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Article: Integrated spatial models foster complementarity between

monitoring programs in producing large-scale bottlenose dolphin indicators

Abstract (< 300 words)

Over the last decades, large-scale ecological projects have emerged that require
collecting ecological data over broad spatial and temporal coverage. Yet, obtaining relevant
information about large-scale population dynamics from a single monitoring program is
challenging, and often several sources of data, possibly heterogeneous, need to be integrated.
In this context, integrated models combine multiple data types into a single analysis to quantify
population dynamics of a targeted population. When working at large geographical scales,
integrated spatial models have the potential to produce spatialised ecological estimates that
would be difficult to obtain if data were analysed separately.

In this paper, we illustrate how spatial integrated modelling offers a relevant framework
for conducting ecological inference at large scales. Focusing on the Mediterranean bottlenose
dolphins (Tursiops truncatus), we combined 21,464 km of photo-identification boat surveys
collecting spatial capture-recapture data with 24,624 km of aerial line-transect following a
distance-sampling protocol. We analysed spatial capture-recapture data together with distance-
sampling data to estimate abundance and density of bottlenose dolphins. We compared the
performances of the distance sampling model and the spatial capture-recapture model fitted
independently, to our integrated spatial model.

The outputs of our spatial integrated models inform bottlenose dolphin ecological status
in the French Mediterranean Sea and provide ecological indicators that are required for regional
scale ecological assessments like the EU Marine Strategy Framework Directive. We argue that
integrated spatial models are widely applicable and relevant to conservation research and
biodiversity assessment at large spatial scales.
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Introduction

Macro-institutions get increasingly involved in large-scale programs for biodiversity
conservation over regional and continental areas. Whether these policies aim at assisting
governments (e.g., the Intergovernmental Science-Policy Platform on Biodiversity and
Ecosystem Services), or at implementing environmental management such as the European
Union directives (Habitat Directive, 92/43/EEC, or Marine Strategy Framework Directive,
MSFD, 2008/56/EC), conducting large-scale ecological monitoring is required to establish
conservation status of targeted species and ecosystems, and to inform decision-making.

For biodiversity management decisions, conservation sciences require assessing the
ecological status of species and ecosystems, which democratized the call for ecological
indicators (Buckland, Magurran, et al., 2005; Nichols & Williams, 2006). An ecological
indicator can be defined as a metric reflecting one or more components of the state of ecological
systems. An ecological indicator can either be measured directly or result from the
simplification of several field-estimated values (Niemi & McDonald, 2004). The Marine
Strategy Framework Directive referred to abundance/density of targeted species (e.g. seabirds,
cetaceans) as ecological indicators to fulfil for national reporting. At large spatial scales,
logistical and financial constraints often prevent a detailed coverage of the targeted population
using a single collection effort, and different monitoring programs coexist (Lindenmayer &
Likens, 2010; Zipkin & Saunders, 2018; Isaac et al., 2019). The multiplication of monitoring
programs over the same conservation context has fostered the development of statistical models
that can estimate ecological quantities while accommodating several, possibly heterogeneous,
datasets (Besbeas et al., 2002; Miller et al., 2019; lsaac et al., 2019; Zipkin, Inouye, &

Beissinger, 2019; Farr et al., 2020). Integrating data from several monitoring protocols can give
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80 complementary insights on population structure and dynamics (Schaub & Abadi, 2011),
81 increase space and time coverage of the population (Schaub & Abadi, 2011; Zipkin, Inouye, &
82  Beissinger, 2019), and produce more precise ecological estimates (Isaac et al. 2019; Lauret et
83  al. 2021; Farr et al. 2020).
84 A recurrent objective of ecological monitoring programs is to estimate population
85  abundance and density (Williams, Nichols, & Conroy, 2002), for which distance sampling (DS,
86  Buckland et al., 2005) and capture-recapture (CR, Williams et al. 2002) methods are widely
87  used. Abundance reflects the estimated number of animals in a specified area while density is
88  a spatialised estimate that reflects the number of animals per unit area. DS and CR methods
89  have strengths and weaknesses in relation to logistical and practical issues (Hammond et al.,
90 2021). DS methods can cover large areas at a reasonable cost (e.g. line transect monitoring),
91 while CR monitoring programs can be costly to develop at large spatial scales because more
92  sampling effort is required over a longer time period to recapture individuals (Hammond et al.,
93  2021). Even when estimating abundance over the same study area, DS and CR do not estimate
94  exactly the same quantity (Calambokidis & Barlow, 2004; Crum, Neyman, & Gowan, 2021).
95 DS methods estimate abundance within a study area at the time of the survey. CR methods are
96 based on individuals sampling and estimate the number of animals that were present in the
97  study area during the time of the monitoring (Calambokidis & Barlow, 2004). CR methods
98 encapsulate longer temporal extent because multiple sampling occasions are needed to build
99 CR histories (Williams, Nichols, & Conroy, 2002). However, when data are collected over the
100  same monitoring period and if animals do not move in and out of the study area during that
101  period, CR and DS provide consistent estimates. Recent modelling tools have emerged to
102 integrate both DS and CR methods into integrated population models (Kéry & Royle 2020). DS
103  and spatial CR methods (SCR) allows accounting for spatial variation in abundance and density

104  (Camp et al., 2020; Miller et al., 2013; Royle et al., 2014), possibly at large scales (Bischof et
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105 al., 2020). The extension to integrated spatial models has been proposed to account for spatial
106 variation in abundance and demographic parameters while analysing jointly DS data and SCR
107  data (Chandler et al., 2018). Integrated modelling holds promise for species occurring over
108 large areas that are likely to be the target of multiple monitoring protocols. Besides, working at
109 large geographical scales requires encapsulating spatial dimensions in the estimation of
110 ecological quantities. Integrated spatial models allow to assess spatialised ecological inference,
111 e.g density of individuals. To date, integrated spatial models have been developed and used on
112  open populations to estimate temporal variation in population dynamics and vital rates such as
113  survival and recruitment (Chandler & Clark, 2014; Chandler et al., 2018; Sun, Royle, & Fuller,
114  2019). These applications rely on long-term datasets that are not always compatible with
115 conservation objectives. In many cases, ecological information is needed quickly, and data to
116 investigate temporal variation are unavailable (Nichols & Williams, 2006; Lindenmayer &
117  Likens, 2010). Consequently, ecological inference is often restricted to closed-population
118 indicators (e.g. abundance or population size, density or spatial repartition of the population,
119 distribution or spatial extent of a population). When the temporal resolution of monitoring
120 programs does not allow to quantify population dynamics, we argue that an application of
121  integrated spatial models to closed populations can be useful in numerous ecological contexts
122  to deal jointly with existing monitoring programs and assess abundance and density.

123 In this paper, we build an integrated spatial model and demonstrate the relevance of
124  combining DS and SCR to build large-scale ecological indicators. We consider the monitoring
125  of common bottlenose dolphins (Tursiops truncatus) that are considered as “vulnerable” by the
126  IUCN Red List in the North-Western Mediterranean Sea (IUCN, 2009). The protected status of
127  bottlenose dolphins within the French seas (listed on Annex Il of the European Habitats
128 Directive) led to the development of specific programs to monitor Mediterranean bottlenose

129  dolphins within the implementation of the European Marine Strategy Framework Directive,
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130 which requires assessing the conservation status of this species every 6 years over the large
131 extent of the French Mediterranean Sea (Authier et al. 2017). Increasing efforts are dedicated
132  to develop monitoring programs in the Marine Protected Areas (MPA) network that mainly
133 implement photo-identification protocols locally, while governmental agencies perform large-
134  scale line-transect programs to monitor marine megafauna and fisheries. Hence, multiple data
135  sources coexist about bottlenose dolphins in the French Mediterranean Sea. In this paper, we
136 analysed DS data collected by aerial line-transect surveys over a large area covering coastal
137  and pelagic seas (Laran et al., 2017), which we combined with SCR data collected by a photo-
138 identification monitoring program restricted to coastal waters (Labach et al., 2021). We
139 compared the abundance and density of bottlenose dolphins estimated from DS model, SCR
140 model, and integrated spatial models to highlight the benefits of the integrated approach in an
141  applied ecological situation. We discussed the promising opportunities of using integrated
142  spatial models in the context of marine monitoring planning in the French Mediterranean.
143  Eventually, we underlined the conservation implications of using such a model at a wider extent
144  to make the best use of available datasets.

145 Methods

146  Monitoring bottlenose dolphins in the French Mediterranean Sea

147  Common bottlenose dolphins (Tursiops truncatus) occur over large areas throughout the
148 Mediterranean Sea. Because monitoring elusive species in the marine realm is complex,
149  multiple monitoring initiative have emerged to collect data about bottlenose dolphins in the
150 French Mediterranean Sea. In the context of the Marine Strategy Framework Directive, the
151  French government implemented large-scale aerial transects to monitor marine megafauna
152  (Laran et al., 2017). However, the large spatial coverage of the aerial monitoring is impaired
153 by the low resolution of such data (i.e. 1 campaign every 6 years). Then, to collect detailed data,

154  the French agency for biodiversity funded a photo-identification monitoring program to
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155 investigate the ecological status of the bottlenose dolphins in the French Mediterranean Sea.
156  This coastal boat photo-identification monitoring has been performed between 2013 and 2015.
157  Coastal photo-identification monitoring represents a promising opportunity to produce high
158 resolution information because data can be collected routinely by Marine Protected Areas at
159  high time frequency.

160 Study area and datasets

161 We focused on an area of 255,000 km? covering the North-Western Mediterranean Sea
162  within which we considered two monitoring programs about bottlenose dolphins. We used SCR
163 data from at-sea boat surveys over 21,464 km of the French continental shelf. Observers
164  performed monitoring aboard small boats to locate and photo-identify bottlenose dolphins all
165 year long between 2013 and 2015, always at constant speed and with three observers. Taking
166  pictures of the dorsal fin of each individual in the group makes possible the construction of
167  detection history and hence the analysis of the population through capture-recapture methods
168 (Labach et al., 2021). Boat surveys were restricted to the coastal waters of France and adopted
169 asearch-encounter design covering approximatively all the continental shelf every 3 months.
170  Wedivided the duration of the monitoring programs into 8 equal sampling occasions that length
171  for 3 months each, following previous analysis by Labach et al., (2021). We also used DS data
172  that were collected during winter and summer aerial line-transect surveys covering 24,624 km
173  of both coastal and pelagic NW Mediterranean Sea between November 2011 to February 2012
174  and May to August 2012 (Laran et al., 2017). Two trained observers collected cetacean data
175 following a DS protocol (i.e. recording species identification, group size, declination angle).
176  Aerial surveys were conditional on a good weather forecast.

177  We divided the study area in 4356 contiguous grid-cells creating a 5°x5” Mardsen grid (WGS
178  84). To model density of individuals, we used depth as an environmental covariate, which is

179  expected to have a positive effect on bottlenose dolphins’ occurrence (Bearzi, Fortuna, &
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180 Reeves, 2009; Labach et al., 2021). To estimate the sampling effort of aerial and boat surveys,
181  we calculated the transect length (in km) prospected by each monitoring protocol within each
182  grid-cell during a time period. Typically, entire transects are split into segments as they overlap
183  multiple grid-cells (Miller et al., 2013). Sampling effort was therefore cell and occasion-specific
184 in the case of the SCR model, and cell specific for the DS model. Sampling effort ranged from
185 0.047 km to 308 km per grid-cell and per occasion for the photo-id dataset, and from 1.33 to
186 54560 km per grid-cell for the aerial line transect dataset. We used subjective weather condition
187  recorded by plane observers during the line transect protocols as a discrete variable ranging
188 from 1 to 8. Good weather condition was expected to be positively related to the detection
189  probability.

190 Spatial integrated models for closed populations

191 To integrate DS and SCR data, we used the hierarchical model proposed by Chandler et
192  al. (2018). However, while initially developed for open populations and due to the lack of
193 temporal depth in our datasets, we adapted the model to estimate abundance and density without
194  accounting for demographic parameters (Fig 1). We performed closed population estimation of
195  bottlenose dolphin density over the 2011-2015 period, assuming that (1) the population was
196 demographically closed during the study period, (2) all individuals were correctly identified at
197  each capture occasion and marks were permanent during the sampling period, (3) no migratory
198 events occurred during the sampling period. Although being strong assumptions, bottlenose
199  dolphin deaths and recruitments between 2011 and 2015 were likely small considering the long
200 life cycle of bottlenose dolphins (Bearzi, Fortuna, & Reeves, 2009; Hammond et al., 2021).
201  Besides, Western Mediterranean bottlenose dolphin population is clustered into coastal
202  subunits, hence we neglected migration events and movements that can occur between “French”
203  resident groups and other populations, e.g. offshore, Spanish, Italian or Atlantic groups (Louis

204  etal., 2014; Carnabuci et al., 2016).
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205  We structure our integrated spatial model around two layers with i) an ecological model that
206  describes the density of individuals based on an inhomogeneous point process (Spatial
207  abundance section below), and ii) two observation models that describe how the DS and SCR
208 data arise from the latent ecological model (Capture-recapture data and Distance-sampling
209 data sections below).
210  Spatial abundance
211 For the ecological model, we use a latent spatial point process modelling the density of
212 individuals and the overall abundance. Over the study area S, an intensity function returns the
213  expected number of individuals at location s in S. Here, s, represents an arbitrary point in the
214  study area S. To account for spatial variation, we model the latent density surface as an
215 inhomogeneous point process. For every location s in the study area S, the expected abundance
216 A is written as a log-linear function of an environmental covariate, say habitat:

log(A(s)) = po + pyhabitat(s) (1)
217  where parameters to be estimated are w0 and ga respectively the density intercept and the
218  regression coefficient of the environmental covariate. For simplicity, we use depth as a habitat
219  covariate possibly influencing bottlenose dolphin density, and explore a linear relationship
220  between density and depth. The effect of habitat covariates could be further explored (e.g. by
221  considering other covariates such as sea surface temperature or prey availability, or by
222 accounting for non-linear effects). Then, the estimated population size is derived by integrating

223  the intensity function over the study area:
E(N) = f A(s)ds. (2)
S
224 As we discretized the study area, we estimated 4; the intensity process describing density for

225  each grid-cell jwith j=1, ..., J = 4356, hence E(N) = Z§=1/1j- The latent ecological process

226  defined by Eqg. 1 is an inhomogeneous point process that is common to both the SCR and DS
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227  models. SCR and DS data are linked to density A and informed the parameters of Eq. 1. To
228 account for unseen individuals, we used the data augmentation technique and augmented the
229  observed datasets to reach M = 20,000 individuals (Royle & Dorazio, 2012). Each individual i
230 is considered being (zi= 1) or not (zi = 0) a member of the population according to a draw in a
231  Bernoulli distribution of probability vy, with z;~Bernoulli(y) where v is the probability for
232  individual i to be a member of the population, with i = E(N)/M and N = ¥/, z;.

233  Capture-recapture data

234 To link capture-recapture data with the ecological process, we built a SCR model (Royle et al.,
235 2014). Detection history of individuals were collected over T = 8 sampling occasions and
236  capture locations were recorded. Grid-cells j in which sampling effort was positive during an
237  occasion were considered as active detectors for this sampling occasion, hence reflecting that
238 animals could be observed. We stored observations in a three-dimensional array y with yijt
239 indicating whether individual i was captured at grid-cell j during sampling occasion t. We
240  assume that observation yij: is an outcome from a Bernoulli distribution with capture probability

241 pi, yijt~Bernoulli(pijt zi). We model capture probability with a half-normal detection

2
20;’ ) where dij is the Euclidian distance between the activity center
SCR

242 function p;;; = poexp(—

243  of individual i and the grid-cell j, oscr is the scale parameter of the half-normal function, and
244 o is the baseline encounter rate (Royle et al., 2014). We accounted for spatial and temporal
245  variation in the detection probability through the baseline detection rate po that we modelled as
246  alogit-linear function: logit(pojt) = &, + 6, Ej.. When the sampling effort Ejtis null, we fixed
247  pGijtto 0.

248  The locations of activity center inform the density of individuals A. For each individual i
249  belonging to the sampled population, its activity center is assigned as the result of a multinomial

250 draw in the predicted density in each grid-cell of the study area.

10


https://doi.org/10.1101/2021.02.01.429097
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.01.429097; this version posted July 12, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

251 id;~Multinomial(1, 1)

252  where idi is the activity center of individual i, and A represent the vector of the predicted density
253 in each cell of the study area. Due to the computational burden to sample the 4356 grid-cells,
254  we mimicked the multinomial distribution through the “zeros trick” (see R codes for details).
255  We considered that activity centers did not change between sampling occasions.

256  Distance-sampling data

257  To accommodate distance data, we built a hierarchical DS model (Kéry & Royle, 2016). We
258 model the DS data conditional on the underlying density surface defined by Egs (1) and (2).
259  We considered two sampling occasions tdas as some transects were replicated. We assume that
260 the probability of detecting dolphins is a decreasing function of the perpendicular distance
261  between the transect and dolphin group. Because distance may not be estimated with perfection

262 by observers, we discretized the distance of observation in B distance bins. Then, 7j,, =
2
263 T1o(jnexp(— ;sz), where n is the scale parameter of the half-normal function, and rog is the

264  probability of detection in the grid-cell j, and db is the observation distance between the flight
265 transect and bin b where the detection occurred. The distance class dj of the observed data at
266  grid-cell j is modelled as a multinomial/categorical draw

267 dj|n;j e~ Multinomial(1, ;)

268  with zjt the vector of length B storing the detection probabilities in each bin b at grid-cell j. The
269  b™index being 1 = 155t/ (Xp Tjp,e)-

270  We account for spatial variation in the baseline detection rate of the detection function
271 modelling 7y ¢ as a log-linear function of weather condition Wj in grid-cell j during sampling
272  occasion t:

273 logit(ro(jy) = ao + a;Wj,.

11
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274  Besides, aerial surveys only sampled a fraction of the total area of each grid-cell (Appendix 1).
275  We calculated S;j: the proportion of the grid-cell effectively sampled by aerial surveys
276  considering a 1200 m wide annulus around the transect. We assumed that density within each
277  grid-cell was uniform and remained constant across the sampling period. Then, N;jt the number
278  of individuals sampled by aerial surveys in each grid-cell j during sampling occasion t is
279  Poisson distributed with 4; being the density of individuals predicted by the point process in
280  grid-cell j restricted to the proportion of grid-cell sampled, S;j.

281 N; ;~Poisson(4;S; )

282  Then, njt the observed group size detected at grid-cell j during sampling occasion t, is given by

283  aBinomial draw in the expected number of sampled individuals, N;jt with probability the sum

284  of r;,, the detection probabilities within each bin b of grid-cell j during sampling occasion t.

285 n;¢IN; .~ Binomial(N;,, Z Fine)
b

286  Bayesian implementation

287 To highlight the benefit of integrating data for the estimation of bottlenose dolphin
288  density, we compared i) the output of the spatial DS model, ii) the SCR model, and iii) the
289 integrated spatial model.

290 We ran all models with three Markov Chain Monte Carlo chains with 100,000 iterations
291 each in the NIMBLE R package (de Valpine et al., 2017). We checked for convergence
292  calculating the R-hat parameter (Gelman et al., 2013) and reported posterior mean and 80%
293  credible intervals (CI) for each parameter. We considered as important the effect of a regression
294  parameter whenever the 80% CI of its posterior distribution did not include 0. We also
295 calculated the predicted density of bottlenose dolphins (i.e. ). Data and codes are available on
296  GitHub (https://github.com/valentinlauret/SpatialintegratedModelTursiops).

297 RESULTS

12
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298 We detected 536 dolphins through aerial surveys clustered in 129 groups. We identified
299 927 dolphins over 1707 detections in photo-identification surveys, out of which 638 dolphins
300  were captured only once (68%), 144 were captured twice (15.5%), 149 were captured 3 times
301 and up to 8 times for one individual. The maximum distance between two sightings of the same
302 individual was 302 km, with one individual detected twice during the same sampling occasion
303  at 115 km distance.

304 We estimated 2451 dolphins (2337; 2566) with integrated spatial model over the study
305 area (Table 1), 11531 dolphins (10132; 12997) with the DS model and 1834 dolphins (1745;
306  1926) with the SCR model (Table 1). Density intercepts of integrated spatial model (po=-0.85
307 (-0.90; -0.79)) and SCR model (po=-1.18 (-1.81; -1.07)) were lower than intercept of DS model
308  (uo=0.95 (0.82; 1.08)).

309 DS model estimated a positive effect of shallow waters (ni1= 0.18 (0.12; 0.25), Table 1)
310 similar to the effect estimated by the integrated spatial model (1= 0.32 (0.26; 0.38), Table 1).
311 However, the SCR model did not detect an effect of depth on density (u1= 0.28 (-0.47; 1.22),
312 Table1). Then, both integrated and DS models predicted higher densities of bottlenose dolphins
313 inthe coastal seas than in the pelagic seas, whereas the SCR model predicted no effect of depth
314  ondolphin density.

315 Boat sampling effort exhibited a positive effect on detection probability for both the
316 SCR model (B1=0.58 (0.53; 0.62)) and the integrated spatial model (1= 0.58 (0.54; 0.62), table
317 1).For the integrated spatial model and the DS model, the detection probability increased when
318 the weather condition improved (integrated spatial model: a.1= 1.64 (1.15; 2.10), DS: o1=1.86
319 (1.52;2.21), Table 1).

320 DISCUSSION

321 Integrated spatial model benefits from both distance sampling and capture-recapture

322 data
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323 With our integrated spatial model, we estimated bottlenose dolphin abundance within the
324  range of what was found in previous studies in nearby areas (Gnone et al., 2011; Lauriano et
325 al, 2014), and found that densities were more likely to be higher in coastal areas (Bearzi,
326 Fortuna, & Reeves, 2009). A striking result was the higher abundance estimated by DS
327  compared to abundance estimated by the integrated and SCR models, which estimates were
328 also found in previous studies analysing the same datasets in isolation. Using CR data only,
329 Labachetal. (2021) estimated 2350 dolphins (95% confidence interval: 1827; 3135) inhabiting
330 the French continental coast where our integrated model predicted 2451 dolphins (95%
331 confidence interval: 2306; 2602). Analysing DS data, Laran et al., (2017) estimated 2946
332 individuals (95% confidence interval: 796; 11,462) during summer, and 10,233 (95%
333  confidence interval: 4217; 24,861) during winter where our DS model estimated 11,531 (95%
334  confidence interval: 9784; 13,478) all year long. Recent aerial campaigns performed in 2018-
335 2019 on the same study area and following the same distance sampling protocol do not suggest
336  seasonal difference in bottlenose dolphins abundance (Laran et al., 2021).

337 We see several reasons that might explain the discrepancy in estimates obtained from SCR
338 and DS models. First, although the Mediterranean bottlenose dolphins population is clustered
339 in coastal sub-units (Carnabuci et al., 2016), groups can be encountered offshore (Bearzi,
340 Fortuna, & Reeves, 2009). In the DS dataset, large dolphin groups were detected in the pelagic
341 seas at the extreme south of sampling design (Appendix 1). These groups could either be 1)
342  occasional pelagic individuals belonging to coastal populations and that are mainly resident
343 outside our study area (e.g. Balearic, South-Western Sardinia), or ii) resident pelagic
344  populations that are not sampled by coastal photo-id surveys (Louis et al., 2014). Second, SCR
345  data were restricted to the French continental coast and did not sample dolphin populations that
346  existelsewhere in the study area, e.g. in Corsica, Liguria, and Tuscany (Carnabuci et al., 2016).

347  Despite this geographic sampling bias in the capture-recapture data, SCR models should predict
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348 the existence of Corsican and Italian populations if the relationship between density and habitat
349 in Eq (1) was correct and consistent throughout the study area. Predicting abundance outside
350 the range of the data used could lead to biased estimates if the habitat-density relation is not
351  correctly specified (A. Lee-Yaw et al., 2021; Hammond et al., 2021). As the photo-id surveys
352  did not sample greater depths, our SCR model is likely to underestimate abundance because the
353 relation linking dolphin density to depth was not correctly specified. Thus, we emphasized the
354  relevance of aerial surveys that collected data in the pelagic seas, which helps to quantify the
355 habitat-density relationship. To perform detailed analysis of the NW Mediterranean bottlenose
356  dolphin populations, one should consider additional environmental covariates to better capture
357  spatial variation in density (e.g., sea surface temperature, distance to coast, or 200m contour,
358 Lambertetal. 2017). Besides, because Sardinian and Balearic populations, and offshore groups
359 can be sampled in the aerial surveys, the DS model drives upward abundance compared to the
360 SCR model that is unlikely to account for animals that are members of the Southern neither the
361  Eastern or offshore populations.

362 Overall, both DS and SCR data affected the estimates of the integrated spatial model. Using
363 SCR data brought more information about population size (e.g. more detections, more
364 individuals) than the DS data to inform the intercept of density (uo), making the integrated
365  spatial model abundance estimate closer to the SCR model estimate (Table 1, Fig. 2). However,
366 the DS data that were collected throughout the range of the habitat predictor informed the slope
367  of the inhomogeneous point process (u1), i.e. the effect of depth on dolphin density. Then, in
368 the integrated spatial model, the SCR data informed the estimated population size and the DS
369 data informed spatial repartition of individuals by correcting for the geographic sampling bias
370 inthe SCR data. The integrating approach helped to reduce the sampling limitations of each

371 dataset and can improve the ecological inference as illustrated here about bottlenose dolphins.
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372  Conservation implications for monitoring bottlenose dolphins in the French

373  Mediterranean Sea and beyond

374 When the conservation goal is to assess abundance in an area at a specific time, line transect
375  surveys may be a cost-effective choice. However, if one’s goal is to estimate the number of
376 animals in an area over a longer period, CR methods could be more appropriate but have cost
377 implications that may exceed those of conducting a line transect survey (Crum, Neyman, &
378 Gowan, 2021; Hammond et al., 2021). Despite differences in ecological inference, DS and CR
379 are complementary methods depending on the conservation motivations and funding. To date,
380  assessing bottlenose dolphin population of French Mediterranean Sea for the EU reporting only
381  focuses on the DS data (Laran et al., 2017). Aerial surveys provide crucial information on
382  marine megafauna taxa, and on human pressures to fill several criteria of the Marine Strategy
383  Framework Directive (Laran et al., 2017; Pettex et al., 2017; Lambert et al., 2020). However,
384  funding constraints make the aerial monitoring hardly applicable at a high frequency, and it is
385  planned to be implemented every 6 years. In parallel, the French office for biodiversity develops
386  and supports local monitoring programs in the French MPA network to perform photo-id data
387  continuously, such detailed datasets represent an important asset to inform abundance of marine
388 mammals populations (Evans & Hammond, 2004). Ecological indicators required by the
389  Marine Strategy Framework Directive for bottlenose dolphins would benefit from integrating
390  aerial line-transect with more data when available (Lauret et al. 2021). In addition, the French
391 Research Institute for Exploitation of the Sea (i.e. IFREMER) collected yearly bottlenose
392  dolphins’ data during line transects surveys for pelagic fisheries (Baudrier et al., 2018).
393  Ultimately, several monitoring programs will be available about bottlenose dolphins in the
394  Mediterranean context and integrated spatial models makes possible to include existing datasets

395 that have been discarded so far to inform public policies (Cheney et al., 2013; Isaac et al., 2019).
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396  We acknowledge that our model has limitations due to several ecological features lacking, e.g.
397  spatial autocorrelation, effect of other environmental covariates, accounting for non-linear
398 covariate effect, and group behaviour of bottlenose dolphins that may generate non-independent
399 individual detection probabilities. One might also consider extending the activity center process
400 to include a movement model of individuals (Gowan, Crum, & Roberts, 2021). Moreover,
401  ecological closure assumptions we assumed are likely to be violated but we assumed the bias
402  introduced bias would be minimal. However, we emphasize that integrated spatial models are
403  highly relevant considering the future monitoring planning by the French biodiversity agency
404  that will perpetuate the coexistence of photo-identification with aerial line-transect. Analysing
405 the collected data in an integrated framework will lead to a more comprehensive understanding
406  of how the monitoring programs can work together and what exactly it is that they achieve in
407  unison. It is our hope that the ability of integrating different datasets contribute to the ongoing
408 monitoring efforts developed in the Mediterranean context and fit in the scope of what
409  managers expect form statistical developments to inform environmental policies (Lauret, 2021).
410 Line-transect and capture-recapture surveys are widely used monitoring methods to assess
411  population dynamics of marine mammals (Hammond et al., 2021). Our work provides a
412  promising modelling baseline to deal with the bottlenose dolphin evaluation but also open
413  perspectives for other conservation challenges about marine species that are subject to similar
414  monitoring situations in the French Mediterranean context (e.g. fin whale, seabirds) and
415  elsewhere.

416 Last, adding complementary long-term datasets to the aerial-surveys would make possible
417  toaccess the demographic parameters (e.g. recruitments, survival (Chandler et al. 2018)), which
418  would represent a major opportunity for the knowledge about French Mediterranean bottlenose
419  dolphin populations and to produce reliable conservation status. The use of integrated spatial

420  models for the French Mediterranean bottlenose dolphin population also enable to extend the
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421  modelling approach exploring seasonality in density, and to measure immigration and dispersal
422  between bottlenose dolphins populations (Zipkin & Saunders, 2018). Finally, precising the
423  assessment of bottlenose dolphin conservation status could ultimately lead to mitigation
424  programs in the context of the Marine Strategy Framework Directive, e.g. marine protected
425 areas implementation such as the Bottlenose dolphins Natura 2000 area in the French Gulf of
426  Lion.

427  Spatial integrated models as a promising tool for conservation

428 When establishing species conservation status for large-scale environmental policies,
429  discarding some datasets from the analysis can reduce the reliability of the ecological estimation
430  (Bischof, Braeseth, & Gimenez, 2016). Using multiple datasets into integrated spatial models
431  help to overcome some limitations present when using separated information sources (e.g.
432  limited spatial or temporal survey coverage, Zipkin & Saunders 2018; Isaac et al. 2019).
433 However, caution should be taken as integrating data requires additional modelling
434  assumptions, e.g. assuming population closure over longer time period in our case (Dupont et
435 al., 2019; Farr et al., 2020; Fletcher et al., 2019; Simmonds et al., 2020). Integrated spatial
436  models are flexible tools that can include more than 2 datasets (Zipkin & Saunders, 2018), and
437  various type of data that enlarge the scope of usable information (presence-absence (Santika et
438 al. 2017), count data (Chandler et al., 2018), citizen science data (Sun, Royle, & Fuller, 2019)).
439 Recent and current developments of SCR models widen perspectives to extend integrated
440  spatial models to account for unidentified individuals, or to better describe animal movement
441  (Milleret et al., 2019; Jiménez et al., 2020; Turek et al., 2020). Over the last decades, the spatial
442  scope of conservation efforts has greatly increased, and the analytical methods have had to
443  adapt accordingly (Zipkin & Saunders, 2018). Integrated spatial models are a promising tool
444  that can be used in multiple situations where several data sources coexist, especially for large

445  scale conservation policies.
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632 TABLES

633  Table 1: Parameter estimates for the spatial integrated model (SIM), spatial capture-recapture (SCR) model, and distance-sampling (DS) model.

634  For each parameter, we display the posterior mean and its 80% credible interval (CI).

SIM SCR model DS model 635
Parameter Mean 80% ClI Mean 80% ClI Mean 80% ©B6
Estimated population size N 2451 2337, 2566 1834 1745, 1926 11531 10132, 1887
Intercept of density po -0.85 -0.90, -0.79 -1.18 -1.81, -1.07 0.95 0.82, 1838
Effect of depth on density p 0.32 0.26, 0.38 0.28 -0.47,1.22 0.18 0.12, 0239
SCR scale parameter: o scr 531 156,903 | 2458  500,5920 640
641
SCR po parameter: Intercept &, -12.54 -12.93,-12.16 | -12.77 -13.53,-12.11
642
SCR po parameter: Effect of at-sea sampling-effort §, 0.58 0.54, 0.63 0.58 0.53, 0.62
643
DS scale parameter: O ps 321 1.09,8.51 416  7.14,9.44
644
DS ro parameter: Intercept oo 3.32 2.80, 3.87 1.15 0.79,151
645
DS ro parameter: Effect of weather condition ou 1.64 11521 1.86 1.52, 2'624%6

647
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648
649 FIGURE-LEGEND PAGE

650

651  Figure 1: Graphical description of the Spatial Integrated Model (SIM) that combines Spatial
652  Capture Recapture (SCR), and Distance Sampling (DS). The SIM is a hierarchical model with
653 three processes: i) latent population size E(N) and density A informed by an inhomogeneous
654  point process, ii) DS observation process that link the line-transect dataset to the latent density
655  surface, iii) SCR observation process that links the detection histories to the latent density. The
656  observation process is stochastic according to detection probability. For DS model, the
657  observed group size nobs is a Binomial draw in the latent abundance N at the sampl grid-cell.
658  For SCR model, observing an individual i is a Bernoulli draw with a detection probability pi.
659  Through the data augmentation process with a hypothetical population size M, the probability
660 an individual i belong to the study population is the result of a Bernoulli draw of probability
661 E(N)/M.

662

663  Figure 2: Estimated density surface of bottlenose dolphins (Tursiops truncatus) for the 3
664  models. Lighter colour indicates more individuals per area unit. Both spatial integrated model
665 (SIM) and distance sampling (DS) predicted higher density in coastal seas, while spatial
666  capture-recapture (SCR) predicted homogeneous density across the study area. Note that
667  density scales are different between maps, indicating a higher overall population size for DS
668  model than for SIM, and SCR model.

669
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673  Figure 1: Graphical description of the Spatial Integrated Model (SIM) that combines Spatial
674  Capture Recapture (SCR), and Distance Sampling (DS). The SIM is a hierarchical model with
675 three processes: i) latent population size E(N) and density A informed by an inhomogeneous
676  point process, ii) DS observation process that link the line-transect dataset to the latent density
677  surface, iii) SCR observation process that links the detection histories to the latent density. The
678  observation process is stochastic according to detection probability. For DS model, the
679  observed group size nobs is a Binomial draw in the latent abundance N at the sampled grid-cell.
680  For SCR model, observing an individual i is a Bernoulli draw with a detection probability pi.
681  Through the data augmentation process with a hypothetical population size M, the probability
682 an individual i belongs to the study population is the result of a Bernoulli draw of probability

683  E(N)/M.
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Bottlenose dolphin density
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Figure 2: Density of bottlenose dolphins (7ursiops truncatus) estimated from 1. Distance
Sampling (DS), 2. Spatial Capture Recapture (SCR), 3. Integrated model. Lighter colour
indicates more individuals per area unit. All models predicted higher density in coastal seas,
while depth effect is no significant for SCR model. Note that density scales are different
between maps, indicating a higher overall population size for DS model than for Integrated
model and SCR model.
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