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ABSTRACT 
Older adults exposed to enriched environments (EE) maintain relatively higher levels of cognitive 
function, even in the face of compromised markers of brain health. Response speed (RS) is often used as 
a simple proxy to measure the preservation of global cognitive function in older adults. However, it is 
unknown which specific selection, decision, and/or motor processes provide the most specific indices of 
neurocognitive health. Here, using a simple decision task with electroencephalography (EEG), we found 
that the efficiency with which an individual accumulates sensory evidence was a critical determinant of 
the extent to which RS was preserved in older adults. Moreover, the mitigating influence of EE on age-
related RS declines was most pronounced when evidence accumulation rates were shallowest. These 
results suggest that the phenomenon of cognitive reserve, whereby high EE individuals can better tolerate 
suboptimal brain health to facilitate the preservation of cognitive function, is not just applicable to 
neuroanatomical indicators of brain ageing, but can be observed in markers of neurophysiology. Our 
results suggest that EEG metrics of evidence accumulation may index neurocognitive vulnerability of the 
ageing brain. 
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INTRODUCTION 
 
Cognitive deficits occurring with healthy or pathological ageing catalyse a broad range of challenging 
consequences (Ball et al., 2010; Barker-Collo and Feigin, 2006; O’Halloran et al., 2013; Prince et al., 2015; 
Weaver et al., 2009) and are marked by large inter-individual variability (Habib et al., 2007; Norton et al., 
2014; Rapp and Amaral, 1992). Robust evidence has emerged over the past three decades demonstrating a 
powerful positive influence of enriched environments (EE), such as education, leisure and work activities, 
on the preservation of cognitive function (Cabeza et al., 2019, 2018; Opdebeeck et al., 2016; Stern et al., 
2020, 2019a, 1992; Valenzuela and Sachdev, 2006). It has become increasingly apparent that exposure to 
EE is associated with high levels of cognitive function in older adults, despite structural changes 
indicative of compromised brain health, a phenomenon commonly referred to as cognitive reserve (e.g. 
Chan et al., 2018; Stern et al., 1992; Xu et al., 2019). Whether the benefits of EE can compensate for 
suboptimal neural function revealed by neurophysiological markers remains unexplored.    
 
The speed with which older adults respond to sensory input – hereafter referred to as response speed – 
has been accepted as a robust index of an individual’s vulnerability to cognitive decline (Bublak et al., 
2011; Deary et al., 2010; Gregory et al., 2008; Kochan et al., 2016; Ritchie et al., 2014; Salthouse, 1996). 
Yet response speed is the aggregate outcome of target-selection, decisional, and motoric computations. 
Thus, it remains unclear which of these neural processes account for the close association between 
response speed and neurocognitive health in older adults. Sequential sampling models (including the drift-
diffusion model) have offered several explanatory accounts of age-related response slowing (e.g. McKoon 
and Ratcliff, 2012; Ratcliff et al., 2006a, 2006b, 2004; Ratcliff and McKoon, 2015). However, these 
models cannot isolate the precise neurophysiological processes driving behaviour. Therefore, the neural 
mechanisms underpinning age-related declines in response speed remain unclear. To address this 
question, we have developed EEG tasks and analysis methods that give insight into the underlying 
selection (early target selection (Loughnane et al., 2016; Zhou et al., 2021), decisional (sensory evidence 
accumulation (Kelly and O’Connell, 2013; O’Connell et al., 2012; Kelly et al., 2021; Steinemann et al., 
2018), and motoric (motor preparatory activity (Kelly et al., 2021; McGovern et al., 2018; Steinemann et 
al., 2018)) computations that underpin inter-individual differences in response speed (Brosnan et al., 
2020; Newman et al., 2017).   
  
A critical extracranial human EEG signal emerging from these investigations is the centro-parietal 
positivity (CPP). This exhibits the key characteristics of evidence-accumulation signals observed using 
invasive electrophysiological recordings in animals (Kelly and O’Connell, 2013; O’Connell et al., 2012) 
and conforms to the dynamics predicted by sequential sampling models in two-alternative choice 
scenarios (e.g. Kelly et al., 2021; Twomey et al., 2015). In younger adults, the CPP has been repeatedly 
shown to capture individual variability in response speed (e.g. Brosnan et al., 2020; Murphy et al., 2015; 
O’Connell et al., 2012). In older adults, recent work on a perceptual decision-making (choice reaction 
time) task showed that CPP build-up rates were shallower than in a younger control group, indicative of 
less efficient evidence accumulation (McGovern et al., 2018). However, the specific potential for CPP 
build-up rate to account for individual differences in response times in older adults, over and above 
sensory and motoric processes, remains unclear.  
 
The aims of our study were twofold. First, using our EEG framework we tested the hypothesis that 
neural markers of sensory evidence accumulation (build-up rates of the CPP) would best capture 
individual variations in speeded target detections, over and above any influence of other 
neurophysiological processes contributing to the timing of response.  Second, we predicted that EE 
would moderate the relationship between our EEG metrics of evidence accumulation and behaviour, 
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such that relatively faster response speed would be facilitated by EE, even when the capacity to 
accumulate sensory evidence was compromised. 
 
 

RESULTS 

Individuated neurophysiological metrics indexing visual response speed were isolated using a 
perceptual-decision making EEG task  

Seventy two participants (41 older M=73 years, SD=5, range = 63-87 and N=31 younger M=24 years, 
SD=3, range = 18-28) performed a variant of the random-dot motion task (Newsome et al., 1989) while 
64-channel EEG was recorded to isolate neurophysiological processes along the perception to action 
continuum. We have developed this formal framework for parsing discrete EEG metrics (Brosnan et al., 
2020; Newman et al., 2017) to estimate an individuals’ capacity for a given neurophysiological processes 
(Fig. 1). For instance, we have recently demonstrated the utility of this framework for linking individual 
differences in MR markers of structural and functional connectivity, neurophysiology, and behaviour in 
younger individuals (Brosnan et al., 2020). In the current study, we employ the same approach to isolate 
eight distinct and previously validated neural metrics (Brosnan et al., 2020; Newman et al., 2017), namely 
early target selection (N2c amplitude and latency (Loughnane et al., 2016)), sensory evidence 
accumulation (CPP starting point (onset latency), build-up rate (slope), and decision bound (amplitude) 
(McGovern et al., 2018; O’Connell et al., 2012; Steinemann et al., 2018)), and motor preparation (left 
hemisphere beta (LHB) build-up rate (slope), timing (stimulus-aligned peak latency), and threshold 
(amplitude (McGovern et al., 2018; O’Connell et al., 2012))), see Fig. 1 (Newsome et al., 1989). 
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Figure 1. Depiction of the measures 
obtained on a trial-by-trial basis during the 
random-dot motion detection task.  During 
the random-dot motion detection task 
participants fixated centrally while patches of 
randomly moving dots were presented 
peripherally (centred at 10° of visual angle 
either side and 4° visual angle below the 
fixation square) in both hemifields. During 
‘target’ trials, 90% of the dots in one hemifield 
transitioned from random to coherent motion 
in either an upward or a downward direction. 
Targets remained on the screen for 3 s or until 
the participant pressed the button signalling the 
detection of coherent motion in either 
direction. If a fixation break occurred during a 
trial (either a blink or a gaze deviation >4° left 
or right of centre), the task halted (stationary 
dots) until fixation returned to the central 
fixation dot. Participant response speed was 
assessed via a right-hand button press for target 
detection (coherent motion in either upward or 
downward direction). The blue section 
illustrates the isolated EEG processes which 
cannot be obtained from behavioural estimates 
of speed alone. Each of these processes are 
derived at each individual trial and collapsed 
across trials to give an estimation of an 
individuals’ capacity at each. Note. ITI denotes 
inter-target interval. 
 
 
 

 

Response Speed Measures Are Sensitive to both Age and EE 

During the simple random-dot motion detection task, participants fixated centrally while two patches of 
randomly moving dots were presented to the periphery (see Fig. 1). A target was defined as 90% of the 
dots in one hemifield transitioning from random to coherent motion, in either an upward or downward 
direction. Participants were required to respond to any coherent motion (i.e., in either direction) with a 
right-handed button press.  Behavioural analyses (Fig. 2A) indicated that this task was sensitive to age-
related deficits in response speed. The older adults were markedly slower at responding, as evidenced by 
significantly slower response times (RTs) to the visual targets relative to the younger adults (F1,70 =38.34, 

p<.001, partial !2=
 
0.35, BF10=287907.20; older M=593.33ms, SD=125.40; younger M=439.05ms, 

SD=67.87; Fig. 2A). Target detection accuracy was high for the overall sample 95.92% (SD=5.29, range 
71-100%), but nonetheless the older adults were less accurate at detecting coherent motion than their 
younger peers (older: M = 94.40%, SD = 6.3%; younger: M=97.90, SD=2.60%; F1,70 = 8.12, p=.006, 

partial !2
 
= 0.10, BF10=7.17). Critically, the age-related declines in RTs remained significant even after 

covarying for differences in accuracy (F2,69 = 27.16, p<.001, partial !2= 0.44). 
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We next sought to verify previously reported associations between a lifetime of EE and response speed 
e.g. (Lee et al., 2014; Park et al., 2014). For this, we modelled RT from the random-dot motion task as a 
function of environmental enrichment using the Cognitive Reserve Index questionnaire (CRIq (Nucci et 
al., 2012)) in the older adult cohort only. The CRIq is a previously validated semi-structured interview 
which assays levels of cognitive stimulation through the assessment of three domains of activity 
throughout an individual’s lifetime: Education, Work Activities, and Leisure Activities (see methods for 
details). As the neuroprotective effects of EE are posited to accumulate over the course of a lifetime 
(Robertson, 2014), we collected this information in the older cohort only.  
 
As expected, this model was statistically significant, and EE (the overall model) explained 20.5% of the 
variance of RT (R2adj =.21, F3,36=4.36, p=.01, partial η2=.27). Consistent with previous work (Lee et al., 
2014; Park et al., 2014), this effect was driven by the CRI Leisure subscale, which accounted for 
independent variance in the modelling of RT (Standardized β=-.45, t=-3.13, p=.003, 95% CI [-4.98 -
1.06]), such that older adults with greater exposure to enriched leisure activities exhibited faster visual 
response speeds (Fig. 2B). In contrast, neither CRI Education (Standardized β=.06, t=.41, p=.69, 95% CI [-
2.73 4.10]) nor CRI Work (Standardized β=.31, t=1.94, p=.06, 95% CI [-.09 3.93]) accounted for 
independent variance in RT. In order to obtain accurate parameter estimates for the relationship between 
CRI Leisure and RT, not influenced by the non-informative signals, CRI Leisure was entered into a 
separate linear regression model. This model explained 13.2% of the variance (Cohen’s F2=.18) in RT 
(Standardized β=-.39, t=-2.63; F(1,38)=6.93, p=.01, 95% CI [-4.61 -.60], partial η2=.15, Fig. 2A).  
 
Bayesian Linear Regression analyses modelling RT as a function of each CRI subscale provided additional 
support for the results of the frequentist statistics (Supplementary Table 4). Any model including CRI 
Leisure indicated a Bayes Factor at least 2.9 times more in favour of H1 than H0 (Supplementary Table 4). 
In contrast, Bayes Factors for both CRI Work and CRI Education (independently and combined) provided 
anecdotal to very strong evidence for the null hypothesis (i.e., there was no evidence to suggest that these 
factors account for independent variance in RT; all three BF10<.88 and >.03). This suggests that an 
individual’s leisure engagements help to mitigate age-related declines in visual response speed. An 
exploratory analysis conducted to investigate which specific aspects of leisure activities may have 
contributed to this effect implicated using modern technology (t39=-4.37, p<.001, BF10=240.49), engaging 
in social activities (t26.88=-4.49, p<.001, BF10=106.02), attending events such as conferences, exhibitions 
and concerts (t32=-3.98, p<.001, BF10=10658.60), and vacationing (t24.83=3.11, p=.01, (BF10=72.46; 
Supplementary Fig. 3, for further information see Supplementary Results 1 and Supplementary Results 2).  
 
Educational attainment and occupational engagements are aspects of EE that are tightly linked with 
socioeconomic factors (Jones et al., 2011). The results presented here indicate that age-related declines in 
response speed vary according to leisure activities, which are arguably less dependent on socioeconomic 
factors. To verify that these results could not be attributed to differences in educational and occupational 
engagements, we ran several additional analyses, reported in Supplementary Results 6. 
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Figure 2. Response Speed Measures on the Decision Task Sensitive to both Age and EE. A. 
Healthy ageing was associated with markedly slower response times (RT) to perceptual targets, with large interindividual 
differences in response speed. During a variant of the random-dot motion task, older participants were, in general, slower to 
respond, relative to their younger peers, suggesting this measure was sensitive to age-related deficits in response speed. Each 
individual dot represents a participant (lower panel), and the distribution is captured by a violin plot for the two groups (upper 
panel). B. A lifetime of enriched environments (EE), captured by the composite score of Cognitive Reserve Index Questionnaire 
(CRIq(Nucci et al., 2012)) varied according to individual differences in response speed in the older adults. This effect was driven 
by the Leisure subscale of the assessment which is visualised here as a function of RT. Note the upper/lower edges of the 
whiskers represent the upper/lower quartiles plus/minus 1.5 × the interquartile range. 

Individual differences in response speed are captured by sensory evidence accumulation rate  

The analyses thus far have confirmed age-related differences in behavioural markers of response speed - a 
validated behavioural measure of cognitive resilience (see also Supplementary Results 4). We next sought 
to understand how each neural metric related to individual differences in response speed using a 
hierarchical regression model to isolate the contribution of each neural metric, over and above those 
which temporally preceded it.  
 
To determine the explanatory power of the neurophysiological signals for predicting behaviour, was 
entered as a nuisance variable (centred to avoid multicollinearity) in the first step of the model. 
Unsurprisingly, this offered a significant improvement in model fit, as compared with the intercept-only 
model (R2adj =.36, p<.0005 Fig. 3). Neither the marker of early target selection (N2c latency (R2adj = .37, 
p=.21), N2c amplitude (R2adj =.37, p=.22) nor the starting point of the evidence accumulation process 
(CPP onset; R2adj =.37, p=.58) offered any additional improvement in model fit.  
 
Evidence accumulation build-up rate, indexed via the CPP build-up rate significantly improved the model 
performance, accounting for an additional 17% of the variance (R2adj =.54, R2change =.17, p<.0005, Fig. 3, 
Table 1), such that steeper CPP slopes, indicative of a faster build-up rate of sensory evidence, were 
associated with faster response speeds. Adding CPP amplitude offered a further significant improvement 
in the model, such that individuals with lower CPP amplitudes showed faster RTs (R2adj =.61, R2change 
=.07, p=.001).  
 
While the build-up rate of motor preparation (LHB slope) explained no additional variance in RT (R2adj 

=.59, R2change =0, p=.94), stimulus-aligned LHB peak latency significantly improved the fit, such that an 
earlier peak latency of this motor preparatory marker was associated with faster RT (R2adj =.65, R2change 
=.05, p=.003). Finally, adding LHB amplitude offered no significant improvement in the model (R2adj 

=.65, R2change=01, p=.17) 
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In order to isolate the variables explaining independent variance in RT over and above that explained by 
other non-informative signals, age, CPP build-up rate, CPP amplitude, and LHB peak latency were 
entered into a single separate linear regression model. When these five four independent variables were 
included in the final model, they accounted for 65.6% of the variation in RT (F4, 66=34.43, p<.0005, Table 
1). A post-hoc power analysis indicated that with 72 participants, 6 tested predictors (CPP build-up rate, 
CPP amplitude) and 2 control variables (Age and Age*RT interaction) 88.79% power was achieved (effect 
size f2=.29, G*Power 3.1).  
 
Finally, to further establish the utility of these signals as specifically sensitive to individual differences in 
ageing, we repeated this linear regression model (with CPP build-up rate, CPP amplitude, and LHB peak 
latency), just for the older cohort. This model accounted for 48.7% of the variation in RT (F3, 37=13.66, 
p<.0005) and CPP build-up rate (stand. β=-.66, p<.0005), CPP amplitude (stand. β =.27, p=.05) and LHB 
Latency (stand. β=-.31, p=.013) all accounted for independent variance in response speed.  
 
Table 1. Parameter estimates from the final linear regression model for reaction time (RT) as a 
function of the neurophysiological signals  

Signal Stand. β t p 
 

95% CI 

Age*RT .26 3.80 <.0005 [.01, .02] 

Age .50 6.86 <.0005 [1.84, 3.35] 

CPP build-up rate -.45 -5.16 <.0005 [-1139.40, -503.88] 

CPP amplitude .26 3.13 .003 [.94, 4.26] 

LHB Latency .24 3.39 .001 [.09, .36] 

Note. Age*RT, age, evidence accumulation (CPP) build-up rate, CPP amplitude, and LHB latency exerted partially independent influences on RT, 
together accounting for 71.4% of the variation (adjusted R2 value) in RT. The absolute value of standardised (Stand.) β represents the importance 
of each predictor, independent of the unit of measurement. CI denotes confidence interval for β. 
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Figure 3. Individual differences in response speed are captured by sensory evidence 
accumulation build-up rate. A. Associations between response speed (RT) and the EEG variables. Results from the 
final regression model of RT are reported in Table 1. Note the absolute value of all standardised beta values were plotted for 
visualisation purposes and nuisance variables entered from the first step in the model are not visualised here. B. The relationship 
between CPP build-up rate and RT for older and younger adults. CPP build-up rate was directly associated with an individuals’ 
response speed. Moreover, an individuals’ capacity to accumulate sensory evidence indirectly impacts response speed by 
influencing CPP amplitude (C) and Beta latency (D), both of which mediate the association between CPP build-up rate and 
response speed.  

Finally, to validate these results, we calculated the Bayes Factor Inclusion probabilities (BF10) with a 
Bayesian linear regression using a Jeffrey–Zellner–Siow prior (JZS (Rouder and Morey, 2009); r scale 
covariates = 0.354), which can be interpreted such that BFinclusion, or BF10 values above 1 indicate strength 
of evidence in favour of the alternative and values below 1 indicate the strength of evidence in favour of 
the null. In keeping with the frequentist analyses, the Bayesian regression model for RT indicated strong 
support for the alternative hypothesis for age*RT (BF10= 129.39), age (BF10=13404.20), CPP slope 
(BF10=1307.327), CPP amplitude (BF10=12.64), and LHB latency (BF10=50.81). There was no statistical 
evidence to suggest that N2c amplitude (BF10=.74), N2c latency (BF10=.55), CPP onset (BF10=.75), LHB 
slope (BF10=.74) or LHB amplitude (BF10=.95) influenced RT (see Supplementary Table 3 for further 
details of this Bayesian linear model).  
 
The findings above indicate that CPP build-up rate, CPP amplitude, and LHB latency exerted direct and 
partially independent influences over RT. On the basis of previous work, we assume that the impact of 
both CPP amplitude and LHB latency on RT, is, at least in part, determined by accumulated sensory 
evidence, reflected in temporally preceding CPP build-up rate(Brosnan et al., 2020; Kelly and O’Connell, 
2013; O’Connell et al., 2012; Steinemann et al., 2018). We tested this by assessing whether the influence 
of CPP amplitude and LHB latency on RT was mediated by CPP build-up rate. In both cases, 
bootstrapped mediation analyses (5000 samples) indicated that this was the case (CPP build-up 
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rateàCPP amplitudeàRT indirect effect 281.98, bootstrapped SE 168.06, CI [18.00 669.46]; CPP build-
up rateà LHB latencyàRT indirect effect -220.68, bootstrapped SE 102.48, CI [-459.99 -58.22; Fig. 3C, 
D]). This demonstrates that variability in age-related deficits in RT captured by CPP amplitude and LHB 
latency are dependent, at least partly, on individual differences in the rate at which sensory evidence can 
be accumulated. These results suggest that the CPP build-up rate constitutes a critical contributor to 
interindividual differences in response speed.   

Evidence accumulation build-up rate moderates the relationship between environmental 
enrichment and response speed 

The results thus far demonstrate that both levels of environmental enrichment and task-related neural 
metrics (particularly the build-up rate of evidence accumulation) are strong determinants of individual 
differences in behaviour (response speed). This raises the possibility that the relationship between EE and 
response speed might differ according to individual differences in evidence accumulation build-up rate. It 
is well established within the (neuro)cognitive reserve literature that high EE individuals can preserve 
relatively high levels of cognitive function, despite suboptimal structural markers of brain health (e.g., 
grey matter atrophy). Here, having established evidence accumulation build-up rates as the critical neural 
marker indicative of the maintenance of response speed, we tested the hypothesis that high EE 
individuals would maintain more ‘youth-like’ levels of response speed, even when this core 
neurophysiological process was impaired.  
 
To address this, we tested whether each of the three neural markers significantly moderated the 
relationship between CRI leisure and RT using three separate moderation models, Bonferroni-corrected for 
multiple comparisons (alpha .05/3 moderation models => alpha-corrected threshold = .016). These 
results revealed a specific moderating influence of CPP build-up rate on the association between EE (CRI 
Leisure) and RT, as evidenced by a CRI Leisure by CPP build up rate interaction (coefficient = 32.00, 
se=10.55, t=3.03, p=.005, CI [10.61 53.39]), which remained significant when covarying for (age; 
coefficient = 31.45, se=10.81, t=2.91, p=.006, CI [9.51 53.38], Fig. 4). In contrast, no moderating 
influence was observed for CPP amplitude (coefficient = .14, se=09.71, t=1.39, p=.17, CI [-.06 .33]) or 
LHB latency (coefficient = -.02, se=.006, t=-2.48, p=.02, CI [-.03 0]). Follow-up analyses exploring the 
conditional effects of the predictor at values of the moderator revealed that the relationship between EE 
and RT was strongest in the older adults with shallower evidence accumulation build-up rates (Fig 5; CPP 
slope .0034, Coeff = -4.23, SE=1.17, t=-3.61, p=.0009, 95% CI = [-6.60, -1.86]; CPP slope .0724, 
Coeff=-2.02, SE=.80, t=-2.52, p=.02, 95% CI = [-3.65 -.39], CPP slope .1405, Coeff =.16, SE=.98, t=.16, 
p=.87, 95% CI [-1.84, 2.16]).  
 
These results suggest that the phenomenon of cognitive reserve, whereby high EE individuals are less 
reliant on typical markers of brain health to facilitate the preservation of cognitive function, is not just 
applicable to structural markers of brain health, but can be observed for neurophysiological markers. This 
provides a platform for future work to harness the millisecond temporal resolution of M/EEG to explore 
the neurophysiological basis of how this ‘reserve’ is facilitated. As such, these findings further suggest that 
the CPP build-up rate captures meaningful information relating to the neurophysiological health of the 
ageing brain. 
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Figure 4. Moderation model demonstrating the relationship between EE and RT as moderated 
by CPP build-up rate. Note all analyses were conducted using continuous variables but are visualised here with three bins 
of equal size for CPP build-up rate.  
 
Table 2. Results from a Regression Analysis Examining the Moderation of the Relationship 
between RT and Exposure to Environmental Enrichment in Older Adults by Neural Metrics of 
Evidence Accumulation Rate 

  Coeff SE t p 
 
95% CI 

Intercept i1 1259.45 163.17 7..72 <.0005 [928.53 1590.38] 

CPP build-up rate (X) b1 

-

5420.91 1493.02 -3.63 .0009 [-8448.95 -2392.88] 

EE (M) b2 -4.34 1.20 -3.62 .0009 [-6.76 -1.91] 

CPP build-up rate ×EE (XM) b3 32.00 10.55 3.03 .0045 [10.61 53.39] 

R2=.53, MSE=8102.33, F3,36=13.55, p<.0005 

  

 
 

Feasibility of EEG markers of evidence accumulation build-up rate as a scalable proxy for 
neurocognitive health 
Our findings provide evidence that the CPP build-up rate is mechanistically linked to an extensively 
validated marker of neurocognitive health – response speed – in older adults. This invites the possibility 
that this neural marker may be used by large-scale studies as an objective, cost-effective 
neurophysiological marker of ageing brain health. Both our results presented here, and a large body of 
previous research e.g. (Brosnan et al., 2020; McGovern et al., 2018; Newman et al., 2017; Steinemann et 
al., 2018), has measured the CPP using a single electrode (most typically ‘electrode Pz’). This affords clear 
benefits for reliably assessing this signal using low-density electrode arrays with either in-lab or portable 
EEG systems. Determining the minimum number of trials that permits a reliable measurement of CPP 
parameters, such as the CPP build-up rate, is therefore crucial for facilitating eventual clinical translation.   
 
To determine this, we performed an analysis with a subset of participants who completed at least 9 task 
blocks, all of whom had a minimum of 129 valid response-locked ERP trials (see methods). We first 
created new estimates of both RT and CPP build-up rate by randomly selecting N trials (either 20, 40, 60, 
80, 100, or 120) from the total pool of 129 trials. We repeated this random data-sampling using N trials, 
1000 times for each bin size. Accordingly, for each participant, we derived 1000 estimates of RT and CPP 
build-up rate for each of the six trial sizes (Fig. 5.A, B). We then tested whether the likelihood that the 
estimates of RT and CPP build-up rate were more likely to deviate from the true mean estimates with 
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reduced trial numbers. We addressed this question using two approaches. First, we calculated the signal to 
noise ratio (SNR) of the CPP build-up rate and RT (calculated as mean / standard deviation) and ran two 
repeated measures ANOVAs (again with trial bin as the repeated measure). This analysis revealed a 

significant main effect of bin size for both RT (F5,4995=3328.28, p<.0005, partial !2 =77) and CPP build-

up rate (F5,4995=247.84, p<.0005, partial !2 =.20). In both cases the data were best explained by a linear fit 
(RT: F1,999=9351.03, p<.0005, partial !2 =.9, CPP build-up rate: F1,999=688.82, p=<.005, partial !2 =.41), 
indicating that increasing the number of trials significantly improved the signal to noise ratio. To verify 
this pattern of results, we ran Kolmogorov-Smirnov tests on the mean estimates of CPP build-up rate 
and RT to assess whether the cumulative distribution function (CDF) increased with each reduction in 
trial number. These results demonstrated that, in general, when the number of trials was reduced from 
120 the width of the distribution (CDF) changed, as can be observed in Fig 5. A, B; KS <.05 for 120 
trials vs all other number of trials; see Supplementary Table 7. This pattern of results demonstrates the 
expected effect that by reducing the number of trials, we increase the likelihood that estimates of both RT 
and CPP build-up rate deviate from the true mean estimates. Our critical question here, however, is at 
what level of SNR do we obtain reliable and behaviourally meaningful estimates of the relationship 
between RT and evidence accumulation build-up rate.  
 
In the aforementioned results, we demonstrated a large effect size for the relationship between CPP 
build-up rate and RT (Pearson’s r)= -.60. Cohen’s (1988) cut-off for a large effect size is .5. As such, we 
defined the minimum number of trials at which a reliable CPP estimate can be derived as the number at 
which we can observe a strong effect size (i.e., an effect size greater or equal to .5) for the relationship 
between RT and CPP build-up rate. To investigate this, we calculated the direct relationship, using 
Pearson’s correlation, between CPP build-up rate and RT for each of the 1000 permutations for each of 
the 6 bin sizes (20 up until 120 trials; Fig 5C). We then ran a Bayesian one sample t-test to test whether 
the estimates of effect size (r) for each bin size were significantly larger than -.5.  We found infinite 
support for the alternative hypothesis that the effect sizes for the relationship between RT and CPP 
build-up rate with 120, 100, 80, 60, and 40 trials were larger than .5 (all BF01=∞; see descriptive statistics 
Table 3). However, this was not the case for the estimates derived using 20 trials. Here, Bayes factor 
analyses revealed strong support for the null hypothesis (BF01=648.42), i.e., that the estimates of effect 
size were not greater than -.5 (Fig 5C, Table 3). As such, these results indicate that 40 response-locked 
trials are the minimum number of trials that will allow for a reliable estimation of the CPP build-up rate / 
RT relationship. With current paradigm timings, 40 trials could be obtained in less than 8 minutes, 
highlighting the potential for isolating reliable EEG metrics of evidence accumulation over relatively 
short time scales. For detailed calculations of these timings (allowing for both variability in behavioural 
performance and quality of the EEG data) see Supplementary Results 3. 
 

 
Figure 5. A-C. Reliable Estimates of the Relationship between RT and Evidence Accumulation 
Build-Up Rate Can be Obtained With Reduced Trial Numbers. For each participant we randomly 
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selected 1000 estimates of RT (A) and CPP build-up rate (slope; B) for each of the six trial bin sizes (see 
legend). Reducing the number of trials reduced the signal to noise ratio and increased the likelihood that 
estimates of both RT and CPP build-up rate deviated from the true mean estimates (A, B). Critically, 
strong effect sizes (>.50) for the relationship between CPP build-up rate and RT were observed with as 
few as 40 trials (C) suggesting that this neurophysiological marker of sensory evidence accumulation may 
be developed as a translatable assessment of brain health for older adults. 
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DISCUSSION 
Here, we provide direct support for the hypothesis that build-up rates of sensory evidence accumulation 
are a critical neurophysiological mechanism underpinning the preservation of response speed in older 
adults. First, sensory evidence accumulation was not only directly related to response speed in older adults 
but also indirectly impacted performance by modulating subsequent neurophysiological processes, namely 
the decision criterion and the timing of the motor response. Second, consistent with the concept of 
neurocognitive reserve, a lifetime of EE offset age-related deficits in response speed. Critically, CPP slope 
moderated this association, such that the mitigating influence of EE on age-related declines in response 
times was most pronounced for individuals with relatively less efficient evidence accumulation (shallower 
build-up rates of CPP). This suggests that evidence accumulation build-up rates may offer rich 
information about which older individuals may benefit most from engaging with enriched environments. 
 
The results presented here are in keeping with the concept of cognitive reserve as defined by a recent 
consensus paper (Stern et al., 2020), but see (Cabeza et al., 2019, 2018; Stern et al., 2019b), whereby the 
proxy of reserve (here EE captured by the CRIq) exerts a moderating influence on the relationship 
between markers of brain health and cognitive function (Stern et al., 2020). Our findings show that when 
evidence accumulation build-up rates are relatively shallower, individuals with relatively higher EE can 
nonetheless maintain faster response speeds than those with lower EE. One of the predominant 
principles of cognitive reserve is that high EE individuals are less reliant on established markers of brain 
health for facilitating behaviour. As such our findings accord with a large body of work in both healthy 
and pathological ageing conditions demonstrating that EE facilitates a neuroprotective buffer to cognitive 
function in spite of objective markers indicative of poor brain health (e.g. grey matter atrophy in healthy 
individuals (Chan et al., 2018), amyloid plaques and tangles in Alzheimer’s patients (Xu et al., 2019)).  
 
The mechanisms by which a lifetime of EE facilitates the preservation of cognitive function are unclear 
(Cabeza et al., 2019, 2018; Stern et al., 2020, 2019b) and an important question for future work will be to 
understand the neurobiological substrates. Emerging evidence suggests that connectivity throughout 
select neural networks (e.g. functional segregation of resting state brain networks (Ewers et al., 2021)) and 
structural (white matter integrity (O’Sullivan et al., 2001)) may be candidate neurobiological mechanisms. 
Specifically, a number of studies have shown that connectivity within the fronto-parietal networks (FPN) 
accounts for substantial inter-individual variability in neurocognitive resilience in older adults (e.g. 
(Brosnan et al., 2021; Franzmeier et al., 2017a, 2017b; Veldsman et al., 2020)). Recently, we have shown 
in healthy younger adults that individual differences in connectivity within the dorsal FPN (white matter 
macrostructural organisation of the superior longitudinal fasciculus (SLF), and resting state functional 
connectivity within the dorsal FPN) varied according to the CPP build-up rate (Brosnan et al., 2020). In 
older adults, increasing evidence suggests that the SLF varies according to both levels of EE (Brosnan et 
al., 2021), and risk factors for neurocognitive decline (e.g. (Veldsman et al., 2020)). As such, an intriguing 
question for future work is whether EE might act to alter the white matter structure of the SLF to 
preserve the efficiency of sensory evidence accumulation rates in later years. 
 
A question of pressing relevance is to disentangle the contribution of socio-economic factors from 
enriched cognitive and social environments that optimise resilience to cognitive decline. Several lines of 
evidence suggest a causal contribution of EE to cognition, over and above socio-economic status (SES). 
For example, monozygotic twin pairs exposed to greater levels of enrichment throughout life show 
relatively faster response speed in later years (Lee et al., 2014). Similarly, a three-month intervention 
learning new skills in healthy older adults improves response speed (Park et al., 2014). Finally, emerging 
results from a large (N=2832) multicentre longitudinal clinical trial using computerised speed-based 
cognitive training in older adults shows that training this may causally improve neurocognitive health in 
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older adults (Ball et al., 2002, Rebok et al., 2014, Wolinsky et al., 2009, Wolinsky et al., 2009, Edwards et 
al., 2017). In our data, the association between EE and behaviour was drived exclusively by the leisure, 
and not education and occupation subscales, of the CRIq. While these observations suggest the effect of 
EE were at least partly orthogonal to SES, future work should further explore this using longitudinal 
intervention designs which incorporate comprehensive assays of SES. This would pave the way towards 
understanding and developing scalable, affordable public health interventions to induce lasting, positive 

changes in ageing brain function and resilience cognitive decline. 
 
Although slowed response times are often seen in healthy neurocognitive ageing (e.g. (Kochan et al., 
2016; Ritchie et al., 2014)), it is not the case that older adults show response time deficits across all tasks. 
Both modelling and neurophysiological work has demonstrated that age-related differences in drift rate, 
CPP build-up rate, and response times are task specific (e.g. (McGovern et al., 2018), see (Dully et al., 
2018) for a review). A key insight from decision modelling work with older adults has been that slowed 
RTs may not relate purely to sluggish information processing but might actually reflect a strategic 
preference for greater caution reflected in higher decision bounds (e.g. (Ratcliff et al., 2006b, 2006a, 
2004)). We however found no evidence to suggest that older adults adopted a high decision criterion and, 
in fact, found weak evidence that older adults in our cohort reached a lower bound than their younger 
counterparts.  Thus, using the CPP as a neurophysiological measurement of the evidence accumulation 
process, we provide additional support for recent observations that increased decision bounds in older 
adults are not generalisable to all scenarios (McGovern et al., 2018). Although neural metrics of the 
decision bound accounted for independent variation in response speeds, this relationship was contingent 
on the build-up rate of the CPP, such that slower build up rates of sensory evidence corresponded to 
lower decision bounds. As such, our findings indicate that response speed deficits obtained on an easy 
detection task in older adults result from a core deficit in the formation of perceptual decisions, as 
opposed to a more cautious approach to the decision-making process.  
 
Age-related deficits in motor preparation have been consistently reported (see Dully et al., 2018 for 
review).  The findings presented here demonstrate that age-related slowing in motor preparatory activity, 
indexed by later timing of activity in the beta band, is at least partially attributed to slower build-up rates 
of sensory evidence accumulation. Motor difficulties in neuropathological conditions (e.g. Parkinson’s 
disease) originate from progressive degeneration within the motor system but have been shown to 
improve with interventions targeting higher order cognitive areas (Subramanian et al., 2016, 2011). Our 
findings put forward a neurophysiological mechanism which could facilitate such effects, potentially 
through strengthening of white matter dorsal fronto-parietal pathways55. Future work may shed further 
light on the relationship between the formation of perceptual decisions and the motor response by 
incorporating measurements with equivalent millisecond precision. For example, subthreshold changes in 
the effector might be measured using continuous response measures such as voltage changes in hand-
held force-sensing resistors (McBride et al., 2018) or changes in muscle activation with electromyography 
(e.g. Steinemann et al., 2018). 
 
Although our results provide evidence that cognitive reserve can be indexed using EEG, the mechanisms 
supporting cognitive resilience in high EE individuals is an avenue for future work. Recently, there has 
been a focus on the motivational processes that govern how resources are allocated to effortful tasks 
(Chong, 2018; McGuigan et al., 2019; Westbrook et al., 2020; Westbrook and Frank, 2018). This idea is 
particularly relevant to our study given that older adults have been shown to outperform their younger 
counterparts on cognitively effortful tasks (Ennis et al., 2013; Mather and Carstensen, 2005). For 
example, older adults demonstrate a positivity bias resulting from enhanced cognitive control over 
positive emotions (Mather and Carstensen, 2005). In our study, the CRI data suggest that high EE 
individuals tended to engage in activities associated with higher levels of motivation relative to their low 
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EE peers (e.g., social activities, attending conferences, exhibitions, and concerts, and using modern 
technology). Future work with larger cohorts could directly test whether motivation in older adults, and 
especially those with high EE, can overcome evidence accumulation deficits to facilitate fast responses. 
 
Finally, identifying the precise stage of information processing driving slowed response speed with aging 
might hold valuable prognostic information and could provide a sensitive addition to future large-scale 
epidemiological and translational studies. In addition, our framework outlines a means to investigate the 
mechanisms by which high EE individuals may compensate for deficits in evidence accumulation to 
maintain fast responding. Future work should expand our targeted and comprehensive EEG analysis to 
explore the role of motivation and cognitive control in this regard. We present further evidence here that 
we can obtain reliable (large effect sizes) and meaningful (strongly predictive of response speed) 
measurements of the CPP build-up rate with as few as forty trials.   Taken together, our work suggests 
that measuring the CPP via low density and potentially portable EEG, might have significant value for 
exploring the mechanisms by which EE positively benefits brain function. 
 
Taken together our findings suggest that neural metrics of evidence accumulation build-up rate index an 
important facet of neurocognitive vulnerability in the ageing brain. Moreover, they suggest that, akin to 
grey matter atrophy measured with fMRI, CPP build-up rate holds promise as an EEG marker indexing a 
critical facet of neurophysiological vulnerability of the ageing brain that could be incorporated into large 
scale epidemiological studies.  

 

METHODS 

EXPERIMENTAL MODEL AND SUBJECT DETAILS  
Seventy-eight healthy volunteers were recruited for this study. Two older adults were excluded 
due to age ranges more than two standard deviations from the mean (these participants were 
originally recruited as age-matched controls for a parallel brain injury study). A further four older 
participants were excluded from analysis for various reasons: one was ambidextrous, one was 
experiencing a current depressive episode and two had scores of 19 and 21, respectively, on the 
Montreal Cognitive Assessment (MoCA (Nasreddine et al., 2005)), suggesting possible cognitive 
impairment. The final sample included 31 and 41 older participants (see Table 2 for demographic 
information). All participants reported being right-handed, had normal or corrected to normal 
vision, had no history of neurological or psychiatric disorder, and had no head injury resulting in 
loss of consciousness. Ethical approval was obtained from the Monash Health and Monash 
University Human Research Ethics Committee prior to the commencement of the study. The 
experimental protocol was approved and carried out in accordance with the approved guidelines. 
All participants were volunteers naive to the experimental hypothesis being tested and each 
provided written informed consent. 
 
 
Table 2. Demographic Information Reported values are M (SD) 
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 Age (yrs) Gender Education (yrs) MoCA 

Experiment 1     

Younger Adults 
(N=31)  

23.65 (2.87) 17 female (54.80%) 15.90 (2.27) NA 

Older Adults 
(N=41) 

72.41 (5.61) 26 female (63.40%) 16.49 (3.48) 27.46 (1.75) 

 
 

METHOD DETAILS  

Neurophysiological investigation of response speed 

Electroencephalography (EEG) was recorded continuously while participants performed a variant of the 
random-dot motion perceptual decision-making task (Fig. 1(Kelly and O’Connell, 2013; Loughnane et al., 
2016; Newman et al., 2017; Newsome et al., 1989)) During this task, participants fixated centrally and 
monitored two patches of 150 moving dots (each dot = 6x6 pixels), presented peripherally in each 
hemifield. During random motion, these dots were placed randomly throughout the patch on each frame. 
During coherent motion, within one hemifield a proportion (90%) of the dots was randomly selected on 
each frame to be displaced in either a downward or upward direction on the following frame, with a 
motion speed of 5° per second. Targets were defined by this seamless transition from random motion to 
coherent motion (Fig. 1; please note, images in figures 1, 2, and 3 are composite images). Participants 
signalled target detection with a speeded button press using their right index finger (RT). Targets were 
separated by intervals of random motion of 1.8, 2.8, or 3.8 s (randomized throughout each block). 
Targets remained on the screen for 3s, or until the participant pressed the button indicating their 
detection of coherent motion. The 12 possible trial types (each a combination of one of the 3 periods of 
random motion, 2 target locations, and 2 coherent motion directions) occurred in a pseudorandom order 
with the constraint that each different trial type arose twice every 24 trials. All younger adults (N=31) 
performed 8-9 blocks of the task. N=22 older adults (who were initially recruited to the study) similarly 
performed 8-9 blocks, while the remaining older adults (who were later recruited to the study, N=19) 
performed 4-5 blocks of the task at 90 % coherent motion, and a further 4-5 blocks of the task at 25% 
coherent motion, the latter of which was not analysed for the current study. Critically, a series of t tests 
revealed there were no significant behavioural differences between the older participants recruited for the 
longer versus shorter task duration(RT F1,.39 =1.72, p=.19; Accuracy F1,39=.02, p=.88) or any of the 
neurophysiological markers (N2c amplitude F1,39 =.08, p=.77; N2c latency F1,39=-.10, p=.76; CPP onset 
F1,39=.82, p=.37; CPP slope F1,39=.67, p=.42; CPP amplitude F1,39=.11, p=.74; LHB slope F1,39=.90, 
p=.35), LHB amplitude F1,39=.52, p=.48), or LHB latency F1,39=.0, p=.99). As such the data were 
combined to examine the impact of environmental enrichment on neural and behavioural signatures of 
response speed. All participants were given a short break of 30-60 s between each block. An SR Research 
EyeLink eye tracker (Eye- Link version 2.04, SR Research/SMI) recorded eye movements, to ensure that 
participants maintained fixation. The centre of each random-dot motion patch was at a visual angle 10° 
either side and 4° below the fixation square; each patch covered 8° visual angle and consisted of 150 6 x 6 
pixel white dots. If a fixation break occurred during a trial (either a blink or a gaze deviation >4° left or 
right of centre, detected via EyeLink1000, SR Research Ltd), the task halted (stationary dots). Once 
fixation returned to the central fixation dot, the trial restarted. The fixation dot remained on screen 
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throughout the entire task; however, the two peripheral patches were only present when the trial was 
initiated by the participant’s fixation on the central point. The task was run using MATLAB (MathWorks) 
and the Psychophysics Toolbox extensions (Brainard, 1997; Cornelissen et al., 2002; Pelli, 1997).  

EEG pre-processing 

Continuous EEG was acquired from 64 scalp electrodes using a BrainAmp DC system (BrainProducts), 
digitized at 500 Hz. Data were processed using a combination of custom scripts and EEGLAB (Delorme 
and Makeig, 2004) routines implemented in MATLAB (MathWorks see (Brosnan et al., 2020; Herding et 
al., 2019; Loughnane et al., 2016; McGovern et al., 2018; Nunez et al., 2019, 2017; Philiastides et al., 2014; 
Rungratsameetaweemana et al., 2018; Spitzer et al., 2017; Steinemann et al., 2018; van Vugt et al., 2019; 
von Lautz et al., 2019; Zhou et al., 2021). First, noisy channels were identified using visual inspection of 
channel variances across the entire recording, to be interpolated at a later stage below. Next, the EEG 
was detrended, then notch filtered at 50, 100 and 150 Hz to eliminate line noise and its harmonics, then 
high-pass filtered at 0.1 Hz using a Hamming windowed sinc FIR filter via EEGLAB. Channels with zero 
or extreme variance identified from the first inspection were interpolated via spherical spline. A 35-Hz 
low-pass filter was then applied to the data using Hamming windowed sinc FIR filter also, and the data 
were re-referenced to the average reference. Epochs were extracted from the continuous data from -200 
to 1500 ms from target onset. For both the ERP and stimulus-aligned LHB signals, the epochs were 
baselined with respect to -100 to 0 ms before target onset. For the response-aligned beta waveforms, the 
data were baselined between -450 to -350ms pre-response. Using triggers recorded by the EEG, we 
defined trials as the period between the beginning of random (i.e. non-target) motion and either a valid 
response, a fixation break, or the onset of the next period of random motion (i.e. a non-response). To 
minimise the interaction between overlapping ERP components, the data were subjected to Current 
Source Density transformation with a spline flexibility of 4 (Kayser and Tenke, 2006).  

A trial was excluded from the analysis if any of the following conditions applied: (1) if RTs were ≤150 ms 
(pre-emptive responses) or ≥ 1800 ms (responses after coherent motion offset); (2) if the EEG from any 
channel exceeded 100 µV during the interval from 100 ms before target onset to 100 ms after response; 
or (3) if central fixation was broken by blinking or eye movement 3° left or right of centre, during the 
interval between 100 ms before target onset and 100 ms after response. Please note that EyeLink data 
were not saved for N=5 out of the N=41 older adults due to a technical error and this final step was 
therefore not included for this subset of participants. Nonetheless fixation was monitored in real-time 
using EyeLink during task performance as described in the preceding section so no trials with eye 
movements >4° from centre were included. 
 
With the remaining trials for each participant, CPP and N2 waveforms were aggregated by averaging the 
baseline-corrected epochs, for right and left hemifield targets at the relevant electrode sites. The N2c 
component was measured contralateral to the target location, respectively, at electrodes P7 and P8 
(Brosnan et al., 2020; Loughnane et al., 2016; Newman et al., 2017) and the CPP was measured centrally 
at electrode Pz (Kelly and O’Connell, 2013; Loughnane et al., 2016; Newman et al., 2017; O’Connell et 
al., 2012; Twomey et al., 2015). Subsequently, N2c latency was identified on a subject level as the time 
point with the most negative amplitude value in the stimulus-locked waveform between 150-400 ms, 
whereas N2c amplitude was measured as the mean amplitude inside a 100 ms window centred on the 
stimulus-locked grand average peak of the N2c collapsed across hemifield (Loughnane et al., 2016). Onset 
latency of the CPP was measured by performing running sample-point-by-sample-point t tests against 
zero using a 25 ms sliding window across each participant’s stimulus-locked CPP waveforms. CPP onset 
was defined as the first point at which the amplitude reached significance at the 0.05 level for 90 
consecutive points (Foxe and Simpson, 2002; Kelly et al., 2008; Loughnane et al., 2016). CPP build-up 
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rate was defined as the slope of a straight line fitted to the response-locked waveform (Brosnan et al., 
2020; Loughnane et al., 2016; O’Connell et al., 2012), with the time window defined individually for each 
participant from -150 to 50 ms post-response (e.g. Brosnan et al., 2020; Stefanac et al., 2019). CPP 
amplitude was measured as the mean CPP amplitude between -50 and +50 ms around the participants’ 
individual response (e.g. Kelly and O’Connell, 2013; Van Kempen et al., 2019). 
 
Finally, LHB power was calculated using the temporal spectral evolution approach (Thut et al., 2006). All 
epochs were bandpass filtered between 20-35 Hz, converted to absolute values (rectified) and trimmed by 
200 ms at each end of the epoch to remove filter warm-up artefacts. The data were then smoothed by 
averaging within a 100-ms moving window, moving incrementally forward in 50-ms increments. LHB 
latency was measured within the left hemisphere motor site (C3) (corresponding to the right handed 
response modality) as the most negative-going point between 0 and 1000 ms. Beta slope was defined as 
the slope of a straight line fitted to the response-locked waveform, with the time window defined 
individually for each participant between 300 to 50 ms pre-response. Beta amplitude was measured as the 
mean amplitude of a 100 ms window centred on a participants’ response (i.e., -50 to +50 ms around 
response). 

Data processing 

Outliers were defined in SPSS using the interquartile range (IQR), separately for the younger and older 
adults. The interquartile range is the 3rd quartile (75th percentile) minus the 1st quartile (25th percentile). 
A value was identified as an outlier if either of the following conditions were met: if the value was <25th 

percentile - 3*IQR or if the value was >75th percentile + 3*IQR. Using this method, no outliers were 
identified on any of the behavioural, EEG, or EE measures used in the analyses below. 

Assessment of Environmental Enrichment 

Participants completed the Cognitive Reserve Index questionnaire (CRIq) (Nucci et al., 2012), a 
standardised semi-structured interview designed to estimate an individual’s level of lifetime cognitive 
enrichment through a formal computational model. This model encompasses an individual’s education, 
work and leisure activities across the lifespan with consideration given to the participant’s age, providing 
both an overall age-stratified and standardised Cognitive Reserve Index (CRI) and individual standardised 
subscale scores for each of the three components. One participant did not complete the CRIq due to 
time constraints. For this participant, we imputed their scores on all four CRI measures using the mean 
from the rest of the sample.  
 
Participants first reported the number of years in which they had engaged in formal education and 
additional vocational training. All occupations held since the individual was 18 years old were categorised 
using the five-point point scale provided by the CRI. These ranged from low skilled manual work (e.g. 
level 1 includes occupations like call centre operator, and gardener) to highly responsible or intellectual 
occupation (e.g. level 5 includes managing director of a big company or surgeon). Participants were 
additionally asked about their involvement in leisure activities that may be repeated with varying 
frequencies over the lifetime, including but not limited to reading, volunteering, socialising, managing 
accounts, going on holidays/trips. Activities were grouped into weekly, monthly, annual and fixed 
frequency activities, and then into whether they were completed never, rarely, often or always, and for 
how many years of life. Participant engagement in each of these domains is summarised in Supplementary 
Tables 10-12. 
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STATISTICAL ANALYSIS  

The Relationship between Age, Behaviour and EEG  

To assess age-related differences in behaviour, two one-way ANOVAs were conducted on Accuracy and 
RT. Next, to test whether the older and younger adults differed across N2c, CPP, and LHB dynamics, 
eight one-way ANOVAs were conducted with the EEG variables (N2c latency, and amplitude, CPP 
onset, build-up rate, and amplitude, LHB build-up rate, LHB amplitude, and LHB latency) as dependent 
variables, and age as a factor. To assess whether inter-individual differences in RT on the perceptual 
decision-making paradigm (RT) varied as a function of EEG signals of perceptual decision-making, the 
EEG parameters which differed in older versus younger adults (BF10>1) were each added sequentially 
into regression models in a hierarchical fashion(Newman et al., 2017). Order of entry was determined by 
the temporal order in the perceptual decision-making process: early target selection (N2c latency); 
evidence accumulation (CPP onset, build-up rate, and amplitude), and motor preparation (LHB 
amplitude, and LHB latency). This hierarchical entry method was implemented to assess whether each of 
the separate neurophysiological signals improved the model fit for RT over and above the signals that 
temporally preceded them. All neurophysiological signals that improved the model fit for RT were 
entered into a separate regression model to obtain accurate parameter estimates. The Age*RT interaction 
term was entered as the first predictor in the model, and Age was entered as the second predictor. Age, 
and the product term (Age*RT) were both centred (all raw scores for each participant were subtracted 
from the mean score of the variable) to reduce multicollinearity. Please note all statistical tests were two-
sided. Effect sizes of regression models were calculated using Cohen’s F2 using the following formula: 
(R2/(1-R2)). Behavioural data was visualised using RainCloudPlots for MATLAB (Allen et al., 2019, 2018). 
The EEG signals were visualised using GRAMM for MATLAB (Morel, 2018) 

Moderation Models 

To elucidate the moderating effects of evidence accumulation rate, amplitude, and beta latency on the 
relationship between EE and response speed, three moderation analyses were performed using the 
PROCESS computational toolbox (Hayes, 2014, 2012), Bonferroni-corrected for multiple comparisons 
(alpha .05/3 moderation models).  

Confirmatory Bayesian Analyses 

For all Bayesian modelling, results were compared with the null model, and JASP default settings were 
used (JZS prior, regression analyses: r scale .354, ANOVA analyses: r scale fixed effects .5). BF10 values 
are reported throughout and can be interpreted such that values above 1 indicate strength of evidence in 
favour of the alternative and values below 1 strength of evidence in favour of the null hypothesis. 

Minimum Trial Analysis 

The minimum trial analyses included all participants (N=53) who completed 8 or more blocks of the task. 
One individual was identified as an outlier (>2SD from the mean) with regards the number of trials 
included (N=109 trials) and was excluded, therefore resulting in a total of N=52 participants. All of these 
52 participants had a minimum of 129 valid response-locked trials, which we used to investigate 
remaining questions (M=183.06; SD=19.95; range 129-207).  
 
For the Bayes Factor analyses, default priors in JASP were used (Cauchy prior of .707), and the alternative 
hypothesis was set at measure 1 ~= measure 2.  
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Table 3. Effect sizes for the relationship between RT and CPP build-up rates for 6 different trial 
sizes. Only at 20 trials did Bayes factor analyses reveal strong support for the null hypothesis that 
estimates of effect size were not greater than .5. 
 

r CPP build-up rate-CPP   Mean  SD  
20 trials    -0.527   0.055   

40 trials   -0.568   0.035   

60 trials   -0.583   0.026   

80 trials   -0.590   0.019   

100 trials   -0.591   0.019   

120 trials   -0.599   0.007   
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SUPPLEMENTARY RESULTS 1 
 
Effects of environmental enrichment are independent of level of IQ  
 
To investigate whether the observed relationship between EE and response speed could reflect individual 
differences in IQ, we estimated premorbid intelligence in a subset of participants (n=36). There was no 
direct association between IQ and response speed. Critically, the relationship between EE and response 
speed remained significant after covarying for IQ, indicating that the relationship between enrichment of 
cognition was not due to individual differences in intelligence. 
 
More specifically, a subset (N=36) of the older adults completed word reading tasks commonly used to 
estimate premorbid IQ based on the Wechsler Adult Intelligence Scale – Fourth Edition (WAIS-IV) 
(Wechsler, 1981). Of these individuals n=17 completed the Test of Premorbid Function (ToPF), while 
the other n=19 completed the National Adult Reading Test (NART) (Nelson, 1982), using updated 
norms. Outliers were defined in SPSS using the IQR, consistent with the main analyses, separately for 
both cohorts of older adults. One outlier was detected for the ToPF and was subsequently removed and 
imputed using the mean value from their group. The two cohorts differed on estimates of IQ score 
derived using the different word lists (t34=2.09, p=.04), with a subsequent Bayesian independent samples t 
test suggesting moderate evidence for a difference between the two groups, BF10 =3.26. This is likely 
attributable to established differences in the estimations produced by the measure. Nonetheless, we 
considered it useful to investigate using the data available to us, whether our effects could be attributed to 
a relationship between response speed and IQ. For this, we ran a hierarchical linear regression of RT, 
with IQ entered as the first step in the model. IQ did not account for a statistically significant proportion 
of the variance in RT, indicating no direct influence of premorbid intelligence on response speed (F(1,34) 

=.07, p=.80, R2adj =-.03). Critically, when the CRI sub-scales were added to the second step in this 
hierarchical model, the relationship between EE and response speed remained significant (R2adj =.17, 
R2change =.26, p=.02; F(4,31) =2.77, p=.04), demonstrating that the observed relationship between EE and 
response speed cannot be attributed to IQ.  
 

SUPPLEMENTARY RESULTS 2 
 
Characterisation of older adult participation in leisure activities 
 
To explore the leisure activities which may drive the apparent effect of EE on response speed, we 
compared the activities of those with higher versus lower levels of lifetime leisure engagement. To do so, 
we first devised two groups of older adults based on a median split of their engagement in leisure 
activities. Those with CRI Leisure subscores above the overall median score of 138.00 were considered 
High Engagement (n=20), while those with a subscore equal to or lower than 138.00 were deemed Low 

Engagement (n=21). We then examined each participant’s responses to individual activities on the CRIq. 
Participants first indicated whether they participated in the activity Often/Always, or Never/Rarely over the 
course of their lifetime, and further specified for how many years they engaged Often/Always. For 
participants who engaged in an activity Often/Always for at least one year of life, we calculated separate 
values for their engagement in each activity, representing the percentage of life years spent engaging in 
each activity since 18 years of age using the following formula: ((Years of activity)/(Age – 18)) * 100. 
Note that rounding within the CRIq causes some individuals to exceed 100.00% of life spent participating 
in a given activity. For example, if an individual worked as a nurse for 3 years, this is rounded up to 5 
years, as per the standardised questionnaire administration guidelines. Finally, we determined the 
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percentage of individuals in each group who engaged in each activity Often/Always, and the mean 
percentage of life spent engaging in each activity for each group, the results of which are demonstrated in 
Supplementary Table 5.  
 
Subsequently, we investigated group differences through a series of t tests. Those with High Engagement, 
compared to those with Low Engagement in leisure activities, spent a significantly greater proportion of 
their lives using modern technology (t39=4.37, p<.001), engaging in social activities (t26.88=4.49, p<.001), 
and attending events such as conferences, exhibitions and concerts (t32=3.98, p<.001), vacationing 
(t24.83=3.11, p=.01), cinema or theatre attendance (t11.09=2.85, p=.01), driving (t22.96=2.11, p=.05), reading 
books (t28.12=2.18, p=.04), or engaging in hobbies such as sports and games (t37=2.31, p=.03). No other 
significant differences were found (all p>.05). 
 
We additionally ran a series of Bayesian independent samples t tests to compare our ‘high leisure’ and ‘low 
leisure’ groups on each of the 16 leisure activities. These suggested that our high leisure group spent more 
of their lives attending events such as conferences, exhibitions, and concerts (BF10=10658.60), using 
modern technology (BF10=240.49), engaging in social activities (BF10=106.02), and vacationing 
(BF10=72.46). The BF10 of all other models was <3.00 indicating at most anecdotal evidence in support of 
the alternative hypothesis.  
 

SUPPLEMENTARY RESULTS 3 
 
Calculation of the time necessary to assess 40 trials of the CPP 
 
Results from the minimum trial analyses indicate that a minimum of 40 trials would be sufficient to derive 
valid and behaviourally meaningful estimates of CPP build up rate. These trials are derived using the 
response-locked EEG signals, following data cleaning, for correctly identified target stimuli (coherently 
moving dots). Below we provide calculations both for the average time we expect necessary to obtain 40 
valid trials, and for a ‘worst case scenario’.   
 
Calculations using mean values 
 
Mean accuracy was 96%. In order to get 40 valid response locked trials, participants would need to be 
administered an extra 4% (2 trials), i.e., 42 trials in total. We calculated the percentage of EEG trials 
which were rejected by data cleaning i.e., (rejected trials/(rejected trials + valid trials), and on average 15% 
of trials were excluded following the preprocessing steps. In order to obtain 42 valid EEG trials (post 
data cleaning), an additional 15% of data would need to be collected, so 48 trials in total.  
In this case, we would present the participant with  

• 48 coherent motion trials at 3 seconds each  
o = 144seconds total 

• Each target trial would be preceded by random motion at three variable intervals (1.8s. 2.8s, & 
3.8s; 48 targets/3 random motion periods =16 at each time period) 

• [(1.8*16) +(2.8*16) + (3.8*16)] 

• [28 + 44.8 + 60.8] 
o =133.6seconds 

• Total time (144s +133.6s) = 277.6 seconds (4.62 minutes) 
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Calculations using the worst-case scenario values (i.e., participants with lowest accuracy and 
noisiest EEG data) 
 
The participant with the lowest accuracy on the task correctly identified 71% of targets, and as such in 
order to get 40 valid trials would need an extra 29% (12 trials), i.e., 52 trials in total. While, on average 
15% of participant EEG trials were rejected during processing, in the noisiest dataset we rejected 44% of 
trials. In this scenario, in order to obtain 52 valid trials post cleaning we would need an extra 44% of data 
(i.e., 75 trials in total). 
In this case, we would present the participant with  

• 75 coherent motion trials at 3 seconds each  
o = 225 seconds total 

• Each target trial would be preceded by random motion at three variable intervals (1.8s. 2.8s, & 
3.8s; 75 targets/3 random motion periods =25 at each time period) 

• [(1.8*25) +(2.8*25) + (3.8*25)] 

• [45 + 70 + 95] 
o =210seconds 

• Total time (225s + 210s) = 435 seconds (7.25 minutes) 
 
We note that these times do not account for EEG set-up time. Future work should address the minimum 
participant preparation time and reliability of these results from low density, portable electrode arrays. 
 

SUPPLEMENTARY RESULTS 4 

Temporal Dynamics of Evidence Accumulation are Robust Age-Related Indicators 

We next examined group-level differences in the eight electrophysiological markers using a series of one-
way ANOVAs, Bonferroni-corrected for multiple comparisons (alpha .05/8 EEG components => alpha-
corrected threshold = .006) and supplemented these with Bayesian analyses to indicate the strength of 
evidence in support of the null hypothesis.  No statistically significant difference was observed between 
older and younger adults in the latency of early target selection signals (N2c; F1,70 =2.75, p=.10, BF10=.79, 
Supplementary Table 1 for plots and additional analyses see Supplementary Fig. 2), and although there 
was weak evidence to suggest that the amplitude of the N2c differed between groups (F1,70 =6.01, p=.02, 

partial !2=.08, BF10=3.05, Supplementary Table 1, Supplementary Fig. 1A), this did not survive 
correction for multiple comparisons.  
 
In line with recent reports(McGovern et al., 2018), the older adults differed from their younger 
counterparts in metrics of evidence accumulation (the CPP). More specifically, timing delays were 
observed for several parameters of the CPP in older individuals; they showed a later onset (later CPP 

onset; F1,70=14.8, p<.001, partial !2=.18, BF10=96.52, Supplementary Table 1, Supplementary Fig. 1B) 

and slower build-up rate (shallower CPP build-up rate (slope); F1,70 =8.03, p=.006, partial !2=.10, 
BF10=6.90, Supplementary Table 1, Supplementary Fig. 1B). No groups differences were observed for the 

amplitude at response (CPP amplitude; F1,70=5.88, p=.02, partial !2=.08, BF10=2.89, Supplementary Table 
1). We did not observe differences in motor preparatory activity between the two groups (LHB build-up 
rate (slope) F1,70=.31, p=.58, BF10=.28; stimulus-aligned peak LHB latency F1,70 =4.74, p=.03, partial 

!2=.06, BF10=1.81, LHB amplitude F1,70=3.79, p=.06, partial !2=.05, BF10=1.22, Supplementary Fig. 1C). 
For additional LHB analyses, see Supplementary Results 5. Together the inferential and Bayesian statistics 
demonstrate that the CPP onset and build-up rate are robust age-related indicators.  
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SUPPLEMENTARY RESULTS 5 

Stimulus-locked beta latency as a valid marker of motor preparatory activity  

To verify that motor preparatory activity was accurately captured by our stimulus-locked measure of beta 
latency, and to exclude the possibility that EE could be impacting RT through an influence over motor 
preparatory activity, two response-locked beta metrics were derived and explored in relation to RT: 
response-locked beta slope (build-up rate) and response-locked beta amplitude (threshold; Supplementary 
Fig. 4 below). Beta slope was defined as the slope of a straight line fitted to the response- locked 
waveform, with the time window defined individually for each participant between 300 to 50 ms pre-
response, and baselined to -450 to -350ms. Beta amplitude was measured as the mean amplitude of a 
100ms window centred on a participants’ response (i.e., -50 to +50ms around response). A stepwise linear 
regression model was used to identify which of the three beta measures (peak stimulus-locked latency, 
along with slope, and amplitude at the time of response) was the best predictor of RT (Criteria: 
probability of F to enter <=.05, probability of F to remove >=.1). The resulting model of RT included 
only stimulus-locked beta latency, indicating that this was the most appropriate EEG metric for capturing 
independent variance in RT (beta latency: standardized β=.54, t=5.25, p<.001, 95% CI [.28 .62]; beta 
slope: β=.10, t=.95, p=.34, beta amplitude β=-.12, t=-1.14, p=.26 model F1,68=27.60, p<.001). In line with 
previous work (e.g.(Brosnan et al., 2020; O’Connell et al., 2012), this result suggests that beta latency is a 
valid marker of task-relevant motor preparatory activity accounting for independent variance in response 
speed.  

SUPPLEMENTARY RESULTS 6 

The effects of CRIq Leisure on RT are orthogonal to CRI Education and CRI 
Occupation 

To explore the association between the CRIq Leisure subscale with Education and Occupation, we ran 
correlational analyses between the four CRI subscales (Supplementary Table 8). First, the composite score 
was strongly associated with leisure, occupation, and education engagements (all r>.65), p<.001). A robust 
association was also observed between the CRI subscales of education and occupation (r>.4, see Table 
below). Critically, however, we did not find evidence to suggest an association existed between the CRI 
Leisure subscale with CRI Education (r=.11, p=.48) or CRI Occupation (r=.18, p=.27). In fact, follow up 
Bayesian analyses suggested moderate-anecdotal evidence in support of the null hypothesis, i.e., that no 
relationship existed between the Leisure subscale with Education (BF10=.25) or Occupation (BF10=.35). 
As such, these results suggest that our measure of cognitive reserve driving the associations with RT (i.e., 
the CRI leisure subscale) is orthogonal and statistically independent of the education and occupation 
subscales. 
 
To address the concern that our observed associations between RT and CRI Leisure could be attributed 
to the effects of education or occupation, we re-ran the regression models while controlling for the 
effects of education and occupation.  
 
First, we re-ran the final regression model, in which response speed was modelled as a function of the 
CRI Leisure subscale, this time adding both the CRI Education and CRI Occupation subscales as 
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nuisance covariates in step 1. With this approach, we observed that modelling RT as a function of CRI 
Education and CRI Occupation did not account for significant variance in RT (Adjusted R2=.017, 
F(2,38)=1.34, p=.27). Critically, when the CRI Leisure subscale was added to the next stage of the model, 
there was a significant improvement in model fit, over and above the null model (Adjusted R2=.203, R2 

change = .197, F change = 9.89, F(3,37)=4.40 , p=.01; Standardized β CRI Leisure= -0.45, t=-3.15, p=.003; 
95% CI [-4.97 -1.07]; Standardized β CRI Education= 0.06, t=0.41,, p=.66; 95% CI [-2.71 4.08]; 
Standardized β CRI Occupation= .31, t=1.95, p=.06; 95% CI [-.07 3.91]).  
 
Second, to verify our results using Bayesian statistics, we re-ran the Bayesian Linear Regression model, 
this time adding the CRI subscales of Education and Occupation to the null model, thereby exploring the 
direct association between the CRI Leisure and RT. This analysis indicated strong evidence in support of 
the hypothesis that CRI Leisure accounts for substantial variance in behavioural markers of response 
speed (BF10=14.38). As such, these results suggest our effects are driven by leisure activities, and not 
education or occupational engagements.     
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SUPPLEMENTARY TABLES  
 
Supplementary Table 1. Note all values signify mean (M) and standard deviations (SD). EEG signals that differed 
significantly between the older and younger adults (according to both Bonferroni-corrected frequentist and Bayesian 
analyses) are highlighted in bold. Note, weak (anecdotal) evidence is provided for the group difference in N2c 
amplitude 
 

 Younger Adults 
(N=31) 

Older Adults 
(N=41) 

N2c Amplitude (uV/m2) -10.03 (8.35) -15.98 (11.36) 

N2c Latency (ms) 266.16 (55.61) 285.78 (44.81) 

CPP Onset (ms) 250.84 (80.39) 345.17 (117.16) 

CPP Build-up Rate .12 (.07) .07 (.07) 

CPP Amplitude (uV/m2) 24.32 (13.75) 17.20 (11.16) 

LHB Latency (ms) 471.58 (98.18) 549.02 (178.46) 

LHB Slope -.0059 (.0057) -.0068 (.0067) 

LHB Amplitude -1.32 (1.26) -2.04 (1.73) 
 
 
 
Supplementary Table 2: Hierarchical linear regression model statistics examining how each 
neurophysiological marker contributed to RT, over and above the contributions made by those 
processes that temporally preceded. 
 

ANOVA (Dependent Variable: RT) 
Model Sum of Squares df Mean Square F Sig. 

Model 1: Predictors: (Constant), Age*RT 
1 Regression 98463.640 1 98463.640 6.242 .015b 

Residual 1088413.948 69 15774.115   

Total 1186877.588 70    
Model 2: Predictors: (Constant), Age*RT, Age 

2 Regression 614865.329 2 307432.665 36.547 .000c 
Residual 572012.259 68 8411.945   

Total 1186877.588 70    
Model 3: Predictors: (Constant), Age*RT, Age, N2c Amplitude 

3 Regression 628653.677 3 209551.226 25.151 .000d 
Residual 558223.911 67 8331.700   

Total 1186877.588 70    
Model 4. Predictors: (Constant), Age*RT, Age, N2c Amplitude, CPP onset 

4 Regression 628654.248 4 157163.562 18.582 .000e 
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Residual 558223.340 66 8457.929   

Total 1186877.588 70    
Model 5. Predictors: (Constant), Age*RT, Age, N2c Amplitude, CPP onset, CPP Slope 

5 Regression 768362.958 5 153672.592 23.867 .000f 
Residual 418514.630 65 6438.687   
Total 1186877.588 70    

Model 6: Predictors: (Constant), Age*RT, Age, N2c Amplitude, CPP onset, CPP Slope, CPP 
Amplitude 

6 Regression 825207.343 6 137534.557 24.338 .000g 
Residual 361670.245 64 5651.098   

Total 1186877.588 70    
Model 7: Predictors: (Constant), Age*RT, Age, N2c Amplitude, CPP onset, CPP Slope, CPP 
Amplitude, LHB Amplitude 

7 Regression 827509.280 7 118215.611 20.724 .000h 
Residual 359368.308 63 5704.259   

Total 1186877.588 70    
Model 8: Predictors: (Constant), Age*RT, Age, N2c Amplitude, CPP onset, CPP Slope, CPP 
Amplitude, LHB Amplitude, LHB Latency 
8 Regression 886238.175 8 110779.772 22.846 .000i 

Residual 300639.413 62 4849.023   

Total 1186877.588 70    

 
 
 
 
Supplementary Table 3: Bayesian linear regression model statistics examining how each 
neurophysiological marker contributed to RT. Note. BFinclusion values above 1 indicate the 
strength of evidence in favour of the alternative hypothesis and are highlighted in bold.  
 
Posterior Summaries of Coefficients  
 95% Credible Interval  

Coefficient  Mean  SD  P(incl)  P(incl|data)  BF inclusion  Lower  Upper  
Intercept   -2.429   8.337   1.000   1.000   1.000   -17.937   13.996   

Age*RT  0.013   0.004   0.500   0.992   129.391   0.005   0.019   

Age   2.273   0.451   0.500   1.000   13404.200   1.347   3.098   

CPP Build-up Rate  -759.195   179.370   0.500   0.999   1307.327   -1118.297   -439.427   

CPP Amplitude   2.168   1.041   0.500   0.927   12.640   0.000   3.752   

Beta Latency  0.221   0.074   0.500   0.981   50.810   0.074   0.391   

N2c Amplitude  -0.316   0.688   0.500   0.426   0.742   -2.303   0.492   

N2c Latency  0.011   0.108   0.500   0.354   0.549   -0.188   0.309   

CPP Onset   0.037   0.076   0.500   0.428   0.749   -0.043   0.237   

LHB Slope  791.174   1752.233   0.500   0.427   0.744   -1543.816   5360.611   

LHB Amplitude   -4.823   7.777   0.500   0.488   0.954   -22.822   3.141   
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Supplementary Table 4: Bayesian Linear Regression Model the relationship between RT and 
Cognitive Reserve. 
 
Model Comparison  

Models  P(M)  P(M|data)  BF M  BF 10  R²  
Null model   0.250   0.077   0.251   1.000   0.000   

CRI Leisure + CRI Work + CRI Education   0.250   0.380   1.837   4.917   0.266   

CRI Leisure + CRI Work   0.083   0.317   5.104   12.311   0.263   

CRI Leisure   0.083   0.110   1.358   4.269   0.154   

CRI Leisure + CRI Education   0.083   0.074   0.874   2.860   0.190   

CRI Work   0.083   0.022   0.253   0.873   0.065   

CRI Education   0.083   0.011   0.121   0.421   0.020   

CRI Work + CRI Education   0.083   0.009   0.102   0.358   0.067   
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Supplementary Table 5 Frequency and duration of leisure activity engagement for those with high and low CRI Leisure (devised by median split). 
 
 Overall 

(n = 41) 

High CR-Leisure 

(n = 20) 

Low CR-Leisure 

(n = 21) 

Significant difference 

for proportion of 

time engaged  Percentage 

of People 

Engaged 

Proportion 

of Life 

Engaged 

Percentage 

of People 

Engaged 

Proportion 

of Life 

Engaged 

Percentage 

of People 

Engaged 

Proportion 

of Life 

Engaged 

Activities with weekly frequency       
 

Reading newspapers and magazines 90.2% 

(n=37) 

82.89% 

(32.25) 

100.0% 

(n=20) 

89.28% 

(26.81) 

81.0% 

(n=17) 

75.38% 

(37.08) 

ns. 

Housework (cooking, ironing, 

washing, etc) 

97.6% 

(n=40) 

85.61% 

(32.85) 

100.0% 

(n=20) 

89.71% 

(33.06) 

95.2% 

(n=20) 

81.50% 

(32.97) 

ns. 

Driving (not biking) 95.1% 

(n=39) 

97.34% 

(14.39) 

95.0% 

(n=19) 

102.02% 

(5.84) 

95.2% 

(n=20) 

92.89% 

(18.41) 

* 

Leisure activities (sports, hunting, 

dancing, cards, bowling, etc) 

95.1% 

(n=39) 

53.58% 

(31.65) 

95.0% 

(n=19) 

64.97% 

(19.84) 

95.2% 

(n=20) 

42.76% 

(30.11) 

* 

Using new technologies (digital 
camera, computer, internet, etc) 

100.0% 
(n=41) 

72.46% 
(31.12) 

100.0% 
(n=20) 

90.53% 
(24.51) 

100.0% 
(n=21) 

55.26% 
(27.00) 

*** 

Activities with monthly frequency        

Social activities (parties/going out 
with friends, local community 
events, etc) 

87.8% 
(n=36) 

51.90% 
(38.67) 

90.0% 
(n=18) 

75.17% 
(38.25) 

85.7% 
(n=18) 

28.64% 
(21.65) 

*** 

Cinema or theatre 41.5% 

(n=17) 

48.25% 

(34.20) 

45.0% 

(n=9) 

66.79% 

(36.17) 

38.1% 

(n=8) 

27.38% 

(15.45) 

** 

Gardening, handcraft, knitting, etc 85.4% 

(n=35) 

79.81% 

(31.07) 

90.0% 

(n=18) 

78.58% 

(34.77) 

81.0% 

(n=17) 

81.11% 

(27.64) 

ns. 

Taking care of children or elderly 63.4% 

(n=26) 

24.39% 

(13.43) 

60.0% 

(n=12) 

24.87% 

(13.84) 

66.7% 

(n=14) 

23.99% 

(13.57) 

ns. 
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Volunteering 73.2% 

(n=30) 

25.39% 

(18.38) 

80.0% 

(n=16) 

26.11% 

(23.82) 

66.7% 

(n=14) 

24.57%  

(9.88) 

ns. 

Artistic activities (playing an 

instrument, painting, writing, etc) 

53.7% 

(n=22) 

52.26% 

(43.53) 

60.0% 

(n=12) 

66.41% 

(41.23) 

47.6% 

(n=10) 

39.68% 

(43.71) 

ns. 

Activities with annual frequency        

Exhibitions, concerts, conferences 82.9% 
(n=34) 

59.35% 
(35.84) 

100.0% 
(n=20) 

76.36% 
(30.60) 

66.7% 
(n=14) 

35.06% 
(28.51) 

*** 

Holidays 73.2% 

(n=30) 

49.82% 

(30.42) 

90.0% 

(n=18) 

60.91% 

(33.45) 

57.1% 

(n=12) 

33.20% 

(14.43) 

** 

Reading books 100.0% 

(n=41) 

87.69% 

(34.83) 

100.0% 

(n=20) 

99.13% 

(19.26) 

100.0% 

(n=21) 

76.81% 

(42.65) 

* 

Activities with fixed frequency        

Pet care 73.2% 

(n=30) 

53.14% 

(36.48) 

85.0% 

(n=17) 

58.91% 

(38.43) 

61.9% 

(n=13) 

45.60% 

(33.75) 

ns. 

Managing one’s bank account(s) 100.0% 

(n=41) 

94.20% 

(21.20) 

100.0% 

(n=20) 

99.65% 

(13.98) 

100.0% 

(n=21) 

89.00% 

(25.59) 

ns. 

Having children 82.9% 

(n=34) 

2.82  

(.94) 

70.0% 

(n=14) 

2.64  

(.93) 

95.2% 

(n=20) 

2.95  

(.94) 

ns. 

ns. p>.05; * p≤.05; ** p≤.01; *** p≤.001, only these values pass the Bonferroni threshold for significance. 
Note. All values represent M(SD). Values reported for having children are the percentage of people who reported having children, and the mean number of 
children, respectively. 
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Supplementary Table 6. 
      BF₀₁  error %  
 RT 120 trials  RT 100 trials  26.185   0.004   

   RT 80 trials  22.506   0.003   

   RT 60 trials    7.360   0.001   

   RT 40 trials  26.381   0.004   

   RT 20 trials  28.076   0.004   

 CPP 120 trials  CPP 100 trials   6.434  9.348e -4   

   CPP 80 trials   24.552  0.004   

   CPP 60 trials   10.909  0.002   

   CPP 40 trials   25.467  0.004   

   CPP 20 trials     15.542  0.002   

Bayesian paired-sample t-tests comparing 120 trials with reduced bin sizes for both RT 
and CPP slope (build-up rate).  
 
 
 
Supplementary Table 7. 

 120 vs 100 100 vs 80 80 vs 60 60 vs 40  40 vs 20 

Cumulative Distribution Factor (ks) 

RT (k, p) k=.22*** k =.03 ns k=.09*** k=.05 ns k=.14*** 
CPP slope k=.25*** k=.01 ns k=.09*** k=.07** k=.1*** 

Note. ks denotes Kolmogorov-Smirnov test, ***, p<.001, **, p<.01 
 
 
Supplementary Table 8. 

 CRI Leisure CRI Education CRI Occupation CRI Composite 

CRI Leisure     

CRI Education r=.11, p=.48 

BF10=.25 

   

CRI Occupation r=.18, p=.27 

BF10=.35 

r=.42, 
p=.006 

BF10=7.14 

  

CRI  

Composite 

r=.66, p<.001 

BF10 = 8717.55 

r=.62, p<.001 

BF10=1698.38 

r=.80, p<.001 

BF10=2.161e+7 
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Supplementary Figure 1. Temporal 
Dynamics of Evidence Accumulation 
Are Robust Age-Related Indicators 

A. The stimulus-aligned N2c waveform (electrodes 

P7/P8) for older and younger adults. B. Stimulus-

aligned CPP waveform (electrode Pz) for the two 

groups. C. Stimulus-aligned beta waveform 

(electrode C3) for the two groups. Note. The 

topoplots depict the spatial distribution of the 

EEG signal for both groups combined at 150-

400ms post-target for the N2c (A) -150ms to 50ms 

aligned to response for the CPP (B) and 400-

700ms post-target for LHB (C).   
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Supplementary Figure 2. The N2c component, stimulus aligned at electrode P7 (Left 
Hemisphere), and P8 (Right hemisphere).  
Given the relevance of hemisphere lateralisation for theories of cognitive ageing, we investigated any age-related hemisphere 

differences in the N2c using 2 (old versus young) X 2 (right hemisphere x left hemisphere) ANOVAs, separately for latency and 

amplitude . There was no main effect of hemisphere on N2c latency (F1,69=3.46, p=.07) but there was a significant hemisphere x 

group interaction term (F1,69=11.56, p=.001, partial !2 =.14). In line with a large body of work highlighting a right hemisphere 

dominance for early sensory processing, follow up analyses revealed that the younger adults showed a significantly faster right 

hemisphere N2c latency (M=257.07ms, SD=51.67) as compared with the left hemisphere (298.77ms, 69.95; F1,29=14.99, p=.001, 

partial !2 =.34). In contrast, for the older adults there was no hemispheric differences in N2c latency (F1,40=1.23, p=.28; right 

hemisphere: M=303.59, SD=57.56; left hemisphere: M=291.37ms, SD=54.86), possibly indicative of a reduction in hemispheric 

asymmetries in the older adults. As compared with the younger adults, the older adults showed slower N2c latencies in the right 

(F1,69=12.32, p=.001, partial !2 =.15) but not left (F1,69=.25, p=.62) hemispheres. There was no effect of group on N2c amplitude 

(F1,69=3.33, p=.07), nor was there any group x hemisphere interaction term (F1,69=.02, p=.88).  
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Supplementary Figure 3. Differences between the activities of those with relatively higher versus 
lower levels of lifetime leisure engagement 
Proportion of life spent engaging in particular activities varies between those with an overall higher or lower level of engagement 

in leisure activities. Significant group differences are presented in bold. * denotes comparisons where p<.05, but did not satisfy a 

Bonferroni adjusted α=.003. 

 

 
Supplementary Figure 4. CPP and Beta components from Figure 1 visualised here aligned to 
participants’ response.  
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