

1 **A two-hit epistasis model prevents core genome disharmony in recombining bacteria**

2 Aidan J. Taylor^{1†}, Guillaume Méric^{2†‡}, Koji Yahara³, Ben Pascoe², Leonardos Mageiros²,
3 Evangelos Mourkas², Jessica K Calland², Santeri Puranen⁴, Matthew D. Hitchings⁵, Keith A.
4 Jolley⁶, Carolin M. Kobras¹, Nicola J. Williams⁷, Arnoud H. M. van Vliet⁸, Julian Parkhill⁹,
5 Martin C. J. Maiden⁶, Jukka Corander^{4,10,11}, Laurence D Hurst², Daniel Falush¹², Xavier
6 Didelot¹³, David J. Kelly^{1*}, Samuel K. Sheppard^{2,6*}

7

8 **Affiliations**

9 ¹School of Biosciences, University of Sheffield, Sheffield S10 2TN, United Kingdom;

10 ²The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath,
11 Bath BA2 7AY, UK;

12 ³Antimicrobial Resistance Research Centre, National Institute of Infectious Diseases, Tokyo,
13 Japan;

14 ⁴Department of Mathematics and Statistics, Helsinki Institute for Information Technology,
15 University of Helsinki, Helsinki, Finland;

16 ⁵Swansea University Medical School, Institute of Life Science, Swansea SA2 8PP, UK;

17 ⁶Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK;

18 ⁷Department of Epidemiology and Population Health, Institute of Infection & Global Health,
19 University of Liverpool, Leahurst Campus, Wirral, UK;

20 ⁸School of Veterinary Medicine, University of Surrey, Guildford GU2 7AL, UK;

21 ⁹Department of Veterinary Medicine, University of Cambridge, Madingley Rd, Cambridge CB3
22 0ES, UK;

23 ¹⁰Department of Biostatistics, University of Oslo, Oslo, Norway;

24 ¹¹Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK;
25 ¹²The Centre for Microbes, Development and Health, Institut Pasteur of Shanghai, Shanghai,
26 China;
27 ¹³School of Life Sciences and Department of Statistics, University of Warwick, Coventry CV4
28 7AL, UK.

29

30 *Corresponding author(s): David J. Kelly, d.kelly@sheffield.ac.uk; Samuel K. Sheppard,
31 s.k.sheppard@bath.ac.uk;

32

33 [†]Present address: Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes
34 Institute, 75 Commercial Rd, Melbourne 3004, Victoria, Australia.

35

36 [†] Contributed equally.

37

38

39

40

41

42

43

44

45

46

47 **Abstract**

48 Recombination of short DNA fragments via horizontal gene transfer (HGT) can both introduce
49 beneficial alleles and create disharmony in coadapted genomes (negative epistasis). Owing to a
50 lack of protracted intragenomic co-evolution, negative epistatic costs of HGT into non-core
51 (accessory) bacterial genomes are likely to be minimal. By contrast, for the core genome,
52 recombination is expected to be rare because disruptive allelic replacement is likely to introduce
53 negative epistasis. Why then is homologous recombination common in the core of bacterial
54 genomes? To understand this enigma, we take advantage of an exceptional model system, the
55 common enteric pathogens *Campylobacter jejuni* and *Campylobacter coli*, that are known for
56 very high magnitude interspecies gene flow in the core genome. As expected, HGT does indeed
57 disrupt co-adapted allele pairings (negative epistasis). However, multiple HGT events enable
58 recovery of the recipient genome's co-adaption between the alleles, even in core metabolism
59 genes (e.g. formate dehydrogenase). These findings demonstrate that, even for complex traits,
60 genetic coalitions can be decoupled, transferred and independently reinstated in a new genetic
61 background. There is a strong resemblance to the two-hit cancer model. Whether it be by
62 multiple mutations or multiple HGT events, immediate harmful effects from an initial event need
63 not preclude adaptive evolution. The fitness peak jumping problem in asexual lineages is thus
64 less of a problem than envisaged.

65

66

67

68

69

70 **Introduction**

71 Mutation is the engine of genetic novelty, but for most bacteria adaptation also involves the
72 acquisition of DNA from other strains and species through horizontal gene transfer (HGT)¹. In
73 some well documented cases, a single nucleotide substitution or acquisition of a small number of
74 genes, can prompt new evolutionary trajectories with striking outcomes such as the evolution of
75 virulent or antibiotic resistant strains². With such dynamic genomic architecture, it may be
76 tempting (and possibly useful³) to consider genes as independent units that ‘plug and play’
77 innovation into recipient genomes. This is clearly an oversimplification. In fact, genomes are
78 highly interactive wherein the effect of one allele depends on another (epistasis). Therefore, it is
79 likely that some horizontally introduced changes will disrupt gene networks and be costly to the
80 original coadapted genetic background, especially for complex phenotypes involving multiple
81 genes.

82

83 Understanding how epistasis influences the evolution of phenotype diversity has preoccupied
84 researchers since the origin of population genetics⁴⁻¹⁰, with much emphasis placed upon the
85 relative amounts of recombination and epistatic effect sizes^{11, 12}. In sexual populations, such as
86 outbreeding metazoans, genetic variation is shuffled at each generation. As a consequence of the
87 trend towards randomization between alleles (linkage equilibrium) it is unlikely that multiple
88 distinct epistatic allele combinations will be maintained in the same population and barriers to
89 gene flow, such as geographic isolation, may be required for marked phenotypic diversification⁸.
90 In bacteria, rapid clonal reproduction allows multiple genetically distant beneficial allele
91 combinations to rise to high frequency in a single population. For example, in common enteric
92 bacteria such as *Escherichia coli*, *Salmonella enterica* and *Campylobacter jejuni* the doubling

93 time in the wild has been estimated at around 24 hours or less^{13, 14}. Therefore, though HGT
94 occurs in these organisms¹⁵, even in highly recombinogenic *C. jejuni*^{13, 16}, there will likely be
95 many millions of bacterial generations between recombination events at a given locus. This
96 allows mutations that are beneficial only in specific genetic backgrounds to establish in a single
97 population and linkage disequilibrium to form between different epistatic pairs¹⁷.

98

99 In a coadapted genomic landscape, recombination is expected to have two antagonistic effects.
100 On the one hand, it could promote adaptation by conferring novel functionality on the recipient
101 genome¹⁸⁻²² and reducing competition between clones that carry different beneficial mutations
102 (clonal interference). On the other, owing to the small average size of HGT transfer events and
103 their relatively low rate, it is also likely to introduce disharmonious allele-combinations that will
104 be discriminated against by selection¹⁹.

105

106 The balance of these two effects is likely to be different for core and non-core HGT events.
107 Non-core events, such as the introduction of accessory antibiotic resistance genes, can be
108 immediately beneficial and, as they do not replace extant sequence, need not break epistatic
109 interactions. By contrast, HGT replacing one allele for another in part of the core genome is
110 unlikely to introduce great novelty but is likely to disrupt highly evolved co-adapted networks.
111 For these reasons, negative epistatic interactions between core genes with different evolutionary
112 histories have been proposed as a barrier to recombination^{4-10, 23}, particularly between species.

113

114 As bacteria typically have very high effective population sizes and hence efficient selection, the
115 expectation would be that HGT affecting core genes would then be selected against¹⁹. However,

116 interspecies recombination is common in bacterial core genomes^{18, 24}. How, then, can a core
117 genome, that is expected to build up extensive co-adapted epistatic networks, be so accepting of
118 HGT events?

119
120 The common animal gut bacterium *Campylobacter*, which is among the most prolific causes of
121 human bacterial gastroenteritis worldwide²⁵, provides an exceptional model system to study the
122 impact of HGT on the core genome for several reasons. Introgression between the two most
123 important pathogenic species, *C. jejuni* and *C. coli*, has led to the evolution of a globally
124 distributed ‘hybrid’ *C. coli* lineage²⁶ that is responsible for almost all livestock and human
125 infections with this species. Up to 23% of the core genome of common *C. coli* has been recently
126 introgressed from *C. jejuni*²⁷, potentially disrupting epistatic interactions. As *C. jejuni* and *C. coli*
127 have undergone an extended period of independent evolution (85% average nucleotide identity),
128 recombined sequence is conspicuous in the genome.

129
130 Here, we investigate the disruptive effect of HGT on co-adapted bacterial core genomes by
131 examining covarying allele pairings and imported DNA fragments. Even though recombined
132 fragments enter the genome one-by-one, we find that most covariation in the core genome is
133 between sites where both alleles were imported. Having confirmed that allelic covariation is
134 indicative of epistasis, with laboratory mutagenesis and complementation assays, we conclude
135 that independent disruptive recombination events occur and persist until a second event restores
136 the functional link in a new genetic background. This process resembles the two-hit cancer
137 model. Both bacterial and cancer cell lines are asexual clones and a two-hit model for core
138 genome HGT is consistent with a more general theory in which, whether by multiple mutations

139 or multiple HGT events, immediate harmful effects from an initial event need not preclude
140 adaptive evolution.

141

142 **Results**

143

144 ***Campylobacter* populations are highly structured with intermediate sequence clusters**

145 Analysis every automatically annotated gene from every genome, revealed a core genome of 631
146 gene orthologues in all *Campylobacter* isolates in this study. There were 1287 genes common to
147 all *C. jejuni* isolates and 895, 1021 and 1272 common to *C. coli* clades 1, 2 and 3, respectively.

148 Consistent with previous studies²⁷, neighbour-joining and ClonalFrameML trees based on genes
149 within concatenated core genome alignments revealed population structure in which *C. jejuni*
150 and *C. coli* clade 2 and 3 isolates each formed discrete clusters (Figure 1A, Figure S1). Isolates
151 designated as *C. coli* clade 1 were found in three clusters on the phylogeny: unintrogressed
152 ancestral strains, and the ST-828 and ST-1150 clonal complexes (CCs) which account for the
153 great majority of strains found in agriculture and human disease²⁷. Pan-genome analysis
154 quantified the increase in unique gene discovery as the number of sampled genomes increased
155 (Figure S2A). For all sequence clusters there was evidence of an open pan-genome with a trend
156 towards continued rapid gene discovery within sequence clusters with fewer isolates. There was
157 considerable accessory genome variation between species and clades, potentially associated with
158 important adaptive traits (Figure S3) and there was evidence that the average number of genes
159 per genome was greater in *C. coli* CC-828 isolates than in *C. jejuni* (Figure S2B).

160

161 **There is substantial introgression within the *C. coli* core genome**

162 The large genetic distances among *C. coli* clade 1 isolates (Figure 1A), have been shown to be a
163 consequence of the import of DNA from *C. jejuni* rather than accumulation of mutations during a
164 prolonged period of separate evolution²⁶. Using chromosome painting to infer the co-ancestry of
165 core-genome haplotype data from CC-828 and CC-1150 isolates gave a detailed representation
166 of the recombination-derived chunks from each *C. jejuni* donor group and clonal complex to
167 each recipient individual (Figure S4). The majority of introgressed SNPs were rare, occurring in
168 fewer than 50 recipient genomes (Figure 1B). However, a large proportion of the introgressed *C.*
169 *coli* clade 1 genomes contained DNA of *C. jejuni* ancestry in >98% of recipient isolates.
170 Consistent with previous estimates²⁷, these regions where introgressed DNA was largely fixed
171 within the *C. coli* population, occurred across the genome and comprised up to 15% and 28% of
172 the CC-828 and CC-1150 isolate genomes respectively (Figure 1B). When considering donor
173 groups, the majority of introgressed DNA in *C. coli* involves genes that are present in multiple *C.*
174 *jejuni* lineages (core genes) (Figure S5A).

175
176 Having identified *C. jejuni* ancestry within *C. coli* genomes, we investigated the sequence of
177 events responsible for introgression. Most introgressed SNPs are found at low frequency in both
178 clonal complexes. However, there was evidence of SNPs that are introgressed in both complexes
179 as well as high frequency lineage specific introgression in both CC-828 and CC-1150 (Figure
180 S5B). Specifically, 25% of the *C. jejuni* DNA found in >98% of CC-828 isolates was also found
181 in CC-1150 (Figure S5C), implying that this genetic material was imported by the common
182 ancestor(s) of both complexes. After the divergence of these two complexes, introgression
183 continued with nearly 75% of *C. jejuni* DNA present in one recipient clonal complex and not the
184 other. This is consistent with an evolutionary history in which there was a period of progressive

185 species and clade divergence reaching approximately 12% at the nucleotide level
186 between *C. jejuni* and *C. coli* and around 4% between the three *C. coli* lineages. More recently,
187 changes to the patterns of gene flow led one *C. coli* clade 1 lineage to import substantial
188 quantities of *C. jejuni* DNA, and further lineage-specific introgression gave rise to two clonal
189 complexes (CC-828 and CC-1150) that continued to accumulate *C. jejuni* DNA, independently
190 creating the population structure observed today (Figure 1C).

191
192 The high magnitude introgression into *C. coli* clade 1 isolates has introduced thousands of
193 nucleotide changes to the core genome. However, divergence in bacteria may be uneven across
194 the genome for at least two reasons. First, recombination is more likely to occur in regions where
195 donor and recipient genomes have high nucleotide similarity^{24, 28, 29}. Second, ‘fragmented
196 speciation’³⁰, in which gene flow varies in different parts of the genome, such as regions
197 responsible for adaptive divergence, can result in phylogenetic incongruence among genes.
198 Consistent with previous estimates²⁷, we found that the three *C. coli* clades had similar high
199 divergence with *C. jejuni* across the genome, ranging from 68% to 98% nucleotide identity for
200 individual genes (Figure S5D), implying a period of divergence with low levels of gene flow.
201 We found no evidence that high genetic differentiation between the species prevented
202 recombination. While there was some evidence that more recombination occurred in regions of
203 low nucleotide divergence (between unintrogressed *C. coli* clade 1 and *C. jejuni*), introgression
204 occurred across the genome at sites with varying levels of nucleotide identity (Figure S5D). This
205 level of recombination has greatly increased overall genetic diversity across the genome
206 in *C. coli* clade 1 and introduced changes that have potential functional significance.

207

208 **Much of the putative epistasis occurs between SNPs in introgressed genes**

209 ClonalFrameML analysis revealed the importance of homologous recombination in generating
210 sequence variation within the introgressed *C. coli*. Estimates of the relative frequency of
211 recombination versus mutation ($R/\theta=0.43$), mean recombination event length ($\delta=152\text{bp}$) and
212 average amount of polymorphism per site in recombined fragments ($v=0.07$), imply that
213 recombination has had an effect (r/m) 4.57 times higher than *de novo* mutation during the
214 diversification of CC-828. This is consistent with previous analysis and confirmed recombination
215 as the major driver of molecular evolution in *C. coli*^{13, 27, 31}. The continuous time Markov chain
216 model for the joint evolution of pairs of biallelic sites on a phylogenetic tree (Figure S6) was
217 applied to investigate patterns of covariance for all pairs of sites >20kb apart (Figure 2A). For
218 most biallelic sites there were few branches on the tree where substitutions occurred, so that their
219 evolution is compatible with separate evolution on the same clonal frame. However, 2874
220 covarying pairs evolved more frequently together than would be expected (p -value 10^{-8}) if they
221 had evolved independently based on the tree, and hence indicated patterns of putative epistasis.

222

223 Among them, the location of 2618 putative epistatic pairs of sites was compared to the inferred
224 ancestry (unintrogressed *C. coli* or *C. jejuni*) of sequence across the genome of CC-828 and CC-
225 1150 *C. coli* strains (Figure 2B, Data S1). For each epistatic pair, the major and minor haplotype
226 were defined if there was haplotype polymorphism between *C. jejuni* and CC-828 and CC-1150
227 *C. coli*. This allowed quantification of the number of covarying sites that occurred between an
228 ancestral *C. coli* (unintrogressed) and an introgressed *C. jejuni* allele, two introgressed alleles,
229 and sites that do not segregate by species. Strikingly, the breakdown of the major and minor
230 haplotype combinations among the 2618 epistatic pairs (Figure 2C, Data S2) shows the major

231 haplotype for 83.5% of putative epistatic SNP pairs was *C. jejuni* indicating that both co-varying
232 sites had *C. jejuni* ancestry, consistent with epistasis between introgressed ancestral *C. jejuni*
233 sequence at divergent genomic positions. Investigation of the genes containing co-varying sites
234 revealed that 2187 SNP pairs were in 16 genes with just five genes accounting for 99.1% of them
235 (Figure 2D, Data S3, Figure S7).

236

237 **Genomic context and physiological role of epistatically linked genes**

238 The five genes accounting for the majority of epistatic interactions (*cj1167*, *cj1168c*,
239 *cj1171c/ppi*, *cj1507c/modE* and *cj1508c/fdhD*) were investigated for their physiological role in
240 *C. jejuni*. FdhD and ModE are proteins involved in the biogenesis of formate dehydrogenase
241 (FDH). The FDH complex (FdhABC) oxidises formate to bicarbonate to generate electrons that
242 fuel cellular respiration. Formate is an abundant electron donor produced by host microbiota and
243 an important energy source for *Campylobacter* *in vivo*^{32, 33}. The remaining three genes, *cj1167*
244 (annotated incorrectly as *ldh*, lactate dehydrogenase), *cj1168c* and *cj1171c (ppi)* are also grouped
245 together in the genome, where *cj1167* and *cj1168c* are adjacent but with the open reading frames
246 (ORFs) convergent and overlapping, while *ppi* is upstream, separated by two non-epistatically
247 linked genes (*cj1169c* and *cj1170c*, Figure 3A). Considering the genomic arrangement, it is
248 therefore clear that the putative epistatic links uncovered in this study essentially occur across
249 two loci in the genome (*fdhD/modE* and *cj1167/cj1168c/ppi*), with each of the latter three genes
250 linked with both *fdhD* and *modE* (Figure 3A). Given the known function of *fdhD* and *modE* in
251 biogenesis of the FDH complex, we hypothesised that *cj1167/cj1168c/ppi* might also have some
252 role in FDH biogenesis or activity in order to form a functional epistatic connection. We

253 therefore constructed deletion mutants to investigate the possible role of these genes in FDH
254 activity.

255

256 Initially, each of the mutants and their parental wildtype (*C. jejuni* NCTC11168) were grown in
257 rich media (Muller-Hinton broth) and their formate dependent oxygen consumption rates
258 determined (Figure 3B). *cj1167*, *cj1168c* and *ppi* mutants demonstrated wildtype levels of FDH
259 activity, while activity in both *fdhD* and *modeE* mutants was abolished. To confirm that the
260 phenotype of the *fdhD* and *modeE* mutants was not due to a polar effect on the surrounding *fdh*
261 locus, these mutants were genetically complemented by reintroduction of a second copy of the
262 wildtype gene into the rRNA locus, which restored near wildtype levels of FDH activity in both
263 cases (Figure 3B).

264

265 As neither *cj1167*, *cj1168c* or *ppi* mutants showed altered FDH activity in cells grown in rich
266 media, we considered that their function may be related to an FDH-specific nutrient requirement
267 as would likely be found *in vivo*. Since the formate oxidising subunit of FDH, FdhA, specifically
268 requires a molybdo- or tungsto-pterin (Mo/W) cofactor and a selenocysteine (SeC) residue for
269 catalysis³⁴, Mo, W or Se supply presented possible targets. *cj1168c* encodes a DedA family
270 integral membrane protein of unknown function. DedA proteins are solute transporters
271 widespread in bacteria but are mostly uncharacterised³⁵. However, a homologue of *cj1168c* in
272 the heavy metal specialist beta-proteobacterium *Cupriavidus metallidurans* has been shown to be
273 involved in selenite (SeO₃²⁻) uptake³⁶. We therefore speculated that Cj1168 could be a selenium
274 oxyanion transporter that supplies Se for SeC biosynthesis. To test this, FDH activities were
275 measured in *cj1168c* mutant and parental wildtype strains grown in minimal media with limiting

276 concentrations of selenite or selenate (SeO_4^{2-}) (Figure S8). The data in Figure 3C shows that the
277 *cj1168c* mutant displayed significantly reduced FDH activity after growth with selenite in the
278 low nM range, and this phenotype was partially restored by genetic complementation. We
279 therefore designated *cj1168c* as *self* (selenium transporter for formate dehydrogenase).
280 However, although this phenotype does suggest that Self is a selenium importer, another
281 unrelated selenium transporter, FdhT (Cj1500), has previously been documented in *C. jejuni*³⁷,
282 which is not epistatic with *fdhD* or *mode*. In contrast to this previous report we found
283 considerable residual FDH activity still remained in an *fdhT* deletion mutant, which was fully
284 restored to wildtype levels by complementation (Figure 3D).

285

286 Finally, we tested whether the residual FDH activity in our *fdhT* mutant was due to selenium
287 uptake by Self. An *fdhT self* double mutant was generated and assayed for FDH activity after
288 growth in minimal media containing limiting concentrations of selenite or selenate (Figure 3D).
289 The *fdhT self* double mutant demonstrated a significant additional reduction in FDH activity
290 over the *fdhT* single mutant, a phenotype that was partially restored by complementing the
291 double mutant with *self*. Complementation of the double mutant with *fdhT* returned FDH
292 activity to near wildtype levels (Figure 3D). Taken together, our data suggests that both FdhT
293 and Self facilitate selenium acquisition in *C. jejuni*, possibly representing low and high affinity
294 transporters, respectively (Figure S9).

295

296

297 **Discussion**

298 To address the apparent contradiction of frequent core genome recombination in a co-adapted
299 background we focused on *Campylobacter*, in which interspecies recombination is well
300 documented^{26, 27, 38}. As in other studies, we found that a large proportion (15-28%) of the *C. coli*
301 core genome originated in *C. jejuni* despite the genetic distance (~85% nucleotide identity)
302 between the species. Investigating the likely disruptive impact on coadapted epistatic gene
303 networks, we quantified the frequency of *C. jejuni* – *C. coli* (and *vice versa*) and *C. jejuni* – *C.*
304 *jejuni* covarying allele pairs in introgressed *C. coli*. Where recombination is minimally disruptive
305 there would be more *C. jejuni* – *C. coli* than *C. jejuni* – *C. jejuni*. However, consistent with
306 selection against disharmonious gene combinations we found that *C. jejuni* – *C. jejuni* allele
307 pairs constituted >83% of covarying introgressed haplotypes. It is possible that in some cases
308 both sites were introgressed in a single large recombination event³⁹⁻⁴¹ but in *Campylobacter* LD
309 for pairs of sites decreases with distance and is approximately constant after 20kbp⁴² consistent
310 with the independent acquisition of allele pairs (>20kb). It follows, therefore, that the first
311 introgression event was not fatal to the recipient genome. Acquisition of the second member of
312 the pair then potentially restored the function of the integrated *C. jejuni* – *C. jejuni*
313 coevolutionary unit.

314

315 Coadaptation and epistasis were confirmed for the most common co-varying *C. jejuni* – *C. jejuni*
316 gene pairs linked to FDH, a key enzyme allowing the utilisation of formate as an electron donor
317 *in vivo*^{32, 33}. FdhD and ModE were shown to be essential for FDH activity. While FdhD is a
318 sulfur-transferase known to be required for the insertion of the pterin cofactor into FdhA⁴³
319 (Figure S9), ModE is a transcriptional repressor that has been shown previously only to regulate
320 the Mo/W uptake genes *mod* and *tup*^{44, 45}. However, the unexpected abolished FDH activity in a

321 *modE* mutant indicates further functions for ModE in FDH biogenesis which warrant future
322 investigation. Searching for functional links between *fdhD/modE* and *cj1167/selF/ppi*, revealed
323 that a *selF* mutant strain had significantly reduced FDH activity under conditions of selenite
324 limitation, a phenotype consistent with SelF being a Se oxyanion transporter and that
325 functionally links SelF with FdhD/ModE. We suggest that *selF* rather than *fdhT* is epistatic
326 because SelF confers an additional benefit for SeC biosynthesis (essential for FDH activity)
327 under conditions of selenium limitation, for example as may be found in the host (Figure S9).
328 *cj1167* encodes a cytoplasmic NADPH dependent 2-oxoacid dehydrogenase but the current
329 genome database annotation as lactate dehydrogenase (Ldh) is incorrect and its function is
330 unknown⁴⁶. There is no precedent for the involvement of such an enzyme in bacterial FDH or
331 SeC biogenesis and we obtained no evidence for a functional connection between Cj1167 and
332 FDH activity. However, the overlapping convergent gene arrangement of *cj1167* and *cj1168c*
333 (*selF*) suggests a transcriptional architecture that might dictate these genes both form similar
334 epistatic dependencies even if Cj1167 is not required for FDH activity. Finally, *cj1171c* (*ppi*)
335 encodes a cytoplasmic peptidyl-prolyl *cis-trans* isomerase of the cyclophilin family. PPIases are
336 general protein folding catalysts that often have pleiotropic and redundant functions⁴⁷ and we
337 note that our *C. jejuni* *ppi* deletion mutant showed no growth defect as well as no reduction in
338 FDH activity. It is possible that if Cj1171 does help promote the folding of e.g. FdhD or ModE,
339 analysis of a simple deletion mutant may not reveal this if another PPIase can substitute in that
340 genetic background.

341
342 Understanding the functional significance of core genome recombination has potential to explain
343 the evolution of complex phenotypes. In *Campylobacter*, our results suggest that an ancestral *C.*

344 *coli* lineage colonized a new niche and surviving lineages (CC-828 and CC-1150) gained access
345 to *C. jejuni* DNA (Figure 4A&B). As the adaptive landscape of the genome changed, potentially
346 decoupling epistatic interactions that were previously selected, new gene combinations could be
347 introduced by homologous recombination and tested in the *C. coli* genetic background.

348
349 The notion that multiple events are necessary to achieve a phenotype with the first event
350 potentially being deleterious (causing negative epistasis) is strongly reminiscent of the two-hit
351 cancer model in eukaryotes⁴⁸ in which the benefit to the tumour cell appears only after earlier
352 non-advantageous mutations. In bacteria, while the first hit (HGT event) in a core genome, is
353 consistent with fitness costs associated with negative epistasis (breaking co-adapted gene
354 networks), this can be rescued by a second HGT event. The second event, in effect restores a
355 pre-existing co-adapted allele pair from the donor species to the recipient. This type of genetic
356 rewiring may indeed be more common than previously thought⁴⁹⁻⁵¹ and, despite theoretical
357 expectations, negative epistasis is not an absolute barrier to genome-wide recombination in
358 structured bacterial populations. Multiple HGT events thus provide a solution to the peak
359 jumping problem.

360
361

362 Materials and Methods

363
364 **Isolates, genome sequencing and assembly**
365 A total of 973 isolates were used in this study, 827 from *C. coli* and a selection of 146 from a
366 diversity of *C. jejuni* clonal complexes (Data S4). Isolates were sampled mostly in the United

367 Kingdom to maximise environmental and riparian reservoirs and thus the representation of
368 genetic diversity in *C. coli*. Isolates were stored in a 20% (v/v) glycerol medium mix at -80°C
369 and subcultured onto *Campylobacter* selective blood-free agar (mCCDA, CM0739, Oxoid).
370 Plates were incubated at 42°C for 48 h under microaerobic conditions (5% CO₂, 5% O₂)
371 generated using a CampyGen (CN0025, Oxoid) sachet in a sealed container. Subsequent
372 phenotype assays were performed on Brucella agar (CM0271, Oxoid). Colonies were picked
373 onto fresh plates and genomic DNA extraction was carried out using the QIAamp® DNA Mini
374 Kit (QIAGEN; cat. number: 51306) according to the manufacturer's instructions. DNA was
375 eluted in 100–200 µl of the supplied buffer and stored at -20°C. DNA was quantified using a
376 Nanodrop spectrophotometer and high-throughput genome sequencing was performed on a
377 MiSeq (Illumina, San Diego, CA, USA), using the Nextera XT Library Preparation Kit with
378 standard protocols involving fragmentation of 2 µg genomic DNA by acoustic shearing to enrich
379 for 600 bp fragments, A-tailing, adapter ligation and an overlap extension PCR using the
380 Illumina 3 primer set to introduce specific tag sequences between the sequencing and flow cell
381 binding sites of the Illumina adapter. DNA cleanup was carried out after each step to remove
382 DNA < 150 bp using a 1:1 ratio of AMPure® paramagnetic beads (Beckman Coulter, Inc.,
383 USA). Short read paired-end data was assembled using the *de novo* assembly algorithm, SPAdes
384 (version 3.10.0)⁵². All novel genome sequences (n=475) generated for use in this study are
385 available on NCBI BioProjects PRJNA689604 and PRJEB11972. These were augmented with
386 498 previously published genomes and accession numbers for all genomes can be found in Data
387 S4^{16, 27, 31, 42, 53-57}.

388

389 **Genome archiving, pan-genome content analyses and phylogenetic reconstruction**

390 Contiguous genome sequence assemblies were individually archived on the web-based database
391 platform BIGSDB⁵⁸ and sequence type (ST) and clonal complex (CC) designation were assigned
392 based upon the *C. jejuni* and *C. coli* multi-locus sequence typing scheme⁵⁹. To examine the full
393 pan-genome content of the dataset, a reference pan-genome list was assembled as previously
394 described⁶⁰. Briefly, genome assemblies from all 973 genomes in this study were automatically
395 annotated using the RAST/SEED platform⁶¹, the BLAST algorithm was used to determine
396 whether coding sequences from this list were allelic variants of one another or ‘unique’ genes,
397 with two alleles of the same gene being defined as sharing >70% sequence identity on >10% of
398 the sequence length. The prevalence of each gene in the collection of 973 genomes was
399 determined using BLAST with a positive hit in a genome being defined as a local alignment of
400 the reference sequence with the genomic sequence of >70% identity on >50% of the length, as
401 previously described⁶². The resulting matrix was analysed for differentiating core and accessory
402 genome variation. Genes present in all genomes were concatenated to produce a core-genome
403 alignment, used for subsequent phylogenetic reconstructions. Phylogenetic trees were
404 reconstructed using an approximation of maximum-likelihood phylogenetics in FastTree2⁶³. This
405 tree was used as an input for ClonalFrameML⁶⁴ to produce core genome phylogenies with branch
406 lengths corrected for recombination.

407

408 **Inference of introgression**

409 All 973 genomes were aligned to a full reference sequence of *C. coli* strain CVM29710. We
410 conducted imputation for polymorphic sites with missing frequency $\leq 10\%$ using BEAGLE⁶⁵ as
411 previously reported⁶⁶. A total of 286,393 gapless SNPs (~17% of the average *C. coli* genome
412 size) were used for recombination analyses. The coancestry of genome-wide haplotype data was

413 inferred based on alignments using chromosome painting and FineStructure⁶⁷ as previously
414 described⁶⁸. Briefly, ChromoPainter was used to infer chunks of DNA donated from a list of 33
415 donor groups normalised for sample size to each of 677 ST-CC-828 and 12 CC-1150 recipient
416 haplotypes. Results were summarised into a coancestry matrix containing the number of
417 recombination-derived chunks from each donor to each recipient individual. FineStructure was
418 then used for 100,000 iterations of both the burn-in and Markov chain Monte Carlo chain to
419 cluster individuals based on the co-ancestry matrix. The results are visualized as a heat map with
420 each cell indicating the proportion of DNA “chunks” (a series of SNPs with the same expected
421 donor) a recipient receives from each donor.

422

423 **Analysis of covariation in bacterial genomes**

424 Non-random allele associations can result from selection and clonal population structure. To
425 control for the latter, our approach identified SNP combinations in independent genetic
426 backgrounds by accounting for the sequence variation associated with the inferred phylogeny.
427 Based on the alignment of 677 genomes of *C. coli* CC-828, a first phylogenetic tree was created
428 using PhyML⁶⁹. ClonalFrameML⁶⁴ was then applied to correct the tree by accounting for the
429 effect of recombination, and also to infer the ancestral sequence of each node. Covariance was
430 assessed for pairs of biallelic sites across the genome using a Continuous Time Markov Chain
431 (CTMC) model as follows. Briefly, let *A* and *a* denote the two alleles of the first site and *B* and *b*
432 denote the two alleles of the second site, so that there are four states in total for the pair of sites
433 (*ab*, *Ab*, *aB* and *AB*). The four substitution rates from *A* to *a*, from *a* to *A*, from *B* to *b* and from *b*
434 to *B* are not assumed to be identical, to allow for differences in substitution rates in different
435 parts of the genome and also to allow for non-equal rates of forward and backward substitution

436 (for example as a result of recombination opportunities). Assuming no epistatic effect between
437 the two sites ($\varepsilon=1$), the model M_0 has four free parameters (α_1 , α_2 , β_1 and β_2) representing
438 independent substitutions at the two sites. We expand model M_0 with an additional fifth
439 parameter $\varepsilon>1$ into model M_1 which is such that the state AB where the first site is allele A and
440 the second site is allele B is favored relative to the other three sites ab , aB and Ab . Specifically,
441 the state AB has a probability increased by a factor ε^2 in the stationary distribution of the CTMC
442 of model M_1 compared to model M_0 .

443
444 Both models M_0 (with 4 parameters) and M_1 (with 5 parameters) are fitted to the data using
445 maximum likelihood techniques, where the likelihood is equal to the product for every branch of
446 the tree of the state at the bottom of the branch given the state at the top. The two fitted models
447 M_0 and M_1 are then compared using a likelihood-ratio test (LRT) as follows: since M_0 is nested
448 with M_1 , two times their difference in log-likelihood is expected to be distributed according to a
449 chi-square distribution with number of degrees of freedom equal to the difference in their
450 dimensionality, which is one. This LRT returns a p -value for the significance of a covariation
451 effect, and a Bonferroni correction is applied to determine a conservative cutoff of significance
452 that accounts for multiple testing. Furthermore, the test is applied only to pairs of sites separated
453 by $>20\text{kb}$ to reduce the chance that they were the result of a single recombination event,
454 consistent with estimates of the length of recombined DNA sequence in quantitative bacterial
455 transformation experiments^{39, 70} and evidence from *Campylobacter* genome analyses that show
456 that LD for pairs of sites decreases with distance to approximately 20kbp and then remains at the
457 same level for very distant sites⁴². It is still possible of course that rare recombination events
458 would stretch 20kbp³⁹⁻⁴¹, but for this to have an effect on the analysis of epistasis it would have

459 to have happened several times for the same pairs of sites against different genomic background
460 which becomes quite unlikely just by chance. This phylogenetically aware approach to testing
461 for covariance presents the advantage to naturally account for both population structure and the
462 effect of recombination⁷¹. The script implementing this coevolution test is available in R at:
463 <https://github.com/xavierdidelot/campy>.

464

465 **Quantifying covariation between recombined and unrecombined genomic regions**

466 The results of the introgression and covariation analyses were combined so that for each pair of
467 significantly covarying SNPs (p -value $<10^{-8}$), haplotype frequency was calculated among the 689
468 recipient introgressed *C. coli* clade-1 strains as well as among the donor *C. coli* (ancestral) and
469 *C. jejuni* strains, respectively. If the most frequent haplotype of the pair is the same between the
470 donor *C. coli* (ancestral) and *C. jejuni*, it was classified as ‘no polymorphism’. Otherwise, if the
471 most frequent haplotype accounted for $>90\%$ among the recipients, it was classified as either ‘*C.*
472 *jejuni* ($>90\%$)’ or ‘*C. coli* ($>90\%$)’ if it was the same as that of donor *C. jejuni* or *C. coli*
473 (ancestral) (inset in Figure 2C). If the most frequent haplotype accounted for $\leq 90\%$ among the
474 recipients, the top two most frequent haplotypes (written as major and minor haplotype in this
475 manuscript) were indicated as either “*C. jejuni* / *C. coli*”, “*C. jejuni* / other”, “*C. coli* / *C. jejuni*”,
476 “*C. coli* / other”, “other / *C. coli*”, “other / *C. jejuni*”, and “other / other”, and the frequency of
477 the major and minor haplotypes were calculated. For example, where the haplotype frequencies
478 were as follows, AA=285, TA=192, TG=181, AG=27, A-=2, --=1, -A=1, AA is the major
479 haplotype, frequency of which is 41.3%

480

481 **Mutagenesis and complementation cloning**

482 Genes *cj1167*, *cj1168c* (here designated *selF* for selenium transport for formate dehydrogenase),
483 *cj1171c* (*ppi*), *cj1507c* (*modE*), *cj1508c* (*fdhD*) and *cj1500* (*fdhT*) were deleted by allelic
484 exchange mutagenesis, with the majority of the open reading frame replaced by an antibiotic
485 resistance cassette. Mutagenesis plasmids were generated by the isothermal assembly method
486 using the HiFi system (NEB, UK). In brief, flanking regions of target genes were PCR amplified
487 from genomic DNA using primers with adaptors homologous to either the backbone vector
488 pGEM3ZF or the antibiotic resistance cassette (Data S5). pGEM3ZF was linearised by digestion
489 with HincII. The kanamycin and chloramphenicol resistance cassettes were PCR amplified from
490 pJMK30 and pAV35, respectively⁷². Four fragments consisting of linearised pGEM3ZF,
491 antibiotic resistance cassette and 2 flanking regions were combined in equimolar amounts and
492 mixed with 2 x HiFi reagent (NEB, UK) and incubated at 50°C for 1 hour. The fragments
493 combine such that the gene fragments flank the antibiotic resistance cassette, in the same
494 transcriptional orientation, within the vector. Mutagenesis plasmids were transformed into *C.*
495 *jejuni* NCTC 11168 by electroporation. Spontaneous double-crossover recombinants were
496 selected for using the appropriate antibiotic and correct insertion into the target gene confirmed
497 by PCR screening. For genetic complementation of mutants, genes *cj1168c* (*selF*), *cj1507c*
498 (*modE*), *cj1508c* (*fdhD*) and *cj1500* (*fdhT*) were PCR amplified from genomic DNA, restriction
499 digested with MfeI and XbaI, then ligated into similarly digested pRRA⁷³ (Data S5). The
500 orientation of insertion allowed the target gene to be expressed constitutively by a
501 chloramphenicol resistance gene-derived promoter within the vector. Complementation plasmids
502 were transformed into *C. jejuni* by electroporation. Spontaneous double-crossover recombinants
503 were selected for using apramycin and correct insertion into the ribosomal locus confirmed by
504 PCR screening.

505

506 **Growth of *C. jejuni***

507 Microaerobic growth cabinets (Don Whitley, UK) were maintained at 42°C with an atmosphere
508 of 10% O₂, 5% CO₂ and 85% N₂ (v/v). *C. jejuni* was grown on Columbia-base agar containing
509 5% v/v defibrinated horse blood. Selective antibiotics were added to plates as appropriate at the
510 following concentrations: 50 µg ml⁻¹ kanamycin, 20 µg ml⁻¹ chloramphenicol, 60 µg ml⁻¹
511 apramycin. Muller-Hinton (MH) broth supplemented with 20 mM L-serine was used as a rich
512 medium. Minimal medium was prepared from a supplied MEM base (51200-38, Thermo
513 Scientific, UK) with the following additions: 20 mM L-serine, 0.5 mM sodium pyruvate, 50 µM
514 sodium metabisulfite, 4 mM L-cysteine. HCl, 2 mM L-methionine, 5 mM L-glutamine, 50 µM
515 ferrous sulfate, 100 µM ascorbic acid, 1 µM vitamin B12, 5 µM sodium molybdate, 1 µM
516 sodium tungstate. Selenium was then added as appropriate from stocks of sodium selenate or
517 sodium selenite prepared in dH₂O. For assays, cells were washed and suspended in sterile
518 phosphate-buffered saline (PBS, Sigma-Aldrich).

519

520 **Respiration rates with formate**

521 Cells were first grown in MH broth for 12 hours, then washed thoroughly in PBS before
522 inoculating minimal media without an added selenium source. The appropriate concentrations
523 were determined by serial dilution trials and it was subsequently found that *C. jejuni* has a strong
524 preference for selenite over selenate, as equivalent FDH activity requires some 1000-fold greater
525 concentration of selenate than selenite (Figure S8). These cultures were grown for 8 hours before
526 the cells were thoroughly washed again, then used to inoculate further minimal media, with a
527 selenium source added as appropriate, and grown for 10 hours. This passaging was necessary to

528 remove all traces of selenium from the inoculum, such that control cultures without selenium
529 added had negligible (FDH) activity. Assay cultures were again thoroughly washed before the
530 equivalent of 20 ml at an optical density of 0.8 at 600 nm was finally suspended in 1 ml of PBS.
531 Formate-dependent oxygen consumption by whole cells was measured in a Clark-type electrode
532 using 20 mM sodium formate as electron donor. The electrode was calibrated with air-saturated
533 PBS assuming 220 nmol dissolved O₂ ml⁻¹ at 37°C. In the electrode, 200 µl of the dense cell
534 suspension was added to 800 µl air-saturated PBS for a final volume of 1 ml. The chamber was
535 sealed and the suspension allowed to equilibrate for 2 minutes. The assay was initiated by the
536 addition of 20 µl of 1 M sodium formate (prepared in PBS) and the rate of oxygen consumption
537 recorded for 90 s. The total protein concentration of the cell suspensions was determined by
538 Lowry assay and the specific rate of formate-dependent oxygen consumption expressed as nM
539 oxygen consumed min⁻¹ mg⁻¹ total protein.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557 **References**

558

- 559 1. Ochman, H., Lawrence, J.G., and Groisman, E.A. (2000). Lateral gene transfer and the nature of bacterial
560 innovation. *Nature* *405*, 299-304.
- 561 2. Koonin, E.V., Makarova, K.S., and Aravind, L. (2001). Horizontal gene transfer in prokaryotes: quantification and classification. *Annu. Rev. Microbiol.* *55*, 709-742.
- 562 3. Haldane, J.B. (1964). A defense of beanbag genetics. *Perspect Biol Med* *7*, 343-359.
- 563 4. Bateson, W. (1909). Heredity And Variation In Modern Lights. In *Darwin And Modern Science*, A.C. Seward, ed. (Cambridge: Cambridge University Press), pp. 85–101.
- 564 5. Fisher, R.A. (1918). The correlation between relatives on the supposition of Mendelian inheritance. *Trans. R. Soc. Edinb* *52*, 399–433.
- 565 6. Wright, S. (1931). Evolution in Mendelian populations. *Genetics* *16*, 97-159.
- 566 7. Dobzhansky, T. (1936). Studies on hybrid sterility. II. Localization of sterility factors in *Drosophila pseudoobscura* hybrids. *Genetics* *21*, 113-135.
- 567 8. Dobzhansky, T. (1937). *Genetics And The Origin Of Species*, (New York: Columbia University Press).
- 568 9. Muller, H.J. (1940). Bearing of the *Drosophila* work on systematics. The new systematics, 185-268.
- 569 10. Muller, H. (1942). Isolating mechanisms, evolution, and temperature. *Biol. Symp.* *6*, 71-125.
- 570 11. Kimura, M. (1965). Attainment of quasi linkage equilibrium when gene frequencies are changing by natural selection. *Genetics* *52*, 875-890.
- 571 12. Neher, R.A., and Shraiman, B.I. (2009). Competition between recombination and epistasis can cause a transition from allele to genotype selection. *Proc. Natl. Acad. Sci. U.S.A.* *106*, 6866-6871.
- 572 13. Wilson, D.J., Gabriel, E., Leatherbarrow, A.J.H., Cheesbrough, J., Gee, S., Bolton, E., Fox, A., Hart, C.A., Diggle, P.J., and Fearnhead, P. (2009). Rapid evolution and the importance of recombination to the gastroenteric pathogen *Campylobacter jejuni*. *Mol. Biol. Evol.* *26*, 385-397.
- 573 14. Gibson, B., Wilson, D.J., Feil, E., and Eyre-Walker, A. (2018). The distribution of bacterial doubling times in the wild. *Proc. R. Soc. B* *285*.
- 574 15. Vos, M., and Didelot, X. (2009). A comparison of homologous recombination rates in bacteria and archaea. *Isme J* *3*, 199-208.
- 575 16. Calland, J.K., Pascoe, B., Bayliss, S.C., Mourkas, E., Berthenet, E., Thorpe, H.A., Hitchings, M.D., Feil, E.J., Corander, J., Blaser, M.J., et al. (2021). Quantifying bacterial evolution in the wild: A birthday problem for *Campylobacter* lineages. *PLoS Genet.* *17*, e1009829.
- 576 17. Arnold, B.J., Gutmann, M.U., Grad, Y.H., Sheppard, S.K., Corander, J., Lipsitch, M., and Hanege, W.P. (2018). Weak epistasis may drive adaptation in recombining bacteria. *Genetics* *208*, 1247-1260.
- 577 18. Sheppard, S.K., Guttman, D.S., and Fitzgerald, J.R. (2018). Population genomics of bacterial host adaptation. *Nat. Rev. Genet.* *19*, 549-565.
- 578 19. Andreani, N.A., Hesse, E., and Vos, M. (2017). Prokaryote genome fluidity is dependent on effective population size. *Isme J* *11*, 1719-1721.
- 579 20. Vos, M., and Eyre-Walker, A. (2017). Are pangenomes adaptive or not? *Nature Microbiol.* *2*, 1576-1576.
- 580 21. Shapiro, B.J. (2017). The population genetics of pangenomes. *Nature Microbiol.* *2*, 1574-1574.

596 22. McInerney, J.O., McNally, A., and O'Connell, M.J. (2017). Why prokaryotes have pangenomes. *Nature Microbiol.* 2, 17040.

597 23. Orr, H.A. (1996). Dobzhansky, Bateson, and the genetics of speciation. *Genetics* 144, 1331-1335.

598 24. Fraser, C., Hanage, W.P., and Spratt, B.G. (2007). Recombination and the nature of bacterial speciation. *Science* 315, 476-480.

599 25. Sheppard, S.K., Dallas, J.F., Strachan, N.J., MacRae, M., McCarthy, N.D., Wilson, D.J., Gormley, F.J., Falush, D., Ogden, I.D., Maiden, M.C., et al. (2009). *Campylobacter* genotyping to determine the source of 600 human infection. *Clin. Infect. Dis.* 48, 1072-1078.

601 26. Sheppard, S.K., McCarthy, N.D., Falush, D., and Maiden, M.C. (2008). Convergence of *Campylobacter* 602 species: implications for bacterial evolution. *Science* 320, 237-239.

603 27. Sheppard, S.K., Didelot, X., Jolley, K.A., Darling, A.E., Pascoe, B., Meric, G., Kelly, D.J., Cody, A., Colles, F.M., Strachan, N.J., et al. (2013). Progressive genome-wide introgression in agricultural 604 *Campylobacter coli*. *Mol. Ecol.* 22, 1051-1064.

605 28. Cohan, F.M. (2002). Sexual Isolation And Speciation In Bacteria. In *Genetics of Mate Choice: From 606 Sexual Selection to Sexual Isolation*. (Springer), pp. 359-370.

607 29. Ansari, M.A., and Didelot, X. (2014). Inference of the properties of the recombination process from whole 608 bacterial genomes. *Genetics* 196, 253-265.

609 30. Retchless, A.C., and Lawrence, J.G. (2010). Phylogenetic incongruence arising from fragmented speciation 610 in enteric bacteria. *Proc. Natl. Acad. Sci. U.S.A.* 107, 11453-11458.

611 31. Dearlove, B.L., Cody, A.J., Pascoe, B., Méric, G., Wilson, D.J., and Sheppard, S.K. (2016). Rapid host 612 switching in generalist *Campylobacter* strains erodes the signal for tracing human infections. *Isme J* 10, 613 721-729.

614 32. Weerakoon, D.R., Borden, N.J., Goodson, C.M., Grimes, J., and Olson, J.W. (2009). The role of respiratory 615 donor enzymes in *Campylobacter jejuni* host colonization and physiology. *Microb. Pathog.* 47, 8-15.

616 33. Taylor, A.J., and Kelly, D.J. (2019). The function, biogenesis and regulation of the electron transport 617 chains in *Campylobacter jejuni*: New insights into the bioenergetics of a major food-borne pathogen. *Adv. 618 Microb. Physiol.* 74, 239-329.

619 34. Smart, J.P., Cliff, M.J., and Kelly, D.J. (2009). A role for tungsten in the biology of *Campylobacter jejuni*: 620 tungstate stimulates formate dehydrogenase activity and is transported via an ultra-high affinity ABC 621 system distinct from the molybdate transporter. *Mol. Microbiol.* 74, 742-757.

622 35. Doerrler, W.T., Sikdar, R., Kumar, S., and Boughner, L.A. (2013). New functions for the ancient DedA 623 membrane protein family. *J. Bacteriol.* 195, 3-11.

624 36. Ledgham, F., Quest, B., Vallaeys, T., Mergeay, M., and Covès, J. (2005). A probable link between the 625 DedA protein and resistance to selenite. *Res. Microbiol.* 156, 367-374.

626 37. Shaw, F.L., Mulholland, F., Le Gall, G., Porcelli, I., Hart, D.J., Pearson, B.M., and van Vliet, A.H.M. 627 (2012). Selenium-dependent biogenesis of formate dehydrogenase in *Campylobacter jejuni* is controlled by 628 the *fdhTU* accessory genes. *J. Bacteriol.* 194, 3814-3823.

629 38. Sheppard, S.K., McCarthy, N.D., Jolley, K.A., and Maiden, M.C.J. (2011). Introgression in the genus 630 *Campylobacter*: generation and spread of mosaic alleles. *Microbiology* 157, 1066-1074.

631 39. Croucher, N.J., Harris, S.R., Barquist, L., Parkhill, J., and Bentley, S.D. (2012). A high-resolution view of 632 genome-wide pneumococcal transformation. *PLoS Path.* 8, e1002745.

633 40. He, M., Sebaihia, M., Lawley, T.D., Stabler, R.A., Dawson, L.F., Martin, M.J., Holt, K.E., Seth-Smith, 634 H.M., Quail, M.A., Rance, R., et al. (2010). Evolutionary dynamics of *Clostridium difficile* over short and 635 long time scales. *Proc. Natl. Acad. Sci. U.S.A.* 107, 7527-7532.

636 41. Power, P.M., Bentley, S.D., Parkhill, J., Moxon, E.R., and Hood, D.W. (2012). Investigations into genome 637 diversity of *Haemophilus influenzae* using whole genome sequencing of clinical isolates and laboratory 638 transformants. *BMC Microbiol.* 12, 273.

639 42. Yahara, K., Méric, G., Taylor, A.J., de Vries, S.P., Murray, S., Pascoe, B., Mageiros, L., Torralbo, A., 640 Vidal, A., Ridley, A., et al. (2017). Genome-wide association of functional traits linked with 641 *Campylobacter jejuni* survival from farm to fork. *Environ. Microbiol.* 19, 361-380.

642 43. Arnoux, P., Ruppelt, C., Oudouhou, F., Lavergne, J., Siponen, M.I., Toci, R., Mendel, R.R., Bittner, F., 643 Pignol, D., Magalon, A., et al. (2015). Sulphur shuttling across a chaperone during molybdenum cofactor 644 maturation. *Nat. Commun.* 6, 6148.

645 44. Taveirne, M.E., Sikes, M.L., and Olson, J.W. (2009). Molybdenum and tungsten in *Campylobacter jejuni*: 646 their physiological role and identification of separate transporters regulated by a single ModE-like protein. 647 *Mol. Microbiol.* 74, 758-771.

648 649 650 651

652 45. Aguilar-Barajas, E., Díaz-Pérez, C., Ramírez-Díaz, M.I., Riveros-Rosas, H., and Cervantes, C. (2011).
653 Bacterial transport of sulfate, molybdate, and related oxyanions. *BioMetals* 24, 687-707.

654 46. Thomas, M.T., Shepherd, M., Poole, R.K., van Vliet, A.H.M., Kelly, D.J., and Pearson, B.M. (2011). Two
655 respiratory enzyme systems in *Campylobacter jejuni* NCTC 11168 contribute to growth on l-lactate.
656 *Environ. Microbiol.* 13, 48-61.

657 47. Ünal, C.M., and Steinert, M. (2014). Microbial peptidyl-prolyl cis/trans isomerasases (PPIases): virulence
658 factors and potential alternative drug targets. *Microbiology and molecular biology reviews* 78, 544-571.

659 48. Knudson, A.G., Jr. (1971). Mutation and cancer: statistical study of retinoblastoma. *Proc Natl Acad Sci U S*
660 *A* 68, 820-823.

661 49. Oren, Y., Smith, M.B., Johns, N.I., Kaplan Zeevi, M., Biran, D., Ron, E.Z., Corander, J., Wang, H.H., Alm,
662 E.J., and Pupko, T. (2014). Transfer of noncoding DNA drives regulatory rewiring in bacteria. *Proc. Natl.*
663 *Acad. Sci. U.S.A.* 111, 16112-16117.

664 50. Arnold, B., Sohail, M., Wadsworth, C., Corander, J., Hanage, W.P., Sunyaev, S., and Grad, Y.H. (2019).
665 Fine-scale haplotype structure reveals strong signatures of positive selection in a recombining bacterial
666 pathogen. *Mol. Biol. Evol.* 37, 417-428.

667 51. Wadsworth, C.B., Arnold, B.J., Sater, M.R.A., and Grad, Y.H. (2018). Azithromycin resistance through
668 interspecific acquisition of an epistasis-dependent efflux pump component and transcriptional regulator in
669 *Neisseria gonorrhoeae*. *mBio* 9, e01419-01418.

670 52. Bankevich, A., Nurk, S., Antipov, D., Gurevich, A.A., Dvorkin, M., Kulikov, A.S., Lesin, V.M.,
671 Nikolenko, S.I., Pham, S., Prijibelski, A.D., et al. (2012). SPAdes: a new genome assembly algorithm and
672 its applications to single-cell sequencing. *Journal of computational biology : a journal of computational*
673 *molecular cell biology* 19, 455-477.

674 53. Sheppard, S.K., Didelot, X., Meric, G., Torralbo, A., Jolley, K.A., Kelly, D.J., Bentley, S.D., Maiden,
675 M.C.J., Parkhill, J., and Falush, D. (2013). Genome-wide association study identifies vitamin B5
676 biosynthesis as a host specificity factor in *Campylobacter*. *Proc. Natl. Acad. Sci. U.S.A.* 110, 11923-11927.

677 54. Sheppard, S.K., Cheng, L., Méric, G., de Haan, C.P., Llarena, A.K., Marttinen, P., Vidal, A., Ridley, A.,
678 Clifton-Hadley, F., Connor, T.R., et al. (2014). Cryptic ecology among host generalist *Campylobacter*
679 *jejuni* in domestic animals. *Mol. Ecol.* 23, 2442-2451.

680 55. Pascoe, B., Méric, G., Yahara, K., Wimalarathna, H., Murray, S., Hitchings, M.D., Sproston, E.L., Carrillo,
681 C.D., Taboada, E.N., Cooper, K.K., et al. (2017). Local genes for local bacteria: evidence of allopatry in
682 the genomes of transatlantic *Campylobacter* populations. *Mol. Ecol.* 26, 4497-4508.

683 56. Pascoe, B., Schiaffino, F., Murray, S., Méric, G., Bayliss, S.C., Hitchings, M.D., Mourkas, E., Calland,
684 J.K., Burga, R., Yori, P.P., et al. (2020). Genomic epidemiology of *Campylobacter jejuni* associated with
685 asymptomatic pediatric infection in the Peruvian Amazon. *PLoS Negl. Trop. Dis.* 14, e0008533.

686 57. Mourkas, E., Taylor, A.J., Méric, G., Bayliss, S.C., Pascoe, B., Mageiros, L., Calland, J.K., Hitchings,
687 M.D., Ridley, A., Vidal, A., et al. (2020). Agricultural intensification and the evolution of host specialism
688 in the enteric pathogen *Campylobacter jejuni*. *Proc. Natl. Acad. Sci. U.S.A.* 117, 11018-11028.

689 58. Jolley, K.A., and Maiden, M.C.J. (2010). BIGSdb: scalable analysis of bacterial genome variation at the
690 population level. *BMC Bioinformatics* 11, 595.

691 59. Dingle, K.E., Colles, F.M., Wareing, D.R., Ure, R., Fox, A.J., Bolton, F.E., Bootsma, H.J., Willemse, R.J.,
692 Urwin, R., and Maiden, M.C. (2001). Multilocus sequence typing system for *Campylobacter jejuni*. *J. Clin.*
693 *Microbiol.* 39, 14-23.

694 60. Méric, G., Yahara, K., Mageiros, L., Pascoe, B., Maiden, M.C.J., Jolley, K.A., and Sheppard, S.K. (2014).
695 A reference pan-genome approach to comparative bacterial genomics: identification of novel
696 epidemiological markers in pathogenic *Campylobacter*. *PLOS One* 9, e92798.

697 61. Aziz, R.K., Bartels, D., Best, A.A., DeJongh, M., Disz, T., Edwards, R.A., Formsma, K., Gerdes, S., Glass,
698 E.M., Kubal, M., et al. (2008). The RAST server: rapid annotations using subsystems technology. *BMC*
699 *Genomics* 9, 75.

700 62. Sheppard, S.K., Jolley, K.A., and Maiden, M.C.J. (2012). A gene-by-gene approach to bacterial population
701 genomics: whole genome MLST of *Campylobacter*. *Genes* 3, 261-277.

702 63. Price, M.N., Dehal, P.S., and Arkin, A.P. (2010). FastTree 2 – approximately maximum-likelihood trees for
703 large alignments. *PLOS One* 5, e9490.

704 64. Didelot, X., and Wilson, D.J. (2015). ClonalFrameML: efficient inference of recombination in whole
705 bacterial genomes. *PLoS Comp. Biol.* 11, e1004041.

706 65. Browning, B.L., and Browning, S.R. (2009). A unified approach to genotype imputation and haplotype-
707 phase inference for large data sets of trios and unrelated individuals. *Am. J. Hum. Genet.* 84, 210-223.

708 66. Yahara, K., Furuta, Y., Oshima, K., Yoshida, M., Azuma, T., Hattori, M., Uchiyama, I., and Kobayashi, I.
709 (2013). Chromosome painting *in silico* in a bacterial species reveals fine population structure. *Mol. Biol.*
710 *Evol.* *30*, 1454-1464.

711 67. Lawson, D.J., Hellenthal, G., Myers, S., and Falush, D. (2012). Inference of population structure using
712 dense haplotype data. *PLoS Genet.* *8*, e1002453.

713 68. Yahara, K., Didelot, X., Ansari, M.A., Sheppard, S.K., and Falush, D. (2014). Efficient inference of
714 recombination hot regions in bacterial genomes. *Mol. Biol. Evol.* *31*, 1593-1605.

715 69. Guindon, S., Dufayard, J.-F., Lefort, V., Anisimova, M., Hordijk, W., and Gascuel, O. (2010). New
716 algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of
717 PhyML 3.0. *Syst. Biol.* *59*, 307-321.

718 70. Mell, J.C., Shumilina, S., Hall, I.M., and Redfield, R.J. (2011). Transformation of natural genetic variation
719 into *Haemophilus influenzae* genomes. *PLoS Path.* *7*, e1002151-e1002151.

720 71. Collins, C., and Didelot, X. (2018). A phylogenetic method to perform genome-wide association studies in
721 microbes that accounts for population structure and recombination. *PLoS Comp. Biol.* *14*, e1005958.

722 72. van Vliet, A.H., Wooldridge, K.G., and Ketley, J.M. (1998). Iron-responsive gene regulation in a
723 *Campylobacter jejuni* *fur* mutant. *J. Bacteriol.* *180*, 5291-5298.

724 73. Cameron, A., and Gaynor, E.C. (2014). Hygromycin B and apramycin antibiotic resistance cassettes for use
725 in *Campylobacter jejuni*. *PLOS One* *9*, e95084.

726

727 **Acknowledgments**

728 **Funding:** Wellcome Trust grant 088786/C/09/Z (SS), Medical Research Council (MRC) grant
729 MR/M501608/1 (SS), Medical Research Council (MRC) grant MR/L015080/1 (SS), Food
730 Standards Agency project FS101087 (SS), Biotechnology & Biological Sciences Research
731 Council (BBSRC) grant BB/S014497/1 (DK).

732

733 **Author contributions:**

734 Conceptualization and study design: SS, XD, DF, KY, DK, AT
735 Sample collection: SS, AvV, NW
736 Laboratory work: GM, AT, LM, MH, BP
737 Data archiving: BP, KJ
738 Data analysis: AT, XD, KY, LM, JKC, EM, SP, SB, SS, JC
739 Data interpretation: KY, GM, XD, SS, MM, JP, DK, AT, DF
740 Writing: SS, GM, BP, CK, AT, DK

741

742 **Competing Interest Statement:** The authors declare that they have no competing interests.

743

744 **Data and materials availability:** Short-read sequence data for all isolates sequenced in this
745 study are deposited in the sequence read archive (SRA) and can be found associated with NCBI
746 BioProjects PRJNA689604 (<https://www.ncbi.nlm.nih.gov/bioproject/PRJNA689604>) and
747 PRJEB11972 (<https://www.ncbi.nlm.nih.gov/bioproject/PRJEB11972>). These were augmented
748 with 498 previously published genomes and assembled genomes are available on Figuresshare
749 (doi.org/10.6084/m9.Figuresshare.13521683). Accession numbers for all genomes are included in
750 Data S4. Source data are provided for this paper (Data S2).

751

752

753

754

755

756

757

758

759

760

761

762

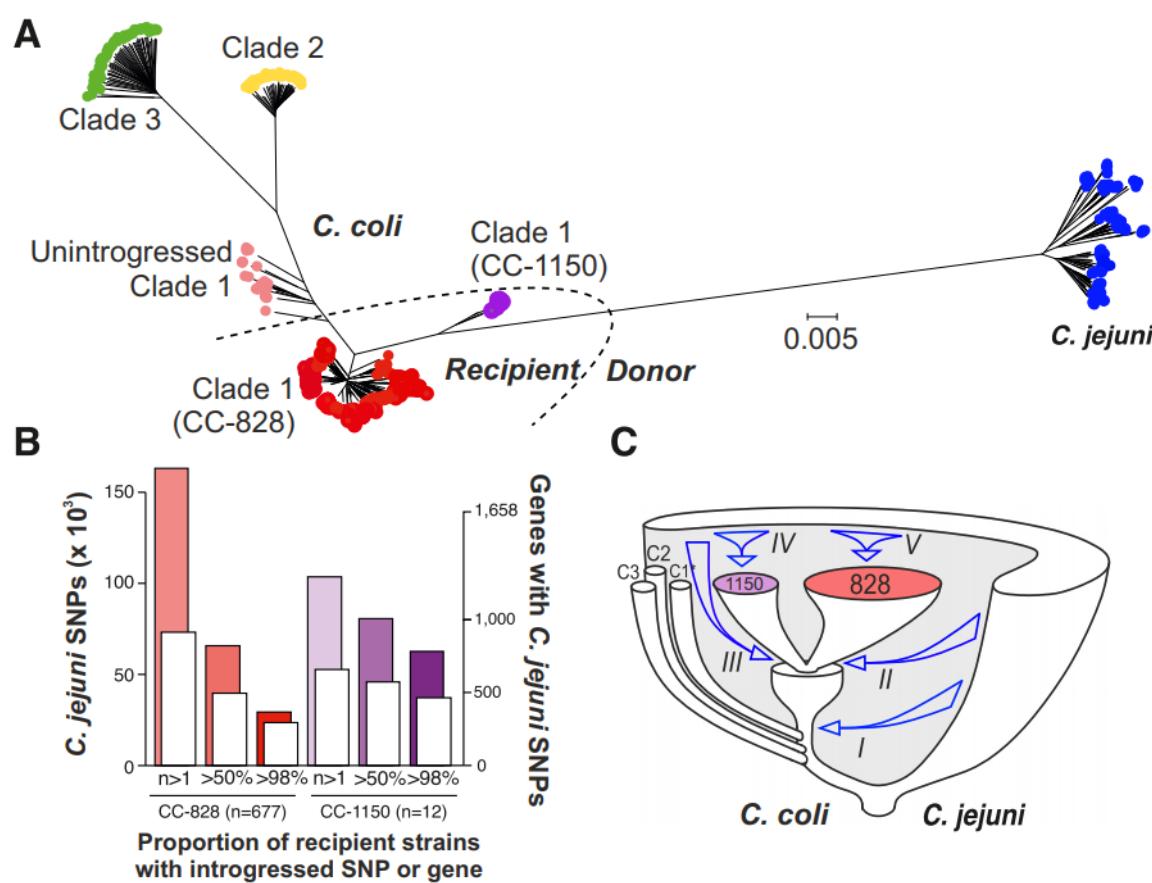
763

764

765

766

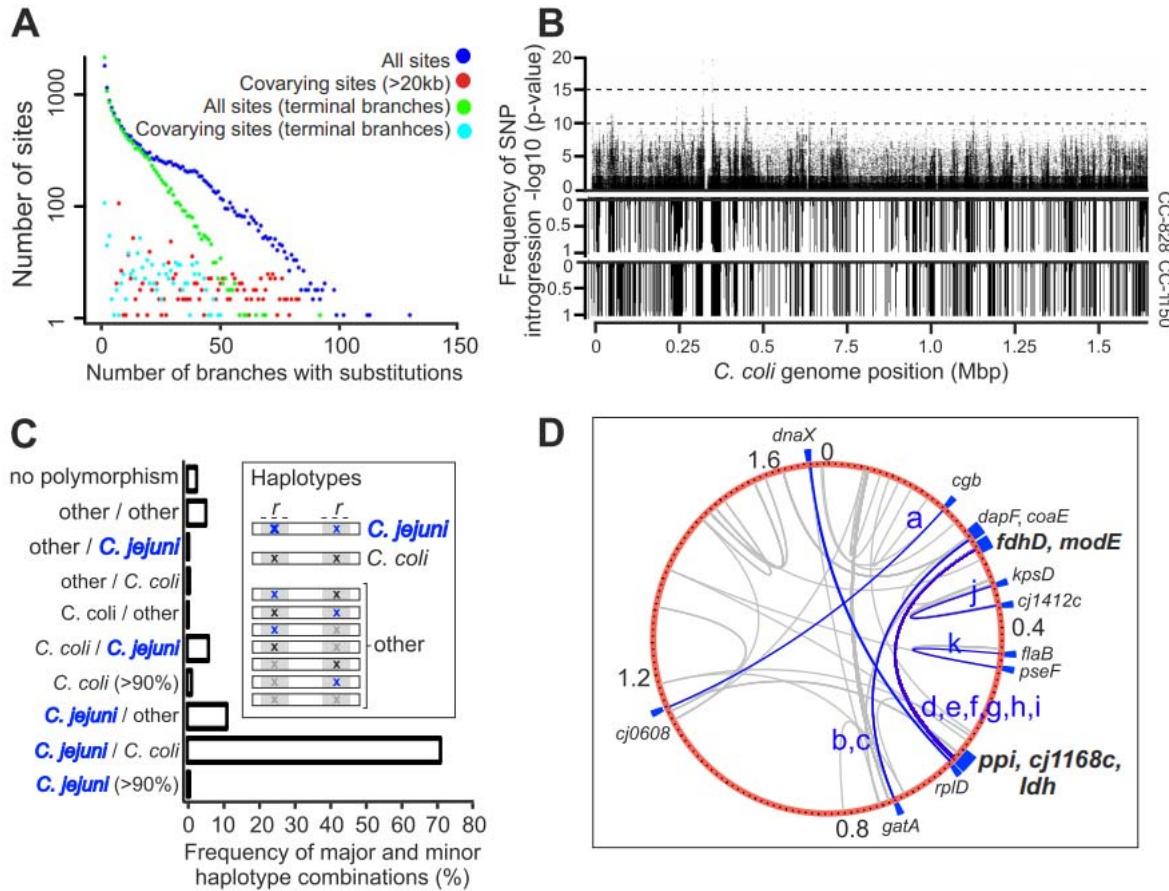
767


768

769

770

771 **Figureures and Tables**


772

775 **Figure 1. Genome-wide introgression from *C. jejuni* to *C. coli*.** (A) Phylogenetic tree
776 reconstructed using neighbour-joining on a whole-genome alignment of 973 *C. jejuni* and *C. coli*

777 isolates. Introgressed *C. coli* clades are represented with red (CC-828, n=677) and purple (CC-
778 1150, n=12) circles, unintrogressed clade 1 (n=35) is shown in pink, clade 2 (n=45) in yellow
779 and clade 3 (n=58) in green. A set of 146 *C. jejuni* genomes belonging to 30 clonal complexes (4
780 to 5 isolates per ST) are shown in blue. Recipient and donor populations, used to infer
781 introgression in chromosome painting analysis, are indicated. The scale bar represents the
782 number of substitutions per site. (B) Summary of introgressed *C. jejuni* SNPs in *C. coli* CC-828
783 (n=677, red) and CC-1150 (n=12, purple) genomes using ChromoPainter; the number of
784 introgressed core SNPs (coloured histograms; left y-axis) and core genes (white histograms; right
785 y-axis) for a range of recipient strains proportions (at least 1, more than 50% and more than
786 98%) is shown. (C) Diagram of *Campylobacter* species and clade (C1*, C2, C3) divergence with
787 arrows indicating introgression from *C. jejuni* into *C. coli* (i) clade 1, (ii, iii) CC-828 and CC-
788 1150, (iv, v) subsequent clonal expansion and ongoing introgression.

789

790

791 **Figure 2. Covariation in introgressed *C. coli* genomes.** (A) CC-828 and CC-1150 *C. coli*
 792 genomes were analysed using a continuous time Markov chain (CTMC) model and covariation
 793 was assessed for pairs of biallelic sites separated by at least 20kb along the genome while
 794 accounting for the effect of population structure and recombination. There are many biallelic
 795 sites that do not change often on the tree and few that do. Putative epistatic sites change more
 796 frequently than average with biallelic pairs found together on multiple branches. (B) Miami plot
 797 of each polymorphic site showing the maximum *p*-value for covarying biallelic pairs (>20kb
 798 apart) and the frequency of introgression in CC-828 and CC-1150. (C) The frequency of major
 799 and minor haplotype combinations (inset) among the 2578 pairs of covarying SNPs in the 689 *C.*
 800 *coli* clade-1 recipient genomes, revealing that the majority of long range covariation was

801 between introgressed *C. jejuni* sites. (D) The position of putative epistatic sites mapped on the *C.*
802 *coli* CVM29710 reference for covarying *C. jejuni*-*C. jejuni* SNPs (red) in 16 gene pairs (a to l),
803 and other haplotype combinations (grey).

804

805

806

807

808

809


810

811

812

813

814

815

816

817 **Figure 3. Genomic context and physiological roles of introgressed epistatically linked genes**
818 **involved in FDH biogenesis and activity.** (A) Genome organisation and percentage of co-
819 varying SNP pairs (internal legend). (B-D) FDH activity of whole cells determined by oxygen
820 consumption rates in a Clark-type electrode (nmol oxygen consumed per minute per mg of total
821 protein) for (B) cells grown in rich media (excess selenium), (C) cells grown in minimal media
822 with 0.5 nM sodium selenite, and (D) cells grown in minimal media with either 5 nM sodium
823 selenite (left, open bars) or 5 μ M sodium selenate (right, hashed bars). All data are means of at

824 least 4 independent determinations and error bars are SD. *** denotes p value of <0.001 by
825 students t -test. Assays suggest that both FdhT and SelF facilitate selenium acquisition, possibly
826 representing low and high affinity transporters, respectively.

827

828

829

830

831

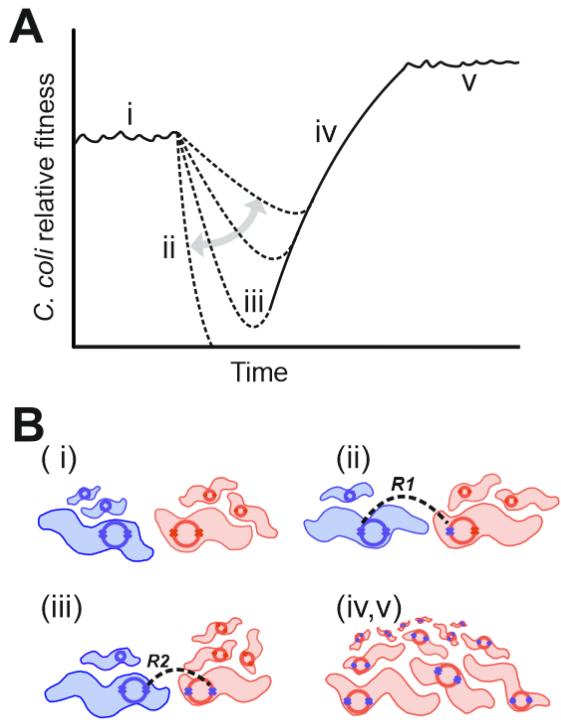
832

833

834

835

836


837

838

839

840

841

842

843 **Figure 4. A two-hit model for core genome recombination in natural *C. coli* populations.**

844 A&B: (i) *C. jejuni* (blue) and unintrogressed *C. coli* (red) co-exist with genomes (internal circles)
845 harbouring haplotype pairs (x-x) that segregate by species; (ii) Horizontal gene transfer, HGT,
846 occurs (R1) disrupting covarying genetic elements and reducing the relative fitness of
847 introgressed *C. coli* to varying degrees (grey arrow), few strains retain mixed *C. coli* - *C. jejuni*
848 haplotypes; (iii) HGT continues (R2) and, where recombined mixed haplotypes survived,
849 ancestral *C. jejuni* haplotype pairs are reinstated in introgressed *C. coli*; (iv,v) introgressed *C.*
850 *coli* outcompete unintrogressed strains.

851

852

853