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Abstract  

Time-lapse imaging is a powerful approach to gain insight into the dynamic responses of cells, 

but the quantitative analysis of morphological changes over time is a challenge. Here, we exploit 

the concept of “trajectory embedding” to analyze cellular behavior using morphological feature 

trajectory histories, i.e., multiple time points simultaneously, rather than the more common 

practice of examining morphological feature time courses in single timepoint (snapshot) 

morphological features. We apply this approach to analyze live-cell images of MCF10A mammary 

epithelial cells after treatment with a panel of microenvironmental perturbagens that strongly 

modulate cell motility, morphology, and cell cycle behavior. Our morphodynamical trajectory 

embedding analysis constructs a shared cell state landscape revealing ligand-specific regulation 

of cell state transitions and enabling quantitative and descriptive models of single-cell trajectories. 

Additionally, we show that incorporation of trajectories into single-cell morphological analysis 

enables (i) systematic characterization of cell state trajectories, (ii) better separation of 

phenotypes, and (iii) more descriptive models of ligand-induced differences as compared to 

snapshot-based analysis. This morphodynamical trajectory embedding is broadly applicable for 

the quantitative analysis of cell responses via live-cell imaging across many biological and 

biomedical applications. 
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Introduction  

In normal and diseased tissues, cells are continually exposed to a wide variety of extracellular 

stimuli, including growth factors and cytokines, that modulate morphological and phenotypic 

responses. However, quantitative assessment of complex morphological states remains a 

challenging problem. Single timepoint measurements provide some information about cell state 

but do not capture how responses evolve over time. Live-cell imaging has long been used to 

characterize dynamical changes in single-cell morphology, or cellular morphodynamics1,2. Recent 

advances in live-cell imaging technologies have allowed for unprecedented resolution into the 

behavior and interactions of cellular populations with single-cell resolution3–6. To date, most 

analyses of live-cell image data have been primarily based upon classification of cell morphology 

observed in individual time points and do not directly classify the rich dynamic landscape of cell 

morphology trajectories7–9. 

 

Here we developed a generalizable morphodynamical trajectory embedding method that can be 

used to analyze live-cell imaging datasets composed of unlabeled phase-contrast microscopy 

images as well as imaging with molecular reporters. Quantitative analysis of cell morphology in 

live-cell imaging typically involves the characterization of cellular morphology from static, single-

timepoint images, extended over single-cell time courses8–12. Analysis methods directly based 

upon trajectory features, i.e., features aggregating multiple time points, have been used for 

classification of mitosis and apoptosis13, and also for monitoring signaling responses via 

fluorescent reporters14. We show here that by mapping the multiple-time-point trajectory space of 

cells, rather than examining single-cell time courses built from snapshots, we can increase the 

information extracted from live-cell imaging experiments and improve the quantitative description 

of cellular responses. 

 

Live-cell imaging provides temporal information not available from other single-cell and omics 

measures. Single-cell RNA sequencing (scRNA-seq) can assay thousands of molecular read-

outs across thousands or hundreds of thousands of cells. A common data analysis procedure is 

the extraction of continuous low-dimensional cell state spaces, or cell state manifolds, from high-

dimensional molecular data15. Because sequencing is a destructive readout, single-cell 

trajectories in this space can only be inferred indirectly through population time-series modeling16–

19 or pseudo-time approaches20,21, however, approaches such as “RNA velocity”22,23 have been 

used to infer cell state dynamics. In contrast, live-cell imaging is unique in that cell responses can 
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be assayed for extended periods of time, even when unlabeled imaging is restricted to 

morphological features with limited information about molecular state or information regarding the 

basis for dynamic changes.   

 

Cell responses to a perturbation can be quantified by grouping cells with shared phenotypes 

together and tracking the subpopulations of cells assigned to these cell states. Cell states can be 

discrete, such as assigning cell-cycle states G0-G1-G2-M, or continuous, such as a continuum of 

states spanning an epithelial-to-mesenchymal transition. Live-cell imaging analysis of cell states 

has been applied using many different experimental approaches and analysis strategies with cell 

states defined in a variety of ways to capture different biological aspects. Live-cell imaging has 

been used to develop gene-level functional annotation, including in RNAi gene knockout screens 

and drug screening7, and extended to study how single-cell trajectories evolve in an assumed cell 

state space consisting of 8 pre-determined cell-cycle states8. Gordonov et al. developed an 

unsupervised approach to characterize live-cell state, analyze cell shape space, and obtain 

models of cell responses that included three distinct cell states10. This workflow of live-cell 

imaging, segmentation, featurization, and tracking has been used to describe cell state as a 

continuum11 and to develop a cell trajectory-based description of an epithelial-mesenchymal 

transition (EMT)12 in the space of single-timepoint snapshot features. Heryanto et al. utilized 3D 

shape descriptors to explore the relationship between 3D shape and cell motility24. Notably, 

trajectory information, including combined motility and morphological features computed as 

averages over single-cell trajectories, have been used to define and identify cell state25. The 

morphodynamical trajectory embedding approach described in this manuscript differs in that we 

directly analyze morphological feature trajectories, rather than average morphological or average 

cellular features over time. Preserving the feature trajectories ensures we maximally leverage the 

additional information contained in the time-ordered single-cell trajectory information.  

 

Trajectories are the natural space from which to classify a system out of equilibrium, such as a 

living cell26,27. However, this realization is not useful without the capability to measure the 

trajectory space of the system of interest. Floris Takens’ seminal trajectory embedding theorem28 

proves that in a deterministic dynamical system, there is a 1:1 correspondence between the space 

of the full dynamical system and that formed by concatenating incomplete observations of the 

system across time—the “trajectory embedding” space, also referred to as delay-embedding. To 

characterize cell morphodynamics, we take single-cell morphological features (snapshots) and 
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concatenate them across time to form morphodynamical feature trajectories, which we refer to as 

“trajectories.” For 𝑁𝑓 features and 𝑛𝜏 trajectory timepoints the trajectory of a cell is 𝑁𝑓 x 𝑛𝜏. In 

stochastic systems or systems of sufficient complexity as a biological cell, a 1:1 correspondence 

to a deterministic dynamical map is not necessarily achievable, but trajectory embedding can still 

lead to an improved characterization of the dynamical behavior29–31. Trajectory embedding 

methodology has been applied in fields as diverse as weather prediction32, economics33, and 

molecular dynamics34–36, but to our knowledge has not been applied in the context of classifying 

cell state in live-cell imaging assays. 

 

Here, we develop and apply the morphodynamical trajectory embedding method in a dataset of 

MCF10A mammary epithelial cells perturbed with a set of six ligands spanning major extracellular 

signaling pathways and inducing distinct cellular responses, including changes to cell 

proliferation, differentiation state, and motility37. The live-cell imaging data are part of a broader 

data collection effort through the Library of Integrated Network-Based Cellular Signatures (LINCS) 

consortium38,39 MCF10A project37 where the molecular and phenotypic responses to these ligand 

perturbations were explored. Molecular (RNAseq, protein expression levels via reverse phase 

protein array (RPPA), and chromatin state ATACseq) and cellular responses (cyclic 

immunofluorescence, cycIF) indicate changes in canonical cell signaling pathways and initiation 

of unique cellular responses in each ligand condition37. Our live-cell imaging cell-trajectory-based 

analysis was developed to characterize the morphodynamical changes associated with molecular 

responses. 

 

Results 

We applied our trajectory embedding analysis to systematically characterize cell state based on 

live-cell imaging of MCF10A mammary epithelial cells treated with a panel of ligands that drive 

distinct phenotypic responses: PBS (no ligand control), EGF, HGF, OSM, BMP2 + EGF, IFNG + 

EGF, and TGFB + EGF. Cells were observed via phase-contrast microscopy over 48 hours, with 

images collected every 30 min, as part of the LINCS MCF10A multi-omic profiling project37. 

Single-cells were segmented, featurized, and tracked through time as described in Methods. In 

our “trajectory embedding” approach, time-sequences of features (for the trajectory snippet length 

under consideration) were concatenated and used for UMAP40 dimensionality reduction (to 

dimensionality d) as the basis for further analysis. The single-cell trajectories we analyze are the 

set of extracted single-cells and their tracks, or linkages between frames. An overview of the live-
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cell imaging trajectory embedding workflow is shown in Figure 1. While lacking the molecular 

resolution of fluorescently labeled imaging, phase contrast microscopy has the benefit of 

minimally perturbing wild-type cell behavior, and the quantification of morphodynamical cell states 

demonstrates the biological information intrinsic to cellular trajectories in a broadly applicable and 

relatively simple imaging assay. 

 

Comparing morphodynamical trajectories between the different ligand treatments requires the 

construction of a shared cell state space, which we created by analyzing all of the trajectories 

from the full set of treatments through the dimensionality reduction pipeline together. The single-

cell trajectories we use for a trajectory embedding of length 𝑛𝜏 consist of all possible trajectory 

snippets of length 𝑛𝜏 in the full trajectory set; for example, a single cell which is tracked over 12 

frames will have 5 possible trajectory snippets of length 8 in a sliding window manner (frames 1-

8, 2-9, 3-10, 4-11, 5-12). Unless otherwise labeled, all available trajectory snippets over the 48-

hour experiment are used. Snippets mapped to the same location in the reduced-dimensionality 

cell state space share qualitatively similar morphology across trajectory timepoints and across all 

treatments, see extended figure 2. We find that in this shared morphodynamical trajectory space, 

ligand treatments alter the distribution of morphodynamical cell states, see Figure 2.  
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Separation of unique and shared cell state under ligand perturbation 

Ligand perturbation can induce time-dependent morphologic and phenotypic changes, including 

altered cycling rate, motility, and cytoskeletal features. Cells in the control condition (PBS, no 

ligand) did not proliferate, while cell populations grown in the other treatments display changes in 

proliferation and morphology as early as 6 hours (Figure 2A). For example, TGFB+EGF ligand 

treatment increased cell spacing and induced large lamellopodia, while OSM treatment induced 

tightly packed cell clusters; see Gross et al.37 for further phenotypic profiling. These striking 

changes motivate our interest in quantitative analysis of morphodynamical trajectories. 

Figure 1: Live-cell imaging analysis and trajectory embedding pipeline. 

The data analysis pipeline starts from 48-hour image stacks and proceeds to the morphodynamical 

trajectory analysis. Top left to bottom right: Image processing steps include A. preprocessing, B. 

cell segmentation, C. featurization (z-normalized phase-contrast pixel values colored red positive 

to blue negative), D. tracking (cell boundaries at t, t+30 min with cell centers connected by black 

arrows), E. extracting morphodynamical trajectories as sliding window cell feature trajectory 

snippets from cell linkages (3 possible trajectory snippets of length 3 shown in green, red, and 

blue), F. trajectory embedding (UMAP), and G. cell state and trajectory analysis. 
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We characterized changes to cell morphodynamics under the different ligand treatments by 

quantifying the similarity between distributions of morphodynamical trajectories between ligand 

conditions. We found similar ligand-specific distributions in the embedding space of morphological 

snapshots, with increased ligand-specific uniqueness observed in the embedding space of 

morphological trajectories. At the snapshot level, which excludes trajectory information, Figure 2B 

(left) shows that over the course of the experiment cells occupy broad distributions in the 

embedding space, with distinct shifts in occupancy separating OSM and TGFB+EGF from the 

rest of the ligand treatment conditions, which is consistent with the very different morphologies 

observed under these two treatments (Figure 2A). At a trajectory length of 8 steps (3.5 hours), 

these broader relationships are preserved but the cell state distributions in the embedded space 

become more condensed and display distinct peaks (Figure 2B right). The uniqueness of cell 

state distributions between ligand treatments is reflected in a monotonic reduction in the shared 

area, or overlap, between cell state probability distributions (Figure 2C) with increasing trajectory 

length. The pairwise overlap decreased more rapidly than in a null model where the cell features 

were randomly scrambled within treatment (Figure 2C). Thus, the trajectory embedding leveraged 

information across timepoints leading to improved description of the ligand-specific 

morphodynamical responses. 
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Figure 2: Trajectory embedding increases the distinguishability of cell states induced 
by ligand perturbation. 

A) Representative background subtracted phase-contrast images (size 1.6mm x 1.9mm with z-

normalized phase-contrast pixel values colored red (positive phase contrast) to blue (negative 

phase contrast) in the set of ligand conditions (top to bottom) at 0, 6, 12, 24, and 48 hrs (left 

to right). B. Distributions of cells in trajectory embedding space over the 48 hours of imaging. 

Left: snapshot space (trajectory embedding length = 1), right: trajectory embedding length = 

8. C) Average pairwise overlap over all treatment pairs (shared area under probability 

distributions) as a function of the morphodynamical feature trajectory length used in the 

embedding (log2 x-axis scale), comparing trajectory embedding (blue dashed lines) and null 

model with randomly scrambled time labels within treatments (red dashed lines), averaging 

over results obtained by dividing data into three  sets by field of view (diamonds), with error 

bars from a bootstrapped 95% confidence interval over the three data splits. A trajectory 

length of 1 corresponds to a snapshot description. 
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Improved cell state description from morphodynamical trajectories 

Cell states can be defined by identifying metastable regions of the morphodynamical trajectory 

embedding space where trajectories remain localized for extended time periods.  To compare cell 

states and transitions, we extracted the single-cell dynamics in the embedding space, i.e., in the 

space of trajectory snippets defined in a sliding window. If there are T timepoints in a full single-

cell trajectory, then there are T-𝑛𝜏 + 1 snippets of length 𝑛𝜏, each of which is a point in the 

embedding space. Together, these points trace out a trajectory in the embedding space with T-

𝑛𝜏 transitions between snippets (e.g., from the snippet consisting of frames 1-8 to the snippet 

consisting of frames 2-9). We used the dynamical information about snippet-to-snippet transitions 

to calculate dynamics in the morphodynamical cell state space. The average of all cell state 

trajectories passing through a local region in the landscape yields the cell state “flow”, which in a 

Markovian picture of a continuous stochastic process41,42 is proportional to the effective force 

“pushing” a cell from one morphodynamical state to another. These cell state force-fields are 

visualized in Figure 3. In the snapshot landscape, cell state trajectories appear highly random and 

indicate little systematic variation between treatments (Figure 3, left column). In the trajectory 

embedding landscape, however, the cell state force-field displays treatment-specific convective 

flows (Figure 3, center column). These flows indicate stabilization in the unique regions of density 

peaks between treatments, providing direct evidence for the paradigm of metastable attractors in 

a landscape picture of cell state. Individual single-cell trajectories in the embedded space can 

stay partly localized to these metastable cell states for extended time periods. Over the timescale 

of 10+ hours, cell state changes reveal the transition pathways between metastable cell states 

(Figure 3, single-cell trajectories shown as blue to green lines, image sequences in the right 

column). Trajectories that appear random at the less complete snapshot level unfold43,44 and 

become systematic in the trajectory embedding space. 

 

The usefulness of a single-cell trajectory depends upon how well it characterizes cell state 

transitions and transition dynamics. We measured how systematic and predictable the trajectories 

are by quantifying the randomness of the trajectories in the embedding space. We defined the 

predictability of a trajectory as a locality ratio 𝑙 = √〈(𝑥(𝑡 + 30𝑚𝑖𝑛) − 𝑥(𝑡))2〉 √〈(𝑥 − 〈𝑥〉)2〉⁄  

between the root-mean-square (RMS) displacement in the embedding space after one timestep 

(30 min) and the standard deviation in the displacement over the full population. Angled brackets 

〈⋯ 〉 indicate averages over all trajectories and timepoints 𝑡. In a completely random trajectory, 

this ratio is 1 because the variance in a single timestep and the full population is identical. In a 
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deterministic trajectory, all trajectories emanating from the same point are identical and have no 

variance after a single timestep--the only contribution to the ratio is the relative average 

displacement in the time interval. In a continuous, stochastic description of the trajectories in the 

embedded space41,42, this locality ratio is related to the effective diffusion rate. Figure 4A shows 

that this locality ratio systematically decreases with trajectory embedding length in contrast with 

the null model, indicating that trajectories are increasingly less random and more predictable with 

increasing trajectory embedding length. 

 

To determine the capability of the morphodynamical embeddings to characterize single-cell 

morphodynamical trajectories, we first used a subset of the data to train a model of trajectory 

likelihood, then calculated the average log-likelihood of a held-out test set of trajectories. The 

average log-likelihood is a direct measure of the predictability of the cell trajectories45. Here we 

used a Markovian transition matrix likelihood model, trained by counting transitions between 

Voronoi states defined by k-means cluster centers on the landscape46,47. We utilized 100 k-means 

centers to discretize the morphodynamical embedding space, which provided sufficient Voronoi 

centers to capture the observed patterns of cell state flow between metastable cell states while 

still retaining adequate sampling of state-state transitions. The average log-likelihood increases 

as a function of morphodynamical trajectory embedding length and is higher than in a null model 

where cell features were randomly scrambled between treatments, shown in Figure 4B.  

 

We expect in general that greater trajectory embedding lengths will increase the descriptive 

capability of trajectory models, but only up to the point where adequate data quantity is obtained. 

With the cell segmentation and tracking challenges posed by the unlabeled bright field imaging 

data, reconstructing complete trajectories is challenging (extended data table 2). For snippet 

lengths longer than 8 frames, we did not observe an increase in ligand-specific trajectories relative 

to the null model (Figure 2C), which likely is related to the decrease in the number of extracted 

trajectories longer than 8 frames (extended data table 2). Thus we chose a trajectory embedding 

length of 8 (3.5 hrs) for further analysis. The decreased overlap between ligand-specific 

distributions (Figure 2C), decreased locality ratio (Figure 4A), and increased trajectory likelihood 

(Figure 4B) indicate that even partial trajectory information over a timescale of a few hours 

substantially improved the representation of cell state. 
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Figure 3: Trajectory 
embedding enables 
the determination of 
metastable cell states 
and pathways across 
ligand treatments. 

Left and middle column: 

average displacement 

proportional to the 

effective force (orange 

arrows), and cell density 

(grayscale) for snapshot 

embedding (left: 

snapshot, trajectory 

snippet length = 1, right: 

trajectory snippet length 

= 8). Representative cell 

morphodynamical 

trajectories capturing 

cell state transitions 

(blue to green line with 

arrows showing the 

direction of motion in 

the embedding space) 

from t0 to tf determined 

by the available cell 

tracks. Right column: 

Cell images every hour 

along the extracted 

trajectory, with the 

tracked cell centered in 

the image frame and 

neighboring cells 

moving in and out of 

view, except in the 

IFNG+EGF images 

where the tracked cell is 

temporarily clipped at 

the edge of the 

microscope field of 

view.  
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Figure 4: Trajectory 
embedding increases 
the predictability of 
cell trajectories.  

A) Ratio between the 

single-step (dt=30min) 

and full RMS 

displacement in the 

trajectory embedding 

space as a function of the 

trajectory length, null 

model with randomly 

scrambled features 

within treatments (reds) 

and trajectory embedding 

(blues), and UMAP 

embeddings with d=1 

(lines), d=2 (diamonds), 

d=3 (triangles), d=4 

(squares), and d=5 

(stars), with d the 

number of UMAP 

components. Three 

replicates are shown per 

embedding (sea green, 

turquoise, teal). 

B) Average log-

likelihood per trajectory 

step from the validation 

set cell trajectories, as a 

function of the trajectory 

length, averages for the 

trajectory embedding 

(blue dashed line) and 

for the null model (red 

dashed line), from 

UMAP d=2 embeddings. 

Individual treatments 

(colors) for the null 

model (crosses) and for 

the trajectory embedding 

(diamonds). 
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Morphodynamical transitions precede cell cluster formation 

Ligand treatments displayed characteristic transitions between cell states (Figure 5A), indicating 

ligand-specific regulation of cell morphodynamics. In general, cell state distributions were more 

similar across ligand treatments at early times, and became more condensed and distinct at later 

times, reflected in the time-dependent morphodynamical cell state distribution (extended figure 

3). 

 

Cell states in the embedding space were identified using a combination of quantitative methods 

refined by visual inspection  Our primary conclusions, importantly, do not depend on fine details 

of the states employed for analysis.  We identified fine-grained metastable states spanning the 

cell state landscape from density peaks arising in individual treatments (Figure 5A, 5B A.-S.), 

which we collected into 6 macrostates, or groupings, and assigned qualitatively descriptive labels 

based upon observed cell morphology. These labels are intended to be descriptive for ease of 

interpretation and suggest future areas of study to more deeply explore the biological 

underpinnings of our findings. “Separated epithelial-like” cell states are rounder, active cells 

enriched in EGF condition, while “separated mesenchymal-like” cell states display more extended 

cytoskeletal features such as lamellopodia and are enriched in the TGFB condition. The 

“intermediate clusters” cell state divides the cells which are mostly separated from the cell states 

where cells are tightly clustered and attached together. These multicellular clustered or attached 

cell states we divided into “bound clusters” which display a thick border around attached cells that 

span multiple cells, “unbound clusters” which lack this border and whose outer cells have 

extended cytoskeletal features, and “budding” cells which consist of semi-round, “crinkly” cells 

attached to the outer border of a cell cluster. 

 

The direction of the cell state flow in the trajectory embedding space indicates that a group of 

cells coming together and forming an attached multicellular cluster proceeds via macrostate 2, 

“separated mesenchymal-like” cells with extended cytoskeletal features. This flow was 

consistently observed in the cell state “force-fields” (Figure 4), cell state transition networks 

(Figure 5A), and the time-dependent cell state distributions (Figure 5C), and in all of the ligand 

conditions despite morphological differences in multicellular clusters between treatments.  

 

Cell cluster formation was most strongly associated with OSM treatment,37  consistent with figure 

5A showing that in the OSM treatment the transition probability from the “intermediate cluster” 

state 3 into the multicellular clustered state was higher than the transition probability out. 
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Separated cells (states 1 and 2) are separated from cell clusters (states 4 and 5) and cell cluster 

formation proceeds through states 2→3→4 via cells displaying extended cytoskeletal features 

and increased cell border contrast (Figure 5B).  
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Discussion and Conclusions 

In vivo, cells continually modulate their phenotypic state in response to the local 

microenvironment38. During development, cells must precisely control cell states48, responses to 

extracellular signals, and cell motility, while the loss of cell state control is associated with various 

diseases, including cancer49. Dynamic cell behaviors are observed via live-cell imaging but 

quantifying the relationships between diverse cellular phenotypes that may be dynamically 

interchanging has been challenging. Our morphodynamical “trajectory embedding” provides a 

method to quantitate dynamic morphologic behaviors. Trajectory embedding leverages the 

unique capability of live-cell imaging to follow single cells in time and constructs a coordinate 

space based on time-aggregated “hyper features” better suited to study cell states and their 

dynamical relationships as compared to standard featurization based on single timepoints.  

 

Trajectory embedding analysis enables quantification of cell state dysregulation, including cell 

state plasticity which has been identified as a mechanism of disease progression and therapeutic 

resistance in advanced cancers50–56. Cell state has been defined as an attractor in a high-

dimensional landscape, a paradigm famously depicted in Waddington’s epigenetic landscape57–

59. We observe that cells dynamically transition between morphodynamical cell states and that 

the transition frequency is strongly modulated by ligand treatment. These dynamic cell state 

relationships can provide a framework for understanding cell-cell heterogeneity and heterogenous 

cell responses to perturbation. Live-cell trajectory embedding brings the cell state landscape 

Figure 5: Trajectory embedding resolves pathway of cell cluster formation via 

mesenchymal-like intermediate. 

A) Upper left: Cumulative distribution of all cells under all treatments (grayscale) with 

labeled fine-grained density peaks (A-S), and overall qualitative cell state network of 

macrostates (mauve dashed circles) with numeric labels (1-6). Cell state transition networks 

with arrow weight proportional to conditional transition probability, not overall transition 

flows, with transition probabilities <3% not drawn. B) Representative trajectory snippets 

(embedding length = 8 = 3.5 hrs) extracted at density peak locations (A.-S.) with the 

treatment condition of the representative trajectory snippet,  grouped by macrostate with 

morphologically descriptive macrostate labels (right of images).  
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paradigm from theoretical biology to direct application, where cell states and the transitions 

between them can be resolved, validated, and potentially leveraged for actionable control 

strategies17,60–65. 

 

Our morphodynamical trajectory embedding procedure quantifies the space of morphological 

trajectories directly, leading to an improved description of dynamical cell state changes compared 

to using only morphological snapshots. We chose a broad cell feature set but many other cell 

featurizations have been developed, including other novel cell shape descriptors66,67 and machine 

learning-based approaches68. Trajectory embedding, in principle, has the capability to map 

dynamical information from any reasonable featurization towards a more complete description of 

cell state. 

 

The morphodynamical trajectory embedding method can be applied to any live-cell imaging 

modality where cells can be characterized and tracked through time, and in particular, we expect 

that this method will be especially powerful for analysis of live-cell approaches that incorporate 

genetically-encoded, fluorescently-labeled reporters, both in vitro69–71 and in vivo72–74.  Practical 

limitations will always come into play, nevertheless. For example, we applied our method to 

unlabeled phase-contrast imaging of cell cultures that approach confluence75,76, without paired 

ground truth labeled images77, requiring an analysis approach with some robustness to cell 

segmentation and tracking errors. Trajectory data quantity and quality will generally pose a 

constraint on trajectory length used in the morphodynamical trajectory embedding analysis. Even 

when many very long trajectories are available, analysis based upon shorter trajectory lengths 

might more directly capture processes and relationships of specific interest, such as the 

connection between specific morphological features and cell motility. General procedures to 

identify the optimal trajectory length for analysis need to be developed, building on the preliminary 

approaches employed here.  

 

Biological interpretation and validation of the morphodynamical cell states extracted here will be 

important, and our findings help to motivate specific hypotheses that could be explored in future 

studies. Identification of the molecular programs associated with particular cell states and cell 

state transitions would provide insight into how these processes are mediated in normal tissues 

and how they may go awry in diseases. Our observation that cell cluster formation is preceded 

by a mesenchymal-like shift in cell state aligns with the maturation of transverse arc stress fibers 

as a precursor to stable cell-cell junctions observed by Rajakylä et al,78 but live-cell imaging 
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coupled with deeper molecular profiling data—such as multiplexed imaging79–82 and single-cell 

transcriptomics83,84-- are needed in order to develop the applicability and utility of the information 

obtained from live-cell imaging alone. Manifold-based or mutual-information approaches have 

had some success with single-cell data integration85–87, and may enable integration of live-cell 

imaging trajectory embeddings with molecularly resolved data, a critical data analysis goal 

needed to provide insight into the biological relevance of morphodynamical cell states.  

 

With the trajectory embedding method we present here, we can now study the emergence of 

metastable attractors and the regulation of dynamic cell state changes, directly confirmed via live-

cell trajectories.  

 

Methods 

 

Live-cell imaging of MCF10A cells Data used in this study were recently described by Gross, 

et al.37 In brief, cells were plated at ~50,000 cells/ml (0.5ml per well) on collagen-coated 24-well 

plates, and cultured with 7 different ligand treatments (PBS, EGF 2𝑢g/ml, HGF 8𝑢g/ml, OSM 

2𝑢g/ml, BMP2 + EGF 2𝑢g/ml, IFNG + EGF 2𝑢g/ml, TGFB +EGF 2𝑢g/ml), after an 8 hour 

attachment period in growth media containing EGF and a 12 hour period in imaging media lacking 

EGF. Wells were imaged every 30 minutes for 48 hours via bright-field phase contrast with an 

Incucyte microscope (1020x1280, 1.49 𝜇𝑚/pixel), with the initial frame coinciding with the addition 

of the ligands and fresh imaging media. 6 image stacks were collected for each ligand treatment. 

Experimental protocols can be found in detail at the publicly available Synapse database88. 

 

Image preprocessing Foreground (cells) and background pixel classification was performed 

using manually trained random forest classifiers using the ilastik v1.3.3 software89. Images were 

z-normalized (mean subtracted and normalized by standard deviation) and background pixel 

values were set to a value of 0. In cell images, these z-normalized pixel values are shown from 

red to blue (positive to negative). 

 

Cell segmentation Single-cells were segmented from the preprocessed images using the 

cytoplasm model of the Cellpose90 v0.6.5 software, a deep learning approach trained broadly 

across cell types and imaging modalities. The Cellpose algorithm requires estimating the size of 

the cells before segmentation; due to the variability in sizes and shapes of the MCF10A cells, 

segmentation was performed iteratively over multiple rounds allowing the Cellpose algorithm to 
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determine a new cell size at each round until no more new cells were found (pixels of previously 

segmented cells set at each round to the background value of 0). Image preprocessing and 

segmentation scripts can be found on the github repository, see data and code availability. The 

unlabeled, bright-field phase-contrast imaging used here leads to image analysis challenges, 

particularly for cell segmentation. It is difficult to judge the quality of many extracted cell 

segmentations when local cell density is high, see extended data table 1 for manual validation.  

 

Cell featurization Three classes of features were used to characterize individual cells: (i) texture 

features, (ii) shape features, and (iii) features characterizing adjacent cells.  As preliminary steps, 

segmented cells were extracted, and mask-centered into zero-padded equal sized arrays larger 

than the linear dimension of the biggest cell (in each treatment); then the long axis was defined 

by the non-mass-weighted moment of inertia of the cell mask and aligned along a reference axis.  

(i) Two types of internal cell features were calculated. Zernike moments (49 features) were used 

to characterize the overall spatial phase contrast signal and Haralick texture features (13 features) 

were used to characterize the phase contrast texture; these were calculated in the Mahotas91 

image analysis package. The sum average Haralick texture feature was discarded due to 

normalization concerns. (ii) Shape features (15 features) were calculated as the absolute value 

of the frequency coefficients of the Fourier transform of the distance to the boundary as a function 

of the radial angle around cell center92, with the sum of shape features normalized to 1. (iii) The 

cell environment was featurized in a similar fashion, where an indicator function with value 0 if the 

cell boundary was in contact with the background mask (no neighboring cell), and value 1 if in 

contact with the cell foreground mask. The absolute values of the Fourier transform coefficient of 

this indicator as a function of radial angle around the cell-center then featurized the local cell 

environment (15 features), with the sum of cell environment features normalized to 1. Note the 

first component of the cell environment features is practically the fraction of the cell boundary in 

cell-cell contact. Additional information regarding the cell featurization can be found in extended 

figure 4A. 

 

After computing the raw features as described, the high-dimensional cell feature space was 

dimensionally reduced using principal component analysis (PCA), retaining the largest 3 eigen-

components of the feature covariance matrix (spanning all treatments and image stacks) which 

captured >90% of the variability. More PCA components can be retained with only a small 

computational cost in the dimensionality reduction step (here UMAP) which typically scales 
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linearly with the data vector length. Additional information regarding the cell feature PCA reduction 

can be found in extended figure 4B. 

 

Cell tracking Segmented cells were tracked between live-cell imaging frames to extract the set 

of single-cell trajectories. Image stacks were first registered translationally without allowing 

rotational or general affine transformation using the pystackreg implementation of subpixel 

registration93. Cell centers were recorded as the equally weighted center of mass of the single-

cell masks. Cells were tracked between frames by first separating each contiguous cluster of cells 

as defined by connected sets of the foreground/background cell mask. If cell clusters occupied 

less than 10,000 pixels (typical cell very roughly 30x30 pixels), cells were simply tracked by 

minimum distance with a cutoff of 45 pixels. Tracking cells by minimum distance refers to linking 

a cell at frame t to the cell at frame t+1 which has the minimum distance between cell centers.  

For larger cell clusters, clusters were first tracked by minimum distance with a cutoff of 300 pixels. 

Tracked cell clusters were each individually registered rotationally and translationally (again using 

pystackreg), and individual cells in the clusters were tracked between frames by maximum 

overlap with a cutoff of 10 pixels. Two or more cells may have the same parent cell as the closest 

cell in the previous frame. This can be the result of a cell division event, or can be the result of a 

missed track or missed cell segmentation. We do not separate cell division events into their own 

category, but simply use the cell tracks, or linkages between frames, to identify the unique cell 

trajectory history. Where trajectories are split as in a cell division, trajectories are not truncated 

and begun anew, but rather each daughter is tracked backward in time leading to two trajectories 

which are treated separately, see cell image sequences from HGF and TGFB+EGF conditions in 

Figure 3 for examples.  That is, daughter cells will have overlapping or shared history from the 

parent cell. 

 

Morphodynamical trajectory embedding High-dimensional time-sequences of features are 

used as the input to dimensionality reduction algorithms as the basis for morphodynamical cell 

state analysis. Extracted cell linkages were constructed from available cell tracks. These cell 

linkages are not complete, that is incomplete segmentation/tracking means that some cells cannot 

be traced all the way back to an initially plated progenitor cell. The available cell history is the 

unique backwards trace of any extracted single-cell through time. Of the total 476,855 cells 

extracted here; 137,845 could be traced back only one step, while 36,919 could be traced back 

10 steps, see extended data table 2. We consider the set of all cells (from possibly different 

experimental time points) with cell history equal to or longer than a given length, the trajectory 
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snippet set, see extended figure 5 for a graphical description. Note there is a large amount of 

duplication in this sliding window division of available cell trajectories. Cell trajectories that are 

longer than the trajectory snippet length used in the trajectory embedding allow for the 

determination of cell states and pathways. From the linkages, all cell trajectory snippets of length 

𝑛𝜏 (all possible cell histories with length 𝑛𝜏) were extracted in a sliding window manner. The 

number of available trajectory snippets for each treatment is shown in extended data table 2. The 

PCs of each cell in the trajectory snippet were then concatenated together (e.g. for 2 PCs  {𝑋𝑛𝜏⃑⃑⃑⃑ ⃑⃑  ⃑} =

{𝑃𝐶𝐴1(𝑡0), 𝑃𝐶𝐴2(𝑡0),… , 𝑃𝐶𝐴1(𝑡1), 𝑃𝐶𝐴2(𝑡1),… , 𝑃𝐶𝐴1(𝑡𝑛𝜏
), 𝑃𝐶𝐴2(𝑡𝑛𝜏

)} to form the trajectory 

snippet supervector, which we define as the morphodynamical feature trajectory of length 𝑛𝜏 (with 

N features, the feature trajectory for each cell is N x 𝑛𝜏). These morphodynamical feature 

trajectories (spanning all image stacks and all treatments) are flattened into vectors and then 

embedded using UMAP94 into a space of dimension d. Changing UMAP embedding 

hyperparameters will alter fine details regarding the trajectory embedding landscape, but we find 

our overall results to be robust with very little change in the measured overlap between ligand 

populations or trajectory likelihood as shown in extended figure 6. The trajectory embedding 

analysis allows for the robust and systematic characterization of cell state trajectories even in this 

challenging data analysis regime with many missing and partially segmented cells. 

 

Overlap coefficient To compare the similarity of two probability distributions over a shared 

space, we use the overlap coefficient95 defined by the sum of the minimum value of two probability 

distributions. The overlap is 0 for completely distinct non-overlapping distributions, and 1 for 

identical distributions.  

 

Stochastic dynamics: locality ratio, cell state force-fields We employ several measures 

motivated by standard concepts of stochastic physics. A measure of the randomness of motion 

in stochastic dynamics is the effective diffusion rate defined at a timescale 𝜏 by 𝐷 ≡< ∆𝑥2 >𝜏/𝜏 

with here 𝜏 the time between frames of 30 minutes. We characterize how random trajectories are 

by the ratio of the single-step RMS (root-mean-square) displacements to the total RMS 

displacement, a locality ratio 𝑙 = √〈(𝑥(𝑡 + 30𝑚𝑖𝑛) − 𝑥(𝑡))2〉 √〈(𝑥 − 〈𝑥〉)2〉⁄  where the mean-

squared displacements are summed over dimension and the angle brackets 〈… 〉 indicate 

averages over all trajectories and time points. For completely random trajectories, this ratio is 1, 

and tends to the relative average displacement for a continuous, deterministic dynamic. If cells 

are obeying stochastic Markovian dynamics characterized by a diffusion equation, then the 
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average displacement 〈∆𝑥 〉  is proportional to the effective force 𝐹 (𝑥 ) via 〈∆𝑥 〉   = 𝛾−1 𝐹 (𝑥 )∆𝑡 with 

𝛾 the friction. 

 

Cell state clustering and prediction The cell state dynamics were characterized by building a 

fine-grained discretized transition matrix model in the continuous morphodynamical trajectory 

embedding space. The embedded space was binned using k-means clustering with 𝑘 = 100 

clusters. In the discrete space, a transition matrix between bins was estimated from the observed 

transition counts 𝐶𝑖𝑗 from a microbin i to microbin j as 𝑇𝑖𝑗 = 𝐶𝑖𝑗/𝐶𝑖 and 𝐶𝑖 = ∑ 𝐶𝑖𝑗𝑗 . This transition 

matrix is commonly referred to as a “Markov Model” broadly used in the analysis of molecular 

systems.96 Note that this transition matrix does not share a steady-state distribution with the cell 

populations, as cell birth and death states are not included. This transition matrix was used as a 

(highly simplified) model of the single-step trajectory likelihood. 

 

Trajectory likelihood To assess the quality of the description of the cell state dynamics, we 

adopted a self-consistent measure of how likely a test set of single-cell trajectories were within a 

transition matrix model trained from a separate training set of trajectories. Data were split into a 

training set (5/6 images stacks per treatment) and a validation set (1/6 image stacks per 

treatment). The training set was used to train a transition matrix likelihood model, and the average 

log-likelihood per trajectory step was calculated from the test set trajectories using the transition 

matrix as < 𝐿 >=
1

𝑁2
∑ log (𝑇𝑖𝑗)𝑥0=𝑖,𝑥1=𝑗  with 𝑁2 the set of all 2-step trajectories in the validation set 

(initial point 𝑥0 mapped to bin 𝑖 and next point 𝑥1 mapped to bin 𝑗.  

 

Cell metastable state extraction and grouping To capture the broad relationships defined in 

the continuous trajectory embedding space we defined a small set of discrete cell “states”. We 

first picked out all metastable locations on the landscape. We identified these metastable 

locations by local maxima in the population density, see Figure 5 and extended figure 3. These 

fine-grained metastable cell states spanning the trajectory embedding landscape (19 total) were 

picked via density peaks in the individual treatments. To group these fine-grained cell states into 

macrostate groupings, we first utilized an unsupervised kinetic clustering approach97 which 

separated three major metastable basins consistent with the regions of the landscape enriched 

in the EGF, TGFB+EGF, and OSM conditions (respectively lower right, lower left, and upper 

regions, Figures 2B and 5C). We then manually refined these regions to distinguish between 

clustered cell states (states 4, 5, and 6) differentially occupied between ligand treatment. These  
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6 qualitative cell macrostates were used to define cell macrostate transition networks (transition 

matrix, see Cell state clustering and prediction and Figure 5A). Cells were mapped into these 

macrostates by first finding the closest fine-grained metastable state in the embedding space, 

and then assigning the macrostate label accordingly. The morphodynamical trajectory embedding 

space indicates a continuum of cell states, thus intermediate metastable states as indicated by 

density peaks which are nearest-neighbors but assigned to different macrostates, such as E and 

F assigned to the epithelial-like macrostate and G and H assigned to the mesenchymal-like 

macrostate, may be very similar and not strictly distinct. Cell state names are descriptive for ease 

of interpretation but not based upon validated biological interpretation. 

 

Statistical analysis. Overlap and locality ratio results were validated by calculating over 3 

replicates of the data, split into 3 groups composed of 2 image stacks for each treatment. Means 

over the replicates, and the individual replicate data points are plotted to allow visual estimation 

of the robustness of the analysis. Error bars and 95% confidence intervals are estimated from the 

data splits by Bayesian bootstrapping98. 
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LINCS MCF10A Molecular Deep Dive data is available in some formats from the synapse 

database88 and additional data is available upon request. 
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Extended Data Tables and Figures 

Extended Data Table 1. Segmentation and tracking manual validation. 100 cells per 

treatment were randomly selected, and evaluated by eye to qualitatively assess segmentation 

and tracking accuracy. Fraction segmented was estimated by the image area covered by 

segmented masks divided by the area selected as being occupied by cells from the ilastik random 

forest pixel classifier. *(+EGF) 

ligand total EGF HGF OSM IFNG* BMP2* TGFB* 

% segmented 52% 53% 51% 46% 54% 52% 42% 

% good seg 43% 52% 38% 33% 48% 53% 56% 

% bad seg 26% 26% 24% 7% 25% 33% 34% 

%ambiguous seg 31% 22% 38% 60% 27% 14% 10% 

% tracked 60% 51% 56% 55% 60% 58% 79% 

% good tracks 87% 95% 91% 42% 94% 96% 95% 

% bad tracks 2% 5% 0% 3% 6% 0% 0% 

%ambiguous 

tracks 

11% 0% 9% 55% 0% 4% 5% 

 

Extended Figure 1. Segmentation and tracking manual validation. Examples of good, bad, 

and ambiguous qualitative validation categories for segmentation and tracking. 
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Extended Data Table 2. Number of extracted trajectory snippets with increasing snippet 

length. *(+EGF) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
  

Trajectory 
snippet length 

PBS EGF HGF OSM BMP2* IFNG* TGFB* 

1 49016 73093 69747 99933 63669 72389 49008 

2 32251 35337 40640 58119 31558 39545 36736 

4 21894 14066 22837 29783 14135 19501 16206 

8 15342 4892 12572 13208 5772 9033 2936 

16 9256 1416 5857 3861 1892 3603 884 

32 4243 226 2161 924 409 1055 142 

64 1002 16 347 139 0 141 0 
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Extended Figure 2: 
Trajectory 
embedding 
constructs a 
common space to 
evaluate unique and 
shared cell 
morphodynamics. 

Top left: outline of the 

combined density 

distribution in the 

trajectory embedding 

(snippet length = 8) 

space (gray), with 

locations of the density 

peaks in individual 

treatments marked with 

letters consistent with 

Figure 5 and exhibited 

cell trajectory snippets 

at locations marked 

with stars. Remaining 

boxes: cell trajectory 

snippet extracted at the 

marked location, but 

from the treatment 

labeled for each box. 

Time for each 8-step 

trajectory snippet 

shown runs from top to 

bottom. 
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Extended Figure 3: 

Time-dependent cumulative distributions (rainbow) from 12-hr windowed averages (or 

maximum allowed window average), and density peak locations selected as fine-grained 

metastable states (labels A-S).  

 *(+EGF) 
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Extended Figure 4: 

Cell features and PCA reduction. A) Segmented single-cell with cell border in contact with 

another cell (dashed line), and not in contact (solid line), and cell feature description 1. Phase 

contrast overall features described by Zernike moment absolute values. 2. Texture described 

by Haralick texture features. 3. Cell shape featurized by the absolute value of the Fourier 

coefficients of the distance to the cell center as a function of the angle 𝜃. 4. Local cell 

environment described by the absolute value of the Fourier transform of 𝐼(𝜃) indicating cell-

cell contact. B) PCA feature reduction. PCA eigenvalues (top left) and eigenvectors for the 

top 3 components explaining >90% of the feature variance (top right). PCA landscape colored 

by 1. Approximate sphericity given by the first Fourier component of 𝑟(𝜃), approximate 

fraction of the cell boundary in contact with another cell given by the first Fourier component 

of the cell-cell border indicator 𝐼(𝜃), and 3. by ligand condition. 
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Extended Figure 5: 

Graphical illustration of the full set of cell linkages connecting 2 initially plated cells to the 

cells at the final timepoint (gray arrows). The extracted cells and linkages from the cell 

segmentation and tracking steps as green arrows indicating the available partial set of cells 

and linkages used in the data analysis with errors and missing cells, and some possible 

trajectory snippets (yellow highlights) extracted in a sliding window manner along the 

extracted linkages. 
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Extended Figure 6: 

A) Trajectory log-likelihood 

with trajectory length at half the 

value of the UMAP n_neighbors 

parameter (nn=50, cyan) and 

twice the value of the 

n_neighbors parameter (nn=400, 

purple), and the value used in 

Figures 2-5 (nn=200). B) 

Average pairwise overlap 

between ligand population 

distributions at half the value of 

the UMAP n_neighbors 

parameter (nn=50, cyan) and 

twice the value of the 

n_neighbors parameter (nn=400, 

purple), and the value used in 

Figures 2-5 (nn=200). C) 

Average pairwise overlap 

between ligand population 

distributions with UMAP 

embedding dimension (d=1-5, 

light-gray to black). 
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