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Article: Integrated spatial models foster complementarity between 30 

monitoring programs in producing large-scale bottlenose dolphin indicators 31 

Abstract (< 300 words) 32 

Over the last decades, large-scale ecological projects have emerged that require 33 

collecting ecological data over broad spatial and temporal coverage. Yet, obtaining relevant 34 

information about large-scale population dynamics from a single monitoring program is 35 

challenging, and often several sources of data, possibly heterogeneous, need to be integrated. 36 

In this context, integrated models combine multiple data types into a single analysis to quantify 37 

population dynamics of a targeted population. When working at large geographical scales, 38 

integrated spatial models have the potential to produce spatialised ecological estimates that 39 

would be difficult to obtain if data were analysed separately. 40 

In this paper, we illustrate how spatial integrated modelling offers a relevant framework 41 

for conducting ecological inference at large scales. Focusing on the Mediterranean bottlenose 42 

dolphins (Tursiops truncatus), we combined 21,464 km of photo-identification boat surveys 43 

collecting spatial capture-recapture data with 24,624 km of aerial line-transect following a 44 

distance-sampling protocol. We analysed spatial capture-recapture data together with distance-45 

sampling data to estimate abundance and density of bottlenose dolphins. We compared the 46 

performances of the distance sampling model and the spatial capture-recapture model fitted 47 

independently, to our integrated spatial model. 48 

The outputs of our spatial integrated models inform bottlenose dolphin ecological status 49 

in the French Mediterranean Sea and provide ecological indicators that are required for regional 50 

scale ecological assessments like the EU Marine Strategy Framework Directive. We argue that 51 

integrated spatial models are widely applicable and relevant to conservation research and 52 

biodiversity assessment at large spatial scales. 53 

 Keywords 54 
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Bottlenose dolphins, data integration, distance sampling, integrated models, Marine Strategy 55 

Framework Directive, NIMBLE, spatial capture-recapture 56 

Introduction  57 

Macro-institutions get increasingly involved in large-scale programs for biodiversity 58 

conservation over regional and continental areas. Whether these policies aim at assisting 59 

governments (e.g., the Intergovernmental Science-Policy Platform on Biodiversity and 60 

Ecosystem Services), or at implementing environmental management such as the European 61 

Union directives (Habitat Directive, 92/43/EEC, or Marine Strategy Framework Directive, 62 

MSFD, 2008/56/EC), conducting large-scale ecological monitoring is required to establish 63 

conservation status of targeted species and ecosystems, and to inform decision-making.  64 

For biodiversity management decisions, conservation sciences require assessing the 65 

ecological status of species and ecosystems, which democratized the call for ecological 66 

indicators (Buckland, Magurran, et al., 2005; Nichols & Williams, 2006). An ecological 67 

indicator can be defined as a metric reflecting one or more components of the state of ecological 68 

systems. An ecological indicator can either be measured directly or result from the 69 

simplification of several field-estimated values (Niemi & McDonald, 2004). The Marine 70 

Strategy Framework Directive referred to abundance/density of targeted species (e.g. seabirds, 71 

cetaceans) as ecological indicators to fulfil for national reporting. At large spatial scales, 72 

logistical and financial constraints often prevent a detailed coverage of the targeted population 73 

using a single collection effort, and different monitoring programs coexist (Lindenmayer & 74 

Likens, 2010; Zipkin & Saunders, 2018; Isaac et al., 2019). The multiplication of monitoring 75 

programs over the same conservation context has fostered the development of statistical models 76 

that can estimate ecological quantities while accommodating several, possibly heterogeneous, 77 

datasets (Besbeas et al., 2002; Miller et al., 2019; Isaac et al., 2019; Zipkin, Inouye, & 78 

Beissinger, 2019; Farr et al., 2020). Integrating data from several monitoring protocols can give 79 
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complementary insights on population structure and dynamics (Schaub & Abadi, 2011), 80 

increase space and time coverage of the population (Schaub & Abadi, 2011; Zipkin, Inouye, & 81 

Beissinger, 2019), and produce more precise ecological estimates (Isaac et al. 2019; Lauret et 82 

al. 2021; Farr et al. 2020). 83 

A recurrent objective of ecological monitoring programs is to estimate population 84 

abundance and density (Williams, Nichols, & Conroy, 2002), for which distance sampling (DS, 85 

Buckland et al., 2005) and capture-recapture (CR, Williams et al. 2002) methods are widely 86 

used. Abundance reflects the estimated number of animals in a specified area while density is 87 

a spatialised estimate that reflects the number of animals per unit area. DS and CR methods 88 

have strengths and weaknesses in relation to logistical and practical issues (Hammond et al., 89 

2021). DS methods can cover large areas at a reasonable cost (e.g. line transect monitoring), 90 

while CR monitoring programs can be costly to develop at large spatial scales because more 91 

sampling effort is required over a longer time period to recapture individuals (Hammond et al., 92 

2021). Even when estimating abundance over the same study area, DS and CR do not estimate 93 

exactly the same quantity (Calambokidis & Barlow, 2004; Crum, Neyman, & Gowan, 2021). 94 

DS methods estimate abundance within a study area at the time of the survey. CR methods are 95 

based on individuals sampling and estimate the number of animals that were present in the 96 

study area during the time of the monitoring (Calambokidis & Barlow, 2004). CR methods 97 

encapsulate longer temporal extent because multiple sampling occasions are needed to build 98 

CR histories (Williams, Nichols, & Conroy, 2002). However, when data are collected over the 99 

same monitoring period and if animals do not move in and out of the study area during that 100 

period, CR and DS provide consistent estimates. Recent modelling tools have emerged to 101 

integrate both DS and CR methods into integrated population models (Kéry & Royle 2020). DS 102 

and spatial CR methods (SCR) allows accounting for spatial variation in abundance and density 103 

(Camp et al., 2020; Miller et al., 2013; Royle et al., 2014), possibly at large scales (Bischof et 104 
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al., 2020). The extension to integrated spatial models has been proposed to account for spatial 105 

variation in abundance and demographic parameters while analysing jointly DS data and SCR 106 

data (Chandler et al., 2018). Integrated modelling holds promise for species occurring over 107 

large areas that are likely to be the target of multiple monitoring protocols. Besides, working at 108 

large geographical scales requires encapsulating spatial dimensions in the estimation of 109 

ecological quantities. Integrated spatial models allow to assess spatialised ecological inference, 110 

e.g density of individuals. To date, integrated spatial models have been developed and used on 111 

open populations to estimate temporal variation in population dynamics and vital rates such as 112 

survival and recruitment (Chandler & Clark, 2014; Chandler et al., 2018; Sun, Royle, & Fuller, 113 

2019). These applications rely on long-term datasets that are not always compatible with 114 

conservation objectives. In many cases, ecological information is needed quickly, and data to 115 

investigate temporal variation are unavailable (Nichols & Williams, 2006; Lindenmayer & 116 

Likens, 2010). Consequently, ecological inference is often restricted to closed-population 117 

indicators (e.g. abundance or population size, density or spatial repartition of the population, 118 

distribution or spatial extent of a population). When the temporal resolution of monitoring 119 

programs does not allow to quantify population dynamics, we argue that an application of 120 

integrated spatial models to closed populations can be useful in numerous ecological contexts 121 

to deal jointly with existing monitoring programs and assess abundance and density. 122 

In this paper, we build an integrated spatial model and demonstrate the relevance of 123 

combining DS and SCR to build large-scale ecological indicators. We consider the monitoring 124 

of common bottlenose dolphins (Tursiops truncatus) that are considered as “vulnerable” by the 125 

IUCN Red List in the North-Western Mediterranean Sea (IUCN, 2009). The protected status of 126 

bottlenose dolphins within the French seas (listed on Annex II of the European Habitats 127 

Directive) led to the development of specific programs to monitor Mediterranean bottlenose 128 

dolphins within the implementation of the European Marine Strategy Framework Directive, 129 
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which requires assessing the conservation status of this species every 6 years over the large 130 

extent of the French Mediterranean Sea (Authier et al. 2017). Increasing efforts are dedicated 131 

to develop monitoring programs in the Marine Protected Areas (MPA) network that mainly 132 

implement photo-identification protocols locally, while governmental agencies perform large-133 

scale line-transect programs to monitor marine megafauna and fisheries. Hence, multiple data 134 

sources coexist about bottlenose dolphins in the French Mediterranean Sea. In this paper, we  135 

analysed DS data collected by aerial line-transect surveys over a large area covering coastal 136 

and pelagic seas (Laran et al., 2017), which we combined with SCR data collected by a photo-137 

identification monitoring program restricted to coastal waters (Labach et al., 2021). We 138 

compared the abundance and density of bottlenose dolphins estimated from DS model, SCR 139 

model, and integrated spatial models to highlight the benefits of the integrated approach in an 140 

applied ecological situation. We discussed the promising opportunities of using integrated 141 

spatial models in the context of marine monitoring planning in the French Mediterranean. 142 

Eventually, we underlined the conservation implications of using such a model at a wider extent 143 

to make the best use of available datasets. 144 

Methods 145 

Monitoring bottlenose dolphins in the French Mediterranean Sea 146 

Common bottlenose dolphins (Tursiops truncatus) occur over large areas throughout the 147 

Mediterranean Sea. Because monitoring elusive species in the marine realm is complex, 148 

multiple monitoring initiative have emerged to collect data about bottlenose dolphins in the 149 

French Mediterranean Sea. In the context of the Marine Strategy Framework Directive, the 150 

French government implemented large-scale aerial transects to monitor marine megafauna 151 

(Laran et al., 2017). However, the large spatial coverage of the aerial monitoring is impaired 152 

by the low resolution of such data (i.e. 1 campaign every 6 years). Then, to collect detailed data, 153 

the French agency for biodiversity funded a photo-identification monitoring program to 154 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 12, 2022. ; https://doi.org/10.1101/2021.02.01.429097doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.01.429097
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7 

investigate the ecological status of the bottlenose dolphins in the French Mediterranean Sea. 155 

This coastal boat photo-identification monitoring has been performed between 2013 and 2015. 156 

Coastal photo-identification monitoring represents a promising opportunity to produce high 157 

resolution information because data can be collected routinely by Marine Protected Areas at 158 

high time frequency.  159 

Study area and datasets 160 

We focused on an area of 255,000 km2 covering the North-Western Mediterranean Sea 161 

within which we considered two monitoring programs about bottlenose dolphins. We used SCR 162 

data from at-sea boat surveys over 21,464 km of the French continental shelf. Observers 163 

performed monitoring aboard small boats to locate and photo-identify bottlenose dolphins all 164 

year long between 2013 and 2015, always at constant speed and with three observers. Taking 165 

pictures of the dorsal fin of each individual in the group makes possible the construction of 166 

detection history and hence the analysis of the population through capture-recapture methods 167 

(Labach et al., 2021). Boat surveys were restricted to the coastal waters of France and adopted 168 

a search-encounter design covering approximatively all the continental shelf every 3 months. 169 

We divided the duration of the monitoring programs into 8 equal sampling occasions that length 170 

for 3 months each, following previous analysis by Labach et al., (2021). We also used DS data 171 

that were collected during winter and summer aerial line-transect surveys covering 24,624 km 172 

of both coastal and pelagic NW Mediterranean Sea between November 2011 to February 2012 173 

and May to August 2012 (Laran et al., 2017). Two trained observers collected cetacean data 174 

following a DS protocol (i.e. recording species identification, group size, declination angle). 175 

Aerial surveys were conditional on a good weather forecast. 176 

We divided the study area in 4356 contiguous grid-cells creating a 5’x5’ Mardsen grid (WGS 177 

84). To model density of individuals, we used depth as an environmental covariate, which is 178 

expected to have a positive effect on bottlenose dolphins’ occurrence (Bearzi, Fortuna, & 179 
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Reeves, 2009; Labach et al., 2021). To estimate the sampling effort of aerial and boat surveys, 180 

we calculated the transect length (in km) prospected by each monitoring protocol within each 181 

grid-cell during a time period. Typically, entire transects are split into segments as they overlap 182 

multiple grid-cells (Miller et al., 2013). Sampling effort was therefore cell and occasion-specific 183 

in the case of the SCR model, and cell specific for the DS model. Sampling effort ranged from 184 

0.047 km to 308 km per grid-cell and per occasion for the photo-id dataset, and from 1.33 to 185 

54560 km per grid-cell for the aerial line transect dataset. We used subjective weather condition 186 

recorded by plane observers during the line transect protocols as a discrete variable ranging 187 

from 1 to 8. Good weather condition was expected to be positively related to the detection 188 

probability. 189 

Spatial integrated models for closed populations 190 

To integrate DS and SCR data, we used the hierarchical model proposed by Chandler et 191 

al. (2018). However, while initially developed for open populations and due to the lack of 192 

temporal depth in our datasets, we adapted the model to estimate abundance and density without 193 

accounting for demographic parameters (Fig 1). We performed closed population estimation of 194 

bottlenose dolphin density over the 2011-2015 period, assuming that (1) the population was 195 

demographically closed during the study period, (2) all individuals were correctly identified at 196 

each capture occasion and marks were permanent during the sampling period, (3) no migratory 197 

events occurred during the sampling period. Although being strong assumptions, bottlenose 198 

dolphin deaths and recruitments between 2011 and 2015 were likely small considering the long 199 

life cycle of bottlenose dolphins (Bearzi, Fortuna, & Reeves, 2009; Hammond et al., 2021). 200 

Besides, Western Mediterranean bottlenose dolphin population is clustered into coastal 201 

subunits, hence we neglected migration events and movements that can occur between “French” 202 

resident groups and other populations, e.g. offshore, Spanish, Italian or Atlantic groups (Louis 203 

et al., 2014; Carnabuci et al., 2016). 204 
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 We structure our integrated spatial model around two layers with i) an ecological model that 205 

describes the density of individuals based on an inhomogeneous point process (Spatial 206 

abundance section below), and ii) two observation models that describe how the DS and SCR 207 

data arise from the latent ecological model (Capture-recapture data and Distance-sampling 208 

data sections below). 209 

Spatial abundance 210 

For the ecological model, we use a latent spatial point process modelling the density of 211 

individuals and the overall abundance. Over the study area S, an intensity function returns the 212 

expected number of individuals at location s in S. Here, s, represents an arbitrary point in the 213 

study area S. To account for spatial variation, we model the latent density surface as an 214 

inhomogeneous point process. For every location s in the study area S, the expected abundance 215 

 is written as a log-linear function of an environmental covariate, say habitat: 216 

𝑙𝑜𝑔(λ(𝑠)) = μ0 + μ1habitat(𝑠) (1) 

where parameters to be estimated are 0 and 1 respectively the density intercept and the 217 

regression coefficient of the environmental covariate. For simplicity, we use depth as a habitat 218 

covariate possibly influencing bottlenose dolphin density, and explore a linear relationship 219 

between density and depth. The effect of habitat covariates could be further explored (e.g. by 220 

considering other covariates such as sea surface temperature or prey availability, or by 221 

accounting for non-linear effects). Then, the estimated population size is derived by integrating 222 

the intensity function over the study area: 223 

𝐸(𝑁) = ∫𝜆(𝑠)𝑑𝑠.
𝑆

 
(2) 

As we discretized the study area, we estimated 𝜆𝑗 the intensity process describing density for 224 

each grid-cell j with j = 1, …, J = 4356, hence 𝐸(𝑁) = ∑ 𝜆𝑗
𝐽
𝑗=1 . The latent ecological process 225 

defined by Eq. 1 is an inhomogeneous point process that is common to both the SCR and DS 226 
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models. SCR and DS data are linked to density λ and informed the parameters of Eq. 1. To 227 

account for unseen individuals, we used the data augmentation technique and augmented the 228 

observed datasets to reach M = 20,000 individuals (Royle & Dorazio, 2012). Each individual i 229 

is considered being (zi = 1) or not (zi = 0) a member of the population according to a draw in a 230 

Bernoulli distribution of probability , with 𝑧𝑖~Bernoulli(𝜓) where  is the probability for 231 

individual i to be a member of the population, with 𝜓 = 𝐸(𝑁)/𝑀 and 𝑁 = ∑ 𝑧𝑖
𝑀
𝑖=1 . 232 

Capture-recapture data 233 

To link capture-recapture data with the ecological process, we built a SCR model (Royle et al., 234 

2014). Detection history of individuals were collected over T = 8 sampling occasions and 235 

capture locations were recorded. Grid-cells j in which sampling effort was positive during an 236 

occasion were considered as active detectors for this sampling occasion, hence reflecting that 237 

animals could be observed. We stored observations in a three-dimensional array y with yijt 238 

indicating whether individual i was captured at grid-cell j during sampling occasion t. We 239 

assume that observation yijt is an outcome from a Bernoulli distribution with capture probability 240 

pijt, 𝑦𝑖𝑗𝑡~Bernoulli(𝑝𝑖𝑗𝑡 𝑧𝑖). We model capture probability with a half-normal detection 241 

function 𝑝𝑖𝑗𝑡 = 𝑝0𝑒𝑥𝑝(−
𝑑𝑖𝑗

2

2𝜎𝑆𝐶𝑅
2 ) where dij is the Euclidian distance between the activity center 242 

of individual i and the grid-cell j, SCR is the scale parameter of the half-normal function, and 243 

p0 is the baseline encounter rate (Royle et al., 2014). We accounted for spatial and temporal 244 

variation in the detection probability through the baseline detection rate p0 that we modelled as 245 

a logit-linear function: logit(𝑝0𝑗𝑡) = 𝛿0 + 𝛿1𝐸𝑗𝑡. When the sampling effort Ejt is null, we fixed 246 

p0ijt to 0. 247 

The locations of activity center inform the density of individuals . For each individual i 248 

belonging to the sampled population, its activity center is assigned as the result of a multinomial 249 

draw in the predicted density in each grid-cell of the study area. 250 
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𝑖𝑑𝑖~𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(1, 𝜆̅) 251 

where idi is the activity center of individual i, and 𝜆̅ represent the vector of the predicted density 252 

in each cell of the study area. Due to the computational burden to sample the 4356 grid-cells, 253 

we mimicked the multinomial distribution through the “zeros trick” (see R codes for details). 254 

We considered that activity centers did not change between sampling occasions. 255 

Distance-sampling data 256 

To accommodate distance data, we built a hierarchical DS model (Kéry & Royle, 2016). We 257 

model the DS data conditional on the underlying density surface defined by Eqs (1) and (2). 258 

We considered two sampling occasions tds as some transects were replicated. We assume that 259 

the probability of detecting dolphins is a decreasing function of the perpendicular distance 260 

between the transect and dolphin group. Because distance may not be estimated with perfection 261 

by observers, we discretized the distance of observation in B distance bins. Then, 𝑟𝑗𝑏𝑡 =262 

𝑟0(𝑗,𝑡)𝑒𝑥𝑝(−
𝑑𝑏

2

2𝜂2), where  is the scale parameter of the half-normal function, and r0(j) is the 263 

probability of detection in the grid-cell j, and db is the observation distance between the flight 264 

transect and bin b where the detection occurred. The distance class dj of the observed data at 265 

grid-cell j is modelled as a multinomial/categorical draw  266 

𝑑𝑗,𝑡|𝑛𝑗,𝑡~ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(1, 𝜋𝑗,𝑡) 267 

with πj,t the vector of length B storing the detection probabilities in each bin b at grid-cell j. The 268 

bth index being 𝜋𝑗,𝑏,𝑡 = 𝑟𝑗,𝑏,𝑡/(∑ 𝑟𝑗,𝑏,𝑡𝑏 ). 269 

We account for spatial variation in the baseline detection rate of the detection function 270 

modelling 𝑟0(𝑗,𝑡) as a log-linear function of weather condition Wj,t in grid-cell j during sampling 271 

occasion t: 272 

𝑙𝑜𝑔𝑖𝑡(𝑟0(𝑗,𝑡)) = 𝛼0 + 𝛼1𝑊𝑗,𝑡. 273 
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Besides, aerial surveys only sampled a fraction of the total area of each grid-cell (Appendix 1). 274 

We calculated Sj,t the proportion of the grid-cell effectively sampled by aerial surveys 275 

considering a 1200 m wide annulus around the transect. We assumed that density within each 276 

grid-cell was uniform and remained constant across the sampling period. Then, Nj,t the number 277 

of individuals sampled by aerial surveys in each grid-cell j during sampling occasion t is 278 

Poisson distributed with 𝜆𝑗 being the density of individuals predicted by the point process in 279 

grid-cell j restricted to the proportion of grid-cell sampled, Sj,t. 280 

𝑁𝑗,𝑡~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑗𝑆𝑗,𝑡) 281 

Then, nj,t the observed group size detected at grid-cell j during sampling occasion t, is given by 282 

a Binomial draw in the expected number of sampled individuals, Nj,t with probability the sum 283 

of 𝑟𝑗,𝑏,𝑡, the detection probabilities within each bin b of grid-cell j during sampling occasion t. 284 

𝑛𝑗,𝑡|𝑁𝑗,𝑡~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑁𝑗,𝑡 , ∑ 𝑟𝑗,𝑏,𝑡

𝑏

) 285 

Bayesian implementation 286 

To highlight the benefit of integrating data for the estimation of bottlenose dolphin 287 

density, we compared i) the output of the spatial DS model, ii) the SCR model, and iii) the 288 

integrated spatial model. 289 

We ran all models with three Markov Chain Monte Carlo chains with 100,000 iterations 290 

each in the NIMBLE R package (de Valpine et al., 2017). We checked for convergence 291 

calculating the R-hat parameter (Gelman et al., 2013) and reported posterior mean and 80% 292 

credible intervals (CI) for each parameter. We considered as important the effect of a regression 293 

parameter whenever the 80% CI of its posterior distribution did not include 0. We also 294 

calculated the predicted density of bottlenose dolphins (i.e. ). Data and codes are available on 295 

GitHub (https://github.com/valentinlauret/SpatialIntegratedModelTursiops). 296 

RESULTS 297 
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We detected 536 dolphins through aerial surveys clustered in 129 groups. We identified 298 

927 dolphins over 1707 detections in photo-identification surveys, out of which 638 dolphins 299 

were captured only once (68%), 144 were captured twice (15.5%), 149 were captured 3 times 300 

and up to 8 times for one individual. The maximum distance between two sightings of the same 301 

individual was 302 km, with one individual detected twice during the same sampling occasion 302 

at 115 km distance. 303 

We estimated 2451 dolphins (2337; 2566) with integrated spatial model over the study 304 

area (Table 1), 11531 dolphins (10132; 12997) with the DS model and 1834 dolphins (1745; 305 

1926) with the SCR model (Table 1). Density intercepts of integrated spatial model (0= -0.85 306 

(-0.90; -0.79)) and SCR model (0= -1.18 (-1.81; -1.07)) were lower than intercept of DS model 307 

(0= 0.95 (0.82; 1.08)). 308 

DS model estimated a positive effect of shallow waters (1= 0.18 (0.12; 0.25), Table 1) 309 

similar to the effect estimated by the integrated spatial model (1= 0.32 (0.26; 0.38), Table 1). 310 

However, the SCR model did not detect an effect of depth on density (1= 0.28 (-0.47; 1.22), 311 

Table 1). Then, both integrated and DS models predicted higher densities of bottlenose dolphins 312 

in the coastal seas than in the pelagic seas, whereas the SCR model predicted no effect of depth 313 

on dolphin density. 314 

Boat sampling effort exhibited a positive effect on detection probability for both the 315 

SCR model (1= 0.58 (0.53; 0.62)) and the integrated spatial model (1= 0.58 (0.54; 0.62), table 316 

1). For the integrated spatial model and the DS model, the detection probability increased when 317 

the weather condition improved (integrated spatial model: 1= 1.64 (1.15; 2.10), DS: 1= 1.86 318 

(1.52; 2.21), Table 1). 319 

DISCUSSION 320 

Integrated spatial model benefits from both distance sampling and capture-recapture 321 

data 322 
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With our integrated spatial model, we estimated bottlenose dolphin abundance within the 323 

range of what was found in previous studies in nearby areas (Gnone et al., 2011; Lauriano et 324 

al., 2014), and found that densities were more likely to be higher in coastal areas (Bearzi, 325 

Fortuna, & Reeves, 2009). A striking result was the higher abundance estimated by DS 326 

compared to abundance estimated by the integrated and SCR models, which estimates were 327 

also found in previous studies analysing the same datasets in isolation. Using CR data only, 328 

Labach et al. (2021) estimated 2350 dolphins (95% confidence interval: 1827; 3135) inhabiting 329 

the French continental coast where our integrated model predicted 2451 dolphins (95% 330 

confidence interval: 2306; 2602). Analysing DS data, Laran et al., (2017) estimated 2946 331 

individuals (95% confidence interval: 796; 11,462) during summer, and 10,233 (95% 332 

confidence interval: 4217; 24,861) during winter where our DS model estimated 11,531 (95% 333 

confidence interval: 9784; 13,478) all year long. Recent aerial campaigns performed in 2018-334 

2019 on the same study area and following the same distance sampling protocol do not suggest 335 

seasonal difference in bottlenose dolphins abundance (Laran et al., 2021). 336 

We see several reasons that might explain the discrepancy in estimates obtained from SCR 337 

and DS models. First, although the Mediterranean bottlenose dolphins population is clustered 338 

in coastal sub-units (Carnabuci et al., 2016), groups can be encountered offshore (Bearzi, 339 

Fortuna, & Reeves, 2009). In the DS dataset, large dolphin groups were detected in the pelagic 340 

seas at the extreme south of sampling design (Appendix 1). These groups could either be i) 341 

occasional pelagic individuals belonging to coastal populations and that are mainly resident 342 

outside our study area (e.g. Balearic, South-Western Sardinia), or ii) resident pelagic 343 

populations that are not sampled by coastal photo-id surveys (Louis et al., 2014). Second, SCR 344 

data were restricted to the French continental coast and did not sample dolphin populations that 345 

exist elsewhere in the study area, e.g. in Corsica, Liguria, and Tuscany (Carnabuci et al., 2016). 346 

Despite this geographic sampling bias in the capture-recapture data, SCR models should predict 347 
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the existence of Corsican and Italian populations if the relationship between density and habitat 348 

in Eq (1) was correct and consistent throughout the study area. Predicting abundance outside 349 

the range of the data used could lead to biased estimates if the habitat-density relation is not 350 

correctly specified (A. Lee-Yaw et al., 2021; Hammond et al., 2021). As the photo-id surveys 351 

did not sample greater depths, our SCR model is likely to underestimate abundance because the 352 

relation linking dolphin density to depth was not correctly specified. Thus, we emphasized the 353 

relevance of aerial surveys that collected data in the pelagic seas, which helps to quantify the 354 

habitat-density relationship. To perform detailed analysis of the NW Mediterranean bottlenose 355 

dolphin populations, one should consider additional environmental covariates to better capture 356 

spatial variation in density (e.g., sea surface temperature, distance to coast, or 200m contour, 357 

Lambert et al. 2017). Besides, because Sardinian and Balearic populations, and offshore groups 358 

can be sampled in the aerial surveys, the DS model drives upward abundance compared to the 359 

SCR model that is unlikely to account for animals that are members of the Southern neither the 360 

Eastern or offshore populations. 361 

Overall, both DS and SCR data affected the estimates of the integrated spatial model. Using 362 

SCR data brought more information about population size (e.g. more detections, more 363 

individuals) than the DS data to inform the intercept of density (0), making the integrated 364 

spatial model abundance estimate closer to the SCR model estimate (Table 1, Fig. 2). However, 365 

the DS data that were collected throughout the range of the habitat predictor informed the slope 366 

of the inhomogeneous point process (1), i.e. the effect of depth on dolphin density. Then, in 367 

the integrated spatial model, the SCR data informed the estimated population size and the DS 368 

data informed spatial repartition of individuals by correcting for the geographic sampling bias 369 

in the SCR data. The integrating approach helped to reduce the sampling limitations of each 370 

dataset and can improve the ecological inference as illustrated here about bottlenose dolphins. 371 
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Conservation implications for monitoring bottlenose dolphins in the French 372 

Mediterranean Sea and beyond 373 

When the conservation goal is to assess abundance in an area at a specific time, line transect 374 

surveys may be a cost-effective choice. However, if one’s goal is to estimate the number of 375 

animals in an area over a longer period, CR methods could be more appropriate but have cost 376 

implications that may exceed those of conducting a line transect survey (Crum, Neyman, & 377 

Gowan, 2021; Hammond et al., 2021). Despite differences in ecological inference, DS and CR 378 

are complementary methods depending on the conservation motivations and funding. To date, 379 

assessing bottlenose dolphin population of French Mediterranean Sea for the EU reporting only 380 

focuses on the DS data (Laran et al., 2017). Aerial surveys provide crucial information on 381 

marine megafauna taxa, and on human pressures to fill several criteria of the Marine Strategy 382 

Framework Directive (Laran et al., 2017; Pettex et al., 2017; Lambert et al., 2020). However, 383 

funding constraints make the aerial monitoring hardly applicable at a high frequency, and it is 384 

planned to be implemented every 6 years. In parallel, the French office for biodiversity develops 385 

and supports local monitoring programs in the French MPA network to perform photo-id data 386 

continuously, such detailed datasets represent an important asset to inform abundance of marine 387 

mammals populations (Evans & Hammond, 2004). Ecological indicators required by the 388 

Marine Strategy Framework Directive for bottlenose dolphins would benefit from integrating 389 

aerial line-transect with more data when available (Lauret et al. 2021). In addition, the French 390 

Research Institute for Exploitation of the Sea (i.e. IFREMER) collected yearly bottlenose 391 

dolphins’ data during line transects surveys for pelagic fisheries (Baudrier et al., 2018). 392 

Ultimately, several monitoring programs will be available about bottlenose dolphins in the 393 

Mediterranean context and integrated spatial models makes possible to include existing datasets 394 

that have been discarded so far to inform public policies (Cheney et al., 2013; Isaac et al., 2019). 395 
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We acknowledge that our model has limitations due to several ecological features lacking, e.g. 396 

spatial autocorrelation, effect of other environmental covariates, accounting for non-linear 397 

covariate effect, and group behaviour of bottlenose dolphins that may generate non-independent 398 

individual detection probabilities. One might also consider extending the activity center process 399 

to include a movement model of individuals (Gowan, Crum, & Roberts, 2021). Moreover, 400 

ecological closure assumptions we assumed are likely to be violated but we assumed the bias 401 

introduced bias would be minimal. However, we emphasize that integrated spatial models are 402 

highly relevant considering the future monitoring planning by the French biodiversity agency 403 

that will perpetuate the coexistence of photo-identification with aerial line-transect. Analysing 404 

the collected data in an integrated framework will lead to a more comprehensive understanding 405 

of how the monitoring programs can work together and what exactly it is that they achieve in 406 

unison. It is our hope that the ability of integrating different datasets contribute to the ongoing 407 

monitoring efforts developed in the Mediterranean context and fit in the scope of what 408 

managers expect form statistical developments to inform environmental policies (Lauret, 2021). 409 

Line-transect and capture-recapture surveys are widely used monitoring methods to assess 410 

population dynamics of marine mammals (Hammond et al., 2021). Our work provides a 411 

promising modelling baseline to deal with the bottlenose dolphin evaluation but also open 412 

perspectives for other conservation challenges about marine species that are subject to similar 413 

monitoring situations in the French Mediterranean context (e.g. fin whale, seabirds) and 414 

elsewhere. 415 

Last, adding complementary long-term datasets to the aerial-surveys would make possible 416 

to access the demographic parameters (e.g. recruitments, survival (Chandler et al. 2018)), which 417 

would represent a major opportunity for the knowledge about French Mediterranean bottlenose 418 

dolphin populations and to produce reliable conservation status. The use of integrated spatial 419 

models for the French Mediterranean bottlenose dolphin population also enable to extend the 420 
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modelling approach exploring seasonality in density, and to measure immigration and dispersal 421 

between bottlenose dolphins populations (Zipkin & Saunders, 2018). Finally, precising the 422 

assessment of bottlenose dolphin conservation status could ultimately lead to mitigation 423 

programs in the context of the Marine Strategy Framework Directive, e.g. marine protected 424 

areas implementation such as the Bottlenose dolphins Natura 2000 area in the French Gulf of 425 

Lion. 426 

Spatial integrated models as a promising tool for conservation 427 

When establishing species conservation status for large-scale environmental policies, 428 

discarding some datasets from the analysis can reduce the reliability of the ecological estimation 429 

(Bischof, Brøseth, & Gimenez, 2016). Using multiple datasets into integrated spatial models 430 

help to overcome some limitations present when using separated information sources (e.g. 431 

limited spatial or temporal survey coverage,  Zipkin & Saunders 2018; Isaac et al. 2019). 432 

However, caution should be taken as integrating data requires additional modelling 433 

assumptions, e.g. assuming population closure over longer time period in our case (Dupont et 434 

al., 2019; Farr et al., 2020; Fletcher et al., 2019; Simmonds et al., 2020). Integrated spatial 435 

models are flexible tools that can include more than 2 datasets (Zipkin & Saunders, 2018), and 436 

various type of data that enlarge the scope of usable information (presence-absence (Santika et 437 

al. 2017), count data (Chandler et al., 2018), citizen science data (Sun, Royle, & Fuller, 2019)). 438 

Recent and current developments of SCR models widen perspectives to extend integrated 439 

spatial models to account for unidentified individuals, or to better describe animal movement 440 

(Milleret et al., 2019; Jiménez et al., 2020; Turek et al., 2020). Over the last decades, the spatial 441 

scope of conservation efforts has greatly increased, and the analytical methods have had to 442 

adapt accordingly (Zipkin & Saunders, 2018). Integrated spatial models are a promising tool 443 

that can be used in multiple situations where several data sources coexist, especially for large 444 

scale conservation policies.  445 
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TABLES 632 

Table 1: Parameter estimates for the spatial integrated model (SIM), spatial capture-recapture (SCR) model, and distance-sampling (DS) model. 633 

For each parameter, we display the posterior mean and its 80% credible interval (CI). 634 

 635 

 636 

 637 

 638 

 639 

 640 

 641 

 642 

 643 

 644 

 645 

 646 

 647 

 
SIM SCR model DS model 

Parameter Mean 80% CI Mean 80% CI Mean 80% CI 

Estimated population size N 2451 2337, 2566 1834 1745, 1926 11531 10132, 12997 

Intercept of density 0 -0.85 -0.90, -0.79 -1.18 -1.81, -1.07 0.95 0.82, 1.34 

Effect of depth on density 1 0.32 0.26, 0.38 0.28  -0.47, 1.22 0.18 0.12, 0.25 

SCR scale parameter: σSCR 531 156, 903 2458 500, 5920  
 

SCR p0 parameter: Intercept 𝛿0 -12.54 -12.93, -12.16 -12.77 -13.53, -12.11   

SCR p0 parameter: Effect of at-sea sampling-effort 𝛿0 0.58 0.54, 0.63 0.58 0.53, 0.62   

DS scale parameter: σDS 3.21 1.09, 8.51  
 

4.16  7.14, 9.44 

DS r0 parameter: Intercept 0 3.32 2.80, 3.87   1.15 0.79, 1.51 

DS r0 parameter: Effect of weather condition 1 1.64 1.15 2.1  
 

1.86  1.52, 2.21 
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 648 

FIGURE-LEGEND PAGE 649 

 650 

Figure 1: Graphical description of the Spatial Integrated Model (SIM) that combines Spatial 651 

Capture Recapture (SCR), and Distance Sampling (DS). The SIM is a hierarchical model with 652 

three processes: i) latent population size E(N) and density  informed by an inhomogeneous 653 

point process, ii) DS observation process that link the line-transect dataset to the latent density 654 

surface, iii) SCR observation process that links the detection histories to the latent density. The 655 

observation process is stochastic according to detection probability. For DS model, the 656 

observed group size nobs is a Binomial draw in the latent abundance N at the sampl grid-cell. 657 

For SCR model, observing an individual i is a Bernoulli draw with a detection probability pi. 658 

Through the data augmentation process with a hypothetical population size M, the probability 659 

an individual i belong to the study population is the result of a Bernoulli draw of probability 660 

E(N)/M. 661 

 662 

Figure 2: Estimated density surface of bottlenose dolphins (Tursiops truncatus) for the 3 663 

models. Lighter colour indicates more individuals per area unit. Both spatial integrated model 664 

(SIM) and distance sampling (DS) predicted higher density in coastal seas, while spatial 665 

capture-recapture (SCR) predicted homogeneous density across the study area. Note that 666 

density scales are different between maps, indicating a higher overall population size for DS 667 

model than for SIM, and SCR model.  668 

 669 

  670 
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FIGURES WITH LEGEND 671 

 672 

Figure 1: Graphical description of the Spatial Integrated Model (SIM) that combines Spatial 673 

Capture Recapture (SCR), and Distance Sampling (DS). The SIM is a hierarchical model with 674 

three processes: i) latent population size E(N) and density  informed by an inhomogeneous 675 

point process, ii) DS observation process that link the line-transect dataset to the latent density 676 

surface, iii) SCR observation process that links the detection histories to the latent density. The 677 

observation process is stochastic according to detection probability. For DS model, the 678 

observed group size nobs is a Binomial draw in the latent abundance N at the sampled grid-cell. 679 

For SCR model, observing an individual i is a Bernoulli draw with a detection probability pi. 680 

Through the data augmentation process with a hypothetical population size M, the probability 681 

an individual i belongs to the study population is the result of a Bernoulli draw of probability 682 

E(N)/M.  683 
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 684 

Figure 2: Density of bottlenose dolphins (Tursiops truncatus) estimated from 1. Distance 685 

Sampling (DS), 2. Spatial Capture Recapture (SCR), 3. Integrated model. Lighter colour 686 

indicates more individuals per area unit. All models predicted higher density in coastal seas, 687 

while depth effect is no significant for SCR model. Note that density scales are different 688 

between maps, indicating a higher overall population size for DS model than for Integrated 689 

model and SCR model. 690 
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