

1 The non-random structure of multi-trophic ecological
2 interactions maximises species coexistence

3 David García-Callejas^{1,2,*}, Oscar Godoy², Lisa Buche², María Hurtado^{1,2}, Jose B.
4 Lanuza¹, Alfonso Allen-Perkins^{1,3}, and Ignasi Bartomeus¹

5 ¹Estación Biológica de Doñana (EBD-CSIC), Seville, Spain.

6 ²Instituto Universitario de Ciencias del Mar (INMAR), Departamento de
7 Biología, Universidad de Cádiz, E-11510, Puerto Real, Spain.

8 ³Departamento de Ingeniería Eléctrica, Electrónica, Automática y Física
9 Aplicada, ETSIDI, Technical University of Madrid, 28040 Madrid, Spain.

10 *Present address: Centre for Integrative Ecology, School of Biological Sciences,
11 University of Canterbury, Private Bag 4800, Christchurch 8140 New Zealand.

12 Correspondence: david.garcia.callejas@gmail.com

13

Abstract

14 Theory posits that the persistence of species in ecological communities is shaped by their
15 interactions within and across trophic levels. However, we lack empirical evaluations of
16 how the structure, strength and sign of biotic interactions drive the potential to coexist
17 in highly diverse multi-trophic communities. Here we model community feasibility domains,
18 a theoretically-informed measure of coexistence probability, from grassland communities com-
19 prising more than 45 species on average from three trophic guilds (plants, pollinators, and
20 herbivores). We first show that increasing community complexity measured either as the
21 number of guilds considered or community richness does not decrease community feasibility.
22 Furthermore, communities with specific interaction structures display higher feasibility do-
23 mains. Such structures are characterised by a high degree of both species self-regulation and
24 niche partitioning. Overall, our results suggest that interaction structures of diverse multi-
25 trophic communities under natural conditions tend to maximise the potential for coexistence.

26 Introduction

27 Ecological communities are complex systems in which individuals of different species interact in a
28 myriad of context-dependent ways, generating emergent properties that are not evident from the
29 isolated study of their elements (Levin, 1998). Understanding these emergent properties, such as
30 community stability or resilience (Meerbeek *et al.*, 2021) is key for strengthening the scientific basis
31 of ecosystem conservation and restoration (Moreno-Mateos *et al.*, 2020). An important dimension
32 of community stability is the potential for different species to coexist, i.e. to be able to maintain
33 viable populations in the same local community. However, obtaining a mechanistic understanding
34 and quantifying the coexistence of multiple species in nature is a complex task because of the
35 numerous processes that operate at the species and community levels.

36 Within a single trophic level, both theoretical and empirical work on competitive interactions
37 has shown that the degree of self-regulation relative to the strength of interspecific interactions
38 is a key factor in shaping coexistence. The higher intraspecific interactions and the greater their
39 magnitude in comparison to interspecific ones, the more stable competitive communities are (Buche
40 *et al.*, 2022; Chesson, 2000; Levine & HilleRisLambers, 2009). The degree of overlap in resource use
41 between species is also assumed to shape pairwise coexistence relationships, with implications for
42 other emergent properties such as different ecosystem functions (Albert *et al.*, 2022; Godoy *et al.*,
43 2020). Likewise, when considering communities with different trophic guilds, certain structural
44 properties, such as modularity for antagonistic networks, and nestedness for mutualistic ones,
45 have been shown to promote community stability (Rohr *et al.*, 2014; Stouffer & Bascompte, 2011;
46 Thébault & Fontaine, 2010). However, all these insights have been derived from communities of
47 single interaction types, either antagonistic or mutualistic. This progress contrasts with increasing
48 evidence that different interaction types contribute significantly and synergistically to the emergent
49 properties of ecological communities (Evans *et al.*, 2013; Losapio *et al.*, 2021; Simha *et al.*, 2022). A
50 natural next step is, therefore, to study how coexistence is achieved in communities of increasing
51 complexity, where interactions of different signs and strengths are intertwined across different
52 guilds. Disentangling this conundrum requires combining detailed empirical data with robust
53 theoretical models.

54 Empirical studies documenting simultaneously multiple interaction types across several trophic
55 levels are scarce. Early studies relied on binary networks that document the presence or absence
56 of a given interaction (Bastolla *et al.*, 2009; Kéfi *et al.*, 2015). This approach can be refined by
57 assigning interaction strengths inferred through indirect methods or expert opinion (e.g. Pocock
58 *et al.* (2012); see García-Callejas *et al.* (2018) for a review). While these types of networks, built
59 from binary interactions or indirect information, are useful first approximations, documenting
60 interactions quantitatively at finer scales, and over multiple communities, is essential for under-
61 standing the variability in community structure and dynamics (Banašek-Richter *et al.*, 2009), as
62 recently shown in an agricultural context (Morrison *et al.*, 2020). Interactions within and across
63 guilds have been mostly integrated into the context of mutualisms between plants and pollina-
64 tors by incorporating competitive interactions to these bipartite networks (Bastolla *et al.*, 2009;
65 Gracia-Lázaro *et al.*, 2018; Wang *et al.*, 2021), but the concept can be generalised to any kind
66 of interaction (Godoy *et al.*, 2018; Seibold *et al.*, 2018). However, even when these intra-guild
67 interactions are considered, an unrealistic solution has been to model them as constant across all
68 species (i.e. a mean-field approach) (Bastolla *et al.*, 2009; Saavedra *et al.*, 2013). Although this
69 approach is justified from a theoretical point of view because intra-guild interactions are notori-
70 ously difficult to quantify directly, this solution is suboptimal and lacks biological realism. In fact,
71 there is widespread evidence that differences among species in phenological timing and resource use
72 modulate variation in intra-guild interaction strengths (CaraDonna *et al.*, 2020; Morales-Castilla
73 *et al.*, 2015). Consequently, such processes can generate differences in intra-guild network struc-
74 tures that, in turn, can influence their potential to maintain species diversity (Barabás *et al.*,
75 2016).

76 In parallel to the empirical limitation of providing realistic quantifications of the full network
77 of species interactions, mathematical tools for the integration of this complexity in community-
78 level frameworks are still under development (García-Callejas *et al.*, 2018; Godoy *et al.*, 2018;
79 Pilosof *et al.*, 2017). Classic modeling approaches to the study of community structure, dynamics,
80 and stability in single-interaction networks can be adapted to deal with multiple interactions
81 (García-Callejas *et al.*, 2018). However, they often rely on an exponentially increasing number of

parameters to be estimated as the number of species increases, which precludes their use for diverse empirical communities. Recent advances taking a structuralist approach provide an alternative to evaluate the role of species interactions in promoting or hindering multi-species coexistence (Godoy *et al.*, 2018; Saavedra *et al.*, 2017). The structuralist framework is built upon the idea that the structure of species interactions shapes the opportunities to coexist for the different species in a given community, by quantifying the so-called feasibility domain. The main prediction arising from the structuralist approach is clear: the larger the feasibility domain, the more likely the community can persist without any species going extinct. This is because communities with larger feasibility domains can withstand larger fluctuations in species vital rates due to environmental variation without losing species (Song *et al.*, 2018). A key advantage of the probabilistic nature of this approach is that it further allows the derivation of probabilities of persistence (or its complement, exclusion) for individual species (Saavedra *et al.*, 2020). Thus, the structuralist approach emerges as a powerful tool to explicitly link estimations of persistence at the species and community levels, and to bridge theoretical studies on community stability to empirical quantifications of species interactions in diverse multi-trophic communities.

Here, we combine recent advances in the field of structural stability with unique field observations from nine Mediterranean grassland communities over two years involving a total of 108 taxa and their different types of interactions: plant-herbivore, plant-pollinator, and the intra and interspecific competitive interactions within guilds (plants, pollinators, and herbivores). With this combination, we provide the first empirical exploration of how quantitative interaction structures within and across trophic guilds drive the persistence of biodiversity in natural conditions. Our first hypothesis is that the opportunities to coexist in our studied communities will be negatively related to the number of guilds considered, and to the overall richness of the community. This hypothesis stems from the long-standing idea that complexity *sensu lato* decreases local stability, which is only a particular dimension of the overall concept of community stability (May, 1972). This relationship, however, is expected to be modulated by the structure of species interactions in natural communities (Jacquet *et al.*, 2016). Therefore, our second hypothesis is that interaction structure within and across guilds will also shape the opportunities to coexist in multi-trophic com-

110 munities. For testing these hypotheses, we define and analyse three different parameterisations of
111 intra-guild interactions, and we compare the opportunities to coexist in the observed communities
112 to randomised counterparts. In our third question, we ask whether network properties capture
113 the variability in opportunities to coexist across the observed communities. In particular, our
114 hypothesis is that stronger self-regulation compared to inter-specific interactions, and a higher
115 degree of resource partitioning across species, will be related to higher opportunities to coexist in
116 multi-trophic communities. We explicitly test these hypotheses both at the species and community
117 levels of organisation.

118 Methods

119 Data collection

120 We conducted our study in a Mediterranean grassland community located in Doñana National
121 Park (SW Spain, $37^{\circ} 04' 01.5''$ N, $6^{\circ} 19' 16.2''$ W). We set up 9 plots of 8.5 m^2 across an area of
122 2680 ha (Fig. 1) from which we documented 1) direct competitive interactions among plants, 2)
123 direct interactions between plants and pollinators, and 3) direct interactions between plants and
124 herbivores. Because our study system is dominated by plants and insects that feed upon them (i.e.
125 pollinators and herbivores), we expect these guilds to be the most relevant for the dynamics of
126 the community, as the abundance of predators (e.g. spiders, mantis) or larger animals is relatively
127 low. For plant-plant interactions, we obtained the number of local co-occurrences between plant
128 individuals, sampling 36 focal individuals of each plant species per plot and their plant neighbours
129 at a radius of 7.5 cm. This radius is a standard distance used in previous studies to measure
130 competitive interactions among annual plant species (Levine & HilleRisLambers, 2009; Mayfield
131 & Stouffer, 2017), and it has been validated to capture the outcome of competitive interactions at
132 larger scales (1 m^2) under locally homogeneous environmental conditions (Godoy & Levine, 2014).
133 Interactions between plants and pollinators or herbivores were sampled from the emergence of the
134 earliest flowers (February) to the decay of the latest ones (June) in 2019. During 2020, the length
135 of the field season was the same but we could not sample for five weeks in March/April 2020 due
136 to COVID-19 restrictions. Such differences in sampling effort did not seem to influence our results

137 as trends were consistent across both years (see results).

138 We recorded the number of floral visits to each plant species, by sampling each plot for 30
139 min on a weekly basis for a total of 148.5 hours in 2019 and, on a bi-weekly basis (therefore
140 missing two sampling intervals) for a total of 54 hours in 2020. We only recorded floral visitors
141 that contacted plant's reproductive organs (stigma and/or anthers), and hence we assume they are
142 effective pollinators and refer to them that way throughout the text. Interactions between plants
143 and herbivores were sampled in a similar manner: in parallel to the pollinator survey, we sampled
144 plant-herbivore interactions for 36 min on each plot, for a total of 76 hours in 2019 and 70 in
145 2020. Herbivores were annotated when observed on the stem, leaves, or flowers of the plant.

146 From these field observations, we obtained 18 normalised block interaction matrices $\mathbf{A}_{n,t}$ (9
147 plots \times 2 years). We assumed that these represent independent local communities given the
148 spatial separation between plots (100m on average), species turnover of the annual plants and the
149 associated insect community, and the annual dynamics of the system. These matrices characterise
150 the interaction structure of each local community, including intra- and inter-guild interactions, and
151 are the inputs of the structural methods described below. The matrices are defined, for a given
152 plot n and year t , as

$$\mathbf{A}_{n,t} = \begin{bmatrix} P & L & H \\ P & \boldsymbol{\alpha}_{n,t}^{(p)} & \boldsymbol{\alpha}_{n,t}^{(l,p)} & \boldsymbol{\alpha}_{n,t}^{(h,p)} \\ L & \boldsymbol{\alpha}_{n,t}^{(p,l)} & \boldsymbol{\alpha}_{n,t}^{(l)} & 0 \\ H & \boldsymbol{\alpha}_{n,t}^{(p,h)} & 0 & \boldsymbol{\alpha}_{n,t}^{(h)} \end{bmatrix} \quad (1)$$

153 where P = plants, L = pollinators, and H = herbivores. The $\boldsymbol{\alpha}$ elements represent the dif-
154 ferent submatrices (or blocks) of the community, e.g. $\boldsymbol{\alpha}^{(p)}$ represents the matrix of plant-plant
155 interactions, $\boldsymbol{\alpha}^{(l,p)}$ the matrix of pollinator effects over plants, and so on.

156

157 A multiple approach to estimate community interactions

158 Estimating the occurrence and strength of interactions among the members of a guild is a per-
159 vasive problem in studies of ecological networks, in particular when individuals are highly mobile

160 and/or difficult to track in the field. This is the case, for example, with arthropod pollinators
161 and herbivores. For these reasons, rather than providing a single characterisation, we present
162 three different ones reflecting how the field of community ecology has evolved in the last decades.
163 In our first parameterisation, named mean-field, we assumed that intra-guild competition occurs,
164 and affects all species equally and in a symmetric way. For example, studies taking this approach
165 highlighted that under mean-field competition the role of nested network architectures is key for
166 maximising species persistence in mutualistic networks (Bastolla *et al.*, 2009; Rohr *et al.*, 2014).
167 In our second parameterisation, we consider recent refinements in which accounting for structured
168 intra-guild competition fundamentally alters the expectations in terms of species persistence, by
169 generating mutualism-competition trade-offs (Gracia-Lázaro *et al.*, 2018; Wang *et al.*, 2021). In
170 particular, we estimated the degree of competition between plant species based on our spatially ex-
171 plicit field observations, and between pollinators (or herbivores), based on the feeding requirements
172 of their larval stages and on their nesting requirements. However, this second parameterisation
173 assumes that the structure of intra-guild competition relies on the use of a single resource axis,
174 without considering, for example, phenological constraints that are commonly observed in natural
175 communities (Olesen *et al.*, 2011). Assuming that there are not preempting processes (i.e. the
176 amount of soil water, light, or food is not altered by earlier taxa), for our third parameterisation
177 we considered that phenological mismatches decouple interactions in time, therefore decreasing net
178 pairwise competition (Duchenne *et al.*, 2021). Thus, we incorporated phenological overlap to the
179 resource overlap axis from the second parameterisation. In the Supplementary Section “Interaction
180 Matrices” we describe in detail the process of constructing these intra-guild matrices, of which we
181 obtained one per plot and year for every guild and every parameterisation.

182 Interactions between individuals of different guilds (plants-herbivores and plants-pollinators)
183 were obtained from the field observations described in the section “Data Collection”, and nor-
184 malised to ensure comparable coefficients with the intra-guild matrices (Supplementary Section
185 “Interaction Matrices”). For each plot and year, we thus obtained both intra- and inter-guild inter-
186 action matrices for plants, herbivores, and pollinators, including three different parameterisations
187 of intra-guild matrices. For each parameterisation, this resulted in a total of 6 interaction matrices:

188 three intra-guild communities $\alpha^p, \alpha^l, \alpha^h$; two two-guild communities (one formed by plants and
189 herbivores $(\alpha^p, \alpha^h, \alpha^{p,h}, \alpha^{h,p})$, and one formed by plants and pollinators $(\alpha^p, \alpha^l, \alpha^{p,l}, \alpha^{l,p})$); and
190 the overall community represented by the full block-matrix \mathbf{A} (eq. 1). We further generated ran-
191 domised counterparts of these different matrices to evaluate the effects of the observed interaction
192 structure on our coexistence metrics (see Supplementary Section “Interaction Matrices” for further
193 details on the randomisation process).

194

195 **Community feasibility and species’ exclusion ratios**

196 The potential for a given structure of species interactions to sustain a feasible community is
197 quantified via its feasibility domain, whose relative volume ranges in the interval $[0,0.5]$ (Song *et al.*,
198 2018). A large feasibility domain volume indicates a higher potential to accommodate variations
199 in species growth rates while maintaining feasibility, and vice-versa. Its mathematical definition
200 is given in Song *et al.* (2018) and discussed in the Supplementary Section “Feasibility Metrics”;
201 hereafter we refer to the relative volume simply as “feasibility domain” for brevity. We calculated
202 the feasibility domain of each of the community networks constructed, i.e. for each community
203 $\mathbf{A}_{n,t}$ we calculated the feasibility domain of each of the sub-communities of one guild and two
204 guilds, as well as for the full multi-trophic community. Note that by taking this approach, we
205 assume that the dynamics of the communities studied can be reasonably well approximated with
206 a linear Lotka-Volterra model.

207 The feasibility domain gives an overall picture of the potential for all species to coexist in a
208 given community, but this does not mean that all species have equal probabilities of persistence
209 (or exclusion). In fact, feasibility domains can be highly anisotropic, meaning that some species
210 are much closer to being excluded from a feasible community than others (Tabi *et al.*, 2020). To
211 quantify these outcomes, we developed a novel structural measure for the likelihood of a species
212 to being excluded from a feasible community. This metric is a ratio that quantifies the relative
213 probability of being the first species excluded compared to a neutral situation, and we refer to
214 it hereafter as the species exclusion ratio (see Supplementary Section “Feasibility Metrics” for
215 the mathematical definition and an extended discussion). The species exclusion ratio, bounded

216 between $(0, \infty)$, is a good proxy of the overall likelihood of exclusion of a species, in the absence
217 of further information on e.g. species' intrinsic growth rates.

218

219 Structural metrics for species and communities

220 Coexistence between pairs of species is known to depend on the degree of self-regulation relative
221 to net competition effects, which is quantified by the ratio between intra-specific and inter-specific
222 competition (Chesson, 2000). This has been shown to hold for multiple species in competitive
223 communities as well, whereby the stabilising effect of niche differences arising when intraspecific
224 interactions exceed interspecific ones also contributes to the maintenance of their diversity in the
225 presence of indirect interactions (Barabás *et al.*, 2016; Godoy *et al.*, 2017). Accordingly, species
226 with higher niche overlap are less likely to coexist (Adler *et al.*, 2007; Buche *et al.*, 2022). To explic-
227 itly test whether these tenets hold in multi-trophic communities, we calculated two complementary
228 structural network metrics for the species and community levels. First, we quantified the degree
229 of self-regulation of a species as its diagonal dominance. Diagonal dominance is a matrix property
230 that is satisfied when diagonal elements are larger than the sum of non-diagonal elements. Here we
231 used a continuous version, i.e. the difference between diagonal and sum of non-diagonal elements.
232 This species-level metric is averaged for obtaining the average degree of diagonal dominance in a
233 community, d :

$$d = \frac{\sum_{i \in S} \left(\alpha_{i,i} - \sum_{j \in S, j \neq i} \alpha_{i,j} \right)}{S} \quad (2)$$

234 where S is the number of species in the community represented by the interaction matrix α .
235 Similarly, we obtained species-level overlap and its community average, assuming that the degree
236 of overlap in pairwise interactions is an appropriate proxy of niche overlap. To avoid confusion,
237 we refer hereafter to interaction overlap. Species-level interaction overlap is itself an aggregated
238 property, derived from the overlap between each pair of species, which we calculated using the
239 Morisita-Horn dissimilarity index (Horn, 1966) implemented in the vegan R package version 2.6-2
240 (Oksanen *et al.*, 2022). We posit that the net overlap of species i in a community, o_i , is best

241 represented by the sum of pairwise overlaps with every other species:

$$o_i = \sum_{j \in S} (1 - h_{i,j}) \quad (3)$$

242 where h is a Morisita-Horn dissimilarity matrix obtained from a given interaction matrix. From
243 Eq. 3 we obtained separately the interaction overlap of each species i for its intra-guild competition
244 matrices and its inter-guild interaction matrices. The community-level metric is, again, the average
245 of species-level overlaps in the community:

$$o(\alpha) = \frac{\sum_{i \in S} o_i}{S} \quad (4)$$

246 **Statistical analyses**

247 We analysed the relationship between coexistence outcomes and structural metrics using re-
248 gression models. For testing whether increased complexity decreases opportunities to coexist (first
249 hypothesis), we analysed the relationship between the feasibility domain (for the community-level
250 analyses) or species exclusion ratios (for the species-level analyses) and the number of trophic
251 guilds accounted for using a Type III Analysis of Variance. We also explored the relationship
252 between the feasibility domain (or species exclusion ratios) and community richness using linear
253 models.

254 In addition, by explicitly considering the three different types of intra-guild competition matri-
255 ces, we also explored our second hypothesis that interaction structure influences the opportunities
256 to coexist in our system. Furthermore, we compared observed feasibility domains (or species exclu-
257 sion ratios) to the distributions given by the randomised communities. To analyse the relationship
258 between our coexistence outcomes and structural metrics (our third hypothesis), we considered
259 the full communities, including plants, herbivores, and pollinators. Specifically, we used the data
260 on intra-guild interactions derived from resource use and phenological overlap. Using this data we
261 implemented linear mixed models with feasibility domain as response variable and community-level
262 diagonal dominance and interaction overlap (differentiating intra-guild and inter-guild overlap) as
263 independent variables, taking the plot identity as a spatial random factor. For the species-level

analyses we similarly took species exclusion ratios (log-transformed) as response, and diagonal dominance, intra-guild overlap, and inter-guild overlap as independent variables. In this model we also added species guild as a covariate, and again included the plot identity as a random factor. We implemented these models using the lmerTest package v3.1-3 in R (Kuznetsova *et al.*, 2017). Prior to model fitting, we scaled all numeric variables and checked model fits with the tests provided in the R package DHARMA v0.4.5 (Hartig, 2021).

Results

In our two years of sampling, we documented 214 unique interactions among plants, 110 between plants and pollinators, and 160 between plants and herbivores. In this period we observed interactions between 108 taxa, of which 17 were plants, 46 herbivores, and 45 pollinators. Of these, 53 taxa representing 49% of the records were identified at the species level (17 plants, 16 pollinators, and 20 herbivores), and 51 % as morphospecies (Table S1). The included taxa span diverse life-history strategies, such as grasses (e.g. *Hordeum marinum*) and forbs (e.g. *Leontodon marocanus*) in the annual plant guild, solitary bees (e.g. from genera *Andrena*, *Lasioglossum*), flies (e.g. genera *Sphaerophoria*, *Musca*), or Lepidoptera (e.g. genera *Lasiocampa*, *Thymelicus*) within the pollinator guild, and sap feeders (e.g. Hemiptera from genera *Aelia* or *Aphis*), pollen feeders (e.g. Coleoptera from genera *Malachius* or *Psilotrichix*) or leaf-eaters (e.g. Gastropoda from genera *Theba* or *Cochlicella*) within the herbivore guild (Table S1).

The frequency distribution of the 270 unique interactions observed across trophic guilds was highly skewed, with e.g. 128 interactions being observed less than five times. Plant richness was positively correlated with that of pollinators across communities, (Spearman's $\rho = 0.78$, $S = 214$, p-value < 0.01) but not with herbivores (Spearman's $\rho = -0.23$, $S = 1125$, p-value = 0.35). Richness values had an average of 48 taxa and ranged from 35 to 57 taxa in the least and most diverse communities, respectively.

Contrary to our first hypothesis that the higher complexity of the local communities, the lower the opportunities for species to coexist, we found that neither of the complexity proxies considered influenced feasibility domains (Fig. 2). In particular, we found no significant differences in the

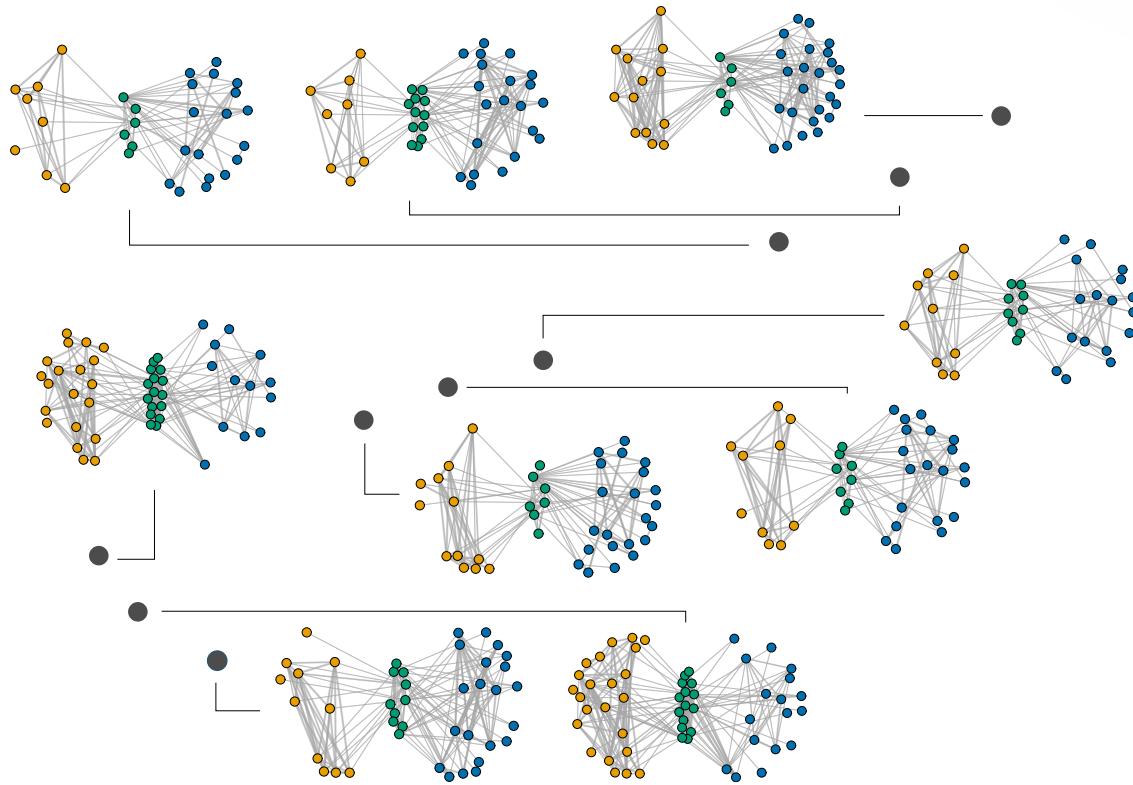


Fig. 1: Approximate spatial configuration of the sampled networks. For reference, we show the 9 networks of 2019, with pollinators in orange (leftmost sets of nodes), plants in green (middle), and herbivores in blue (rightmost). Lines represent the presence of interactions observed in the field or estimated from field information.

291 feasibility domain of communities considering one, two, or three guilds (Type III Analysis of
 292 Variance, number of guilds: $F = 1.54$, $df = 2$, $p\text{-value} = 0.22$). Likewise, community richness did
 293 not have a significant effect in the feasibility domain of our communities (Table S2). However, at
 294 the species level, the degree of complexity did influence the exclusion ratios, but in the opposite
 295 direction to our expectation. Specifically, we found that both the number of guilds in a community
 296 (Fig. S2 and Table S3) and community richness (Fig. S3 and Table S4) showed a statistically
 297 significant negative relationship with species' exclusion ratios, alongside significant interaction
 298 effects between richness, types of intra-guild competition, and species guild. Overall, these results
 299 suggest that on average species are more likely to persist in more diverse communities.

300 In the community-level analyses we also found that different parameterisations of the intra-
 301 guild competition matrices resulted in significant differences in feasibility domains (Fig. 2; Type
 302 III Analysis of Variance, intra-guild type: $F = 176.85$, $df = 2$, $p\text{-value} < 0.001$; Table S2). In par-

303 ticular, feasibility domains were lowest for communities with mean-field intra-guild competition
304 matrices, and highest for those with intra-guild matrices based on resource competition mediated
305 by phenological overlap. Interestingly, while the mean-field parameterisation generated the lowest
306 feasibility domains in all situations, the ranking of the different communities in terms of their
307 feasibility domain is reasonably well maintained when compared to the other parameterisations
308 (Fig. S1; Spearman's $\rho = 0.57$, $S = 416$, p-value = 0.015). This indicates that while the mean-field
309 approach underestimates the potential for coexistence compared with other parameterisations, it is
310 useful for an overall characterisation of relative differences across communities. At the species level,
311 exclusion ratios were not different on average across guilds, with plants, pollinators, and herbi-
312 vores displaying similar distributions. The type of intra-guild competition significantly influenced
313 the variability of species' exclusion ratios rather than the mean (Fig. 3, Fig. S2). Mean-field
314 competition communities displayed a much higher variability in this metric than the other two
315 parameterisations. Taken together, our community-level and species-level results suggest that fea-
316 sibility domains of communities with mean-field competition are smaller due to higher variability
317 in species' exclusion ratios, such that a small subset of species with high exclusion ratios (the upper
318 hinges of the boxplots in Fig. 3) drag the feasibility domains of these communities down.

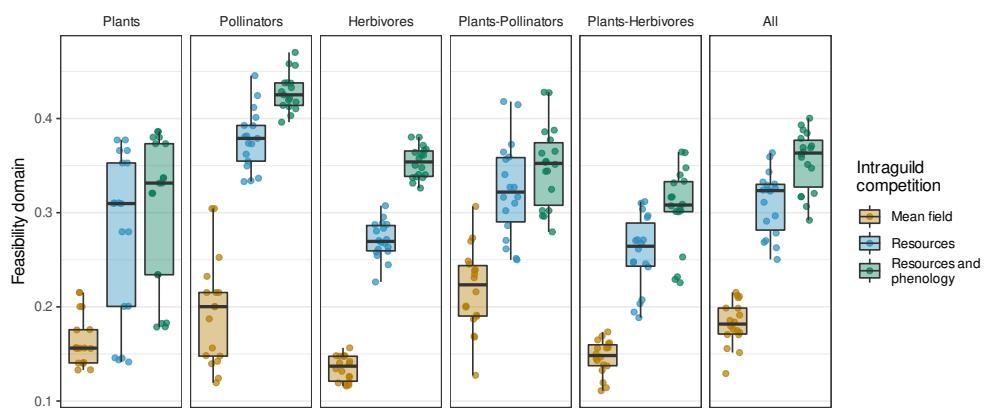


Fig. 2: Feasibility domain volumes of each community or subset of it, for the three different parameterisations of intra-guild competition matrices (for reference, feasibility domain volumes range in the interval [0,0.5]). In the boxplots, the horizontal black line represents the median, the lower and upper hinges correspond to the 25th and 75th percentiles, and the vertical lines extend to the largest/smallest value up to 1.5 times the interquartile range (distance between 25th and 75th percentiles). N = 18 communities in each boxplot (9 plots \times 2 years).

319 In further agreement with our second hypothesis, the whole architecture of multi-trophic sys-

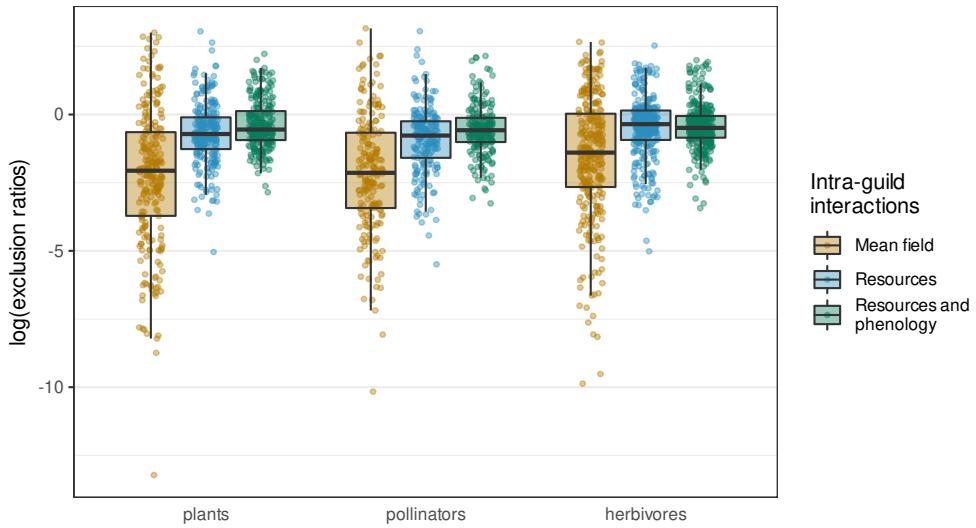


Fig. 3: Species' exclusion ratios (log-transformed) for the different guilds and the three intra-guild parameterisations. Here we show the results for the complete communities, considering the three guilds. In all parameterisations, $N = 204$ for plants, 201 for pollinators, and 303 for herbivores.

320 tems, including both intra- and inter-guild species interactions, influenced the opportunities to
 321 coexist. We found that randomising interaction structures resulted for every parameterisation in
 322 smaller feasibility domains compared to the stuctures observed in the field. Considering the full
 323 communities with the three trophic guilds, only 4 communities out of 54 (18 per parameterisa-
 324 tion) fell within the 95% interval of the null distributions (Fig. 4). Similarly, we found that such
 325 randomisations also increased the average and the variability of species' exclusion ratios in all
 326 situations (Fig. S4, Table S5).

327 Finally, and supporting our third hypothesis, we found that two out of the three network
 328 structure properties were related to the feasibility domain in our full communities. Specifically,
 329 we observed a positive relationship between the average degree of diagonal dominance and the
 330 feasibility domain, a negative relationship with the average degree of intra-guild interaction overlap,
 331 and no statistically significant relationship with the inter-guild interaction overlap (Table 1, Fig.
 332 5). The effect size of the two significant metrics was qualitatively similar (Table 1). Likewise,
 333 species exclusion ratios showed qualitatively similar trends with species-level metrics (Table S6).
 334 For all trophic guilds (plant, pollinators, and herbivores), diagonal dominance had a significant
 335 negative effect on species exclusion ratio, whereas intra-guild and inter-guild interaction overlap

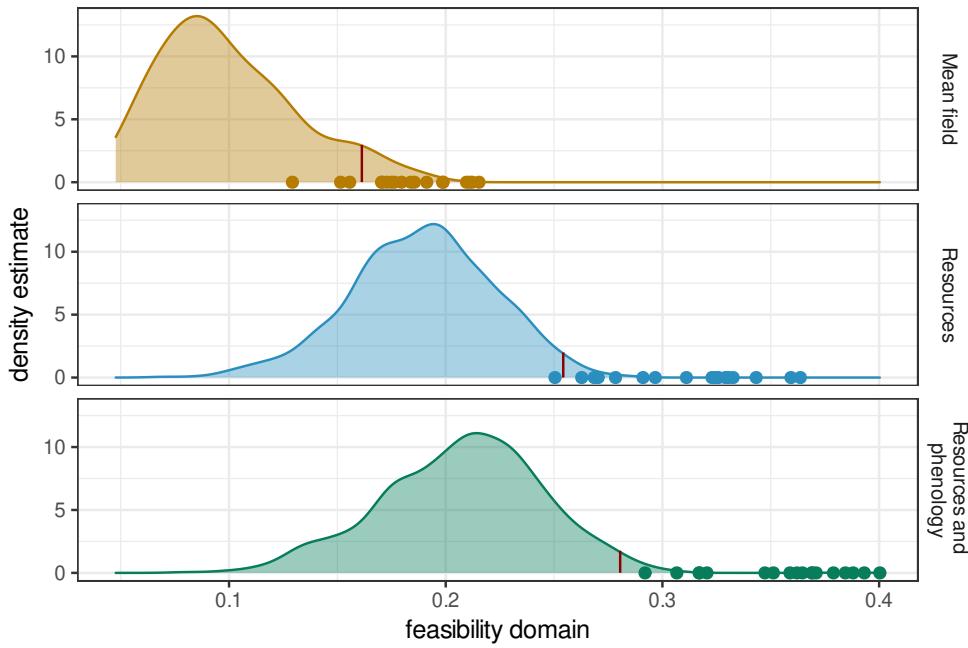


Fig. 4: Feasibility domain of the observed communities ($N=18$ in each panel), and the distribution of feasibility domain values from the randomised communities. Red vertical lines represent the 97.5% percentile of the null distributions. For reference, the observations here correspond to the right-most panel in Fig. 2, i.e., to the full communities including plants, pollinators, and herbivores.

336 had significant positive effects. The three metrics had qualitatively comparable effect sizes.

Table 1: Estimated regression parameters, standard errors, t-values and p-values for the Linear Mixed Model relating feasibility domain with average diagonal dominance, intra- and inter-guild interaction overlap. The three independent variables were not correlated (all Variance Inflation Factors < 1.07). The estimated σ_{plot} is 0.017. $N = 18$.

	estimate	std.error	t	p.value
Intercept	0.333	0.017	19.885	< 0.001
avg_diagonal_dominance	0.073	0.018	4.027	0.002
avg_intraguild_overlap	-0.066	0.025	-2.61	0.03
avg_interguild_overlap	-0.002	0.018	-0.11	0.914

337 Discussion

338 Our results provide evidence, using real-world communities, for two fundamental and tightly related
 339 questions in community ecology. First, the opportunities to coexist do not decrease with increasing
 340 community richness or with a higher number of trophic guilds in our study system. Second, the

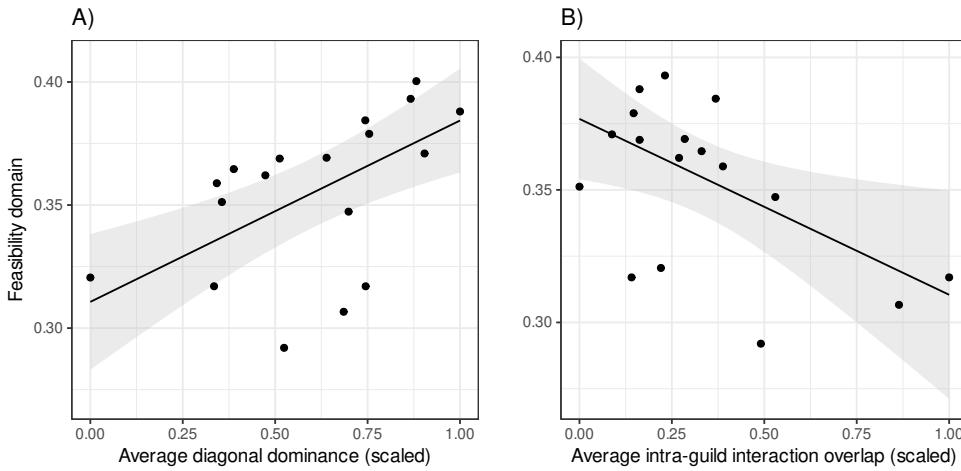


Fig. 5: Relationship between feasibility domain of our complete communities ($N=18$ in each panel), and average diagonal dominance (panel A), and average intra-guild interaction overlap (panel B). The observations here correspond to the full communities with intra-guild competition matrices parameterised by resource use and phenological overlap, i.e. the right-most boxplot in Fig. 2 and the lowest panel in Fig. 4.

341 structure of interactions between species of the same guild and between species of different guilds
 342 are both key for maintaining the opportunities to coexist. In particular, this is achieved via niche
 343 partitioning and density-dependent mechanisms of self-regulation (Barabás *et al.*, 2017). These
 344 insights rest upon field observations from highly diverse communities comprising three distinct
 345 trophic guilds: annual plants, their pollinators, and their insect and gastropod herbivores.

346 Regarding our first main result, the pervasive absence of relationship between the feasibility
 347 domain of our communities and their richness runs contrary to theoretical expectations from classic
 348 ecological network models, whereby more complex communities would tend to be more unstable
 349 (May, 1972). Our focus in calculating as a measure of stability the feasibility domain, which can
 350 be interpreted as the potential of a community to maintain all species, provides a novel angle
 351 to this complexity-stability debate. This is by showing that rich, complex, communities do not
 352 necessarily have lower potential for the coexistence of all their constituent species compared to less
 353 diverse ones.

354 The maintenance of the potential to coexist in the face of increasing complexity is explained
 355 by our second main result. The hypothesis that realistic interaction structures maximise different
 356 facets of community stability with respect to random configurations has been repeatedly brought

357 up to explain the apparent persistence of empirical communities (Jacquet *et al.*, 2016; Medeiros
358 *et al.*, 2020), and recent theory proposes that community feasibility in particular is more likely
359 under realistic structural constraints (Dougoud *et al.* (2018), but see Serván *et al.* (2018)). To our
360 knowledge, however, these long-held assumptions have never been tested with empirical data con-
361 sidering both intra-guild and inter-guild interactions in multi-trophic communities. The structural
362 constraints maintaining high multi-trophic diversity in our grassland ecosystem are related to the
363 degree of both niche partitioning and species self-regulation. Both ecological constraints are posi-
364 tively associated with the feasibility domain in our communities. The degree of niche partitioning
365 arising from the structure of competitive interactions in intra-guild matrices significantly increased
366 the feasibility domains compared to a mean-field approach (i.e. constant interactions in intra-guild
367 matrices). This result is consistent with the overall expectation from diverse coexistence theories
368 that higher niche differences lead to higher coexistence among species pairs (Buche *et al.*, 2022;
369 Chu & Adler, 2015; Koffel *et al.*, 2021). Here we extend this expectation to ecological communi-
370 ties regardless of the interaction types and trophic guilds considered, and highlight the fact that
371 intra-guild interactions -independent from inter-guild ones- need to be explicitly considered when
372 evaluating the structure and dynamics of complex ecological networks.

373 The insights at the community level are complemented by parallel analyses at the species level,
374 for which we developed a novel probabilistic metric that quantifies how likely a species is to be
375 the first excluded from its community in the face of a perturbation, relative to a neutral situation
376 in which all species are equally likely to be excluded. This exclusion ratio, importantly, does not
377 rely on numerical simulations of steady states (as in, e.g., Saavedra *et al.* (2020)), and therefore
378 can be reliably estimated given only the interaction matrix of a local community. We found that
379 the relative degree of species self-regulation and the overlap in interactions are robust predictors
380 of both species-level exclusion ratios and community-level feasibility domains. We also observed
381 that exclusion ratios were highly homogeneous across species, especially in the more structured
382 intra-guild parameterisations. Therefore, in our study system, an increase in interaction structure,
383 expressed as niche partitioning, leads to less variability across species in their exclusion ratios.
384 This, in turn, makes our quantification of feasibility domains robust and easier to interpret: a

385 comparatively large feasibility domain will generally result from low exclusion ratios of all species
386 in the community, with few outlier species. Note that other community types may display other
387 potential scenarios: for example, a given community with a comparatively large feasibility domain
388 but highly variable exclusion ratios would indicate that a relatively small perturbation may drive
389 certain species locally extinct regardless of the overall potential for coexistence. Thus, the relative
390 homogeneity of species exclusion ratios emerges as a potentially key metric towards understanding
391 and comparing feasibility across communities. We hypothesise that higher variability in exclusion
392 ratios is more likely to be found in communities in which species properties lead to higher assymetry
393 in species interactions strengths. Such assymetry usually is observed in systems that contains a
394 larger variability in body sizes (Atkins *et al.*, 2015), trophic levels, and life history strategies
395 (Germain *et al.*, 2016), as opposed to study systems like ours.

396 Our study lacks estimations of intrinsic growth rates for every taxa in the community. This
397 information would allow to predict tangible outcomes of which species can maintain positive popu-
398 lations rather than estimating probabilistic opportunities for species to coexist. However, obtaining
399 such fine-scale estimations is challenging even for highly simplified communities (Bartomeus *et al.*,
400 2021), and thus is logically unfeasible for field observations of diverse communities, like the ones
401 we studied. Given these limitations, and the equally stringent data requirements of more mecha-
402 nistic population dynamics models (e.g., Gauzens *et al.* (2020); Valdovinos (2019)), we reinforce
403 here the idea that the estimation of the feasibility domain can be a useful probabilistic approxi-
404 mation to multi-species coexistence and stability (Saavedra *et al.*, 2020). It is worth noting that
405 the feasibility domain is a dimension of the concept of community stability that is different from
406 local stability (as in e.g. Allesina & Tang (2012); May (1972)). Therefore, our results are not
407 directly comparable with that large body of research, although feasibility and local stability are
408 not independent properties (Gibbs *et al.*, 2018). The feasibility domain of a community can be
409 obtained directly from a community interaction matrix. Pairwise interaction effects in turn can be
410 quantified, for interactions across guilds, from interaction frequencies if these are assumed to be
411 a good proxy of overall species effects, which is generally the case for insect pollinators (Vázquez
412 *et al.*, 2012). In the case of intra-guild interactions, pairwise interaction effects can be obtained

413 from proxies of competition based on different dimensions of resource overlap (Morales-Castilla
414 *et al.*, 2015). Using interaction frequencies as a proxy for overall interaction strengths is nev-
415 ertheless a first approximation in the absence of better resolved data (Novella-Fernandez *et al.*,
416 2019). For example, further refinements of this methodology can account for varying per-capita
417 efficiencies in pollen transportation for pollinators, or in plant damage for herbivores, to further
418 unveil the relative importance of species traits in shaping the coexistence potential of ecological
419 communities.

420 Overall, our study highlights the need to adopt an integrative view of ecological communities
421 because the structure of biotic interactions both within and across guilds is key to shape multi-
422 species coexistence. By advancing in this integration, we identified the degree of niche partitioning
423 and self-regulation within guilds as critical determinants of the feasibility of whole multi-trophic
424 communities, as well as the probability of local extinction of individual species. We provide here
425 a fully operational framework to quantify these properties (degree of niche partitioning and self-
426 regulation) from interaction matrices of any combination of interaction types, thus opening the
427 door to compare on common grounds the potential to coexist across different community types.
428 Although the structure of ecological interactions in other settings might vary due to additional
429 third factors creating perturbations (e.g. invasive species, N deposition), we show that, for a
430 highly diverse Mediterranean grassland, ecological interactions are structured in such a way as to
431 maintain the opportunities of species to coexist across guilds and increasing complexity.

432 Bibliography

433 Adler, P. B., HilleRisLambers, J. & Levine, J. M. (2007). A niche for neutrality. *Ecology Letters*,
434 10, 95–104.

435 Albert, G., Gauzens, B., Loreau, M., Wang, S. & Brose, U. (2022). The hidden role of multi-trophic
436 interactions in driving diversity–productivity relationships. *Ecology Letters*, 25, 405–415.

437 Allesina, S. & Tang, S. (2012). Stability criteria for complex ecosystems. *Nature*, 483, 205–208.

438 Atkins, R. L., Griffin, J. N., Angelini, C., O'Connor, M. I. & Silliman, B. R. (2015). Con-

439 sumer–plant interaction strength: Importance of body size, density and metabolic biomass.

440 *Oikos*, 124, 1274–1281.

441 Banašek-Richter, C., Bersier, L. F., Cattin, M. F., Baltensperger, R., Gabriel, J. P., Merz, Y.,

442 Ulanowicz, R. E., Tavares, A. F., Williams, D. D., De Ruiter, P. C., Winemiller, K. O. &

443 Naisbit, R. E. (2009). Complexity in quantitative food webs. *Ecology*, 90, 1470–1477.

444 Barabás, G., Michalska-Smith, M. & Allesina, S. (2016). The effect of intra- and interspecific

445 competition on coexistence in multispecies communities. *The American Naturalist*, 188, 333–341.

446 Barabás, G., Michalska-Smith, M. J. & Allesina, S. (2017). Self-regulation and the stability of

447 large ecological networks. *Nature Ecology & Evolution*, 1, 1870–1875.

448 Bartomeus, I., Saavedra, S., Rohr, R. P. & Godoy, O. (2021). Experimental evidence of the im-

449 portance of multitrophic structure for species persistence. *Proceedings of the National Academy*

450 *of Sciences*, 118, e2023872118.

451 Bastolla, U., Fortuna, M. A., Pascual-García, A., Ferrera, A., Luque, B. & Bascompte, J. (2009).

452 The architecture of mutualistic networks minimizes competition and increases biodiversity. *Na-*

453 *ture*, 458, 1018–20.

454 Buche, L., Spaak, J. W., Jarillo, J. & De Laender, F. (2022). Niche differences, not fitness

455 differences, explain predicted coexistence across ecological groups. *Journal of Ecology*, In press.

456 CaraDonna, P. J., Burkle, L. A., Schwarz, B., Resasco, J., Knight, T. M., Benadi, G., Blüthgen,

457 N., Dormann, C. F., Fang, Q., Fründ, J., Gauzens, B., Kaiser-Bunbury, C. N., Winfree, R. &

458 Vázquez, D. P. (2020). Seeing through the static: The temporal dimension of plant–animal

459 mutualistic interactions. *Ecology Letters*, 24, 149–161.

460 Chesson, P. (2000). Mechanisms of Maintenance of Species Diversity. *Annual Review of Ecology,*

461 *Evolution, and Systematics*, 31, 343–366.

462 Chu, C. & Adler, P. B. (2015). Large niche differences emerge at the recruitment stage to stabilize

463 grassland coexistence. *Ecological Monographs*, 85, 373–392.

464 Dougoud, M., Vinckenbosch, L., Rohr, R. P., Bersier, L.-F. & Mazza, C. (2018). The feasibility

465 of equilibria in large ecosystems: A primary but neglected concept in the complexity-stability

466 debate. *PLOS Computational Biology*, 14, e1005988.

467 Duchenne, F., Fontaine, C., Teuli  re, E. & Th  bault, E. (2021). Phenological traits foster persistence of mutualistic networks by promoting facilitation. *Ecology Letters*, 24, 2088–2099.

468

469 Evans, D. M., Pocock, M. J. O. & Memmott, J. (2013). The robustness of a network of ecological networks to habitat loss. *Ecology letters*, 16, 844–852.

470

471 Garc  a-Callejas, D., Molowny-Horas, R. & Ara  o, M. B. (2018). Multiple interactions networks: Towards more realistic descriptions of the web of life. *Oikos*, 127, 5–22.

472

473 Gauzens, B., Rall, B. C., Mendon  a, V., Vinagre, C. & Brose, U. (2020). Biodiversity of intertidal food webs in response to warming across latitudes. *Nature Climate Change*, 10, 264–269.

474

475 Germain, R. M., Weir, J. T. & Gilbert, B. (2016). Species coexistence: Macroevolutionary relationships and the contingency of historical interactions. *Proceedings of the Royal Society B: Biological Sciences*, 283, 20160047.

476

477

478 Gibbs, T., Grilli, J., Rogers, T. & Allesina, S. (2018). Effect of population abundances on the stability of large random ecosystems. *Physical Review E*, 98, 022410.

479

480 Godoy, O., Bartomeus, I., Rohr, R. P. & Saavedra, S. (2018). Towards the integration of niche and network theories. *Trends in Ecology & Evolution*, 33, 287–300.

481

482 Godoy, O., G  mez-Aparicio, L., Mat  as, L., P  rez-Ramos, I. M. & Allan, E. (2020). An excess of niche differences maximizes ecosystem functioning. *Nature Communications*, 11, 4180.

483

484 Godoy, O. & Levine, J. M. (2014). Phenology effects on invasion success: Insights from coupling field experiments to coexistence theory. *Ecology*, 95, 726–736.

485

486 Godoy, O., Stouffer, D. B., Kraft, N. J. B. & Levine, J. M. (2017). Intransitivity is infrequent and fails to promote annual plant coexistence without pairwise niche differences. *Ecology*, 98, 1193–1200.

487

488

489 Gracia-L  zaro, C., Hern  ndez, L., Borge-Holthoefer, J. & Moreno, Y. (2018). The joint influence of competition and mutualism on the biodiversity of mutualistic ecosystems. *Scientific Reports*, 8, 9253.

490

491

492 Hartig, F. (2021). *DHARMA: Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regression Models*. URL <http://florianhartig.github.io/DHARMA/>. R package version 0.4.3.

493

494 Horn, H. S. (1966). Measurement of "overlap" in comparative ecological studies. *The American*

495 *Naturalist*, 100, 419–424.

496 Jacquet, C., Moritz, C., Morissette, L., Legagneux, P., Archambault, P. & Gravel, D. (2016). No
497 complexity–stability relationship in empirical ecosystems. *Nature communications*, 7, 12573.

498 Kéfi, S., Berlow, E. L., Wieters, E. A., Joppa, L. N., Wood, S. A., Brose, U. & Navarrete, S. A.
499 (2015). Network structure beyond food webs: Mapping non-trophic and trophic interactions on
500 Chilean rocky shores. *Ecology*, 96, 291–303.

501 Koffel, T., Daufresne, T. & Klausmeier, C. A. (2021). From competition to facilitation and
502 mutualism: A general theory of the niche. *Ecological Monographs*, 91, e01458.

503 Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. (2017). lmerTest package: Tests in linear
504 mixed effects models. *Journal of Statistical Software*, 82, 1–26.

505 Levin, S. A. (1998). Ecosystems and the Biosphere as Complex Adaptive Systems. *Ecosystems*, 1,
506 431–436.

507 Levine, J. M. & HilleRisLambers, J. (2009). The importance of niches for the maintenance of
508 species diversity. *Nature*, 461, 254–257.

509 Losapio, G., Schöb, C., Staniczenko, P. P. A., Carrara, F., Palamara, G. M., Moraes, C. M. D.,
510 Mescher, M. C., Brooker, R. W., Butterfield, B. J., Callaway, R. M., Cavieres, L. A., Kikvidze,
511 Z., Lortie, C. J., Michalet, R., Pugnaire, F. I. & Bascompte, J. (2021). Network motifs involving
512 both competition and facilitation predict biodiversity in alpine plant communities. *Proceedings
513 of the National Academy of Sciences*, 118, e2005759118.

514 May, R. M. (1972). Will a large complex system be stable? *Nature*, 238, 413–414.

515 Mayfield, M. M. & Stouffer, D. B. (2017). Higher-order interactions capture unexplained complex-
516 ity in diverse communities. *Nature Ecology & Evolution*, 1, 0062.

517 Medeiros, L. P., Boege, K., del-Val, E., Zaldívar-Riverón, A. & Saavedra, S. (2020). Observed
518 ecological communities are formed by species combinations that are among the most likely to
519 persist under changing environments. *The American Naturalist*, 197, E17–E29.

520 Meerbeek, K. V., Jucker, T. & Svenning, J.-C. (2021). Unifying the concepts of stability and
521 resilience in ecology. *Journal of Ecology*, 109, 3114–3132.

522 Morales-Castilla, I., Matias, M. G., Gravel, D. & Araújo, M. B. (2015). Inferring biotic interactions

523 from proxies. *Trends in Ecology and Evolution*, 30, 347–356.

524 Moreno-Mateos, D., Alberdi, A., Morrién, E., van der Putten, W. H., Rodríguez-Uña, A. & Mon-
525 toya, D. (2020). The long-term restoration of ecosystem complexity. *Nature Ecology & Evolution*,
526 4, 676–685.

527 Morrison, B. M. L., Brosi, B. J. & Dirzo, R. (2020). Agricultural intensification drives changes in
528 hybrid network robustness by modifying network structure. *Ecology Letters*, 23, 359–369.

529 Novella-Fernandez, R., Rodrigo, A., Arnan, X. & Bosch, J. (2019). Interaction strength in plant-
530 pollinator networks: Are we using the right measure? *PLOS ONE*, 14, e0225930.

531 Oksanen, J., Simpson, G. L., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O'Hara,
532 R., Solymos, P., Stevens, M. H. H., Szoeecs, E., Wagner, H., Barbour, M., Bedward, M., Bolker,
533 B., Borcard, D., Carvalho, G., Chirico, M., De Caceres, M., Durand, S., Antoniazi Evangelista,
534 H. B., FitzJohn, R., Friendly, M., Furneaux, B., Hannigan, G., Hill, M. O., Lahti, L., McGlinn,
535 D., Ouellette, M.-H., Ribeiro Cunha, E., Smith, T., Stier, A., Ter Braak, C. J. & Weedon, J.
536 (2022). *vegan: Community Ecology Package*. URL <https://CRAN.R-project.org/package=vegan>. R package version 2.6-2.

537 Olesen, J. M., Bascompte, J., Dupont, Y. L., Elberling, H., Rasmussen, C. & Jordano, P. (2011).
538 Missing and forbidden links in mutualistic networks. *Proceedings of the Royal Society B: Bio-
539 logical Sciences*, 278, 725–732.

540 Pilosof, S., Porter, M. A., Pascual, M. & Kéfi, S. (2017). The multilayer nature of ecological
541 networks. *Nature Ecology & Evolution*, 1, 0101.

542 Pocock, M. J. O., Evans, D. M. & Memmott, J. (2012). The robustness and restoration of a
543 network of ecological networks. *Science*, 335, 973–7.

544 Rohr, R. P., Saavedra, S. & Bascompte, J. (2014). On the structural stability of mutualistic
545 systems. *Science*, 345, 1253497–9.

546 Saavedra, S., Medeiros, L. P. & AlAdwani, M. (2020). Structural forecasting of species persistence
547 under changing environments. *Ecology Letters*, 23, 1511–1521.

548 Saavedra, S., Rohr, R. P., Bascompte, J., Godoy, O., Kraft, N. J. B. & Levine, J. M. (2017).
549 A structural approach for understanding multispecies coexistence. *Ecological Monographs*, 87,

551 470–486.

552 Saavedra, S., Rohr, R. P., Dakos, V. & Bascompte, J. (2013). Estimating the tolerance of species
553 to the effects of global environmental change. *Nature communications*, 4, 2350–2350.

554 Seibold, S., Cadotte, M. W., MacIvor, J. S., Thorn, S. & Müller, J. (2018). The necessity of
555 multitrophic approaches in community ecology. *Trends in Ecology & Evolution*, 33, 754–764.

556 Serván, C. A., Capitán, J. A., Grilli, J., Morrison, K. E. & Allesina, S. (2018). Coexistence of
557 many species in random ecosystems. *Nature Ecology & Evolution*, 2, 1237–1242.

558 Simha, A., Pardo-De la Hoz, C. J. & Carley, L. N. (2022). Moving beyond the “diversity para-
559
560 dox”: The limitations of competition-based frameworks in understanding species diversity. *The American Naturalist*, 200, 89–100.

561 Song, C., Rohr, R. P. & Saavedra, S. (2018). A guideline to study the feasibility domain of
562 multi-trophic and changing ecological communities. *Journal of Theoretical Biology*, 450, 30–36.

563 Stouffer, D. B. & Bascompte, J. (2011). Compartmentalization increases food-web persistence.
564 *Proceedings of the National Academy of Sciences*, 108, 3648–3652.

565 Tabi, A., Pennekamp, F., Altermatt, F., Alther, R., Fronhofer, E. A., Horgan, K., Mächler, E.,
566 Pontarp, M., Petchey, O. L. & Saavedra, S. (2020). Species multidimensional effects explain
567
568 idiosyncratic responses of communities to environmental change. *Nature Ecology & Evolution*, 4, 1036–1043.

569 Thébault, E. & Fontaine, C. (2010). Stability of ecological communities and the architecture of
570 mutualistic and trophic networks. *Science*, 329, 853–856.

571 Valdovinos, F. S. (2019). Mutualistic networks: Moving closer to a predictive theory. *Ecology
572 Letters*, 22, 1517–1534.

573 Vázquez, D. P., Lomáscolo, S. B., Maldonado, M. B., Chacoff, N. P., Dorado, J., Stevani, E. L. &
574 Vitale, N. L. (2012). The strength of plant-pollinator interactions. *Ecology*, 93, 719–725.

575 Wang, X., Peron, T., Dubbeldam, J. L. A., Kèfi, S. & Moreno, Y. (2021). Interspecific competition
576 shapes the structural stability of mutualistic networks. *arXiv:2102.02259 [physics, q-bio]*.

577 Data and code availability

578 The data and code used to generate the results of this study is available at <https://github.com/>
579 `garciacallejas/multi-trophic_feasibility`.