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Running headline: White matter amyloid-PET relates to free water 
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Abstract 

 

White matter (WM) injury is frequently observed along with dementia. Positron emission 

tomography with amyloid-ligands (Aβ-PET) recently gained interest for detecting WM 

injury. Yet, little is understood about the origin of the altered Aβ-PET signal in WM regions. 

Here, we investigated the relative contributions of diffusion MRI-based microstructural 

alterations, including free water and tissue-specific properties, to Aβ-PET in WM and to 

cognition. We included a unique cohort of 115 participants covering the spectrum of low-to-

severe white matter hyperintensity (WMH) burden and cognitively normal to dementia. We 

applied a bi-tensor diffusion-MRI model that differentiates between (i) the extracellular WM 

compartment (represented via free water), and (ii) the fiber-specific compartment (via free 

water-adjusted fractional anisotropy [FA]). We observed that, in regions of WMH, a decrease 

in Aβ-PET related most closely to higher free water and higher WMH volume. In contrast, 

in normal-appearing WM, an increase in Aβ-PET related more closely to higher cortical Aβ 

(together with lower free water-adjusted FA). In relation to cognitive impairment, we 

observed a closer relationship with higher free water than with either free water-adjusted FA 

or WM PET. Our findings support free water and Aβ-PET as markers of WM abnormalities 
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in patients with mixed dementia, and contribute to a better understanding of processes giving 

rise to the WM PET signal. 

 

Keywords: Alzheimer’s disease, amyloid-PET, diffusion MRI, free water, white matter 
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1. Introduction 

  

18F-Florbetapir (18F-AV45) is one of the most commonly used positron emission 

tomography (PET) ligands to detect and quantify amyloid-β (Aβ) burden in the cortex of 

patients with Alzheimer’s disease (AD). Specifically, Aβ-ligands are thought to target the 

cross beta-sheet structure of the insoluble Aβ fibrils.1 In addition to targeting fibrils in the 

cortex, these ligands are lipophilic in nature and show high retention in the white matter 

(WM).1–3 It is hypothesized that their high WM uptake is due to a similar beta-sheet structure 

of myelin basic protein4 and that microstructural damage or demyelination of WM tracts, 

previously observed in AD,5 results in reduced ligand uptake.6  Furthermore, while some 

reported the presence of Aβ in the WM,7–9 others did not observe such specific binding of 

the Aβ-ligand to WM tissue sections and attributed high WM retention to slow WM 

kinetics.3,10,11 Further complexity of interpreting the WM PET signal is added through the 

existence of localized reduced blood-to-tissue transport, hypoperfusion of lesioned WM 

areas, and ligand trapping in enlarged perivascular spaces, particularly in patients with 

concomitant small vessel disease (SVD).12,13 Taken together, the molecular basis of the Aβ-

ligand binding to WM remains poorly understood, hindering the understanding and 

interpretation of Aβ-PET scans, especially in mixed disease cohorts. 
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Diffusion MRI (dMRI) is a useful imaging modality to study WM microstructure in-

vivo and may help to better understand the binding dynamics of Aβ-ligands to WM.14,15 

Parameters derived from diffusion tensor imaging (DTI) modeling of dMRI data include 

fractional anisotropy (FA) and mean diffusivity (MD), commonly used to infer changes in 

fiber integrity.16 Prior studies have shown lower FA and higher MD in areas of WM 

degradation such as those frequently observed as white matter hyperintensities (WMH) on 

Fluid Attenuated Inversion Recovery (FLAIR) MRI.17,18 In addition, some found a link 

between lower FA and lower PET signal in the WM; thus supporting WM Aβ-PET as a 

marker of microstructural damage to myelin and/or axons.14,19 However, this theory may be 

oversimplistic given that single-tensor DTI metrics (such as FA) are highly contaminated by 

signals from both adjacent cerebrospinal fluid (CSF) and freely diffusing water in the 

extracellular space surrounding the WM fiber tracts.20,21 As such, conventional DTI metrics 

can hardly differentiate between degenerative and vascular/neuroinflammatory changes 

underlying altered Aβ-PET uptake in the WM. This bias will be exemplified in subjects with 

pronounced atrophy, enlarged CSF spaces, and vasogenic edema;22,23 all of which are 

encountered in the more general AD population with often co-existent SVD pathology.24 

Recently, a bi-tensor (two-compartment) model of dMRI was proposed to isolate the 

extracellular free water (FW) compartment from the fiber-specific (WM fibers) compartment 
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within every image voxel.25,26 In the human brain, FW is found as blood, interstitial fluid and 

CSF within ventricles and surrounding brain parenchyma, while it also accumulates as a form 

of edema in the extracellular spaces of structures distal from CSF such as deep WM.25 

Changes in FW may indicate extracellular processes including vascular damage and 

inflammation. On the other hand, changes in FW-adjusted DTI metrics (e.g., FW-adjusted 

FA) may be closer related to microstructural tissue damage, i.e. demyelination/axonal 

degeneration and fiber integrity.25  

To our knowledge, no studies have yet investigated the link between Aβ-PET uptake 

in the WM and WM microstructure using multi-compartment diffusion modeling, 

specifically FW imaging. Particularly, such research is lacking in subjects with mixed Aβ 

and moderate-to-severe WM lesion burden. Therefore, our study aims to investigate the 

relative contributions of FW and tissue-specific microstructural changes to the 18F-AV45 

PET signal, both in regions of WMH and normal-appearing WM (NAWM), in a cohort 

enriched for high WMH burden. Our secondary aim is to investigate the microstructural 

properties and 18F-AV45 PET of the WM in relation to cognition. We hypothesize that lower 

PET signal within MRI-visible WM lesions closely relates to higher FW, which in turn, 

relates to cognitive impairment. Such research is imperative for more accurate interpretation 

of the Aβ-PET scan with potential as a future marker of WM abnormalities.  
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2. Material & Methods 

  

2.1 Participants 

  

The study included a total of 115 participants. Fifty-eight participants were recruited 

from dementia/stroke-prevention clinics as part of the multicenter C6 project of the Medical 

Imaging Network of Canada (MITNEC-C6) across seven participating sites. These 

participants showed moderate-to-severe SVD burden quantified as Fazekas-score>2 and 

confluent periventricular WMH volumes >10cc 27 [median(IQR): 31.1(22.4)cc]. Further 

inclusion criteria included: 1) clinical diagnosis of early AD or amnestic, non‐amnestic single 

or multi-domain mild cognitive impairment (MCI/early AD, N=41),28,29 or minor subcortical 

lacunar infarct/TIA (N=17); 2) age≥60y; 3) education>8y; and 4) MMSE≥20. Exclusion 

criteria included 1) major psychiatric disorder in the past 5y; 2) history of substance abuse in 

the past 2y; and 3) serious/chronic systemic or neurological illness (other than AD). 

Additionally, fifty-seven cognitively normal (CN) and patients with MCI were included from 

the Alzheimer's Disease Neuroimaging Initiative (ADNI-2) database with low-to-moderate 

WMH volumes [median(IQR): 5.8(9.2)cc]. Inclusion criteria included: 1) CN or MCI based 

on the absence (CN) or presence (MCI) of memory complaints, MMSE≥24, and Clinical 
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Dementia Rating of 0 (CN) or 0.5 (MCI); 2) age≥60y; and 3) education>8y. More details on 

inclusion/exclusion criteria in MITNEC-C6 and ADNI are described in Supplementary 

Table 1 and at www.adni-info.org. Table 1 describes demographics for both groups (i.e., 

ADNI-2 and MITNEC-C6, further referred to as the low and high WMH group, respectively). 

Both groups were matched for vascular risk factors including hypertension, pulse pressure, 

body mass index, sex, and smoking status.30 All participants underwent 18F-AV45 PET, 3T 

MRI including 3D T1, FLAIR, and dMRI, and a neuropsychological assessment. MRI–PET 

and MRI–neuropsychology acquisitions were acquired in close proximity (54±80 and 27±78 

days ± standard deviation, respectively).  

  

2.2 Standard Protocol Approvals, Registrations, and Patient Consents 

 

All imaging acquisition protocols were standardized across vendor platforms and 

compatible with ADNI-2 (see acquisition parameters in Supplementary Table 2).31 Image 

quality control, archiving of clinical and imaging data, and access to pipelines were 

performed at the Sunnybrook Research Institute through a common database. All participants 

provided written informed consent. This study was conducted in full conformance with the 
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principles of the “Declaration of Helsinki”. The institutional review board at the Sunnybrook 

Health Sciences Centre approved this study (Approval No. 2989). 

Regarding ADNI data; ADNI was launched in 2003 as a public-private partnership. 

The primary goal of ADNI was to test whether MRI, PET, other biological markers, and 

clinical data can be combined to measure the progression of MCI/AD [see www.adni-

info.org]. 

 

2.3 Cognitive Screening Tests 

  

Cognitive screening tests used for this study are previously described30 and included 

processing speed and executive function (attention switching and working memory) 

measured with the Trail Making Test (TMT) parts A (TMT-A; N=115) and B (TMT-B; 

N=114), semantic fluency with animal naming (N=115), language with Boston Naming Test 

(BNT; N=109), and global cognition with the Montreal Cognitive Assessment (MoCA) and 

the Mini-Mental State Examination (MMSE) (N=115). TMT scores were log-transformed to 

achieve a normal distribution. 

  

2.4 Structural MRI 
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MRI was performed using acquisition protocols that were standardized across vendor 

platforms and compatible with the ADNI-2 protocol (see acquisition parameters in 

Supplementary Table 2).31 The T1-weighted (T1w) MRI images were processed with 

FreeSurfer v6.0 using an in-house modified pipeline for subjects with SVD.32 Subcortical 

lacunar infarcts were masked out before WMH segmentation.33 WMH were delineated based 

on our automated segmentation tool HyperMapper.34 More details on MRI processing are 

described in Supplementary methods S1. Total WMH volume was normalized by the total 

intracranial volume (ICV), and log-transformed. Total ICV was estimated using a skull-

stripping deep learning network developed in-house that is robust to vascular lesions and 

atrophy.35  

The NAWM was segmented in native space by subtracting the binarized WMH 

regions from the binarized whole WM defined by the Desikan-Killiany-Tourville atlas. To 

limit partial volume effects (PVE), we 1) did not include ADNI subjects with WMH <1cc 

(no MITNEC-C6 subjects fulfilled this criterion), 2) used a stricter HyperMapper threshold 

on segmentation probabilities (0.4-0.5) to avoid overestimation of WMH,34 and 3) performed 

erosion on the NAWM masks by 2x2x2mm3 to eliminate spill-effects from neighboring 

tissue including cortex and CSF. Figure 1A highlights WMH and NAWM delineations in an 
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example subject. We also tested for different NAWM erosion kernels including 1x1x1mm3 

and 3x3x3mm3. 

  

2.5 Diffusion tensor imaging  

  

Raw ADNI data was downloaded from the ADNI-2 database. Acquisition parameters 

included 256×256 matrix size, 1.4×1.4×2.7mm3 voxel size, 9000ms TR, and 9min scan time. 

A total of 41 diffusion encoding directions (b=1000s/mm2) and five b=0s/mm2 were 

acquired. More details can be found at http://adni.loni.usc.edu/wp-

content/uploads/2010/05/ADNI2_GE_3T_22.0_T2.pdf. In MITNEC-C6, dMRI scans were 

acquired using a 128×128 matrix size, 2mm isotropic voxels, TR ranging between 9400 and 

10000ms and 30 or 32 directions depending on the vendor with b=1000s/mm2 and two 

b=0s/mm2. These acquisition protocols were standardized across vendor platforms (see 

Supplementary Table 2).31 Raw data from both cohorts were processed with the same 

imaging pipeline. The preprocessing steps to obtain corrected dMRI data and DTI scalar 

maps (FA and MD) were in line with Nir et al.36 and described in more detail in 

Supplementary methods S2.  
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For FW mapping, the eddy current and motion-corrected dMRI data were fitted to a 

two-compartment diffusion model in each voxel, separating the FW compartment from the 

non-FW tissue compartment (Figure 1B).25 Specifically, an FW map represents the 

fractional volume (ranging from 0 to 1) of freely diffusing extracellular water with a fixed 

isotropic diffusivity of 3×10−3 mm2/s (diffusion coefficient of water at body temperature). 

The FW-corrected FA represents the FA signal following removal of the FW signal and is 

expected to be more specific to axonal and myelination changes than FA alone (Figure 1B).20 

Subsequently, the mean FA, MD, FW, and FW-adjusted FA were extracted in the whole 

brain, WMH, and NAWM. Figure 1A shows an example of a T1w image with corresponding 

DTI-based scalar maps.  

FW correlated strongly (Pearson’s r > 0.5) with both FA and MD in WMH and with 

FA in NAWM, but not with FW-adjusted FA indicating that the FW effect was indeed 

removed from FW-adjusted FA (Supplementary Figure 1). 

  

2.6 Amyloid-PET imaging 

  

Details on acquisition and processing of 18F-AV45 scans are described in 

Supplementary methods S3. The raw data of both cohorts were processed with the same 
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imaging pipeline.30 Standardized uptake value ratios (SUVR) were generated in the WMH 

and NAWM masks within the native T1w space and referenced to the whole cerebellum after 

removing T1-hypointense regions corresponding to cerebellar WM abnormalities with 

FreeSurfer. Previous work indicated the relevance of including WM in the reference region 

for AV45 quantification in dementia cohorts.2,37,38 A ‘global’ Aβ SUVR value was derived 

based on the AD-signature regions (volume-weighted average of the frontal, parietal, 

temporal, and cingulate regions)39 and corrected for PVE. 

  

2.7 Statistical analyses 

  

Statistics were performed using Python v3.7, R v4.0, and PROCESS v3.5 in SPSS. 

All continuous metrics were z-scored. Model-based measures were reported as effect 

estimates and 95% confidence intervals (CI) based on bootstrapping with 1,000 replications. 

A paired t-test was used to detect significant differences in SUVR or DTI metrics between 

NAWM and WMH. The analyses described below were investigated across all subjects, as 

well as within the high and low WMH groups separately. 

  

2.7.1 Relationship between 18F-AV45 SUVR and DTI metrics  
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Linear regressions were used to assess the associations between each of the DTI 

metrics (independent variable) and SUVR (dependent variable) in NAWM or WMH, 

adjusted for continuous age and education, and sex. The regressions evaluated in the WMH 

were additionally adjusted for global cortical Aβ SUVR and for WMH volume. The 

regressions evaluated in the NAWM were adjusted for global cortical Aβ SUVR; WMH 

volume was not significantly associated with NAWM SUVR and thus omitted as covariate 

(P>0.05). 

Partial least square (PLS) regression analyses were performed to further investigate 

how the DTI, demographical (age, sex, education) and imaging (WMH volume, cortical Aβ 

SUVR) variables covary together in predicting SUVR in the WMH or NAWM. PLS analysis 

assures that, when a set of predictors is large and closely related to one another (FA, FW-

adjusted FA, MD, and FW), the optimum subset of predictors can be selected by extracting 

orthogonal components that explain as much as possible covariance between X and Y. The 

number of components was determined based on the root-mean-square error derived from a 

ten-fold cross-validation with five repeats (Supplementary Figure 2). 

 

2.7.2 Relationship with cognitive impairment 
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Linear regression analysis was employed to assess the associations between DTI 

metrics in WMH or NAWM (FW and FW-adjusted FA; independent variable) and cognitive 

scores (dependent variable), adjusted for age, sex, education, WMH volume, and global 

cortical Aβ SUVR. In addition, the relationship between SUVR in the WMH or NAWM and 

cognition was investigated with mediation analysis using FW or FW-adjusted FA as the 

mediators, adjusted for the aforementioned covariates. Bias-corrected bootstrapping with 

5,000 replications and a 95% CI was performed for estimation of (in)direct and total effects. 

  

2.7.3 Linear mixed-effect models  

  

To investigate the effects of age or sex on 18F-AV45 SUVR in the WM, we employed 

linear mixed effect models with an interaction term between age or sex and WM region 

(NAWM and WMH) and subject as a random factor. 

 

2.8 Data and materials availability 
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All data associated with this study are available in the main text or supplementary 

materials. All the imaging data can be shared upon request with a proposal and under a data 

transfer agreement.  

  

3. Results 

 

3.1 Demographics 

 

 The high WMH group (N=58) was significantly older and less educated compared to 

the low WMH group (N=57). Additionally, they had significantly higher cortical Aβ load 

and lower cognitive scores (Table 1). The proportion of Aβ-positive subjects was 22.8% and 

46.6% in the low and high WMH group, respectively. 

 

3.2 18F-AV45 SUVR and DTI metrics are altered in WMH compared to NAWM 

 

Regions of WMH showed significantly lower SUVR compared to NAWM (~14% 

reduction, t=25.08, P<0.0001) (Figure 2). In addition, regions of WMH showed significantly 
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higher FW (t=-27.11), higher MD (t=-24.37), lower FA (t=32.77), and lower FW-adjusted 

FA (t=12.26) compared to NAWM (all P<0.0001; Figure 2).  

 

3.3 18F-AV45 SUVR relates to FW in WMH and to FW-adjusted FA in NAWM 

 

3.3.1 Regression analyses of diffusion metric predicting WM SUVR 

 

In regions of WMH, lower SUVR was strongly associated with higher FW both 

across all subjects (β=-0.36, P=0.005; 95%CIbootstrap[-0.63,-0.10]) (Figure 3A-left) and in the 

high WMH group separately (β=-0.33, P=0.019; 95%CIbootstrap[-0.55,-0.06]), independent of 

cortical Aβ. In addition, in regions of WMH, lower SUVR was associated with lower FA 

(β=+0.24, P=0.046; 95%CIbootstrap[+0.008,+0.47]) and showed a trend with higher MD 

(P=0.064; 95%CIbootstrap[-0.44,+0.003]) across all subjects, but not with the fiber-specific 

metric FW-adjusted FA. Taken together, these results indicate that, amongst the DTI metrics, 

FW was most closely associated with 18F-AV45 SUVR in regions of WMH.  

In the NAWM, SUVR was inversely associated with FW-adjusted FA in the high 

WMH group (β=-0.32, P=0.008; 95%CIbootstrap[-0.53,-0.07]) and showed a trend across all 

subjects (P=0.077; 95%CIbootstrap[-0.32,+0.05]), independent of cortical Aβ. Different erosion 

kernels for the NAWM mask obtained similar results (Supplementary Figure 3). In 
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addition, there was a trend towards an association between lower SUVR and higher FW 

across all subjects (P=0.059; 95%CIbootstrap[-0.38,+0.05]; Figure 3A-right), while no 

associations were found with MD or FA in the NAWM. Taken together, these results indicate 

that, amongst the DTI metrics, FW-adjusted FA was most closely associated with 18F-AV45 

SUVR in the NAWM (particularly in the high WMH subgroup).   

Due to the recruitment from different cohorts across all subjects and from different 

clinics within the high WMH group, we repeated our analyses adjusting for this factor. 

Supplementary Table 3 indicates that results remained the same and that cohort/clinic was 

a non-significant covariate in the analyses. 

 

3.3.2 PLS analyses of diffusion metrics predicting WM SUVR 

 

Our findings were further confirmed by PLS analysis of WM SUVR with all the DTI 

metrics together in the model. In regions of WMH, FW and WMH volume loaded most 

strongly inversely onto the first component (24% variance), while FW-adjusted FA and FA 

also had a significant but smaller contribution (Figure 3B-left; high WMH group). This may 

indicate that lower SUVR in regions of WMH is mainly associated with higher FW together 

with higher WMH volume. On the other hand, in NAWM, cortical Aβ SUVR loaded most 
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strongly positively onto the first component (31% variance), while FW and FW-adjusted FA 

also had a significant but smaller contribution (Figure 3B-right; high WMH group). This 

may indicate that higher SUVR in NAWM is mainly associated with higher cortical Aβ rather 

than diffusion alterations. Similar results with PLS analysis were found across all subjects 

and within the low WMH group separately, i.e., FW, WMH volume, and FA consistently 

contributed to WMH SUVR, while cortical Aβ SUVR consistently contributed to NAWM 

SUVR (Supplementary Figure 4). Interestingly, while FW-adjusted FA loaded inversely 

onto NAWM SUVR for the high WMH group (Figure 3B-right), it loaded positively for the 

low WMH group (Supplementary Figure 4B).  

  

3.4 Increased FW in WM is associated with cognitive impairment 

 

In regions of WMH, higher FW was associated with worse performance on the 

MoCA, MMSE, language, and semantic fluency tests both across all subjects and in the high 

WMH group separately (Figure 4A; Table 2; Supplementary Table 4 with adjustment for 

clinic). In fact, higher FW mediated the relationship between WMH SUVR and executive 

function (βindirect=-0.06, 95%CIbootstrap[-0.14,-0.01]). Conversely, lower FW-adjusted FA was 

significantly associated only with lower MoCA scores across all subjects. 
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Similarly, in the NAWM, higher FW was associated with worse performance on the 

MoCA, MMSE, language, and semantic fluency tests both across all subjects and in the high 

WMH group separately (Figure 4B; Table 2; Supplementary Table 4 with adjustment for 

clinic). Conversely, lower FW-adjusted FA in the NAWM was significantly associated only 

with lower MMSE across all subjects. 

 

3.5 Effects of age and sex on 18F-AV45 SUVR in the WM 

 

We observed a significant interaction effect (P<0.0001) between age and WM regions 

(i.e., NAWM vs WMH) on SUVR, such that older age was associated with lower SUVR in 

the WMH but with higher SUVR in the NAWM (Supplementary Figure 5). Females 

showed consistently higher SUVR in both NAWM (P=0.008) and WMH (P=0.006) 

compared to males, with no observed interaction (Supplementary Figure 6).  

 

4. Discussion 

 

This study investigated the neurobiological underpinnings of Aβ-PET (18F-AV45) 

uptake in the WM using two-compartment modelling of diffusion MRI in a mixed cohort of 
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patients with mild-to-severe SVD (manifested as WMH) and cortical Aβ. In line with current 

literature, we observed that SUVR in regions of WMH was significantly decreased compared 

to the NAWM SUVR.14,15,19 Our manuscript led to three novel observations (summary 

Figure 5): 1) In WMH, the decrease in SUVR was closely related to higher FW; 2) In 

NAWM, the increase in SUVR was closely related to higher cortical Aβ (together with lower 

FW-adjusted FA); and 3) In both WMH and NAWM, higher FW was related to cognitive 

impairment and WMH FW mediated the association between WMH SUVR and executive 

function. These findings can be interpreted as following: 1) The lower PET signal in WMH 

may largely reflect vascular damage, edema, inflammation, and/or fiber necrosis that led to 

concomitant enlargement of the extracellular space; 2) The higher PET signal in NAWM 

tracks with cortical Aβ and may partly reflect microstructural damage to the remaining fibers; 

and 3) FW may be a sensitive SVD-related biomarker in AD and mixed dementia to detect 

early and more subtle changes in WM microstructure. 

Supported by previous evidence that myelin alterations represent an early feature of 

aging and AD,5 Aβ-PET in the WM was recently suggested as a marker of local myelin 

integrity;14,15,19 thereby adding value to quantifying Aβ in the cortex. However, prior studies 

did not account for contributions of FW to the conventional DTI metrics (such as FA), 

ultimately limiting their interpretation and potentially overestimating the level of 
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demyelination or axonal damage.21,40 While we confirm prior studies by reporting an 

association between lower Aβ SUVR and lower FA (before FW adjustment) in WMH 

regions,14 we notably showed that the lower SUVR was more strongly associated with FW 

than with either FA or FW-adjusted FA. This lower SUVR in WMH was also associated with 

higher WMH volume. These findings may indicate that the PET signal within MRI-visible 

WM lesions is more profoundly associated with enlargement of the extracellular space 

(potentially of vascular or inflammatory origin, which may in part be secondary to profound 

tissue (myelin) loss/necrosis) than with tissue-specific compartment alterations (e.g., reduced 

fiber integrity or localized demyelination).25,41 Several additional considerations may support 

this observation. First, while demyelinating fibers are an early feature in AD,5 their direct 

effects on diffusion may be less pronounced in a sample enriched for SVD.18,40 Indeed, our 

group has previously shown that WM disease may primarily reflect chronic vasogenic edema 

(blood-brain barrier [BBB] leakage) or perivascular stasis (compromised circulation of 

interstitial fluid) induced by venous collagenosis and chronic hypoperfusion;22,23,42 which 

may be a trigger of downstream neuroinflammation, damage to myelin membranes with 

potential formation of intramyelinic fluid-filled vacuoles, and axonal (Wallerian) 

degeneration due to cortical neuronal injury in cases with concomitant AD pathology.40,41,43 

Second, previous autopsy studies reported no PiB staining/binding to WM tracts,3,10 
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suggesting that demyelination alone does not account for the reduced PET signal. Taken 

together, we speculate that reduced 18F-AV45 retention in MRI-visible WM lesions is at least 

partly reflective of increased water content. 

Importantly, while the association of lower WMH SUVR with higher WMH volume 

and lower cortical SUVR in PLS component 1 may be suggestive of PVE, we believe that 

PVE cannot explain the lower WMH SUVR compared to NAWM. Indeed, we not only 

performed various methodological efforts to reduce PVE but also benefitted from a unique 

cohort with high WMH volumes less prone to PVE. Furthermore, previous studies likewise 

found a relationship of higher WMH volume with lower FA, higher MD, and higher 

interstitial fluid,14,17,18,40 as well as lower WMH SUVR in A- compared to A+,44 advocating 

for a biological rather than PVE-related explanation underlying the lower WMH SUVR. 

In NAWM, the relation of SUVR with FW-adjusted FA was stronger than with either 

FA or FW (Figure 5). This may be related to a lesser expansion of the extracellular space in 

NAWM. Interestingly, while lower FW-adjusted FA is typically interpreted as reduced fiber 

integrity, we observed a relationship between lower SUVR and higher (rather than lower) 

FW-adjusted FA in the whole NAWM of our high WMH subgroup. There are several 

potential explanations for this finding. First, higher FW-adjusted FA may represent 

compression of fibers by surrounding edema45 or loss of crossing fibers, consistent with 
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degeneration of selected tracts as previously observed in patients with MCI or AD.46,47 

Second, we observed, similar to prior work, that cortical and NAWM SUVRs are positively 

correlated even after partial volume correction/erosion.14,44,48,49 This may indicate that 

cortical Aβ SUVR is one of the drivers behind (i) increased NAWM SUVR, and (ii) 

decreased FW-adjusted FA (indeed, higher cortical Aβ SUVR was associated with lower 

FW-adjusted FA (data not shown); which may be either through direct WM injury or 

secondary Wallerian degeneration).5,50 One potential explanation for the positive cortex-

NAWM SUVR relationship, considering that NAWM was eroded, may be impaired CSF-

mediated clearance and binding to diffuse Aβ, APP, or Aβ deposits in vessel walls of the 

WM,7,9,51 observed with aging and AD. For example, periventricular venous insufficiency 

resulting from stenosed or occluded vessels may interfere with interstitial cerebral fluid 

circulation, impairing the drainage of Aβ along the perivascular spaces and promoting Aβ 

deposition as plaques and around the vessels.52 Another potential explanation for the cortex-

NAWM SUVR relationship is remaining PET-associated PVE (the strength of this 

relationship decreased with higher erosion of the NAWM mask) and the increase of both 

metrics with age, in line with others (Figure 5).14,49 

These observations have several implications in clinical and research settings. First, 

the close relationship between the FW and PET signals in this cohort challenges previous 
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reports suggesting that the WM PET signal is myelin-dominated based on conventional FA. 

Our observations thus contribute to a better understanding and more accurate interpretation 

of the ambiguous WM signal in 18F-AV45 PET; this is of particular importance as Aβ-PET 

imaging is increasingly used in routine clinical practice for diagnostic workup of patients 

with suspect AD or mixed dementia, as well as for patient enrichment and target evaluation 

of anti-Aβ treatment trials. Second, in elderly subjects with suspicious areas of (low-to-

moderate) cortical Aβ, who also have high WMH burden and atrophy, the cortical Aβ-PET 

signal may visually appear artificially reduced by the spill-in from low WM-associated 

signals, potentially leading to a false negative reading. On the other hand, in patients with 

substantial cortical Aβ and WMH, the cortex-WM contrast may visually appear enhanced 

(despite spill-over effects at the cortex-WM boundary). Third, although lower FW-adjusted 

FA did not translate into a lower SUVR signal in the whole NAWM, we found a lower SUVR 

in the NAWM of subjects with >30cc WMH volumes (Supplementary Figure 7). This may 

be due to microstructural changes spreading beyond the visible damage of the WMH 

(assessed on structural imaging) into the surrounding penumbras (peri-lesional areas) of 

WMH and connected tracts.50,53 Ferris et al.18 recently showed that interstitial fluid 

accumulation, but not demyelination, extended up to 4mm beyond the boundaries of the 

WMH lesion – which could be in line with our lower NAWM PET signal in those with >30cc 
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WMH (despite 2mm isotropic erosion of the NAWM mask). Thus, the spectrum of WM 

damage identified by PET may be wider than that identified by T1w or FLAIR sequences 

where more subtle microstructural changes may not manifest as contrast changes and can be 

hard to identify. Another important implication of the altered PET signal in WM, particularly 

to research applications, is that it will affect the use of WM as a reference region to quantify 

cortical Aβ SUVR. Future studies should mask out WMH from the WM reference region, 

erode their WM masks, and/or use WMH volume as a covariate in the analyses. They should 

also compare WM SUV between diagnostic groups to assure no significant differences in 

reference region uptake.2,54 

In relation to cognition, we observed that higher FW was associated with cognitive 

impairment both in regions of WMH and NAWM. The association in the NAWM may 

potentially reflect mild vascular damage and an early, pre-lesional role for FW in affecting 

cognitive function.18,26 Apart from the significant FW-cognition relationship, we observed 

that FW (but not FW-adjusted FA) mediated the association between PET and executive 

function in WMH. In contrast, lower FW-adjusted FA only showed a weak relationship with 

lower MoCA score within WMH and with lower MMSE score within NAWM (the sensitivity 

of MoCA to WMH may be related to its wider application as a screening tool for vascular 

cognitive impairment by covering domains of executive function)55. Similarly, Maillard et 
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al.56 found that FW fully mediated the effect of WMH volume on cognition among older 

adults, while they reported a lack of association between FW-adjusted FA and cognition. 

Taken together, these findings underscore FW as a potential biomarker in early dementia 

stages, following its appearance and clinical relevance in both pre-lesional and MRI-visible 

lesions of the WM. Thus, eliminating or preventing excessive FW in the WM may serve as 

a potential preventive strategy (e.g., through earlier, more personalized vascular risk control) 

against vascular injury, cognitive decline, and progression to AD dementia. 

Limitations of our study include the use of single-shell and multi-center dMRI data. 

While our group performed great efforts to harmonize MRI acquisition parameters across 

different centers and cohorts, the dMRI data in MITNEC was acquired with fewer diffusion 

encoding directions than ADNI.31 Second, our study did not involve dynamic PET imaging 

with arterial input function. Thus, we cannot investigate whether WM PET may be affected 

by altered BBB permeability and/or the ligand’s pharmacokinetics through slower perfusion 

in WMH.12,13,57 Prior work with 18F-AV45 has shown that a 20% reduction in WM blood 

perfusion was associated with less than 5% reduction in SUVR at 50-60min post-injection;58 

as such, we do not believe that that the ~14% reduction in WMH SUVR (compared to 

NAWM) would be fully attributable to changes in blood perfusion. Another factor potentially 

affecting WM uptake may be related to the radioligand’s unique chemical and physical 
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properties (e.g., lipophilicity).59 For those ligands that have been directly compared, WM 

retention has been highest for 18F-flutemetamol and was comparable between 11C-PiB and 

18F-florbetapir.60 However, the topographic patterns of WM uptake (with lower uptake in 

WMH vs NAWM) was similar between 18F-flutemetamol and 11C-PiB irrespective of age.61 

Future studies are needed to replicate our findings with different amyloid ligands in a mixed 

dementia cohort. Third, individuals were recruited from different cohorts/clinics. However, 

all analyses were controlled for demographic variables and were repeated within the cohorts 

separately, and further adjustment for this factor did not change the main results. Last, we 

focused on the averaged PET and DTI metrics within the NAWM and WMH. Thus, we 

cannot exclude that the FW-adjusted tissue compartment had more regional or tract-specific 

associations with Aβ-PET and cognitive performance.26 

A major strength of our work is the inclusion of real-world patients covering the 

spectrum of low to severe WMH burden and cortical Aβ deposition. Specifically, seventy-

eight subjects (~70%) had WMH>10cc, allowing us to more accurately account for PVE 

which are prominent in most dementia studies with small WMH burden such as ADNI. In 

addition, by leveraging a novel dMRI technique that adjusts FA for FW contributions, as well 

as optimized structural pipelines for high WMH burden including a state-of-the-art deep 
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learning segmentation model, we provided novel insights into the relationship of WM 

microstructure with the 18F-AV45 signal in the WM.  

In conclusion, this study investigated the neurobiological underpinnings of Aβ-PET 

(18F-AV45) uptake in the WM – a marker of WM injury that is extracted “for free” in the 

diagnostic workup of dementia – using advanced diffusion modelling in a WMH enriched 

cohort. We found that lower 18F-AV45 PET uptake in MRI-visible WM lesions is strongly 

linked to elevated FW, potentially reflecting vascular damage, edema, inflammation, and/or 

proportional loss of myelin/WM tissue. On the other hand, in the NAWM, the 18F-AV45 PET 

uptake was more closely associated with Aβ of the cortex together with alterations to WM 

fiber integrity. We also highlighted that WM PET may be sensitive to microstructural 

changes in the penumbras surrounding WMH that are not yet visible on structural imaging. 

Last, in relation to cognition, higher FW both in WM lesions and NAWM related more 

closely to cognitive impairment than FW-adjusted FA or WM PET. Our study contributed to 

important new insights into the biological processes underlying the altered PET signal in the 

WM, further aiding in the interpretation of Aβ-PET studies. In addition, we present evidence 

that supports the need for accounting for WM lesions in Aβ-PET analyses. Finally, we 

highlighted FW as a promising and potentially early vascular-related injury marker in AD. 
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Figure 1. Overview of methods. A) Imaging acquisitions and segmentations in a 

representative subject. (Upper panel, left to right:) T1-w MRI image, T1w image with WMH 

delineation (red), T1w image with delineation of both WMH (red) and NAWM (yellow), 
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FLAIR image. (Lower panel, left to right:) 18F-AV45 PET, FA, MD, and FW-adjusted FA 

maps showing altered signal in the regions of WMH. B) Schematic representation of the two-

compartment biophysical DTI model. Each brain voxel (red color) of the NAWM or WMH 

can be separated into two compartments: an extracellular (FW; purple color) and a fiber-

specific (FW-adjusted FA; yellow color) compartment. The ‘adjusted’ tissue diffusion 

ellipsoid is more prolate (yellow tensor) after being separated from the isotropic diffusion 

ellipsoid (purple tensor). Abbreviations: FA, fractional anisotropy; FW, free water; NAWM, 

normal-appearing white matter; WMH, white matter hyperintensities. 
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Figure 2. Differences in 18F-AV45 SUVR and DTI metrics between regions of WMH 

and NAWM. Violin plots representing the group differences in SUVR (left panel), FW 

(middle panel), and FW-adjusted FA (normalized to whole brain value; right panel) in the 

WMH (orange) vs. NAWM (green) across all subjects. Paired t-test showed significant 

differences between WMH and NAWM at *P<0.0001 for all metrics. Specifically, SUVR 

and FW-adjusted FA were significantly lower and FW higher in WMH compared to NAWM. 

Abbreviations: FA, fractional anisotropy; FW, free water; NAWM, normal appearing white 

matter; SUVR, standardized uptake value ratio; WMH, white matter hyperintensities. 
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Figure 3. Relationship between FW and 18F-AV45 SUVR. A) Increased FW is associated 

with reduced SUVR in WMH (left) but not in NAWM (right). Data points are colored based 

on whether the subject belongs to the low (blue) or high (orange) WMH group. B) PLS 

analysis showing how DTI metrics covary together in predicting SUVR in regions of the 
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WM. The plots represent the contribution of the loadings to the first component of PLS 

analysis explaining most of the variance in SUVR in WMH (left panel; component 1 ~ 24%, 

component 2 [data not shown] ~ 2%) and NAWM (right panel; component 1 ~ 31%, 

component 2 [data not shown] ~ 2%) in subjects belonging to the high WMH group. 

Predictors include DTI metrics (FA, MD, FW, and FW-adjusted FA), demographics (age, 

female sex, education), and imaging variables (WMH volume and cortical Aβ SUVR). 

Predictors are ordered based on the absolute value of the loading: FW and WMH volume had 

the most influence on signal in the WMH while cortical Aβ and FW-adjusted FA had the 

most influence on signal in the NAWM. Error bars represent 95%CI based on bootstrapping 

with 5,000 repetitions. PLS results across all subjects and within the low WMH group are 

represented in Supplementary Figure 4. Abbreviations: FW, free water; MD, mean 

diffusivity; NAWM, normal appearing white matter; SUVR, standardized uptake value ratio; 

WMH, white matter hyperintensities. 
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Figure 4. Associations between FW and cognition. Increased FW in the WMH (panel A) 

or NAWM (panel B) associate with cognitive impairment, including MoCA (upper row) and 

semantic fluency (lower row), across all subjects. Data points are colored based on whether 

the subject belongs to the low (blue) or high (orange) WMH group. Abbreviations: FW, free 
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water; MoCA, Montreal Cognitive Assessment; NAWM, normal appearing white matter; 

WMH, white matter hyperintensities.  
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Figure 5. Summary of relationships between 18F-AV45 SUVR and DTI metrics in WM, 

along with potential neurobiological explanations. Abbreviations: FW-adjusted FA, free 

water-adjusted fractional anisotropy; NAWM, normal-appearing white matter; SUVR, 

standardized uptake value ratio derived from amyloid-PET; WMH, white matter 

hyperintensities [created with BioRender.com] 
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Tables 

 

Table 1. Demographics. Demographics within the low and high WMH groups. All values 

are indicated as mean ± standard deviation. Abbreviations: MMSE, Mini-Mental State 

Examination; MoCA, Montreal Cognitive Assessment; TMT, Trail Making Test; WMH, 

white matter hyperintensity volumes. 

Variables 

Low WMH group 

(N = 57) 

High WMH group 

(N = 58) 

Test-statistic 

Age (years) 74.14  5.58 76.90  8.13      t = -2.12* 

Sex female, N (%) 34 (60) 26 (45)      χ2 = 1.97 

Education (years) 16.02  2.72 14.29  2.59      t = 3.48** 

Composite [18F]AV45 

SUVR1 
0.98  0.18 1.12  0.23 

t = -3.59*** 

Aβ-positive, N (%) 13 (23%) 27 (47%) χ2 = 7.15** 

Total WMH (cc) 10.62  12.93 34.65  18.93 t = -7.94*** 

Body mass index 27.51  5.85 (N=56) 27.32  5.23 (N=57) t = 0.18 

Hypertension2, N (%) 28 (49%) 35 (60%) χ2 = 1.46 

Smoking, N (%) 32 (56%) 23 (40%) (N=57) χ2 = 2.85 

Semantic fluency (animals) 20.91  5.70 12.72  6.01 t = 7.50*** 

Boston Naming Test 27.70  2.13 23.65  5.75 (N=52) t = 4.78*** 

TMT-A (seconds) 36.47  11.36 58.16  33.22 t = -4.70*** 

TMT-B (seconds) 95.79  50.77 187.54  85.74 (N=57) t = -6.95*** 

MMSE 28.82  1.45 27.10  2.48 t = 4.53*** 

MoCA 25.63  2.53 22.57  4.38 t = 4.58*** 
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*P<0.05, **P<0.01, ***P<0.001 using two-tailed t-test (continuous variable) or chi-square (categorical 

variables). 

1 Non-PVE corrected and referenced to the whole cerebellum. 

2 Hypertension was defined as systolic blood pressure ≥ 140 mmHg and/or diastolic blood pressure ≥ 90 

mmHg.  
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Table 2. Association between DTI metrics and cognition in regions of WMH and 

NAWM. The regression analyses were adjusted for age, sex, education, WMH volume, and 

global cortical Aβ SUVR. Results are shown separately for all subjects combined (n=115) 

and the high WMH subgroup (n=58). Abbreviations: bs, bootstrap (1,000 repetitions); FA, 

fractional anisotropy; FW, free water; MMSE, Mini-Mental State Examination; MoCA, 

Montreal cognitive assessment; WMH, white matter hyperintensities 

Regions of white matter hyperintensities  

All subjects (n=115) 

 FW FW-adjusted FA 

 β P 95%CIbs β P 95%CIbs 

Semantic  -0.54 <0.0001 -0.78,-0.29 +0.14 0.084 -0.03,+0.31 

Language -0.38 0.002 -0.65,-0.10 +0.17 0.050 +0.03,+0.34 

MoCA -0.41 0.001 -0.69,-0.12 +0.17 0.048 -0.003,+0.33 

MMSE -0.40 0.003 -0.67,-0.10 +0.14 0.11 -0.02,+0.32 

Speed  +0.31 0.016 +0.01,0.58 -0.07 0.44 -0.22,+0.08 

Executive +0.35 0.002 +0.10,+0.59 -0.10 0.19 -0.26,+0.05 

High WMH group (n=58) 

 FW FW-adjusted FA 

 β P 95%CIbs β P 95%CIbs 

Semantic  -0.26 0.059 -0.54,+0.02 +0.08 0.58 -0.16,+0.32 
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Language -0.40 0.003 -0.68,-0.15 +0.23 0.091 -0.05,+0.47 

MoCA -0.34 0.013 -0.61,-0.04 +0.11 0.41 -0.14,+0.39 

MMSE -0.31 0.036 -0.52,-0.03 +0.08 0.61 -0.18,+0.41 

Speed  +0.08 0.56 -0.21,+0.41 -0.11 0.45 -0.33,+0.14 

Executive +0.20 0.15 -0.01,+0.48 -0.17 0.20 -0.52,+0.07 

 

Region of normal-appearing white matter  

All subjects (n=115) 

 FW FW-adjusted FA 

 β P 95%CIbs β P 95%CIbs 

Semantic  -0.40 <0.0001 -0.61,-0.21 +0.03 0.71 -0.14,+0.22 

Language -0.23 0.032 -0.42,-0.05 +0.18 0.034 -0.03,+0.40 

MoCA -0.34 0.001 -0.60,-0.11 +0.10 0.23 -0.09,+0.31 

MMSE -0.30 0.010 -0.54,-0.09 +0.21 0.020 +0.01,+0.41 

Speed  +0.32 0.003 +0.08,+0.53 +0.05 0.59 -0.12,+0.22 

Executive +0.23 0.021 +0.04,+0.42 -0.05 0.49 -0.21,+0.09 

High WMH group (n=58) 

 FW FW-adjusted FA 

 β P 95%CIbs β P 95%CIbs 

Semantic  -0.40 0.006 -0.67,-0.09 -0.14 0.35 -0.37,+0.16 

Language -0.27 0.064 -0.56,+0.03 +0.09 0.53 -0.16,+0.43 

MoCA -0.32 0.028 -0.65,-0.01 -0.01 0.93 -0.29,+0.29 
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MMSE -0.36 0.018 -0.68,-0.11 +0.08 0.60 -0.25,+0.39 

Speed  +0.24 0.10 -0.07,+0.52 +0.14 0.33 -0.10,+0.45 

Executive +0.15 0.30 -0.11,+0.42 -0.08 0.59 -0.32,+0.14 

Following cognitive tests were applied. Semantic fluency: animal naming; Language: BNT; Speed: TMT-A; 

Executive function: TMT-B 
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