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Abstract

Epigenetic “clocks” based on DNA methylation (DNAme) have emerged as the most robust and widely employed
aging biomarkers, but conventional methods for applying them are expensive and laborious. Here, we develop
Tagmentation-based Indexing for Methylation Sequencing (TIME-Seq), a highly multiplexed and scalable method for low-
cost epigenetic clocks. Using TIME-Seq, we applied multi-tissue and tissue-specific epigenetic clocks to over 1,600 mouse
DNA samples. We also discovered a novel approach for age prediction from shallow sequencing (e.g., 10,000 reads) by
adapting scAge for bulk measurements. In benchmarking experiments, TIME-Seq performed favorably against prevailing
methods and could quantify the effects of interventions thought to accelerate, slow, and reverse aging in mice. Finally, we
built and validated a highly accurate human blood clock from 1,056 demographically representative individuals. Our
methods increase the scalability and reduce the cost of epigenetic age predictions by more than 100-fold, enabling accurate
aging biomarkers to be applied in more large-scale animal and human studies.

Introduction

Aging is difficult to study, in part, because it is difficult to quantify'. In recent years, researchers have attempted to
address this problem with aging “clocks”, which are machine learning-derived biomarkers trained to predict age or age
proxies®. Since clock predictions are not perfect, individuals are often predicted younger or older than their chronological
age, and this difference is hypothesized to reflect variation in the biological rate of aging’. Both physiological
measurements* and biomolecules®®” have been used to build aging clocks and they are becoming increasingly common
readouts to assess longevity interventions. Despite their promise, accurate clocks that are inexpensive and easily applied to
large studies are lacking.

The most robust and widely used aging clocks are based on DNA cytosine methylation (DNAme) and are
interchangeably referred to as DNAme clocks or epigenetic clocks. These clocks comprise sets of CpGs and corresponding
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algorithms that use methylation levels to predict age. Epigenetic clocks have been built for humans®'°, mice''*, and a

multitude of other mammals'*'", and they have been shown to reflect interventions that are associated with longevity'®,

accelerated aging'’, and even cellular rejuvenation”*!. While much focus has been put on developing more accurate clocks
or clocks adjusted by health outcomes'®*

tractable.

, very little work has been done to make epigenetic clocks more experimentally

Ideally, epigenetic clocks could be measured for low-cost with a scalable technology. However, clocks are
predominantly built and assayed using Illumina BeadChip* microarrays or Reduced Representation Bisulfite Sequencing®*
(RRBS), which are laborious and cost hundreds of dollars per-sample. While these methods are useful for biomarker
discovery because they measure hundreds-of-thousands to millions of CpGs, they are excessive for the accurate
measurement of epigenetic clocks that typically only require several hundred loci to be measured. Thus, a more economical
and targeted approach could be used for epigenetic clocks with similar accuracy and robustness.

With this in mind, we developed Tagmentation-based Indexing for Methylation Sequencing (TIME-Seq), an
optimized bisulfite-sequencing approach to enable low-cost and scalable epigenetic age predictions. We use TIME-Seq to
build four new epigenetic clocks for mice and one clock for humans, applying them to 2772 unique samples from 9 different
tissue and cell types. We benchmark TIME-Seq against the prevailing methods and validate our clocks in independent
cohorts as well as interventions that alter the rate of aging. Using scAge, an algorithm originally applied to single-cell
epigenetic age analysis®’, we discover it is possible to accurately predict age from as few as 10,000 TIME-Seq reads®. Our
methods decrease costs of epigenetic clock analysis by more than two orders of magnitude, promising to expedite their use
in more large-scale experiments.

Results

We designed TIME-Seq, a novel targeted sequencing method to build and measure DNAme-based biomarkers (e.g.,
epigenetic clocks) for low-cost in hundreds to thousands of samples. TIME-Seq leverages barcoded and sodium bisulfite-
resistant TnS5-transposomes to rapidly index sample DNA for a pooled library preparation (Fig. 1a), which streamlines large-
scale experiments and minimizes the cost of consumables (Supplementary Table 1). After tagmentation and pooling,
methylated end-repair (5-methyl-dCTP replaces dCTP) is performed, and pools are prepared for in-solution hybridization
enrichment using biotinylated-RNA baits (Extended Data Fig. la-e). Unlike bisulfite-compatible single-cell indexing
approaches®®, we designed barcoded TIME-Seq adaptors to be short (38-nt) for optimal enrichment efficiency since longer
adaptors are more likely to daisy-chain with off-target DNA?’ (Extended Data Fig. 1f-h). Baits are produced in-house from
single-stranded oligonucleotide libraries (Supplementary Table 2), providing inexpensive enrichments from a regenerable
source. After bisulfite conversion of captured DNA and indexed-PCR amplification of each pool, Illumina short-read
sequencing is performed (Extended Data Fig. 2) and sample reads are demultiplexed based on pool and TnS5-adaptor indexes.
From mapped reads, a matrix of methylation values for CpGs in each sample is used to train or predict a DNAme biomarker.

Ribosomal DNA (rDNA) is a highly repetitive locus that shows increased DNAme with age in mice, allowing for
accurate epigenetic clocks to be constructed®'®. Therefore, we performed a small-scale pilot of TIME-Seq in C57BL/6
mouse blood DNA samples using hybridization probes against the described rDNA clock CpGs® (Extended Data Fig. 3a).
Samples efficiently demultiplexed from each TIME-Seq pool, and DNA methylation was accurately measured (Extended
Data Fig. 3b-c) with a high correlation (R>0.90) between replicate CpG levels and deep coverage at targeted epigenetic
clock loci from less than 600,000 reads (Extended Data Fig. 3d-f). Compared to RRBS libraries of the same samples, TIME-
Seq libraries had substantially higher overlap with target clock CpGs (Extended Data Fig. 3g). Age prediction using an
existing RRBS-based rDNA clock, however, showed only moderate correlation with age in our pilot (R=0.53; Extended
Data Fig. 3h), possibly due to the differences in CpG coverage between TIME-Seq and RRBS at several clock loci (Extended
Data Fig. 31).
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To build a more accurate rDNA clock compatible with TIME-Seq, enrichment baits tiling the entire rRNA promoter
and coding regions were designed and used to enrich TIME-Seq libraries from 191 C57BL/6 mouse blood DNA samples
(ages 2-35 months) in pools of 47-48 (Fig. 1b). Pools were combined and sequenced on an Illumina MiSeq for a per-sample
cost of less than five US dollars (USD) (see Supplementary Table 3 for sequencing costs). The majority of demultiplexed
reads (Fig. 1c) from each sample mapped to the rDNA repeat meta-locus (Fig. 1d), resulting in high coverage for each
sample at IDNA CpGs (Fig. le) and accurate DNA methylation quantification (Fig. 1f).
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Figure 1. TIME-Seq enables highly efficient epigenetic age predictions. a, Schematic of the TIME-Seq library preparation for
highly multiplexed targeted methylation sequencing to build and measure DNA methylation (DNAme)-based biomarkers. b, Proof-
of-concept rDNA clock experiment schematic. 191 mouse blood DNA samples (histogram) were prepared with TIME-Seq enriched
for rDNA and sequenced for clock training and testing. ¢, Reads demultiplexed from each rDNA clock pool of 47-48 samples. d,
Percent of demultiplexed reads from each sample that mapped to the rDNA meta-locus. e, Mean coverage at yDNA meta-locus
CpGs in rDNA-enriched TIME-Seq libraries. f, Mean CpG methylation from each sample in the four pools. g, Histogram of training
(N=145; red) and testing (N=37; blue) samples used to develop the TIME-Seq rDNA clock. h, TIME-Seq mouse rDNA clock
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showing age prediction for training (red) and testing (blue). Pearson correlation and median absolute error (MedAE) on test are
shown in the top left corner. i, TIME-Seq-based clock developed using only CpGs with at least 50 coverage in RRBS data used to
develop the original mouse rDNA clock. Caloric restricted (CR) mice are represented as red triangles.

To train an epigenetic clock, the 182 samples that passed quality filters were split approximately 80:20 into training,
and testing sets (Fig. 1g) and elastic net regression (0=0.05) was applied to the training data. After fine-tuning our model
on the training set (see Methods), age predictions using the resulting 232 CpG TIME-Seq rDNA Clock showed a high
correlation with age (training, R=0.98; testing, R=0.95) and a median absolute error (MedAE) of only 1.2 months in the
testing samples (Fig. 1h). To build a clock that could be applied to both TIME-Seq and RRBS, we trained a model from
TIME-Seq data using only CpGs with high coverage in an existing RRBS data set''. This clock showed a high age
correlation (R=0.87) when applied to RRBS data and reflected the longevity benefit of caloric restriction (Fig. 11).

In contrast to rDNA clocks, those built with CpGs from across the genome reflect diverse changes in aging
hallmarks and their associated genes’. Therefore, we designed hybridization enrichment probes for 957 distinct CpG islands
in gene promoters or other gene regulatory elements previously reported to have high age-correlation in mouse blood'' and
multi-tissue clocks'>'? (Extended Data Fig. 4a). With these enrichment probes, we prepared TIME-Seq libraries using 1019
DNA samples from mouse blood, liver, skin, kidney, white adipose tissue (WAT), or muscle, and sequenced libraries for
an average per-sample cost of $5.21. From the data, we prepared a high-coverage methylation matrix of 6373 CpGs for
clock training (Fig. 2a). Variation between samples was mainly due to the tissue of origin (Fig. 2b) as expected from quality
methylation sequencing datasets from multiple tissues.
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Figure 2. Low-cost TIME-Seq multi-tissue and tissue-specific clocks applied to 1019 mouse tissue samples. a, Circular
genome plot illustrating the position and mean coverage of the 6370 high coverage CpGs from TIME-Seq libraries in 1019
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mouse tissue samples. b, Principal component analysis for TIME-Seq data colored by their tissue-of-origin. Liver (green),
blood (red), skin (blue), muscle (turquoise), Kidney (yellow), and white adipose tissue (abbreviated WAT; hot pink). ¢, TIME-
Seq Mouse Multi-tissue Clock train (left) and test (vight) predictions plotted against chronological age. d, DNA methylation
change with age in TIME-Seq Mouse Multi-tissue CpGs split by their clock coefficient sign. The absolute value of the clock
coefficient is coded in the transparency of each line. e, Enrichment of transcription factor binding sites from genes associated
with the TIME-Seq Mouse Multi-tissue Clock. f~h, TIME-Seq Mouse Blood Clock (f), Liver Clock (g); and Skin Clock (h) with
train (left) and test (right) predictions plotted against chronological age. i, Age-adjusted residuals for Liver and Skin Clocks
from the same mice predicted in the testing sets. j, Age-adjusted residuals for either Skin or Liver Clocks plotted against the
predictions from the Multi-tissue Clock in the same sample.

Next, we trained and tested the TIME-Seq Mouse Multi-tissue clock, which accurately predicts age in mouse blood,
liver, skin, kidney, and WAT (Testing R= 0.89; MedAE = 1.5 months). As described in previous studies®*!, when using
age-correlated CpGs from other tissues, the prediction of age in muscle was less accurate (Extended Data Fig. 4b-c) and
this tissue was excluded from multi-tissue clock training. Our 419-CpG Mouse Multi-Tissue Clock contains both positive
and negative age-correlated CpGs (Fig. 2d) that are enriched for genes regulated by PRC2 components (e.g., EZH2 and
SUZ12) and the longevity-associated transcription factor REST? (Fig. 2¢). We also trained tissue-specific epigenetic clocks
(Fig. 2f-h) for mouse blood (testing: R = 0.93, MedAE = 0.7 months), liver (testing: R=0.94, MedAE = 0.7 months), and
skin (testing: R = 0.95, MedAE = 0.5 months). The TIME-Seq Mouse Blood Clock is enriched for genes associated with
regulating pluripotency of stem cells, while all three tissue-specific clocks contained enrichment of genes regulated by
PRC2 components, as well as tissue-specific TFs associated with clock genes (Extended Data Fig. 4d-g).

It is still largely unknown what factors influence epigenetic clocks and how different aging clocks relate to each
other®. It has been hypothesized that certain clocks exhibit more environmental “extrinsic” influence, whereas other clock
are more intrinsically defined (i.e., influenced more by genetic variation)®. To understand how our clocks relate to each
other, we identified mice that contributed tissues to 2 or more testing sets in clock development. To control for slight bias
in prediction error with age, we calculated the age-adjusted prediction residuals for each clock (see Methods) and plotted
the pairwise data for each tissue and clock (Fig. 2i-j). There was highly positive correlation (R=0.95, p=0.001) for the TIME-
Seq Skin and TIME-Seq Liver Clocks with each other, but no significant correlation for either tissue-specific clock with the
TIME-Seq Multi-tissue Clock. This result suggests there may be some extrinsic factor contributing to synchrony between
the TIME-Seq Liver and Skin Clocks, whereas our Multi-tissue Clock is not subject to the same influence and reflects other
aging modules.

Epigenetic clocks rely on ratios of methylated to unmethylated CpGs generated from dozens or hundreds of DNA
molecules at each clock locus. For sequencing-based clocks, this necessitates expensive deep sequencing. Recently, the
probabilistic age-prediction algorithm sc4ge was introduced to overcome this constraint and make accurate predictions from
semi-binary single-cell DNAme data®. We hypothesized that sc4ge could be used for accurate age prediction from shallow
sequencing in bulk DNA samples (e.g., 1/100" depth), which would resemble sparse DNAme data from single cells. To test
this, we performed low-pass sequencing on three TIME-Seq pools containing 121 mouse-blood DNA samples (Fig. 3a; 119
passed quality filters). Sample reads ranged from 3,610 to 32,588 (median 11,560) with a per-sample cost of just $1.85 (Fig.
3b). While average methylation levels were approximately the same as deep-sequenced data (Extended Data Fig. 5a), the
vast majority of CpGs were only covered by one or a few reads (Fig. 3c).

The scAge algorithm leverages existing deep-sequenced methylation data to construct linear models for maximum-
likelihood age prediction from sparse data (Fig. 3d). We modified scAge to allow for more than just semi-binary data (see
Methods) and applied it to predict age in our shallow-TIME-Seq experiment using published RRBS data'""* as reference.
Since TIME-Seq libraries are enriched for age-correlated loci in RRBS datasets, there was high intersection (median 49.1%)
between model CpGs and shallow-TIME-Seq data, compared to a more random distribution of sparse data, such as whole-
genome single-cell methylation data®® (Fig. 3e).

In support of our hypothesis, age predictions from scAge in shallow-TIME-Seq data were highly accurate (Fig. 3f-
g and Extended Data Fig. 5b-c) with a correlation of R=0.94 for females, R=0.85 for males, and a MedAE of just 2.23
5
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months for all predictions. Next, we used the deep-sequenced TIME-Seq data as the reference for scAge (Fig. 3h-i), which
further improved age correlation in the entire dataset to R=0.91 with a MedAE of 2.87 months. To test if this approach is
generalizable to other mouse tissues, we prepared and shallow-sequenced TIME-Seq libraries from 104 mouse liver samples
(ages 3-29 months). Using both deep-sequenced TIME-Seq liver data (Fig. 3j and Extended Data Fig. 5d) and RRBS liver
data (Extended Data Fig. 5e-f) as a reference, age predictions were accurate.
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Figure 3. Ultra-cheap age prediction with scAge from shallow sequencing of TIME-Seq libraries. a, Schematic of shallow
sequencing of 121 MD-enriched TIME-Seq libraries. b, Demultiplexed read number from each shallow sequenced sample. c,
Histogram of CpG coverages in shallow sequenced samples. d, Schematic of the scAge framework for maximum likelihood age
prediction from shallow TIME-Seq methylation data. e, Percent of scAge model CpGs covered in each shallow sequenced TIME-
Seq library and a previously reported single-cell methylation dataset, Gravina et al., (2016). f, Pearson correlation and MedAE
from scAge-based age prediction using Thompson et al., (2018) reference RRBS data. CpGs in each sample were ranked by the
absolute value of their correlation with age (based on deeply sequenced data), and only the top N percentile was used for
maximum likelihood prediction at each point. The red line indicates the percentile presented in (g). g, Age predictions from
scAge in shallow-sequenced TIME-Seq libraries (N=119) using RRBS reference data (top 30% age-associated CpGs). Pearson
correlations are shown in the top left corner. h, Pearson correlation and MedAE from scAge-based age prediction of the top N
percentiles of CpGs using deep-sequenced, MD-enriched TIME-Seq data as reference (data used for Fig. 2k-0). The red line
indicates the percentile presented in (i). i, scAge predictions from shallow-TIME-Seq data using deep-sequenced TIME-Seq
data (100% of CpGs) as models. Pearson correlations are shown in the top left corner. j, scAge predictions from 104 shallow-
sequenced liver samples using deep-sequenced TIME-Seq liver data as model CpGs (100% of CpGs). Pearson correlations are
shown in the top left corner.

To validate the robustness of TIME-Seq-based age predictions, we prepared TIME-Seq libraries in two separate
experiments using blood DNA from an independent cohort of mice (Fig. 4a). A subset of these mice had been tracked
longitudinally, assessed using the mouse frailty-index®', and had blood composition parameters measured. The TIME-Seq
Blood Clock (R=0.93; Fig. 4b), the TIME-Seq Multi-tissue Clock (R=0.91; Fig. 4c), and the combination of scAge and
shallow-TIME-Seq (R=0.87; Fig. 4d and Extended Data Fig. 6a) provided accurate predictions that reflected aging
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longitudinally. For TIME-Seq libraries enriched for rDNA (Extended Data Fig. 6b-c), mice from the same colony as the
original training set validated clock rDNA clock accuracy (JAX mice, R=0.96). As expected, mice from different colonies
gave more variable predictions (NIA mice, R = 0.81) since TDNA copy number varies greatly between different mouse
strains, colonies, and even individuals within a colony®* and copy number directly relates to aggregated methylation status®.

@  Biood Composition  Frailty Index B Blood clock c Multi-tissue Clock , d shallow TIME-Seq + scAge
‘ ’ R=0.93, p<2.2e-16 ) 30| R=091,p<22e-16 o’ R=0.87, p<22e-16
% % 301 N=75 o @7 | Ne7a % @ N=75 \
>~ = = 3 E= e
c A c c ’
Longitudinal ¥ V VV V V g g g 30 ’
Single V v v vV V \; 20 ; 20 ;
Age0 5 10 15 20 25 30 o o 20
(mo) L 1 1 1 1 1 I © o ©
Z\ 3, B 10 5
< § 0 § ° § 10 )
ie] ie] 8 =} ° Prep
1/2 samples 1/2 samples £ o Ve 2 H 1
o o e d o e P
Independent TIME-Seq Library Preps 01- 0 : . . . 01’
0 10 20 30 0 10 20 30 0 10 20 30
Age (months) Age (months) Age (months)
e rDNA Blood MT scAge f g h -
3 Correlation -log(FDR) Blood clock Multi-tissue Clock
« g B 2500@75 o 2 4
T 19fR=020° o Blood value o g
=} S 1.5 3
3 o 3 Age| - ® oo @ IO\, g
o 1g R=053°5a R:o.z: ° a% = AMedze*(blood) # 1 % 270
529 éﬁ% P = AscAge ° e 3 0 =} .
5 10{R=0.28- R=0.65:R=0.60 - » ATS-rDNA = 5 § 1
sk @ @ AZ o o
19) K
O s{ A5 & ® ATS-blood 2888328 S 8 700000 o© o
n o o o
O _70010-50510-50 510 8§§§§§8§555%§EE 1050—0’)1{71\9 3 S 10502839 8 3 §
icti idualt 2050 < I 9] = N
Prediction residual 1 = 222QR 8 ==9«c Reads per sample (x10°%) Reads per sample (x10%)
i H ® TIME-Seq clocks @ BeadChi
48 Mouse Blood Samples  J 100 | , © o o @ o p
S - 250
~ Q.
l ;‘ D N o E 20
E 75 8 150
BeadChips < 2 100 (579:8)
TIME-Seq RRBS 3 8 5074
“ 5 & R
o}
» 5 om
Q
w 25 o 1.5m
= = im
= 0 | Method: TS TS RRBS BeadChip \© SOOIS "
TIME- Bead RRBS 0 25 50 75 100 Clock: Blood MT Blood MT BSOS (OBQ &%0“:12
- . AT oF,QF
Seq chip BeadChip DNAme (%) N: 48 48 18 48 Number of Samples

Figure 4. TIME-Seq is a robust and scalable alternative to conventional clock approaches. a, Experimental schematic for
validation of TIME-Seq age prediction methods in an independent cohort of mice with longitudinal timepoints, paired frailty
index, and blood composition data. b-d, TIME-Seq age predictions in two independent validation library preparations using (b)
the TIME-Seq Mouse Blood Clock, (c) the TIME-Seq Mouse Multi-tissue Clock, and (d) scAge predictions from shallow-TIME-
Seq data (shallow-TS + scAge) using deep-TIME-Seq data as model CpGs. Lines connect the same mouse at two different ages.
Pearson correlations and n values are shown in the top left corner. e, Correlation between age-adjusted prediction residuals in
the validation sets from the different prediction approaches. f, Correlation and significance matrix between AAge from each
approach and AMed*s°(blood), i.e., the difference in median value from similar aged mice for each blood measurement. Color
and size of each circle represent the correlation and p-value significance, respectively. WBC = white blood cell count, NE (%)
= percent of neutrophils, LY (%) = percent of lymphocytes, MO (%) = percent of monocytes, EO (%) = percent of eosinophils,
BA (%) = percent of basophils, RBC = red blood cell count, Hb = hemoglobin, HCT = hematocrit, MCV = mean corpuscular
volume, MCH = mean corpuscular hemoglobin, MCHC = mean corpuscular hemoglobin concentration, RDW = red blood cell
distribution width, PLT = platelets, MPV = mean platelet volume. g-h, Sequencing saturation simulation to estimate clock
accuracy from different read numbers in the validation samples. i, Schematic of benchmarking experiment to compare TIME-
Seq to Illumina BeadChip and RRBS. j, Comparison of CpG methylation percent in TIME-Seq and BeadChip. Each dot
represents the same CpG from the same sample measured each technology. k, Comparison of AAges for each method and the
associated clocks. i, Comparison of cost per sample (top) and total cost (bottom) for TIME-Seq clocks (black outline; black fill;
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black solid line), shallow TIME-Seq and scAge (black outline; white fill; dashed line), BeadChip (red), and RRBS (blue) across
a range of sample scales. Half-filled circles denote points that are overlapping between TIME-Seq clocks and scAge. Million is
abbreviate as “m”. “K” denotes thousand.

To understand if our age prediction methods were synchronous in predicting animals older or younger, we plotted
the pairwise age-adjusted prediction residuals for each mouse from each method. While all prediction methods were
significantly positively correlated, the TIME-Seq Multi-Tissue Clock, Blood Clock, and scAge age-adjusted prediction
residuals were much more highly correlated with each other and lowly correlated rDNA clock residuals (Fig. 4¢), suggesting
rDNA methylation may be capturing a separate aging module only partially reflected in the other clock methods. The high
correlation between Blood and Multi-tissue Clock prediction residuals suggests that similar aging modules are reflected by
these clocks, in contrast with Multi-tissue Clock asynchrony with the Skin and Liver Clocks.

The difference between predicted age from epigenetic clocks and chronological age (AAge) has been shown to
correlate with a wide variety of age-associated phenotypes®. To test if TIME-Seq predictions related to other measures of
health or aging, we compared AAges from each approach to mouse frailty index and blood composition measurements,
which have been shown to influence epigenetic clocks®. To control for the raw age correlation of each variable (top Fig. 4f
and Extended Data Fig. 6d), measurements from each mouse were subtracted by the median value of that variable in similar
aged animals—abbreviated AMed**°(blood) and AMed*°(FI). AMed**(blood) values were not correlated with AAges from
the deep-sequenced clocks, suggesting blood cell composition was not driving predictive variance (Fig. 4f). In contrast,
AMed**(platelet) values, as well as parameters with significant age correlations, mean platelet volume (MPV), percent
neutrophils (NE %), and percent lymphocytes (LY %) were also significantly correlated with scAge AAges in the same
direction, suggesting scAge predictions may be more susceptible to the influence of changes in aging blood composition.
Since frailty index is also highly correlated with age and indicative of age-related decline, we assessed if AAges were
correlated with AMed*°(FI) values (i.e., whether mice that are frailer for their age are also predicted older and vice versa).
Comparing AMed™(FI) to AAges (Extended Data Fig. 6¢), we found no correlation with any TIME-Seq prediction method.
This finding mirrors the previously described lack of correlation between frailty and human epigenetic age predictions from
blood DNA (e.g., Hannum or Horvath clocks*) and suggests that frailty scores are a relatively distinct biomarker of health
and functional decline.

To determine the minimum read number for accurate TIME-Seq clock prediction, we simulated a sequencing
saturation experiment by extracting reads from each sample at a lower threshold, re-mapping the subset reads, and predicting
age with the lower coverage (Fig. 4g-h). For the TIME-Seq Blood and Multi-tissue Clocks, prediction accuracy began to
substantially decline with less than 500,000 reads per samples.

Next, we benchmarked TIME-Seq against the most common technologies for age prediction, [llumina Methylation
BeadChip and RRBS, in 48 independent mouse blood samples (Fig. 4i). TIME-Seq methylation levels from the same CpG
and same mouse were highly correlated with both BeadChip (R=0.95; Fig. 4j) and RRBS (R=0.92; Extended Data Fig. 7f).
Epigenetic age predictions were highly accurate using either the TIME-Seq Blood or Multi-tissue Clocks, providing further
independent validation (Fig. 4k). In contrast, the recently described BeadChip multi-tissue epigenetic clock®>—the only
mouse microarray-based clock that is commercially available—uniformly underpredicted the age of samples, possibly
owing to a skewed age and sample distribution in the original study®. Finally, the RRBS-based mouse blood clock'!
predicted samples with more accuracy than the BeadChip clock but with more variation than TIME-Seq.

To compare the cost of small- and large-scale clock analyses, we estimated costs for a range of sample sizes (Fig.
4i and Supplementary Table 5). TIME-Seq becomes increasingly cost-efficient at scale, with an estimated per-sample cost
of just $1.70 for 12,500 samples. RRBS is estimated to be more expensive than Illumina BeadChip in small experiments
but—also leveraging the efficiency of short-read sequencing—it becomes increasingly cheaper than BeadChip in large-
scale application. At the largest scales, however, TIME-Seq is still approximately 50-fold less expensive than RRBS and
100-fold less than Illumina BeadChip-based analyses. Costs are even further minimized to just 87¢ per-sample if shallow
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sequencing of TIME-Seq followed by scAge is used. These results suggest that TIME-Seq clocks are a scalable and
inexpensive alternative to more conventional methodologies.

Our goal for developing TIME-Seq was to apply clocks to large-scale intervention experiments such as those
obtained in longitudinal mouse aging studies, in vitro screens, or large-scale human clinical trials. To understand if TIME-
Seq clocks could detect differences in aging after interventions, we applied our clocks to controlled treatments associated
with age deceleration, acceleration, or rejuvenation. We also applied TIME-Seq to an in vitro time-course to understand if
it could be used for screening experiments.

Two of the most robust interventions that extend mouse healthspan and lifespan are amino acid restriction and
caloric restriction®. Conversely, a reduction in healthspan and lifespan is seen when mice are fed a high fat diet (HFD)*’.
Using our TIME-Seq Mouse Blood Clock, mice that were 40% caloric restricted (CR) or methionine restricted (MetR) from
age 24-months to 30-months were predicted younger than their ad /libitum controls (Fig. 5a-b; MetR, p=0.007; 40% CR,
p=0.021). Likewise, the TIME-Seq Liver Clock predicted that the livers of mice that experienced 30% caloric restriction
for 10 months were younger (p = 0.046) than their ad /ibitum controls (Fig. 5c-d), with the TIME-Seq Multi-tissue Clock
showing a trend towards younger prediction (p=0.053; Extended Data Fig. 7a). High-fat diet-fed mice were predicted older
than mice of the same age on a standard diet using the TIME-Seq Liver Clock (p=0.026) and the TIME-Seq Multi-tissue
Clock (p=0.018,), suggesting that age acceleration is reflected in our clock predictions. These data suggest that TIME-Seq
clocks can detect age deceleration and acceleration from multiple tissues, even when interventions are initiated late in life.

Epigenetic reprogramming can rejuvenate aged tissues, driving gene expression and epigenetic changes toward a
more youthful and regenerative state?**®*°. To understand if our clocks detected rejuvenation, we assayed mouse livers
treated for 1-month with an AAV expressing an Oct-4, Sox-2, and Klf-4 (OSK) polycistronic gene cassette (Fig. Sg-h).
With the TIME-Seq Multi-tissue Clock, mice with OSK expression were predicted significantly younger than control AAV-
injected mice (p = 0.023). TIME-Seq Liver Clock predictions were not significantly different between groups (Extended
Data Fig. 7c), perhaps reflecting differences between intrinsic and extrinsic aging modules. These results suggest that our
method can detect epigenetic rejuvenation in vivo.
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Figure 5. TIME-Seq clocks reflect interventions that slow, accelerate, and reverse aging and can be used for in vitro
studies. a, Schematic of dietary restriction treatments started in late life. Blood was collected after 6-months of treatment. b,
Comparison of AAges from TIME-Seq Blood Clock predictions in blood of dietary restricted and ad libitum mice. ¢, Schematic
of caloric restriction started in young mice (4-months). Mice were treated for 10 months, and livers were collected. d,
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Comparison of AAge from ad libitum and CR mice using the TIME-Seq Mouse Liver Clock. e, Schematic of HFD treatment and
liver collection. Mice were treated for 10 months starting at 6 months. f, Comparison of predicted ages for standard and high
fat diet mice using the TIME-Seq Liver Clock. g, Schematic of AAV treatments with OSK-expressing or control (GFP) cassettes.
Livers were collected 1-month after AAV injection. One set of control (N=4) and treatment (N=2) mice were 12 months, while
another set was 24-months (control, N=5; treatment, N=3). h, Comparison of AAges in the livers of mice with (OSK+) or
without (OSK-) OSK expression for 1-month. i, Schematic of experiment to assess MEFs and mouse adult ear fibroblasts in cell
culture time course lasting 1 month with collection every 2-weeks. j, TIME-Seq multi-tissue clock predictions from cell culture
samples collected across the time course.

Epigenetic clocks have been shown to “tick” as cells grow in culture'****!| providing a promising way to screen for
aging interventions in vitro. To test if TIME-Seq clocks also work on cultured cells, we grew five independent lines of low-
passage mouse embryonic fibroblasts (MEFs) or adult mouse ear fibroblasts for one month and collected cells at three
different timepoints (Fig. 51). Using the TIME-Seq Multi-tissue Clock, MEFs were initial predicted a sub-zero (embryonic)
age and steadily aged at a rate of approximately two weeks for every day in culture (Fig. 5j). Adult fibroblast lines were
initial predicted 17-23 months and then aged at approximately half the rate as MEFs. Results were similar using the TIME-
Seq Skin Clock, albeit with cells predicted to age at a slower rate (Extended Data 7d). These data indicate we can use TIME-
Seq to track aging in cultured cells and provide further evidence for a different rate of aging between adult and embryonic
cells".

Most human clock studies train their age-prediction models on publicly available microarray data from dozens of
past studies®'*! since new, large-scale experiments are exorbitantly expensive and laborious using microarrays. To develop
a TIME-seq epigenetic clock that could be used in new large-scale human studies, we obtained 1056 human blood DNA
samples from demographically representative individuals aged 18 to 103 years old (Fig. 6a). Most of the samples were
designated for initial clock training and testing (N=796), whereas a subset was used for independent sample preparation and
validation (N=260). Using enrichment probes against age-correlated loci from 11 described clocks*, TIME-Seq libraries
were prepared and sequenced for a per-sample cost of $6.24. We achieved high coverage from clock CpGs across the
genome (Fig. 6b), and sample data largely separated by age in the first two principal components (Fig. 6¢), validating that
age associated CpGs were enriched in the dataset.

With this data, we trained and tested the TIME-Seq Human Blood Clock (Fig. 6d), observing high age correlation
in training (R=0.98) and testing predictions (R=0.96) with a MedAE of just 3.39 years, comparable to the most widely used
human epigenetic clocks®’. Gene set enrichment analysis of the resulting 405 CpG clock (Fig. 6e) revealed an association
with developmental biological processes (Fig. 6f), including genes enriched for PRC2-associated proteins and REST similar
to our mouse clocks (Fig. 6g).

To validate TIME-Seq in an independent experiment, we prepared and sequenced TIME-Seq libraries from the
remaining 260 human DNA samples, which were subjected to deep and shallow sequencing. With the TIME-Seq Human
Blood Clock, we observed similar predictive accuracy in the validation dataset compared to the initial testing set (R=0.96;
Fig. 6h). Using the initial data for reference, scAge predictions were also highly accurate (R=0.93) when applied to validation
shallow sequencing data (median N=39,846 reads) using up to the 10™ percentile of top age-correlated CpGs (Fig. 6i-j).
Age-adjusted residuals for the TIME-Seq Human Blood Clock and scAge predictions were significantly correlated (R=0.52,
p<2.2e-16), suggesting the methods reflect a common underlying biological signal.
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Figure 6. Highly accurate epigenetic age predictions in 1056 human blood samples using TIME-Seq clocks and scAge.
a, Schematic of the experimental design to train, test, and validate TIME-Seq in 1056 human blood DNA samples. b, Coverage
of 9379 CpGs from across the human genome. Colored dots are CpGs from described Illumina BeadChip clocks, whereas
smaller grey dots are the other enriched CpGs. ¢, Principal component analysis of the methylation matrix for the train and test
samples, colored by age from youngest (blue) to oldest (red). d, Predicted ages from the TIME-Seq Human Blood Epigenetic
Clock in the train (right and test (left) samples. e, Annotation of the 405 clock CpGs with coefficient on the y-axis. X-axis (not
shown) is genomic space in the same style as panel b from left (chromosome 1) to right (chromosome 22). CpGs and gene names
are colored with the same color key as panel b. Feature annotation is coded by shape as follows: O 5’ UTR, ® exon, A
intergenic, & intron, ¥ non-coding, B promoter, and V transcription termination site. f-g, Gene ontology (GO) analysis for
enrichment of biological processes (f) or transcription factor (TF) binding sites (g) in genes associated with clock CpGs. h,
TIME-Seq Human Blood Clock predictions in 260 independently prepared human blood DNA samples. i, Metrics for age
prediction using various CpG percentiles from age-correlation ranking. Red line indicates the most accurate predictions shown
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in the next panel. j, Age predictions with scAge from shallow sequencing of TIME-Seq libraries using the top 10% of age-
correlated CpGs from the original dataset. k, Age-adjusted residuals from clock and scAge predictions for validation samples.

Discussion

Epigenetic clocks are increasingly ubiquitous tools for both clinical and basic aging research. Until now, they have
been relatively expensive and laborious to measure, limiting their application to modest-sized or extremely well-funded
experiments. TIME-Seq is a flexible and scalable targeted sequencing approach that decreases costs of epigenetic clocks by
up to 100-fold in large experiments. Using TIME-Seq, we built and validated epigenetic clocks to predict age in over 2700
unique samples. This scale was enabled by immediate sample barcoding that facilitates low-cost, pooled library preparation
compatible with efficient hybridization-based enrichment and bisulfite conversion. Compared to traditional RRBS library
preparations or BeadChip sample preparation, which can take anywhere from 4-9 days* and cost upwards of $30-$50 per
sample, reagent cost for TIME-Seq libraries is only $0.65 per sample, and without any automation, a trained technician can
easily prepare upwards of 800 samples in only 1.5 days (approximately 12 hours of hands-on time). Further, input DNA for
TIME-Seq (100 ng) is the same as standard RRBS libraries and 3-5 times less than DNAme microarray, enabling
longitudinal measurement of epigenetic age from low-yield DNA extractions such as a mouse cheek bleed.

Using a combination of shallow-TIME-Seq and scAge, we show that it is possible to accurately predict age in bulk
samples from around ten thousand sequencing reads per sample. We applied shallow-TIME-Seq with scAge to predict age
in mouse and human blood and mouse liver, finding it surprisingly accurate with correlations nearing those of elastic-net
based clocks. Even in smaller scale experiments, using scAge in combination with TIME-Seq library preparation and
shallow sequencing, the cost of accurate age prediction was more than 100-fold lower than conventional methods. While
scAge predictions were slightly less robust than clock predictions, future optimizations will likely increase accuracy and
allow for ultra-cheap age prediction in extremely large studies.

While highly targeted approaches have been described for epigenetic age prediction***®, such as pyrosequencing or
digital PCR, these methods are more expensive and less scalable than TIME-Seq-based predictions from our clocks or scAge
predictions from shallow TIME-Seq. Further, their reliance on low-CpG clocks (e.g., 3-15 CpGs) limits the number of aging
modules they reflect. TIME-Seq is flexible and capable of high enrichment and deep coverage of thousands to tens-of-
thousands of CpGs. Further, the cost for accurate TIME-Seq clocks gets substantially lower at larger scales. Conservatively,
we estimate that 12,500 samples could be prepared and sequenced for clock prediction on a single NovaSeq S4 flow cell
for just $1.70 per sample. With shallow sequencing of TIME-Seq libraries followed by scAge, per-sample costs for age
prediction drop to just 87¢.

A central goal of aging research has been to develop biomarkers capable of detecting differences in the biological
rate of aging'. We show that TIME-Seq clocks can be used to detect the effect of interventions that accelerate, slow, or
reverse the pace of aging in vitro and in vivo. Designed for low-cost and scale, TIME-Seq is uniquely capable of biomarker
application to large intervention studies such as screens or longitudinal clinical trials. Whether or not TIME-Seq clocks or
scAge will detect age-altering effects in every tissue, or if they will associate with other metrics of functional decline, will
require additional experiments. For instance, our analysis of TIME-Seq clocks in mouse blood revealed the lack of
correlation between epigenetic age and frailty described in human clocks®, suggesting instead that DNA methylation
biomarkers might be specifically designed to predict frailty-adjusted age in mice.

In the current study, we rationally designed hybridization probes to enrich for loci that were already known to
correlate with chronological age, our target metric. However, when such data is not available, more genomic area might be
enriched to identify CpGs with high-correlation relative to the phenotype of interest (e.g., mortality, frailty, or cancer status).
These libraries would initially be more expensive to sequence, but the number of baits could be reduced once model CpGs
were discovered. This separation of more expensive biomarker discovery from low-cost measurement will be key to the
widespread adoption and routine use of DNAme clocks as well as clocks based on other biomolecules™’.
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Being designed for minimal cost and maximal efficiency, TIME-Seq has the same trade-offs as other Tn5-based
library preparations. For example, samples with improperly normalized DNA tend to drop-out due to either over- or under-
tagmentation. During this study, we developed increasingly automated and reliable approaches for DNA normalization at
scale (see Methods), which limited sample drop out. Sample normalization could also be addressed using on-bead
tagmentation® to control for variation in starting DNA content, but this would require modifications to the adaptor design.
Ultimately, further automation of our TIME-Seq sample processing pipeline could enable a single scientist to prepare
thousands of samples at once, enabling low-cost age predictions from extremely large cohorts such as the U.K. Biobank.
Such a study would be a powerful resource to identify genetic and lifestyle factors that influence aging at population scale.

Methods
DNA extraction, quantification, and normalization

For blood, 100-300 pl of pelleted mouse whole blood (plasma removed) was resuspended in 1mL of red blood cell
(RBC) lysis buffer (155 mM NH4Cl, 12 mM NaHCO3, 0.1 mM EDTA, pH 7.3), incubated for 10 minutes on ice, and
centrifuged at 2000 RCF for 5 minutes. Pelleted cells were resuspended in 1.5mLs of RBC lysis buffer and spun twice
before being lysed in 800 ul TER (50 mM Tris-HCI pHS, 10 mM EDTA, 40 pg/mL RNase A) with 50 ul of 10% SDS
added. Lysates were incubated at 37°C to allow for RNA degradation and then 50 pl of 20 mg/mL proteinase K was added
and samples were incubated overnight at 65°C. To purify DNA, 500 pul of 1:5 diluted (dilution buffer: 20% PEG 8000, 2.5
M NaCl, 10 mM Tris-HCI pH8, 1 mM EDTA, 0.05% Tween-20) SPRI DNA binding beads were added to each sample, and
they were incubated with rotation for 30 minutes at room temperature. Tubes were then placed on magnetic racks to capture
SPRI beads, and the beads were washed with 1 mL of ice-cold 80% ethanol twice. DNA was eluted in 75 pl of 10mM Tris-
HCI (pH 8). Purified DNA was quantified using the Qubit double-stranded DNA broad range kit (Catalog No. Q32850,
ThermoFisher) and diluted to 10 ng/pl for TIME-Seq reactions. To check for contaminants, a subset of samples from each
extraction were assessed by NanoDrop. For tissues, frozen tissues from mice of various ages were collected from our internal
mouse aging tissue bank. Tissues were kept frozen on dry ice while 10-20mg of tissue was cut into a well of a 96-well plate.
DNA was extracted using the Chemagic 360 system (Perkin Elmer) and the 10 mg tissue kit (Perkin Elmer, CMG-723) and
resuspended in 100 pL of elution buffer.

To achieve consistent DNA normalization from four 96-well DNA plates at a time, we developed a scalable and
partially automated protocol to get concentrations of 10 ng/puL with a low-percentage drop-out due to over- or under-
dilution. To begin, a standard starting volume of approximately 25 pL of DNA was transferred to a 96-well plate (BioRad,
HSP9601). 1uL of unnormalized DNA was removed and transferred to a black 96-well plate (VWR, 33501-812) with 99uL
of TE (10mM Tris, ImM EDTA). 100uL of 1X picogreen solution (ThermoFisher, P7589) was added to the DNA, after
which the plates were sealed, vortexed for 30 seconds, and spun in a plate spinner. Fluorescence was measured by the
SpectraMax 13 (Molecular Devices). Standards in triplicate from 1-100ng of total DNA were used to predict the amount of
DNA from each sample. Using these DNA concentrations, samples were diluted with 10 mM Tris pH 8 using the Mantis
liquid handler (Formulatrix) to a concentration of 40 ng/uL if > 100 ng/uL or 20 ng/uL if < 100 ng/pL. After a second
round of DNA quantification, samples were then transferred to a new 96-well plate at a standard volume (typically 20-30
pL) using a BioMek FXp liquid handler (Beckman Coulter). This plate was diluted to a final TIME-Seq starting
concentration of 10 ng/uL using the Mantis liquid handler.

Tn5 transposase purification

Tn5 transposase was purified according to a described optimized protocol®. Briefly, 1 mL of overnight culture
containing pTXB1-Tn5 (Addgene plasmid #60240) was used to inoculate 1 L of ZYM-505 growth media containing 100
ug/mL ampicillin and 0.001% polypropylene glycol (L14699-AE, Alfa Aesar). After the culture was grown for 4 hours at
37°C, IPTG (0487-10G, VWR) was added to 0.25 mM, and the culture was grown for an additional 4 hours at 18°C. The
culture was centrifuged at 25,000 RPM for 25 minutes, and the pelleted culture was flash-frozen in liquid nitrogen before
being stored overnight at -80°C. The pellet was thawed on ice, resuspended in 10 mL of HEGX buffer (20mM HEPES-
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KOH pH 7.2, 0.8 M NaCl, ImM EDTA, 10% glycerol, 0.2% Triton X-100) with a Roche protease inhibitor
(SKU11697498001, Millipore Sigma), and 1% w/v of pre-dissolved (50% w/v) octyl-thioglucoside (O-130-5 Gold Bio)
was added to help lysis. After a 10-minute incubation on ice, 100 mL of HEG-X was added, and the lysate was transferred
to a glass beaker for sonication on the 550 Sonic Dismembrator (ThermoFisher) using 15 cycles (15 seconds on, 30 seconds
off) on 70% duty and power 7. The sonicated lysate was pelleted at 30,000 RPM for 30 minutes at 4°C. The supernatant
was transferred to a clean beaker with a stir bar, placed on a magnetic stir plate, and 10% PEI was added dropwise while
stirring to remove excess bacterial DNA. After 15 minutes, PEI and precipitated DNA were removed by spinning the mixture
at 30,000 RPM for another 30 minutes at 4°C. The lysate was added to 2 chromatography columns (7321010, BioRad)
packed with 25 mL each of chitin resin (S6651S, NEB) and equilibrated with 100 mL of HEG-X each. The supernatant was
added to the columns in equal proportion and allowed to flow through, before the column was washed with 30 column
volumes of HEG-X. To elute the purified Tn5, 25 mLs of HEG-X with 100 mM DTT was added to each column and 10
mLs was allowed to flow through before sealing the column and letting it stand for 44 hours. 27 mL of elution was collected,
and a Bradford assay (23200, ThermoFisher) was used to quantify protein. The elution was then concentrated to 20 mL
using Amplicon Ultra 30 kDA filters (UFC900308, Millipore Sigma) and dialyzed in a Slide-A-Lyzer (66212,
ThermoFisher) cassette with 1 L dialysis buffer (50 mM HEPES-KOH, pH 7.2 0.8M NacCl, 0.2 mM EDTA, 2 mM DTT,
20% glycerol). After two rounds of dialysis totaling 24 hours, the eluted protein was removed, aliquoted into 1 mL
microcentrifuge tubes, and flash frozen in liquid nitrogen before being stored at -80°C. The final concentration of purified
protein was 1.5 mg/mL, and we estimate that 1L of culture produced enough Tn5 for approximately 16,000 TIME-Seq
reactions with 100 ng of DNA per sample.

Activation of TIME-Seq Tn5

Oligonucleotides (oligos) were ordered from IDT and HPLC purified except for TIME-Seq indexed adaptors and
hybridization blocking oligos (see Supplementary Table 5 for all oligonucleotide sequences). To anneal TIME-Seq adaptors,
100 pM TIME-Seq adaptor B containing a 5-bp internal barcode and (separately) 100 uM methylated adaptor A were
combined in equal volume with the 100 uM Tn5 reverse ME oligo. Enough methylated A adaptor was annealed to be added
in equal proportion with each indexed adaptor B. Oligos were denatured at 95°C for 2 minutes and then ramped down to
25°C at 0.1°C/s. The annealed oligos were then diluted with 85% glycerol to 20 uM, and the methylated A adaptor, indexed
TIME-Seq B adaptor, and 50% glycerol were combined in a ratio of 1:1:2. The resulting 10uM adaptors were combined in
equal volume with purified Tn5 (1.5 mg/mL), mixed thoroughly by pipetting 20 times, and incubated at room temperature
for 50 minutes. Activated transposomes were stored at -20°C and no loss of activity has been observed up to 8 months.

To test activity of TIME-Seq transposomes, 100 ng of human genomic DNA (11691112001, Roche) was tagmented
in 25 pl reactions by adding 12.5 pl of 2X tagmentation buffer (20mM Tris-HCI pH 7.8, 10 mM dimethylformamide, 10
mM MgCl,) using 1.5 pl of each barcoded transposome. After reactions were incubated at 55°C for 15 minutes, STOP
buffer (100mM MES pHS5, 4.125M guanidine thiocyanate 25% isopropanol, 10mM EDTA) was added to denature Tn5 and
release DNA. To assess tagmentation, 90% of each reaction was run in separate lanes of a 1% agarose gel at 90 volts (V)
for 1 hour. The gel was stained with 1x SYBR gold (S11494, ThermoFisher) in Tris-Acetate-EDTA (TAE) buffer, and DNA
fragment size was determined using a ChemiDoc (Bio-Rad) for gel imaging. The remaining DNA was pooled, cleaned up
using a DNA Clean & Concentrator-5 (D4013, Zymo) kit, and the DNA was amplified with barcoded TIME-Seq PCR
primers. Amplified pools were spiked into sequencing runs to assess relative barcode activity when new transposase was
activated.

Biotin-RNA bait design and production

Mouse and human discovery baits were designed to enrich for previously described epigenetic clock CpGs''-'**°

using mm10 and hg19 genomic coordinates. Using bedtools®' (v2.28.0), regions around each target CpG were first expanded
125 base pairs (bps) up- and downstream (bedtools slop) and overlapping loci were merged (bedtools merge). Next, 110 bp
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bait windows were defined every 20 bps in the region (bedtools window) and the baits were intersected (bedtools intersect)
with a file containing RepeatMasker (http://www.repeatmasker.org) annotated regions to identify baits overlapping
repetitive DNA regions. Next, the FASTA sequence of each bait was gathered (bedtools getfasta), and blat (version 35) was
used to get the copy number for each bait with options, -fastMap -maxIntron=50 -stepSize=5 -repMatch=2253 -
minScore=40 -minldentity=0. Using custom R (v. 4.0.2) scripts, information was gathered from the output files from each
probe including the percent of each nucleotide, the overlap with repeats, and the bait copy number as determined by blat.
Baits were automatically filtered that had overlap with repeats, however, each locus that had none or very few (< 4) baits
after filtering were inspected manually and, if the blat copy number was low (< 10), baits were added back, either to the
exact locus or shifted slightly to avoid the annotated repeat. In preliminary biotin-RNA hybridization experiments (data not
shown), we noticed that baits with high or low percentage T (less than 8% or greater than 30%) had low coverage, possibly
due to stalling of the RNA polymerase while incorporating biotin-UTP. Therefore, when more than half the baits at a target
locus had a percent T greater than 30% or lower than 8%, the reverse complement strand was captured instead for all baits
at the locus.

To design enrichment baits for mouse and human rDNA, FASTA sequences were prepared from GeneBank
accessions BK000964.3 (mouse) and U13369.1 (human) according to previously described methods® by moving the last
500 bps of each sequence (rDNA promoter) to be in front of the 5 external transcribed spacer (ETS). From the region
comprising the promoter to the 3’ ETS (mouse, 13,850bps; human, 13,814bps), 110-nt baits were designed using the
bedtools window function to create baits every 20bps. Version 1 rDNA baits used in the pilot and targeting the original
rDNA clock were designed to specifically enrich rDNA clock CpGs?® using the same approach described for non-repetitive
clock CpGs (i.e., 250bp windows were merged and 110-nt baits were designed to tile the regions).

The sequence of each bait set was appended with a promoter (Sp6 or T7) for in vitro transcription (IVT), as well as
a promoter-specific reverse priming sequence that contained a BsrDI restriction enzyme motif. Bait sets containing Sp6 and
T7 promoters were ordered together in a single-stranded DNA oligo pool (Twist), and pools were resuspended to 10 ng/pl.
Bait sets were amplified in reactions containing 12.5 pl of 2X KAPA HiFi HotStart Polymerase Mix (7958927001, Roche),
0.75 pl of each 10 uM primer, and 0.5 pl of the bait pool using the following thermocycler program: initial denaturation,
95°C for 3 min; 10 cycles amplification, 98°C for 20 seconds, 61°C (Sp6) or 58°C (T7) for 15 seconds, 72°C for 15 seconds;
a final elongation for 1 minute at 72°C. Amplified DNA was cleaned up using a Clean & Concentrator-5 kit (D4013, Zymo)
and then digested with 1 pl BsrDI (R0574S, NEB) at 65°C for 30 minutes. This reaction was again purified with a Clean &
Concentrator-5 kit, and IVT reactions were set up according to the HiScribe™ T7 (E2040S, NEB) or Sp6 (E2070S, NEB)
High Yield kits using half of the cleaned DNA template for each reaction and storing the rest at -80°C. All ribonucleotides
were added to a final concentration of 5SmM, including a 1:4 ratio of biotin-16-UTP (BU6105H, Lucigen) to UTP at 5 mM.
After the reactions were incubated for 16 hours overnight at 37°C, 25 pl of nuclease free water and 2 pl of Dnasel (M0303S,
NEB) were added to degrade the DNA template. RNA was purified using the 50 pg Monarch® RNA Cleanup Kit (T2040S,
NEB). The concentration of RNA was measured using Qubit RNA BR Assay Kit (Q10210, ThermoFisher) and the size of
RNA was measured using an RNA ScreenTape (5067-5576, Agilent) on an Agilent Tapestation.

While the yield from each DNA amplification and IVT reaction varies depending on the size and composition of
the bait sets, we estimate that 1,000-10,000 hybridization reactions-worth of bait could be produced from just 1 single-
stranded oligo pool. For TIME-Seq libraries of 48-64 samples, this could enrich tens to hundreds of thousands of samples.
Another advantage of this approach is that baits can be easily shared with other researchers as the ssDNA template, amplified
DNA, or prepared biotin-RNA.

TIME-Seq library preparation

For TIME-Seq library preparations, samples were organized into relatively even pools, and 10 pl of DNA (10 ng/pul,
100 ng total) from each sample was distributed into separate wells of strip tubes (or 96-well plates) for tagmentation. 100

15


https://doi.org/10.1101/2021.10.25.465725
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.25.465725; this version posted November 10, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

ng of unmethylated lambda phage DNA (D1521, Promega) was tagmented with each pool. Lambda DNA that came through
at a low percentage of demultiplexed reads served to estimate bisulfite conversion efficiency. To tagment samples, 12.5 ul
of 2X tagmentation buffer (20mM Tris-HCI pH 7.8, 10mM dimethylformamide, 10mM MgCl,) was added to each sample.
Next, 2.5 pl of uniquely indexed TIME-Seq transposome was added, and the reaction was immediately mixed by pipetting
20 times. Once transposomes were added to each sample in a pool, the samples were placed at 55°C for 15 minutes. After
incubation, 7 pl of STOP buffer (100mM MES pHS5, 4.125M guanidine thiocyanate 25% isopropanol, 10mM EDTA) was
added, pools were vortexed and pulse spun in a centrifuge, and the reaction was incubated at 55°C for an additional 5
minutes.

After stopping the reactions, samples from each pool were combined into a single tube, typically a 5 mL Lo-bind
tube (0030122348, Eppendorf) or 15 mL falcon tube (229410, Celltreat), and 118 ul per sample of DNA Binding Buffer
(D4004-1-L, Zymo) was added. Pools were then applied to Clean & Concentrate-25 (D4033, Zymo) columns. If the volume
of the pool exceeded 5 mL, each pool was passed in equal volume through 2 separate columns. After 2 washes, pools were
eluted in 41 pl (typically yielding 39 pl after elution) and 1 ul was removed to assess tagmentation fragment size and yield
by D5000 ScreenTape (Catalog No. 5067- 5588, Agilent) on an Agilent Tapestation.

For methylated end-repair, eluted pools were combined with 5 pul of NEB Buffer 2, 5 pl of SmM dNTPs containing
5-methyl-dCTP (N0356S, NEB) instead of dCTP, and 2 pl of Klenow Fragment (3'—5' exo-) (M0212L, NEB). The
reactions were incubated at 37°C for 30 minutes and then cleaned up with a Clean and Concentrate-25 column (Zymo). To
elute pools, 30 pul of heated elution buffer was applied to the column and incubated for 1 minute before being spun. Eluted
DNA was then passed through the column a second time and concentrated for hybridization to 5 pl with a SpeedVac
Concentrator (Eppendorf).

For each pool, DNA, RNA, and hybridization mixtures were prepared in separate strip tubes (1 per pool). On ice,
DNA mixtures were prepared by adding 5 pl of concentrated tagmented DNA from each pool, 3.4 pl of 1ug/ul mouse cot-
1 (18440016, ThermoFisher) or human cot-1 (15279011, ThermoFisher), and 0.6 pl of 100 uM TIME-Seq hybridization
blocking primers (IDT). RNA mixtures were prepared on ice by combining 4.25 pl of nuclease free H20 with 1 pl of
SuperasesIn RNase inhibitor (AM2696, ThermoFisher), mixing, and then adding 0.75 pl (750 ng total) of the biotin-RNA
baits. Hybridization mixtures were kept at room temperature and comprised 25 pl 20X SSPE (AM9767, ThermoFisher), 1
ul 0.5 M EDTA, 10 pl 50X Denhardt’s Buffer (1% w/v Ficoll 400, 1% w/v polyvinylpyrrolidone, 1% w/v bovine serum
albumin), and 13 pl of 1% SDS. Once the mixtures were prepared for each pool, the DNA mixtures were placed in a
thermocycler and incubated for 5 minutes at 95°C. Next, the thermocycler cooled to 65°C, and the hybridization mix was
added to the thermocycler. After 3 minutes at 65°C, the RNA mix was added to the thermocycler and incubated for 2 minutes
at 65°C. Next, the thermocycler lid was opened and, keeping all tubes in the thermocycler well, 13 pl of heated hybridization
buffer was transferred to the RNA baits mixture, followed by 9 pl of the denatured TIME-Seq pooled DNA. This step was
done quickly to limit temperature change during transfer, typically with a multichannel pipette for multiple pools. The
combined mixtures were pipetted to mix 3-5 times, capped, and the thermocycler lid was closed. The hybridization reaction
was then incubated at 65°C for 4 hours.

To capture biotin-RNA:DNA hybrids, 125 pl of streptavidin magnetic beads were washed three times in 200 pl of
binding buffer (1M NaCl, 10mM Tris-HCI pH 7.5, 1 mM EDTA) and resuspended in 200 pl of binding buffer. With the
reaction still in the thermocycler, the streptavidin beads were added to the reactions and then quickly removed to room
temperature. The reactions were rotated at 40 RPM for 30 minutes to allow for biotin-streptavidin binding and then placed
on a magnetic separation rack (20-400, Sigma-Aldrich) until the solution was clear. Next, the beads were resuspended in
500 pl of hybridization wash buffer 1 (1X SSC, 0.1% SDS) and incubated at room temperature for 15 minutes. The beads
were separated again on the magnetic separation rack and quickly resuspended in 500 pl of pre-heated 65°C wash buffer 2
(0.1X SSC, 0.1% SDS), then incubated for 10 minutes at 65°C. This step was repeated for a total of 3 heated washes. On
the final wash, beads were magnetically separated, resuspended in 22 pl of 0.1M NaOH, moved to a new strip tube (to avoid
droplets on the original tube mixing with the elution buffer), and incubated for 10 minutes. After 10 minutes, beads were
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separated and 21 pl of the eluted ssDNA from each pool was moved to another new strip tube for bisulfite conversion
reaction.

Bisulfite conversion was done using the EpiTect Fast Bisulfite Conversion Kit (59824, Qiagen), which was chosen
due to the inclusion of DNA protect buffer (limiting DNA strand breakage in bisulfite reaction) and carrier RNA that helps
yield from low-concentration reactions. The volume of the eluted DNA was adjusted to 40 ul using nuclease free water, 85
ul of Bisulfite Solution was added, followed by 15 pl of the DNA Protect Buffer, and the solution was mixed thoroughly.
Bisulfite conversion and clean-up proceeded according to standard kit instruction. DNA was eluted in 23 pl of kit elution
buffer. The initial elution was passed through the column a second time.

PCR amplification was done in a 50 pl reaction containing 23 pl of the eluted DNA, 1 ul of 25 puM P7 indexed
primer (see Supplementary Table 5 for primer sequences), 1 pl of 25uM P5 indexed primer, and 25 pl NEB Q5U 2X Master
Mix. Reactions were amplified with the following program: initial denaturation at 98°C for 30 second; 19 cycles of 98°C
for 30 seconds, 65°C for 30 seconds, and 72°C for 1 minute; a final elongation at 72°C for 3 minutes. After PCR reactions
were finished, they were cleaned using 1.8X CleanNGS SPRI Beads (CNGS005, Bulldog-Bio). Library fragment size and
yield was assessed using a D1000 (5067-5582, Agilent) or High Sensitivity D1000 ScreenTape (5067-5584, Agilent) on an
Agilent Tapestation. Pools were combined for sequencing.

Sequencing

TIME-Seq library sequencing requires two custom sequencing primers (see Supplementary Table 5) for read 2 (Tn5
index) and index read 1 (i7 index), which were spiked into standard primers for all sequencing runs so that standard or
control libraries (e.g., PhiX) could be readout as well. A complete list of sequencing platforms used for each experiment is
contained in Supplementary Table 3. TIME-Seq libraries that were sequenced on an Illumina MiSeq using a 150 cycle
MiSeq v3 kit (MS-102-3001, Illumina) or on a NextSeq 500 using a 150 cycle NextSeq High (20024907, Illumina) or Mid
(20024904, Illumina) Output v2.5 kit used the following read protocol: read 1, 145-153 cycles; i7 index read, 8 cycles; i5
index read (if needed), 8 cycles; read 2, 5 cycles. This custom read protocol helps maximize sequencing efficiency and
decrease cost, since the fragment size of amplified TIME-Seq libraries were typically 80-200bps and sequencing with larger
kits results in a large portion of overlapping (unused) cycles. Optimization experiments, smaller deep-sequenced pools, and
shallow sequencing data were typically generated by sequencing on a MiSeq using a MiSeq Reagent Micro v2 kit (MS-
103-1002, Illumina) using standard paired-end and dual indexed read cycle numbers. Larger experiments sequenced on a
NovaSeq 6000 using a 200 cycles NovaSeq 6000 SP or S1 Reagent Kit v1.5. High GC genome from Deinococcus
radiodurans was spiked into sequencing runs in different proportions (1-3% on MiSeq, 5-10% on NovaSeq, and 15-20%
on NextSeq) to increase base diversity and improve sequencing quality®*.

Sequenced read demultiplexing and processing

TIME-Seq pools were demultiplexed using sabre (https:/github.com/najoshi/sabre) to identify the internal Tn5
barcode with no allowed mismatches and separate reads into unique FASTQ files for each sample. Cutadapt (version 2.5)
was used to trim adaptors (PE: -G AGATGTGTATAAGAGANAG -a CTNTCTCTTATACACATCT -A
CTNTCTCTTATACACATCT; SE option: -a CTNTCTCTTATACACATCT). Reads were mapped using Bismark™
(version v0.22.3; options -N 1 --non_directional) to bisulfite converted genomes (bismark genome prepararation) mm10,
hg19, or custom rDNA loci (see bait design methods), and reads were subsequently filtered using the bismark function
filter _non_conversion (option --threshold 11). Importantly, the latter step does not (as the Bismark function name suggest)

reflect non-conversion from sodium bisulfite treatment, rather it removes a small percentage of reads (0.5%-3%) that are
artificially fully methylated during the methylated end-repair of the reads, which has been previously described*”. Next, the
bismark function bismark methylation_extractor was used to call methylation for each sample with options to avoid
overlapping reads (--no-overlap) in PE sequencing and to ignore the first 10 bps of each read (if SE: --ignore 10 and --
ignore 3prime 10; if PE: --ignore 12 10 --ignore 3prime 12 10 as well), which precludes bias from methylated cytosines
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added in the TnS5 insertion gap during end-repair. Bisulfite conversion efficiency was assessed from unmethylated lambda
DNA mapped to the bisulfite-converted Enterobacterphage lambda genome (iGenomes, [lumina) and was generally >99%.

Epigenetic clock training, testing, and analysis in validation and intervention cohort data

R (version 4.0.2) was used for all data analysis, including data organization, clock training and testing, and applying
clocks to validation data. For clock training, methylation and coverage data were taken from bismark.cov files (output of
bismark_methylation extractor), which contain CpG location and methylation percent (0-100). Since high-coverage rDNA
loci have been shown to make better age prediction models?', mouse rDNA methylation data was filtered to comprise only
CpGs with high coverage (> 200) in greater than 90% of samples at each CpG in the coverage matrix. For other mouse and
human clock CpG enrichment datasets, CpGs were filtered to have at least coverage 10 in 90% of the samples.

To build epigenetic clocks from deep-sequenced TIME-Seq data, samples were randomly selected from discrete
age groups (e.g., 25-55 weeks old for mice, 30-40 years old for humans) in approximately 80:20 training to testing ratio.
From the training set data, penalized regression models were trained to predict age from methylation values with the R
package glmnet™ with alpha set to 0.05 or 0.1 (elastic net). To further refine the model, age predictions from the training
data were regressed against age and the coefficients from this simple linear model were included to adjust the elastic net
model (see full equation below for computing clock predictions). While minor, this adjustment helped to correct for over-
or under-prediction in the youngest and oldest samples and produced predictions with more normal AAge across lifespan.
Multiple elastic net models were trained using random train-test splits, and a model with high Pearson correlation and low
median error in the testing set was selected for application to the independent validation cohorts or intervention samples.
This same process was applied to build the RRBS-TS-rDNA clock, filtering for CpGs in TIME-Seq data that had minimum
coverage of 50 in the RRBS mouse blood clock dataset'".

Clocks were applied to validation and intervention samples by joining bismark.cov files with the corresponding
clock CpG coefficients. When a clock CpG was not covered, the missing value was replaced by the average methylation
percent at that CpG from all other samples in the experiment. Samples were excluded if >10% of clock CpGs were missing,
or samples contained less than 100,000 reads. To calculate the weighted methylation (S) from elastic net regression
coefficients, each clock CpG methylation percent is multiplied by the corresponding clock coefficient and these values are
summed, as follows:

n
S = 2 my, * coef ficient,,
k=1

Where 7 is the total number of clock CpGs, and m; is a number from 0-100 representing percent methylation. To calculate
predicted age, the intercept from elastic net regression is added to S, and this value is adjusted with the simple linear
regression coefficients a and ¢, as follows:

f(Predicted Age) = a * (S + intercept) + ¢

Clocks predict age in units of weeks for the TIME-Seq Mouse rDNA Clock, months for all other mouse clocks, and years
for the TIME-Seq Human Blood Clock. See Supplementary Table 6 for clock positions, coefficients, and intercepts.

scAge-based epigenetic age predictions from shallow TIME-Seq

To obtain accurate epigenetic age predictions from shallow TIME-seq data, we employed the use of the recently
introduced scAge framework”. Unlike to the original scAge application in single-cell data, all methylation values from
shallow sequencing were retained unmodified (i.e., without introducing a forced binarization step for fractional methylation
values). We used bulk blood- and liver-specific methylation matrices to compute linear regression equations and Pearson
correlations between methylation level and age for each CpG within a particular training set. These equations were in the
form:
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prG(age) = Met = Mcpe * age + bCpG

where age is treated as the independent variable predicting methylation, and m and b are the slope and intercept of the CpG-
specific regression line, respectively. This enabled the creation of reference linear association metrics between methylation
level and age for each CpG covered in the training datasets. Five separate training datasets were used to compute epigenetic
ages in shallow sequencing data: (1) Bulk blood RRBS methylation profiles from 50 normally-fed C57BL/6J mice from the
Thompson et al. (2018) study across 1,202,751 CpG sites; (2) Bulk liver RRBS methylation profiles from 29 normally-fed
C57BL/6J mice from the Thompson et al. (2018) study across 1,042,996 CpG sites; (3) Bulk blood RRBS methylation
profiles from 153 normally-fed C57BL/6J mice from the Petkovich et al. (2017) study across 1,918,766 CpG sites; (4) Bulk
blood TIME-seq methylation profiles from 120 normally-fed C57BL/6J mice from the present study across 6,884 CpG sites;
(5) Bulk liver TIME-seq methylation profiles from 103 normally-fed C57BL/6J mice from the present study across 12,480
CpG sites; and (6) Bulk human blood TIME-Seq methylation profiles from 796 samples across 9379 CpGs. Methylation
values from the Thompson et al. (2018) study were concatenated to the positive strand, as described in the original study.

We intersected individual methylation profiles of shallow TIME-seq data with the reference datasets, producing a
set of n common CpGs shared across both datasets. For each shallow sample, we filtered these n CpGs based on the absolute
value of their correlation with age (|7|) in the reference data, selecting the most age associated CpGs in every sample. We
opted to use a percentile-based approach to select informative CpGs for predictions, which takes into account differential
coverage across samples. Furthermore, this enabled more consistent correlation distributions among shallow TIME-Seq
profiles of different coverage.

For each selected CpG per sample, we iterated through age in steps of 0.1 months for mice or 0.1 years for humans
from a minimum age to a maximum age value. We iterated from -20 months to 60 months for mice and -50 years to 150
years for humans to encompass a wide range of possible predictions without artificially bounding outputted predicted values.
We observed in our testing that all predictions generated by scAge for these data were within this generous range and not
near the extremes. Using the linear regression formula calculated per individual CpG in a reference set, we computed the
age-dependent predicted methylation, f¢,;(age), which by the nature of the data normally lies between 0 or 1. If this
predicted value was outside of the range (0, 1), it was instead replaced by 0.01 or 0.99 depending on the proximity to either
value. This ensured that predicted bulk methylation values were bounded in the unit interval, corresponding to a biologically
meaningful range between fully unmethylated and fully methylated.

Next, we computed the probability of observing a particular methylation state at every age in the given range based
on the reference linear model estimate. For this, we calculated the absolute value of the distance between the observed
methylation fraction in the shallow sample and the estimated methylation value from the reference linear model. Next, we
subtracted this absolute distance from 1; hence, the closer the observed value is from that predicted by the linear model, the
higher the probability of observing this state at a particular age. This provided an age-dependent probability for every
common CpG retained in the algorithm.

Lastly, assuming that all CpGs in a particular sample are independent from each other, the product of each of these
CpG-specific probabilities will be the overall probability of the observed methylation pattern: P(age) = [[;-, Pri(age),
where k represents individual CpGs. We then found the maximum of that product among different ages (i.e., to find the
most probable age for observing that particular methylation pattern). To do this, we compute the sum across CpGs of the
natural logarithm of the individual age-dependent probabilities, preventing underflow errors when many CpGs are
considered. This gave us Y}, In(Pr(age)) for each age step. By harnessing the relationship of methylation level and age
at many CpGs, these logarithmic sums provide a single likelihood metric for every age step within the defined bounds. We
picked the age of maximum likelihood as our predictor of epigenetic age for a particular shallow TIME-Seq sample.

Comparison between age prediction methods in the same mouse or sample

19


https://doi.org/10.1101/2021.10.25.465725
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.25.465725; this version posted November 10, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

While age predictions were highly accurate, we still observed slight bias in prediction for the oldest and youngest
samples, which could influence the correlation between predictions made in the same mouse or sample. To control for this
bias and compare predictions, we regressed predicted ages against chronological age for the entire set of data (e.g., the
testing set from clock training, or the entire validation set) using the /m() function in R and calculated the residual for each
prediction. For brevity, we refer to these values as the age-adjusted prediction residuals in our Results section.

Animal assessments

All mouse experiments were approved by the Institutional Animal Care and Use Committee of the Harvard Medical
Area Standing Committee on Animals. Male and female C57BL/6Nia mice were obtained from the National Institute on
Aging (NIA, Bethesda, MD), and group housed (3-4 mice per cage) at Harvard Medical School in ventilated microisolator
cages with a 12:12 hour light cycle, at 71°F with 45-50% humidity. Mouse blood samples (150-300 ul) were collected in
anesthetized mice (3% isoflurane) from the submandibular vein into tubes containing approximately 10% by-volume of
0.5M EDTA. Blood was spun at 1500 RCF for 10 minutes and plasma removed. Blood cell pellets were stored frozen at -
80°C. For validation experiments, a sub-sample of whole blood was stored on ice and processed within 4 hours with the
Hemavet 950 (Drew Scientific) to give 20 whole blood count parameters. Frailty was assessed using the mouse clinical
frailty index’!, a non-invasive assessment of 31 health deficits in mice. For each item, mice were scored 0 for no deficit, 0.5
for a mild deficit, and 1 for a severe deficit. Scores were added and divided by 31 to give a frailty index between 0 and 1,
where a higher score indicates a greater degree of frailty. For more details see http://frailtyclocks.sinclairlab.org. 200 mouse
(C57BL/6N) ocular-vein blood samples were collected by researchers at The Jackson Laboratory’s Nathan Shock Center
(Bar Harbor, Maine) according to methods described previously™. These samples were used for TIME-Seq clock training
and testing, as well as shallow-sequencing analysis.

Benchmarking TIME-seq against BeadChip and RRBS

For benchmarking experiments, 48 mouse blood DNA samples (independent from the validation set) were prepared
with TIME-Seq using mouse clock enrichment baits. 500 ng of DNA from the same 48 samples was sent to FOXO
Technologies for analysis on the Infinium Mouse Methylation BeadChip (Illumina, 20041559). 18 of these DNA samples
with at least 100 ng of DNA remaining were prepared and analyzed with RRBS using published library preparation
methods'?. RRBS samples were pooled and sequenced on an Illumina NovaSeq to a median depth of 38 million read pairs
and mapped with Bismark (version v0.22.3) and methylation data was extracted by bismark_methylation_extractor with
option --no_overlap.

For analysis of CpG methylation levels, loci common to each sample from each method (and >20 coverage for
sequencing approaches) were identified, and the methylation levels from each technology were plotted pairwise as shown
in Figure 4. For clock analysis, the TIME-Seq mouse blood and multi-tissue clocks were applied to TIME-Seq data as
described above, whereas the RRBS-based mouse blood clock was applied in a similar fashion using the reported loci,
weights, and formula'?, replacing any missing values with the mean methylation from all other samples. The BeadChip
clock was applied to BeadChip data as reported*®.

For comparison of costs at various scales, consumable costs were estimated (without consideration of labor) as
follows: (1) TIME-Seq costs were estimated as the library preparation cost per sample ($0.65, detailed in Supplementary
Table 1) and the cost of sequencing reagents sufficient to sequence each sample to at least 750,000 reads, which is 50%
more than the minimum depth we report for accurate age estimation. (2) For BeadChip, costs were estimated as $25 per
sample for DNA preparation below 1000 samples and $20, $17.5, and $15 per sample for volumes of 4992, 9984, and
12,000 samples. The cost of consumables for BeadChip assay were taken from the list price for Infinium Mouse Methylation
BeadChip on Illumina’s website (Illumina, catalog numbers 20041558, 2004159, 20041560). (3) For RRBS, sample
preparation costs were estimated as $50 per sample below 1000 samples and $30 per sample for volumes of 1000 and 5000
samples, and $20 per sample for volumes of 10,000 and 12,500 samples. Costs of sequencing reagents were estimated to
provide median reads per sample of 45 million.
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Mouse intervention studies

For the late-life dietary interventions, male and female C57BL/6Nia mice were obtained from the NIA at 19 months
of age and housed at the Harvard T.H. Chan School of Public Health (Boston, MA). Mice were group housed 3-4 per cage
for the duration of the study in static isolator cages at 71°F with 45-50% humidity, on a 12:12 hour light-dark (07:00am—
07:00 pm) cycle. After arrival, mice were fed a control diet (Research Diets, New Brunswick, NJ) until the start of the study.
Mice were then randomized to one of three groups: ad libitum diet, methionine restriction (0.1% methionine) or 40% CR.
CR was started in a stepwise fashion decreasing food intake by 10% per week until they reached 40% CR at week 4. CR
intake was based upon ad libitum intake. Mice were monitored weekly for bodyweights and food intakes. Fasting blood
samples (4-6h) were taken at sacrifice (after 6 months on the diet) by cardiac puncture. Approximately 200 pl of whole
blood in 1 pl of 0.5 mM EDTA was collected. The tube was spun, and the plasma removed. The remaining blood pellet was
frozen at -80°C until further analysis. Custom mouse diets were formulated at Research Diets (New Brunswick, NJ; catalog
#s A17101101 and A19022001).

For our liver calorie restriction studies, male C57BL/6J wild-type mice bred in-house at Harvard Medical School
were singly housed with ad libitum (AL) access to water at the New Research Building. Male C57BL/6J mice singly housed
in the animal facility of the New Research building at Harvard Medical School. These mice were first fed ad libitum (AL)
access to water before being switched to house chow (LabDiet® 5053), either AL or 30% CR starting at 3-months old. Food
intake was gradually reduced 10% per week for CR mice and body weight as well as food intake were monitored weekly.
For both treatment groups of mice, food was placed on the floor of the cage each day at 8:00 a.m. = 1 hour. Livers were
collected after approximately 10-months of treatment.

For our studies of high-fat diet in liver, mice were housed 3-4 animals per cage with access to water in the New
Research Building animal facility at Harvard Medical School. Approximately 3-4 months before the experiment, mice were
switched to house chow (LabDiet® 5053). Next, a subset of mice were switched to high-fat AIN-93G diet (HFD) (modified
by adding hydrogenated coconut oil to provide 60% of calories from fat, HC) starting at approximately 5 months of age for
the remainder of their lives. Livers were collected from mice after 10-months of treatment.

To assess the effect of partial reprogramming in mouse liver, C57BL/6 wild-type mice were ordered from Charles
River Laboratories. After being acclimated in the housing facility for at least 1 week, the mice were injected with
AAV.PHP.eB viruses via the retro-orbital route to express either GFP or OSK in the liver’’. A Tet-Off system was used to
control the expression of GFP and OSK. Specifically, AAV encoding TRE-OSK was co-injected with AAV encoding CMV-
tTA, and AAV encoding TRE-GFP was co-injected with AAV encoding CMV-tTA to express either OSK or GFP. One
month after the AAV injection, the mice were euthanized, and the liver tissues were collected for genomic DNA extraction
for the TIME-Seq experiment.

Liver DNA from intervention samples was prepared as detailed above using the Chemagic 360 system for DNA
extraction and our partially automated DNA normalization protocol. Normalized DNA was prepared with TIME-Seq using
mouse clock enrichment baits.

Cell culture time-course and DNA extraction

Five independent cell lines of low-passage mouse embryonic fibroblasts (MEFs) derived from C57BL/6 mice were
thawed and cultured in low oxygen conditions (3% v/v) in DMEM with 17% FBS (Seradigm) and 1%
penicillin/streptomycin plus 3.8 puL of B-mercaptoethanol per bottle of DMEM (500 mL). Likewise, five cell lines of low-
passage adult ear fibroblasts were cultured with DMEM plus 10% FBS, 1% penicillin/streptomycin, and 3.6 pL of p-
mercaptoethanol per bottle of DMEM in the same low-oxygen conditions. After thawed cell lines became confluent in a
150 mm cell culture dish, cells were split into a 12-well cell culture dish and an aliquot of > 1 million cells were taken for
the initial timepoint by first washing cells with cold PBS and then freezing at -80°C. Two more aliquots of each cell line
were collected over the following 28 days in the same fashion, expanding each culture to 100 mm dish and collecting cell
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lines simultaneously. DNA was extracted from cell pellets on the Chemagic 360 system (Perkin Elmer) with the 250 pL
blood kit (Perkin Elmer, CMG-746) and samples were prepared with TIME-Seq.

Human whole-blood DNA samples

The database of the Mass General Brigham Biobank, a biorepository of consented patient samples at Mass General
Brigham (parent organization of Massachusetts General Hospital and Brigham and Women’s Hospital), was queried for
subjects from the “Healthy Populations” cohorts for whom DNA samples were available. From this pool of subjects, samples
were selected for clock development that were demographically representative of the U.S. population from ages 18-103
years old. DNA samples were obtained from the biobank and deidentified before distribution for TIME-Seq. Sample
handling, data analysis, and study design were approved by the Mass General Brigham Institutional Review Board (protocol
number 2021P003059). Deidentified DNA samples were split into an initial cohort for model training and testing and a
validation cohort. Cohorts were separately normalized to a starting concentration of 10 ng/uL, prepared with TIME-Seq,
and sequenced on an [llumina NovaSeq. Validation libraries were also shallow sequenced on a MiSeq.

Data availability
Raw FASTQ sequencing data will be deposited to NCBI Sequence Read Archive (SRA) and organized in a BioProject.
Code availability

Code for demultiplexing and read processing as well as analysis of clocks will be provided on GitHub at
https://github.com/patricktgriffin/TIME-Seq. scAge prediction code is provided on GitHub at https://github.com/alex-
trapp/scAge.
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Extended Data Figure 1. Biotinylated-RNA bait production and initial hybridization enrichment testing. a, Schematic
of steps involved in production of biotin-RNA baits from single-stranded oligo pools for target enrichment in TIME-Seq
libraries. The percent of reads overlapping target RRBS mouse rDNA clock CpGs (b) and an IGV browser screenshot of
mapped-read pileups (¢) using version 1 rDNA baits for enrichment of a TIME-Seq pool. Reads on-target (d) and mouse
RRBS blood clock (Petkovich et al., 2017) CpG coverage (e) using mouse-blood specific baits in a pilot experiment targeting
non-repetitive clock loci. Dotted line represents coverage cut-off of 10. Pools in both rDNA and blood clock pilot
enrichments were sequenced with approximately 1 million paired end (PE) reads each in pools of 16 samples. f, Adaptor
design schematic for comparison of TIME-Seq adaptors with longer barcoded adaptors. Comparison of on-target reads in
short TIME-Seq and long cytosine-depleted adaptor designs for both mouse blood clock (g) and (h) rDNA (version 1) baits
enrichments.
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Final Library Structure

CAAGCAGAAGACGGCATACGAGAT[ i7 ] TGGGTGGAGGGTGGDDDDD: I CTGTCTCTTATACACATCTG.
0.

' GTGTAGATCTCGGTGGTCGCCGTATCATT
DILLODILDOLIOLOIIOLYLOOLOIY [ LT ] I

OYOVLOLYOYOIDVIOYOIDDIVIVOLYY

lllumina Sequencing (MiSeq Configuration)

CAAGCAGAAGACGGCATACGAGAT[ i7 ] TGGGTGGAGGGTGGDDDDD. I C TGTCTCTTATACACATCTGACGCTGCCGACGA GTGTAGATCTCGGTGGTCGCCGTATCATT
4
< DYOYOYD LOLYOYOLOIDYIDOILODL
l Read 1 (145-153 cycles)
CAAGCAGAAGACGGCATACGAGAT[ i7 ] TGGGTGGAGGGTGGDDDDD. I C TGTCTCTTATACACATCTG: GTGTAGATCTCGG'

LLIDLOYIIVIVOLLODDLILYOYIDIIYIILOIL
Index Read 1 (8 cycles) '
CAAGCAGAAGACGGCATACGAGAT[ i7 ] TGGGTGGAGGGTGGDDDDD. I C TGTCTCTTATACACATCTGACGCTGCCGACGA GTGTAGATCTCGGTGGTCGCCGTATCATT
Optional) Index Read 2 (8 cycles
Read 2 (at least 5 cycles) ‘ (©p ) (8 cycles)
AAGCAGTGGTATCAACGCAGATCTGGGTGGAGGGTGG q —
SLLODLOLLOLOIIOIVIOILOIV[ LT ] HHHHH, I DLHIDVIDDILOIL O¥OYIOLYOYDIOYIOYDIDDOVLYDLYY

Extended Data Figure 2. TIME-Seq library and sequencing schematic. Schematic representation of final library
structure (top) and Illumina sequencing (bottom) steps required to sequence TIME-Seq libraries. Index read 1 and Read 2
primers are custom primers.
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Extended Data Figure 3. Small pilot-experiment sample metrics, correlation of rDNA CpG methylation, and age
predictions using a reported RRBS-based rDNA clock. a, TIME-Seq pilot experimental design using mouse blood DNA
from 4 age groups and preparing 2 replicates of each sample with IDNA baits (version 1) as well as RRBS libraries to be
sequenced as a fraction of a Illumina MiSeq sequencing run. b, Demultiplexed reads from TIME-Seq pools. ¢, Mean CpG
methylation from reads mapped to the mouse ribosomal DNA meta-locus. Unmethylated lambda phage DNA control is
represented as a diamond. d, Percent methylation from reads mapped to ribosomal DNA meta-locus in replicate 1 and
replicate 2 in CpGs with coverage at least 125. e, Replicate correlation from different coverage cutoffs in the rDNA. f,
Pileup tracks for samples from a TIME-Seq pool (replicate 1) as well as mapped reads from sample 24-3. Reads are colored
by mismatch: blue for T (unmethylated) and red for C (methylated). RRBS rDNA clock coordinates are illustrated on the
bottom by black rectangles. g, Percent of reads directly overlapping clock CpGs from TIME-Seq libraries (N=12; mean
from 2 replicates) and shallow-sequenced RRBS libraries (N=10). h, Wang and Lemos (2019) RRBS clock predictions
using TIME-Seq data enriched for clock loci. i, Coverage of each clock locus in the original RRBS rDNA clock. CpGs
shown in red have mean coverage less than 50.
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Extended Data Figure 4. Additional data related to mouse multi-tissue and tissue-specific clock training and testing.
a, Baits overlapping target loci used for mouse clock CpG enrichment. b, Comparison of correlation for blood CpGs and
muscle CpGs from the enriched CpGs in TIME-Seq data. ¢, Age predictions from the TIME-Seq Mouse Multi-tissue Clock
applied to the 157 mouse muscle samples. d, KEGG analysis of TIME-Seq Mouse Blood Clock loci. e-g, Transcription
factor enrichment analysis for genes associated with the blood (e), liver, and skin (g) clock CpGs.
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Extended Data Figure 5. Data related to sc4ge-based shallow-sequencing predictions in TIME-Seq samples. a, Mean
CpG methylation in shallow sequenced samples plotted against ages and colored by sex. b, scAge prediction statistics using
Petkovich et al., (2017) data as model CpGs. The red line indicates the percentile chosen to be represented. ¢, Predictions
in TIME-Seq samples (N=119) using the top 5% of intersecting CpGs from Petkovich et al. (2017) data as reference. Pearson
correlation is shown in the top left corner. d-e, Prediction statistics in mouse liver samples using deep-sequenced TIME-Seq
liver libraries (d) or RRBS liver data from Thompson et al., (2018) (e) as reference data. The red line indicates the percentile
chosen to be represented. f, Age predictions in TIME-Seq liver libraries using the top 5% of CpGs from RRBS liver data as
reference. Overall and sex-specific Pearson correlation coefficients are shown in the top left.
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Extended Data Figure 6. Additional Data from Validation and benchmarking of TIME-Seq. a, Predictions from
shallow TIME-Seq data using scAge with the top 20% of intersecting age-associated CpGs in RRBS data as reference
models. Lines connect the same mouse at different ages. b-c, TIME-Seq rDNA clock predictions with samples colored for
(b) validation library preparation (prep) and (c) cohort of the mouse. d, Frailty indexes for each of the assayed mice along
with Pearson correlation with age. e, Comparison of AAge and AMed**(FI) for mice in the validation cohort. f, Comparison
between TIME-Seq CpG methylation and RRBS methylation in the same sample and CpG.
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Extended Data Figure 7. Additional Data for TIME-Seq clocks applied to intervention mice and an in vitro time
course. a, Comparison TIME-Seq Multi-Tissue Clock predictions of calorie restricted mouse liver with ad libitum (AL). b,
Comparison TIME-Seq Multi-Tissue Clock predictions of high fat diet mouse liver with standard diet. ¢, Comparison of
TIME-Seq Liver Clock predictions in OSK-expressing, (+) OSK, and control, (-) OSK, mice. d, Predictions of cell culture
samples using the TIME-Seq Mouse Skin Clock.
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Subcomponents

Catalog #

Cost (USI

Reagent Size / Conc

Volume per reaction

Samples per reaction

Cost per
sample (USD)

Supplementary Table 1: Estimated cost of reagents for TIME-Seq library preparation. Reagents that are estimated to be

Unmethylated lambda phage DNA - Promega D1521 81 250pg (1pg/uL) 0.1pL Pool (48-64 samples) -
Purified Tn5 transposase (1.5mg/mL) Homemade 300 16mL (1.5mg/mL)
Barcoded TIME-Seq transposase TIME-Seq adaptor B (48-64) 5.38 / barcode|  300pL /barcode (100uM) 2.5pL $ 0.02
Methylated Adaptor A DT 0.785 (100pM) 1 sample
Tagmentation Tnb reverse Oligo 47 1.4mL (100pM)
2X Tagmentation Buffer See Recipes * - NA 12.5uL -
STOP Buffer See Recipes L - NA 7uL -
Clean and Concentrator-25 N Zymo D4034 75 50 preps NA Pool (48-64 samples) $ 0.03
" D5000 Reagents 5067-5589 84.87 105 samples 1 unit
Tapestation D500 D5000 Screen Tapes 2067-5588 198 105 samples T unit Pool (48-64 samples) $ 0.08
REBIKlency F’BQBTJZQ:(ZC’V”SV @) NED . NEB Mo0212L 196 0.25 (5000U/mL) 2 $ 003
R—— 5-megz_|r-s((:s'|':e(~;zi;:sc;‘pes) N03565 73 100pL (10mM) Pool (48-64 samples)
LA (] R R RS (A (L) GTTP (See Recipes) NEB N0446S 176 2500L each (100mM) oLl $ 0Es
dCTP (See Recipes)
Clean and Concentrator-5 Zymo D4013 75 50 preps NA Pool (48-64 samples)
Human Cot-1 DNA - Thermo 15279011 269 500uL (1ug/ul) 3.4uL 0.01
. . ) Adaptor A Blocking Primer 4.82 300pL (100pM -
Blocking Primer Mix ‘Adaptor B Blocking Primer 0T 538 3004L (100uM) 0.6uL
20xSSPE - Thermo 15591043 76.25 NA 25uL -
0.5M EDTA - H - NA 1uL -
' 50x Denhardt's See Recipes [ - NA 10pL Pool (4864 samples) -
1% SDS - F - NA 13pL -
SUPERase+In™ RNase Inhibitor - Thermo AM2696 164 125pL 1uL $ 0.03
e . Homemade .
Biotin-RNA Bait Pool - (Twist VT Template) Variable See methods 1L $ 0.01
Streptavidin Magnetic Beads - NEB S1420S 334 5mL (4mg/mL) 125pL $ 017
Biotin-RNADNA Bead Binding Buffer See RECI‘EeS Homemade - NA 600uL -
Rl Wash Buffer 1 See Recipes F - NA 500uL Pool (48-64 samples) -
Wash Buffer 2 See Recipes - NA 1500pL -
Elution Buffer (0.1N NaOH) = = NA 25uL =
Bisulfite EpiTect Fast Bisulfite Conversion Kit - Qiagen 59824 236 50 Preps NA Pool (48-64 samples) $ 0.10
Conversion
NEBNext® Q5U® Master Mix NEB M0597L 125 50 reactions 25uL 0.05
20uM P7 Index [i7] PCR Primer (HPLC) - DT 61 100pL (100uM) 1uL Pool (48-64 samples) -
o 20uM P5 Index [i5] PCR Primer (HPLC) = 56 100yL (100uM) 1L =
CleanNGS SPRIDNA & RNA SPRI Bead Bulldog Bio
d Clean- -
an lean-up Purification Kit CNGS005 125 5mL 90uL Pool (48-64 samples) $ 0.05
D1000 Reagents 5067-5589 85.15 105 samples 1 unit y
Tapestation D1000 D1000 Screen Tapes 2067-5562 198 105 samples Tunit REIEEEIE) S 0.06
Per sample 3 0.65
TOTAL Per pool (48 samples) s 31.33

used in quantities that cost less than $0.01 (USD) per sample were excluded from the total cost per sample calculation.
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Probes Target # unique targets Kb targeted IVT Promoter
Mouse ribosomal DNA v.1 baits Wang and Lemos rDNA blood clock 21 9.5* Sp6
Mouse blood-clock baits Petkovich et al., mouse blood clock 59 15.7 T7
Mouse ribosomal DNA v.2 baits Tiling mouse rDNA meta-locus 1 repetitive 13.8* Sp6

Thompson et al., multi-tissue mouse clock.
Mouse discovery baits Meer et al., multi-tissue mouse clock. 854 215 Sp6
Petkovich et al., mouse blood clock

11 previously described human clocks

Human discovery baits (listed in Liu et al.)

1289 324 Sp6

Human ribosomal DNA baits Tiling human rDNA meta-locus 1 repetitive 13.8* T7

Supplementary Table 2: Information on Biotinylated-RNA bait pools used for targeted enrichment of TIME-Seq libraries.

* = Kb of targeted equals the target area is multiplied by copy number. Mean ~1400 per haploid (C57BL/6 mice); mean
~400 per haploid (Human).
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Experiment # samples Sequencing kit Cost of kit e siz:encing sa:':f: r'j;D)
rDNA (v.1 baits) pilot (Extended Data Fig. 3) 24 MiSeq v3 150 cycle $  922.21 10% $ 3.84
TS-rDNA clock train / test (Fig. 1) 191 MiSeq v3 150 cycle $ 92221 100% $ 4.75
Mouse Blood Clock train / test (Fig. 2 ) 198 NextSeq Highv2.5 150 cycle | $ 2,866.75 100% $ 14.48
Tissue Clocks train / test set 1 (Fig. 2) 641 NovaSeq SP 200 cycle $ 2,745.00 64% $ 2.74
Tissue Clocks train / test set 2 (Fig. 2) 240 NovaSeq $1200 cycle $ 4,971.00 20% $ 4.14
shallow TIME-Seq + ScAge blood (Fig. 3 ') 121 MiSeq v2 Micro 300cycle | $  447.41 50% $ 1.85
shallow TIME-Seq + ScAge liver (Fig. 3) 104 MiSeq v2 Micro 300 cycle $ 44741 94% $ 4.04
Blood and MT clock validation set 1 +2 (Fig. 4) 81 NextSeq Highv2.5 150 cycle | $ 2,866.75 26% $ 9.20
rDNA clock validation set 1 (Fig. 4) 43 MiSeq v3 150 cycle $ 92221 34% $ 7.29
rDNA clock validation set 2 (Fig. 4) 53 MiSeq v2 Micro 300 cycle $ 44741 73% $ 6.16
TS-shallow + ScAge validation set 1 and 2 (Fig. 4) 81 MiSeq v2 Micro 300cycle | §  922.21 27% $ 3.07
Benchmarking experiment (Fig. 4) 48 NextSeq Highv2.5 150cycle | § 2,866.75 18% $ 10.45
Blood CR and MetR dietary intervention (Fig. 5) 57 NextSeq Highv2.5 150cycle | § 2,866.75 18% $ 9.05
Interventions in Liver (Fig. 5) 80 NextSeq Midv2.5 150cycle | $ 1,136.00 67% $ 9.51
Cell culture time course (Fig. 5) 60 NovaSeq S1200 cycle $ 4,971.00 8% $ 6.63
Human Clock Training and Testing (Fig. 6) 796 NovaSeq S1200 cycle $ 4,971.00 100% $ 6.24
Human Clock Validation (Fig. 6) 260 NovaSeq S1200 cycle $ 4,971.00 36% $ 6.88
Human scAge Validation (Fig. 6) 260 MiSeq v3 150 cycle $ 92221 50% $ 1.77

Total unique libraries 2772

Supplementary Table 3: Sample number, sequencing kit, and estimated cost of sequencing for each experiment.
Supplementary Table 4: Estimated costs for library preparation and clock data generation. (Attached separately)
Supplementary Table 5: Oligonucleotides used for TIME-Seq library preparation. (Attached separately)

Supplementary Table 6: Clock CpG positions, coefficients, and intercepts. (Attached separately)
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