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Abstract

Subterranean habitats are generally very stable environments, and as such evolutionary transitions of
organisms from surface to subterranean lifestyles may cause considerable shifts in physiology,
particularly with respect to thermal tolerance. In this study we compared responses to heat shock at
the molecular level in a geographically widespread, surface-dwelling water beetle to a congeneric
subterranean species restricted to a single aquifer (Dytiscidae: Hydroporinae). The obligate
subterranean beetle Paroster macrosturtensis is known to have a lower thermal tolerance compared to
surface lineages (CTmax 38°C cf. 42-46 °C), but the genetic basis of this physiological difference has
not been characterized. We experimentally manipulated the thermal environment of 24 individuals to
demonstrate that both species can mount a heat shock response at high temperatures (35°C), as
determined by comparative transcriptomics. However, genes involved in these responses differ
between species and a far greater number were differentially expressed in the surface taxon, suggesting
it can mount a more robust heat shock response; these data may underpin its higher thermal tolerance
compared to subterranean relatives. In contrast, the subterranean species examined not only
differentially expressed fewer genes in response to increasing temperatures, but also in the presence
of the experimental setup employed here alone. Our results suggest P. macrosturtensis may be
comparatively poorly equipped to respond to both thermally induced stress and environmental
disturbances more broadly. The molecular findings presented here have conservation implications for
P. macrosturtensis and contribute to a growing narrative concerning weakened thermal tolerances in

obligate subterranean organisms at the molecular level.

KEYWORDS: heat shock response, heat shock proteins, subterranean habitats, molecular evolution,

transcriptomics, differential gene expression
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1| INTRODUCTION

The transition to an obligate subterranean lifestyle can cause massive shifts in an organism’s biology
(1), from the acquisition of classic troglomorphies such as the elongation of appendages for sensing
in an aphotic environment (2), to changes in lesser-studied traits including circadian rhythm (3,4),
reproductive biology (5), respiration (6), the number of larval instars (7,8) and chemosensation
(9,10). These changes have been attributed to the stark difference between subterranean and surface
(hereafter epigean) habitats. While epigean environments can vary immensely over both time and
space, subterranean environments, such as cave systems, generally possess high environmental
stability with respect to light levels, temperature, humidity, and nutrient availability (11-13).
Animals adapted to these environments might therefore be particularly well suited for the assessment
of responses to future climate change scenarios, particularly with respect to their thermal tolerances
and responses to increasing temperatures. Indeed, such habitats have been labelled as undervalued
natural laboratories for biological studies of global change (14).

A near-universal response to temperature-induced stress across the tree of life—and therefore a
method by which thermal tolerance can be gauged-is the heat shock response (hereafter HSR),
which involves the synthesis of heat-shock proteins (hereafter HSPs). HSPs include those proteins
that are expressed constitutively under non-stressful conditions, called heat shock cognates, or those
only induced when organisms are exposed to thermal extremes, during which they assist in
stabilising and refolding proteins at risk of denaturation. An inducible HSR has been observed in
almost all organisms studied to date, and the proteins involved in this response, as well as the
response itself, are highly conserved among different domains of life (15). An estimated 50 to 200
genes are involved in the HSR, the most significantly induced of which are HSPs (16). However,
there are exceptions to this rule: a lack of an inducible HSR has been documented in a wide range of
species, largely those that occupy very stable thermal environments such as Antarctic marine habitats

(17,18).
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Knowledge of the HSR in organisms from thermally stable subterranean habitats, including
their associated inducible HSPs and at which temperatures this response might be activated, is
scarce, with only a few studies devoted to invertebrate taxa (14,19-25). However, invertebrates
overwhelmingly contribute to the biodiversity of subterranean habitats compared to vertebrates
(26,27). The bulk of existing studies on the thermal tolerance of subterranean invertebrates suggest
such taxa can withstand temperatures above those they would encounter in nature and that they have
not lost the HSR. Only a small number of these studies have examined the heat shock response
directly (28) and tend to focus on thermal tolerances gauged through survival experiments.
Moreover, a better understanding of responses to current climate change predictions for subterranean
animals has been identified as a fundamental question in subterranean biology given emerging
conservation issues associated with their respective ecosystems (29). To address this knowledge gap,
here we make use of genomic data from Australian representatives of a group of aquatic
invertebrates containing both epigean and subterranean lineages.

The Yilgarn Craton in central Western Australia (WA) houses a diverse subterranean diving
beetle fauna belonging to two tribes, Bidessini and Hydroporini (Dytiscidae). While epigean species
can be found practically continent-wide, subterranean taxa are isolated in calcrete aquifers (hereafter
calcretes) associated with ancient palaeodrainage systems in the region. These calcretes are
completely devoid of light and animals contained within them are assumed to have little to no access
to air above the water’s surface (6). Each calcrete houses between one and three dytiscid species, but
at the time of writing only around a quarter of the ~200 known calcretes have been sampled (30-32).
Nonetheless, lineages in both tribes are known to have made independent yet parallel, repeated
transitions into underground habitats from epigean ancestors during the late Miocene to early
Pleistocene, likely in response to continental aridification (32—35). In each case these transitions
have involved the loss of eyes, pigment, and wings (30) as well as the gain of a remarkable ability to

respire directly from water (6). Preliminary evidence suggests that subterranean members of these
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lineages are less tolerant of thermal extremes compared to epigean relatives (36), but the molecular
mechanisms underlying such tolerances—and genomic changes associated with a subterranean
transition in these animals more broadly—remain unknown. An investigation into the potential link
between the above-mentioned mode of respiration, oxygen delivery, and heat tolerance is also
lacking (37).

In the present study, we focus on two members of the Hydroporini: Paroster
nigroadumbratus (Clark), an epigean species endemic to South Australia, and the subterranean
Paroster macrosturtensis (Watts & Humphreys) found exclusively in a single calcrete at Sturt
Meadows in the Yilgarn region of WA. As subterranean dytiscids likely descended from only a
handful of epigean lineages, meaningful comparisons can be made between these taxa despite their
distributions being geographically disjunct and their divergence ca. 15 Mya (32). A recent study
showed that P. macrosturtensis has a reduced upper critical thermal maximum (CTmax) of 38.3°C
compared to other epigean dytiscids (42-44.5°C) (36), mirroring previous results for other cave
beetle species (23). These findings suggest P. macrosturtensis is unlikely to reach its thermal critical
maximum under current climate change predictions. However, given the thermal stability in its
environment, it remains unknown as to whether P. macrosturtensis might have a modified HSR
compared to its epigean relatives and if exposure to high temperatures may nonetheless induce
significant stress in this subterranean species. Here, we present transcriptomic data from individuals
of P. macrosturtensis and P. nigroadumbratus subjected to varying degrees of heat shock following
the results of Jones et al. (36). In the present study we specifically aimed 1) to generate a high-
quality, near-complete reference transcriptome for P. nigroadumbratus and 2) using this dataset,
characterise and compare the HSR of P. nigroadumbratus and P. macrosturtensis, specifically with

respect to which genes are differentially expressed and the conditions under which this occurs.
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2 | MATERIALS AND METHODS

2.1 | Taxon sampling, experimental design, and cDNA sequencing

Beetle specimens (P. macrosturtensis, n=11; P. nigroadumbratus, n=13) were sourced as described
in a previous study and subjected to heat stress using an aquarium setup described therein (36).
Specimens were placed in one of three groups: in a controlled-temperature cabinet at 25°C (hereafter
control), in vials within the experimental setup at 25°C, and in vials within the experimental setup
ramped to 35°C. The control temperature of 25°C was selected by (36) to reflect the approximate
average groundwater temperatures of the aquifer that P. macrosturtensis is found in. Following
treatment, the individuals were placed in liquid nitrogen for RNA sequencing immediately after
exposure to control temperatures and thermal extremes. RNA extractions were performed using
single whole bodies prior to the synthesis and sequencing of barcoded cDNA samples. Quality
control of sequence data was performed using Trim Galore with default settings v.0.4.1

(http://bicinformatics.babraham.ac.uk/projects/trim_galore). More information regarding specimen

collection and husbandry, experimental design, cDNA sequencing, and phylogenetic analysis can be

found in the electronic supplementary material.

2.2 | Assembly of Paroster nigroadumbratus reference transcriptome

A reference transcriptome for P. nigroadumbratus was de novo assembled using Trinity v.2.5.1
using default settings (38) and derived from unpublished raw RNA-seq data from (39). Resulting
transcriptome completeness was validated using BUSCO v.5 (40,41), and functional annotation was
performed using TransDecoder v.5.5.0 (42) and the Trinotate v.3.2.1 pipeline (38), which employs

SQLite (http://sqlite.org/index.html), BLAST v.2.7.1 (43), and HMMER v.3.2 (http://hmmer.org).

Redundancy within the transcriptome assembly was reduced by retaining only the longest isoform
for each Trinity gene identifier, following (10), ensuring differential expression analysis was

performed at the Trinity ‘gene’ level rather than that of isoforms. This subsetted dataset was used in
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downstream analyses, though we note this approach limited our ability to examine alternative splice

variants.

2.3 | Differential expression and Gene Ontology enrichment analysis

The above reference transcriptome was indexed and raw reads generated in this study from both P.
macrosturtensis and P. nigroadumbratus were quasi-mapped to it and normalised using Salmon
v.1.1.0 (44). Differential expression analysis was performed using edgeR v.3.32.1 (45) alongside
Gene Ontology (GO) enrichment analysis, executed using Trinity helper scripts. Differential
expression and enrichment/depletion of GO terms was gauged using two comparisons per species
(Figure 1). First, for each species the group from the experimental setup at 25°C was compared to the
control group outside of the setup at 25°C (hereafter comparison 1). Second, for each species the
group in the experimental setup at 35°C was compared to the group in the experimental setup at 25°C
(hereafter comparison 2). A diagrammatic representation of these comparisons is shown in Figure 1.
These comparisons were designed to gauge the impact of the presence of the experimental setup
alone and an increase in temperature, respectively. A full description of this process can be found in

the electronic supplementary material.

2.4 | Phylogenetic analysis of putative heat shock proteins

Putative heat shock protein-encoding genes were aligned with coleopteran orthologs sourced from
the OrthoDB v.10.1 catalogue (46) and GenBank to confirm their identity (Table S1). Phylogenetic

inference for each HSP family was performed in RAXML v.8.2.12 (47).
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\ (
Paroster macrosturtensis  Paroster nigroadumbratus

Subterranean species Surface species
Comparison 1 Comparison 2
Impact of experimental setup Impact of temperature
(ah) (@) () (ah)
P.mac. Bl N vs. 7 A / A vs. |/ A
P\ A 4 P\ A 4
25°C 25°C 25°C 35°C
P. nigroa. VS. Vs.
25°C 25°C 25°C 35°C
in experimental outside of ——
setup setup (control) in experimental
setup

FIGURE 1 Paroster beetles included in this study and the experimental design used to assess differential gene
expression associated with thermal extremes alone, as opposed to solely the presence of the experimental setup,
following (36). Only intraspecific comparisons were made when assessing differential gene expression in our analyses;

interspecific comparisons were made post-hoc. Photographs by Chris Watts and Howard Hamon.
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3 | RESULTS
3.1 | A high-quality reference transcriptome for Paroster nigroadumbratus

enables the characterisation of genes involved in the heat shock response

Here we present a high-quality, near-complete transcriptome for the epigean beetle P.
nigroadumbratus. This dataset consisted of 75,045,266 paired-end reads (72,266,264 following
quality control measures), 84% of which were incorporated into 134,246 de novo assembled
transcripts representing 60,683 unique Trinity ‘genes’and 41,979 predicted ORFs. According to the
assessment using BUSCO, this transcriptome was 87.66% complete with respect to complete core
arthropod genes and 96.74% complete when considering partial genes. Of these transcripts, 47,810
were able to be functionally annotated using the Trinotate pipeline. Subsetting our predicted peptide
dataset to include only the longest isoforms per Trinity gene identifier, allowing us a proxy with
which to perform our downstream analyses at the gene level, resulted in 14,897 predicted ORFs

(with 11,609, or ~77%, having some level of annotation).

3.2 | Differential expression analysis reveals distinct expression profiles

associated with the heat shock response in Paroster

We compared expression profiles between members of the same species, subjected to different
conditions, to assess genes differentially expressed in response to the presence of the experimental
setup employed here (comparison 1) or an increase in temperature in that setup (comparison 2)
(Figure 2). Parallels and contrasts between P. nigroadumbratus and macrosturtensis were then
assessed post-hoc. Differential expression analysis using edgeR identified a total of 723 differentially
expressed (DE) genes in the epigean P. nigroadumbratus samples and 157 in the subterranean P.
macrosturtensis, with the two species exhibiting complex and markedly different expression profiles

(Figures 2, 3, S2, S3). P. nigroadumbratus consistently differentially expressed a greater number of
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genes than P. macrosturtensis: 147 and 67 genes were differentially expressed in comparison 1 and
89 and 51 genes were differentially expressed in comparison 2, respectively. The presence of the
experimental setup and an increase in water temperature caused both species to differentially express
genes involved in the heat shock response. Contrasting expression profiles with respect to the genes
involved were not only observed between the two species (as above) but also in the response of each
species to these two different stressors (Figure 2).

In comparison 1, the surface species P. macrosturtensis significantly upregulated a HSP gene
putatively annotated as Hsp68, encoding a major heat shock protein in the HSP70 family, relative to
the control. Paroster nigroadumbratus upregulated the HSP Hsp68 and downregulated the SHSP
I(2)efl in the experimental setup relative to the control. None of the HSP transcripts differentially
expressed by P. nigroadumbratus in response to the presence of the experimental setup only were
differentially expressed by P. macrosturtensis or by P. nigroadumbratus in comparison 2.

In comparison 2, both species upregulated the HSP genes Hsc70-4 and Hsp83 as well as the
cochaperones Samui, DnaJ, AHSA1, and Unc45a relative to groups at the lower temperature of 25°C.
Both P. nigroadumbratus and macrosturtensis also upregulated separate Trinity “genes” annotated as
Hsp68 each at 35 °C relative to the 25 °C treatment (Fig. 2), likely representing closely related loci
that are yet to be comprehensively characterised in the beetles. Additional differentially expressed
genes unique to each species at 35°C relative to the 25°C treatment included: 1) downregulation of
the HSPs Hsp60A and Hsp68 in Paroster macrosturtensis, and 2) the upregulation of the SHSP
I(2)efl, the HSP Hsp68, and the HSP cognate Hsc70-3 in P. nigroadumbratus. Other annotated genes
potentially involved in the HSR, such as Hsc70-2, Hsc70-5, Trapl, and Hsp90b1, were not
differentially expressed in either species (Figure 4). A full list of differentially expressed genes
shared between (or unique to) the two beetle species under different conditions is available in Table

S2. Proteins unrelated to the HSR, yet widely differentially expressed in our dataset (i.e., with

10
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reoccurring annotations across different Trinity ‘genes’) included those involved in the transport of
lipids and nutrient storage, such as vitellogenin and apolipophorins.

Gene Ontology enrichment analysis enables a high-order approximation of the functional
consequences of differentially expressed genes. We did not observe any consistent depletion of GO
terms associated with downregulated genes, but enriched terms were reflective of our differential
expression results above (Figure 3). In both species, terms associated with the HSR were enriched in
association with an increased temperature at 35°C (e.g., ATPase activator activity [GO:0001671],
chaperone binding [GO:0051087], and unfolded protein binding [GO:0051082]). The most common
remaining Gene Ontology terms included lipid transporter activity (GO:0005319), nutrient reservoir

activity (GO:0045735), metal ion binding (G0O:0046872), and zinc ion binding (GO:0008270).

3.3 | Phylogenetic analyses of HSPs

Our HSP nucleotide alignments consisted of 12 sequences across 1,743 bp (HSP60 family), 67
sequences across 3,669 bp (HSP70 family), 29 sequences across 3,741 bp (HSP90 family) and 23
sequences across 867 bp (SHSP family). Sequences clustered by gene with strong node support in our
phylogeny (Figure 4). All sequences from the Paroster species examined here were recovered as
nested within these clades, confirming the orthology of annotated HSPs, with the exception of a
transcript present in both species and inferred as sister to the Hsp68+Hsc70-2 clades. This gene was

not differentially expressed in response to heat shock in our dataset.

11
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291 FIGURE 2 Differentially expressed (DE) genes in Paroster macrosturtensis and nigroadumbratus in comparison 1 (the experimental
292 setup used in this study relative to the control, black circles) or comparison 2 (35°C within the setup relative to 25°C in the setup, red
293 circles). Comparisons are ordered by total number of DE genes. A) DE genes shared (circles linked by lines) or unique to (unlinked
294 circles) each comparison per species, summed in the bar graph above. Up- or downregulated HSPs or HSP cochaperones are shown for
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297 Trinotate annotations and orthology was validated using phylogenetic analysis (Figure 4).
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expression of genes shown in Figure 2. Treemaps are labelled as comparison 1 (the experimental setup used in this study

relative to the control) or 2 (35°C within the setup relative to 25°C in the setup). The size of squares is proportional to the

p-value associated with differential expression of respective genes. Similar GO terms share a colour and are represented

in white text by the largest square per group. GO terms associated with genes involved in the heat shock response are

indicated by a star.
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346  FIGURE 4 Phylogenies of heat shock Trinity ‘genes’ inferred using RAXML to validate the identity of putative HSP

347  orthologs in Paroster species. Trees are as follows: A) sHSP family, B) HSP60, C) HSP90, D) HSP70. Scale bar is in

348  substitutions/site; BS = bootstrap node support. Tip labels show transcript names/GenBank accession numbers. Tip

349 names for P. macrosturtensis are shared with the reference P. nigroadumbratus transcript reads were assembled against.

350  Tip names with stars specifically refer to genes differentially expressed in the presence of the experimental setup alone

351  relative to the control (comparison 1) or at 35°C relative to 25°C in the experimental setup (comparison 2).

352
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357 4 | DISCUSSION

358  Here, we have comprehensively characterised the heat shock response at the molecular level in the
359  subterranean diving beetle Paroster macrosturtensis and one of its surface-dwelling relatives. Using
360 anear-complete reference transcriptome for P. nigroadumbratus—the first such dataset for a member
361  of the Hydroporinae—we performed differential expression and GO enrichment analysis to explore
362  genes putatively involved in the HSR. Our results demonstrate that both the epigean P.

363  nigroadumbratus and subterranean P. macrosturtensis have an inducible HSR, in agreement with
364  implications of previous survival experiments for the genus (36). Putative orthologs of HSP

365  cochaperones, sHSP, HSP60, HSP70, and HSP90 genes were accounted for in our differential

366  expression analysis. However, the conditions under which this response is activated differs between
367  species, and P. macrosturtensis notably differentially expressed just over half of the number of genes
368 compared to P. nigroadumbratus in response to a rise in temperature.

369

370 4.1 | Heat shock-induced gene expression in Paroster

371  HSPs identified as differentially expressed in this study support past results for beetle species and
372  other insects more broadly. A major trend in our results concerned the upregulation of HSP70 genes
373  at high temperatures, particularly Hsp68; HSP70s are highly expressed in response to heat shock in
374 other beetle species, including cave-adapted subterranean taxa (28,49,50), and work in concert with
375  sHSPs and HSP90s (51-54). In addition to the heat shock proteins, we also observed the

376  upregulation of the heat shock cognates Hsc70-3 and Hsc70-4 and putative cochaperones Tsc2,

377  Samui, DnaJ, AHSAL, Unc45a at 35°C relative to the 25°C treatment. To our knowledge there has
378  been no documentation of a coleopteran heat shock cognate being upregulated in response to

379 increasing temperature, though evidence exists for the parasitic wasp Pteromalus, in which hsc70 is
380 induced by heavy metal poisoning and starvation in addition to thermal extremes (55). Heat shock

381  cognates are also upregulated during diapause in silkworm eggs (56) and young bumble bee queens
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(57), potentially playing a cryoprotective role in these species. Cochaperones are less well
characterised in insects, but evidence for their upregulation in response to heat shock has been
documented in hemipterans and ants (58-60). We observed the downregulation of several heat shock
proteins in both species in the presence of the experimental setup relative to the control, and at high
temperatures relative to the 25°C treatment. Both sHSPs and HSP70s have been documented as being
downregulated during periods of heat stress in other insects, e.g. in silk moths (61). In P.
nigroadumbratus this was restricted to the SHSP 1(2)efl and cochaperone Tsc2 in the experimental
setup-only comparison. In contrast, the HSPs Hsp60A and Hsp68 were downregulated in P.

macrosturtensis at high temperatures relative the 25°C treatment.

4.2 | Expression profiles reflect differing thermal tolerances

Our molecular data mirrors previously documented reduced thermal tolerances in subterranean
insects such as P. macrosturtensis. The species differentially expressed far fewer genes in response
to 35°C relative to the 25°C treatment compared to P. nigroadumbratus; similarly reduced numbers
of differentially expressed genes have also been associated with lower thermal tolerances in other
organisms such as fish (62), lizards (63), rotifers (64), red algae (65), and plants (66,67), though we
note the inverse (or alternatively, no clear pattern) has been observed in a number of cases,
potentially reflecting lower levels of stress as opposed to an inability to mount a HSR (68,69).

In keeping with the above findings, P. macrosturtensis also differentially expressed far fewer
genes than its epigean counterpart in response to the presence of the experimental setup alone
relative to the control (Figure 2). HSPs are known to be involved in responding to a wide range of
stressors (70—-72), and the involvement of such genes is not surprising in stress unrelated to
temperature; individuals being moved into the experimental setup employed here may have induced
stress from handling, for example. The greater number of genes differentially expressed by P.

nigroadumbratus in this scenario may suggest P. macrosturtensis is potentially less able to robustly
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respond to ambient stressors more broadly (i.e., environmental disturbances). Such a scenario is
supported by past work showing subterranean species are sensitive to ambient stressors under
otherwise non-stressful temperatures (73), and being an epigean species, P. nigroadumbratus is
presumably exposed to far more dramatic environmental fluctuations (in addition to more variable
temperatures) on a regular basis than a subterranean species such as P. macrosturtensis. We also note
that in the presence of the experimental setup relative to the control, P. macrosturtensis upregulated
the same Hsp68-annotated Trinity ‘gene’ implicated in responses to heat-induced stress in both
species (Figure 2), whereas HSPs differentially expressed by P. nigroadumbratus under the same

conditions did not overlap with those in other groups.

4.3 | Heat shock and the climatic variability hypothesis

The dataset we present here adds to a growing body of knowledge concerning the HSR in organisms
that inhabit thermally stable environments. Central to discourse on this topic is the climatic
variability hypothesis, which posits that the thermal tolerance of a taxon is positively correlated with
its temperature ranges encountered in nature (74). This hypothesis implies species from extremely
stable thermal environments can no longer tolerate temperature extremes, and has been demonstrated
in a wide variety of organisms that have either lost or possess a reduced HSR, such as cnidarians
(75), limpets (76), amphipods and sea stars (77), and midges (78). In contrast, species that inhabit
areas with a broader range of climatic conditions would be expected to be more robust in the face of
environmental fluctuations (79). While P. macrosturtensis does have a lower thermal tolerance
compared to P. nigroadumbratus, in line with the above hypothesis, it nonetheless has retained a
HSR at high temperatures per our transcriptomic data. Similar studies have shown certain
groundwater-dwelling organisms display an inducible HSR in response to conditions far warmer than
they would encounter in nature (20,21). The HSR of these species, as well as P. macrosturtensis,

might be retained at such high temperatures for a variety of reasons, including the fact that the
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species has not occupied its respective environments for a sufficient length of time in evolutionary
terms for their HSR to be lost, e.g. via adaptive processes or a relaxation of purifying selection (36).
The latter scenario is plausible as P. macrosturtensis is also known to have retained the ability to

detect light despite inhabiting an aphotic environment for over ~3 million years (80).

4.4 | Conservation implications

While the retention of a HSR in both species examined here supports the physiological findings of
Jones et al. (36), almost half (4 out of 10 assayed) of the P. macrosturtensis cohort did not survive 24
hours after heat shock in that study. It therefore remains to be seen if the species can tolerate such
extremes in the long term. Indeed, even cave beetles considered stenothermal-those that are only
capable of surviving within an extremely narrow temperature range—have retained the HSR (23), but
nonetheless cannot survive at extreme temperatures for long periods (>7 days) compared to epigean
relatives (25,28). Threatening processes that P. nigroadumbratus and macrosturtensis are both at risk
of experiencing in their fragile habitats might impact the latter species far more negatively as a

result.

Temperature rises of up to 5°C by the end of the century compared to pre-industrial levels
may occur in central Western Australia per current climate change projections (81). Water
temperatures in aquifers are generally cooler and more stable than, but are nonetheless coupled with,
conditions above-ground, and are also predicted to warm as regional temperatures increase (82—84).
The subterranean habitat of these insects is therefore unlikely to shield them from the impacts of a
warming world. The fact that P. macrosturtensis appears to be unable to mount as robust a HSR
compared to P. nigroadumbratus, and therefore may experience a significantly higher amount stress
compared to epigean species in the face of high temperatures, has conservation implications for the

understudied fauna of the Australian Yilgarn and beyond.
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Datasets such as these are especially pertinent for subterranean invertebrates found in the
Yilgarn region—including P. macrosturtensis and its subterranean relatives, in addition to
crustaceans such as isopods and amphipods—as the groundwater in their calcrete habitats is heavily
utilised for water extraction by industry (85,86). As short-range endemics to the extreme, such
species are not only at risk of habitat degradation via climate change, but from the direct intersection
of shallow aquifers with e.g. mining activities and through the drawdown of groundwater beneath
calcretes at greater depths (87). In addition to reflecting the reduced thermal tolerances of Australian
subterranean dytiscids, the molecular data we presented here for P. macrosturtensis also suggests a
potentially weaker response in the face of other environmental disturbances unrelated to temperature.
These factors have the potential to render P. macrosturtensis more vulnerable to both of the above
threatening processes compared to epigean relatives, with implications for subterranean fauna more
broadly. An increased knowledge of the assumed fragility of Australian subterranean invertebrates in
the face of these stressors is therefore crucial for informing future conservation management plans

for these animals and their fragile habitats.

5 | CONCLUSIONS

Our findings demonstrate the reduced thermal tolerance of the subterranean species P.
macrosturtensis compared to its epigean relatives is reflected, and further clarified by, transcriptomic
data. While our data are supported by past physiological evidence that demonstrated P.
macrosturtensis could survive at high temperatures, albeit not to the limits of epigean species (36),
the present study adds a new layer to this narrative. P. macrosturtensis might possess increased
mortality in the face of high temperatures because the species differentially expresses far fewer genes
in response to heat shock compared to the epigean relative P. nigroadumbratus, suggesting it may be
unable to mount as robust a heat shock response. While P. macrosturtensis might be able to survive

at temperatures far above those it encounters in nature for short periods, as detailed by Jones et al.
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(36), our results suggest the species also experiences a weaker transcriptomic response to factors
unrelated to temperature (i.e. the presence of the experimental setup employed here) relative to P.
nigroadumbratus. As such, P. macrosturtensis may not be as well-equipped to survive higher
temperatures and other threatening processes, such as disturbances to surrounding groundwater, in
the long term compared to surface-dwelling members of Paroster. Future work in this system will
ideally assess a far greater number of dytiscid species to further explore the trends we observe here.
As the present study did not consider the role of isoforms in the heat shock response of these
animals, broader studies could examine these responses to heat stress at a finer scale by conducting

differential expression analysis on the transcript, as opposed to gene, level.
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