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Abstract

White matter (WM) injury is frequently observed along with dementia. Positron emission
tomography with amyloid-ligands (AB-PET) recently gained interest for detecting WM
injury. Yet, little is understood about the origin of the altered AB-PET signal in WM regions.
Here, we investigated the relative contributions of diffusion MRI-based microstructural
alterations, including free water and tissue-specific properties, to AB-PET in WM and to
cognition. We included a unique cohort of 115 participants covering the spectrum of low-to-
severe white matter hyperintensity (WMH) burden and cognitively normal to dementia. We
applied a bi-tensor diffusion-MRI model that differentiates between (i) the extracellular WM
compartment (represented via free water), and (ii) the fiber-specific compartment (via free
water-adjusted fractional anisotropy [FA]). We observed that, in regions of WMH, a decrease
in AB-PET related most closely to higher free water and higher WMH volume. In contrast,
in normal-appearing WM, an increase in AB-PET related more closely to higher cortical Ap
(together with lower free water-adjusted FA). In relation to cognitive impairment, we
observed a closer relationship with higher free water than with either free water-adjusted FA

or WM PET. Our findings support free water and AB-PET as markers of WM abnormalities
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in patients with mixed dementia, and contribute to a better understanding of processes giving

rise to the WM PET signal.
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1. Introduction

18F-Florbetapir (*8F-AV45) is one of the most commonly used positron emission
tomography (PET) ligands to detect and quantify amyloid-B (AP) burden in the cortex of
patients with Alzheimer’s disease (AD). Specifically, AB-ligands are thought to target the
cross beta-sheet structure of the insoluble Ap fibrils.! In addition to targeting fibrils in the
cortex, these ligands are lipophilic in nature and show high retention in the white matter
(WM).22 Itis hypothesized that their high WM uptake is due to a similar beta-sheet structure
of myelin basic protein* and that microstructural damage or demyelination of WM tracts,
previously observed in AD,° results in reduced ligand uptake.® Furthermore, while some
reported the presence of AR in the WM, others did not observe such specific binding of
the AB-ligand to WM tissue sections and attributed high WM retention to slow WM
kinetics.®1%11 Further complexity of interpreting the WM PET signal is added through the
existence of localized reduced blood-to-tissue transport, hypoperfusion of lesioned WM
areas, and ligand trapping in enlarged perivascular spaces, particularly in patients with
concomitant small vessel disease (SVD).1212 Taken together, the molecular basis of the ApB-
ligand binding to WM remains poorly understood, hindering the understanding and

interpretation of AB-PET scans, especially in mixed disease cohorts.
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Diffusion MRI (dMRI) is a useful imaging modality to study WM microstructure in-
vivo and may help to better understand the binding dynamics of Ap-ligands to WM.1415
Parameters derived from diffusion tensor imaging (DTI) modeling of dMRI data include
fractional anisotropy (FA) and mean diffusivity (MD), commonly used to infer changes in
fiber integrity.® Prior studies have shown lower FA and higher MD in areas of WM
degradation such as those frequently observed as white matter hyperintensities (WMH) on
Fluid Attenuated Inversion Recovery (FLAIR) MRI.1"8 In addition, some found a link
between lower FA and lower PET signal in the WM; thus supporting WM AB-PET as a
marker of microstructural damage to myelin and/or axons.'*%® However, this theory may be
oversimplistic given that single-tensor DTI metrics (such as FA) are highly contaminated by
signals from both adjacent cerebrospinal fluid (CSF) and freely diffusing water in the
extracellular space surrounding the WM fiber tracts.?%! As such, conventional DTI metrics
can hardly differentiate between degenerative and vascular/neuroinflammatory changes
underlying altered AB-PET uptake in the WM. This bias will be exemplified in subjects with
pronounced atrophy, enlarged CSF spaces, and vasogenic edema;?>?3 all of which are
encountered in the more general AD population with often co-existent SVD pathology.?*

Recently, a bi-tensor (two-compartment) model of dMRI was proposed to isolate the

extracellular free water (FW) compartment from the fiber-specific (WM fibers) compartment
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within every image voxel.?>?% In the human brain, FW is found as blood, interstitial fluid and
CSF within ventricles and surrounding brain parenchyma, while it also accumulates as a form
of edema in the extracellular spaces of structures distal from CSF such as deep WM.?®
Changes in FW may indicate extracellular processes including vascular damage and
inflammation. On the other hand, changes in FW-adjusted DTI metrics (e.g., FW-adjusted
FA) may be closer related to microstructural tissue damage, i.e. demyelination/axonal
degeneration and fiber integrity.?

To our knowledge, no studies have yet investigated the link between AB-PET uptake
in the WM and WM microstructure using multi-compartment diffusion modeling,
specifically FW imaging. Particularly, such research is lacking in subjects with mixed AP
and moderate-to-severe WM lesion burden. Therefore, our study aims to investigate the
relative contributions of FW and tissue-specific microstructural changes to the F-AV45
PET signal, both in regions of WMH and normal-appearing WM (NAWM), in a cohort
enriched for high WMH burden. Our secondary aim is to investigate the microstructural
properties and 8F-AV45 PET of the WM in relation to cognition. We hypothesize that lower
PET signal within MRI-visible WM lesions closely relates to higher FW, which in turn,
relates to cognitive impairment. Such research is imperative for more accurate interpretation

of the AB-PET scan with potential as a future marker of WM abnormalities.
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2. Material & Methods

2.1 Participants

The study included a total of 115 participants. Fifty-eight participants were recruited
from dementia/stroke-prevention clinics as part of the multicenter C6 project of the Medical
Imaging Network of Canada (MITNEC-C6) across seven participating sites. These
participants showed moderate-to-severe SVD burden quantified as Fazekas-score>2 and
confluent periventricular WMH volumes >10cc 2’ [median(IQR): 31.1(22.4)cc]. Further
inclusion criteria included: 1) clinical diagnosis of early AD or amnestic, non-amnestic single
or multi-domain mild cognitive impairment (MCl/early AD, N=41),%82° or minor subcortical
lacunar infarct/TIA (N=17); 2) age>60y; 3) education>8y; and 4) MMSE>20. Exclusion
criteria included 1) major psychiatric disorder in the past 5y; 2) history of substance abuse in
the past 2y; and 3) serious/chronic systemic or neurological illness (other than AD).
Additionally, fifty-seven cognitively normal (CN) and patients with MCI were included from
the Alzheimer's Disease Neuroimaging Initiative (ADNI-2) database with low-to-moderate
WMH volumes [median(IQR): 5.8(9.2)cc]. Inclusion criteria included: 1) CN or MCI based

on the absence (CN) or presence (MCI) of memory complaints, MMSE>24, and Clinical
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Dementia Rating of 0 (CN) or 0.5 (MCI); 2) age>60y; and 3) education>8y. More details on
inclusion/exclusion criteria in MITNEC-C6 and ADNI are described in Supplementary
Table 1 and at www.adni-info.org. Table 1 describes demographics for both groups (i.e.,
ADNI-2 and MITNEC-CS6, further referred to as the low and high WMH group, respectively).
Both groups were matched for vascular risk factors including hypertension, pulse pressure,
body mass index, sex, and smoking status.3® All participants underwent ¥F-AV45 PET, 3T
MRI including 3D T1, FLAIR, and dMRI, and a neuropsychological assessment. MRI-PET
and MRI-neuropsychology acquisitions were acquired in close proximity (5480 and 27+78

days + standard deviation, respectively).

2.2 Standard Protocol Approvals, Registrations, and Patient Consents

All imaging acquisition protocols were standardized across vendor platforms and
compatible with ADNI-2 (see acquisition parameters in Supplementary Table 2).3! Image
quality control, archiving of clinical and imaging data, and access to pipelines were
performed at the Sunnybrook Research Institute through a common database. All participants

provided written informed consent. This study was conducted in full conformance with the
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principles of the “Declaration of Helsinki”. The institutional review board at the Sunnybrook
Health Sciences Centre approved this study (Approval No. 2989).

Regarding ADNI data; ADNI was launched in 2003 as a public-private partnership.
The primary goal of ADNI was to test whether MRI, PET, other biological markers, and
clinical data can be combined to measure the progression of MCI/AD [see www.adni-

info.org].

2.3 Cognitive Screening Tests

Cognitive screening tests used for this study are previously described® and included
processing speed and executive function (attention switching and working memory)
measured with the Trail Making Test (TMT) parts A (TMT-A; N=115) and B (TMT-B;
N=114), semantic fluency with animal naming (N=115), language with Boston Naming Test
(BNT; N=109), and global cognition with the Montreal Cognitive Assessment (MoCA) and
the Mini-Mental State Examination (MMSE) (N=115). TMT scores were log-transformed to

achieve a normal distribution.

2.4 Structural MRI

11
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MRI was performed using acquisition protocols that were standardized across vendor
platforms and compatible with the ADNI-2 protocol (see acquisition parameters in
Supplementary Table 2).3! The T1-weighted (T1w) MRI images were processed with
FreeSurfer v6.0 using an in-house modified pipeline for subjects with SVD.3? Subcortical
lacunar infarcts were masked out before WMH segmentation.3 WMH were delineated based
on our automated segmentation tool HyperMapper.2* More details on MRI processing are
described in Supplementary methods S1. Total WMH volume was normalized by the total
intracranial volume (ICV), and log-transformed. Total ICV was estimated using a skull-
stripping deep learning network developed in-house that is robust to vascular lesions and
atrophy.3®

The NAWM was segmented in native space by subtracting the binarized WMH
regions from the binarized whole WM defined by the Desikan-Killiany-Tourville atlas. To
limit partial volume effects (PVE), we 1) did not include ADNI subjects with WMH <1cc
(no MITNEC-C6 subjects fulfilled this criterion), 2) used a stricter HyperMapper threshold
on segmentation probabilities (0.4-0.5) to avoid overestimation of WMH,** and 3) performed
erosion on the NAWM masks by 2x2x2mm? to eliminate spill-effects from neighboring

tissue including cortex and CSF. Figure 1A highlights WMH and NAWM delineations in an

12
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example subject. We also tested for different NAWM erosion kernels including 1x1x1mm3

and 3x3x3mms3,

2.5 Diffusion tensor imaging

Raw ADNI data was downloaded from the ADNI-2 database. Acquisition parameters
included 256x256 matrix size, 1.4x1.4x2.7mm?3voxel size, 9000ms TR, and 9min scan time.
A total of 41 diffusion encoding directions (b=1000s/mm?) and five b=0s/mm? were
acquired. More  details can be found at http://adni.loni.usc.edu/wp-
content/uploads/2010/05/ADNI2_GE_3T_22.0_T2.pdf. In MITNEC-C6, dMRI scans were
acquired using a 128x128 matrix size, 2mm isotropic voxels, TR ranging between 9400 and
10000ms and 30 or 32 directions depending on the vendor with b=1000s/mm? and two
b=0s/mm?. These acquisition protocols were standardized across vendor platforms (see
Supplementary Table 2).3! Raw data from both cohorts were processed with the same
imaging pipeline. The preprocessing steps to obtain corrected dMRI data and DTI scalar
maps (FA and MD) were in line with Nir et al.*® and described in more detail in

Supplementary methods S2.
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For FW mapping, the eddy current and motion-corrected dMRI data were fitted to a
two-compartment diffusion model in each voxel, separating the FW compartment from the
non-FW tissue compartment (Figure 1B).?® Specifically, an FW map represents the
fractional volume (ranging from 0 to 1) of freely diffusing extracellular water with a fixed
isotropic diffusivity of 3x1073 mm?/s (diffusion coefficient of water at body temperature).
The FW-corrected FA represents the FA signal following removal of the FW signal and is
expected to be more specific to axonal and myelination changes than FA alone (Figure 1B).?°
Subsequently, the mean FA, MD, FW, and FW-adjusted FA were extracted in the whole
brain, WMH, and NAWM. Figure 1A shows an example of a T1w image with corresponding
DTI-based scalar maps.

FW correlated strongly (Pearson’s r > 0.5) with both FA and MD in WMH and with
FA in NAWM, but not with FW-adjusted FA indicating that the FW effect was indeed

removed from FW-adjusted FA (Supplementary Figure 1).

2.6 Amyloid-PET imaging

Details on acquisition and processing of F-AV45 scans are described in

Supplementary methods S3. The raw data of both cohorts were processed with the same
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imaging pipeline.®® Standardized uptake value ratios (SUVR) were generated in the WMH
and NAWM masks within the native T1w space and referenced to the whole cerebellum after
removing T1-hypointense regions corresponding to cerebellar WM abnormalities with
FreeSurfer. Previous work indicated the relevance of including WM in the reference region
for AV45 quantification in dementia cohorts.?3":3 A ‘global’ AR SUVR value was derived
based on the AD-signature regions (volume-weighted average of the frontal, parietal,

temporal, and cingulate regions)3® and corrected for PVE.

2.7 Statistical analyses

Statistics were performed using Python v3.7, R v4.0, and PROCESS v3.5 in SPSS.
All continuous metrics were z-scored. Model-based measures were reported as effect
estimates and 95% confidence intervals (CI) based on bootstrapping with 1,000 replications.
A paired t-test was used to detect significant differences in SUVR or DTI metrics between
NAWM and WMH. The analyses described below were investigated across all subjects, as

well as within the high and low WMH groups separately.

2.7.1 Relationship between 8F-AV45 SUVR and DTI metrics

15
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Linear regressions were used to assess the associations between each of the DTI
metrics (independent variable) and SUVR (dependent variable) in NAWM or WMH,
adjusted for continuous age and education, and sex. The regressions evaluated in the WMH
were additionally adjusted for global cortical A SUVR and for WMH volume. The
regressions evaluated in the NAWM were adjusted for global cortical Ap SUVR; WMH
volume was not significantly associated with NAWM SUVR and thus omitted as covariate
(P>0.05).

Partial least square (PLS) regression analyses were performed to further investigate
how the DTI, demographical (age, sex, education) and imaging (WMH volume, cortical A
SUVR) variables covary together in predicting SUVR in the WMH or NAWM. PLS analysis
assures that, when a set of predictors is large and closely related to one another (FA, FW-
adjusted FA, MD, and FW), the optimum subset of predictors can be selected by extracting
orthogonal components that explain as much as possible covariance between X and Y. The
number of components was determined based on the root-mean-square error derived from a

ten-fold cross-validation with five repeats (Supplementary Figure 2).

2.7.2 Relationship with cognitive impairment

16


https://doi.org/10.1101/2021.12.17.473211
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.17.473211; this version posted December 15, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Linear regression analysis was employed to assess the associations between DTI
metrics in WMH or NAWM (FW and FW-adjusted FA; independent variable) and cognitive
scores (dependent variable), adjusted for age, sex, education, WMH volume, and global
cortical ABp SUVR. In addition, the relationship between SUVR in the WMH or NAWM and
cognition was investigated with mediation analysis using FW or FW-adjusted FA as the
mediators, adjusted for the aforementioned covariates. Bias-corrected bootstrapping with

5,000 replications and a 95% CI was performed for estimation of (in)direct and total effects.

2.7.3 Linear mixed-effect models

To investigate the effects of age or sex on 8F-AV45 SUVR in the WM, we employed

linear mixed effect models with an interaction term between age or sex and WM region

(NAWM and WMH) and subject as a random factor.

2.8 Data and materials availability

17
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All data associated with this study are available in the main text or supplementary

materials. All the imaging data can be shared upon request with a proposal and under a data

transfer agreement.

3. Results

3.1 Demographics

The high WMH group (N=58) was significantly older and less educated compared to

the low WMH group (N=57). Additionally, they had significantly higher cortical Ap load

and lower cognitive scores (Table 1). The proportion of AB-positive subjects was 22.8% and

46.6% in the low and high WMH group, respectively.

3.2 BF-AV45 SUVR and DTI metrics are altered in WMH compared to NAWM

Regions of WMH showed significantly lower SUVR compared to NAWM (~14%

reduction, t=25.08, P<0.0001) (Figure 2). In addition, regions of WMH showed significantly
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higher FW (t=-27.11), higher MD (t=-24.37), lower FA (t=32.77), and lower FW-adjusted

FA (t=12.26) compared to NAWM (all P<0.0001; Figure 2).

3.3 8F-AV45 SUVR relates to FW in WMH and to FW-adjusted FA in NAWM

3.3.1 Regression analyses of diffusion metric predicting WM SUVR

In regions of WMH, lower SUVR was strongly associated with higher FW both
across all subjects (p=-0.36, P=0.005; 95%Clbootstrap[-0.63,-0.10]) (Figure 3A-left) and in the
high WMH group separately (p=-0.33, P=0.019; 95%Clbootstrap[-0.55,-0.06]), independent of
cortical AB. In addition, in regions of WMH, lower SUVR was associated with lower FA
(B=+0.24, P=0.046; 95%Clpootstrap[+0.008,+0.47]) and showed a trend with higher MD
(P=0.064; 95%Clbootstrap[-0.44,+0.003]) across all subjects, but not with the fiber-specific
metric FW-adjusted FA. Taken together, these results indicate that, amongst the DTI metrics,
FW was most closely associated with 8F-AV45 SUVR in regions of WMH.

In the NAWM, SUVR was inversely associated with FW-adjusted FA in the high
WMH group (p=-0.32, P=0.008; 95%Clbootstrap[-0.53,-0.07]) and showed a trend across all
subjects (P=0.077; 95%Clnootstrap[-0.32,+0.05]), independent of cortical Ap. Different erosion

kernels for the NAWM mask obtained similar results (Supplementary Figure 3). In
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addition, there was a trend towards an association between lower SUVR and higher FW
across all subjects (P=0.059; 95%ClIbootstrap[-0.38,+0.05]; Figure 3A-right), while no
associations were found with MD or FA in the NAWM. Taken together, these results indicate
that, amongst the DTI metrics, FW-adjusted FA was most closely associated with 8F-AV45
SUVR in the NAWM (particularly in the high WMH subgroup).

Due to the recruitment from different cohorts across all subjects and from different
clinics within the high WMH group, we repeated our analyses adjusting for this factor.
Supplementary Table 3 indicates that results remained the same and that cohort/clinic was

a non-significant covariate in the analyses.

3.3.2 PLS analyses of diffusion metrics predicting WM SUVR

Our findings were further confirmed by PLS analysis of WM SUVR with all the DTI
metrics together in the model. In regions of WMH, FW and WMH volume loaded most
strongly inversely onto the first component (24% variance), while FW-adjusted FA and FA
also had a significant but smaller contribution (Figure 3B-left; high WMH group). This may
indicate that lower SUVR in regions of WMH is mainly associated with higher FW together

with higher WMH volume. On the other hand, in NAWM, cortical Ap SUVR loaded most
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strongly positively onto the first component (31% variance), while FW and FW-adjusted FA
also had a significant but smaller contribution (Figure 3B-right; high WMH group). This
may indicate that higher SUVR in NAWM is mainly associated with higher cortical A rather
than diffusion alterations. Similar results with PLS analysis were found across all subjects
and within the low WMH group separately, i.e., FW, WMH volume, and FA consistently
contributed to WMH SUVR, while cortical AR SUVR consistently contributed to NAWM
SUVR (Supplementary Figure 4). Interestingly, while FW-adjusted FA loaded inversely
onto NAWM SUVR for the high WMH group (Figure 3B-right), it loaded positively for the

low WMH group (Supplementary Figure 4B).

3.4 Increased FW in WM is associated with cognitive impairment

In regions of WMH, higher FW was associated with worse performance on the
MoCA, MMSE, language, and semantic fluency tests both across all subjects and in the high
WMH group separately (Figure 4A; Table 2; Supplementary Table 4 with adjustment for
clinic). In fact, higher FW mediated the relationship between WMH SUVR and executive
function (Bindirect=-0.06, 95%Clnootstrap[-0.14,-0.01]). Conversely, lower FW-adjusted FA was

significantly associated only with lower MoCA scores across all subjects.
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Similarly, in the NAWM, higher FW was associated with worse performance on the
MoCA, MMSE, language, and semantic fluency tests both across all subjects and in the high
WMH group separately (Figure 4B; Table 2; Supplementary Table 4 with adjustment for
clinic). Conversely, lower FW-adjusted FA in the NAWM was significantly associated only

with lower MMSE across all subjects.

3.5 Effects of age and sex on ®F-AV45 SUVR in the WM

We observed a significant interaction effect (P<0.0001) between age and WM regions
(i.e., NAWM vs WMH) on SUVR, such that older age was associated with lower SUVR in
the WMH but with higher SUVR in the NAWM (Supplementary Figure 5). Females
showed consistently higher SUVR in both NAWM (P=0.008) and WMH (P=0.006)

compared to males, with no observed interaction (Supplementary Figure 6).

4. Discussion

This study investigated the neurobiological underpinnings of AB-PET (*8F-AV45)

uptake in the WM using two-compartment modelling of diffusion MRI in a mixed cohort of
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patients with mild-to-severe SVD (manifested as WMH) and cortical Ap. In line with current
literature, we observed that SUVR in regions of WMH was significantly decreased compared
to the NAWM SUVR.21519 Our manuscript led to three novel observations (summary
Figure 5): 1) In WMH, the decrease in SUVR was closely related to higher FW; 2) In
NAWM, the increase in SUVR was closely related to higher cortical AP (together with lower
FW-adjusted FA); and 3) In both WMH and NAWM, higher FW was related to cognitive
impairment and WMH FW mediated the association between WMH SUVR and executive
function. These findings can be interpreted as following: 1) The lower PET signal in WMH
may largely reflect vascular damage, edema, inflammation, and/or fiber necrosis that led to
concomitant enlargement of the extracellular space; 2) The higher PET signal in NAWM
tracks with cortical AP and may partly reflect microstructural damage to the remaining fibers;
and 3) FW may be a sensitive SVD-related biomarker in AD and mixed dementia to detect
early and more subtle changes in WM microstructure.

Supported by previous evidence that myelin alterations represent an early feature of
aging and AD,®> AB-PET in the WM was recently suggested as a marker of local myelin
integrity;141519 thereby adding value to quantifying AP in the cortex. However, prior studies
did not account for contributions of FW to the conventional DTI metrics (such as FA),

ultimately limiting their interpretation and potentially overestimating the level of
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demyelination or axonal damage.?“°® While we confirm prior studies by reporting an
association between lower AR SUVR and lower FA (before FW adjustment) in WMH
regions,’* we notably showed that the lower SUVR was more strongly associated with FW
than with either FA or FW-adjusted FA. This lower SUVR in WMH was also associated with
higher WMH volume. These findings may indicate that the PET signal within MRI-visible
WM lesions is more profoundly associated with enlargement of the extracellular space
(potentially of vascular or inflammatory origin, which may in part be secondary to profound
tissue (myelin) loss/necrosis) than with tissue-specific compartment alterations (e.g., reduced
fiber integrity or localized demyelination).?>4! Several additional considerations may support
this observation. First, while demyelinating fibers are an early feature in AD,® their direct
effects on diffusion may be less pronounced in a sample enriched for SVD.1840 Indeed, our
group has previously shown that WM disease may primarily reflect chronic vasogenic edema
(blood-brain barrier [BBB] leakage) or perivascular stasis (compromised circulation of
interstitial fluid) induced by venous collagenosis and chronic hypoperfusion;?22342 which
may be a trigger of downstream neuroinflammation, damage to myelin membranes with
potential formation of intramyelinic fluid-filled vacuoles, and axonal (Wallerian)
degeneration due to cortical neuronal injury in cases with concomitant AD pathology.4%:4143

Second, previous autopsy studies reported no PiB staining/binding to WM tracts,30
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suggesting that demyelination alone does not account for the reduced PET signal. Taken
together, we speculate that reduced '8F-AV45 retention in MRI-visible WM lesions is at least
partly reflective of increased water content.

Importantly, while the association of lower WMH SUVR with higher WMH volume
and lower cortical SUVR in PLS component 1 may be suggestive of PVE, we believe that
PVE cannot explain the lower WMH SUVR compared to NAWM. Indeed, we not only
performed various methodological efforts to reduce PVE but also benefitted from a unique
cohort with high WMH volumes less prone to PVE. Furthermore, previous studies likewise
found a relationship of higher WMH volume with lower FA, higher MD, and higher
interstitial fluid,*417.1840 as well as lower WMH SUVR in A- compared to A+,* advocating
for a biological rather than PVVE-related explanation underlying the lower WMH SUVR.

In NAWM, the relation of SUVR with FW-adjusted FA was stronger than with either
FA or FW (Figure 5). This may be related to a lesser expansion of the extracellular space in
NAWM. Interestingly, while lower FW-adjusted FA is typically interpreted as reduced fiber
integrity, we observed a relationship between lower SUVR and higher (rather than lower)
FW-adjusted FA in the whole NAWM of our high WMH subgroup. There are several
potential explanations for this finding. First, higher FW-adjusted FA may represent

compression of fibers by surrounding edema® or loss of crossing fibers, consistent with
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degeneration of selected tracts as previously observed in patients with MCI or AD.%647
Second, we observed, similar to prior work, that cortical and NAWM SUVRs are positively
correlated even after partial volume correction/erosion.!444484% This may indicate that
cortical AB SUVR is one of the drivers behind (i) increased NAWM SUVR, and (ii)
decreased FW-adjusted FA (indeed, higher cortical Ap SUVR was associated with lower
FW-adjusted FA (data not shown); which may be either through direct WM injury or
secondary Wallerian degeneration).>>° One potential explanation for the positive cortex-
NAWM SUVR relationship, considering that NAWM was eroded, may be impaired CSF-
mediated clearance and binding to diffuse AP, APP, or AP deposits in vessel walls of the
WM,"951 observed with aging and AD. For example, periventricular venous insufficiency
resulting from stenosed or occluded vessels may interfere with interstitial cerebral fluid
circulation, impairing the drainage of AB along the perivascular spaces and promoting A
deposition as plaques and around the vessels.>? Another potential explanation for the cortex-
NAWM SUVR relationship is remaining PET-associated PVE (the strength of this
relationship decreased with higher erosion of the NAWM mask) and the increase of both
metrics with age, in line with others (Figure 5).144°

These observations have several implications in clinical and research settings. First,

the close relationship between the FW and PET signals in this cohort challenges previous
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reports suggesting that the WM PET signal is myelin-dominated based on conventional FA.
Our observations thus contribute to a better understanding and more accurate interpretation
of the ambiguous WM signal in 8F-AV45 PET; this is of particular importance as AB-PET
imaging is increasingly used in routine clinical practice for diagnostic workup of patients
with suspect AD or mixed dementia, as well as for patient enrichment and target evaluation
of anti-Ap treatment trials. Second, in elderly subjects with suspicious areas of (low-to-
moderate) cortical AP, who also have high WMH burden and atrophy, the cortical AB-PET
signal may visually appear artificially reduced by the spill-in from low WM-associated
signals, potentially leading to a false negative reading. On the other hand, in patients with
substantial cortical Ap and WMH, the cortex-WM contrast may visually appear enhanced
(despite spill-over effects at the cortex-WM boundary). Third, although lower FW-adjusted
FA did not translate into a lower SUVR signal in the whole NAWM, we found a lower SUVR
in the NAWM of subjects with >30cc WMH volumes (Supplementary Figure 7). This may
be due to microstructural changes spreading beyond the visible damage of the WMH
(assessed on structural imaging) into the surrounding penumbras (peri-lesional areas) of
WMH and connected tracts.5°% Ferris et al.'® recently showed that interstitial fluid
accumulation, but not demyelination, extended up to 4mm beyond the boundaries of the

WMH lesion —which could be in line with our lower NAWM PET signal in those with >30cc
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WMH (despite 2mm isotropic erosion of the NAWM mask). Thus, the spectrum of WM
damage identified by PET may be wider than that identified by T1w or FLAIR sequences
where more subtle microstructural changes may not manifest as contrast changes and can be
hard to identify. Another important implication of the altered PET signal in WM, particularly
to research applications, is that it will affect the use of WM as a reference region to quantify
cortical AR SUVR. Future studies should mask out WMH from the WM reference region,
erode their WM masks, and/or use WMH volume as a covariate in the analyses. They should
also compare WM SUV between diagnostic groups to assure no significant differences in
reference region uptake.?%*

In relation to cognition, we observed that higher FW was associated with cognitive
impairment both in regions of WMH and NAWM. The association in the NAWM may
potentially reflect mild vascular damage and an early, pre-lesional role for FW in affecting
cognitive function.'®% Apart from the significant FW-cognition relationship, we observed
that FW (but not FW-adjusted FA) mediated the association between PET and executive
function in WMH. In contrast, lower FW-adjusted FA only showed a weak relationship with
lower MoCA score within WMH and with lower MMSE score within NAWM (the sensitivity
of MoCA to WMH may be related to its wider application as a screening tool for vascular

cognitive impairment by covering domains of executive function)®. Similarly, Maillard et
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al. found that FW fully mediated the effect of WMH volume on cognition among older
adults, while they reported a lack of association between FW-adjusted FA and cognition.
Taken together, these findings underscore FW as a potential biomarker in early dementia
stages, following its appearance and clinical relevance in both pre-lesional and MRI-visible
lesions of the WM. Thus, eliminating or preventing excessive FW in the WM may serve as
a potential preventive strategy (e.g., through earlier, more personalized vascular risk control)
against vascular injury, cognitive decline, and progression to AD dementia.

Limitations of our study include the use of single-shell and multi-center dMRI data.
While our group performed great efforts to harmonize MRI acquisition parameters across
different centers and cohorts, the dMRI data in MITNEC was acquired with fewer diffusion
encoding directions than ADNI.3! Second, our study did not involve dynamic PET imaging
with arterial input function. Thus, we cannot investigate whether WM PET may be affected
by altered BBB permeability and/or the ligand’s pharmacokinetics through slower perfusion
in WMH.21357 Prior work with *8F-AV45 has shown that a 20% reduction in WM blood
perfusion was associated with less than 5% reduction in SUVR at 50-60min post-injection;>®
as such, we do not believe that that the ~14% reduction in WMH SUVR (compared to
NAWM) would be fully attributable to changes in blood perfusion. Another factor potentially

affecting WM uptake may be related to the radioligand’s unique chemical and physical
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properties (e.g., lipophilicity).>® For those ligands that have been directly compared, WM
retention has been highest for 8F-flutemetamol and was comparable between '*C-PiB and
18F-florbetapir.®® However, the topographic patterns of WM uptake (with lower uptake in
WMH vs NAWM) was similar between F-flutemetamol and 1*C-PiB irrespective of age.®*
Future studies are needed to replicate our findings with different amyloid ligands in a mixed
dementia cohort. Third, individuals were recruited from different cohorts/clinics. However,
all analyses were controlled for demographic variables and were repeated within the cohorts
separately, and further adjustment for this factor did not change the main results. Last, we
focused on the averaged PET and DTI metrics within the NAWM and WMH. Thus, we
cannot exclude that the FW-adjusted tissue compartment had more regional or tract-specific
associations with AB-PET and cognitive performance.?®

A major strength of our work is the inclusion of real-world patients covering the
spectrum of low to severe WMH burden and cortical Ap deposition. Specifically, seventy-
eight subjects (~70%) had WMH>10cc, allowing us to more accurately account for PVE
which are prominent in most dementia studies with small WMH burden such as ADNI. In
addition, by leveraging a novel dMRI technique that adjusts FA for FW contributions, as well

as optimized structural pipelines for high WMH burden including a state-of-the-art deep
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learning segmentation model, we provided novel insights into the relationship of WM
microstructure with the F-AV45 signal in the WM.

In conclusion, this study investigated the neurobiological underpinnings of AB-PET
(*F-AV45) uptake in the WM — a marker of WM injury that is extracted “for free” in the
diagnostic workup of dementia — using advanced diffusion modelling in a WMH enriched
cohort. We found that lower 8F-AV45 PET uptake in MRI-visible WM lesions is strongly
linked to elevated FW, potentially reflecting vascular damage, edema, inflammation, and/or
proportional loss of myelin/WM tissue. On the other hand, in the NAWM, the 8F-AV45 PET
uptake was more closely associated with Ap of the cortex together with alterations to WM
fiber integrity. We also highlighted that WM PET may be sensitive to microstructural
changes in the penumbras surrounding WMH that are not yet visible on structural imaging.
Last, in relation to cognition, higher FW both in WM lesions and NAWM related more
closely to cognitive impairment than FW-adjusted FA or WM PET. Our study contributed to
important new insights into the biological processes underlying the altered PET signal in the
WM, further aiding in the interpretation of AB-PET studies. In addition, we present evidence
that supports the need for accounting for WM lesions in AB-PET analyses. Finally, we

highlighted FW as a promising and potentially early vascular-related injury marker in AD.
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Figure 1. Overview of methods. A) Imaging acquisitions and segmentations in a
representative subject. (Upper panel, left to right:) T1-w MRI image, T1w image with WMH

delineation (red), T1w image with delineation of both WMH (red) and NAWM (yellow),
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FLAIR image. (Lower panel, left to right:) 8F-AV45 PET, FA, MD, and FW-adjusted FA
maps showing altered signal in the regions of WMH. B) Schematic representation of the two-
compartment biophysical DTI model. Each brain voxel (red color) of the NAWM or WMH
can be separated into two compartments: an extracellular (FW; purple color) and a fiber-
specific (FW-adjusted FA; yellow color) compartment. The ‘adjusted’ tissue diffusion
ellipsoid is more prolate (yellow tensor) after being separated from the isotropic diffusion
ellipsoid (purple tensor). Abbreviations: FA, fractional anisotropy; FW, free water; NAWM,

normal-appearing white matter; WMH, white matter hyperintensities.
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Figure 2. Differences in ®F-AV45 SUVR and DTI metrics between regions of WMH
and NAWM. Violin plots representing the group differences in SUVR (left panel), FW
(middle panel), and FW-adjusted FA (normalized to whole brain value; right panel) in the
WMH (orange) vs. NAWM (green) across all subjects. Paired t-test showed significant
differences between WMH and NAWM at *P<0.0001 for all metrics. Specifically, SUVR
and FW-adjusted FA were significantly lower and FW higher in WMH compared to NAWM.
Abbreviations: FA, fractional anisotropy; FW, free water; NAWM, normal appearing white

matter; SUVR, standardized uptake value ratio; WMH, white matter hyperintensities.
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Figure 3. Relationship between FW and ¥F-AV45 SUVR. A) Increased FW is associated

with reduced SUVR in WMH (left) but not in NAWM (right). Data points are colored based

on whether the subject belongs to the low (blue) or high (orange) WMH group. B) PLS

analysis showing how DTI metrics covary together in predicting SUVR in regions of the
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WM. The plots represent the contribution of the loadings to the first component of PLS
analysis explaining most of the variance in SUVR in WMH (left panel; component 1 ~ 24%,
component 2 [data not shown] ~ 2%) and NAWM (right panel; component 1 ~ 31%,
component 2 [data not shown] ~ 2%) in subjects belonging to the high WMH group.
Predictors include DTI metrics (FA, MD, FW, and FW-adjusted FA), demographics (age,
female sex, education), and imaging variables (WMH volume and cortical AB SUVR).
Predictors are ordered based on the absolute value of the loading: FW and WMH volume had
the most influence on signal in the WMH while cortical AB and FW-adjusted FA had the
most influence on signal in the NAWM. Error bars represent 95%CI based on bootstrapping
with 5,000 repetitions. PLS results across all subjects and within the low WMH group are
represented in Supplementary Figure 4. Abbreviations: FW, free water; MD, mean
diffusivity; NAWM, normal appearing white matter; SUVR, standardized uptake value ratio;

WMH, white matter hyperintensities.
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Figure 4. Associations between FW and cognition. Increased FW in the WMH (panel A)
or NAWM (panel B) associate with cognitive impairment, including MoCA (upper row) and
semantic fluency (lower row), across all subjects. Data points are colored based on whether

the subject belongs to the low (blue) or high (orange) WMH group. Abbreviations: FW, free
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water; MoCA, Montreal Cognitive Assessment; NAWM, normal appearing white matter;

WMH, white matter hyperintensities.
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Figure 5. Summary of relationships between ¥F-AV45 SUVR and DTI metrics in WM,
along with potential neurobiological explanations. Abbreviations: FW-adjusted FA, free
water-adjusted fractional anisotropy; NAWM, normal-appearing white matter; SUVR,
standardized uptake value ratio derived from amyloid-PET;, WMH, white matter

hyperintensities [created with BioRender.com]
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Tables

Table 1. Demographics. Demographics within the low and high WMH groups. All values
are indicated as mean + standard deviation. Abbreviations: MMSE, Mini-Mental State
Examination; MoCA, Montreal Cognitive Assessment; TMT, Trail Making Test; WMH,

white matter hyperintensity volumes.

Low WMH group High WMH group Test-statistic

Variables

(N = 57) (N =58)
Age (years) 74.14 £5.58 76.90 +8.13 t=-2.12"
Sex female, N (%0) 34 (60) 26 (45) v’ =1.97
Education (years) 16.02 +2.72 14.29 + 2.59 t=3.48"
gacgﬁs'te [FFIAV45 0.98 +0.18 1.12 +0.23 t=-3.59
AB-positive, N (%) 13 (23%) 27 (47%) ¥?=7.15"
Total WMH (cc) 10.62 +12.93 34.65 + 18.93 t=-7.94""
Body mass index 27.51 £5.85 (N=56)27.32 + 5.23 (N=57) t=0.18
Hypertension?, N (%0) 28 (49%) 35 (60%) v?=1.46
Smoking, N (%) 32 (56%) 23 (40%) (N=57) =285
Semantic fluency (animals) 20.91 +5.70 12.72 £ 6.01 t=7.50""
Boston Naming Test 27.70 £2.13 23.65 £ 5.75 (N=52) t=4.78""
TMT-A (seconds) 36.47 +11.36 58.16 + 33.22 t=-4.70""
TMT-B (seconds) 95.79 £50.77 187.54 +85.74 (N=57) t=-6.95"
MMSE 28.82 £1.45 27.10+2.48 t=4.53""
MoCA 25.63 £2.53 22.57 +4.38 t=4.58""
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*P<0.05, **P<0.01, ***P<0.001 using two-tailed t-test (continuous variable) or chi-square (categorical
variables).
1 Non-PVE corrected and referenced to the whole cerebellum.

2 Hypertension was defined as systolic blood pressure > 140 mmHg and/or diastolic blood pressure > 90

mmHg.
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Table 2. Association between DTI metrics and cognition in regions of WMH and
NAWM. The regression analyses were adjusted for age, sex, education, WMH volume, and
global cortical Ap SUVR. Results are shown separately for all subjects combined (n=115)
and the high WMH subgroup (n=58). Abbreviations: bs, bootstrap (1,000 repetitions); FA,
fractional anisotropy; FW, free water; MMSE, Mini-Mental State Examination; MoCA,

Montreal cognitive assessment; WMH, white matter hyperintensities

Regions of white matter hyperintensities

All subjects (n=115)

FW FW-adjusted FA
B P 95%Clps B P 95%Clps
Semantic -0.54 <0.0001  -0.78,-0.29 +0.14 0.084 -0.03,+0.31
Language -0.38 0.002 -0.65,-0.10 +0.17 0.050  +0.03,+0.34
MoCA -0.41 0.001 -0.69,-0.12 +0.17 0.048 -0.003,+0.33
MMSE -0.40 0.003 -0.67,-0.10 +0.14 0.11 -0.02,+0.32
Speed +0.31 0.016 +0.01,0.58 -0.07 0.44 -0.22,+0.08

Executive +0.35 0.002 +0.10,+0.59 -0.10 0.19 -0.26,+0.05
High WMH group (n=58)

FwW FW-adjusted FA
B P 95%Clbs B P 95%Clbs
Semantic -0.26 0.059 -0.54,+0.02 +0.08 0.58 -0.16,+0.32
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Language | -0.40 0.003  -0.68,-0.15 | +0.23 0.091  -0.05,+0.47
MoCA -0.34 0.013  -0.61,-0.04 | +0.11 041  -0.14,+0.39
MMSE -0.31 0.036  -0.52,-0.03 | +0.08 061  -0.18,+0.41
Speed +0.08 0.56 -0.21,+0.41 -0.11 0.45 -0.33,+0.14
Executive | +0.20 0.15 -0.01,40.48 | -0.17 020  -0.52,+0.07
Region of normal-appearing white matter
All subjects (n=115)
FW FW-adjusted FA
B P 95%Clbs B P 95%C s
Semantic -0.40 <0.0001  -0.61,-0.21 | +0.03 071  -0.14,+0.22
Language | -0.23 0.032  -0.42-0.05 | +0.18 0.034  -0.03,+0.40
MoCA -0.34 0.001  -0.60-0.11 | +0.10 0.23  -0.09,+0.31
MMSE -0.30 0.010  -0.54-0.09 | +0.21 0.020  +0.01,+0.41
Speed +0.32 0.003  +0.08,+0.53 | +0.05 059  -0.12,+0.22
Executive | +0.23 0.021  +0.04,+0.42 | -0.05 0.49  -0.21,+0.09
High WMH group (n=58)
FW FW-adjusted FA
B P 95%Clbs B P 95%Clps
Semantic -0.40 0.006  -0.67,-0.09 | -0.14 0.35  -0.37,+0.16
Language | -0.27 0.064  -0.56,+0.03 | +0.09 053  -0.16,+0.43
MoCA -0.32 0.028  -0.65-0.01 | -0.01 093  -0.29,+0.29
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MMSE -0.36 0018  -0.68,-0.11 | +0.08
Speed +0.24 010  -0.07,+0.52 | +0.14
Executive | +0.15 030  -0.11,4+0.42 | -0.08

0.60
0.33
0.59

-0.25,+0.39
-0.10,+0.45
-0.32,+0.14

Following cognitive tests were applied. Semantic fluency: animal naming; Language: BNT; Speed: TMT-A;

Executive function: TMT-B
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