

1 Four layer multi-omics reveals molecular 2 responses to aneuploidy in *Leishmania*

3 Cuypers B.^{1,2}, Meysman P.², Erb I.³, Bittermieux W.⁴, Valkenborg D.^{5,6}, Baggerman G.^{6,7}, Mertens I.^{6,7},

4 Shyam Sundar⁸, Basudha Khanal⁹, Notredame C.³, Dujardin, J-C.^{1,10#}, Domagalska M.A.^{1*#}, Laukens K.^{2*#}

5 1. Molecular Parasitology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine,
6 Antwerp, Belgium.

7 2. Adrem Data Lab, Department of Computer Science, University of Antwerp, Antwerp, Belgium.

8 3. Centre for Genomic Regulation (CRG), The Barcelona Centre of Science and Technology, Barcelona,
9 Spain.

10 4. Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla,
11 CA 92093, USA.

12 5. Center for Statistics - University of Hasselt, Hasselt, Belgium.

13 6. Center for Proteomics, University of Antwerp, Antwerp, Belgium.

14 7. VITO, Mol, Belgium.

15 8. Institute of Medical Sciences, Banaras Hindu University, Varanasi, India

16 9. BP Koirala Institute of Health Sciences, Dharan, Nepal

17 10. Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.

18 * These authors share senior authorship

19 # Corresponding authors

20

21

22 Abstract

23 Aneuploidy causes system-wide disruptions in the stoichiometric balances of transcripts, proteins, and
24 metabolites, often resulting in detrimental effects for the organism. The protozoan parasite
25 *Leishmania* has an unusually high tolerance for aneuploidy, but the molecular and functional
26 consequences for the pathogen remain poorly understood. Here, we addressed this question *in vitro*
27 and present the first integrated analysis of the genome, transcriptome, proteome, and metabolome
28 of highly aneuploid *Leishmania donovani* strains. Our analyses unambiguously establish that
29 aneuploidy in *Leishmania* proportionally impacts the average transcript- and protein abundance levels
30 of affected chromosomes, ultimately correlating with the degree of metabolic differences between
31 strains. This proportionality was present in both proliferative and non-proliferative *in vitro*
32 promastigotes. However, protein complex subunits and non-cytoplasmic proteins, showed dosage
33 compensation, responding less or even not at all to aneuploidy-induced dosage changes. In contrast
34 to other Eukaryotes, we did not observe the widespread regulation at the transcript level that typically
35 modulates some of the negative effects of aneuploidy. Further, the majority of differentially expressed
36 proteins between aneuploid strains were encoded by non-aneuploid chromosomes and were not
37 driven by a significant underlying transcript change, suggesting that aneuploidy is accompanied by
38 extensive post-transcriptional protein-level modulation. This makes *Leishmania* a unique Eukaryotic
39 model for elucidating post-transcriptional protein-abundance modulation in the context of aneuploidy.

40 Introduction

41 Aneuploidy is the presence of an abnormal number of chromosomes in a cell. All genes encoded by
42 aneuploid chromosomes undergo a shift in their copy number or “gene dosage”. This large number of
43 unbalanced dosage changes typically leads to broad-scale disruptions in the stoichiometric balances of
44 transcripts, proteins, and metabolites, making aneuploidy most widely known for its detrimental
45 effects. Indeed, aneuploidy can cause oxidative stress, energetic stress, misfolded protein stress
46 (proteotoxicity), and metabolic stress at the cellular level ^{1,2}. In multicellular organisms, where cells are
47 closely fine-tuned to work together, this often leads to growth delays or lethality ¹.

48 Contrastingly, aneuploidy can also result in fitness gains. In fungi, specific karyotypes confer resistance
49 against drugs, toxicants, or increase survival under nutrient limiting conditions ³⁻⁶. Likewise, in cancer
50 cells, aneuploidy can be tumor growth-promoting ⁷. By altering the copy number of many genes at
51 once, aneuploidy enables cells to explore a wide fitness landscape ⁸. Particularly when facing very novel
52 or competitive conditions, aneuploidy might allow the rapid selection of a beneficial phenotype from
53 a pool of many divergent phenotypes ⁹. Fully understanding this complex trade-off between
54 aneuploidy fitness gains and losses requires a systems biological comprehension of its molecular
55 impact.

56 In this context, a new and unique Eukaryote model is emerging, *Leishmania*. This protozoan parasite
57 (Euglenozoa, Kinetoplastida) that is transmitted by sand flies and infects humans and various
58 vertebrate animals shows a remarkably high tolerance for aneuploidy. A genomic analysis of 204 *in*
59 *vitro* cultured *Leishmania donovani* strains uncovered up to 22 aneuploid chromosomes (out of 36)
60 within a single strain ¹⁰, while *in vivo*, aneuploidy is less pronounced ¹¹. All 36 chromosomes have the
61 capacity to become aneuploid and lead to viable parasites ¹². Strikingly, clonal populations of the
62 parasite do not have uniform karyotypes but display a mosaic of them¹³. Single-cell sequencing of two
63 clonal promastigote populations of *L. donovani* identified respectively 208 different karyotypes in 1516
64 sequenced cells (that were generated in approximately 126 generations) and 117 karyotypes in 2378
65 cells (56 generations). This high degree of genomic instability and mosaicism could explain the
66 parasite’s ability to rapidly select more advantageous karyotypes upon encountering novel *in vivo* or
67 *in vitro* environments ¹¹.

68 *Leishmania* also features an unusual gene expression system that is markedly different from most
69 other Eukaryotes. Transcription of protein-coding genes cannot be controlled individually as these lack

70 separate RNA polymerase II promoters. Instead, they are transcribed constitutively in long
71 polycistronic units that span 10's to 100's of functionally unrelated genes ¹⁴. The abundance of
72 individual mRNAs and proteins is still regulated, but essentially post-transcriptionally ^{11,15}. Thus, the
73 most straightforward evolutionary path towards altered gene expression might be altered gene
74 dosage, which could explain the high incidence of aneuploidy in this organism ¹¹. While aneuploidy in
75 *Leishmania* is known to directly affect the transcription of encoded transcripts, its molecular impact
76 further downstream remains poorly understood ^{11,16}.

77 Here we present the first study that generated and integrated genome, transcriptome, proteome, and
78 metabolome data of highly aneuploid *L. donovani* strains, *in vitro*. This multi-omics analysis
79 unambiguously demonstrates that aneuploidy in *Leishmania* globally and drastically impacts the
80 transcriptome and proteome of affected chromosomes, ultimately correlating with the degree of
81 metabolic differences between strains. This impact is not restricted to a single life stage as we observed
82 it *in vitro* in both the parasite's proliferative and non-proliferative/infectious promastigote life stages.
83 Interestingly, not all proteins responded equally to dosage changes; through dosage compensation,
84 protein complex subunits and non-cytoplasmic proteins responded less or even not at all to
85 aneuploidy. In parallel, aneuploid *Leishmania* strains here studied also feature a surprisingly high
86 number of regulated proteins from non-aneuploid chromosomes, which are likely post-
87 transcriptionally modulated. Through this integrated 4-'omic approach, we provide a systems-wide
88 view of the molecular changes associated with aneuploidy in *Leishmania*.

89 Methods

90 Parasites

91 The experiments in this study were performed on six cloned strains of *Leishmania donovani*: BPK275/0
92 cl18 (BPK275), BPK173/0 cl3 (BPK173), BPK282 cl4 (BPK282), BPK288/0 cl7 (BPK288), BPK178/0 cl3
93 (BPK178), BHU575/0 cl2 (BHU575) (**Supplementary Table S1.A**). A strain is a parasite population
94 derived by serial passage *in vitro* from a primary isolate (from patient) with some degree of
95 characterization, in our case bulk genome sequencing (definition modified from¹⁷). These strains were
96 cloned to ensure genomic homogeneity. Parasites were cultured in HOMEM (Gibco) supplemented
97 with 20% heat-inactivated fetal bovine serum (Biochrom), three days for replicative forms (LOG
98 growth phase, 4-6 replicates) and six days for non-replicative forms (STAT, 4 replicates). Parasites from
99 all replicates were washed twice by centrifugation at 18,000 x g at 0 °C, resuspension in ice-cold PBS
100 buffer (PBS; pH 7.4 – Invitrogen), and pelleted at 18,000 x g at 0 °C. DNA, RNA, protein, and metabolite
101 extractions were carried out in parallel (see further).

102 DNA/RNA extraction, library preparation, and sequencing

103 DNA and RNA were extracted from the parasite pellets with the AllPrep DNA/RNA Mini Kit (Qiagen).
104 The RNA integrity was then verified with the RNA 6000 Nano Kit using a Bioanalyzer 2100 (Agilent).
105 DNA was quantified with the Qubit dsDNA BR assay (Thermo Fisher Scientific) and RNA with the Qubit
106 RNA HS Assay.

107 Library preparation and sequencing of the DNA samples were performed at the Beijing Genomics
108 Institute (BGI). Libraries were prepared with the TruSeq Nano DNA HT sample prep kit (Illumina) and 2
109 x 151 bp sequenced on the Illumina HiSeq 4000 platform. RNA sequencing libraries were prepared
110 using the Spliced leader sequencing (SL-Seq) method as described in Cuypers et al. (2017)¹⁵. This
111 protocol makes use of the presence of the affixed 39 nucleotide sequence spliced-leader (SL) that is
112 present at the 5' end of all functional *Leishmania* mRNAs. RNAs containing a SL are selectively amplified
113 with the protocol, and adapters required for Illumina sequencing are ligated. The SL-Seq libraries were
114 1 X 50 bp sequenced with the HiSeq 1500 platform of the Center of Medical Genetics Antwerp
115 (Belgium).

116 Genome and Transcriptome data analysis

117 The quality of the raw sequencing data was verified with FASTQC v0.11.4¹⁸. Reads were quality
118 trimmed using Trimmomatic v035¹⁹ with the settings ‘LEADING:20 TRAILING:20
5

119 ILLUMINACLIP:adapter.fa:2:40:15 SLIDINGWINDOW:4:20 MINLEN:36'. Reads were subsequently
120 aligned to the *L. donovani* LdBPKv2²⁰ reference genome using BWA Mem version 0.7.15²¹ with default
121 parameters. The resulting bam files were sorted and indexed with samtools²². Mapping reports were
122 generated using samtools flagstat.

123 Somy estimations and gene copy numbers were calculated as described in Downing (2011)²³. Briefly,
124 the somy value of a chromosome (S) was calculated by dividing its median sequencing depth (i.e. the
125 number of times a nucleotide is read during sequencing, d_{ch}) by the median d_{ch} of all 36 chromosomes
126 (d_{mch}) and multiplying this value by two (for a predominantly diploid organism). Gene copy number per
127 haploid genome (d) was defined as a raw depth for that gene (d_r), divided by the median depth of its
128 chromosome (d_{ch}): so that $d = d_r/d_{ch}$. Somy values in our bulk-sequencing analyses are often not
129 discrete due to mosaic aneuploidy (i.e. presence of different karyotypes among individual cells present
130 in 1 strain) in *Leishmania*. Gene copy number estimations per cell (full depth, gene dosage) were then
131 calculated by multiplying d with S. SNPs were previously characterized in¹⁰. RNA-Seq gene read count
132 tables were generated with the HTSeq tool version 0.6.1²⁴. Count data were normalized for library size
133 by dividing each transcript count by the geometric mean of all counts for that library²⁵.

134 **Proteomics**

135 *Sample preparation*

136 Cell pellets were efficiently lysed using 200 μ l RIPA buffer and 1x HALT protease inhibitor (Thermo
137 Scientific), combined with a 30 sec sonication (Branson Sonifier SLPe ultrasonic homogenizer,
138 Labquip, Ontario, Canada) with an amplitude of 50% on ice. After centrifugation of the samples for
139 15 min at 10,000 g at 4 °C, the cell pellet was discarded. Next, the protein concentration was
140 determined using the Pierce BCA protein Assay kit in combination with a NanoDrop 2000
141 photospectrometer (Thermo Scientific).

142 For each sample, 25 μ g of proteins were reduced using 2 μ l of 200 mM tris(2-carboxyethyl) phosphine,
143 in a volume of 20 μ l 200 mM triethylammonium bicarbonate (TEAB), and incubated for 1 h at 55°C.
144 After alkylation of the proteins with 2 μ L of 375 mM iodoacetamide for 30 min protected from light, 6
145 volumes of ice-cold acetone were added, and the samples were incubated overnight at -20°C. The next
146 day, samples were centrifuged for 10 min at 10,000 g at 4°C, the acetone was removed, and pellets
147 were resolved in 20 μ l of 200 mM TEAB. Proteins were then digested with trypsin (Promega) overnight
148 at 37°C with an enzyme trypsin ratio of 1:50. Before LC-MS/MS analysis, the samples were desalted
149 with Pierce C18 spin columns according to the manufacturer's instructions (Thermo Scientific).

150 *Nano reverse-phase liquid chromatography and mass spectrometry*

151 Each of the digested samples was separated by nano reverse phase C18 (RP-C18) chromatography on
152 an Easy-nLC 1000 system (Thermo Scientific, San Jose, CA) using an Acclaim C18 PepMap®100 column
153 (75 µm x 2 cm, 3 µm particle size) connected to an Acclaim PepMap™ RSLC C18 analytical column (50
154 µm x 15 cm, 2 µm particle size) (Thermo Scientific, San Jose, CA). Of each sample, a total of 1µg of
155 peptides were loaded on the column. Before loading, digests were dissolved in mobile phase A,
156 containing 2% acetonitrile and 0.1% formic acid, at a concentration of 1µg/10µL and spiked with 20
157 fmol Glu-1-fibrinopeptide B (Glu-fib, Protea biosciences, Morgantown, WV). A linear gradient of mobile
158 phase B (0.1% formic acid in 100% acetonitrile) from 0 to 45% in 90 min, followed by a steep increase
159 to 100% mobile phase B in 10 min, was used at a flow rate of 300 nL/min. Liquid Chromatography was
160 followed by MS (LC-MS/MS) and was performed on a Q-Exactive Plus mass spectrometer equipped
161 with a nanospray ion source (Thermo Fisher, Waltham, MA, USA). The high-resolution mass
162 spectrometer was set up in an MS/MS mode where a full scan spectrum (350 – 1850 m/z, resolution
163 70,000) was followed by a high energy collision activated dissociation (HCD) tandem mass spectra (100
164 – 2000 m/z, resolution 17,500). Peptide ions were selected for further interrogation by tandem MS as
165 the twenty most intense peaks of a full scan mass spectrum. The normalized collision energy used was
166 set at 28%. A dynamic exclusion list of 20 sec for the data-dependent acquisition was applied.

167 *Proteomic Data Analysis*

168 Thermo raw files were converted to mzML files using MSConvert v3.0. Label-free protein quantification
169 (LFQ) was carried out with MaxQuant version 1.6.0.16²⁶ using the following settings (other settings
170 were kept default): Oxidation (M) and acetyl (Protein N-term) were indicated as variable modifications,
171 carbamidomethyl (C) was indicated as a fixed modification, digestion with trypsin with maximum two
172 missed cleavages, match between runs = yes, dependent peptides = yes. The search database was the
173 LdBPV2 proteome previously published by our group¹¹, and reversed proteins were used as decoys.

174 **Metabolomics**

175 *Sample preparation*

176 Sample pellets were extracted using a 1:3:1 (v:v:v) chloroform/methanol/water extraction, subjected
177 to liquid chromatography using a 2.1 mm ZIC-HILIC column (Sequant), and analyzed using the Orbitrap
178 Exactive (Thermo Fisher Scientific) platform at the Glasgow Polyomics Center (University of Glasgow,
179 Glasgow, Scotland) exactly as described elsewhere^{27,28}. Both negative and positive ion modes were

180 run in parallel with rapid polarity switching. Samples were analyzed in randomized order and the same
181 analytical batch. Additionally, to aid accurate metabolite identification, verify LC-MS stability, and
182 identify contaminants, the following control samples were included as well: (1) solvents blanks, (2)
183 serial dilutions of a pooled sample (Undiluted, 1/2, 1/4, 1/8, and 1/16), (3) Authentic standard mixes
184 containing in total 217 metabolites (50–400 Da) and representing a wide array of metabolic classes
185 and pathways, (4) An amino acid standard mix (Sigma Product No. A9906).

186 *Metabolomic data analysis*

187 Data preprocessing was carried out with the XCMS 1.42.0 ²⁹ and mzMatch 1.0.1 ³⁰ packages in R,
188 exactly as described elsewhere ³¹. Briefly, raw spectra (mzXML format) were first subjected to
189 retention time alignment with ObiWarp ³², after which peak detection was carried out with the
190 centWave algorithm ³³. Peaks were then filtered: 1) Corresponding peaks from the four biological
191 replicates were allowed a maximum reproducibility standard deviation (RSD) of 0.5, 2) Peak shape
192 (CoDA-DW > 0.8), 3) Detection in at least 3 out of 4 replicates of a single strain and 4) Minimal peak
193 intensity was set to 3000. The peaks were putatively identified using sequentially the LeishCyc
194 database ³⁴, LIPID MAPS ³⁵, KEGG ³⁶, the peptide database included in mzMatch, and the Human
195 Metabolome Database ³⁷. Finally, the filtered peaks were normalized for total ion count and subjected
196 to manual quality screening.

197 **Integrated multi -omic analysis**

198 Pairwise comparisons between aneuploid strains: For each comparison between two strains, we
199 calculated the Log₂ fold change (Log₂FC) for genes (gene dosage), transcripts, proteins and metabolites.
200 These Log₂FC values were obtained by taking the Log₂ ratio of the average abundance between two
201 strains. Associated *p*-values were obtained by performing a Student *t*-test for each comparison and
202 subsequently correcting it with the Benjamini-Hochberg algorithm to limit the False Discovery Rate
203 (FDR) to 5%. A Log2FC cutoff of 1 and adjusted *p*-value cutoff of 0.05 was used for all 'omic layers,
204 except for gene dosage, for which only copy number differences of at least 0.5/haploid genome were
205 considered as biologically significant ³⁸.

206 Average transcript and protein abundance levels per chromosome per strain (Fig 1 C): First, the median
207 was taken of the Log₂ normalized transcript counts (see respective section) and Log₂ LFQ protein
208 values, per chromosome per strain. This yielded an expression value for each chromosome in each
209 strain, for both transcript and protein expression. Then, for each chromosome, the median of the
210 expression values of all strains that were disomic (determined based on DNA sequencing data) for that

211 chromosome was selected as the ‘disomic reference value’ for that chromosome (i.e., the expression
212 value that corresponds to the median expression of a transcript/protein on a disomic chromosome).
213 The remaining per-strain per-chromosome expression were then divided by this disomic reference
214 value, multiplied by 2, and plotted in Figure 1C. The code for these normalizations and analyses is
215 available at (https://github.com/CuypersBart/Leishmania_Multiomics).

216 All plots were generated using the ggplot v 2_2.1.0 package ³⁹, except the Circos plots which were
217 created with Circos v0.69 ⁴⁰. Gene ontology enrichments were calculated with the Fisher Exact test
218 using Python 3.8.5 and the matplotlib v3.3.4 ⁴¹ and SciPy v1.6.1 ⁴² libraries. GO annotations were
219 obtained from the gene ontology consortium (<http://www.geneontology.org/>).

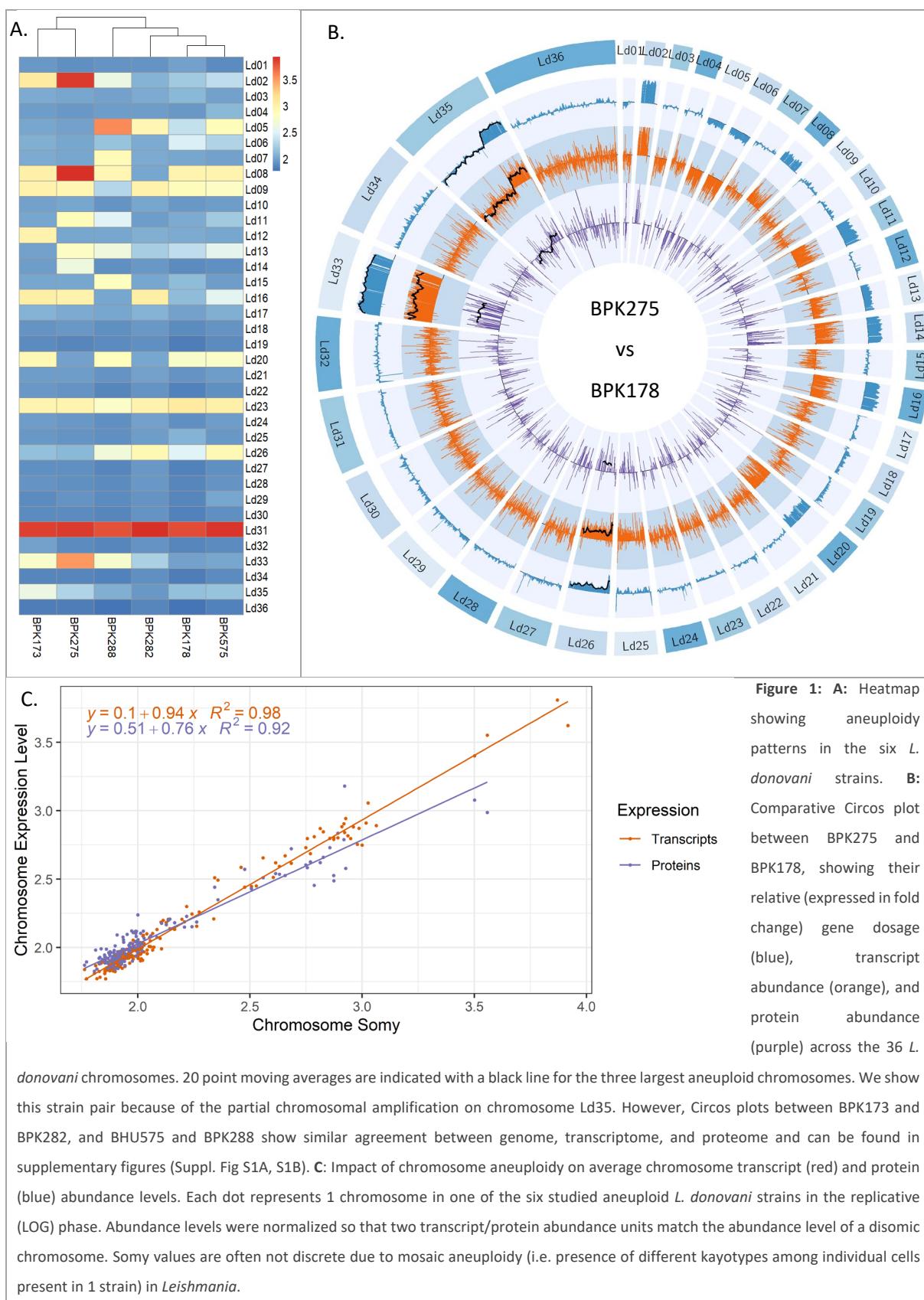
220 **Dosage compensation analysis**

221 Dosage compensation analysis (Figure 2): This analysis was carried out on the only three chromosomes
222 (Ld05, Ld08, and Ld33) that were at least once disomic (somy of 1.7-2.3), trisomic (somy of 2.7-3.3),
223 and tetrasomic (somy of 3.5 or more) in our six study strains and had more than 10 detected proteins.
224 The abundance values of transcripts (corrected for library size, see above) and proteins (LFQ) were
225 divided by their abundance in the strain that was the most disomic for their encoding chromosome,
226 according to the genome sequencing data. These expression values were then multiplied by 2 so that
227 the normalized abundance at disomy = 2. Strains were always normalized by another strain than
228 themselves to avoid underestimation of the standard deviation. Therefore, we do not have disomic
229 distributions for Ld08 since Ld08 was exclusively disomic in BPK282, and thus already was used as
230 reference strain.

231 Functional dosage compensation analysis: For this analysis, we defined a protein’s compensation level
232 as its Log₂ transcript fold change (i.e., its transcript level on the aneuploid chromosome divided by its
233 transcript level on disomic chromosome), minus its Log₂ protein fold change. We included only 85
234 transcripts and proteins for this analysis, which had very accurate protein measurements (SD between
235 biological replicates < 0.25 Log₂FC units). The following protein features were checked for their relation
236 with protein dosage compensation: degree (i.e., number of protein interactions as transferred from
237 STRING), length (as a proxy for transcript and protein molecular size), GRAVY (grand average of
238 hydropathy), solubility (soluble versus membrane protein) and subcellular location. We added
239 transcript abundance as a covariate to the model, as the compensatory effect can be expected to
240 become larger at higher differential transcript levels. The code these normalizations and analyses is
241 available at (https://github.com/CuypersBart/Leishmania_Multiomics).

242 Results

243 Aneuploidy globally impacts transcriptome and proteome of affected chromosomes


244 We examined the impact of aneuploidy in *L. donovani* on transcriptome and proteome by integrated
245 multi-omic analysis of 6 *L. donovani* strains from India and Nepal (**Suppl. Table S1.A**). These closely
246 related strains are almost identical at the sequence level but differ greatly in their aneuploidy ⁴³.
247 Specifically, the entire genome between any two strains of this set differs at most by 64 non-
248 synonymous SNPs and one indel in coding regions (**Suppl. Table. S1.B**). Thus, they are attractive model
249 strains for studying the impact of aneuploidy on transcriptome and proteome with minimal
250 interference of DNA sequence variation.

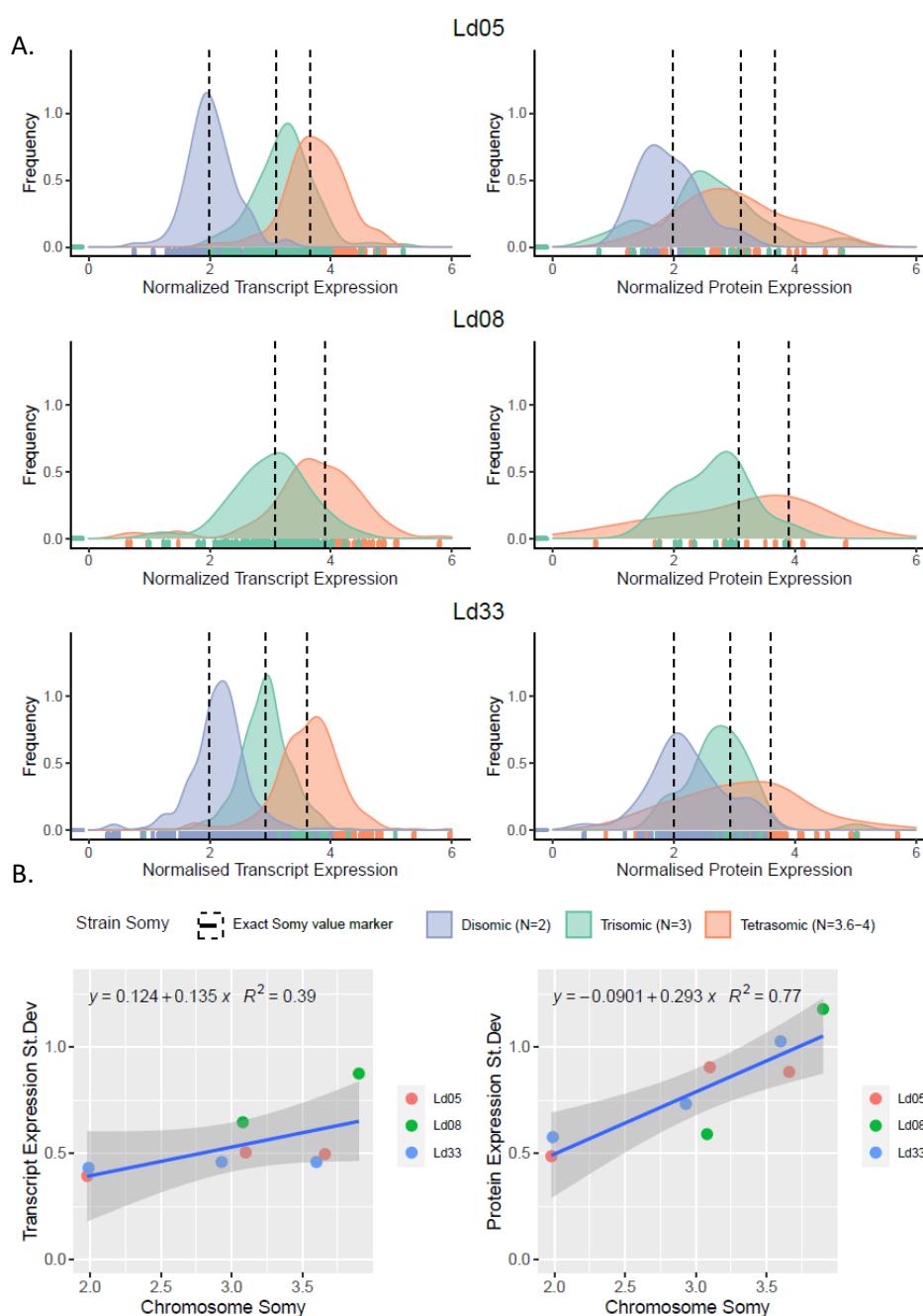
251 Genome, transcriptome, and proteome were obtained from the *in vitro* replicative promastigote stage
252 (LOG) of the parasite. All genomes reached an average sequencing coverage of at least 26.5 fold, and
253 97.9 % of the sequenced sites reached 10 X coverage or more. Transcript samples had on average 4.71
254 million reads and obtained an average mapping efficiency of 97%. Detailed mapping and coverage
255 statistics for both genome and transcriptome data are available in **Suppl. Table S1.C/S1.D**. Identified
256 indels and estimations of chromosomal somy (i.e., average chromosome copy number in the
257 population of cells) and dosage of each gene in **Suppl. Table S2**. Identified transcripts and their counts
258 are available in **Suppl. Table S3**. Proteome analysis identified in total 3145 proteins across all samples
259 (**Suppl. Table S4**).

260 Our 6 *L. donovani* strains showed high but varying degrees of aneuploidy (**Fig 1A**). The most aneuploid
261 strain was BPK288 with 12 aneuploid chromosomes, followed by BPK275 (10), BPK173 (10), BHU575
262 (10), BPK178 (9), and BPK282 (6). In *L. donovani*, chromosomes are numbered by increasing size. The
263 baseline somy of chromosomes in *L. donovani* is 2N, except for chromosome 31, which is always 4N or
264 more. Smaller chromosomes were more frequently aneuploid (Ld01, Ld05-Ld09, Ld11-Ld16), than
265 larger chromosomes (Ld20, Ld23, Ld26, Ld31, Ld33, Ld35). Chromosome Ld31 was confirmed
266 tetrasomic in all strains, and chromosome Ld23 always trisomic. Other aneuploid chromosomes had a
267 variable somy. In bulk genomic analysis, somy values represent the average of the somy of individual
268 cells present in a given population. Because of mosaicism, i.e. the presence of different karyotypes
269 among individual cells of the parasite population in culture, many somy values were not discrete. The
270 highest somy values (apart from Ld31) were observed for chromosomes Ld02 (somy = 3.9), Ld08 (3.9),
271 and Ld33 (3.5) in BPK275, and for chromosome Ld05 (3.6) in BPK288.

272 The transcript abundance of aneuploid chromosomes mirrored almost perfectly their underlying somy
273 (**Fig 1B, Suppl. Fig S1A, S1B**). Specifically, the average abundance of a transcript encoded by a
274 chromosome was proportional with a factor of 0.94 with the chromosomal somy (**Fig 1C**: 95% CI: 0.92
275 – 0.96 and $p < 2 \cdot 10^{-16}$, R^2 : 0.98). The average abundance of the proteins encoded by a chromosome
276 was also highly proportional to the aneuploidy of the chromosome ($p < 2 \cdot 10^{-16}$), albeit with a
277 decreased slope of 0.76 (95% CI: 0.70 – 0.77, R^2 : 0.92). Thus, aneuploidy results in a linear, but not
278 equivalent, increase in protein abundance. Circos plots clearly showed that transcript- and protein
279 abundance of aneuploid chromosomes was affected globally and not restricted to specific
280 chromosomal regions (**Fig 1B, Suppl. Fig S1A, S1B**).

281 Interestingly, chromosome 35 exhibited only a partial amplification in strain BPK275, the first part
282 being disomic (somy = 2.2) and the second part, starting from gene LdBPK_350040900, being trisomic
283 (somy = 3.1) (**Fig 1B**). This phenomenon of partial chromosomal amplification has previously been
284 observed for chromosome 23 as well ^{44,45}. The difference in both average transcript and protein
285 abundance between the first and the second chromosome part was significant (t-test p Trans = 4.0×10^{-82} ,
286 Prot = 7.0×10^{-7}), the second part having on average 1.43x more transcript abundance and 1.22x
287 more protein abundance. This demonstrates that also partial chromosomal amplifications affect
288 transcript and protein abundance proportionally in the amplified region.

289 **Aneuploidy does not impact all proteins equally: dosage compensation in *Leishmania***


290 Our observation that a somy increase does not lead to an equivalent increase in protein abundance,
291 but 0.76x the somy change, suggested either of two possible explanations. A first possibility is that all
292 proteins encoded by an aneuploid chromosome are modulated equally and exhibit only a partial
293 protein abundance increase. We further refer to this explanation as the 'dampening hypothesis'. Such
294 a general 'dampening' effect would suggest an underlying process related to intrinsic mechanisms or
295 limitations in the parasite's translation system. Alternatively, different proteins could respond
296 differently to increased gene dosage and transcript abundance, pointing to compensatory effects
297 linked to the identity, function, and physicochemical properties of those specific proteins or certain
298 functional protein groups. We refer to this explanation as the 'compensation hypothesis'.

299 To evaluate both hypotheses, the differential abundance patterns of proteins were compared to their
300 encoding chromosome differences from disomy to trisomy and tetrasomy. Following the 'dampening
301 hypothesis', the average of the protein abundance distribution should increase with increased somy,
302 but the distribution shape should remain unaltered. In our study, three chromosomes (Ld05, Ld08, and
303 Ld33) were at least once disomic, trisomic, and tetrasomic in one of our six study strains (**Fig 1B**),
304 allowing for such comparative analysis. Ld02 also matched these criteria but was excluded from the
305 analysis as only nine Ld02 proteins were detected. For reference, the same analysis was conducted for
306 transcripts.

307 The average abundance of transcripts increased with somy, and the shape of the abundance
308 distribution was found to be similar (**Fig 2A**). Specifically, the transcript abundance standard deviation
309 did not significantly change with somy (Regression p : 0.10, **Fig 2B**), and the distributions were
310 symmetric. This suggests that a somy change affects most transcripts equally, and dosage
311 compensation at the transcript level is minimal or absent. Chromosome Ld08 had a higher variance in
312 transcript abundance than the two other chromosomes. Our data is not conclusive as to whether this
313 is due to the shift in somy or due to an intrinsically higher transcript abundance variance for this
314 chromosome.

315 The average abundance of proteins also increased with somy, but the distribution shape was not
316 consistent. This was particularly evident when comparing the disomic versus the tetrasomic
317 chromosomes. We observed a clear left-tailing of the protein abundance distribution on chromosomes
318 Ld08 and Ld33 chromosomes towards the lower, more conservative fold change values. Thus, while a
319 subset of proteins follows the aneuploidy-induced gene dosage changes, another subset is maintained

320 at conservatively lower levels. This dosage compensation was also reflected in a general and significant
 321 increase in protein abundance variance for all three chromosomes (Regression p : 0.004).

322

323 **Figure 2: A**: Normalized transcript (left) and protein (right) abundance distributions of chromosomes Ld05, Ld08, and Ld33 in their disomic
 324 (excl. chr 8), trisomic and tetrasomic states, each time observed in one of our 6 study strains. Vertical dotted lines indicate the corresponding
 325 somy, derived from the genomic data. The small vertical lines at the base of the plot indicate individual datapoints for transcripts and
 326 proteins, from which the distributions were generated. The abundance values of transcripts and proteins were normalized so that the
 327 normalized abundance at disomy = 2. This normalization was carried out with a strain that was disomic for the chromosome under
 328 investigation. We do not have disomic distributions for Ld08 since Ld08 was exclusively disomic in BPK282, and thus already was used as

329 reference strain. **B.** Regression between the somy and transcript (left) or protein (right) standard deviation for chromosomes Ld05, Ld08, and
330 Ld33 in different somy states.

331 **Compensated proteins are primarily protein complex subunits or non-cytoplasmic**

332 We investigated if specific protein properties were associated with the dosage compensation observed
333 in our dataset. For this analysis, we defined a protein's compensation level as its Log_2 transcript fold
334 change (i.e., its transcript level on the aneuploid chromosome divided by its transcript level on disomic
335 chromosome), minus its Log_2 protein fold change. A particular challenge in this analysis was that
336 protein fold changes, and hence, the observed compensation levels, were generally very small and
337 close to measurement noise levels. For example, for a fully compensated protein from a trisomic
338 chromosome, the compensation level would only be 0.5 Log₂FC units ($\text{Log}_2\text{FC transcript} \approx 0.5$, Log_2FC
339 protein = 0). Therefore, we focused on a set of 85 transcripts and proteins, which had very accurate
340 protein measurements (SD between biological replicates < 0.25 Log₂FC units). These covered a broad
341 range of compensation levels ranging from 1.18 Log₂FC units, to values close to zero, or even some
342 proteins that had a slight overamplification compared to the transcript level (-0.40 Log₂FC units)
343 (**Suppl. Table S1.E**).

344 We noted that within the top 5 most compensated proteins in this high-accuracy set, 2 coded for
345 subunits of protein complexes: e.g., the cleavage and Polyadenylation Specificity Factor (CPSF) subunit
346 A and the dynein light chain had respectively 1.12 and 0.96 Log₂FC units lower protein than transcript
347 abundance. Accordingly, we hypothesized that protein complexes might be more likely to be dosage
348 compensated (≥ 0.30 Log₂FC units). To test this systematically, all 85 proteins were screened for their
349 involvement in heteromeric protein complexes (using annotation keywords 'subunit' and 'chain',
350 **Suppl. Table S1.E**). Strikingly, complex subunits accounted for 15.6 % (5 out of 32) of the compensated,
351 proteins which was significantly more than the 1.8% (1 out of 53) we observed for the uncompensated
352 proteins (Fischer exact $p = 0.0265$).

353 Next, we looked if there was a relation between dosage compensation and a set of biological and
354 physicochemical protein properties to identify more subtle patterns. Specifically, we checked 5 protein
355 properties for their relationship with protein dosage compensation using AN(C)OVA (**Suppl. Table**
356 **S1.E**). Transcript abundance was added as a covariate to the model, as dosage compensation was
357 larger at higher differential transcript levels (Adj $p = 2.4 \times 10^{-4}$). The variables 'membrane protein' (yes
358 or no) (FDR adjusted $p = 0.696$), the number of protein interactions (Adj. $p = 1$), protein length (a proxy
359 for transcript and protein size) (Adj. $p = 1$) and hydrophobicity (Adj. $p = 1$) had no significant relationship
360 with dosage compensation. In contrast, the subcellular location (Adj. $p = 0.032$) of a protein was
15

361 significantly linked to its degree of dosage compensation. To investigate this further, we investigated
362 the relation between each subcellular compartment and the compensation rate of its proteins (**Suppl.**
363 **Table S1.E**). Cytoplasmatic proteins (n = 39) were significantly less compensated compared to all other
364 proteins (Adj. p = 0.011). Thus, cytoplasmatic proteins follow aneuploidy-induced dosage changes
365 more closely than proteins from other cellular compartments. In contrast, proteins associated with the
366 Golgi apparatus (n = 2) had a significantly higher compensation than all other proteins (Adj. p = 0.0065).
367 However, this result needs to be interpreted with caution as the sample size was only 2 proteins. These
368 two proteins were a vesicle-associated membrane protein and a small GTP-binding protein Rab18,
369 both known to be secreted. Proteins from mitochondria (Adj. p = 0.32, n = 18), nucleus (Adj. p = 0.50,
370 n = 13), peroxisome (Adj. p = 0.81, n = 6) and ER (Adj. p = 0.74, n = 2) did not have significantly different
371 compensation rates compared to proteins from all other compartments.

372 **The impact of aneuploid chromosomes on the gene products of their euploid
373 counterparts**

374 In the previous sections, we reported how the aneuploidy of a chromosome affects the abundance of
375 its encoded transcripts and proteins. However, through perturbation of regulatory networks, these
376 changes might also affect transcripts and proteins encoded by genomic regions unaffected by
377 aneuploidy. These were previously defined as ‘trans-effects’ and have been observed on the
378 transcriptional level in diverse species, including humans, yeast, maize, and *Arabidopsis*⁴⁶⁻⁴⁹. Here we
379 investigated the extent of trans-effects in *Leishmania* by comparing and characterizing the fractions of
380 differential transcripts and proteins coming from aneuploid chromosomes, i.e. primary or cis-
381 transcripts and cis-proteins⁴⁹, versus those coming from euploid chromosomes, i.e. trans-transcripts
382 and trans-proteins.

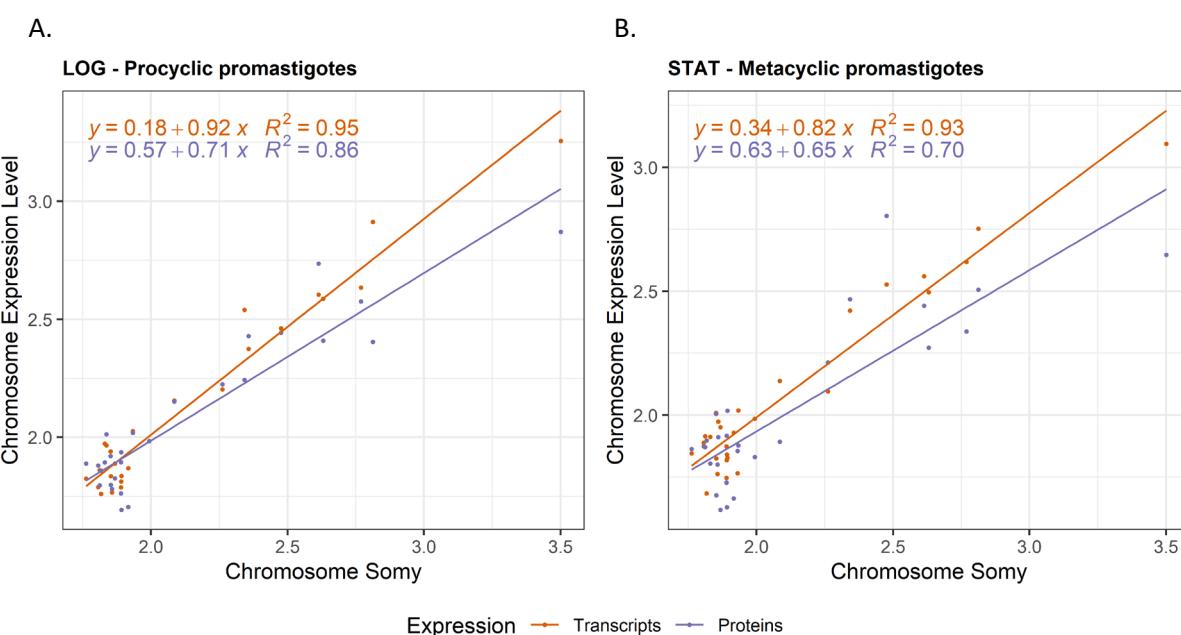
383 We carried out differential transcript and protein abundance analyses (FDR adjusted p < 0.05) between
384 all possible pairs of the six *L. donovani* study strains (**Table 1**). On average, 71.8 % of differentially
385 expressed transcripts were cis-transcripts, while cis-proteins constituted only 40.7 %. The remaining
386 28.2 % of differentially expressed transcripts and 59.3 % of proteins were thus encoded by euploid
387 chromosomes (trans-) and have therefore been regulated by another mechanism than gene dosage.
388 Interestingly, only 20.0 % of these trans-proteins had a corresponding transcript change ($|\log_{2}FC| >$
389 0.5), indicating the vast majority is regulated at protein level directly and not through modulation of
390 mRNA levels. Importantly, none of these trans-transcripts nor trans-proteins were associated with
391 local copy number variants: these were rare and excluded from this analysis. Also sequence variation

392 between strain pairs is unlikely to have resulted in the observed proportions of differential trans-
393 transcripts and trans-proteins. Only 11 trans-transcripts contained SNPs between our strains (6
394 missense, 1 synonymous and 4 upstream SNPs) and 2 proteins (1 upstream and 1 downstream SNP)
395 (Supplementary Tables 1G & 1H). Therefore, our hypothesis is that aneuploidy induces direct changes
396 to cis-transcripts and cis-proteins, which in their turn directly (e.g., protein-protein interaction) or
397 indirectly drive abundance changes in trans-transcripts and mostly, trans-proteins.

398 Next, we looked deeper into the functions of trans-transcripts and proteins. After pooling the trans-
399 transcripts and trans-proteins from all comparisons, we identified a set of 541 unique trans-transcripts
400 and 203 unique trans-proteins (duplicates and hypothetical proteins removed, **Suppl. Tables S1.G &**
401 **S1.H**). GO-overrepresentation analysis showed that no GO terms were significantly enriched in the
402 pooled list of trans-transcripts or trans-proteins from all comparisons (FDR adjusted p threshold 0.05).
403 However, it must be noted here that GO- and other annotations in *Leishmania* are often relatively
404 unspecific due to the parasite's distinct evolutionary position, and therefore low gene homology with
405 better studied model organisms. For example, only 48.7% of the *L. donovani* genes could be annotated
406 with at least one GO term, and even these are often of the highest hierarchies (low specificity)¹¹. As an
407 alternative enrichment analysis approach using the full genomic annotations directly, we first manually
408 checked if any frequent keywords could be observed occurring in annotations of the trans-proteins
409 and identified 10. We then compared if these keywords were significantly enriched versus all detected
410 proteins with a Fisher Exact test. 7 of these were indeed significantly enriched of which 3 related to
411 protein metabolism: peptidase activity (Adj. $p = 9.4 \times 10^{-5}$), heat-shock protein (Adj. $p = 2.3 \times 10^{-2}$) and
412 chaperon(in) (Adj. $p = 2.1 \times 10^{-2}$), 2 related to metabolism: glutamate (Adj. $p = 1.9 \times 10^{-2}$) and long-
413 chain-fatty-acid-CoA ligase (Adj. $p = 5.4 \times 10^{-3}$), and two others: mitochondrial (Adj. $p = 3.0 \times 10^{-2}$) and
414 hypothetical protein (FDR adjusted $p = 3.4 \times 10^{-7}$). At RNA-level none of the keywords were significant.
415 This demonstrates that differential trans-proteins associated with aneuploidy are not a random
416 occurrences, but related to specific functional classes and processes. Particularly relevant in this
417 context are the enrichment of heat-shock proteins and chaperones, as aneuploidy is known to burden
418 protein folding pathways⁵⁰.

419 **Table 1:** Total numbers (N) of differential (FDR adjusted $p < 0.05$) transcripts and proteins between all possible pairs of our 6 *L.donovani*
420 strains. Each time, it is indicated what proportion of these transcripts or proteins originate from chromosomes that have somy changes
421 (because of aneuploidy) in the strain pair (Cis) or chromosomes that have identical somies between the two strains (Trans). Five comparisons
422 are not shown because they contained less than 15 differential transcripts or proteins. These are shown in Supplementary table 1F.

STRAIN COMPARISON	DIFFERENTIAL TRANSCRIPTS			DIFFERENTIAL PROTEINS		
	Cis (%)	Trans (%)	N	Cis (%)	Trans (%)	N
275vs178	79.8	20.2	386	44.8	55.2	105
275vs173	86.6	13.4	134	40.7	59.3	91
275vs282	77.6	22.4	67	46.4	53.6	84
288vs282	60.9	39.1	23	39.3	60.7	61
275vs575	84.8	15.2	145	58.9	41.1	56
173vs288	86.3	13.8	80	55.6	44.4	27
173vs282	74.4	25.6	39	48.1	51.9	27
173vs178	55.0	45.0	40	26.3	73.7	19
575vs282	41.2	58.8	34	6.3	93.8	16
AVERAGE	71.8	28.2		40.7	59.3	


423

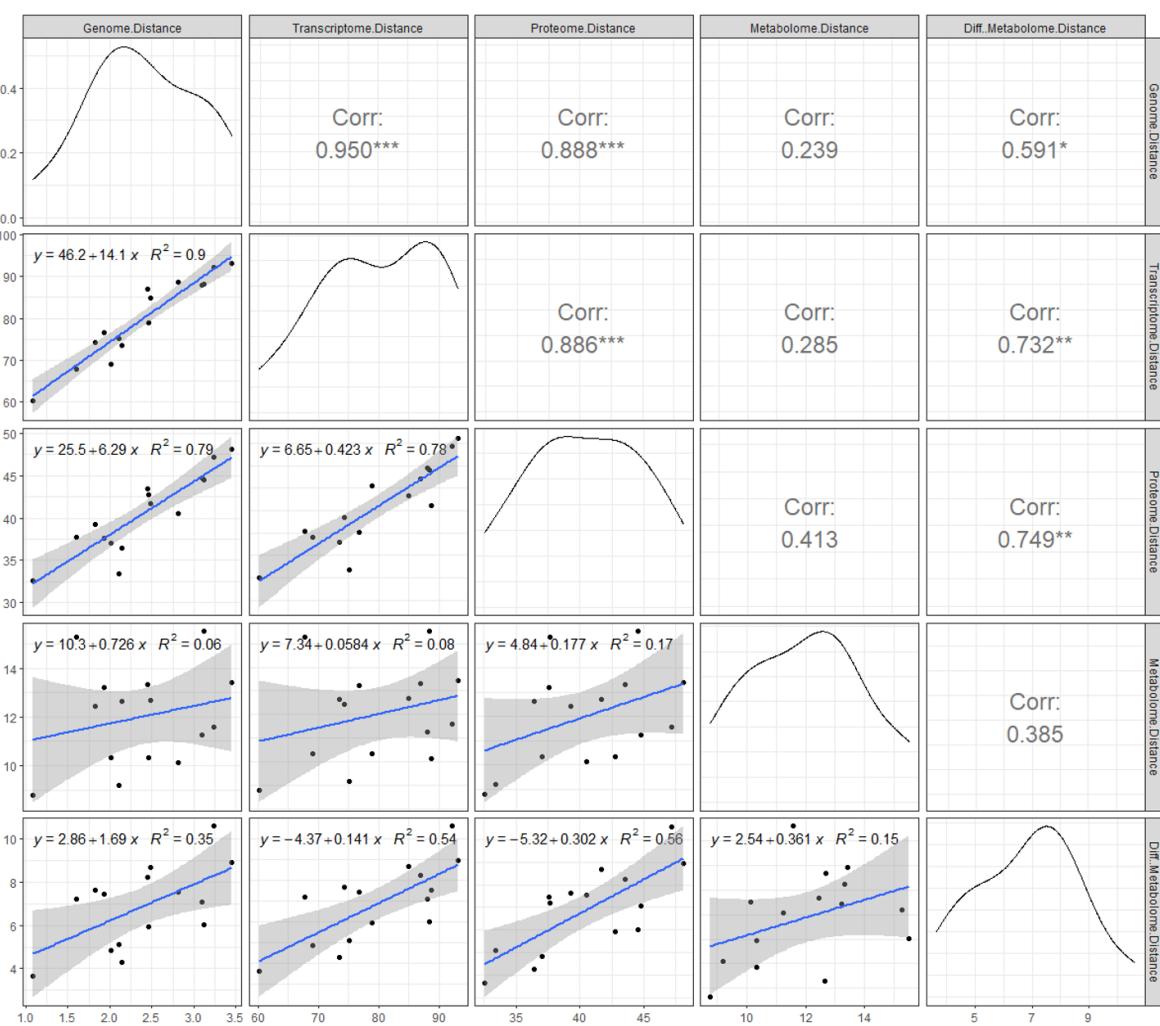
424 **Aneuploidy globally affects transcriptome and proteome regardless of life stage**

425 So far, this study discussed results from the logarithmic growth stage (LOG), which essentially consists
426 of *Leishmania* procyclic promastigotes (replicating, non-infectious). However, despite the absence of
427 transcriptional regulation of individual protein-coding genes, transcripts and proteins can undergo
428 post-transcriptional regulation during parasite differentiation. This raised the question whether the
429 correlation between chromosome somy, average transcript abundance, and average protein
430 abundance is also present in other life stages. Hence, for three strains, we compared the LOG growth
431 with the STAT growth phase. STAT is highly enriched for metacyclic promastigotes, which are non-
432 replicating, have a distinct morphology, are metabolically different, and infectious to the human host
433 ⁵¹. This was validated with metacyclogenesis markers META1 and HASPB, which were significantly
434 upregulated in STAT as they are expected to be (Adj. $p < 10^{-13}$, **Suppl. Table 1.H**). Transcriptome and
435 proteome measurements and analyses were carried out exactly as for the LOG phase.

436 For both LOG and STAT, a chromosome's somy was proportional to its average transcript expression
437 level, and protein expression level (**Fig 3**, $p < 2 * 10^{-16}$ for transcript and protein in both LOG and STAT).
438 Dosage compensation was apparent at the protein level, in both LOG and STAT growth phases. This

439 suggests that the gene dosage effects associated with aneuploidy remain present throughout the
440 parasite's life cycle.

441


442 **Figure 3:** Impact of chromosome aneuploidy on average chromosome transcript (red) and protein (blue) output levels in LOG
443 phase (A) and STAT phase (B). Each dot represents 1 chromosome in one of the 3 studied aneuploid *L. donovani* strains
444 (BPK275, BPK178, and BPK173).

445 **Aneuploidy results in metabolic differences between *L. donovani* strains**

446 We ultimately aimed to understand if aneuploidy in *L. donovani* is reflected in the parasite's
447 metabolome. Therefore, we carried out LC-MS metabolomics and confidently identified 78
448 metabolites across the six aneuploid study strains (**Suppl. Table S5**). In contrast to transcripts and
449 proteins, there is no straightforward relation between a metabolite and a specific gene. Genes might
450 affect metabolites directly (e.g. an enzyme), indirectly, affect multiple metabolites, or affect no
451 metabolite at all. Therefore, we turned to an indirect strategy to integrate the metabolomic data with
452 our previous observations.

453 We determined if differences in aneuploidy between strains in LOG correlate with their metabolic
454 differences. As such, we calculated the pairwise genomic (somy), transcriptomic, proteomic, and
455 metabolic Euclidean distance (based on all measured chromosomes, transcripts, proteins and
456 metabolites) between each possible strain pair, and correlated these distances (**Fig 4**). The larger the
457 distance between these 2 strains, the more different their respective genomes, transcriptomes,

458 proteomes, or metabolomes are from one another. Consistent with our other analyses, we found
459 strong correlations between the genomic and transcriptomic distance, between the transcriptomic
460 and proteomic distance, and between the genomic and proteomic distance ($p \leq 0.001$ for all
461 comparisons). However, the metabolome initially did not show any correlation with genome,
462 transcriptome, and proteome. We suspected this might be caused by the high intrinsic levels of
463 random variation of a subset of metabolites (by either technical or biological causes). Therefore, in the
464 second phase of the analysis, we filtered on metabolites that had at least once a significant fold change
465 (adjusted $p < 0.05$) between any pair of two strains. This strategy selects only metabolites that are
466 stable enough to reflect true differences in metabolite levels between strains. The resulting
467 'differentiating metabolome' consisting of 34 metabolites correlated strongly with all omic layers ($p <$
468 0.05, Fig 4). This demonstrates that the degree of karyotype difference between two strains correlates
469 with their degree of metabolic differences. Specifically, the differentiating metabolome included 9
470 amino acids (alanine, aspartate, cysteine, leucine/isoleucine (not distinguishable), methionine,
471 phenylalanine, tryptophan, tyrosine, and valine), suggesting the amino acid metabolism is an
472 important molecular difference between these aneuploid parasites.

473

474 **Figure 4:** How differences between two *L. donovani* strains on 1 'omic layer correlate with their differences on another omic
 475 layer. The plots show the pairwise correlations between the genome distance (aneuploidy), transcriptome distance,
 476 proteome distance, metabolome distance (all 78 metabolites), and differentiating metabolome distance (34 metabolites),
 477 each time calculated between 2 *L. donovani* strains. Each dot represents 1 comparison between two strains. With 6 strains in
 478 our experiment, there were 15 possible pairwise comparisons. The distance metric that was used is the Euclidean distance.
 479 Somy values were used directly, but transcript abundance, protein abundance or metabolite abundance were first Z-scored
 480 before calculating the distance. The top-right panels show the Pearson correlation coefficients with * = Pval <0.05, ** Pval
 481 <0.01, *** = Pval <0.001, while the bottom-left panels show the linear regressions.

482

483 Discussion

484 *Leishmania* displays a remarkably high tolerance for aneuploidy, with any chromosome having the
485 capacity to become polysomic and produce a viable parasite. The high karyotype dynamicity and the
486 drastic karyotype changes between experimental conditions stress the central importance of
487 aneuploidy for the parasite to adapt to novel environments¹⁰. However, it remained unclear how this
488 large genomic instability affects the parasite as a system. Moreover, *Leishmania*'s distinct
489 phylogenetic status and unique gene expression system disallows extrapolation from model systems.
490 Therefore, we investigated the systemic impact of aneuploidy in *L. donovani* by integrating, for the
491 first time, genome, transcriptome, proteome, and metabolome profiling data of highly aneuploid
492 strains. Our study offers a comprehensive picture of the molecular changes associated with aneuploidy
493 in this unique Eukaryotic model that lacks transcriptional regulation of individual protein-coding genes.

494 We confirmed that transcript abundance is affected across the entirety of aneuploid chromosomes.
495 This observation is in line with previous work that has also found a strong link between aneuploidy-
496 induced gene dosage changes and transcript abundance in *Leishmania*^{11,16,52}. We further showed that
497 this relation is almost equivalent, with transcription levels closely mirroring chromosome copy number
498 changes (transcript abundance = 0.94x the somy). It is important to note here that to establish this
499 0.94x equivalence, we compared the same chromosome to its own disomic state as the reference
500 transcript expression level at disomy. This does not exclude that chromosomes (or, on a smaller scale,
501 cistrons) can have inherently different transcription levels. Indeed, it has previously been shown that
502 chromosome 31 has the expression of a disomic chromosome in its default tetratomic state¹⁶. The
503 impact of aneuploidy on the *L. donovani* proteome was also linear and chromosome-wide, but not
504 equivalent. For every chromosome copy, the protein abundance levels of that chromosome increased
505 (on average) by a factor 0.76x the somy.

506 This reduced impact of gene dosage on the protein level was due to the compensation of a subset of
507 proteins. While many proteins did follow the aneuploidy-induced gene dosage changes, the dosage of
508 a subset was compensated. This compensation ranged from partial to complete compensation to
509 disomic levels. Our data thus suggest that the abundance of these proteins is somehow post-
510 transcriptionally attenuated in response to a dosage change. We made two observations concerning
511 the identity of compensated proteins that might explain this attenuation. Firstly, compensated
512 proteins were enriched for subunits of macromolecular protein complexes (15.6% versus 1.8% in the
513 background set). This observation matches several observations in aneuploid yeast and human

514 (including cancer) cell lines^{46,47,53-56} that also detected protein complex subunits to be highly prevalent
515 amongst compensated proteins. It can be explained by the fact that individual subunits of
516 macromolecular complexes are typically unstable unless assembled into a stable complex⁴⁶. As
517 subunits of a single complex are often encoded on different chromosomes and produced in balanced,
518 stoichiometric amounts, an increase in an individual subunit (here: by aneuploidy) will often not lead
519 to more complex formation^{46,47,57}. Instead, the protein will not have an available binding partner(s),
520 remains unstable, and rapidly degrades. Possibly, this stoichiometric imbalance caused by aneuploidy
521 is somehow detrimental to the parasite. One argument in this direction is that we and previous studies
522 found smaller *Leishmania* chromosomes to be more frequently aneuploid, which matches observation
523 in yeast and humans (chromosome 21 has the smallest number of genes in humans and the least
524 severe autosomal aneuploid)^{10,23,58}. Additionally, it has been shown in yeast that genes that are
525 deleterious when overexpressed are enriched for protein complex subunits⁵⁹. Secondly, we observed
526 a correlation between the degree of compensation and the cellular destination of the compensated
527 protein. Two secreted proteins associated with the Golgi apparatus were the most compensated (i.e.
528 their expression was close to disomic levels), which could be explained by the fact that secreted
529 proteins do not accumulate in the cell. Correspondingly, dosage compensation of secreted proteins
530 was also observed in a recent study of human fibroblasts with trisomy 21⁴⁶. Proteins from
531 mitochondria, the nucleus, and the peroxisome were also significantly more compensated than
532 cytoplasmatic proteins, which had the lowest level of compensation (i.e., cytoplasmic proteins
533 followed gene dosage the best). A potential explanation might be that mitochondrial, nucleic, and
534 peroxisome proteins require active transport into their destined organelle. This transport requires
535 extensive interaction with other proteins, potentially explaining why their abundance scales less with
536 increased protein production. In aneuploid (disomic II) strains of *S. cerevisiae*, increased translation
537 was found of genes related to protein trafficking pathways of the endomembrane system and nucleus,
538 also suggesting dependency on this system⁶⁰.

539 Partial chromosomal amplification can occur in *Leishmania*. We have previously observed this
540 phenomenon for chromosome Ld23^{44,45} and in the present study for Ld35. Interestingly, gene dosage
541 proportionally affected transcript and protein abundance for these subchromosomal amplification as
542 well. This suggests that our findings can be extrapolated to segmental aneuploidy as well.

543 Further, we demonstrated that these gene dosage changes remain important throughout at least
544 several life stages of the parasite. Indeed, we observed an similar impact of gene dosage on
545 transcriptome and proteome in either LOG (enriched for procyclic promastigotes, proliferative stage)

546 or STAT (enriched for metacyclic promastigotes, infectious stage) growth phases. This is striking, as the
547 parasite featuring extensive transcriptome and proteome changes during its life cycle. For example,
548 transcriptomics studies have shown that up to 30-50% of transcripts are differentially expressed
549 between procyclic and metacyclic promastigotes ^{15,61}. Similarly, 10-40% of proteins are differentially
550 expressed between the parasite's promastigote and amastigote life stages ^{11,62}.

551 A limited proportion of differential transcripts between aneuploid strains (23.6%) and the majority of
552 differential proteins (56.9%) originated from chromosomes without a change in somy, so-called trans-
553 transcripts, and trans-proteins. As we excluded genes with CNVs between strains from our analysis
554 and SNPs and INDELS were very rare, we hypothesize that the observed trans-effects could result from
555 aneuploidy, although our study does not allow to test for a causal relationship. High abundances of
556 trans-transcripts have been reported in many other aneuploidy studies on cells from humans, yeast,
557 maize, *Drosophila* and *Arabidopsis*, as well as on patients with Turner and Klinefelter syndrome ^{46-50,63-}
558 ⁶⁶. These trans-transcriptomes were typically enriched for transcription factors, genes related to
559 metabolic processes, protein metabolism, or cellular stress responses. It supports the idea that the
560 cellular system mediates the primary impact of aneuploidy by inducing transcriptional changes to
561 trans-genes. Strikingly, we did not observe this coordinated transcriptomic response in *Leishmania*,
562 with relatively low proportions of differential trans-transcripts between aneuploid strains and no
563 significant enrichment of specific functional classes amongst these. On the one hand, this matches the
564 constitutive gene abundance model of the parasite, where the transcription of individual protein-
565 coding genes can not be controlled by transcription factors. On the other hand, *Leishmania* does
566 feature substantial post-transcriptional regulation of transcript levels (e.g. between life stages), so in
567 theory, extensive regulation in response to aneuploidy could have occurred at this level, but we did
568 not observe this. Instead, we did find a surprisingly high proportion of trans-proteins. It appears that
569 trans-protein abundances are directly modulated at the translation or protein-stability level, as the
570 majority did not have underlying transcript-level changes. Interestingly, these trans-proteins were
571 significantly enriched for specific protein groups, including protein metabolism-related chaperones
572 and chaperonins, peptidases, and heat-shock proteins. This is relevant as aneuploidy is known to put
573 an extra burden on the protein-folding system and suggests a similar mediation of aneuploidy-induced
574 effects as in other Eukaryotes, but instead regulated directly at the protein level. This direct
575 modulation at protein-level (without underlying transcriptional change) may in fact also be present in
576 other Eukaryotes, but could be overshadowed by the transcription factor-induced changes. For this

577 reason, we propose *Leishmania* as an attractive model to study processes of post-transcriptional
578 modulation of protein levels in the context of aneuploidy.

579 Finally, we showed that the degree of aneuploidy differences between strains matched the degree of
580 transcriptome, proteome, and differential metabolome changes. This is an important observation as it
581 suggests that aneuploidy in *Leishmania* has the capacity to drive metabolic variation, which is closely
582 linked to the phenotype. It also matches our previous observations where we linked *L. donovani* gene
583 copy number variants directly to changes in metabolic pathways ³¹. Ultimately, it supports the view
584 that aneuploidy can be adaptive and drive the metabolic changes that the parasite needs to survive in
585 a novel environment.

586 *Conclusion*

587 In summary, our study shows that aneuploidy in *Leishmania* globally and proportionally impacts the
588 transcriptome and proteome of affected chromosomes throughout the parasite's life cycle *in vitro*. In
589 *Leishmania* strains with a closely related genetic background, the degree of these aneuploidy-induced
590 changes ultimately correlates with the degree of metabolomic difference. Similarly as in other
591 Eukaryotes, we observed dosage compensation at protein level for protein-complex subunits and
592 secreted proteins. Additionally, we found non-cytoplasmic proteins to be more compensated than
593 cytoplasmic ones. While most aneuploid Eukaryotes display extensive regulation of trans-transcripts
594 to mediate the effects of aneuploidy, we did not observe this to the same extend in *Leishmania*. This
595 suggests that the post-transcriptional mRNA regulation system of the parasite does not mediate the
596 impact of aneuploidy. Instead, *Leishmania* features a surprisingly high number of trans-proteins, which
597 are likely post-transcriptionally modulated. It thus seems that aneuploidy is accompanied by trans-
598 proteomic changes in Eukaryotes, regardless of the system of regulation. Post-transcriptional
599 modulation of trans-proteins may also be present in other Eukaryotes, but could be overshadowed by
600 the transcription factor-induced gene regulation that is absent in *Leishmania*. For this reason, we
601 believe that *Leishmania* is an attractive model to study processes of post-transcriptional modulation
602 of protein levels in the context of aneuploidy and beyond.

603

604 References

605 1 Siegel, J. J. & Amon, A. New Insights into the Troubles of Aneuploidy. *Annual review of cell and*
606 *developmental biology* **28**, 189-214, doi:10.1146/annurev-cellbio-101011-155807 (2012).

607 2 Zhu, J., Tsai, H.-J., Gordon, M. R. & Li, R. Cellular Stress Associated with Aneuploidy.
608 *Developmental cell* **44**, 420-431, doi:10.1016/j.devcel.2018.02.002 (2018).

609 3 Chen, G., Bradford, W. D., Seidel, C. W. & Li, R. Hsp90 stress potentiates rapid cellular
610 adaptation through induction of aneuploidy. *Nature* **482**, 246, doi:10.1038/nature10795
611 (2012).

612 4 Selmecki, A., Forche, A. & Berman, J. Genomic plasticity of the human fungal pathogen *Candida*
613 *albicans*. *Eukaryotic cell* **9**, 991-1008, doi:10.1128/ec.00060-10 (2010).

614 5 Gresham, D. *et al.* The repertoire and dynamics of evolutionary adaptations to controlled
615 nutrient-limited environments in yeast. *PLoS genetics* **4**, e1000303,
616 doi:10.1371/journal.pgen.1000303 (2008).

617 6 Gerstein, A. C. *et al.* Polyploid titan cells produce haploid and aneuploid progeny to promote
618 stress adaptation. *MBio* **6**, e01340-01315, doi:10.1128/mBio.01340-15 (2015).

619 7 Seton-Rogers, S. Fitness penalties of aneuploidy. *Nature Reviews Cancer* **17**, 142-143,
620 doi:10.1038/nrc.2017.9 (2017).

621 8 Rancati, G. *et al.* Aneuploidy underlies rapid adaptive evolution of yeast cells deprived of a
622 conserved cytokinesis motor. *Cell* **135**, 879-893, doi:10.1016/j.cell.2008.09.039 (2008).

623 9 Sunshine, A. B. *et al.* The Fitness Consequences of Aneuploidy Are Driven by Condition-
624 Dependent Gene Effects. *PLOS Biology* **13**, e1002155, doi:10.1371/journal.pbio.1002155
625 (2015).

626 10 Imamura, H. *et al.* Evolutionary genomics of epidemic visceral leishmaniasis in the Indian
627 subcontinent. *eLife* **5**, e12613 (2016).

628 11 Dumetz, F. *et al.* Modulation of Aneuploidy in *Leishmania donovani* during Adaptation to
629 Different In Vitro and In Vivo Environments and Its Impact on Gene Expression. *MBio* **8**,
630 e00599-00517 (2017).

631 12 Franssen, S. U. *et al.* Global genome diversity of the *Leishmania donovani* complex. *eLife* **9**,
632 e51243, doi:10.7554/eLife.51243 (2020).

633 13 Sterkers, Y., Lachaud, L., Crobu, L., Bastien, P. & Pagès, M. FISH analysis reveals aneuploidy and
634 continual generation of chromosomal mosaicism in *Leishmania major*. *Cell Microbiol* **13**, 274-
635 283, doi:10.1111/j.1462-5822.2010.01534.x (2011).

636 14 Ivens, A. C. *et al.* The genome of the kinetoplastid parasite, *Leishmania major*. *Science (New*
637 *York, N.Y.)* **309**, 436-442, doi:10.1126/science.1112680 (2005).

638 15 Cuypers, B. *et al.* Multiplexed Spliced-Leader Sequencing: A high-throughput, selective method
639 for RNA-seq in Trypanosomatids. *Scientific Reports* **7**, 3725, doi:10.1038/s41598-017-03987-0
640 (2017).

641 16 Prieto Barja, P. *et al.* Haplotype selection as an adaptive mechanism in the protozoan pathogen
642 *Leishmania donovani*. *Nature ecology & evolution*, doi:10.1038/s41559-017-0361-x (2017).

643 17 WHO. Proposals for the nomenclature of salivarian trypanosomes and for the maintenance of
644 reference collections*. *Bulletin of the World Health Organization* **56**, 467-480 (1978).

645 18 Andrews, S. FastQC: a quality control tool for high throughput sequence data. (2010).

646 19 Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence
647 data. *Bioinformatics (Oxford, England)* **30**, 2114-2120, doi:10.1093/bioinformatics/btu170
648 (2014).

649 20 Dumetz, F. *et al.* Modulation of Aneuploidy in *Leishmania donovani* during Adaptation to
650 Different In Vitro and In Vivo Environments and Its Impact on Gene Expression. *MBio* **8**,
651 doi:10.1128/mBio.00599-17 (2017).

652 21 Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. *arXiv*
653 preprint *arXiv:1303.3997* (2013).

654 22 Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and
655 population genetical parameter estimation from sequencing data. *Bioinformatics (Oxford, England)* **27**, 2987-2993, doi:10.1093/bioinformatics/btr509 (2011).

656 23 Downing, T. *et al.* Whole genome sequencing of multiple *Leishmania donovani* clinical isolates
658 provides insights into population structure and mechanisms of drug resistance. *Genome*
659 *research* **21**, 2143-2156, doi:10.1101/gr.123430.111 (2011).

660 24 Anders, S., Pyl, P. T. & Huber, W. HTSeq--a Python framework to work with high-throughput
661 sequencing data. *Bioinformatics (Oxford, England)* **31**, 166-169,
662 doi:10.1093/bioinformatics/btu638 (2015).

663 25 Quinn, T. P., Erb, I., Richardson, M. F. & Crowley, T. M. Understanding sequencing data as
664 compositions: an outlook and review. *Bioinformatics (Oxford, England)* **34**, 2870-2878,
665 doi:10.1093/bioinformatics/bty175 (2018).

666 26 Tyanova, S., Temu, T. & Cox, J. The MaxQuant computational platform for mass spectrometry-
667 based shotgun proteomics. *Nature Protocols* **11**, 2301-2319, doi:10.1038/nprot.2016.136
668 (2016).

669 27 Berg, M. *et al.* Experimental resistance to drug combinations in *Leishmania donovani*:
670 metabolic and phenotypic adaptations. *Antimicrobial agents and chemotherapy* **59**, 2242-2255
671 (2015).

672 28 Berg, M. *et al.* Metabolic adaptations of *Leishmania donovani* in relation to differentiation,
673 drug resistance, and drug pressure. *Mol Microbiol* **90**, 428-442, doi:10.1111/mmi.12374
674 (2013).

675 29 Benton, H. P., Want, E. J. & Ebbels, T. M. Correction of mass calibration gaps in liquid
676 chromatography-mass spectrometry metabolomics data. *Bioinformatics (Oxford, England)* **26**,
677 2488-2489, doi:10.1093/bioinformatics/btq441 (2010).

678 30 Scheltema, R. A., Jankevics, A., Jansen, R. C., Swertz, M. A. & Breitling, R. PeakML/mzMatch: a
679 file format, Java library, R library, and tool-chain for mass spectrometry data analysis.
680 *Analytical chemistry* **83**, 2786-2793, doi:10.1021/ac2000994 (2011).

681 31 Cuypers, B. *et al.* Integrated genomic and metabolomic profiling of ISC1, an emerging
682 *Leishmania donovani* population in the Indian subcontinent. *Infection, Genetics and Evolution*
683 **62**, 170-178, doi:<https://doi.org/10.1016/j.meegid.2018.04.021> (2018).

684 32 Prince, J. T. & Marcotte, E. M. Chromatographic alignment of ESI-LC-MS proteomics data sets
685 by ordered bijective interpolated warping. *Anal Chem* **78**, 6140-6152, doi:10.1021/ac0605344
686 (2006).

687 33 Tautenhahn, R., Böttcher, C. & Neumann, S. Highly sensitive feature detection for high
688 resolution LC/MS. *BMC Bioinformatics* **9**, 504, doi:10.1186/1471-2105-9-504 (2008).

689 34 Doyle, M. A. *et al.* LeishCyc: a biochemical pathways database for *Leishmania major*. *BMC Syst*
690 *Biol* **3**, 57-57, doi:10.1186/1752-0509-3-57 (2009).

691 35 Fahy, E. *et al.* Update of the LIPID MAPS comprehensive classification system for lipids. *J Lipid*
692 *Res* **50 Suppl**, S9-S14, doi:10.1194/jlr.R800095-JLR200 (2009).

693 36 Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y. & Morishima, K. KEGG: new perspectives on
694 genomes, pathways, diseases and drugs. *Nucleic acids research* **45**, D353-d361,
695 doi:10.1093/nar/gkw1092 (2017).

696 37 Wishart, D. S. *et al.* HMDB 4.0: the human metabolome database for 2018. *Nucleic acids*
697 *research* **46**, D608-d617, doi:10.1093/nar/gkx1089 (2018).

698 38 Tihon, E. *et al.* Genomic analysis of Isometamidium Chloride resistance in *Trypanosoma*
699 *congolense*. *International Journal for Parasitology: Drugs and Drug Resistance* **7**, 350-361,
700 doi:<https://doi.org/10.1016/j.ijpddr.2017.10.002> (2017).

701 39 Wickham, H. *ggplot2: Elegant Graphics for Data Analysis*. (Springer-Verlag New York, 2016).

702 40 Krzywinski, M. I. *et al.* Circos: An information aesthetic for comparative genomics. *Genome*
703 *research*, doi:10.1101/gr.092759.109 (2009).

704 41 Hunter, J. D. Matplotlib: A 2D Graphics Environment. *Computing in Science & Engineering* **9**,
705 90-95, doi:10.1109/MCSE.2007.55 (2007).

706 42 Virtanen, P. *et al.* SciPy 1.0: fundamental algorithms for scientific computing in Python. *Nature*
707 *Methods* **17**, 261-272, doi:10.1038/s41592-019-0686-2 (2020).

708 43 Imamura, H. *et al.* Evolutionary genomics of epidemic visceral leishmaniasis in the Indian
709 subcontinent. *eLife* **5**, doi:10.7554/eLife.12613 (2016).

710 44 Dumetz, F. *et al.* Molecular Preadaptation to Antimony Resistance in *Leishmania donovani* on
711 the Indian Subcontinent. *mSphere* **3**, e00548-00517, doi:10.1128/mSphere.00548-17 (2018).

712 45 Laffitte, M.-C. N. *et al.* Formation of Linear Amplicons with Inverted Duplications in *Leishmania*
713 Requires the MRE11 Nuclease. *PLoS genetics* **10**, e1004805,
714 doi:10.1371/journal.pgen.1004805 (2014).

715 46 Hwang, S. *et al.* Consequences of aneuploidy in human fibroblasts with trisomy 21. *Proceedings*
716 *of the National Academy of Sciences* **118**, e2014723118, doi:10.1073/pnas.2014723118
717 (2021).

718 47 Torres, E. M. *et al.* Effects of Aneuploidy on Cellular Physiology and Cell Division in Haploid
719 Yeast. *Science* **317**, 916-924, doi:10.1126/science.1142210 (2007).

720 48 Makarevitch, I., Phillips, R. L. & Springer, N. M. Profiling expression changes caused by a
721 segmental aneuploid in maize. *BMC Genomics* **9**, 7, doi:10.1186/1471-2164-9-7 (2008).

722 49 Huettel, B., Kreil, D. P., Matzke, M. & Matzke, A. J. M. Effects of Aneuploidy on Genome
723 Structure, Expression, and Interphase Organization in *Arabidopsis thaliana*. *PLoS genetics* **4**,
724 e1000226, doi:10.1371/journal.pgen.1000226 (2008).

725 50 Sheltzer, J. M., Torres, E. M., Dunham, M. J. & Amon, A. Transcriptional consequences of
726 aneuploidy. *Proc Natl Acad Sci U S A* **109**, 12644-12649, doi:10.1073/pnas.1209227109 (2012).

727 51 Berg, M. *et al.* Metabolic adaptations of *Leishmania donovani* in relation to differentiation,
728 drug resistance, and drug pressure. *Molecular Microbiology* **90**, 428-442,
729 doi:10.1111/mmi.12374 (2013).

730 52 Iantorno, S. A. *et al.* Gene Expression in *Leishmania* Is Regulated Predominantly by Gene
731 Dosage. *mBio* **8**, doi:10.1128/mBio.01393-17 (2017).

732 53 Dephoure, N. *et al.* Quantitative proteomic analysis reveals posttranslational responses to
733 aneuploidy in yeast. *eLife* **3**, e03023, doi:10.7554/eLife.03023 (2014).

734 54 Stingele, S. *et al.* Global analysis of genome, transcriptome and proteome reveals the response
735 to aneuploidy in human cells. *Mol Syst Biol* **8**, 608, doi:10.1038/msb.2012.40 (2012).

736 55 McShane, E. *et al.* Kinetic Analysis of Protein Stability Reveals Age-Dependent Degradation.
737 *Cell* **167**, 803-815.e821, doi:10.1016/j.cell.2016.09.015 (2016).

738 56 Schukken, K. M. & Sheltzer, J. M. Extensive protein dosage compensation in aneuploid human
739 cancers. *bioRxiv*, 2021.2006.2018.449005, doi:10.1101/2021.06.18.449005 (2021).

740 57 Veitia, R. A., Bottani, S. & Birchler, J. A. Cellular reactions to gene dosage imbalance: genomic,
741 transcriptomic and proteomic effects. *Trends in Genetics* **24**, 390-397,
742 doi:10.1016/j.tig.2008.05.005 (2008).

743 58 Gilchrist, C. & Stelkens, R. Aneuploidy in yeast: Segregation error or adaptation mechanism?
744 *Yeast* **36**, 525-539, doi:10.1002/yea.3427 (2019).

745 59 Robinson, D., Place, M., Hose, J., Jochem, A. & Gasch, A. P. Natural variation in the
746 consequences of gene overexpression and its implications for evolutionary trajectories. *eLife*
747 **10**, e70564, doi:10.7554/eLife.70564 (2021).

748 60 Larrimore, K. E., Barattin-Voynova, N. S., Reid, D. W. & Ng, D. T. W. Aneuploidy-induced
749 proteotoxic stress can be effectively tolerated without dosage compensation, genetic
750 mutations, or stress responses. *BMC Biology* **18**, 117, doi:10.1186/s12915-020-00852-x (2020).

751 61 Dillon, L. A. L. *et al.* Transcriptomic profiling of gene expression and RNA processing during
752 Leishmania major differentiation. *Nucleic acids research* **43**, 6799-6813,
753 doi:10.1093/nar/gkv656 (2015).

754 62 Lynn, M. A., Marr, A. K. & McMaster, W. R. Differential quantitative proteomic profiling of
755 Leishmania infantum and Leishmania mexicana density gradient separated membranous
756 fractions. *J Proteomics* **82**, 179-192, doi:10.1016/j.jprot.2013.02.010 (2013).

757 63 Sun, L. *et al.* Dosage compensation and inverse effects in triple X metafemales of
<i>Drosophila</i>. *Proceedings of the National Academy of Sciences* **110**, 7383-7388,
758 doi:doi:10.1073/pnas.1305638110 (2013).

759 64 Hou, J. *et al.* Global impacts of chromosomal imbalance on gene expression in Arabidopsis and
760 other taxa. *Proc Natl Acad Sci U S A* **115**, E11321-e11330, doi:10.1073/pnas.1807796115
761 (2018).

762 65 Raznahan, A. *et al.* Sex-chromosome dosage effects on gene expression in humans.
763 *Proceedings of the National Academy of Sciences* **115**, 7398-7403,
764 doi:doi:10.1073/pnas.1802889115 (2018).

765 66 Zhang, X. *et al.* Integrated functional genomic analyses of Klinefelter and Turner syndromes
766 reveal global network effects of altered X chromosome dosage. *Proceedings of the National
767 Academy of Sciences* **117**, 4864-4873, doi:doi:10.1073/pnas.1910003117 (2020).

769

770 **Funding**

771 This work was supported by the Research Foundation Flanders [11O1614N to B.C.]; the Interuniversity
772 Attraction Poles Program of Belgian Science Policy [P7/41 to J.C.D.], the InBev Baillet-Latour foundation
773 and the Department of Economy, Science and Innovation in Flanders [ITM-SOFIB, SINGLE to J.C.D.]

774 **Acknowledgements**

775 We thank the Center of Medical Genetics at the University of Antwerp for hosting the NGS facility on
776 which our RNA-Seq experiments were performed. The computational resources used for this work
777 were provided by the VSC (Flemish Supercomputer Center) at the University of Antwerp.

778 **Data Availability Statement**

779 The raw genomic and transcriptomic data in this study is available at the NCBI Sequence Read Archive
780 (SRA) under the accession code: PRJNA762444. Raw proteomic data has been submitted to the PRIDE
781 database under reference 1-20210911-141001. Raw metabolomic data was submitted to the
782 MetaboLights database under accession code MTBLS1612.

783 **Conflict of Interest**

784 The authors declare that they have no conflict of interest.

785 **Supplementary Tables**

786 **Supplementary Table S1.A**

787 Detailed description of the *L. donovani* isolates used in this study.

788 **Supplementary Table S1.B**

789 Number of total SNPs, non-synonomous SNPs and homozygous non-synonymous SNPs between any
790 pair of *L. donovani* strains in this study.

791 **Supplementary Table S1.C**

792 Sequencing quality and mapping statistics of all 6 sequenced *L. donovani* genomes in this study.

793 **Supplementary Table S1.D**

794 Sequencing quality and mapping statistics of all sequenced *L. donovani* transcriptomes in this study.

795 **Supplementary Table S1.E**

796 Dosage compensation model data, coefficients and *p*-values.

797

798 **Supplementary Table S1.F**

799 Summary of all cis- and trans- transcripts and proteins of all possible pairwise comparisons between
800 the 6 *L. donovani* strains in this study.

801 **Supplementary Table S1.G**

802 Pooled trans-transcripts from all possible pairwise comparisons between the 6 *L. donovani* strains in
803 this study.

804 **Supplementary Table S1.H**

805 Pooled trans-proteins from all possible pairwise comparisons between the 6 *L. donovani* strains in this
806 study.

807 **Supplementary Table S1. I**

808 Upregulated metacyclogenesis markers in STAT growth phase. Output generated by DESeq2.

809 **Supplementary Table S2**

810 Structure (Somy and local CNVs) of all sequenced *L. donovani* genomes in this study.

811 **Supplementary Table S3**

812 Differential RNA abundance analyses of the different biological comparisons made in this study.

813 **Supplementary Table S4**

814 Detailed statistics about all proteins detected in this study. Output generated by MaxQuant.

815 **Supplementary Table S5**

816 Detailed statistics about all metabolites detected in this study.

817 **Supplementary Figures**

818 **Supplementary Figure S1.A & S1.B**

819 Comparative Circos plot between BPK173 and BPK288 (S1.A) and between BHU575 and BPK282 (S1.B),
820 showing their relative (expressed in fold change) gene dosage (blue), transcript abundance (orange),
821 and protein abundance (purple) across the 36 *L. donovani* chromosomes.