

1 **Differential transcriptomic responses to heat stress in surface and subterranean**
2 **diving beetles**

3

4 Perry G. Beasley-Hall^{1,2,3*} | Terry Bertozzi^{1,2} | Tessa M. Bradford^{1,2} | Charles S. P. Foster⁴ | Karl
5 Jones^{1,2} | Simon M. Tierney⁵ | William F. Humphreys^{6,7} | Andrew D. Austin^{1,2} | Steven J. B.
6 Cooper^{1,2}

7 ¹ School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5000,
8 Australia.

9 ² South Australian Museum, Adelaide, South Australia 5000, Australia.

10 ³ School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales
11 2006, Australia.

12 ⁴ School of Medical Sciences, University of New South Wales, Sydney, New South Wales 2052,
13 Australia.

14 ⁵ Hawkesbury Institute for the Environment, Western Sydney University, Building R2 Bourke Street,
15 Richmond NSW 2753, Australia

16 ⁶ Western Australian Museum, Locked Bag 40, Welshpool DC, WA 6986, Australia

17 ⁷ School of Biological Sciences, University of Western Australia, Crawley, WA 6009, Australia

18

19 ***Corresponding author**

20 Perry Beasley-Hall, School of Biological Sciences, Darling Building, The University of Adelaide,
21 Adelaide, South Australia 5000, Australia

22 Email: perry.beasley-hall@adelaide.edu.au

23 **Abstract**

24 Subterranean habitats are generally very stable environments, and as such evolutionary transitions of
25 organisms from surface to subterranean lifestyles may cause considerable shifts in physiology,
26 particularly with respect to thermal tolerance. In this study we compared responses to heat shock at
27 the molecular level in a geographically widespread, surface-dwelling water beetle to a congeneric
28 subterranean species restricted to a single aquifer (Dytiscidae: Hydroporinae). The obligate
29 subterranean beetle *Paroster macrosturtensis* is known to have a lower thermal tolerance compared to
30 surface lineages (CT_{max} 38°C cf. 42-46 °C), but the genetic basis of this physiological difference has
31 not been characterized. We experimentally manipulated the thermal environment of 24 individuals to
32 demonstrate that both species can mount a heat shock response at high temperatures (35°C), as
33 determined by comparative transcriptomics. However, genes involved in these responses differ
34 between species and a far greater number were differentially expressed in the surface taxon, suggesting
35 it can mount a more robust heat shock response; these data may underpin its higher thermal tolerance
36 compared to subterranean relatives. In contrast, the subterranean species examined not only
37 differentially expressed fewer genes in response to increasing temperatures, but also in the presence
38 of the experimental setup employed here alone. Our results suggest *P. macrosturtensis* may be
39 comparatively poorly equipped to respond to both thermally induced stress and environmental
40 disturbances more broadly. The molecular findings presented here have conservation implications for
41 *P. macrosturtensis* and contribute to a growing narrative concerning weakened thermal tolerances in
42 obligate subterranean organisms at the molecular level.

43

44 **KEYWORDS:** heat shock response, heat shock proteins, subterranean habitats, molecular evolution,
45 transcriptomics, differential gene expression

46 1 | INTRODUCTION

47 The transition to an obligate subterranean lifestyle can cause massive shifts in an organism's biology
48 (1), from the acquisition of classic troglomorphies such as the elongation of appendages for sensing
49 in an aphotic environment (2), to changes in lesser-studied traits including circadian rhythm (3,4),
50 reproductive biology (5), respiration (6), the number of larval instars (7,8) and chemosensation
51 (9,10). These changes have been attributed to the stark difference between subterranean and surface
52 (hereafter epigean) habitats. While epigean environments can vary immensely over both time and
53 space, subterranean environments, such as cave systems, generally possess high environmental
54 stability with respect to light levels, temperature, humidity, and nutrient availability (11–13).
55 Animals adapted to these environments might therefore be particularly well suited for the assessment
56 of responses to future climate change scenarios, particularly with respect to their thermal tolerances
57 and responses to increasing temperatures. Indeed, such habitats have been labelled as undervalued
58 natural laboratories for biological studies of global change (14).

59 A near-universal response to temperature-induced stress across the tree of life—and therefore a
60 method by which thermal tolerance can be gauged—is the heat shock response (hereafter HSR),
61 which involves the synthesis of heat-shock proteins (hereafter HSPs). HSPs include those proteins
62 that are expressed constitutively under non-stressful conditions, called heat shock cognates, or those
63 only induced when organisms are exposed to thermal extremes, during which they assist in
64 stabilising and refolding proteins at risk of denaturation. An inducible HSR has been observed in
65 almost all organisms studied to date, and the proteins involved in this response, as well as the
66 response itself, are highly conserved among different domains of life (15). An estimated 50 to 200
67 genes are involved in the HSR, the most significantly induced of which are HSPs (16). However,
68 there are exceptions to this rule: a lack of an inducible HSR has been documented in a wide range of
69 species, largely those that occupy very stable thermal environments such as Antarctic marine habitats
70 (17,18).

71 Knowledge of the HSR in organisms from thermally stable *subterranean* habitats, including
72 their associated inducible HSPs and at which temperatures this response might be activated, is
73 scarce, with only a few studies devoted to invertebrate taxa (14,19–25). However, invertebrates
74 overwhelmingly contribute to the biodiversity of subterranean habitats compared to vertebrates
75 (26,27). The bulk of existing studies on the thermal tolerance of subterranean invertebrates suggest
76 such taxa can withstand temperatures above those they would encounter in nature and that they have
77 not lost the HSR. Only a small number of these studies have examined the heat shock response
78 directly (28) and tend to focus on thermal tolerances gauged through survival experiments.
79 Moreover, a better understanding of responses to current climate change predictions for subterranean
80 animals has been identified as a fundamental question in subterranean biology given emerging
81 conservation issues associated with their respective ecosystems (29). To address this knowledge gap,
82 here we make use of genomic data from Australian representatives of a group of aquatic
83 invertebrates containing both epigean and subterranean lineages.

84 The Yilgarn Craton in central Western Australia (WA) houses a diverse subterranean diving
85 beetle fauna belonging to two tribes, Bidessini and Hydroporini (Dytiscidae). While epigean species
86 can be found practically continent-wide, subterranean taxa are isolated in calcrete aquifers (hereafter
87 calcretes) associated with ancient palaeodrainage systems in the region. These calcretes are
88 completely devoid of light and animals contained within them are assumed to have little to no access
89 to air above the water's surface (6). Each calcrete houses between one and three dytiscid species, but
90 at the time of writing only around a quarter of the ~200 known calcretes have been sampled (30–32).
91 Nonetheless, lineages in both tribes are known to have made independent yet parallel, repeated
92 transitions into underground habitats from epigean ancestors during the late Miocene to early
93 Pleistocene, likely in response to continental aridification (32–35). In each case these transitions
94 have involved the loss of eyes, pigment, and wings (30) as well as the gain of a remarkable ability to
95 respire directly from water (6). Preliminary evidence suggests that subterranean members of these

96 lineages are less tolerant of thermal extremes compared to epigean relatives (36), but the molecular
97 mechanisms underlying such tolerances—and genomic changes associated with a subterranean
98 transition in these animals more broadly—remain unknown. An investigation into the potential link
99 between the above-mentioned mode of respiration, oxygen delivery, and heat tolerance is also
100 lacking (37).

101 In the present study, we focus on two members of the Hydroporini: *Paroster*
102 *nigroadumbratus* (Clark), an epigean species endemic to South Australia, and the subterranean
103 *Paroster macrosturtensis* (Watts & Humphreys) found exclusively in a single calcrete at Sturt
104 Meadows in the Yilgarn region of WA. As subterranean dytiscids likely descended from only a
105 handful of epigean lineages, meaningful comparisons can be made between these taxa despite their
106 distributions being geographically disjunct and their divergence *ca.* 15 Mya (32). A recent study
107 showed that *P. macrosturtensis* has a reduced upper critical thermal maximum (CT_{max}) of 38.3°C
108 compared to other epigean dytiscids (42–44.5°C) (36), mirroring previous results for other cave
109 beetle species (23). These findings suggest *P. macrosturtensis* is unlikely to reach its thermal critical
110 maximum under current climate change predictions. However, given the thermal stability in its
111 environment, it remains unknown as to whether *P. macrosturtensis* might have a modified HSR
112 compared to its epigean relatives and if exposure to high temperatures may nonetheless induce
113 significant stress in this subterranean species. Here, we present transcriptomic data from individuals
114 of *P. macrosturtensis* and *P. nigroadumbratus* subjected to varying degrees of heat shock following
115 the results of Jones *et al.* (36). In the present study we specifically aimed 1) to generate a high-
116 quality, near-complete reference transcriptome for *P. nigroadumbratus* and 2) using this dataset,
117 characterise and compare the HSR of *P. nigroadumbratus* and *P. macrosturtensis*, specifically with
118 respect to which genes are differentially expressed and the conditions under which this occurs.

119

120

121 **2 | MATERIALS AND METHODS**

122 **2.1 | Taxon sampling, experimental design, and cDNA sequencing**

123 Beetle specimens (*P. macrosturtensis*, n=11; *P. nigroadumbratus*, n=13) were sourced as described
124 in a previous study and subjected to heat stress using an aquarium setup described therein (36).
125 Specimens were placed in one of three groups: in a controlled-temperature cabinet at 25°C (hereafter
126 control), in vials within the experimental setup at 25°C, and in vials within the experimental setup
127 ramped to 35°C. The control temperature of 25°C was selected by (36) to reflect the approximate
128 average groundwater temperatures of the aquifer that *P. macrosturtensis* is found in. Following
129 treatment, the individuals were placed in liquid nitrogen for RNA sequencing immediately after
130 exposure to control temperatures and thermal extremes. RNA extractions were performed using
131 single whole bodies prior to the synthesis and sequencing of barcoded cDNA samples. Quality
132 control of sequence data was performed using Trim Galore with default settings v.0.4.1
133 (http://bioinformatics.babraham.ac.uk/projects/trim_galore). More information regarding specimen
134 collection and husbandry, experimental design, cDNA sequencing, and phylogenetic analysis can be
135 found in the electronic supplementary material.

136

137 **2.2 | Assembly of *Paroster nigroadumbratus* reference transcriptome**

138 A reference transcriptome for *P. nigroadumbratus* was *de novo* assembled using Trinity v.2.5.1
139 using default settings (38) and derived from unpublished raw RNA-seq data from (39). Resulting
140 transcriptome completeness was validated using BUSCO v.5 (40,41), and functional annotation was
141 performed using TransDecoder v.5.5.0 (42) and the Trinotate v.3.2.1 pipeline (38), which employs
142 SQLite (<http://sqlite.org/index.html>), BLAST v.2.7.1 (43), and HMMER v.3.2 (<http://hmmer.org>).
143 Redundancy within the transcriptome assembly was reduced by retaining only the longest isoform
144 for each Trinity gene identifier, following (10), ensuring differential expression analysis was
145 performed at the Trinity ‘gene’ level rather than that of isoforms. This subsetted dataset was used in

146 downstream analyses, though we note this approach limited our ability to examine alternative splice
147 variants.

148

149 **2.3 | Differential expression and Gene Ontology enrichment analysis**

150 The above reference transcriptome was indexed and raw reads generated in this study from both *P.*
151 *macrosturtensis* and *P. nigroadumbratus* were quasi-mapped to it and normalised using Salmon
152 v.1.1.0 (44). Differential expression analysis was performed using edgeR v.3.32.1 (45) alongside
153 Gene Ontology (GO) enrichment analysis, executed using Trinity helper scripts. Differential
154 expression and enrichment/depletion of GO terms was gauged using two comparisons per species
155 (Figure 1). First, for each species the group from the experimental setup at 25°C was compared to the
156 control group outside of the setup at 25°C (hereafter comparison 1). Second, for each species the
157 group in the experimental setup at 35°C was compared to the group in the experimental setup at 25°C
158 (hereafter comparison 2). A diagrammatic representation of these comparisons is shown in Figure 1.
159 These comparisons were designed to gauge the impact of the presence of the experimental setup
160 alone and an increase in temperature, respectively. A full description of this process can be found in
161 the electronic supplementary material.

162

163 **2.4 | Phylogenetic analysis of putative heat shock proteins**

164 Putative heat shock protein-encoding genes were aligned with coleopteran orthologs sourced from
165 the OrthoDB v.10.1 catalogue (46) and GenBank to confirm their identity (Table S1). Phylogenetic
166 inference for each HSP family was performed in RAxML v.8.2.12 (47).

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

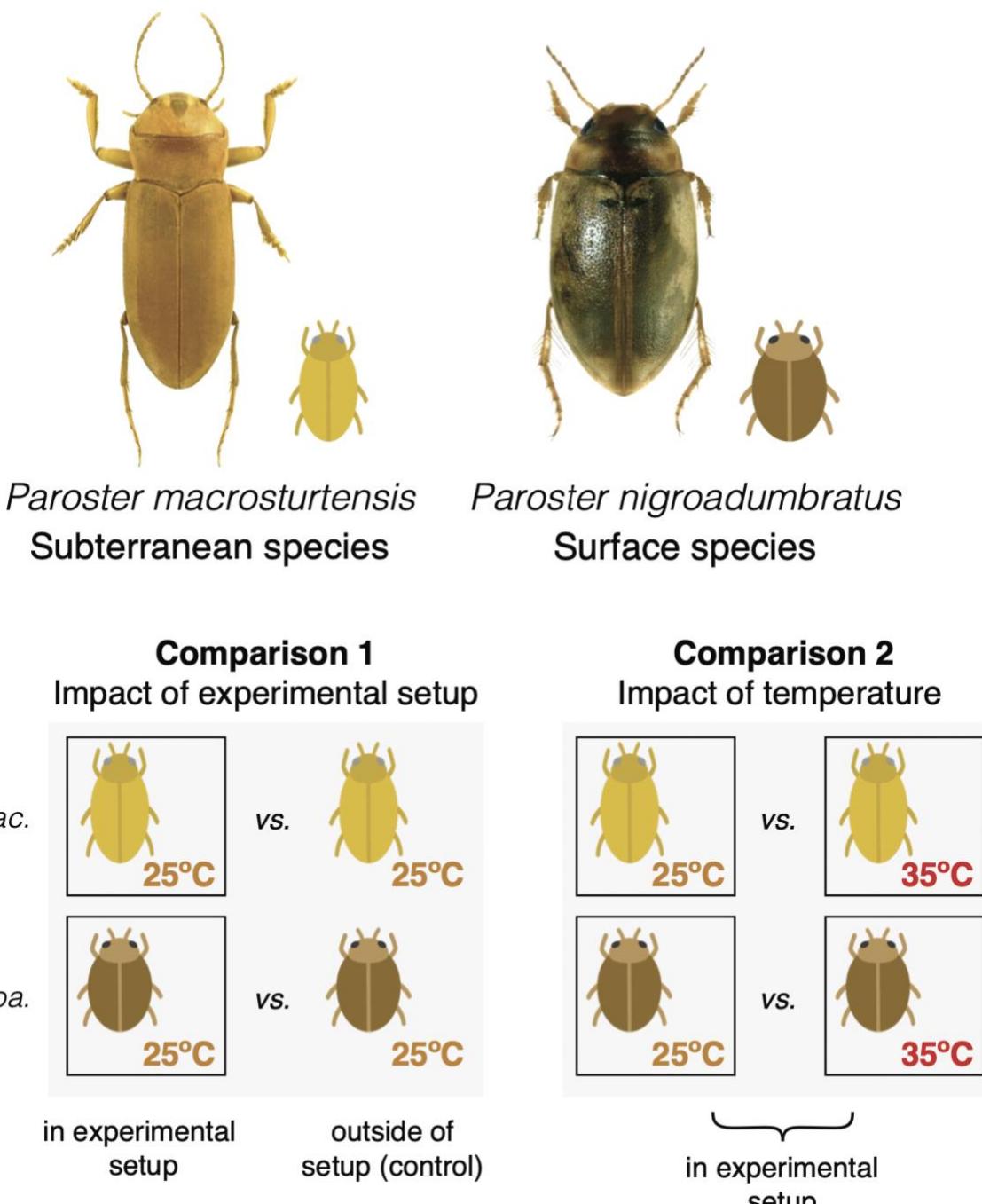
191

192

193

194

195


196

197

198

199

200

FIGURE 1 *Paroster* beetles included in this study and the experimental design used to assess differential gene expression associated with thermal extremes alone, as opposed to solely the presence of the experimental setup, following (36). Only intraspecific comparisons were made when assessing differential gene expression in our analyses; interspecific comparisons were made post-hoc. Photographs by Chris Watts and Howard Hamon.

201 **3 | RESULTS**

202 **3.1 | A high-quality reference transcriptome for *Paroster nigroadumbratus***

203 **enables the characterisation of genes involved in the heat shock response**

204 Here we present a high-quality, near-complete transcriptome for the epigean beetle *P.*

205 *nigroadumbratus*. This dataset consisted of 75,045,266 paired-end reads (72,266,264 following

206 quality control measures), 84% of which were incorporated into 134,246 *de novo* assembled

207 transcripts representing 60,683 unique Trinity ‘genes’ and 41,979 predicted ORFs. According to the

208 assessment using BUSCO, this transcriptome was 87.66% complete with respect to complete core

209 arthropod genes and 96.74% complete when considering partial genes. Of these transcripts, 47,810

210 were able to be functionally annotated using the Trinotate pipeline. Subsetting our predicted peptide

211 dataset to include only the longest isoforms per Trinity gene identifier, allowing us a proxy with

212 which to perform our downstream analyses at the gene level, resulted in 14,897 predicted ORFs

213 (with 11,609, or ~77%, having some level of annotation).

214

215 **3.2 | Differential expression analysis reveals distinct expression profiles**

216 **associated with the heat shock response in *Paroster***

217 We compared expression profiles between members of the same species, subjected to different

218 conditions, to assess genes differentially expressed in response to the presence of the experimental

219 setup employed here (comparison 1) or an increase in temperature in that setup (comparison 2)

220 (Figure 2). Parallels and contrasts between *P. nigroadumbratus* and *macrosturtensis* were then

221 assessed post-hoc. Differential expression analysis using edgeR identified a total of 723 differentially

222 expressed (DE) genes in the epigean *P. nigroadumbratus* samples and 157 in the subterranean *P.*

223 *macrosturtensis*, with the two species exhibiting complex and markedly different expression profiles

224 (Figures 2, 3, S2, S3). *P. nigroadumbratus* consistently differentially expressed a greater number of

225 genes than *P. macrosturtensis*: 147 and 67 genes were differentially expressed in comparison 1 and
226 89 and 51 genes were differentially expressed in comparison 2, respectively. The presence of the
227 experimental setup and an increase in water temperature caused both species to differentially express
228 genes involved in the heat shock response. Contrasting expression profiles with respect to the genes
229 involved were not only observed between the two species (as above) but also in the response of each
230 species to these two different stressors (Figure 2).

231 In comparison 1, the surface species *P. macrosturtensis* significantly upregulated a HSP gene
232 putatively annotated as *Hsp68*, encoding a major heat shock protein in the HSP70 family, relative to
233 the control. *Paroster nigroadumbratus* upregulated the HSP *Hsp68* and downregulated the sHSP
234 *l(2)efl* in the experimental setup relative to the control. None of the HSP transcripts differentially
235 expressed by *P. nigroadumbratus* in response to the presence of the experimental setup only were
236 differentially expressed by *P. macrosturtensis* or by *P. nigroadumbratus* in comparison 2.

237 In comparison 2, both species upregulated the HSP genes *Hsc70-4* and *Hsp83* as well as the
238 chaperones *Samui*, *DnaJ*, *AHSA1*, and *Unc45a* relative to groups at the lower temperature of 25°C.
239 Both *P. nigroadumbratus* and *macrosturtensis* also upregulated separate Trinity “genes” annotated as
240 *Hsp68* each at 35 °C relative to the 25 °C treatment (Fig. 2), likely representing closely related loci
241 that are yet to be comprehensively characterised in the beetles. Additional differentially expressed
242 genes unique to each species at 35°C relative to the 25°C treatment included: 1) downregulation of
243 the HSPs *Hsp60A* and *Hsp68* in *Paroster macrosturtensis*, and 2) the upregulation of the sHSP
244 *l(2)efl*, the HSP *Hsp68*, and the HSP cognate *Hsc70-3* in *P. nigroadumbratus*. Other annotated genes
245 potentially involved in the HSR, such as *Hsc70-2*, *Hsc70-5*, *Trap1*, and *Hsp90b1*, were not
246 differentially expressed in either species (Figure 4). A full list of differentially expressed genes
247 shared between (or unique to) the two beetle species under different conditions is available in Table
248 S2. Proteins unrelated to the HSR, yet widely differentially expressed in our dataset (i.e., with

249 reoccurring annotations across different Trinity ‘genes’) included those involved in the transport of
250 lipids and nutrient storage, such as vitellogenin and apolipoporphins.

251 Gene Ontology enrichment analysis enables a high-order approximation of the functional
252 consequences of differentially expressed genes. We did not observe any consistent depletion of GO
253 terms associated with downregulated genes, but enriched terms were reflective of our differential
254 expression results above (Figure 3). In both species, terms associated with the HSR were enriched in
255 association with an increased temperature at 35°C (e.g., ATPase activator activity [GO:0001671],
256 chaperone binding [GO:0051087], and unfolded protein binding [GO:0051082]). The most common
257 remaining Gene Ontology terms included lipid transporter activity (GO:0005319), nutrient reservoir
258 activity (GO:0045735), metal ion binding (GO:0046872), and zinc ion binding (GO:0008270).

259

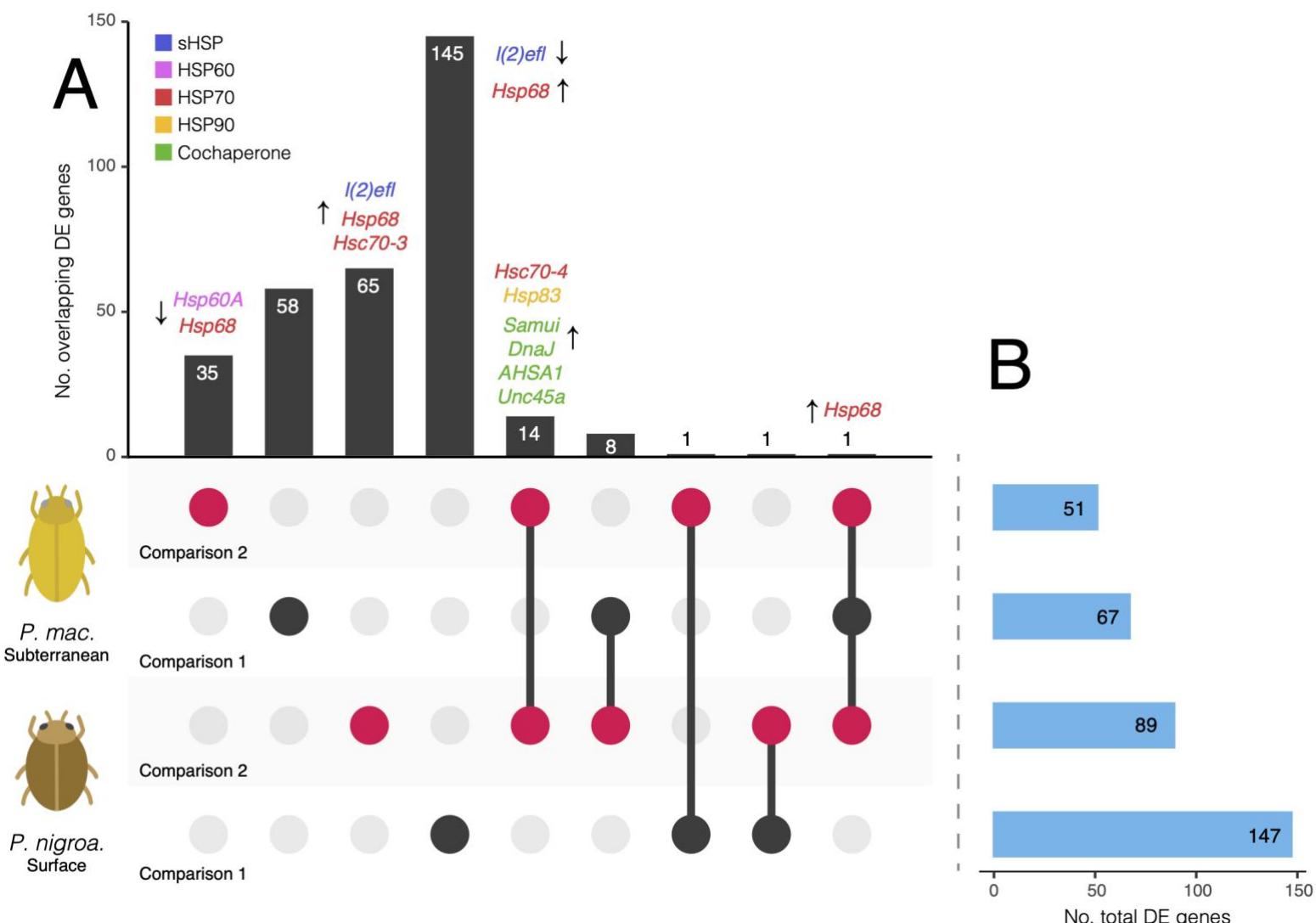
260 **3.3 | Phylogenetic analyses of HSPs**

261 Our HSP nucleotide alignments consisted of 12 sequences across 1,743 bp (HSP60 family), 67
262 sequences across 3,669 bp (HSP70 family), 29 sequences across 3,741 bp (HSP90 family) and 23
263 sequences across 867 bp (sHSP family). Sequences clustered by gene with strong node support in our
264 phylogeny (Figure 4). All sequences from the *Paroster* species examined here were recovered as
265 nested within these clades, confirming the orthology of annotated HSPs, with the exception of a
266 transcript present in both species and inferred as sister to the *Hsp68+Hsc70-2* clades. This gene was
267 not differentially expressed in response to heat shock in our dataset.

268

269

270

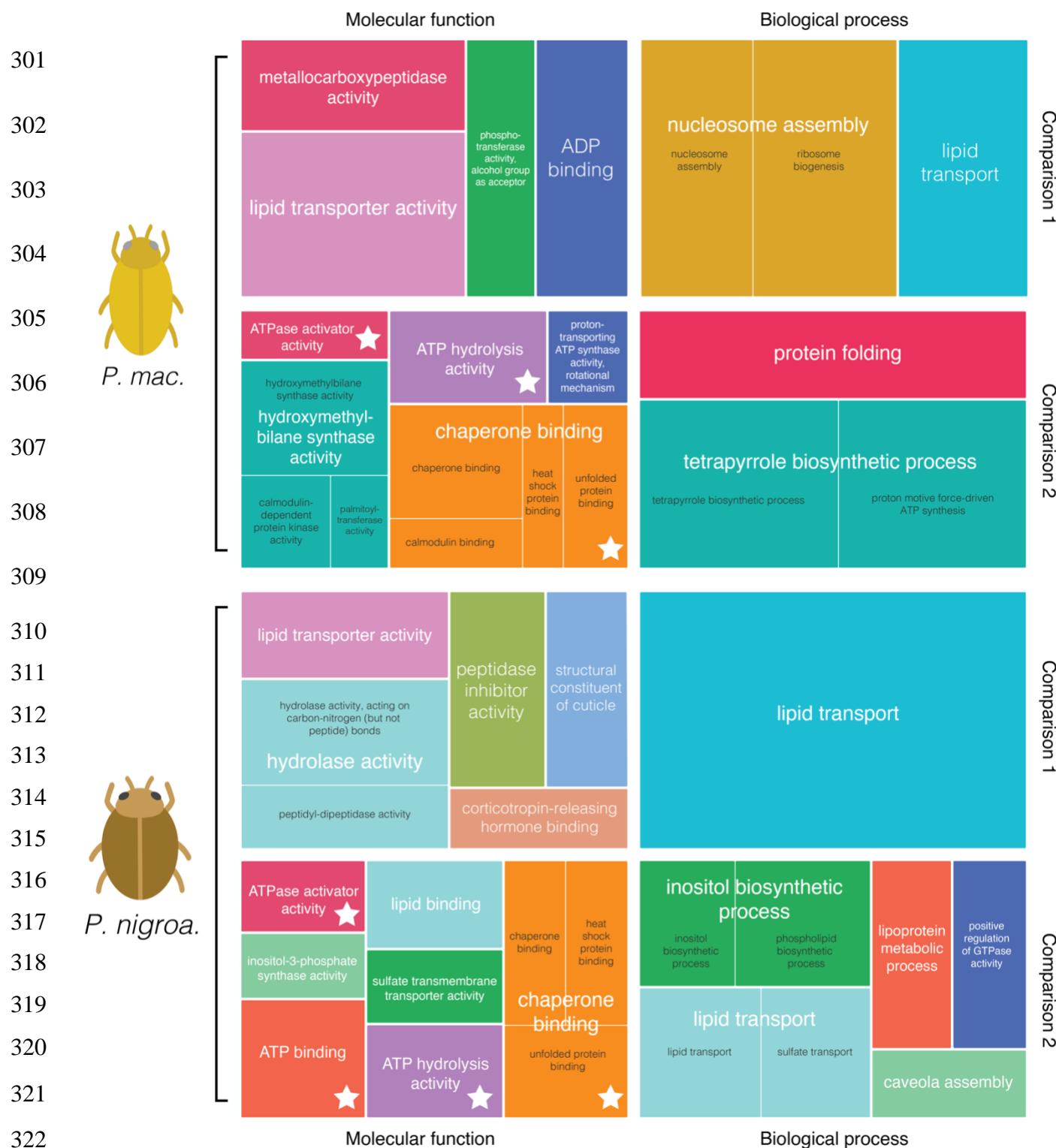

271

272

273

274

275



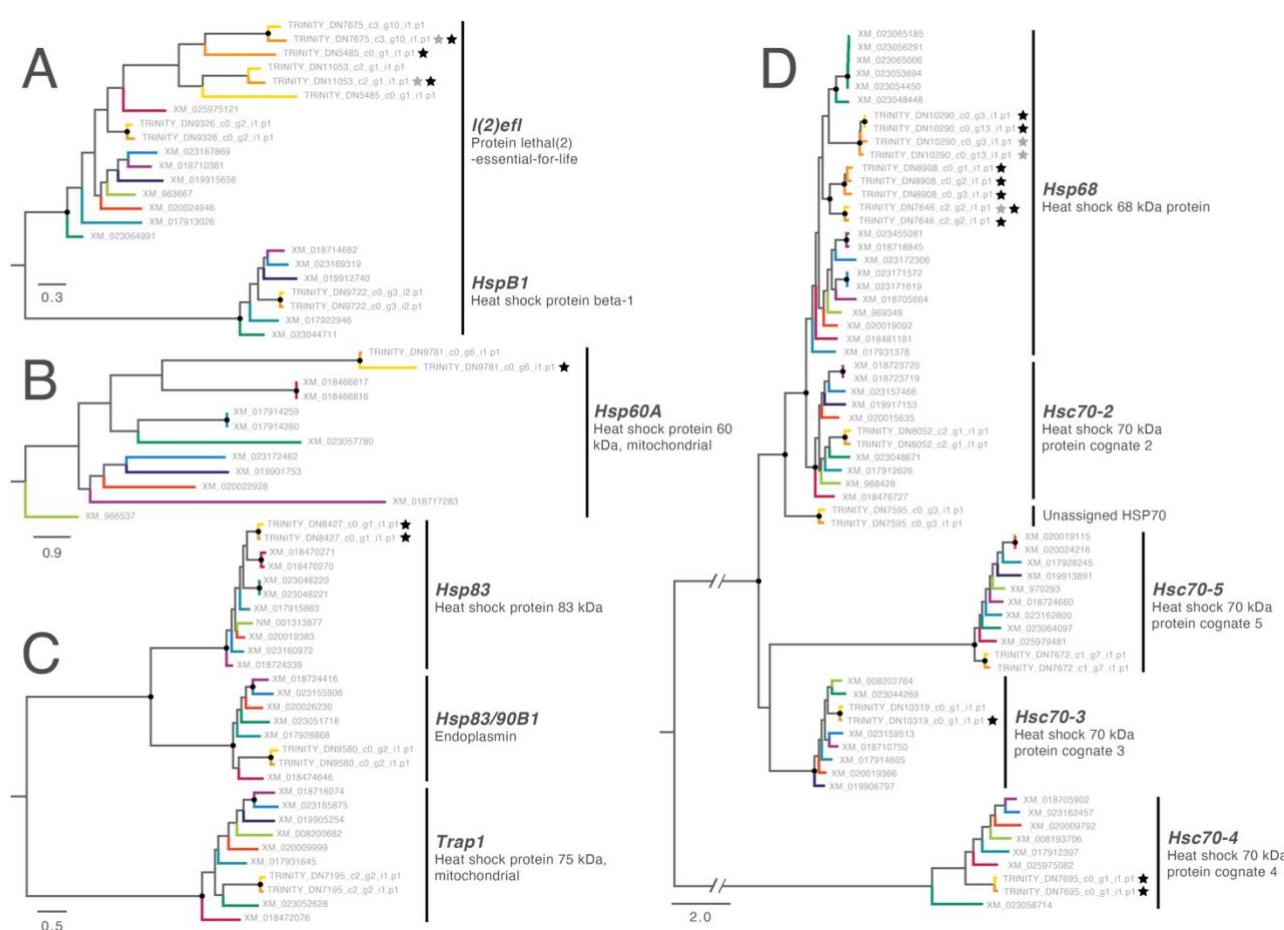
291 **FIGURE 2** Differentially expressed (DE) genes in *Paroster macrosturtensis* and *nigroadumbratus* in comparison 1 (the experimental
292 setup used in this study relative to the control, black circles) or comparison 2 (35°C within the setup relative to 25°C in the setup, red
293 circles). Comparisons are ordered by total number of DE genes. A) DE genes shared (circles linked by lines) or unique to (unlinked
294 circles) each comparison per species, summed in the bar graph above. Up- or downregulated HSPs or HSP cochaperones are shown for
295 each group. The gene *Hsp68* being named more than once in different groups refers to separate transcripts sharing the same putative
296 annotation (see Table S2). B) Total DE genes for each species under different conditions. HSP gene names were sourced from
297 Trinotate annotations and orthology was validated using phylogenetic analysis (Figure 4).

298

299

300

FIGURE 3 REVIGO (48) treemaps showing enriched Gene Ontology (GO) terms associated with the differential expression of genes shown in Figure 2. Treemaps are labelled as comparison 1 (the experimental setup used in this study relative to the control) or 2 (35°C within the setup relative to 25°C in the setup). The size of squares is proportional to the *p*-value associated with differential expression of respective genes. Similar GO terms share a colour and are represented in white text by the largest square per group. GO terms associated with genes involved in the heat shock response are indicated by a star.


329

330

331

332

???

346 **FIGURE 4** Phylogenies of heat shock Trinity 'genes' inferred using RAxML to validate the identity of putative HSP
 347 orthologs in *Paroster* species. Trees are as follows: A) sHSP family, B) HSP60, C) HSP90, D) HSP70. Scale bar is in
 348 substitutions/site; *BS* = bootstrap node support. Tip labels show transcript names/GenBank accession numbers. Tip
 349 names for *P. macrosturensis* are shared with the reference *P. nigroadumbratus* transcript reads were assembled against.
 350 Tip names with stars specifically refer to genes differentially expressed in the presence of the experimental setup alone
 351 relative to the control (comparison 1) or at 35°C relative to 25°C in the experimental setup (comparison 2).

352

353

354

355

356

357 **4 | DISCUSSION**

358 Here, we have comprehensively characterised the heat shock response at the molecular level in the
359 subterranean diving beetle *Paroster macrosturtensis* and one of its surface-dwelling relatives. Using
360 a near-complete reference transcriptome for *P. nigroadumbratus*—the first such dataset for a member
361 of the Hydrooporinae—we performed differential expression and GO enrichment analysis to explore
362 genes putatively involved in the HSR. Our results demonstrate that both the epigean *P.*
363 *nigroadumbratus* and subterranean *P. macrosturtensis* have an inducible HSR, in agreement with
364 implications of previous survival experiments for the genus (36). Putative orthologs of HSP
365 cochaperones, sHSP, HSP60, HSP70, and HSP90 genes were accounted for in our differential
366 expression analysis. However, the conditions under which this response is activated differs between
367 species, and *P. macrosturtensis* notably differentially expressed just over half of the number of genes
368 compared to *P. nigroadumbratus* in response to a rise in temperature.

369

370 **4.1 | Heat shock-induced gene expression in *Paroster***

371 HSPs identified as differentially expressed in this study support past results for beetle species and
372 other insects more broadly. A major trend in our results concerned the upregulation of HSP70 genes
373 at high temperatures, particularly *Hsp68*; HSP70s are highly expressed in response to heat shock in
374 other beetle species, including cave-adapted subterranean taxa (28,49,50), and work in concert with
375 sHSPs and HSP90s (51–54). In addition to the heat shock proteins, we also observed the
376 upregulation of the heat shock cognates *Hsc70-3* and *Hsc70-4* and putative cochaperones *Tsc2*,
377 *Samui*, *DnaJ*, *AHSA1*, *Unc45a* at 35°C relative to the 25°C treatment. To our knowledge there has
378 been no documentation of a coleopteran heat shock cognate being upregulated in response to
379 increasing temperature, though evidence exists for the parasitic wasp *Pteromalus*, in which *hsc70* is
380 induced by heavy metal poisoning and starvation in addition to thermal extremes (55). Heat shock
381 cognates are also upregulated during diapause in silkworm eggs (56) and young bumble bee queens

382 (57), potentially playing a cryoprotective role in these species. Cochaperones are less well
383 characterised in insects, but evidence for their upregulation in response to heat shock has been
384 documented in hemipterans and ants (58–60). We observed the downregulation of several heat shock
385 proteins in both species in the presence of the experimental setup relative to the control, and at high
386 temperatures relative to the 25°C treatment. Both sHSPs and HSP70s have been documented as being
387 downregulated during periods of heat stress in other insects, e.g. in silk moths (61). In *P.*
388 *nigroadumbratus* this was restricted to the sHSP *l(2)efl* and cochaperone *Tsc2* in the experimental
389 setup-only comparison. In contrast, the HSPs *Hsp60A* and *Hsp68* were downregulated in *P.*
390 *macrosturtensis* at high temperatures relative the 25°C treatment.

391

392 **4.2 | Expression profiles reflect differing thermal tolerances**

393 Our molecular data mirrors previously documented reduced thermal tolerances in subterranean
394 insects such as *P. macrosturtensis*. The species differentially expressed far fewer genes in response
395 to 35°C relative to the 25°C treatment compared to *P. nigroadumbratus*; similarly reduced numbers
396 of differentially expressed genes have also been associated with lower thermal tolerances in other
397 organisms such as fish (62), lizards (63), rotifers (64), red algae (65), and plants (66,67), though we
398 note the inverse (or alternatively, no clear pattern) has been observed in a number of cases,
399 potentially reflecting lower levels of stress as opposed to an inability to mount a HSR (68,69).

400 In keeping with the above findings, *P. macrosturtensis* also differentially expressed far fewer
401 genes than its epigean counterpart in response to the presence of the experimental setup alone
402 relative to the control (Figure 2). HSPs are known to be involved in responding to a wide range of
403 stressors (70–72), and the involvement of such genes is not surprising in stress unrelated to
404 temperature; individuals being moved into the experimental setup employed here may have induced
405 stress from handling, for example. The greater number of genes differentially expressed by *P.*
406 *nigroadumbratus* in this scenario may suggest *P. macrosturtensis* is potentially less able to robustly

407 respond to ambient stressors more broadly (i.e., environmental disturbances). Such a scenario is
408 supported by past work showing subterranean species are sensitive to ambient stressors under
409 otherwise non-stressful temperatures (73), and being an epigean species, *P. nigroadumbratus* is
410 presumably exposed to far more dramatic environmental fluctuations (in addition to more variable
411 temperatures) on a regular basis than a subterranean species such as *P. macrosturtensis*. We also note
412 that in the presence of the experimental setup relative to the control, *P. macrosturtensis* upregulated
413 the same *Hsp68*-annotated Trinity ‘gene’ implicated in responses to heat-induced stress in both
414 species (Figure 2), whereas HSPs differentially expressed by *P. nigroadumbratus* under the same
415 conditions did not overlap with those in other groups.

416

417 **4.3 | Heat shock and the climatic variability hypothesis**

418 The dataset we present here adds to a growing body of knowledge concerning the HSR in organisms
419 that inhabit thermally stable environments. Central to discourse on this topic is the climatic
420 variability hypothesis, which posits that the thermal tolerance of a taxon is positively correlated with
421 its temperature ranges encountered in nature (74). This hypothesis implies species from extremely
422 stable thermal environments can no longer tolerate temperature extremes, and has been demonstrated
423 in a wide variety of organisms that have either lost or possess a reduced HSR, such as cnidarians
424 (75), limpets (76), amphipods and sea stars (77), and midges (78). In contrast, species that inhabit
425 areas with a broader range of climatic conditions would be expected to be more robust in the face of
426 environmental fluctuations (79). While *P. macrosturtensis* does have a lower thermal tolerance
427 compared to *P. nigroadumbratus*, in line with the above hypothesis, it nonetheless has retained a
428 HSR at high temperatures per our transcriptomic data. Similar studies have shown certain
429 groundwater-dwelling organisms display an inducible HSR in response to conditions far warmer than
430 they would encounter in nature (20,21). The HSR of these species, as well as *P. macrosturtensis*,
431 might be retained at such high temperatures for a variety of reasons, including the fact that the

432 species has not occupied its respective environments for a sufficient length of time in evolutionary
433 terms for their HSR to be lost, e.g. via adaptive processes or a relaxation of purifying selection (36).
434 The latter scenario is plausible as *P. macrosturtensis* is also known to have retained the ability to
435 detect light despite inhabiting an aphotic environment for over ~3 million years (80).

436

437 **4.4 | Conservation implications**

438 While the retention of a HSR in both species examined here supports the physiological findings of
439 Jones *et al.* (36), almost half (4 out of 10 assayed) of the *P. macrosturtensis* cohort did not survive 24
440 hours after heat shock in that study. It therefore remains to be seen if the species can tolerate such
441 extremes in the long term. Indeed, even cave beetles considered stenothermal—those that are only
442 capable of surviving within an extremely narrow temperature range—have retained the HSR (23), but
443 nonetheless cannot survive at extreme temperatures for long periods (>7 days) compared to epigean
444 relatives (25,28). Threatening processes that *P. nigroadumbratus* and *macrosturtensis* are both at risk
445 of experiencing in their fragile habitats might impact the latter species far more negatively as a
446 result.

447 Temperature rises of up to 5°C by the end of the century compared to pre-industrial levels
448 may occur in central Western Australia per current climate change projections (81). Water
449 temperatures in aquifers are generally cooler and more stable than, but are nonetheless coupled with,
450 conditions above-ground, and are also predicted to warm as regional temperatures increase (82–84).
451 The subterranean habitat of these insects is therefore unlikely to shield them from the impacts of a
452 warming world. The fact that *P. macrosturtensis* appears to be unable to mount as robust a HSR
453 compared to *P. nigroadumbratus*, and therefore may experience a significantly higher amount stress
454 compared to epigean species in the face of high temperatures, has conservation implications for the
455 understudied fauna of the Australian Yilgarn and beyond.

456 Datasets such as these are especially pertinent for subterranean invertebrates found in the
457 Yilgarn region—including *P. macrosturtensis* and its subterranean relatives, in addition to
458 crustaceans such as isopods and amphipods—as the groundwater in their calcrete habitats is heavily
459 utilised for water extraction by industry (85,86). As short-range endemics to the extreme, such
460 species are not only at risk of habitat degradation via climate change, but from the direct intersection
461 of shallow aquifers with e.g. mining activities and through the drawdown of groundwater beneath
462 calcretes at greater depths (87). In addition to reflecting the reduced thermal tolerances of Australian
463 subterranean dytiscids, the molecular data we presented here for *P. macrosturtensis* also suggests a
464 potentially weaker response in the face of other environmental disturbances unrelated to temperature.
465 These factors have the potential to render *P. macrosturtensis* more vulnerable to both of the above
466 threatening processes compared to epigean relatives, with implications for subterranean fauna more
467 broadly. An increased knowledge of the assumed fragility of Australian subterranean invertebrates in
468 the face of these stressors is therefore crucial for informing future conservation management plans
469 for these animals and their fragile habitats.

470

471 **5 | CONCLUSIONS**

472 Our findings demonstrate the reduced thermal tolerance of the subterranean species *P.*
473 *macrosturtensis* compared to its epigean relatives is reflected, and further clarified by, transcriptomic
474 data. While our data are supported by past physiological evidence that demonstrated *P.*
475 *macrosturtensis* could survive at high temperatures, albeit not to the limits of epigean species (36),
476 the present study adds a new layer to this narrative. *P. macrosturtensis* might possess increased
477 mortality in the face of high temperatures because the species differentially expresses far fewer genes
478 in response to heat shock compared to the epigean relative *P. nigroadumbratus*, suggesting it may be
479 unable to mount as robust a heat shock response. While *P. macrosturtensis* might be able to survive
480 at temperatures far above those it encounters in nature for short periods, as detailed by Jones *et al.*

481 (36), our results suggest the species also experiences a weaker transcriptomic response to factors
482 unrelated to temperature (i.e. the presence of the experimental setup employed here) relative to *P.*
483 *nigroadumbratus*. As such, *P. macrosturtensis* may not be as well-equipped to survive higher
484 temperatures and other threatening processes, such as disturbances to surrounding groundwater, in
485 the long term compared to surface-dwelling members of *Paroster*. Future work in this system will
486 ideally assess a far greater number of dytiscid species to further explore the trends we observe here.
487 As the present study did not consider the role of isoforms in the heat shock response of these
488 animals, broader studies could examine these responses to heat stress at a finer scale by conducting
489 differential expression analysis on the transcript, as opposed to gene, level.

490

491 REFERENCES

- 492 1. Tierney SM, Friedrich M, Humphreys WF, Jones TM, Warrant EJ, Wcislo WT. Consequences
493 of evolutionary transitions in changing photic environments. *Austral Entomol.* 2017;56(1):23–
494 46.
- 495 2. Culver DC, Pipan T. Shallow Subterranean Habitats: Ecology, Evolution, and Conservation
496 [Internet]. Shallow Subterranean Habitats. Oxford University Press; 2014 [cited 2021 Apr 13].
497 Available from:
498 <https://oxford.universitypressscholarship.com/view/10.1093/acprof:oso/9780199646173.001.0001/acprof-9780199646173>
- 500 3. Merritt DJ, Clarke AK. Synchronized circadian bioluminescence in cave-dwelling
501 *Arachnocampa tasmaniensis* (Glowworms). *J Biol Rhythms.* 2011 Feb;26(1):34–43.
- 502 4. Beale AD, Whitmore D, Moran D. Life in a dark biosphere: a review of circadian physiology in
503 “arrhythmic” environments. *J Comp Physiol [B].* 2016;186(8):947–68.
- 504 5. Walker JA, Rose HA. Oothecal structure and male genitalia of the Geoscapheinae and some
505 Australian Panaesthia Serville (Blattodea: Blaberidae). *Aust J Entomol.* 1998;37(1):23–6.
- 506 6. Jones KK, Cooper SJB, Seymour RS. Cutaneous respiration by diving beetles from
507 underground aquifers of Western Australia (Coleoptera: Dytiscidae). *J Exp Biol.* 2019 Apr
508 1;222(7):jeb196659.
- 509 7. Cieslak A, Fresnedo J, Ribera I. Life-history specialization was not an evolutionary dead-end in
510 Pyrenean cave beetles. *Proc R Soc B Biol Sci.* 2014 Apr 22;281(1781):20132978.
- 511 8. Cieslak A, Fresnedo J, Ribera I. Developmental constraints in cave beetles. *Biol Lett.* 2014 Oct
512 31;10(10):20140712.

513 9. Yang J, Chen X, Bai J, Fang D, Qiu Y, Jiang W, et al. The *Sinocyclocheilus* cavefish genome
514 provides insights into cave adaptation. *BMC Biol.* 2016 Jan 4;14(1):1.

515 10. Balart-García P, Cieslak A, Escuer P, Rozas J, Ribera I, Fernández R. Smelling in the dark:
516 Phylogenomic insights into the chemosensory system of a subterranean beetle. *Mol Ecol*
517 [Internet]. 2021 [cited 2021 May 7]; Available from:
518 <https://onlinelibrary.wiley.com/doi/abs/10.1111/mec.15921>

519 11. Badino G. UNDERGROUND METEOROLOGY—"What's the weather underground?" *Acta*
520 *Carsologica* [Internet]. 2010 Dec 1 [cited 2021 Apr 13];39(3). Available from: <https://ojs.zrc-sazu.si/carsologica/article/view/74>

522 12. Hüppop K. Adaptation to Low Food. In: White WB, Culver DC, editors. *Encyclopedia of Caves*
523 (Second Edition) [Internet]. Amsterdam: Academic Press; 2012 [cited 2022 Jun 27]. p. 1–9.
524 Available from: <https://www.sciencedirect.com/science/article/pii/B9780123838322000013>

525 13. Bourges F, Genthon P, Genty D, Lorblanchet M, Mauduit E, D'Hulst D. Conservation of
526 prehistoric caves and stability of their inner climate: Lessons from Chauvet and other French
527 caves. *Sci Total Environ.* 2014 Sep 15;493:79–91.

528 14. Mammola S, Piano E, Cardoso P, Vernon P, Domínguez-Villar D, Culver DC, et al. Climate
529 change going deep: The effects of global climatic alterations on cave ecosystems. *Anthr Rev.*
530 2019 Apr 1;6(1–2):98–116.

531 15. Jindal S, Dudani AK, Singh B, Harley CB, Gupta RS. Primary structure of a human
532 mitochondrial protein homologous to the bacterial and plant chaperonins and to the 65-
533 kilodalton mycobacterial antigen. *Mol Cell Biol.* 1989 May;9(5):2279–83.

534 16. Richter K, Haslbeck M, Buchner J. The Heat Shock Response: Life on the Verge of Death. *Mol*
535 *Cell.* 2010 Oct 22;40(2):253–66.

536 17. Somero GN. The cellular stress response and temperature: Function, regulation, and evolution.
537 *J Exp Zool Part Ecol Integr Physiol.* 2020;333(6):379–97.

538 18. Tomanek L. Variation in the heat shock response and its implication for predicting the effect of
539 global climate change on species' biogeographical distribution ranges and metabolic costs. *J*
540 *Exp Biol.* 2010 Mar 15;213(6):971–9.

541 19. Colado R, Pallarés S, Fresneda J, Mammola S, Rizzo V, Sánchez-Fernández D. Climatic
542 stability, not average habitat temperature, determines thermal tolerance of subterranean beetles.
543 *Ecology.* 2022;n/a(n/a):e3629.

544 20. Colson-Proch C, Morales A, Hervant F, Konecny L, Moulin C, Douady CJ. First cellular
545 approach of the effects of global warming on groundwater organisms: a study of the HSP70
546 gene expression. *Cell Stress Chaperones.* 2010 May;15(3):259–70.

547 21. Mermillod-Blondin F, Lefour C, Lalouette L, Renault D, Malard F, Simon L, et al. Thermal
548 tolerance breadths among groundwater crustaceans living in a thermally constant environment.
549 *J Exp Biol.* 2013 May 1;216(9):1683–94.

550 22. Pallarés S, Colado R, Pérez-Fernández T, Wesener T, Ribera I, Sánchez-Fernández D. Heat
551 tolerance and acclimation capacity in subterranean arthropods living under common and stable
552 thermal conditions. *Ecol Evol*. 2019;9(24):13731–9.

553 23. Pallarés S, Colado R, Botella-Cruz M, Montes A, Balart-García P, Bilton DT, et al. Loss of heat
554 acclimation capacity could leave subterranean specialists highly sensitive to climate change.
555 *Anim Conserv* [Internet]. 2020 [cited 2021 Jun 7]; Available from:
556 <https://zslpublications.onlinelibrary.wiley.com/doi/abs/10.1111/acv.12654>

557 24. Raschmanová N, Šustr V, Kováč L, Parimuchová A, Devetter M. Testing the climatic
558 variability hypothesis in edaphic and subterranean Collembola (Hexapoda). *J Therm Biol*. 2018
559 Dec;78:391–400.

560 25. Rizzo V, Sánchez-Fernández D, Fresneda J, Cieslak A, Ribera I. Lack of evolutionary
561 adjustment to ambient temperature in highly specialized cave beetles. *BMC Evol Biol*. 2015
562 Feb 4;15(1):10.

563 26. Gibert J, Deharveng L. Subterranean ecosystems: a truncated functional biodiversity.
564 *BioScience*. 2002 Jun 1;52(6):473–81.

565 27. Humphreys W. Diversity Patterns in Australia. In: *Encyclopedia of Caves*. 2012. p. 203–19.

566 28. Bernabò P, Latella L, Jousson O, Lencioni V. Cold stenothermal cave-dwelling beetles do have
567 an HSP70 heat shock response. *J Therm Biol*. 2011 Apr 1;36(3):206–8.

568 29. Mammola S, Amorim IR, Bichuette ME, Borges PAV, Cheeptham N, Cooper SJB, et al.
569 Fundamental research questions in subterranean biology. *Biol Rev*. 2020;95(6):1855–72.

570 30. Cooper SJB, Hinze S, Leys R, Watts CHS, Humphreys WF. Islands under the desert: molecular
571 systematics and evolutionary origins of stygobitic water beetles (Coleoptera : Dytiscidae) from
572 central Western Australia. *Invertebr Syst*. 2002;16(4):589–90.

573 31. Watts CHS, Humphreys WF. Fourteen New Dytiscidae (Coleoptera) of the Genera
574 Limbodessus Guignot, Paroster Sharp, and Exocelina Broun from Underground Waters in
575 Australia. *Trans R Soc S Aust*. 2009 Jan 1;133(1):62–107.

576 32. Leijls R, Nes E, Watts C, Cooper S, Humphreys W, Hogendoorn K. Evolution of Blind Beetles
577 in Isolated Aquifers: A Test of Alternative Modes of Speciation. *PloS One*. 2012 Mar
578 30;7:e34260.

579 33. Langille BL, Hyde J, Saint KM, Bradford TM, Stringer DN, Tierney SM, et al. Evidence for
580 speciation underground in diving beetles (Dytiscidae) from a subterranean archipelago.
581 *Evolution*. 2021;75(1):166–75.

582 34. Leys R, Watts CHS, Cooper SJB, Humphreys WF. Evolution of subterranean diving beetles
583 (Coleoptera: Dytiscidae: Hydroporini, Didessini) in the arid zone of Australia. *Evolution*. 2003
584 Dec;57(12):2819–34.

585 35. Toussaint EFA, Condamine FL, Hawlitschek O, Watts CH, Porch N, Hendrich L, et al.
586 Unveiling the Diversification Dynamics of Australasian Predaceous Diving Beetles in the
587 Cenozoic. *Syst Biol*. 2015 Jan 1;64(1):3–24.

588 36. Jones KK, Humphreys WF, Saccò M, Bertozzi T, Austin AD, Cooper SJB. The critical thermal
589 maximum of diving beetles (Coleoptera: Dytiscidae): a comparison of subterranean and
590 surface-dwelling species. *Curr Res Insect Sci.* 2021 Jan 1;1:100019.

591 37. Verberk WCEP, Overgaard J, Ern R, Bayley M, Wang T, Boardman L, et al. Does oxygen limit
592 thermal tolerance in arthropods? A critical review of current evidence. *Comp Biochem Physiol*
593 *A Mol Integr Physiol.* 2016 Feb 1;192:64–78.

594 38. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Trinity:
595 reconstructing a full-length transcriptome without a genome from RNA-Seq data. *Nat*
596 *Biotechnol.* 2011 May 15;29(7):644–52.

597 39. Tierney SM, Cooper SJB, Saint KM, Bertozzi T, Hyde J, Humphreys WF, et al. Opsin
598 transcripts of predatory diving beetles: a comparison of surface and subterranean photic niches.
599 *R Soc Open Sci.* 2015;2(1):140386.

600 40. Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing
601 genome assembly and annotation completeness with single-copy orthologs. *Bioinforma Oxf*
602 *Engl.* 2015 Oct 1;31(19):3210–2.

603 41. Nishimura O, Hara Y, Kuraku S. gVolante for standardizing completeness assessment of
604 genome and transcriptome assemblies. *Bioinformatics.* 2017 Nov 15;33(22):3635–7.

605 42. Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al. De novo
606 transcript sequence reconstruction from RNA-Seq: reference generation and analysis with
607 Trinity. *Nat Protoc [Internet].* 2013 Aug [cited 2021 May 10];8(8). Available from:
608 <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3875132/>

609 43. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+:
610 architecture and applications. *BMC Bioinformatics.* 2009 Dec 15;10(1):421.

611 44. Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware
612 quantification of transcript expression. *Nat Methods.* 2017 Apr;14(4):417–9.

613 45. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential
614 expression analysis of digital gene expression data. *Bioinformatics.* 2010 Jan 1;26(1):139–40.

615 46. Kriventseva EV, Kuznetsov D, Tegenfeldt F, Manni M, Dias R, Simão FA, et al. OrthoDB v10:
616 sampling the diversity of animal, plant, fungal, protist, bacterial and viral genomes for
617 evolutionary and functional annotations of orthologs. *Nucleic Acids Res.* 2019 Jan
618 8;47(D1):D807–11.

619 47. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large
620 phylogenies. *Bioinformatics.* 2014 May 1;30(9):1312–3.

621 48. Supek F, Bošnjak M, Škunca N, Šmuc T. REVIGO Summarizes and Visualizes Long Lists of
622 Gene Ontology Terms. *PLOS ONE.* 2011 Jul 18;6(7):e21800.

623 49. Chen M, Zhang N, Jiang H, Meng X, Qiang K, Wang J. Transcriptional regulation of heat
624 shock protein 70 genes by class I histone deacetylases in the red flour beetle, *Tribolium*
625 *castaneum.* *Insect Mol Biol.* 2020;29(2):221–30.

626 50. Yocum GD. Differential expression of two HSP70 transcripts in response to cold shock,
627 thermoperiod, and adult diapause in the Colorado potato beetle. *J Insect Physiol.* 2001 Sep
628 1;47(10):1139–45.

629 51. Cai Z, Chen J, Cheng J, Lin T. Overexpression of Three Heat Shock Proteins Protects
630 *Monochamus alternatus* (Coleoptera: Cerambycidae) From Thermal Stress. *J Insect Sci*
631 [Internet]. 2017 Nov 1 [cited 2021 Jun 7];17(113). Available from:
632 <https://doi.org/10.1093/jisesa/ies082>

633 52. Li MY, Huang Y, Lei X, Xu CT, Li B, Chen DX, et al. Identification of six heat shock protein
634 70 genes in *Lasioderma serricorne* (Coleoptera: Anobiidae) and their responses to temperature
635 stress. *J Asia-Pac Entomol* [Internet]. 2021 May 9 [cited 2021 Jun 7]; Available from:
636 <https://www.sciencedirect.com/science/article/pii/S1226861521000674>

637 53. Yang WJ, Xu KK, Cao Y, Meng YL, Liu Y, Li C. Identification and Expression Analysis of
638 Four Small Heat Shock Protein Genes in Cigarette Beetle, *Lasioderma serricorne* (Fabricius).
639 *Insects.* 2019 May;10(5):139.

640 54. Yuan X, Zhou WW, Zhou Y, Liu S, Lu F, Yang MF, et al. Composition and Expression of Heat
641 Shock Proteins in an Invasive Pest, The Rice Water Weevil (Coleoptera: Curculionidae). *Fla*
642 *Entomol.* 2014 Jun;97(2):611–9.

643 55. Wang H, Li K, Zhu JY, Fang Q, Ye GY, Wang H, et al. CLONING AND EXPRESSION
644 PATTERN OF HEAT SHOCK PROTEIN GENES FROM THE ENDOPARASITOID WASP,
645 *Pteromalus puparum* IN RESPONSE TO ENVIRONMENTAL STRESSES. *Arch Insect*
646 *Biochem Physiol.* 2012;79(4–5):247–63.

647 56. Sasibhushan S, Ponnuvel KM, Vijayaprakash NB. Diapause specific gene expression in the
648 eggs of multivoltine silkworm *Bombyx mori*, identified by suppressive subtractive
649 hybridization. *Comp Biochem Physiol B Biochem Mol Biol.* 2012 Apr 1;161(4):371–9.

650 57. Kim BG, Shim JK, Kim DW, Kwon YJ, Lee KY. Tissue-specific variation of heat shock
651 protein gene expression in relation to diapause in the bumblebee *Bombus terrestris*. *Entomol*
652 *Res.* 2008;38(1):10–6.

653 58. Huang LH, Kang L. Cloning and interspecific altered expression of heat shock protein genes in
654 two leafminer species in response to thermal stress. *Insect Mol Biol.* 2007;16(4):491–500.

655 59. Hull JJ, Geib SM, Fabrick JA, Brent CS. Sequencing and De Novo Assembly of the Western
656 Tarnished Plant Bug (*Lygus hesperus*) Transcriptome. *PLOS ONE.* 2013 Jan 24;8(1):e55105.

657 60. Tonione MA, Bi K, Tsutsui ND. Transcriptomic signatures of cold adaptation and heat stress in
658 the winter ant (*Prenolepis imparis*). *PLOS ONE.* 2020 Oct 1;15(10):e0239558.

659 61. Sakano D, Li B, Xia Q, Yamamoto K, Fujii H, Aso Y. Genes Encoding Small Heat Shock
660 Proteins of the Silkworm, *Bombyx mori*. *Biosci Biotechnol Biochem.* 2006 Oct
661 23;70(10):2443–50.

662 62. Narum SR, Campbell NR. Transcriptomic response to heat stress among ecologically divergent
663 populations of redband trout. *BMC Genomics.* 2015 Feb 21;16(1):103.

664 63. Akashi HD, Cádiz Díaz A, Shigenobu S, Makino T, Kawata M. Differentially expressed genes
665 associated with adaptation to different thermal environments in three sympatric Cuban *Anolis*
666 lizards. *Mol Ecol*. 2016;25(10):2273–85.

667 64. Paraskevopoulou S, Dennis AB, Weithoff G, Tiedemann R. Temperature-dependent life history
668 and transcriptomic responses in heat-tolerant versus heat-sensitive *Brachionus* rotifers. *Sci Rep.*
669 2020 Aug 6;10(1):13281.

670 65. Wang W, Lin Y, Teng F, Ji D, Xu Y, Chen C, et al. Comparative transcriptome analysis
671 between heat-tolerant and sensitive *Pyropia haitanensis* strains in response to high temperature
672 stress. *Algal Res.* 2018 Jan 1;29:104–12.

673 66. Sun M, Lin C, Zhang A, Wang X, Yan H, Khan I, et al. Transcriptome sequencing revealed the
674 molecular mechanism of response of pearl millet root to heat stress. *J Agron Crop Sci.*
675 2021;207(4):768–73.

676 67. Jin J, Yang L, Fan D, Liu X, Hao Q. Comparative transcriptome analysis uncovers different
677 heat stress responses in heat-resistant and heat-sensitive jujube cultivars. *PLOS ONE*. 2020 Sep
678 21;15(9):e0235763.

679 68. DeBiasse MB, Kelly MW. Plastic and Evolved Responses to Global Change: What Can We
680 Learn from Comparative Transcriptomics? *J Hered.* 2016 Jan 1;107(1):71–81.

681 69. Perez R, de Souza Araujo N, Defrance M, Aron S. Molecular adaptations to heat stress in the
682 thermophilic ant genus *Cataglyphis*. *Mol Ecol* [Internet]. 2021 [cited 2021 Oct 29];n/a(n/a).
683 Available from: <https://onlinelibrary.wiley.com/doi/abs/10.1111/mec.16134>

684 70. Sørensen JG, Kristensen TN, Loeschke V. The evolutionary and ecological role of heat shock
685 proteins. *Ecol Lett.* 2003;6(11):1025–37.

686 71. Sang W, Ma WH, Qiu L, Zhu ZH, Lei CL. The involvement of heat shock protein and
687 cytochrome P450 genes in response to UV-A exposure in the beetle *Tribolium castaneum*. *J*
688 *Insect Physiol.* 2012 Jun 1;58(6):830–6.

689 72. King AM, MacRae TH. Insect Heat Shock Proteins During Stress and Diapause. *Annu Rev*
690 *Entomol.* 2015;60(1):59–75.

691 73. Pallarés S, Sanchez-Hernandez JC, Colado R, Balart-García P, Comas J, Sánchez-Fernández D.
692 Beyond survival experiments: using biomarkers of oxidative stress and neurotoxicity to assess
693 vulnerability of subterranean fauna to climate change. *Conserv Physiol.* 2020 Jan
694 1;8(1):coaa067.

695 74. Stevens GC. The Latitudinal Gradient in Geographical Range: How so Many Species Coexist in
696 the Tropics. *Am Nat.* 1989;133(2):240–56.

697 75. Brennecke T, Gellner K, Bosch TC. The lack of a stress response in *Hydra oligactis* is due to
698 reduced hsp70 mRNA stability. *Eur J Biochem.* 1998 Aug 1;255(3):703–9.

699 76. Sanders BM, Hope C, Pascoe VM, Martin LS. Characterization of the Stress Protein Response
700 in Two Species of *Collisella* Limpets with Different Temperature Tolerances. *Physiol Zool.*
701 1991;64(6):1471–89.

702 77. Clark MS, Fraser KPP, Peck LS. Lack of an HSP70 heat shock response in two Antarctic
703 marine invertebrates. *Polar Biol.* 2008 Aug 1;31(9):1059–65.

704 78. Rinehart JP, Hayward SAL, Elnitsky MA, Sandro LH, Lee RE, Denlinger DL. Continuous up-
705 regulation of heat shock proteins in larvae, but not adults, of a polar insect. *Proc Natl Acad Sci
706 U S A.* 2006 Sep 19;103(38):14223–7.

707 79. Hidalgo-Galiana A, Monge M, Biron DG, Canals F, Ribera I, Cieslak A. Protein expression
708 parallels thermal tolerance and ecologic changes in the diversification of a diving beetle species
709 complex. *Heredity.* 2016 Jan;116(1):114–23.

710 80. Langille BL, Tierney SM, Austin AD, Humphreys WF, Cooper SJB. How blind are they?
711 Phototactic responses in stygobiont diving beetles (Coleoptera: Dytiscidae) from calcrete
712 aquifers of Western Australia. *Austral Entomol.* 2019;58(2):425–31.

713 81. Healy MA. It's hot and getting hotter. Australian rangelands and climate change – Reports of
714 the Rangelands Cluster Project. Ninti One Limited and CSIRO, Alice Springs; 2015.

715 82. Hemmerle H, Bayer P. Climate Change Yields Groundwater Warming in Bavaria, Germany.
716 *Front Earth Sci [Internet].* 2020 [cited 2022 Aug 22];8. Available from:
717 <https://www.frontiersin.org/articles/10.3389/feart.2020.575894>

718 83. Taylor CA, Stefan HG. Shallow groundwater temperature response to climate change and
719 urbanization. *J Hydrol.* 2009 Sep 15;375(3):601–12.

720 84. Gunawardhana LN, Kazama S. Statistical and numerical analyses of the influence of climate
721 variability on aquifer water levels and groundwater temperatures: The impacts of climate
722 change on aquifer thermal regimes. *Glob Planet Change.* 2012 Apr 1;86–87:66–78.

723 85. Cooper SJB, Saint KM, Taiti S, Austin AD, Humphreys WF. Subterranean archipelago:
724 mitochondrial DNA phylogeography of stygobitic isopods (Oniscidea : Haloniscus) from the
725 Yilgarn region of Western Australia. *Invertebr Syst.* 2008 May 12;22(2):195–203.

726 86. Bradford T, Adams M, Humphreys WF, Austin AD, Cooper SJB. DNA barcoding of
727 stygofauna uncovers cryptic amphipod diversity in a calcrete aquifer in Western Australia's arid
728 zone. *Mol Ecol Resour.* 2010;10(1):41–50.

729 87. Hose GC, Sreekanth J, Barron O, Pollino C. Stygofauna in Australian Groundwater Systems:
730 Extent of knowledge. 2015;CSIRO, Australia.

731

732 **ACKNOWLEDGEMENTS**

733 We thank Flora, Peter, and Paul Axford for providing access to the Sturt Meadows calcrete and
734 accommodation at the Sturt Meadows pastoral property. We thank Chris Watts (South Australian
735 Museum) for helping with identification and collecting of surface dytiscids, providing beetle images,
736 and for laying the foundation for the subterranean beetle research with WFH and Remko Leijls. We

737 thank Rae Humphreys for assistance with field collections of *P. macrosturtensis* and for being a
738 wonderful host to stygofauna catchers over many years. Finally, we would like to thank two
739 anonymous reviewers for helping to improve the quality of the manuscript.

740

741 **AUTHOR CONTRIBUTIONS AND COMPETING INTERESTS STATEMENT**

742 PGBH, KJ, and SJBC conceived the study. KJ performed experiments exposing beetles to heat
743 stress. PGBH analysed the data and wrote the manuscript. TB and CSPF provided guidance
744 regarding bioinformatic analyses. ST performed molecular laboratory work. TMB, KJ, WFH, and
745 ADA helped to draft the manuscript. All authors edited the manuscript and approved the final draft.
746 Funding for this project was provided by an Australian Research Council Discovery grant
747 (DP180103851) to SJBC, WFH, ADA and TB. The authors declare that they have no competing
748 interests.

749

750 **DATA AVAILABILITY STATEMENT**

751 All raw RNA-seq data for *Paroster macrosturtensis* and *P. nigroadumbratus* used in differential
752 expression analyses in this study are available via NCBI under BioProject PRJNA783065 (individual
753 Sequence Read Archive accessions for samples SRR17023302-SRR17023315). HSP transcripts
754 assembled from raw *P. macrosturtensis* RNA-seq data and used in phylogenetic analysis are
755 available via GenBank (accession numbers summarized in Table S1). The reference transcriptome of
756 *P. nigroadumbratus* (including all isoforms) and the annotated, subsetted dataset (only including
757 longest isoform per Trinity ‘gene’) are available via FigShare (DOI: 10.25909/17169191).