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ABSTRACT
Mediation models are a set of statistical techniques that investigate the mechanisms
that produce an observed relationship between an exposure variable and an
outcome variable in order to deduce the extent to which the relationship is
influenced by intermediate mediator variables. For a case-control study, the most
common mediation analysis strategy employs a counterfactual framework that
permits estimation of indirect and direct effects on the odds ratio scale for
dichotomous outcomes, assuming either binary or continuous mediators. While this
framework has become an important tool for mediation analysis, we demonstrate
that we can embed this approach in a unified likelihood framework for mediation
analysis in case-control studies that leverages more features of the data (in
particular, the relationship between exposure and mediator) to improve efficiency
of indirect effect estimates. One important feature of our likelihood approach is that
it naturally incorporates cases within the exposure-mediator model to improve
efficiency. Our approach does not require knowledge of disease prevalence and can
model confounders and exposure-mediator interactions, and is straightforward to
implement in standard statistical software. We illustrate our approach using both

simulated data and real data from a case-control genetic study of lung cancer.
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INTRODUCTION

Mediation techniques!-* are indispensable epidemiological tools for
exploring the relationship between an exposure of interest and an outcome variable
by investigating how their relationship is affected by intermediate mediator
variables. Mediation models partition the total effect that an exposure has on
outcome into the indirect effect on outcome explained by the mediator and the
direct effect on outcome not explained by the mediator. Classic methods for
mediation analysis are embedded within a structural equation modeling (SEM)
framework?>7 that fit 3 distinct regression models: 1) regression of outcome on
exposure, 2) regression of mediator on exposure, and 3) regression of outcome on
exposure and mediator. Estimates of direct effect can be based on exposure-
outcome relationship in model (3), while estimates of indirect effects are derived
from the product of the exposure-mediator relationship in (2) and the mediator-
outcome relationship in (3) (or, alternatively, the difference of the exposure-
outcome relationship in (1) and the exposure-outcome relationship in (3)).
Counterfactual approaches for mediation analysis8-1? expanded on the SEM
framework to allow for estimates of indirect and direct effects in the presence of
potential mediator-exposure interactions as well as nonlinear relationships
between variables.

Many studies, particularly in genetic epidemiology, are case-control studies.
Mediation analysis for case-control studies often use the influential framework of
VanderWeele (VW) and colleagues. The VW framework, published in a pair of

landmark papers!%1! with over 1100 citations combined, showed how the


https://doi.org/10.1101/2021.07.16.452552
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.16.452552; this version posted January 10, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

counterfactual framework could be used to estimate indirect and direct effects on
the odds ratio scale for dichotomous outcomes assuming either binary and/or
continuous mediators!%12,

As described in Materials and Methods, the VW framework conducts
inference using two separate regression models: (a) a logistic regression model of
disease on exposure and mediator and (b) a separate regression model of mediator
regressed on exposure. Estimates and standard errors of total, direct, and indirect
effects are then derived based on parameter estimates and standard errors from
these two regression models. We note that, while fitting model (a) is
straightforward, fitting model (b) is problematic because the sample is non-
randomly ascertained under a case-control design, so that parameter estimates
based on data from study participants do not necessarily reflect those from the
population in general. Studies!3-16 have found that estimates of the mediator-
exposure relationship from a pooled case-control sample are biased when the
mediator is associated with disease. If there is no association between exposure and
disease, then this bias is generally negligible (unless the mediator is continuous and
the effect of mediator on disease is large). However, if there is further association
between exposure and disease, then substantial bias can result and be exacerbated
both by increasing effect sizes and decreasing disease prevalence.

To circumvent the issue with fitting model(b) in a non-randomly ascertained
sample, Valeri and VanderWeele!? fit this model using only controls. While this is
valid, the exclusion of cases from model (b) means the VW approach loses efficiency

relative to methods that could properly model the cases (accounting for
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ascertainment) when investigating the mediator-exposure relationship. An
alternative strategy to incorporate cases into the mediator model was considered by
VanderWeele et al.17, which employed weighted regression techniques that utilized
inverse-probability weighting (IPW) with robust standard errors. A drawback of the
[PW approach however is that the method requires knowledge of disease
prevalence, which might be difficult to specify, especially when disease prevalence
differs between subpopulation groups.

In this article, we propose a likelihood approach for mediation analysis in
case-control studies that provides efficiency gains over traditional VW methods.
Rather than estimating indirect and direct effects based on two separate regression
models, our likelihood approach jointly models the disease, exposure, and mediator
together in a unified framework that accounts for correlation in the parameter
estimates between the two VW regression models to provide refined estimates of
these quantities. Our approach also naturally incorporates cases within the
mediator-exposure model and (unlike IPW methods) does not require knowledge of
disease prevalence to do so. Our method can also handle confounders and exposure-
mediator interactions. The method is simple to implement within the R
programming language and we provide code (see Data Availability Statement) for
public use. Using simulated data, we show our approach provides more efficient
estimates of indirect effects compared to VW approaches (including IPW strategies)
for both continuous and binary mediators. We further illustrate our method using

genetic and smoking data from a case-control study of lung cancer.
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MATERIALS AND METHODS

Assumptions and Notation: We assume a case-control study. Define Y as

disease outcome (1=case, 0=control), 4 as an exposure of interest (continuous or
categorical), M as a possible mediator (continuous or categorical), and C as a vector
of confounders not influenced by exposure. We wish to fit the mediation model in
Figure 1. In particular, we wish to measure the direct effect of A on Y and the
indirect effect of A on Y carried out through the mediator M.

VanderWeele Framework: The original VanderWeele (VW) techniquel0.11

estimates direct and indirect effects in Figure 1 based on a formal causal inference
framework®°. This framework conceptualizes counterfactual and potential
outcomes, which define the mechanistic process by which an exposure may causally
affect the dependent variable conditional on mediators. Assume a binary exposure
and let Y (a) be the potential outcome for exposure level a (a=0,1). Then the total

effect of A on Yis defined as E[Y(1)] — E[Y(0)], which is the difference between the

expectation of Y when A equals 1 and when 4 equals 0.

We can decompose the total effect (TE) of exposure on outcome into the
natural indirect effect (NIE) and the natural direct effect (NDE). NIE is defined as
NIE = E[Y(1,M,)] — E[Y(1,M,)], where M, (M,) is the counterfactual value of the
mediator M when A equals 0 (1). Likewise, NDE is defined as NDE = E[Y (1, M,)] —
E[Y (0, My)]. Thus, the total effect equals TE = NIE + NDE = E[Y(1,M,)] —

E[Y (0, M,)]. Additionally, for a given (fixed) value of mediator M, we can define the
controlled direct effect (CDE) as CDE = E[Y(1,M)] — E[Y (0, M)], which can change

for different values of M (as we will show). The framework can estimate direct and
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indirect effects despite only one of the potential outcomes being observable for a
given subject, provided four assumptions hold: (I) no unmeasured exposure-
outcome confounding, (II) no unmeasured mediator-outcome confounding, (III) no
unmeasured exposure-mediator confounding, and (IV) no mediator-outcome
confounder affected by exposure.

For case-control studies with a binary outcome, the VW techniques!!
extended the definitions of NIE, NDE, and CDE to the odds ratio scale. On this scale,

the total effect (conditional on confounders C) is defined as

ORTE — P(Y(1) =1|C)/P(Y(1) = 0|C)
P(Y(0) = 1|0)/P(Y(0) = 0|C)

where P(Y(a) = 1|C) is the probability of disease when A=a. TE can be partitioned
into the product of the NIE and NDE, which are defined as

P(Y(1,My) =1|0)/P(Y(1,M,) = 0|C)

OR™ = B, M) = 110)/P(Y (L, Mo) = 0[0)

ORNDE — P(Y(1,M,) = 1|C)/P(Y (1, M,) = 0]C)
= P(Y(0,M,) = 1|C)/P(Y(0,M,) =0|C)"

The VW framework estimates ORTE, ORNPE, ORN!E by first fitting regression models
to the observed data. To model the disease data, the VW framework applies the

logistic model

logit{P(Y =1|A=a,M =m,C =)} =y, +vsa+yym+yayam +ycc. (1a)

To model the mediator (continuous or binary), VW uses one of the following

regression models
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Continuous: E[M|A = a,C =c] = By + Baa + Bcc, (1b)

Binary: logit[P(M = 1|A=a,C = ¢)] = By + Baa + Bcc. (1c)

For a continuous mediator, the VW framework estimates NIE, NDE, and CDE on
disease outcome going from exposure level a* to a (assuming assumptions I-1V
above hold) under a rare disease assumption (i.e. disease prevalence approximately
below 5%) as
log{OR**} = (y4 + yaum)(@ —a*), (2a)

log{ORNPE} = (y4 + yam(Bo + Baa™ + Bcc + VMGZ))(Q —a*) + 0.5yiy0%(a® —a*?), (2b)

log{OR"'*} = (yyBa + YamBaa)(a — a*), (2¢)
where o2 in equation (2b) is the residual variance from fitting model (1b), which is
assumed to be normally distributed. Note that CDE in (2a) depends on level of the
mediator (as previously mentioned). In contrast, for a binary mediator, the VW
framework estimates NIE, NDE, and CDE on disease outcome going from exposure

level a” to a under a rare disease assumption as

ORPE = exp{(ys + Yaum)(a —a")}, (3a)

orvoE ~ EXPWaL + exp(yy + Yana + fo + Baa” + Bec)}
—exp(yaar) {1+ exp(yy + Vam@ + Bo + Baa* + fco)}’

(3b)

{1+ exp(Bo + Baa” + Bc)HL + exp(yy + Yama + Bo + Baa + Bc)} 30)
7

ORI =
{1+ exp(By + faa + Bcc)H1 + exp(yy + Yama + Bo + Baa* + Bcc)

For either a continuous or binary mediator, the framework then estimates the TE on

disease outcome going from exposure level a*to a as ORTE = ORNPEQRN!E, Once we
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estimate these quantities, we can derive the standard errors of ORTE, ORNPE, ORNIE
on the log scale by applying the delta method using the formulae outlined in the
Appendix of Valeri and VanderWeelel? and presented here in Supplementary
Materials. We can then perform hypothesis testing of ORTE, ORNPE, ORN'E using
Wald tests.

The VW framework’s estimation of NDE, NIE, and CDE for both continuous
mediators in (2) and binary mediators in (3) requires parameter estimates from the
mediator models in (1b) and (1c). Fitting models (1b) and (1c) is difficult because
the sample is ascertained based on disease and does not represent a random sample
from a population as assumed by E[M|a, c] in (1b) and logit[P(M = 1]|a,c)] in (1c).
To circumvent this complication, the VW framework utilizes the rare-disease
assumption to justify fitting E[M|a, c] and logit[P(M = 1|a,c)] in (1b) and (1c)
using control data only. Alternatively, as in VanderWeele et al.17, one can instead
incorporate cases into the mediator models in (1b) and (1c) using IPW such that
cases are utilized in the model but their contributions (compared to controls) are
downweighted relative to their sampling proportion. For IPW regression, the
standard errors of the coefficients in (1b) and (1c) are then derived using robust
Huber-White procedures819.

Unified Likelihood Approach: Here, we propose a unified likelihood approach

that jointly models disease, exposure, and mediator data together while
incorporating cases into the mediator model accounting for ascertainment, using

the rare disease approximation. Letting j index subject and assuming all subjects are
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independent, we initially define the joint (prospective) likelihood as L, =

]_[j P[Yj, M; |Aj, C]], which we then factor into

Lp =1_[,P[M,- =m|V;=y,4=a,C=c|PlYj=yl4j=aC=c]. &)
]

We note that we could replace P[Y; = y|4; = a,(; = c]in (4) with P[4; =

a|Yj =y,C = c] and instead perform inference using the retrospective likelihood

Lg =1I; P[Aj, M; |Y], C]] However, the prospective likelihood is often preferred to
the retrospective likelihood as Y]4,C in the former likelihood is easier to model (e.g.
using logistic regression) than A|Y,C in the latter likelihood; standard results??
assure that Lr and Lp are proportional if a nonparametric distribution is chosen for
A|C, and that only the intercept is affected.

We first describe how to model P[Mj = m|Y] =y,4;=a,C = c] in (4). For

controls, we assume a rare disease such that E[Mj = m|YJ =0,4;=aqa,(C = c] =

Po + faa + Bcc (for a continuous mediator) or logit[P(M = 1|Y] =0, 4;

=q,C =
c)] = Sy + faa + fcc (for a binary mediator). These choices are the same as usually
used when using the VW framework.

Data from cases can be incorporated into the mediation model; these
contributions are discarded in the VW framework. To accomplish this, note that we
can write P[Mj = m|Y- =14, =q,C; = C] as21l.2z;

J J )

=aq, C] — C] — Gj(a,m, C)P[M] = m|Y} = 0' a, C] ’ (5)
f@l(a,m*,c)P[M] =m* Y] — O,a,C] dm*

10
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where

1|Aj = a, M; =m,Cj = c]
0|Aj = a, M; =m,Cj = c]

P
0;(a,m,c) = >

==

[

= exp(Yo + Vaa + yym + yayam +ycc)  (6)

is the disease odds given exposure, mediator, and confounders (allowing for
possible mediator-exposure interaction, if desired). Note that 6;(a, m, c) is the same
quantity fit in equation (1a) in our summary of the VW framework.

Equation (5) shows that we can naturally model the mediator in the cases
(accounting for ascertainment) as a function of the disease odds in (6) and the
mediator model in the controls, without requiring external information like disease
prevalence (which [IPW methods require). The denominator in (5) corresponds to

the disease odds given exposure and confounders?122, That is,

PlY; = 1la,c]

Hj(a, C) = P[Y] _ Ola, C] =

JQj(a, m*,c)P[Mj =m'|Y; =0,aq, c] dm*, (7)

which becomes

= eYotVaatycc J e(VMJ’VAMa)m*P[Mj =m*|Y; =0,aq, c] dm*

if the model in equation (6) is used. 8;(a, c¢) in (7) has a closed form whenever the

*

moment generating function for P[Mj =m*|Y; =0,aq, C] has a simple or closed form,
which simplifies inference. For example, if the mediator M is normally distributed in

controls with mean E[Mj = m|Aj =a,C =c¢Y; = 0] = fo + Bsa + fcc and variance

11
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02, then we show in Supplementary Materials that 0;(a,c) = exp(yo +yaa +
Ym + Vama)(Bo + Baa + Bcc) + 0.5(yy + yama)?a? + ycc). For a binary M, we
simply replace the integral in equation (7) with a sum over the two levels of the
mediator.

To complete construction of L in (4), we model P[Y] = y|Aj =aq,C = ]

using a logistic regression model based on 6;(a, ¢) in (7), such that P[YJ =

6(a,c)Y
1+0(a,c)

y|Aj =a,C = c] = with the assurance that the only difference between
using Lp and Lr for case-control sampling is in the intercept?? y,. Combining all the

pieces, we can simplify our likelihood for inference in (4) to give

L —HP[M— |, =0,4; = C—]O(a’m'C)Yj 8
P — i j=mi=04=a,(t; =¢C 1+9(a,c)' ()

We propose to base inference on Lp in (8); parameter estimates can be obtained by
maximizing (8) with respect to (Yo, Y4, Ym> Yam Yor Bo» Bas Bc, 02) using standard
optimization algorithms like Quasi-Newton, and the covariance matrix of the
estimated parameters can be obtained either from the information matrix or a
‘sandwich’ variance estimator. We can then substitute these estimates into
equations (2a-2c¢) or (3a-3c) to obtain estimates of ORTE, ORNPE, ORN'E | and ORCPE
and use the delta method results shown in Supplementary Materials (based on the
Appendix of Valeri and VanderWeelel?) to obtain standard errors and construct
confidence intervals of these quantities. We can perform hypothesis testing of the
parameters or measures of direct and indirect effects using Wald statistics based on

the estimates and standard errors.

12
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Simulation Studies: We performed simulation studies to evaluate the

efficiency gains of our likelihood for mediation analysis relative to the original VW
method. We assumed a continuous exposure A that followed a standard normal
distribution and a binary covariate C that followed a Bernoulli(0.5) distribution.
Using A and C, we generated a continuous mediator M using equation (1b) or
generated a binary mediator M using equation (1c) using parameter values shown
in Table 1. We then used M, 4, C to generate disease status using equation (1a) and
parameter values shown in Table 1, assuming a value for the intercept that yielded a
population prevalence of 0.03. As shown in Table 1, we considered models that
explicitly assumed an exposure-mediator interaction as well as models that
assumed no interactions. We chose parameter values to yield models with
log(OR™) = 0.145, log (OR"PE) = 0.1, and log (OR"'¥) = 0.045 for both a
continuous and binary mediator, with and without a mediator-exposure interaction
effect. For a specific model, we prospectively generated subjects until we obtained
300 cases and 300 controls. For all simulation settings, we generated 1000
replicates per setting.

For each simulation analysis, we compared the performance of our likelihood
approach both to the original VW method that discards cases within the mediator
models of (1b) and (1c) as well as the IPW-version of VW that incorporates cases
into the mediator models of (1b) and (1c) using inverse probability weighting. For
[PW analyses, we derived weights using the same strategy of VanderWeele and

Vansteelandt!!. Letting © denote disease prevalence and p denote proportion of

cases in the case-control sample, we weighted each case by % and each control by

13
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(1-m)
(1-p)

. For all [IPW simulations, we assumed the disease prevalence of the weighting
was correctly specified.

All analyses were conducted in the R programming language. We fit our
likelihood to simulated datasets using a quasi-Newton algorithm implemented in
the R ‘optim’ function. We fit the VW methods using the R functions ‘glm’ and ‘Im’.

For the IPW method, we constructed robust Huber-White standard errors of the

mediator model using the ‘vcovHC’ function in the R library ‘sandwich’.

Application to Case-Control Genetic Study of Lung Cancer: Lung cancer is the
leading cause of cancer-related deaths across the world?3 and represents a major
public health concern. A well-known environmental risk factor for lung cancer is
tobacco smoking, with long-term smokers having a 10-fold increased risk of lung
cancer relative to non-smokers?#. Beyond smoking and other environmental risk
factors, genetics are also known to broadly play a role in lung-cancer risk?>26 with
several specific risk loci being identified within genome-wide association studies
(GWAS) of the disease 27:28.

One established risk loci of lung cancer identified by GWAS resides on
chromosome 15q25.12°. The associated region contains nicotinic acetylcholine
receptor subunit genes that encode proteins that form receptors that bind nicotine.
A number of studies suggest that this risk locus is also associated with measures of
smoking behavior30-33, Given the known relationship between smoking behavior
and lung cancer, it is worth inquiring whether the SNPs in this locus influence lung
cancer risk partially or completely through smoking behavior. To explore these

hypotheses, we utilized genetic, smoking pack-year, and disease data from the

14
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GENEVA GWAS of Lung Cancer and Smoking3435 available through dbGaP (accession
number phs000093.v2.p2; see Data Availability Statement). The GENEVA GWAS
dataset consists of 2695 cases and 2779 controls genotyped for 508,916 post-QC
SNPs across the genome.

We first used the GENEVA data to perform a genome-wide analysis of the
post-QC autosomal SNPs with lung cancer using logistic regression, adjusted for
gender and the top three principal components of ancestry (Manhattan and
quantile-quantile plots are shown in Figures S1 and S2, respectively). For each SNP,
we assumed an additive model and coded the genetic predictor as the number of
copies of the minor allele that a subject possessed. Within the chromosome 15q25.1
locus, we identified strong associations of several SNPs with lung cancer in GENEVA
with SNP rs12914385 (p=1.887 x10-1°) yielding the top signal in the region (see
Figure S3). We next conducted a GWAS of a dichotomized version of smoking pack-
years (split at the median value of 3 pack-years) in the GENEVA data using logistic
regression under an additive genetic model, adjusting for gender and the top 3
principal components of ancestry (Manhattan and quantile-quantile plots are shown
in Figures S4 and S5, respectively). Interestingly, we observed the same lung cancer
risk SNP rs12914385 also yielded a strong association with the dichotomized pack-
year variable (p=1.364 x10-¢) and likewise was the top signal in the chromosome
15q25.1 locus (see Figure S6).

Based on our results, we explored the relationship of rs12914385 with
smoking pack-years and lung cancer within a mediation framework. Specifically, we

were interested in exploring how much this SNP (exposure A) influenced lung
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cancer disease status (outcome Y) through the dichotomized smoking pack-year
variable (mediator M). To be consistent with the GWAS analyses, we assumed an
additive genetic model for the SNP and thus coded A as the number of copies of the
minor allele a subject possessed. Our analyses also controlled for gender and the top
three principal components of ancestry (covariates ). Within controls, the minor-
allele frequency of rs12914385 was 0.402. We performed inference using our
likelihood approach as well as the original VW method and the IPW-VW approach.
For the IPW-VW approach, we assumed an disease prevalence of 6% which mirrors
results reported by the American Cancer Society?3°.

We note that our proposed mediation analysis for estimating the direct and
indirect effects of SNP on lung cancer requires the no-unmeasured-confounding
assumptions (I)-(IV) previously stated. We believe the assumptions of no
unmeasured exposure-outcome confounding (assumption I), no unmeasured
exposure-mediator confounding (assumption III), and no mediator-outcome
confounder affected by exposure (assumption [V) likely hold because the main
confounder that arises in studies of genetic exposure with phenotype is population
stratification and we directly adjust for this confounder using principal components
of ancestry. We also believe the assumption of no unmeasured mediator-outcome
confounding (assumption II) likely holds as well since we adjust for likely
confounders of the mediator-outcome relationship, such as population stratification
and gender, within our model. Nevertheless, we can’t rule out that exposure,
mediator, and outcome might be influenced by some latent phenotype (e.g. another

cancer subtype) that the study did not collect.
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We note that VanderWeele and colleagues!”37 previously conducted similar
analyses to untangle the relationship between SNPs in 15925.1 locus, smoking, and
lung cancer using case-control mediation tools. Our analysis above differs from
these previous analyses in a few important ways. First, the previous analysis did not
use the GENEVA study and instead analyzed a different collection of genetic studies
of lung cancer. Second, the authors did not consider rs12914385 as the SNP
exposure and instead studied two nearby SNPs (rs8034191, rs1051730) in moderate
linkage disequilibrium with rs12914385. Finally, they also considered different
measures of smoking than pack-years and did not adjust for principal components

of ancestry as we do in our analyses presented here.

RESULTS

Simulations with Continuous Mediator: Table 2 provides simulation results for

estimating and conducting inference of ORTE, ORNPE, ORN'E, ORPE using our
likelihood approach, the original VW method, and the VW-IPW under the generating
model that assumed a continuous mediator with no mediator-exposure interaction
effect on disease risk. We noticed important differences among the methods with
regards to inference of indirect effects (highlighted in Table 2). In particular, the
simulation results revealed that our likelihood approach yielded smaller (but still
well calibrated) standard errors of the indirect effects, relative to the VW approach,
due in part to the former method incorporating cases within the mediation model
that the latter method discards. Consequently, Table 2 shows our likelihood

approach has greater power to detect the indirect effect relative to the VW method.
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We performed additional power simulations under a wider range of indirect-effect
size estimates (generated by varying the value of y;, in (2c¢) while holding the
remaining simulation parameters at the values shown in Table 1) and observed that
the likelihood approach was substantially more powerful than the VW method for
detecting an indirect effect across all values considered (Figure 2). For total and
direct effects, the likelihood, VW, and VW-IPW methods all yielded similar findings.

Our likelihood approach improves efficiency of indirect effects by
incorporating cases within the mediation model. This impact can be illuminated by
studying the standard errors of the mediator-model parameter estimates (see Table
S1), which are much smaller for our likelihood approach than for the VW approach.
Additionally, by jointly modeling disease, mediator, and exposure data in a unified
framework, we account for correlations among the disease-model and mediator-
model parameters (see Table S2); the VW framework assumes no correlation among
parameters from these two different models. By incorporating these non-zero
correlations in our likelihood framework, our approach refines the standard errors
of the indirect effects estimated using the delta method. Results using the VW-IPW
approach (which incorporates cases but substantially downweights their
contribution relative to controls) were quite similar to those using the VW approach
but did yield slightly smaller standard errors for mediator-model parameter
estimates relative to VW.

We also considered simulation models where we generated a mediator-
exposure interaction and present the estimates and standard errors for

ORTE ORNPE QRNIE ORCDE in Table S3. For indirect effects, the VW and VW-IPW
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methods had higher coverage for the 95% CI than the nominal level (98.0% for both
the VW and VW-IPW methods). Our likelihood approach, on the other hand, had
appropriate coverage of the 95% confidence interval for the indirect effect.
Consequently, the likelihood approach had increased power to detect the indirect
effect relative to the VW and VW-IPW techniques. Inspection of the parameter
estimates (Table S4) show that the likelihood approach provides more efficient
estimates of the mediator-exposure interaction effect in the disease model, as well
as those parameters related to the mediator model. Inspection of the mean
covariance estimates for model parameters (Table S5) shows the likelihood
approach estimates non-zero correlations between disease-model parameters
(including the mediator-exposure interactions) and mediator-model parameters
that the VW and IPW-VW methods presume are 0.

We next conducted additional simulations that assumed a disease prevalence
of 20% to assess the impact of a common disease outcome on the methods
considered. The results revealed our likelihood approach continued to have
appropriate coverage for estimates of total, direct, and indirect effects and improved
power relative to VW and VW-IPW methods (see Tables S6 and S7).

We finally performed type-I error simulations for testing the direct effect or
indirect effect using the likelihood and VW approaches. For these simulations, we
assumed a typical situation where one performs a mediation analysis where i) the
exposure is known to be associated with disease outcome (i.e. OR™E # 1) and ii) the
exposure is known to be associated with mediator (i.e. S5, # 0 in our model

formulation). We first assumed no direct effect (ORNPE = 1) by using the same
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simulation setup shown in Table 1 but setting y, = 0. Type I-error results across
10,000 simulations (shown in Table S8) revealed the likelihood approach and the
VW methods have appropriate type-I error in this setting. We next conducted
simulations assuming no indirect effect (ORME = 1) using the same simulation
setup shown in Table 1 but setting y,; = 0. As shown in Table S8, we found that all
three methods were conservative (with type-I error rates of 0.02-0.03 at
alpha=0.05, depending on method), although the likelihood approach was better
calibrated than VW techniques. The conservative nature of statistical tests of
indirect effects have been identified by others383° and is due to formally testing a
statistic under a composite null hypothesis (i.e. Hy: Yy fa = 0 ) where the
asymptotic distribution follows a mixture of normal product distributions (with
unknown mixing probabilities) rather than a standard normal distribution.

Simulations with Binary Mediator: Table 3 provides estimates and standard

errors for ORTE, ORNPE, ORN'E, ORPE for a binary mediator assuming no mediator-
exposure interaction effect. For ORV'E, we observed that the likelihood approach
yielded smaller standard errors than the VW and VW-IPW approaches and
consequently had increased power to detect this indirect effect. We subsequently
conducted additional power simulations under a broader range of indirect-effect
size estimates (generated by varying values of y;, in (3¢) while holding the
remaining simulation parameters at the values shown in Table 1) and observed
substantially increased power for the likelihood approach over the VW method
across this range (Figure 3). The likelihood approach, VW, and VW-IPW approaches

all produced similar results for total and direct effects. Inspection of parameter
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estimates (Table S9) and mean parameter covariance (Table S10) reveal similar
trends to what we observed in the analysis of continuous mediators; the likelihood
approach produces mediator-model parameter estimates with smaller standard
errors than the VW and VW-IPW methods and the likelihood approach estimates
non-zero covariances between disease-model parameters and mediator-model
parameters.

We also considered simulation models with a binary mediator assuming a
mediator-exposure interaction effect on disease risk and show the main results in
Table S11. For the indirect effect, our likelihood approach had appropriate coverage
of the 95% confidence interval while the VW and VW-IPW methods had higher
coverage of this interval than the nominal level (98.6% for both methods).
Consequently, the likelihood approach had markedly increased power to detect the
indirect effect relative to the VW /VW-IPW methods. Inspection of model parameter
estimates (Table S12) and mean parameter covariance (Table S13) revealed similar
findings as previously observed for other simulation models. Results for direct and
total effects were similar among all three methods when we modeled an interaction
effect.

We conducted additional simulations assuming a more common disease
outcome (prevalence of 20%) and observed similar trends to those that we
observed under our original simulation models that assumed a disease prevalence
of 3% (see Tables S14 and S15). We also performed type-I error simulations for
direct and indirect effects (shown in Table S8) using the same design as for a

continuous mediator. As with a continuous mediator, we observed that the
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likelihood and VW approaches had appropriate type-I error for testing the direct
effect but were conservative when testing the indirect effect due to the evaluation of
a composite null hypothesis.

Application to Case-Control Genetic Study of Lung Cancer: Using the 2695

cases and 2779 controls from the GENEVA GWAS of lung cancer, we first conducted
a mediation analysis that assessed whether the significant effect of SNP rs12914385
on lung cancer risk was due in part to an indirect effect through a mediator of
smoking pack-years, adjusting for covariate effects of gender and the top three
principal components of ancestry. We initially applied the likelihood, VW, and IPW-
VW approaches to the data explicitly assuming a potential interaction effect y,,, of
exposure (SNP genotype) and mediator (smoking pack-years) on disease risk.
However, we observed no significant interaction effect using the likelihood
approach (p=0.147) or the VW/IPW-VW approaches (p=0.130 for each). Thus, we
removed the interaction parameter from the models and proceeded with reduced
models that assumed no interaction effects.

Under the reduced models, we provide the odds-ratio estimates of indirect
and direct effects of rs12914385 on lung-cancer risk using our likelihood in Table 4
(see Table S16 for corresponding parameter estimates produced using our
approach). Overall, our results demonstrate that the effect of rs12914385 on lung
cancer risk is predominantly a direct effect but there is evidence of a modest
indirect effect through smoking pack-years. Specifically, the total effect of
rs12914385 on lung cancer risk (ORTE = 1.358; 95% CI: [1.255,1.470]) is nearly

completely due to a direct effect (ORNPE =1.333; 95% CI: [1.226,1.449]) of the SNP

22


https://doi.org/10.1101/2021.07.16.452552
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.16.452552; this version posted January 10, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

on disease outcome rather than an indirect effect through the mediator of smoking
pack-years (ORVE=1.019; 95% CI: [1.000,1.039]). That being said, the test of the
indirect effect was significant (p=0.0494) using our approach; additional analyses
using larger sample sizes to explore the indirect effect further is warranted.

We next repeated the same mediation analysis of rs129143851 using the
traditional VW and IPW-VW approaches (Table 4, Table S16). While the estimates of
total, direct, and indirect effects using the traditional VW approach were quite
similar to those produced using our likelihood approach, we observed that the VW
method’s confidence intervals were noticeably wider both for the total effect as well
as the indirect effect compared to our likelihood approach. Furthermore, the VW
approach found no borderline evidence of an indirect effect of rs129143851 on lung-
cancer risk through smoking pack-years (p=0.5204). Applying the IPW-VW approach
to the dataset yielded similar point estimates of total, direct, and indirect effects as
our likelihood approach. However, the 95% confidence intervals for the VW-IPW
approach were wider than the analogous intervals for the likelihood approach for
both the indirect effect and the total effect. Moreover, unlike the likelihood

approach, the indirect effect estimate using VW-IPW was not significant (p=0.188).

DISCUSSION
Our work develops a unified likelihood approach for case-control mediation
analysis that improves inference of indirect effects relative to the popular
counterfactual framework of VanderWeele by jointly modeling the disease model

and mediator model together in a joint framework that further leverages important
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information on the mediator-exposure relationship within cases. Existing VW
methods either ignore cases in the mediator model or use [PW procedures to
incorporate them into the model. Unlike our approach, IPW requires knowledge of
disease prevalence which may be difficult to ascertain. Even if prevalence
information is correctly specified, the IPW-VW techniques fit the disease model and
mediator model separately and so does not account for the correlation among
parameters between the two models. Our likelihood framework utilizes this
correlation, thereby resulting in more efficient estimates of parameters within the
mediator model compared to the VW models. We also note our framework also
leads to more efficient estimates of the mediator-exposure interaction variable in
the disease model when modeled. Due to the increased efficiency of these
parameter estimates (as well as accounting for parameter correlation between
disease and mediator models), we also subsequently obtain more efficient estimates
of indirect effects between an exposure and disease outcome compared to the VW
framework. Our method further does not require knowledge of disease prevalence
to incorporate cases into our framework.

We illustrated our method using genetic data from a GWAS study of lung
cancer and found that the effect of the top risk SNP in the chromosome 15q25.1
locus on lung cancer within this dataset is predominantly a direct effect but there is
some evidence for a modest indirect effect through smoking pack-years. While we
applied our unified likelihood within a case-control genetics project for illustration
purposes, the technique is widely applicable in other settings (e.g. environmental

studies, psychological studies) that employ a case-control sampling design. We
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provide R code implementing the likelihood approach on our website (see Data
Availability Statement).

Unlike indirect effects, we observed that our likelihood approach had similar
performance for testing direct effects compared to VW methods. This result arises
because, when there is no mediator-exposure interaction effect, the standard error
of the direct effect (on log scale) depends only on the estimated variance of the
exposure effect on disease (¥, within disease-odds model in 1a). Since both the
likelihood and VW methods estimate this quantity using the complete dataset, they
yield similar standard errors for the estimated direct effect and therefore have
similar power. If mediator-exposure interaction is modeled, the formula for
calculating the standard errors of the direct effects becomes more complicated and
depends on the estimated variance/covariances of several parameters (see
Supplemental Materials) but, in most practical settings, these quantities are similar
between the methods.

Power to detect the total effect that exposure has on disease depends on both
the power to detect direct effect as well as the power to detect indirect effect. In our
simulations in Table 1, we assumed the total effect was driven predominantly by
direct effect rather than indirect effect. As the power of our likelihood to detect
direct effects is the same as that of the VW approach, this results in our likelihood
approach having a negligible power increase over the VW approach to detect the
total effect in this particular situation. However, if we modify our simulations such

that the total effect is driven predominantly by indirect effect rather than direct
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effect, then we do see a power increase of our likelihood approach to detect total
effects compared to the VW approach (results not shown).

In evaluating the VW framework, we fit the original version of the method
that fit the mediator model in equations (1b) and (1c) using only control data. As
noted in the Introduction, naively fitting the mediation model on the combined case-
control sample ignoring ascertainment can lead to bias as the disease prevalence
decreases and the magnitudes of y, and y,, increase. Since our simulation models in
Table 1 assume a modest prevalence (0.03) and modest effects of y, and y,, we
observed only slight bias in estimates of mediator-model parameters using the
naive method in our simulation results (Table S17) although we did observe naive
analysis led to weak coverage of indirect effect and had decreased power to detect
this indirect effect compared to our likelihood approach (Table S18). To further
interrogate the naive method, we conducted additional simulations assuming a
rarer prevalence (0.003) and larger effects for y, (0.4) and y,, (0.6). In this setting,
we observed more measurable bias in mediation-model parameters using the naive
approach while all other methods were unbiased (Table S19). We also observed that
the naive approach had even poorer coverage of the indirect effect than in our
earlier simulations while all other methods had appropriate coverage (Table S20).
The naive approach also had substantially reduced power to detect the indirect
effect compared to our likelihood approach. These results suggest one should avoid
naive combination of cases and controls (ignoring ascertainment) within the

mediation model of traditional VW analyses.
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While the focus of this work was on traditional case-control mediation
analysis for a continuous or binary exposure based on a counterfactual framework,
we can potentially expand our likelihood framework to consider other current
topics in this field. For example, there is substantial interest in jointly modeling
multiple (correlated) mediators in case-control studies. VanderWeele and
Vansteelandt!? expanded the standard VW framework to handle multiple mediators
while Wang et al.#0 developed a separate regression approach for assessing indirect
effects that allows for one mediator to causally influence another mediator and
further can correct for case-control ascertainment using a system of non-linear
equations provided disease prevalence is known. We can expand our likelihood
framework to handle multiple mediators by replacing the scalar mediator model in
(1b) and (1c) with a multivariate mediator distribution for the controls under a rare
disease approximation. Our approach would use cases in the mediator model
(whereas the corresponding VW model'? does not) and does not require knowledge
of disease prevalence (unlike Wang et al.).

We only considered the standard (unmatched) case-control design in this
work, but note that we can potentially expand our likelihood approach to handle
matched case-control datasets, such as those that arise in nested case-control
studies. The matched design still allows estimates of direct and indirect effects
conditional on the matching covariates*142, where parameter estimates for the
disease-odds model relating disease to mediator and exposure can be derived based
on conditional logistic regression using the work of Kim et al*2. We previously

developed a retrospective likelihood for testing gene and gene-environment
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interactions in matched case-control designs*? and can implement a similar
procedure based on that framework for this topic.

Our work focused on the simple situation in case-control mediation analysis
where there is no missing information and the exposure is a scalar variable.
However, practical situations can arise where a mediator may be censored; for
example, a study may seek to investigate effects of genetic variants on breast cancer
risk potentially mediated by (partially observed) age of menarche or age of
menopause. We can explore a variation of our approach to handle censored
mediators utilizing accelerated failure time models as described by Wang et al.4445,
We can also seek to expand our method for mediation analysis to handle a nominal
multicategorical exposure variable#¢ (for example, a multi-SNP haplotype). This
would require replacing the standard coding for A in equations (1a), (1b), and (1c)
with a vector that represents dummy coding relating each categorical observation to
a baseline category. Wang et al. 4> derived formulas for calculating the overall direct
and indirect effects of the multicategorical exposure in this situation.

Both our likelihood approach and the VW framework model the probability
of disease conditional on exposure and mediator even though, by design, case-
control studies generate retrospectively ascertained mediator and exposure data.
Such prospective analysis can be as efficient as a retrospective analysis but this
result holds only under the assumption of a saturated non-parametric distribution
for the exposure??. Carroll et al. 47 showed that prospective analysis of
retrospectively-sampled data may be less efficient than a retrospective analysis

when one restricts the exposure distribution in some fashion. For example, genetic
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studies often restrict the distribution of exposure (genotype or haplotype) by
making the logical assumption that the underlying alleles are in Hardy-Weinberg
Equilibrium (HWE). In these situations, many studies have shown#348-50 that
retrospective analysis of case-control genetic data can be more efficient than
prospective analysis under the HWE assumption. Thus, in future work, we will
investigate the use of a retrospective likelihood for case-control mediation analysis
that may improve on prospective approaches by directly modeling the distribution

of exposure conditional on outcome.
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TABLE 1: SIMULATION MODELS

Continuous Mediator Binary Mediator
No Interaction Interaction No Interaction Interaction

Yo -3.476 -3.476 -3.476 -3.476
YA 0.100 0.077 0.100 0.049
Yum 0.300 0.200 0.420 0.320
Yam X 0.100 X 0.100
Ye 0.050 0.050 0.100 0.100
Bo 0.100 0.100 -0.310 -0.310
Ba 0.150 0.200 0.430 0.430
Bc 0.050 0.050 0.100 0.100

o? 0.500 0.500 X X
log(OR™E) 0.145 0.145 0.145 0.145
log (ORNPE) 0.100 0.100 0.100 0.100
log (ORN'E) 0.045 0.045 0.045 0.045
log (OR“PE) 0.100 0.077 0.100 0.049

ORTE, ORNPE ORNE and ORPE calculated wherea* = 0,a =1,c =0,andm =0
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TABLE 2: CONTINUOUS MEDIATOR WITH NO INTERACTION

Power ata =

True | Mean | Mean 95% CI
Value | Value SE SD | Coverage | 0.05 | 0.01 | 0.001

Likelihood
log(OR™E) 0.145 | 0.144 | 0.083 | 0.081 0.961 0.408 | 0.198 | 0.055
log (ORNPE) 0.100 | 0.099 | 0.085 | 0.083 0.958 0.199 | 0.072 | 0.014
log (ORN'E) 0.045 | 0.045 | 0.019 | 0.019 0.956 0.691 | 0.362 | 0.058
log (OR‘PE) 0.100 | 0.099 | 0.085 | 0.083 0.958 0.199 | 0.072 | 0.014

\ AU
log(OR™E) 0.145 | 0.144 | 0.084 | 0.081 0.964 0.397 | 0.182 | 0.046
log (ORMPE) 1 0.100 | 0.099 | 0.085 | 0.083 0.958 0.199 | 0.072 | 0.014
log (ORVM'E) ] 0.045 | 0.045 | 0.022 | 0.021 0.940 0.504 | 0.131 | 0.009
log (OR“P%) | 0.100 | 0.099 | 0.085 | 0.083 0.958 0.199 | 0.072 | 0.014

VW-IPW
log(OR™E) 0.145 | 0.144 | 0.084 | 0.081 0.964 0.397 | 0.185 | 0.047
log (ORMPE) 1 0.100 | 0.099 | 0.085 | 0.083 0.958 0.199 | 0.072 | 0.014
log (ORM'E) | 0.045 | 0.045 | 0.022 | 0.021 0.948 0.521 | 0.143 | 0.008
log (OR‘PE) | 0.100 | 0.099 | 0.085 | 0.083 0.958 0.199 | 0.072 | 0.014
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TABLE 3: BINARY MEDIATOR WITH NO INTERACTION

Power ata =

True | Mean | Mean 95% CI
Value | Value SE SD | Coverage | 0.05 | 0.01 | 0.001

Likelihood
log(OR™E) 0.145 | 0.142 | 0.083 | 0.083 0.953 0.391 | 0.193 | 0.061
log (ORNPE) 1 0.100 | 0.097 | 0.085 | 0.085 0.949 0.200 | 0.080 | 0.021
log (ORN'E) 0.045 | 0.045 | 0.020 | 0.021 0.940 0.649 | 0.319 | 0.034
log (OR‘PE) 0.100 | 0.097 | 0.085 | 0.085 0.949 0.200 | 0.080 | 0.021

\ AU
log(OR™E) 0.145 | 0.142 | 0.084 | 0.083 0.961 0.373 | 0.184 | 0.055
log (ORNPE) 1 0.100 | 0.097 | 0.085 | 0.085 0.949 0.200 | 0.080 | 0.021
log (ORV'E) | 0.045 | 0.045 | 0.023 | 0.024 0.920 0.497 | 0.134 | 0.008
log (OR“P%) | 0.100 | 0.097 | 0.085 | 0.085 0.949 0.200 | 0.080 | 0.021

VW-IPW
log(OR™E) 0.145 | 0.142 | 0.084 | 0.083 0.961 0.374 | 0.185 | 0.055
log (ORNPE) 1 0.100 | 0.097 | 0.085 | 0.085 0.949 0.200 | 0.080 | 0.021
log (ORM'E) | 0.045 | 0.045 | 0.022 | 0.023 0.923 0.519 | 0.153 | 0.008
log (OR‘PE) | 0.100 | 0.097 | 0.085 | 0.085 0.949 0.200 | 0.080 | 0.021
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TABLE 4: MEDIATION ANALYSIS OF rs12914385 AND LUNG CANCER

95% CI
Estimate Coverage P-value

Likelihood

ORTE 1.358 | (1.255,1.470) | <0.0001

ORNPE 1.333 | (1.226,1.449) | <0.0001

ORNE 1.019 | (1.000,1.039) | 0.0494

ORC‘PE 1.333 | (1.226,1.449) | <0.0001
VW

ORTE 1.347 |(1.232,1.474) | <0.0001

ORNPE 1.333 | (1.226,1.449) | <0.0001

ORNE 1.011 ] (0.978,1.044) | 0.5204

ORC‘PE 1.333 | (1.226,1.449) | <0.0001
VW-IPW

ORTE 1.359 | (1.244,1.484) | <0.0001

ORNDE 1.333 | (1.226,1.450) | <0.0001

ORNIE 1.019 | (0.991,1.048) | 0.1888

ORCDE 1.333 | (1.226,1.450) | <0.0001
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FIGURE 1: MEDIATION DIAGRAM
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FIGURE 2: POWER TO DETECT INDIRECT EFFECT (CONTINUOUS MEDIATOR)
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Power of likelihood framework and original VW method to detect log (ORV'E) for 300 cases
and 300 controls assuming continuous mediator and no exposure-mediator interaction
effect. Simulation parameters shown in Table 1 for continuous mediator, with exception of
¥m Which is varied to produce range of values of log (ORV'£) shown in x-axis of plot.
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FIGURE 3: POWER TO DETECT INDIRECT EFFECT (BINARY MEDIATOR)
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Power of likelihood framework and original VW method to detect log (ORV'E) for 300 cases
and 300 controls assuming binary mediator and no exposure-mediator interaction effect.
Simulation parameters shown in Table 1 for binary mediator, with exception of y,, which is
varied to produce range of values of log (ORM'E) shown in x-axis of plot.
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