200 lux). Mice were food restricted for 15 h during the dark phase prior to testing. At 

the time of testing, a single pellet of food (regular chow) was placed on a white paper platform 
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positioned in the center of the box. Each animal was placed in a corner of the box, and a 

stopwatch was immediately started. The latency of the mice to begin eating was recorded 

during a 10-min test. Immediately after mice took a bite from the food pellet, the pellet was 

removed from the arena. Mice were then placed back in their home cage and latency to eat and 

the amount of food consumed in 5 min were measured (home cage consumption). NSF latency 

was capped at 10 min, with animals that did not consume any portion of the pellet receiving a 

score of 600 sec. 

Behavioral Z-Scores: Social avoidance scores were determined by averaging the z 

scores for 4 measures as previously described24; SI ratio, corner ratio, time spent in SI zone, 

and time spent in corner zones. The z scores for SI ratio and time spent in SI zone were 

multiplied by -1, so that higher scores across all 4 measures indicated higher avoidance. 

Similarly, the OFT score was determined by averaging the z scores for the 2 measures. The z 

scores were multiplied by -1, so that higher OFT score indicate higher avoidance of the brightly 

lit center of the OF. EPM scores were also multiplied by -1, so that higher EPM scores indicate 

higher avoidance of the open arms of the EPM. High NSF scores already indicate higher 

avoidance, so they were not inverted. Therefore, across all 4 tests, higher scores indicate higher 

anxiety-like/avoidant behavior.  

 

Tissue Collection  

Animals were sacrificed by rapid decapitation to maintain mitochondrial integrity in brain 

tissue. Brains were rapidly flash frozen in ice-cold isopentane, stored at -80°C, and later 

transferred to -170°C (liquid nitrogen vapor) until mitochondrial measures were performed. 

Brains were transferred back to -80°C during the week prior to being sectioned and were then 

transferred to -30°C the night before sectioning. Brains were sectioned coronally on a Leica 

Model CM3050 S cryostat. The cryostat internal temperature and blade temperature were set to 
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-22°C during sectioning. Brains were mounted onto a specimen disk using optimal cutting 

temperature (OCT) compound. The brain was sectioned coronally, alternating between two 

200μm thick slices and then two 20μm, and were deposited onto microscope slides. Brain 

sections were kept at -80°C until brain region-specific tissue sample collection. One of the 

recovered CDSD mouse brain contained blood and could not be reliably sectioned, so this 

animal’s brain tissue was excluded from analysis. A second CSDS mouse brain and a naïve 

brain both cracked during slicing, so some of the brain regions (n= 7 for CSDS mouse, n=8 for 

naïve) could not be obtained from those brains, but the regions that were obtained were 

included in analysis.  

Tissue biopsy punches on frozen brain sections: The scalable Allen Mouse Brain 

volumetric atlas 2012 86 was used to determine the location of each brain region of interest, and 

their distance from bregma. The atlas’ Nissl-stained images were used as a reference for 

estimating each section’s distance from bregma, which determined which brain slices would be 

used for punch biopsy collection of each region of interest (Extended Data Fig. 3b). Brain 

slices were punched using 1.00mm diameter Robbins True-Cut Disposable Biopsy. Two 

bilateral punches were collected for each brain region over dry ice. For brain regions in the 

midline, punches were taken from two consecutive slices. All tissue punch locations were 

approximated by using landmarks on the slice and by comparing to the atlas. It is important to 

note that the 1mm puncher was larger than the actual brain region in some instances, and so 

parts of neighboring brain regions may have been included in the punches. Therefore, the 

punching technique may include some error. Punches were stored at -80°C until they were 

ready to be used for enzymatic activity assays. Intact consecutive 200μm cerebellar slices were 

stored at -80°C for immunohistochemical staining.  

The tissue punches were too light to be accurately weighed, so we had to estimate the 

weight based on the reported mouse brain density of 1.04g/cm387. The punches were 0.5mm 
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(diameter) by 200μm (height), so using the equations � � ��� � �  and � � �

�
 we obtain an 

estimated mass of 0.163mg per punch, thus 2 punches were approximated to weigh 0.327mg.   

Mitochondrial Measurements  

Tissue Preparation: The punches from each brain region were homogenized in 0.2mL of 

homogenization buffer (1mM EDTA and 50mM Triethanolamine) (2x 1mm tissue punch/ 0.2mL 

of homogenization buffer), with 2 tungsten beads to disrupt the tissues’ cells and release the 

mitochondria. Tissues were homogenized using a Tissue Lyser (Qiagen cat# 85300), which was 

run at 30 cycles/sec for 1 minute. The tissues were then incubated in ice for 5 minutes, and 

were then re-homogenized for 1 minute. Tissues were vortexed to ensure homogeneity. 

Peripheral tissues were cut over dry ice, weighed, and were then homogenized 1:180 

(weight:volume, mg: μL), except for heart samples that were further diluted to 1:720 to be in the 

dynamic range of the assays. 

Enzymatic activities 

Enzymatic activities were quantified spectrophotometrically for Citrate Synthase (CS), 

complex I (CI, NADH-ubiquinone oxidoreductase), Succinate Dehydrogenase (CII, succinate-

ubiquinone oxidoreductase, also known as SDH), Cytochrome C Oxidase (CIV, COX) and were 

expressed per mg of tissue, as described previously32, with some modifications as described 

below in full details. All miniaturized assay measurements were performed in 96-well plates and 

enzymatic activity assays recorded on a Spectramax M2 (Spectramax Pro 6, Molecular 

Devices). Linear slopes reflecting changes in absorbance of the reporter dye were exported to 

Microsoft excel and converted into enzymatic activities using the molar extinction coefficient and 

dilution factor for each assay. The assays were optimized to determine the minimal amount of 

tissue required to obtain reliable results assessed by the C.V. between duplicates. The assays 

were then further optimized to determine the minimal amount of brain tissue homogenate 
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required for each individual assay. Assay validation involved regressing increasing tissue 

amounts (number of punches) with observed activities, which confirmed that an increase or 

decrease in tissue used produced proportional changes in total activity. 

To validate the miniaturized biochemical enzymatic assays, we performed each assay in 

both the miniaturized 200ul format in 96-well plates, and the traditional 1ml cuvette format, using 

increasing tissue homogenate volumes (4, 8, 12, 16, 20ul) from the same brain region 

(cerebellum) of a wild-type control mouse. The same homogenized tissue (1:200 weight:volume, 

mg:μL) was used for CS, CI, CII, and CIV spectrophotometric assays from which the respective 

enzyme activities were quantified using the reagents and procedures described below. Both the 

miniaturized and standard-size cuvette assays showed high agreement (r2 = 0.81-0.96; ps = 

0.0032-0.037) (Extended data Fig. 1). For 3 out of 4 assays, compared to the traditional 1ml 

cuvettes, the 96-well plate exhibited substantially less variation between consecutive dilutions 

(CS, 8% in the 96-well plate vs. 20% in the cuvette; CI, 15% vs 13%; SDH, 4% vs 9%; COX, 5% 

vs 9%). 

Samples were run in duplicates for each enzyme, along with a nonspecific activity 

control, and every plate had a positive control (heart homogenate). The 96-well plates were 

designed so that each brain region/tissue from all animals were run on a single plate, which 

prevents potential batch variation for comparisons between the animals. However, due to the 

size of the plates, no more than 2 types of tissues could be run together on a single plate. This 

limits the accuracy of the comparisons of enzymatic activities between tissues, but maximizes 

the accuracy of comparisons between animals for each tissue. Reference positive controls on 

each plate were used to control for potential batches/plates effects. None of the enzymatic 

activities of some samples (n=8 out of 579, resulting in n=571) could be measured for technical 

reasons and are therefore not included in the analyses. 
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Citrate synthase (CS) enzymatic activity was determined by measuring the increase in 

absorbance of DTNB at 412nm at -30°C in 200μL of a reaction buffer (200 mM Tris, pH 7.4) 

containing acetyl-CoA 10 mM, 10 mM 5,5’- dithiobis- (2-nitrobenzoic acid) (DTNB), 2 mM 

oxaloacetic acid, and 10% w/v Triton-x-100. The rate of conversion of DTNB into NTB2- ions 

indicates the enzymatic activity and is used as a marker of mitochondrial content. Oxaloacetate 

is removed from the assay mix as a way to measure non-specific activity. The final CS activity 

was determined by integrating OD412 change over 150-400 seconds and then subtracting the 

non-specific activity. 10μL of homogenate was used to measure CS activity.  

Complex I (CI, NADH-ubiquinone oxidoreductase) activity was determined by measuring 

the decrease in absorbance of DCIP. The rate of absorbance of DCIP is measured at 600nm at 

30°C, in 200μL of a reaction buffer (potassium phosphate 100mM, pH 7.4) containing 550mg/ml 

bovine serum albumin (BSA), 50mM potassium cyanide (KCN), 20 mM decylubiquinone, and 

0.4mM antimycin A. 10μL of homogenate was used to measure CI activity. Antimycin A and 

KCN are used to inhibit electron flow through complexes III and IV. The negative control 

condition includes rotenone (200mm) and piericidin A (0.2mM), which selectively inhibit NADH-

ubiquinone oxidoreductase. The final CI activity was determined by integrating OD600 change 

over 150-500 seconds, and by subtracting the rate of NADH oxidation in the presence of 

rotenone and piericidin A from the total decrease in absorbance.  

Complex II (CII, succinate-ubiquinone oxidoreductase, also known as SDH, succinate 

dehydrogenase) activity was determined by measuring the decrease in absorbance of DCIP. 

The rate of absorbance of DCIP was measured at 600nm at 30°C, in 200μL of a reaction buffer 

(potassium phosphate 100mM, pH 7.4) containing 50mg/mL bovine serum albumin (BSA), 

500μM rotenone, 500mM succinate-tris, 50mM potassium cyanide (KCN), 20 mM 

decylubiquinone, 20mM DCIP, 50mM ATP, 0.4mM antimycin A. 15μL of homogenate was used 

to measure CII activity. The negative control condition includes sodium-malonate, which inhibits 
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succinate-ubiquinone oxidoreductase. The final CII activity was determined integrating OD600 

change over 300-800 seconds, and by subtracting the absorbance in the presence of malonate 

(500mM) from the total decrease in absorbance.  

Complex IV (CIV, also cytochrome c oxidase) activity was determined by measuring the 

decrease in absorbance of cytochrome c. The rate of conversion of cytochrome c from a 

reduced to oxidized state was measured at 550nm at 30°C, in 200μL of reaction buffer (100mM 

potassium phosphate, pH 7.5) containing 10% w/v n-dodecylmaltoside and 120μM of purified 

reduced cytochrome c. 6μL of homogenate was used to measure COX activity. The negative 

control condition omits tissue homogenate determine the auto-oxidation of reduced cytochrome 

c. The final CIV activity was determined by integrating OD550 change over 150-500 seconds, 

and by subtracting the non-specific activity from the total decrease in absorbance.  

Mitochondrial enzymatic activities were determined by averaging the duplicates. The 

technical variation of the duplicates was measured with and a 10% cutoff. The specific activity of 

each sample was calculated as the total activity minus non-specific activity (negative control), 

times the normalization factor. Plates were normalized by their positive controls. Because of 

some variation in positive controls, each plate’s positive control was z-scored to the average of 

the positive control activity per assay. All of the activities on the plate were then multiplied by 

their normalization factor which is determined by 1/z-scored positive control. 

Mitochondrial DNA (mtDNA) quantification 

mtDNA density and mtDNA copy number (mtDNAcn) were measured as previously 

described 88, with minor modifications. The homogenate used for the enzymatic activity 

measures was lysed at a 1:10 dilution in lysis buffer (100 mM Tris HCl pH 8.5, 0.5% Tween 20, 

and 200 g/mL proteinase K) for 10 hours at 55°C, 10 minutes at 95°C, and were kept at 4°C 

until used for qPCR. qPCR reactions were measured in triplicates in 384 well qPCR plates using 

a liquid handling station (ep-Motion5073, Eppendorf), with 12μL of master mix (TaqMan 
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Universal Master mix fast, Life Technologies #4444964) and 8μL of lysate. Each plate contained 

triplicates of a positive control (heart) and of a negative control (lysate without homogenate). 

qPCR reaction with Taqman chemistry was used to simultaneously quantify mitochondrial and 

nuclear amplicons in the same reactions: Cytochrome c oxidase subunit 1 (COX1, mtDNA) and 

β-2 microglobulin (B2M, nDNA). The Master Mix included 300 nM of primers and 100 nM probe: 

COX1-Fwd: ACCACCATCATTTCTCCTTCTC, COX1-Rev: CTCCTGCATGGGCTAGATTT, 

COX1-Probe: HEX/AAGCAGGAG/ZEN/CAGGAACAGGATGAA/3IABkFQ. mB2M-Fwd: 

GAGAATGGGAAGCCGAACATA, mB2M-Rev: CCGTTCTTCAGCATTTGGATTT, B2M-Probe: 

FAM/CGTAACACA/ZEN/GTTCCACCCGCCTC/3IABkFQ.  

The plate was quickly centrifuged and cycled in a QuantStudio 7 flex instrument (Applied 

Biosystems Cat# 448570) at 50°C for 2 min, 95°C for 20 sec, 95°C for 1 min, 60°C for 20 sec 

for 40x cycles. To ensure comparable Ct values across plates and assays, thresholds for 

fluorescence detection for both mitochondrial and nuclear amplicons were set to 0.08. 

Triplicates for each sample were averaged for mtDNA and nDNA, and an exclusion cutoff of Cts 

>33 was applied. For samples with triplicates C.V.s > 0.02, the triplicates were checked, and 

outlier values removed where appropriate, and the remaining duplicates were used. The final 

cutoff was C.V. > 0.1 (10%); and any samples with a C.V. > 0.1 were discarded. The mtDNAcn 

was derived from the ΔCt calculated by subtracting the average mtDNA Ct from the average 

nDNA Ct. mtDNAcn was calculated by 2(ΔCt) x 2. For measures of mtDNA density, the Ct value 

was linearized as 2Ct / (1/10-12) to derive relative mtDNA abundance per unit of tissue.  

In tissues of similar cellular density (number of cell nuclei per area or mass of tissue), 

mtDNAcn (mtDNA:nDNA) provides an accurate reflection of mtDNA genome density per cell. 

However, different brain regions vary widely in their cellularity (up to 8.5-fold), mostly because 

some defined areas such as the granular layer of the cerebellum are populated with numerous 

small cell bodies, whereas other regions such as the molecular layer of the DG are completely 
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acellular and devoid of cell bodies/nuclei. Nevertheless, acellular tissue compartments filled with 

dentrites can be rich in mitochondria and mtDNA, and therefore the number of mtDNA copies 

per unit of tissue (μm3 or mg of tissue) is a more generalizable and accurate estimate of mtDNA 

density between brain regions. 

Mitochondrial Health Index 

The mitochondrial health index (MHI) integrates the 5 primary mitochondrial features, 

yielding an overall score of mitochondrial respiratory chain activity on a per mitochondrion 

basis30. The simple equation uses the activities of Complexes I, II, and IV as a numerator, 

divided by two indirect markers of mitochondrial content, citrate synthase activity and mtDNA 

density: MHI = (CI+CII+CIV) / (CS+mtDNA density+1) * 100. A value of 1 is added as a third 

factor on the denominator to balance the equation. Values for each of the 5 features are mean 

centered (value of an animal relative to all other animals) such than an animal with average 

activity for all features will have an MHI of 100 [(1+1+1) / (1+1+1) * 100 = 100].   

Immunohistochemical staining 

Immunofluorescent staining was used to quantify local Succinate dehydrogenase 

complex, subunit A (SDHA) expression in the cerebellum. Slides with 200μm coronal sections 

bearing the cerebellum were taken from storage at -80oC and allowed to warm up to room 

temperature for one hour. The sections were obtained during tissue collection from the same 

brains as those used for measuring enzymatic activites, but were stored at -80oC  and were not 

biopsied (Extended Data Fig. 4b). The sections were then fixed in freshly prepared 4 % PFA 

for 5 minutes and immediately washed twice in a 0.1% PBS-Tween 20 (PBS-Tw) solution. They 

then underwent dehydration through iced cold 70% methanol for 10 min, 95% methanol for 10 

min, 100% methanol for 20 min, 95% methanol for 10 min and 70% methanol for 10 min 

followed by two washes in PBS-Tw. In a PBS-Tw bath, sections were carefully unmounted from 

the slides using a razor blade and artist’s paintbrush. One section containing an appropriate 
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cerebellum region was selected from each animal and individually placed in 10% Normal 

Donkey Serum (NDS) overnight at 4 oC. They were then incubated in a 1:100 dilution of Rabbit 

anti-SDHA 1o antibody in PBS overnight at 4oC on a gentle shaker. The following day, they were 

washed repeatedly in PBS-Tw. Sections were then incubated in a 1:500 dilution of donkey anti-

Rabbit 2o conjugated with AlexaFluor 546 in NDS for two hours in a dark box at room 

temperature. They were then washed in PBS, incubated in 0.625 µg/mL 4′,6-diamidino-2-

phenylindole (DAPI) and washed once more. Finally, sections were mounted on Superfrost 

slides with Prolong Diamond mounting media and a No. 1.5 coverslip. 

Confocal imaging 

The immunofluorescent staining was imaged on a Leica SP8 confocal microscope 

equipped with Lightning super resolution software. The regions of interest were located using a 

Leica 20x 0.75 NA objective to determine areas of suitable staining surrounding the purkinje cell 

layer in the cerebellum. High-resolution images of the area were taken with a Leica 63x 1.40 NA 

oil objective. For highest resolution, the images were formatted at 2496 x 2496 pixels, with a 

zoom of 2.50x, line average of 8, pinhole size of 0.50 AU. The final pixel size was 29.58nm x 

29.58nm and a z-stack with a step size 0.15μm was taken through the stained area. A 405nm 

laser was used for exciting the DAPI channel with a power of 8.0% and gain of 60%. A 561nm 

laser was used for the AlexaFluor 546 channel with a power of 4.0% and a gain of 20%.  

SDHA staining analysis 

Final images were deconvolved in the Lightning software using the default settings. 

Images were analyzed in ImageJ version 1.52p. Fifty consecutive slices from each stack were 

selected for a section thickness of 7.5μm, which roughly covered the depth of penetration of the 

antibodies. The 16bit images were first thresholded using the Triangle algorithm within the 

integrated Auto-thresholding plugin to create a binary image. The particle analyzer was then 

used to quantify the percent of the area stained for each slice. The percent area stained from 
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each slice was summated to calculate the percent of volume stained. For compartmentalized 

data, the molecular and granular layers were separated using a rectangular selection of 

approximately 50px width through each stack. For the purkinje layer, a rectangle was drawn that 

narrowly captured the stained area of each slice. The volumetric staining for each region of 

interest was calculated from the percent of area stained quantified using the particle analyzer.      

TDA-based mapper analysis 

After creating a delta of mitochondrial features between stressed (CORT or CSDS) and 

naïve mice, the data matrix for each group was processed through the TDA-based Mapper 

pipeline52. The input data matrix contained 102 concatenated rows for brain regions (17 brain 

regions x 6 mitochondrial features) and 5 or 6 columns for individual mice, based on the number 

of animals per group. Missing values, if any, in the input data matrix were interpolated within 

group using a linear interpolation. The TDA-based Mapper analysis pipeline consists of four 

steps. First, Mapper involves embedding the high-dimensional input data into a lower dimension 

� , using a filter function � . For ease of visualization, we chose � � 2. The choice of filter 

function dictates what properties of the data are to be preserved in the lower dimensional space. 

For example, linear filter functions like classical principal component analysis (PCA) could be 

used to preserve the global variance of the data points in the high dimensional space. However, 

a large number of studies using animal models and computational research suggest that inter-

regional interactions in the brain are multivariate and nonlinear89-91. Thus, to better capture the 

intrinsic geometry of the data, a nonlinear filter function based on neighborhood embedding was 

used52. The second step of Mapper performs overlapping n-dimensional binning to allow for 

compression and reducing the effect of noisy data points. Here, we divided the data into lower 

dimensional space into 64 bins with 70% overlap. Similar results were observed for different 

number of bins (e.g., 49, and 81). Third, partial clustering within each bin is performed, where 

the original high dimensional information is used for coalescing (or separating) data points into 
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nodes in the low-dimensional space. Partial clustering allows to recover the loss of information 

incurred due to dimensional reduction in step one92. Lastly, to generate a graphical 

representation of the shape of the data, nodes from different bins are connected if any data 

points are shared between them.  

The Mapper-generated graphs can be annotated (or colored) using meta-information 

that was not used to construct the graphs. Here, we annotated these graphs using region-labels 

to examine whether mitochondrial features were similarity expressed across all regions or 

whether regional specificity was observed across the two groups. To quantify the extent of 

segregation (high regional specificity) or integration (low regional specificity) across the six 

mitochondrial features, we used a graph theoretical measurement of participation coefficient54. 

Participation coefficient 
� of a node � is defined as: 


� � 1 
 � ������ ��
��

���

 

where ��� is the number of links of node � to nodes in community �, ��  is the total degree 

of node � and �	is the number of communities. The 
� of a node � is close to 1 if its links are 

uniformly distributed among all communities of the graph (and hence integrated) and it is close 

to 0 if its links are mostly within its own community (and hence segregated).   

Multi-slice community detection 

One of the most commonly studied mesoscale aspect of a graph is modularity, where 

highly modular graphs consist of cohesive groups of nodes (or communities) that are more 

strongly connected to each other than they are to the rest of the network93. Examination of 

modularity has been recently extended to multi-slice networks that are defined by coupling 

multiple adjacency matrices across time or modality61. Here, we used six slices, each derived 

from one of the mitochondrial features, where each slice represented weighted adjacency matrix 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 3, 2022. ; https://doi.org/10.1101/2021.06.02.446767doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.02.446767
http://creativecommons.org/licenses/by/4.0/


 36

of pair-wise Pearson’s correlation between brain regions. We use categorical multi-slice 

community detection algorithm with the presence of all-to-all identity arcs between slices61. The 

generalized modularity function for multi-slice community detection is given by 

��
������
� �  1
2� � ������ 
 �� ������2��

� ��� � ��� ���! �"#�� , #��%
����

 

Where ����  represents weighted adjacencies between nodes �  and &  for each slice � , with 

interslice couplings  ���that connect node & in slice � to itself in slice �. ��represents resolution 

parameter in each slice; higher value of ��  (e.g., > 1) detects smaller modules, while lower 

values (e.g., between 0 and 1) detects bigger modules. In line with previous work, here, we set 

the resolution parameter across slices to be unity, i.e., �� � 1 94. For simplicity, and as done 

previously, the interslice coupling parameters were also kept same across slices61. Here, we 

used  ��� � 0.1. Perturbation of interslice coupling values around 0.1 produced similar results.  

 To estimate the stability of identified communities across the six mitochondrial slices, 

under the assumption that stable communities could represent convergence across 

mitochondrial features, we estimated module allegiance matrix95. The module allegiance matrix 

summarizes the stability of community structure across slices, such that each entry �, & of the 

matrix corresponds to the percentage of slices in which regions � and & belong to the same 

community. Finally, an iterative consensus community detection algorithm was run on the 

module allegiance matrix to define the large-scale networks that are convergent across slices 

defined by mitochondrial features. The iterative community detection96 was run multiple times 

(1,000), followed by consensus clustering to get stable results for identifying large-scale 

networks of brain regions97. 

Comparison of mito-based networks with transcriptomic- and structural connectivity-

based networks 
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To compare our mitochondrial communities against other modalities, we examined the 

organization of gene co-expression in the mouse brain as well as mouse structural connectome 

data. We utilized the Allen Brain Atlas’ ISH (in situ hybridization) feature, which maps each gene 

onto a reference standard coordinate atlas image, providing a spatial estimate of transcript 

levels representing gene expression62. Specifically, we used the Anatomic Gene Expression 

Atlas (AGEA) (https://mouse.brain-map.org/agea), which is a a three-dimensional male adult 

C57BL/6J mouse brain atlas based on the ISH gene expression images. The AGEA feature 

allows for selecting both a ‘seed voxel’ and a target ‘selected voxel’ from exact brain 

coordinates coordinates, yielding the transcriptome-wide correlation between the seed and 

target regions. The correlation is a measure of the average co-expression between the two 

voxels. The co-expression values were obtained for all possible pair of brain regions (17x17 

matrix), yielding a gene co-expression correlation matrix to which the structure of our mito-

based networks could be compared. 

The structural connectome data were obtained from The Allen Mouse Brain Connectivity 

Atlas 63, which is a mesoscale connectome of the adult mouse brain. We utilized the normalized 

projection strength values for the all brain regions of interest. Because this atlas does not 

distinguish between dorsal and ventral dentate gyrus, data was obtained for 16 brain regions. 

For three brain regions where the Atlas provides connectivity values for multiple subregions 

(OFC, VN, Cerebellum), the connectivity values were averaged across the subregions to yield a 

global measure for each region, thus matching the dimensionality of our mitochondrial dataset.  

We used non-parametric permutation statistics with 10,000 permutations to examine 

whether the mitochondrial features derived networks were also more densely connected than 

expected by chance in other modalities (transcriptomic and structural connectivity data). To 

measure the degree of within-network connectedness we used two established metrics: 

modularity index (Q_mod; 65) and strength fraction (S.F.; 64). As presented in Extended Data 
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Fig. 11, for each modality, and across the two metrics, the networks derived from mitochondrial 

features were more tightly knit than expected by chance (all ps<0.05). Thus providing a 

convergent multimodal evidence of mitochondrial phenotypic organization overlapping with gene 

expression and the structural connectome. 

Statistical analysis 

Standardized effect sizes (Hedge’s g) were computed to quantify the effect of stress 

conditions on mitochondrial features. Significant effect sizes were determined by the 95% 

confidence intervals. Two-way ANOVAs were used to compare the effects on a variable 

between groups. Frequency distributions of the effect sizes for the two stressors and of the 

mitochondrial-behavior correlations were fitted with Gaussian curves and analyzed by one 

sample t tests compared to the null distribution. A survival curve using Mantel-Cox log-rank test 

was generated for novelty suppressed feeding test latencies because the test is capped at 600 

sec. Behavioral scores between groups were analyzed using Tukey’s multiple comparison 

ordinary one-way ANOVA. Correlations between behavioral scores and mitochondrial activities 

were estimated using Spearman’s r (r) to guard against inflation. Correlations between tissues’ 

mitochondrial activities were measured as Pearson’s r, and hierarchical clustering was 

performed on the data using Euclidian distance with Ward’s clustering algorithm. T-tests were 

used to compare groups’ correlations. Permutation testing was used to analyze mitochondrial 

features between versus within brain regions and to analyze the mitochondrial networks against 

gene co-expression and structural connectome data. To assess the group (CORT vs CSDS) 

differences in the regional response to stressors are statistically robust, a phase randomized 

(PR) null approach (Theiler et al. 1992) was used, where we generated 1000 iterations of null 

data separately for CORT and CSDS groups and ran our TDA-based Mapper approach on each 

null dataset. PR null preserved the covariance across mice but shuffled any relation between 
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regional responses. Non-parametric permutation statistics were later estimated for each group. 

Statistical analyses were performed with Prism 9 (GraphPad) and Metaboanalyst version 498. 
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The datasets generated during and/or analyzed during the current study are available from the 

corresponding author upon request. 

 

Code Availability 

For TDA Mapper analysis, the generic toolbox is available 

at https://braindynamicslab.github.io/dyneusr/. The software used for multi-slice network 

analysis can be accessed at http://netwiki.amath.unc.edu/GenLouvain/GenLouvain. Custom 

scripts generated for this paper will be made available 

at https://github.com/braindynamicslab/tda-mito-networks upon publication. 
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Figure legends 

Figure 1. Behavioral and neuroendocrine stressors enhance the diversity of 
mitochondrial phenotypes across brain regions. (a) Effect of CORT and CSDS on 
mitochondrial features across brain regions and peripheral tissues relative to naïve mice. Effect 
sizes are quantified as Hedge’s g, with significant effect sizes (95% confidence interval) labeled 
with the fold difference. Unadjusted p value from two-way ANOVA, n=27 mice, 5-6 per group. 
(b) Pairwise comparisons between each brain regions’ responses to the stressors (Hedge’s g) 
from (A) as compared to each other region, colored by p-value. (c) Gaussian fit for the 
frequency distribution of the effect sizes in A on all 6 mitochondrial features in all 17 brain 
regions (n=102 pairs); one-sample t test (two tailed) against null hypothesis g=0. (d) Number of 
brain regions in which mitochondrial features are either above or below the control group 
average in CORT and CSDS mice relative to naïve mice; p values from binomial test (two-
tailed), *p<0.05, ***p<0.001. (e) Exemplar representations of Mapper input and output. Nodes in 
the Mapper output represent regional mitochondrial features (rows from input matrix) that are 
highly similar across mice. Thus, the brain regions that undergo similar stress-induced 
recalibrations in specific mitochondrial features cluster together in single nodes (most similar) or 
interconnected nodes (moderately similar), whereas regions that undergo divergent 
recalibrations are not connected. The pie-chart-based annotation of graph nodes allowed us to 
examine the degree of co-regulation of mito-features across brain regions. (f) Topological data 
analysis (TDA) based Mapper approach to determine if brain regions were co-regulated in their 
stress-induced mitochondrial recalibrations for the two groups. (g) Graph-theoretical measure of 
participation coefficient (PC), measuring the degree of segregation/integration among brain 
regions in each graph, indicating that CORT-induced mitochondrial recalibrations were more 
region-specific (or segregated) whereas CSDS caused a more integrated response. A phase 
randomized null approach was used to estimate the robustness of these results, such that null 
data were generated where covariance across mice (columns in the input matrix) was preserved 
while the regional relations (rows) were disrupted. Non-parametric permutation statistics 
revealed CORT group has a significantly lower participation coefficient (PC) as compared to the 
Mapper graphs generated from the null models (p=0.037). A similar analysis for the CSDS 
group revealed a trend towards significance for higher PC as compared to the null models 
(p=0.069). 

Figure 2. Association patterns for brain-wide mitochondrial phenotypes and mouse 
behavior. (a) Mitochondrial phenotyping and behavioral profiling of inter-individual variation in a 
heterogenous population of mice; OFT, open field test; EPM, elevated plus maze; NSF, novelty 
suppressed feeding; SI, social interaction test. (b) Gaussian fits of the frequency distributions for 
all correlations (n=102) between the composite mitochondrial health index (MHI) and each 
behavioral test; one-sample t test (two tailed) against null hypothesis r=0 (other mitochondrial 
features are shown in Extended Data Fig. 8). (c) Individual correlations for the 17 brain region, 
across the 6 mitochondrial features, for each behavioral score, quantified as Spearman’s r. OFT 
and EPM behavioral scores were inverted so that higher scores on all four tests indicate higher 
anxiety (see Extended Data Fig. 8 for additional details). The strongest correlations for each 
behavioral test are denoted by yellow boxes, with the scatterplots shown below. An adjusted p 
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value of <0.002 was applied (false-discovery rate 1%). All tests have been adjusted so that a 
higher score indicates higher anxiety-like behavior (see Methods for details). (d) Average 
correlation of each behavior for the brain (B) and tissue (T) mitochondrial features; two-way 
ANOVA. n=10-27 mice per behavioral test. 

Figure 3. Mitochondrial phenotype-based connectivity across anatomical brain regions. 
(a) Connectivity matrix of mitochondrial features across brain regions, using all 6 mitochondrial 
features across the animal cohort (n=27 mice), quantified as Pearson’s r. The matrix is ordered 
by hierarchical clustering (Euclidian distance, Ward’s clustering). (b) Cross-correlation of each 
mitochondrial feature to the other 5 measures within each brain region (n=17 brain regions). (c) 
Global connectivity based on the average correlation for each brain region with all other regions. 
(d) Average correlation of mitochondrial features between brain region’s, between peripheral 
tissues, and between brain regions and tissues; p<0.0001, Ordinary one-way ANOVA with 
multiple comparisons. (e) Multi-slice community detection analysis on mitochondrial measures 
across the 17 brain regions, with mitochondrial features represented in six separate layers, 
resulting in (f) three distinct communities or brain networks. Modular structure confirmed by 
permutation test, p<0.0001). (g) Average mito-behavior correlation by module for each 
behavioral test (top). The bottom panel shows networks with each region color-coded by its 
average correlation with behaviors; for OFT and EPM (left) and SI (right). Modularity metrics 
anchored in whole-brain transcriptome and the structural connectome data are shown in 
Extended Data Fig. 10. 

 

EXTENDED DATA FIGURE LEGENDS 

Extended Data Fig. 1. Validation of miniaturized 96-well plate enzymatic activity assays. 
Comparison between miniaturized 96-well plate and traditional 1ml cuvette for enzymatic 
activities of (a) citrate synthase (CS), (b) NADH-ubiquinone oxidoreductase (Complex I), (c) 
succinate-ubiquinone oxidoreductase (Complex II), and (d) cytochrome c oxidase (Complex IV).  

Extended Data Fig. 2. Comparison of mtDNA copy number versus mtDNA density. (a) 
Diagram to illustrate the difference between measures of mtDNA copy number 
(mtDNAcn=mtDNA/nDNA ratio) and mtDNA density (mtDNA copies per mg of tissue). (b) 
Correlation between the average mtDNAcn and average mtDNA density per brain region. (c) 
Correlations between mtDNAcn (left) and mtDNA density (right) with the other five mitochondrial 
measures in all animals for each brain region and tissue, measured by Spearman’s r. The 
strongest positive and negative brain correlations for each are highlighted with yellow boxes and 
plotted in (d).  

Extended Data Fig. 3. (a) Experimental design. (b) 17 brain regions of interest, labeled by 
name and distance from bregma, with red circles indicating bilateral punch locations.  Images 
acquired from the Allan Mouse Brain Atlas (Dong, H. W. The Allen reference atlas: A digital 
color brain atlas of the C57Bl/6J male mouse. John Wiley & Sons Inc. (2008). Abbreviated brain 
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region names are as follows (orders by Bregma coordinates): mOFC, mPFC, CPu, NAc, M1, 
Hypoth, Thal, DGd, Amyg, CA3, VTA, V1, SN, DGv, PAG, Cereb, VN.  

Extended Data Fig. 4. Cerebellar staining for mitochondrial protein quantification. (a) 
Coronal 200μm-thick cerebellar slice stained for DAPI (blue, cell nuclei), and the mitochondrial 
respiratory chain Complex II subunit SDHA (yellow). (a’) higher magnification of A, and (a’’) 
example high-magnification of SDHA signal along the purkinje cell layer, highlighting three 
regions of interests used for quantification of SDHA density among the cerebellar molecular, 
purkinje, and granular layers. (b) Diagram illustrating that spectrophotometric measurements of 
CII activity and immunofluorescence confocal microscopy measurements for protein abundance 
were measured in contiguous 200μm-thick cryosections from the same animals. (c) Example 
raw spectrophotometric trace for CII activity in the cerebellum, integrating OD600 change over 
300-800 seconds.  (d) Correlations between layer-specific SDHA density (% SDHA-positive 
pixels per volume) and the biochemical activity of Complex II, demonstrating that protein 
abundance is not an appropriate surrogate for biochemical activity. 

Extended Data Fig. 5. Animal-to-animal differences in mitochondrial features for each 
brain region and peripheral tissue. (a) Diagram illustrating the range of mitochondrial content 
and function across animals. (b) Example C.V. (coefficient of variation) calculation for CS 
activity in the substantia nigra (SN). Each datapoint is an animal (n=27 mice), illustrating the 
variation in mitochondrial features between animals. (c) Individual C.V.s  per mitochondrial 
feature for each brain region and peripheral tissue. (d) C.V.s for brain regions by mitochondrial 
feature for naïve animals only. Each datapoint is the average C.V. for a brain region or tissue 
(n=22). (e) C.V.s for brain regions versus tissues by mitochondrial feature for all animals (naïve, 
CORT, CSDS), two-way ANOVA.  

Extended Data Fig. 6. Effect size of stressors on brain regions’ and other tissues’ 
mitochondrial content and functioning. (a) Effect of CORT treatment and (b) effect of CSDS 
treatment on brain regions and tissues, quantified by standardized Hedges g, compared to 
naïve mice. (c) Example plot if both stressors had the same effect on a brain region, with 
quartiles labeled and (d) plot of the effect sizes of both stressors on each brain region’s MHI. 

Extended Data Fig. 7.  Exploratory analysis comparing susceptible and resilient 
subgroups of CSDS mice. Effect sizes for mitochondrial outcomes shown separately by brain 
region for animals classified as susceptibe or resilient to CSDS (Methods). Effect sizes are 
Hedge’s g, with significant effect sizes (95% confidence interval) labeled with the % change 
compared to naïve (non-stressed) mice. 

Extended Data Fig. 8. Effect of recovery from social defeat stress on mitochondrial 
features across brain regions. (a) Average effect of 2 months recovery (Rec) from CSDS 
stress across the 6 mitochondrial features for each brain region, as compared to non-recovered 
CSDS mice. Effects sizes are quantified by Hedges g, with 95% confidence intervals. MHI in 
recovered mice was higher than non-recovered CSDS in some regions (Caudoputamen, 
Hypothalamus-CA3), and lower in others (Hypothalamus, Medial orbitofrontal cortex, Vestibular 
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nucleus). (b) Average effect sizes of 6 mitochondrial features of non-recovered CSDS mice and 
recovered mice compared to naïve mice in three selected brain regions from A (red boxes). (c) 
Frequency distribution of the effect size of CORT, CSDS, and recovery as compared to naïve 
mice on all 6 mitochondrial measures in all 17 brain regions, gaussian-fitted curve, indicating 
that recovered mice have lower MHI than naïve mice and marginally higher MHI than CSDS 
(****p<0.0001, one-sample t test (two tailed)). (d) TDA analysis using Mapper of mitochondrial 
measures in naïve mice, CORT, CSDS, and CSDS-recovered mice, revealing the recovered 
group to be more similar to the non-recovered CSDS group than to naïve mice. 

Extended Data Fig. 9. Behavioral test results (a) To account for both the % time and % 
distance traveled in the center, the two measures were z-scored and averaged, creating a 
single Open Field Test (OFT) score. Z-scores were inverted so that a higher OFT score 
represents less time and distance in the center, indicating higher anxiety. Open field was run for 
all groups. (b) Elevated plus maze (EPM), measuring percent of time spent in open arms/total 
time, with the score being multiplied by -1 so that higher scores represent less time spent in the 
open arms, which indicates higher anxiety. EPM was run only on CORT mice. (c) Novelty 
suppressed feeding (NSF) test used to measure the latency to feed in a novel environment, with 
the test being capped at 600 sec. Cum. summ=cumulative survival, meaning percent of mice 
that have not eaten; Survival curve: Mantel-Cox log-rank test. NSF was run only on CORT mice. 
(d) Social Interaction test (SI), represented by a Social Avoidance score for all CSDS mice, 
separated by susceptible (sus.) and resilient (res.), and recovered (rec). Social avoidance was 
measured as the average of 4 scores; z scored social interaction ratio, z scored time spent in 
interaction zone, z scored time spent in corner, and z scored corners ratio. Social interaction 
ratio and time spent in SI zone were inverted so that higher values for all four measures indicate 
higher avoidance. p<0.05, p<0.01, Tukey’s multiple comparison ordinary one-way ANOVA. 

Extended Data Fig. 10. Frequency distribution of all correlations of mitochondrial-
behavior pairs by behavioral test. Gaussian fits, p values from one-sample t test (two tailed) 
againt the null hypothesis (r=0). 

Extended Data Fig. 11. To examine whether the functional organization of the brain revealed 
using mitochondrial features is also evident cross-modally, we utilized non-parameteric 
permutation stastics with 10,000 permutations to compare the topology of our mito-derived 
networks with the expected topology based on the transcriptomic and structural connectomes in 
the Allen Brain Atlas (see Online Methods for details). Specifically, we examined i) whether the 
tightly knit networks (or communities) observed in the mitochondrial features are more densely 
connected than expected by chance (a-b); and ii) whether the networks derived from 
mitochondrial features were also more densely connected than expected by chance in other 
modalities, including gene-coexpression data (c-d) and EYFP-based structural connectivity (e-
f). To measure the degree of within-network connectedness we used two established metrics: 
modularity index (Q_mod; Newman 2006) and strength fraction (S.F.; Richardi et al. 2015). The 
histograms depict distribution of within-network connectedness generated using 10,000 
permutations (or data shuffling). The real value of within-network connectedness is shown using 
red dots across all plots. For each modality, and across the two metrics, the networks derived 
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from mitochondrial features were more tightly knit than expected by chance. Hence, providing a 
convergent multimodal evidence of mitochondrial functional organization overlapping with gene 
expression and the structural connectome. 
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Table 1. Expanded abbreviations and Bregma coordinates. All regions were taken bilaterally
except those marked with *, which were obtained by collecting tissue from two consecutive
slices. 
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Supplemental Table 1. Study design with the number of animals allocated to each condition 

(total n=28). 

Experimental 
group CSDS CSDS- 

recovered CORT 
Naïve 

(CSDS- 
matched) 

Naïve 
(CSDS 

Recovered) 

Naïve 
(CORT) 

Number of 
animals  

6 6 5 3 3 5 

Day at 
sacrifice  

14 71 63 14 71 63 
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